Selective targeting of fingermarks using immunogenic

Australian Journal of Forensic Sciences 45, 211-226 DOI: 10.1080/00450618.2012.744847

Citation Report

#	Article	IF	CITATIONS
2	Immunolabeling of fingermarks left on forensic relevant surfaces, including thermal paper. Analytical Methods, 2014, 6, 1051.	1.3	14
3	Nearâ€Infraredâ€Lightâ€Mediated Imaging of Latent Fingerprints based on Molecular Recognition. Angewandte Chemie - International Edition, 2014, 53, 1616-1620.	7.2	242
4	Advances in the development and component recognition of latent fingerprints. Science China Chemistry, 2015, 58, 1090-1096.	4.2	50
5	Synthesis and Application of Nanohybrids Based on Upconverting Nanoparticles and Polymers. Macromolecular Rapid Communications, 2015, 36, 790-827.	2.0	65
6	Evaluation of multi-target immunogenic reagents for the detection of latent and body fluid-contaminated fingermarks. Forensic Science International, 2016, 264, 168-175.	1.3	13
7	NIR-responsive NaYF 4 :Yb,Er,Gd fluorescent upconversion nanorods for the highly sensitive detection of blood fingerprints. Dyes and Pigments, 2016, 134, 178-185.	2.0	45
8	Emerging fields in fingermark (meta)detection – a critical review. Analytical Methods, 2016, 8, 7983-8003.	1.3	70
9	Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Analytical and Bioanalytical Chemistry, 2016, 408, 2781-2791.	1.9	41
10	Techniques that acquire donor profiling information from fingermarks — A review. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 143-154.	1.3	43
11	Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chemical Communications, 2016, 52, 557-560.	2.2	54
12	Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Advanced Functional Materials, 2017, 27, 1606243.	7.8	169
13	Developing aptasensors for forensic analysis. TrAC - Trends in Analytical Chemistry, 2017, 94, 150-160.	5.8	34
14	Time-Gated Imaging of Latent Fingerprints and Specific Visualization of Protein Secretions via Molecular Recognition. Analytical Chemistry, 2017, 89, 12764-12770.	3.2	92
15	Facile Synthesis of Highly Waterâ€Soluble Lanthanideâ€Doped tâ€LaVO ₄ NPs for Antifake Ink and Latent Fingermark Detection. Small, 2017, 13, 1702305.	5.2	56
16	White-emitting carbon dots with long alkyl-chain structure: Effective inhibition of aggregation caused quenching effect for label-free imaging of latent fingerprint. Carbon, 2018, 128, 12-20.	5.4	109
17	Reversible Response of Luminescent Terbium(III)–Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angewandte Chemie, 2018, 130, 6902-6906.	1.6	11
18	Reversible Response of Luminescent Terbium(III)–Nanocellulose Hydrogels to Anions for Latent Fingerprint Detection and Encryption. Angewandte Chemie - International Edition, 2018, 57, 6786-6790.	7.2	115
20	Specific detection of latent human blood fingerprints using antibody modified NaYF4: Yb, Er, Gd fluorescent upconversion nanorods. Dyes and Pigments, 2018, 149, 822-829.	2.0	24

CITATION REPORT

#	Article	IF	CITATIONS
21	A general powder dusting method for latent fingerprint development based on AIEgens. Science China Chemistry, 2018, 61, 966-970.	4.2	46
22	Investigation of some of the factors influencing fingermark detection. Forensic Science International, 2018, 289, 381-389.	1.3	41
23	Smart Responsive Luminescent Aptamer-Functionalized Covalent Organic Framework Hydrogel for High-Resolution Visualization and Security Protection of Latent Fingerprints. ACS Applied Materials & Interfaces, 2019, 11, 44664-44672.	4.0	40
24	Fingerprint Blurring on a Hierarchical Nanoporous Layer Glass. Coatings, 2019, 9, 653.	1.2	4
25	Synthesis of Li+-ion activated NaYF4: Er3+/Yb3+ phosphors via a modified solid-state process for latent fingerprint detection. Ceramics International, 2019, 45, 5703-5709.	2.3	28
26	Advances in conjugated polymers for visualization of latent fingerprints: a critical perspective. New Journal of Chemistry, 2020, 44, 19423-19439.	1.4	21
27	Applications of Cellulose Nanomaterials in Stimuli-Responsive Optics. Journal of Agricultural and Food Chemistry, 2020, 68, 12940-12955.	2.4	29
28	Structural, optical and photoluminescence enhancement of 2-mercaptoacetic acid capped Mn2+ doped CdS nanoparticles and their applications in efficient detection of latent fingerprints. Materials Science for Energy Technologies, 2021, 4, 23-33.	1.0	5
29	Development of AIEgen–montmorillonite nanocomposite powders for computer-assisted visualization of latent fingermarks. Materials Chemistry Frontiers, 2020, 4, 2131-2136.	3.2	24
30	Fingermark Detection and Enhancement. International Forensic Science and Investigation Series, 2016, , 179-314.	0.0	2
31	A Multifunctional Fluorescent Molecule with Aie Characteristics for So2 Derivatives Detection, Fluorescence Ink and Latent Fingerprint Imaging. SSRN Electronic Journal, 0, , .	0.4	0
32	A multifunctional fluorescent molecule with AIE characteristics for SO2 derivatives detection, fluorescence ink and latent fingerprint imaging. Sensors and Actuators B: Chemical, 2022, 371, 132595.	4.0	13
33	Prospective directions for the development of means and methods for detection and fixation of handprints. , 2022, 87, 36-44.	0.0	0
34	Upconversion Luminescence Materials for Latent Fingerprint Detection Applications in Forensic Science. Progress in Optical Science and Photonics, 2023, , 465-489.	0.3	Ο