Fieldâ€quantified responses of tropical rainforest above CO₂ and climatic stress, 1997–2009

Journal of Geophysical Research G: Biogeosciences 118, 783-794 DOI: 10.1002/jgrg.20067

Citation Report

#	Article	IF	CITATIONS
1	High sensitivity of a tropical rainforest to water variability: Evidence from 10 years of inventory and eddy flux data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9393-9400.	1.2	22
2	Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth. PLoS ONE, 2014, 9, e92337.	1.1	50
3	Moving beyond photosynthesis: from carbon source to sinkâ€driven vegetation modeling. New Phytologist, 2014, 201, 1086-1095.	3.5	421
4	Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment. PLoS ONE, 2014, 9, e100275.	1.1	44
5	Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia, 2014, 174, 1449-1461.	0.9	122
6	Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology, 2014, 95, 2382-2396.	1.5	196
7	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	1.4	75
8	Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica. Global Biogeochemical Cycles, 2014, 28, 1437-1454.	1.9	26
9	Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance. Global Change Biology, 2014, 20, 2915-2926.	4.2	96
10	Allocation tradeâ€offs dominate the response of tropical forest growth to seasonal and interannual drought. Ecology, 2014, 95, 2192-2201.	1.5	86
11	Contrasting impacts of continuous moderate drought and episodic severe droughts on the abovegroundâ€biomass increment and litterfall of three coexisting <scp>M</scp> editerranean woody species. Global Change Biology, 2015, 21, 4196-4209.	4.2	70
12	The Rainfall Sensitivity of Tropical Net Primary Production in CMIP5 Twentieth- and Twenty-First-Century Simulations*. Journal of Climate, 2015, 28, 9313-9331.	1.2	1
13	Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9 year eddy flux time series. Journal of Geophysical Research D: Atmospheres, 2015, 120, 464-479.	1.2	46
14	Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15591-15596.	3.3	92
15	Effect of increasing CO ₂ on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 436-441.	3.3	487
16	Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and <scp>CO</scp> ₂ . Global Change Biology, 2015, 21, 2749-2761.	4.2	50
17	Urgent need for warming experiments in tropical forests. Global Change Biology, 2015, 21, 2111-2121.	4.2	168
18	New insights into mechanisms driving carbon allocation in tropical forests. New Phytologist, 2015, 205, 137-146.	3.5	23

#	Article	IF	CITATIONS
19	A comparison of plotâ€based satellite and Earth system model estimates of tropical forest net primary production. Global Biogeochemical Cycles, 2015, 29, 626-644.	1.9	55
20	Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia, 2015, 179, 853-861.	0.9	32
21	Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 2015, 8, 441-444.	5.4	529
22	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
23	Signs of saturation in the tropical carbon sink. Nature, 2015, 519, 295-296.	13.7	13
24	A 21st Century Viewpoint on Natural Tropical Forest Silviculture. , 2015, , 1-28.		0
25	Does functional trait diversity predict aboveâ€ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 2015, 103, 191-201.	1.9	265
26	Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height. Remote Sensing, 2016, 8, 494.	1.8	11
27	Influence of arbuscular mycorrhizal colonization on wholeâ€plant respiration and thermal acclimation of tropical tree seedlings. Ecology and Evolution, 2016, 6, 859-870.	0.8	16
28	Increased Atmospheric CO2 Growth Rate during El Niño Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs. Journal of Climate, 2016, 29, 8783-8805.	1.2	40
29	Lianas and soil nutrients predict fineâ€scale distribution of aboveâ€ground biomass in a tropical moist forest. Journal of Ecology, 2016, 104, 1819-1828.	1.9	28
30	Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016, 54, 523-610.	9.0	73
31	Causes of uncertainty in China's net primary production over the 21st century projected by the <scp>CMIP5</scp> Earth system models. International Journal of Climatology, 2016, 36, 2323-2334.	1.5	14
32	Large divergence of satellite and Earth system model estimates of global terrestrial CO2Âfertilization. Nature Climate Change, 2016, 6, 306-310.	8.1	309
33	The Effects of Rising Temperature on the Ecophysiology of Tropical Forest Trees. Tree Physiology, 2016, , 385-412.	0.9	36
34	Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances. Environmental Research Letters, 2017, 12, 025007.	2.2	18
35	Growth and reproduction respond differently to climate in three Neotropical tree species. Oecologia, 2017, 184, 531-541.	0.9	29
36	Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Global Change Biology, 2017, 23, 1240-1257.	4.2	102

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Temporal Variability of Soil Respiration in Experimental Tree Plantations in Lowland Costa Rica. Forests, 2017, 8, 40.	0.9	14
38	Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico. Forests, 2017, 8, 101.	0.9	12
39	Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences, 2017, 14, 4663-4690.	1.3	27
40	Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape. PLoS ONE, 2017, 12, e0183819.	1.1	7
41	Longâ€ŧerm increases in tropical flowering activity across growth forms in response to rising <scp>CO</scp> ₂ and climate change. Global Change Biology, 2018, 24, 2105-2116.	4.2	19
42	High tolerance of tropical sapling growth and gas exchange to moderate warming. Functional Ecology, 2018, 32, 599-611.	1.7	43
43	What controls variation in carbon use efficiency among Amazonian tropical forests?. Biotropica, 2018, 50, 16-25.	0.8	28
44	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	1.8	41
45	Impacts of shaded agroforestry management on carbon sequestration, biodiversity and farmers income in cocoa production landscapes. Landscape Ecology, 2018, 33, 1953-1974.	1.9	38
46	How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO ₂ data. Biogeosciences, 2018, 15, 2481-2498.	1.3	68
47	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	3.5	64
48	Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon. Soil Biology and Biochemistry, 2018, 124, 199-209.	4.2	32
49	PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sensing of Environment, 2018, 216, 311-327.	4.6	100
50	Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements. Forest Ecosystems, 2018, 5, .	1.3	24
51	Tropical forest temperature thresholds for gross primary productivity. Ecosphere, 2018, 9, e02311.	1.0	69
52	Tree radial growth is projected to decline in South Asian moist forest trees under climate change. Global and Planetary Change, 2018, 170, 106-119.	1.6	37
53	ENSOâ€Influenced Drought Drives Methane Flux Dynamics in a Tropical Wet Forest Soil. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2267-2276.	1.3	10
54	Current and future potential distributions of three Dracaena Vand. ex L. species under two contrasting climate change scenarios in Africa. Ecology and Evolution, 2019, 9, 6833-6848.	0.8	11

#	Article	IF	CITATIONS
55	Spatial and Temporal Variations in Aboveground Woody Carbon Storage for Cerrado Forests and Woodlands of Mato Grosso, Brazil. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3252-3268.	1.3	8
56	Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil. Forest Ecology and Management, 2019, 454, 117631.	1.4	25
57	Diversity, distribution and dynamics of large trees across an old-growth lowland tropical rain forest landscape. PLoS ONE, 2019, 14, e0224896.	1.1	17
58	The Effects of Phosphorus Cycle Dynamics on Carbon Sources and Sinks in the Amazon Region: A Modeling Study Using ELM v1. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3686-3698.	1.3	29
59	Have Synergies Between Nitrogen Deposition and Atmospheric CO ₂ Driven the Recent Enhancement of the Terrestrial Carbon Sink?. Global Biogeochemical Cycles, 2019, 33, 163-180.	1.9	37
60	Soil warming effects on tropical forests with highly weathered soils. , 2019, , 385-439.		13
61	Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees - Structure and Function, 2019, 33, 623-640.	0.9	41
62	Prediction of forest aboveground net primary production from highâ€resolution vertical leafâ€area profiles. Ecology Letters, 2019, 22, 538-546.	3.0	8
63	Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 2019, 221, 652-668.	3.5	163
64	Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 2020, 26, 300-318.	4.2	214
65	Testing for changes in biomass dynamics in largeâ€scale forest datasets. Global Change Biology, 2020, 26, 1485-1498.	4.2	14
66	A multi-scaled analysis of forest structure using individual-based modeling in a costa rican rainforest. Ecological Modelling, 2020, 433, 109226.	1.2	5
67	Effects of moderate warming on growth and physiological performance of subtropical saplings in southern China. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	0
68	Canopy structure and forest understory conditions in a wet Amazonian forest—No change over the last 20 years. Biotropica, 2020, 52, 1121-1126.	0.8	3
69	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
70	Aboveground Carbon Storage and Cycling of Flooded and Upland Forests of the Brazilian Pantanal. Forests, 2020, 11, 665.	0.9	5
71	Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE. PLoS ONE, 2020, 15, e0230098.	1.1	10
72	Forest responses to simulated elevated CO ₂ under alternate hypotheses of size―and ageâ€dependent mortality. Global Change Biology, 2020, 26, 5734-5753.	4.2	18

CITATION REPORT

#	Article	IF	CITATIONS
73	The Central Amazon Biomass Sink Under Current and Future Atmospheric CO ₂ : Predictions From Bigâ€Leaf and Demographic Vegetation Models. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005500.	1.3	23
74	Warming effects on morphological and physiological performances of four subtropical montane tree species. Annals of Forest Science, 2020, 77, 1.	0.8	14
75	The Organization for Tropical Studies: History, accomplishments, future directions in education and research, with an emphasis in the contributions to the study of plant reproductive ecology and genetics in tropical ecosystems. Biological Conservation, 2021, 253, 108890.	1.9	2
76	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
77	Habitat Quality Differentiation and Consequences for Ecosystem Service Provision of an Amazonian Hyperdominant Tree Species. Frontiers in Plant Science, 2021, 12, 621064.	1.7	7
78	Warming induces divergent stomatal dynamics in coâ€occurring boreal trees. Global Change Biology, 2021, 27, 3079-3094.	4.2	9
79	Impact of a tropical forest blowdown on aboveground carbon balance. Scientific Reports, 2021, 11, 11279.	1.6	4
80	Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 2021, 53, 1442-1453.	0.8	8
81	Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model. European Physical Journal: Special Topics, 2021, 230, 3153-3162.	1.2	4
82	Adjusting xylem anatomy and growth to inter-annual climate variability in two Fabaceae species (Centrolobium microchaete, Cenostigma pluviosum) from Bolivian dry tropical forests. Dendrochronologia, 2021, 67, 125840.	1.0	3
83	CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model. Geoscientific Model Development, 2021, 14, 4117-4141.	1.3	13
84	Accurate Simulation of Both Sensitivity and Variability for Amazonian Photosynthesis: Is It Too Much to Ask?. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002555.	1.3	3
85	21st Century Viewpoint on Tropical Silviculture. , 2016, , 1605-1638.		1
86	Recent CO ₂ rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Global Change Biology, 2020, 26, 4028-4041.	4.2	30
87	Becoming Europe: Southeast Asia in the Anthropocene. Elementa, 2013, 1, .	1.1	3
88	Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. PLoS ONE, 2015, 10, e0122905.	1.1	54
89	Modeling the Effects of Global Change on Ecosystem Processes in a Tropical Rainforest. Forests, 2020, 11, 213.	0.9	7
90	Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance and Management, 2021, 16, 31.	1.4	8

IF

CITATIONS

Tropical Forest Ecology in the Anthropocene., 2014, , 1-6. 0 91 Tropical Forest Ecology in the Anthropocene., 2016, , 471-477. Spatial and temporal scales of canopy disturbance and recovery across an oldâ€growth tropical rain 93 2.4 1 forest landscape. Ecological Monographs, 2022, 92, . Annual Tropicalâ€Rainforest Productivity Through Two Decades: Complex Responses to Climatic Factors, [CO₂] and Storm Damage. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006557. 94 Broad-Scale and Long-Term Forest Growth Predictions and Management for Native, Mixed Species 95 0.4 0 Plantations and Teak in Costa Rica and Panama. SSRN Electronic Journal, 0, , . Addressing Gender Inequities in Forest Science and Research. Forests, 2022, 13, 400. 98 Tropical tree growth driven by dry-season climate variability. Nature Geoscience, 2022, 15, 269-276. 5.4 38 Global distribution, formation and fate of mineralâ€associated soil organic matter under a changing 1.7 climate: A traitâ€based perspective. Functional Ecology, 2022, 36, 1411-1429. Warming induced tree-growth decline of Toona ciliata in (sub-) tropical southwestern China. Dendrochronologia, 2022, 73, 125954. 100 1.0 5 Climate Signals in Stable Isotope Tree-Ring Records. Tree Physiology, 2022, , 537-579. Net Primary Production and Ecosystem Carbon Flux of Brazilian Tropical Savanna Ecosystems From 102 Eddy Covariance and Inventory Methods. Journal of Geophysical Research G: Biogeosciences, 2022, 127, 2 1.3 Broad-scale and long-term forest growth predictions and management for native, mixed species 1.4 plantations and teak in Costa Rica and Panama. Forest Ecology and Management, 2022, 520, 120386. Short-term recovery of soil and pine tree canopy after late prescribed burning in a semi-arid landscape. Science of the Total Environment, 2023, 855, 159044. 104 3.9 2 Beyond Carbon: The Contributions of South American Tropical Humid and Subhumid Forests to 14 Ecosystem Services. Reviews of Geophysics, 2022, 60, .

106 On the Responses of Mangrove Trophic Interactions to Climate Change., 2023, , .

1

ARTICLE