Infiltration of Proinflammatory M1 Macrophages into that Mouse Model of Age-Related Macular Degeneration

International Journal of Inflammation 2013, 1-12 DOI: 10.1155/2013/503725

Citation Report

#	Article	IF	CITATIONS
1	The eye: A window to the soul of the immune system. Journal of Autoimmunity, 2013, 45, 7-14.	3.0	80
2	Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. Journal of Neuroinflammation, 2013, 10, 120.	3.1	115
3	<scp>CCR</scp> 2 ⁺ monocytes infiltrate atrophic lesions in ageâ€related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in <i>Cx3cr1</i> deficient mice. EMBO Molecular Medicine, 2013, 5, 1775-1793.	3.3	245
4	T Cells and Macrophages Responding to Oxidative Damage Cooperate in Pathogenesis of a Mouse Model of Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e88201.	1.1	56
5	RAGE Regulates Immune Cell Infiltration and Angiogenesis in Choroidal Neovascularization. PLoS ONE, 2014, 9, e89548.	1.1	22
6	Do Nutritional Supplements Have a Role in Age Macular Degeneration Prevention?. Journal of Ophthalmology, 2014, 2014, 1-15.	0.6	25
7	Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model. Journal of Clinical Medicine, 2014, 3, 1542-1560.	1.0	40
8	Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends in Endocrinology and Metabolism, 2014, 25, 107-114.	3.1	42
9	Genomic aspects of age-related macular degeneration. Biochemical and Biophysical Research Communications, 2014, 452, 263-275.	1.0	52
10	Immune Responses in Age-Related Macular Degeneration and a Possible Long-term Therapeutic Strategy for Prevention. American Journal of Ophthalmology, 2014, 158, 5-11.e2.	1.7	67
11	Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in ageâ€related macular degeneration. EMBO Molecular Medicine, 2015, 7, 211-226.	3.3	98
12	Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration. PLoS ONE, 2015, 10, e0143952.	1.1	43
13	Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases. Mediators of Inflammation, 2015, 2015, 1-15.	1.4	196
14	Upregulation of P2RX7 in <i>Cx3cr1</i> -Deficient Mononuclear Phagocytes Leads to Increased Interleukin-1î² Secretion and Photoreceptor Neurodegeneration. Journal of Neuroscience, 2015, 35, 6987-6996.	1.7	77
15	Thrombospondin-1 and Pathogenesis of Age-Related Macular Degeneration. Journal of Ocular Pharmacology and Therapeutics, 2015, 31, 406-412.	0.6	13
16	The BALB/c mouse: Effect of standard vivarium lighting on retinal pathology during aging. Experimental Eye Research, 2015, 135, 192-205.	1.2	34
17	Light, lipids and photoreceptor survival: live or let die?. Photochemical and Photobiological Sciences, 2015, 14, 1737-1753.	1.6	23
18	Restoring Vision: Where are We with Stem Cells?. Current Ophthalmology Reports, 2015, 3, 192-199.	0.5	1

τατιών Ρερώ

CITATION REPORT

#	Article	IF	CITATIONS
19	Receptor-Mediated Mechanism Controlling Tissue Levels of Bioactive Lipid Oxidation Products. Circulation Research, 2015, 117, 321-332.	2.0	24
20	Retinal microglia: Just bystander or target for therapy?. Progress in Retinal and Eye Research, 2015, 45, 30-57.	7.3	433
21	Seeing through VEGF: innate and adaptive immunity in pathological angiogenesis in the eye. Trends in Molecular Medicine, 2015, 21, 43-51.	3.5	107
22	Distribution and Quantification of Choroidal Macrophages in Human Eyes With Age-Related Macular Degeneration. , 2016, 57, 5843.		79
23	ASSOCIATION BETWEEN AQUEOUS HUMOR CXC MOTIF CHEMOKINE LIGAND 13 LEVELS AND SUBFOVEAL CHOROIDAL THICKNESS IN NORMAL OLDER SUBJECTS. Retina, 2016, 36, 192-198.	1.0	8
24	A glimpse at the aging eye. Npj Aging and Mechanisms of Disease, 2016, 2, 16003.	4.5	53
25	The broad-spectrum chemokine inhibitor NR58-3.14.3 modulates macrophage-mediated inflammation in the diseased retina. Journal of Neuroinflammation, 2016, 13, 47.	3.1	35
26	Animal Models of Age-Related Macular Degeneration: Subretinal Inflammation. Essentials in Ophthalmology, 2016, , 51-65.	0.0	0
27	Interrelation Between Oxidative Stress and Complement Activation in Models of Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2016, 854, 87-93.	0.8	49
28	Proangiogenic characteristics of activated macrophages from patients with age-related macular degeneration. Neurobiology of Aging, 2017, 51, 71-82.	1.5	27
29	Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy. Experimental Eye Research, 2017, 154, 159-167.	1.2	17
30	Complement Factor H Inhibits CD47-Mediated Resolution of Inflammation. Immunity, 2017, 46, 261-272.	6.6	132
31	The Upregulation of Integrin αDβ2 (CD11d/CD18) on Inflammatory Macrophages Promotes Macrophage Retention in Vascular Lesions and Development of Atherosclerosis. Journal of Immunology, 2017, 198, 4855-4867.	0.4	56
32	On phagocytes and macular degeneration. Progress in Retinal and Eye Research, 2017, 61, 98-128.	7.3	121
33	The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Progress in Retinal and Eye Research, 2017, 60, 201-218.	7.3	502
34	Retinal pigment epithelium and microglia express the CD5 antigen-like protein, a novel autoantigen in age-related macular degeneration. Experimental Eye Research, 2017, 155, 64-74.	1.2	25
35	Increased Th1/Th17 Responses Contribute to Low-Grade Inflammation in Age-Related Macular Degeneration. Cellular Physiology and Biochemistry, 2017, 44, 357-367.	1.1	28
36	Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chemical Research in Toxicology, 2017, 30, 105-113.	1.7	8

C		REPOR	т
\sim	IIAI	REFUN	

#	Article	IF	CITATIONS
37	Biological and pathophysiological roles of end-products of DHA oxidation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 407-415.	1.2	19
38	Minocycline modulates microglia polarization in ischemia-reperfusion model of retinal degeneration and induces neuroprotection. Scientific Reports, 2017, 7, 14065.	1.6	46
39	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
40	Ischemic Retinopathies: Oxidative Stress and Inflammation. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	105
41	Diverse roles of macrophages in intraocular neovascular diseases: a review. International Journal of Ophthalmology, 2017, 10, 1902-1908.	0.5	23
42	Distinct CD40L receptors mediate inflammasome activation and secretion of IL-1β and MCP-1 in cultured human retinal pigment epithelial cells. Experimental Eye Research, 2018, 170, 29-39.	1.2	16
43	Inflammation-Induced Photoreceptor Cell Death. Advances in Experimental Medicine and Biology, 2018, 1074, 203-208.	0.8	18
44	Changes in Retinal Clial Cells with Age and during Development of Age-Related Macular Degeneration. Biochemistry (Moscow), 2018, 83, 1009-1017.	0.7	56
45	Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Molecular Medicine, 2018, 10, .	3.3	102
46	A Perspective of AMD Through the Eyes of Immunology. , 2018, 59, AMD83.		52
47	Exposure to excessive blue LED light damages retinal pigment epithelium and photoreceptors of pigmented mice. Experimental Eye Research, 2018, 177, 1-11.	1.2	48
48	Oxidative modifications of extracellular matrix promote the second wave of inflammation via \hat{I}^22 integrins. Blood, 2018, 132, 78-88.	0.6	41
49	4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Is a Potent Inducer of the Complement Pathway in Human Retinal Pigmented Epithelial Cells. Chemical Research in Toxicology, 2018, 31, 666-679.	1.7	9
50	Retinal microglia – A key player in healthy and diseased retina. Progress in Neurobiology, 2019, 173, 18-40.	2.8	134
51	Investigation of the preventive effect of calcium on inflammation-mediated choroidal neovascularization. Life Sciences, 2019, 233, 116727.	2.0	7
52	Macrophage Plasticity and Function in the Eye and Heart. Trends in Immunology, 2019, 40, 825-841.	2.9	38
53	IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Frontiers in Immunology, 2019, 10, 1618.	2.2	147
54	Immunometabolic modulation of retinal inflammation by CD36 ligand. Scientific Reports, 2019, 9, 12903.	1.6	16

#	Article	IF	CITATIONS
55	Evidences Suggesting that Distinct Immunological and Cellular Responses to Light Damage Distinguishes Juvenile and Adult Rat Retinas. International Journal of Molecular Sciences, 2019, 20, 2744.	1.8	2
56	Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration?. International Journal of Molecular Sciences, 2019, 20, 762.	1.8	72
57	The role of lymphocytes and phagocytes in age-related macular degeneration (AMD). Cellular and Molecular Life Sciences, 2020, 77, 781-788.	2.4	34
58	IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis. Journal of Neuroinflammation, 2020, 17, 1.	3.1	172
59	An allosteric interleukin-1 receptor modulator mitigates inflammation and photoreceptor toxicity in a model of retinal degeneration. Journal of Neuroinflammation, 2020, 17, 359.	3.1	10
60	Correlation of Immunological Markers with Disease and Clinical Outcome Measures in Patients with Autoimmune Retinopathy. Translational Vision Science and Technology, 2020, 9, 15.	1.1	3
61	Systemic Inflammation by Collagen-Induced Arthritis Affects the Progression of Age-Related Macular Degeneration Differently in Two Mouse Models of the Disease. , 2020, 61, 11.		10
62	TNF-α Pretreatment Improves the Survival and Function of Transplanted Human Neural Progenitor Cells Following Hypoxic-Ischemic Brain Injury. Cells, 2020, 9, 1195.	1.8	11
63	MANF delivery improves retinal homeostasis and cell replacement therapies in ageing mice. Experimental Gerontology, 2020, 134, 110893.	1.2	12
64	Transcriptomic Characterization of Human Choroidal Neovascular Membranes Identifies Calprotectin as a Novel Biomarker for Patients with Age-Related Macular Degeneration. American Journal of Pathology, 2020, 190, 1632-1642.	1.9	38
65	Microglia versus Monocytes: Distinct Roles in Degenerative Diseases of the Retina. Trends in Neurosciences, 2020, 43, 433-449.	4.2	74
66	The Use of Neuroprotective Agents in Treating Geographic Atrophy. Ophthalmic Research, 2021, 64, 888-902.	1.0	6
67	Retinopathy of prematurity shows alterations in Vegfa164 isoform expression. Pediatric Research, 2021, , .	1.1	2
68	VEGFR1 signaling in retinal angiogenesis and microinflammation. Progress in Retinal and Eye Research, 2021, 84, 100954.	7.3	123
69	Myeloid Cells Expressing VEGF and Arginase-1 Following Uptake of Damaged Retinal Pigment Epithelium Suggests Potential Mechanism That Drives the Onset of Choroidal Angiogenesis in Mice. PLoS ONE, 2013, 8, e72935.	1.1	79
70	The Oxidative Stress Product Carboxyethylpyrrole Potentiates TLR2/TLR1 Inflammatory Signaling in Macrophages. PLoS ONE, 2014, 9, e106421.	1.1	26
71	The use of the vaccinia virus complement control protein (VCP) in the rat retina. PLoS ONE, 2018, 13, e0193740.	1.1	3
72	Developing Extracellular Matrix Technology to Treat Retinal or Optic Nerve Injury. ENeuro, 2015, 2, ENEURO.0077-15.2015.	0.9	21

CITATION REPORT

#	Article	IF	CITATIONS
73	Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction, 2020, 159, 325-337.	1.1	70
74	Human Fetal Pigmented Ciliary Epithelium Stem Cells have Regenerative Capacity in the Murine Retinal Degeneration Model of Laser Injury. Current Neurovascular Research, 2019, 16, 187-193.	0.4	3
75	CD36 Deficiency Inhibits Retinal Inflammation and Retinal Degeneration in Cx3cr1 Knockout Mice. Frontiers in Immunology, 2019, 10, 3032.	2.2	9
76	Subretinal mononuclear phagocytes induce cone segment loss via IL-1β. ELife, 2016, 5, .	2.8	63
77	Aspirin and age related macular degeneration; the possible relationship. Medical Hypothesis, Discovery, and Innovation in Ophthalmology, 2013, 2, 59-68.	0.4	8
78	Early retinal inflammatory biomarkers in the middle cerebral artery occlusion model of ischemic stroke. Molecular Vision, 2016, 22, 575-88.	1.1	17
79	Complement C5a receptor knockout has diminished light-induced microglia/macrophage retinal migration. Molecular Vision, 2017, 23, 210-218.	1.1	20
80	Characterizing the effect of supplements on the phenotype of cultured macrophages from patients with age-related macular degeneration. Molecular Vision, 2017, 23, 889-899.	1.1	8
81	Evaluation of antioxidant treatments for the modulation of macrophage function in the context of retinal degeneration. Molecular Vision, 2019, 25, 479-488.	1.1	2
82	Ablation of C3 modulates macrophage reactivity in the outer retina during photo-oxidative damage. Molecular Vision, 2020, 26, 679-690.	1.1	1
83	Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2022, 178, 125-133.	1.3	26
84	Bim Expression Promotes the Clearance of Mononuclear Phagocytes during Choroidal Neovascularization, Mitigating Scar Formation in Mice. Life, 2022, 12, 208.	1.1	3
85	Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 3-32.	0.6	13
86	Ovarian recovery via autologous plateletâ€rich plasma: New benchmarks for condensed cytokine applications to reverse reproductive aging. Aging Medicine (Milton (N S W)), 2022, 5, 63-67.	0.9	5
87	Inflammatory potential of diet and aging. , 2022, , 565-607.		0
88	Characterization and identification of measurable endpoints in a mouse model featuring age-related retinal pathologies: a platform to test therapies. Laboratory Investigation, 2022, 102, 1132-1142.	1.7	2
89	Investigational drugs in clinical trials for macular degeneration. Expert Opinion on Investigational Drugs, 2022, 31, 1067-1085.	1.9	12
90	The OSE complotype and its clinical potential. Frontiers in Immunology, 0, 13, .	2.2	1

#	Article	IF	CITATIONS
91	Influence of Light-Emitting Diode-Derived Blue Light Overexposure on Rat Ocular Surface. Journal of Ophthalmology, 2023, 2023, 1-14.	0.6	2
93	Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	2