Leukemia cell to endothelial cell communication via exe

Oncogene 32, 2747-2755 DOI: 10.1038/onc.2012.295

Citation Report

#	Article	IF	CITATIONS
1	Lines of communication. Nature Reviews Cancer, 2012, 12, 580-581.	28.4	1
2	MicroRNAs, Hepatitis C Virus, and HCV/HIV-1 Co-Infection: New Insights in Pathogenesis and Therapy. Viruses, 2012, 4, 2485-2513.	3.3	33
3	First identification of Ewing's sarcomaâ€derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biology of the Cell, 2013, 105, 289-303.	2.0	59
4	Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 2013, 13, 1672-1686.	2.2	296
5	Intercellular Transport of MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 186-192.	2.4	336
6	MicroRNA Control of Vascular Endothelial Growth Factor Signaling Output During Vascular Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 193-200.	2.4	63
7	Exosomes Derived from Hypoxic Leukemia Cells Enhance Tube Formation in Endothelial Cells. Journal of Biological Chemistry, 2013, 288, 34343-34351.	3.4	307
9	Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics, 2013, 13, 1554-1571.	2.2	416
10	Host Matrix Modulation by Tumor Exosomes Promotes Motility and Invasiveness. Neoplasia, 2013, 15, 875-IN4.	5.3	221
11	Exosomes as Intercellular Signaling Organelles Involved in Health and Disease: Basic Science and Clinical Applications. International Journal of Molecular Sciences, 2013, 14, 5338-5366.	4.1	328
12	Contribution of proteomics to understanding the role of tumorâ€derived exosomes in cancer progression: State of the art and new perspectives. Proteomics, 2013, 13, 1581-1594.	2.2	86
13	Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer and Metastasis Reviews, 2013, 32, 623-642.	5.9	948
14	Moving RNA moves RNA forward. Science China Life Sciences, 2013, 56, 914-920.	4.9	4
15	Inhibition of MicroRNA miR-92a Inhibits Cell Proliferation in Human Acute Promyelocytic Leukemia. Turkish Journal of Haematology, 2013, 30, 157-162.	0.2	11
16	Systemically Circulating Viral and Tumor-Derived MicroRNAs in KSHV-Associated Malignancies. PLoS Pathogens, 2013, 9, e1003484.	4.7	140
17	FGFR4 Promotes Stroma-Induced Epithelial-to-Mesenchymal Transition in Colorectal Cancer. Cancer Research, 2013, 73, 5926-5935.	0.9	88
18	Label-free quantification proteomics reveals novel calcium binding proteins in matrix vesicles isolated from mineralizing Saos-2 cells. BioScience Trends, 2013, , .	3.4	4
19	Intercellular Communication by Exosome-Derived microRNAs in Cancer. International Journal of Molecular Sciences, 2013, 14, 14240-14269.	4.1	419

#	Article	IF	CITATIONS
20	MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. OncoTargets and Therapy, 2014, 7, 1327.	2.0	125
21	Cellular communication via nanoparticle-transporting biovesicles. Nanomedicine, 2014, 9, 581-592.	3.3	10
22	Cell elasticity is an important indicator of the metastatic phenotype of melanoma cells. Experimental Dermatology, 2014, 23, 813-818.	2.9	45
23	Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood, 2014, 124, 555-566.	1.4	371
24	Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacologica Sinica, 2014, 35, 230-238.	6.1	73
25	Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular Cancer, 2014, 13, 256.	19.2	330
26	Measurement of Intercellular Transfer to Signaling Endosomes. Methods in Enzymology, 2014, 534, 207-221.	1.0	2
27	Microvesicles as Cell–Cell Messengers in Cardiovascular Diseases. Circulation Research, 2014, 114, 345-353.	4.5	348
28	Outsmart tumor exosomes to steal the cancer initiating cell its niche. Seminars in Cancer Biology, 2014, 28, 39-50.	9.6	55
29	The network of P-glycoprotein and microRNAs interactions. International Journal of Cancer, 2014, 135, 253-263.	5.1	52
30	Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14888-14893.	7.1	880
31	Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Research and Treatment, 2014, 147, 423-431.	2.5	283
32	Surface Functionalization of Exosomes Using Click Chemistry. Bioconjugate Chemistry, 2014, 25, 1777-1784.	3.6	313
33	Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Molecular Cancer, 2014, 13, 169.	19.2	125
34	The origin, function, and diagnostic potential of extracellular <scp>microRNAs</scp> in human body fluids. Wiley Interdisciplinary Reviews RNA, 2014, 5, 285-300.	6.4	68
35	Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Research, 2014, 42, 7290-7304.	14.5	486
36	Distribution Profiling of Circulating MicroRNAs in Serum. Analytical Chemistry, 2014, 86, 9343-9349.	6.5	54
37	Constitutive activation of the ATM/BRCA1 pathway prevents DNA damage-induced apoptosis in 5-azacytidine-resistant cell lines. Biochemical Pharmacology, 2014, 89, 361-369.	4.4	22

#	Article	IF	CITATIONS
38	CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biology, 2014, 37, 49-59.	3.6	114
39	Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, 2014, 124, 3748-3757.	1.4	497
40	The circulating transcriptome as a source of nonâ€invasive cancer biomarkers: concepts and controversies of nonâ€coding and coding <scp>RNA</scp> in body fluids. Journal of Cellular and Molecular Medicine, 2015, 19, 2307-2323.	3.6	78
41	Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 2015, 126, 1106-1117.	1.4	399
42	Role of Extracellular Vesicles in Hematological Malignancies. BioMed Research International, 2015, 2015, 1-9.	1.9	26
43	miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget, 2015, 6, 32774-32789.	1.8	203
44	Micromanaging of tumor metastasis by extracellular vesicles. Seminars in Cell and Developmental Biology, 2015, 40, 52-59.	5.0	15
45	Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Letters, 2015, 364, 59-69.	7.2	117
46	Contact-dependent transfer of TiO ₂ nanoparticles between mammalian cells. Nanotoxicology, 2016, 10, 1-12.	3.0	11
47	Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Molecular Cancer, 2015, 14, 133.	19.2	182
48	The fusion of two worlds: Non-coding RNAs and extracellular vesicles - diagnostic and therapeutic implications (Review). International Journal of Oncology, 2015, 46, 17-27.	3.3	192
49	Extracellular vesicles as modulators of the cancer microenvironment. Seminars in Cell and Developmental Biology, 2015, 40, 27-34.	5.0	134
50	Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genomics, Proteomics and Bioinformatics, 2015, 13, 17-24.	6.9	1,466
51	The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Review of Molecular Diagnostics, 2015, 15, 1159-1169.	3.1	77
52	Exosomes: Emerging biomarkers and targets for ovarian cancer. Cancer Letters, 2015, 367, 26-33.	7.2	130
53	Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biology and Therapy, 2015, 16, 1671-1681.	3.4	49
54	Exosomes in cancer: small particle, big player. Journal of Hematology and Oncology, 2015, 8, 83.	17.0	611
55	Transfer of microRNAs by extracellular membrane microvesicles: a nascent crosstalk model in tumor pathogenesis, especially tumor cell-microenvironment interactions. Journal of Hematology and Oncology, 2015, 8, 14.	17.0	29

#	Article	IF	CITATIONS
56	Signaling by exosomal microRNAs in cancer. Journal of Experimental and Clinical Cancer Research, 2015, 34, 32.	8.6	122
57	Dependence of Intracellular and Exosomal microRNAs on Viral E6/E7 Oncogene Expression in HPV-positive Tumor Cells. PLoS Pathogens, 2015, 11, e1004712.	4.7	191
58	Information transfer by exosomes: A new frontier in hematologic malignancies. Blood Reviews, 2015, 29, 281-290.	5.7	74
59	Biodistribution, Uptake and Effects Caused by Cancer-Derived Extracellular Vesicles. Journal of Circulating Biomarkers, 2015, 4, 2.	1.3	20
60	MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene, 2015, 34, 5857-5868.	5.9	176
61	MicroRNAs in placental health and disease. American Journal of Obstetrics and Gynecology, 2015, 213, S163-S172.	1.3	165
62	Effect of Exosomes from Mesenchymal Stem Cells onÂAngiogenesis. , 2015, , 177-205.		0
63	microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomarkers in Medicine, 2015, 9, 1153-1176.	1.4	64
64	Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. Journal of Controlled Release, 2015, 217, 27-41.	9.9	101
65	Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6293-300.	7.1	76
66	Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. Journal of Controlled Release, 2015, 199, 145-155.	9.9	525
67	Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology, 2015, 16, 147-185.	3.9	57
68	Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Modern Pathology, 2015, 28, 373-382.	5.5	28
69	Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis. Archives of Toxicology, 2015, 89, 1071-1082.	4.2	53
70	Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget, 2016, 7, 38927-38945.	1.8	53
71	Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype <i>via</i> exosomal miR-21. Oncotarget, 2016, 7, 30420-30439.	1.8	83
72	Emerging roles of exosomes in cancer invasion and metastasis. BMB Reports, 2016, 49, 18-25.	2.4	71
73	Cross Talk between Cancer and Mesenchymal Stem Cells through Extracellular Vesicles Carrying Nucleic Acids. Frontiers in Oncology, 2016, 6, 125.	2.8	87

#	Article	IF	CITATIONS
74	Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer. International Journal of Molecular Sciences, 2016, 17, 175.	4.1	255
75	Exosome: A Novel Approach to Stimulate Bone Regeneration through Regulation of Osteogenesis and Angiogenesis. International Journal of Molecular Sciences, 2016, 17, 712.	4.1	143
76	The biology and function of exosomes in cancer. Journal of Clinical Investigation, 2016, 126, 1208-1215.	8.2	1,366
77	The emerging roles of exosomes in leukemogeneis. Oncotarget, 2016, 7, 50698-50707.	1.8	33
78	Bone Marrow Microenvironment Niche Regulates miR-221/222 in Acute Lymphoblastic Leukemia. Molecular Cancer Research, 2016, 14, 909-919.	3.4	33
79	Exosomal miRNAs as cancer biomarkers and therapeutic targets. Journal of Extracellular Vesicles, 2016, 5, 31292.	12.2	305
80	ATL-derived exosomes modulate mesenchymal stem cells: potential role in leukemia progression. Retrovirology, 2016, 13, 73.	2.0	45
81	The role of exosomes in tumor progression and metastasis (Review). Oncology Reports, 2016, 35, 1237-1244.	2.6	109
82	Exosomes promote bone marrow angiogenesis in hematologic neoplasia. Current Opinion in Hematology, 2016, 23, 268-273.	2.5	60
83	Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Molecular Cancer, 2016, 15, 42.	19.2	49
84	Tumor-Derived Exosomes and Their Role in Cancer Progression. Advances in Clinical Chemistry, 2016, 74, 103-141.	3.7	549
85	Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene, 2016, 35, 6038-6042.	5.9	67
86	Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Experimental Hematology, 2016, 44, 991-1001.	0.4	4
87	Extracellular Vesicles in Cancer. Advances in Biomembranes and Lipid Self-Assembly, 2016, 23, 187-204.	0.6	1
88	Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta, 2016, 47, 86-95.	1.5	82
89	Micro <scp>RNA</scp> s in neutrophils: potential next generation therapeutics for inflammatory ailments. Immunological Reviews, 2016, 273, 29-47.	6.0	40
90	MicroRNAs as paracrine signaling mediators in cancers and metabolic diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2016, 30, 577-590.	4.7	11
91	Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. International Journal of Oncology, 2016, 48, 2567-2579.	3.3	125

#	ARTICLE	IF	CITATIONS
92	miR-182, of the miR-183 cluster family, is packaged in exosomes and is detected in human exosomes from serum, breast cells and prostate cells. Oncology Letters, 2016, 12, 1197-1203.	1.8	41
93	Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 2016, 479, 343-350.	2.1	74
94	Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. Journal of Cell Science, 2016, 129, 2182-2189.	2.0	421
95	Function of extracellular vesicle-associated miRNAs in metastasis. Cell and Tissue Research, 2016, 365, 621-641.	2.9	41
96	Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions1. Biology of Reproduction, 2016, 94, 38.	2.7	198
97	Cancer Gene Profiling. Methods in Molecular Biology, 2016, , .	0.9	2
98	Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells. Experimental Hematology, 2016, 44, 378-389.	0.4	13
99	Exosomes in Cancer Disease. Methods in Molecular Biology, 2016, 1381, 111-149.	0.9	45
100	Exosome-mediated microenvironment dysregulation in leukemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 464-470.	4.1	63
101	The contribution of tumour-derived exosomes to the hallmarks of cancer. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 121-131.	6.1	101
102	Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 449-463.	4.1	104
103	MicroRNAs in extracellular vesicles: potential cancer biomarkers. Journal of Human Genetics, 2017, 62, 67-74.	2.3	102
104	Blood-Based Nucleic Acid Biomarkers as a Potential Tool to Determine Radiation Therapy Response in Non-Small Cell Lung Cancer. Radiation Research, 2017, 187, 333.	1.5	7
105	Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. International Journal of Radiation Biology, 2017, 93, 569-580.	1.8	63
106	Extracellular vesicles-mediated noncoding RNAs transfer in cancer. Journal of Hematology and Oncology, 2017, 10, 57.	17.0	75
107	Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 2017, 8, 2.	3.7	180
108	MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Scientific Reports, 2017, 7, 42339.	3.3	196
109	Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Scientific Reports, 2017, 7, 46026.	3.3	29

#	Article	IF	CITATIONS
110	Rationally Designed Peptide Probes for Extracellular Vesicles. Advances in Clinical Chemistry, 2017, 79, 25-41.	3.7	2
111	Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integrative Biology (United Kingdom), 2017, 9, 464-484.	1.3	26
112	Roles of exosomes in the normal and diseased eye. Progress in Retinal and Eye Research, 2017, 59, 158-177.	15.5	126
113	NF-kB-regulated exosomal miR-155 promotes the inflammation associated with arsenite carcinogenesis. Cancer Letters, 2017, 388, 21-33.	7.2	94
114	Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress. Human Molecular Genetics, 2017, 26, 3285-3302.	2.9	30
115	Exosomes: New Biomarkers for Targeted Cancer Therapy. , 2017, , 129-157.		7
117	The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia, 2017, 31, 1259-1268.	7.2	178
118	Size-Selective Harvesting of Extracellular Vesicles for Strategic Analyses Towards Tumor Diagnoses. Applied Biochemistry and Biotechnology, 2017, 182, 609-623.	2.9	15
119	Role of extracellular vesicles in the interaction between epithelial and mesenchymal cells during oviductal ciliogenesis. Biochemical and Biophysical Research Communications, 2017, 483, 245-251.	2.1	12
120	Diagnostic and Therapeutic Potential of Exosomes in Cancer: The Beginning of a New Tale?. Journal of Cellular Physiology, 2017, 232, 3251-3260.	4.1	107
121	BCR-ABL1-positive microvesicles malignantly transform human bone marrow mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 2017, 38, 1475-1485.	6.1	12
122	Exosomes derived from bone marrow stromal cells decrease the sensitivity of leukemic cells to etoposide. Oncology Letters, 2017, 14, 3082-3088.	1.8	9
123	Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective. Tissue Engineering and Regenerative Medicine, 2017, 14, 495-505.	3.7	13
124	Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Research and Therapy, 2017, 8, 117.	5.5	28
125	Small RNA Sequencing in Cells and Exosomes Identifies eQTLs and 14q32 as a Region of Active Export. G3: Genes, Genomes, Genetics, 2017, 7, 31-39.	1.8	16
126	Exosomes: mobile platforms for targeted and synergistic signaling across cell boundaries. Cellular and Molecular Life Sciences, 2017, 74, 1567-1576.	5.4	55
127	Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene, 2017, 36, 1770-1778.	5.9	553
128	Functional Roles for Exosomal MicroRNAs in the Tumour Microenvironment. Computational and Structural Biotechnology Journal, 2017, 15, 8-13.	4.1	72

			2
#	ARTICLE	IF	CITATIONS
129	Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Advances, 2017, 1, 812-823.	5.2	75
130	Endothelial Extracellular Vesicles—Promises and Challenges. Frontiers in Physiology, 2017, 8, 275.	2.8	78
131	Exosomes: A Rising Star in Failing Hearts. Frontiers in Physiology, 2017, 8, 494.	2.8	46
132	Exosomes from Melatonin Treated Hepatocellularcarcinoma Cells Alter the Immunosupression Status through STAT3 Pathway in Macrophages. International Journal of Biological Sciences, 2017, 13, 723-734.	6.4	90
133	Isolation and Identification of miRNAs in exosomes derived from serum of colon cancer patients. Journal of Cancer, 2017, 8, 1145-1152.	2.5	68
134	Microarray profiling defines circulating microRNAs associated with myelodysplastic syndromes. Neoplasma, 2017, 64, 571-578.	1.6	13
135	Extracellular Vesicles in Hematological Malignancies: From Biology to Therapy. International Journal of Molecular Sciences, 2017, 18, 1183.	4.1	31
136	MicroRNAs in Oncogenesis and Tumor Suppression. International Review of Cell and Molecular Biology, 2017, 333, 229-268.	3.2	44
137	A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication. Cell Communication and Signaling, 2017, 15, 46.	6.5	25
138	Exosomes-based biomarker discovery for diagnosis and prognosis of prostate cancer. Frontiers in Bioscience - Landmark, 2017, 22, 1682-1696.	3.0	20
139	Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. Oncogene, 2018, 37, 2873-2889.	5.9	154
140	Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Molecular Therapy, 2018, 26, 1375-1384.	8.2	145
141	Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ Signaling. Molecular Cancer Research, 2018, 16, 1196-1204.	3.4	200
142	Tumor-derived exosomal Inc-Sox2ot promotes EMT and stemness by acting as a ceRNA in pancreatic ductal adenocarcinoma. Oncogene, 2018, 37, 3822-3838.	5.9	220
143	Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets, 2018, 22, 409-417.	3.4	93
144	Syndecan-1 Controls Lung Tumorigenesis by Regulating miRNAs Packaged in Exosomes. American Journal of Pathology, 2018, 188, 1094-1103.	3.8	38
145	Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death and Disease, 2018, 9, 218.	6.3	107
146	Microparticles in Hematological Malignancies: Role in Coagulopathy and Tumor Pathogenesis. American Journal of the Medical Sciences, 2018, 355, 207-214.	1.1	8

#	Article	IF	CITATIONS
147	Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics, 2018, 19, 168.	2.8	13
148	Tumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancer. Cancer Letters, 2018, 432, 237-250.	7.2	282
149	Exosomes as emerging players in cancer biology. Biochimie, 2018, 155, 2-10.	2.6	46
150	Inhibition of glioblastoma cell invasion by hsa-miR-145-5p and hsa-miR-31-5p co-overexpression in human mesenchymal stem cells. Journal of Neurosurgery, 2018, 130, 44-55.	1.6	17
151	Tumor microenvironment and noncoding RNAs as coâ€drivers of epithelial–mesenchymal transition and cancer metastasis. Developmental Dynamics, 2018, 247, 405-431.	1.8	36
152	Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell and Tissue Research, 2018, 371, 325-338.	2.9	14
153	Extracellular vesicles in leukemia. Leukemia Research, 2018, 64, 52-60.	0.8	38
154	The Impact of the CD9 Tetraspanin on Lentivirus Infectivity and Exosome Secretion. Molecular Therapy, 2018, 26, 634-647.	8.2	81
155	Exosomes: new molecular targets of diseases. Acta Pharmacologica Sinica, 2018, 39, 501-513.	6.1	292
156	Extracellular vesicle-mediated cell–cell communication in haematological neoplasms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160484.	4.0	30
157	Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Seminars in Cancer Biology, 2018, 51, 180-197.	9.6	53
158	Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer. Oncotarget, 2018, 9, 13894-13910.	1.8	47
159	Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer Journal, 2018, 8, 105.	6.2	113
160	Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies. Journal of Hematology and Oncology, 2018, 11, 131.	17.0	33
161	Tumor-Secreted Exosomal miR-222 Promotes Tumor Progression via Regulating P27 Expression and Re-Localization in Pancreatic Cancer. Cellular Physiology and Biochemistry, 2018, 51, 610-629.	1.6	100
162	Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells. Frontiers in Pharmacology, 2018, 9, 1166.	3.5	4
163	Circulating MicroRNAs: Valuable Biomarkers for the Diagnosis and Prognosis of Gastric Cancer. Current Medicinal Chemistry, 2018, 25, 698-714.	2.4	26
164	AHIF promotes glioblastoma progression and radioresistance via exosomes. International Journal of Oncology, 2019, 54, 261-270.	3.3	40

#	Article	IF	Citations
165	Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. International Journal of Nanomedicine, 2018, Volume 13, 7727-7747.	6.7	181
166	Expression profile of miR-17/92 cluster is predictive of treatment response in rectal cancer. Carcinogenesis, 2018, 39, 1359-1367.	2.8	29
167	Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Molecular Cancer, 2018, 17, 143.	19.2	217
168	Effect of exosomal miRNA on cancer biology and clinical applications. Molecular Cancer, 2018, 17, 147.	19.2	531
169	Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ, 2018, 6, e4763.	2.0	58
170	The Role of Intercellular Communication in Cancer Progression. Russian Journal of Bioorganic Chemistry, 2018, 44, 473-480.	1.0	1
171	MicroRNAs in Autoimmunity and Hematological Malignancies. International Journal of Molecular Sciences, 2018, 19, 3139.	4.1	26
172	Extracellular vesicles: important collaborators in cancer progression. Essays in Biochemistry, 2018, 62, 149-163.	4.7	55
173	Arsenic Alters Exosome Quantity and Cargo to Mediate Stem Cell Recruitment Into a Cancer Stem Cell-Like Phenotype. Toxicological Sciences, 2018, 165, 40-49.	3.1	34
174	Exosomes from HNSCC Promote Angiogenesis through Reprogramming of Endothelial Cells. Molecular Cancer Research, 2018, 16, 1798-1808.	3.4	143
175	Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 147.	8.6	142
176	The Double Face of Exosome-Carried MicroRNAs in Cancer Immunomodulation. International Journal of Molecular Sciences, 2018, 19, 1183.	4.1	30
177	Circulating serum oncologic miRNA in pediatric juvenile pilocytic astrocytoma patients predicts mural nodule volume. Acta Neurochirurgica, 2018, 160, 1571-1581.	1.7	12
178	Exosomes in cancer development and clinical applications. Cancer Science, 2018, 109, 2364-2374.	3.9	271
179	Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018, 6, 18.	3.7	495
180	Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 2018, 155, 92-103.	2.6	28
181	Tumor-derived exosomes, microRNAs, and cancer immune suppression. Seminars in Immunopathology, 2018, 40, 505-515.	6.1	69
182	Downâ€regulation of exosomal miRâ€106bâ€5p derived from cholesteatoma perimatrix fibroblasts promotes angiogenesis in endothelial cells by overexpression of Angiopoietin 2. Cell Biology International, 2018, 42, 1300-1310.	3.0	15

#	Article	IF	CITATIONS
183	Exosomes. , 2018, , 261-283.		2
184	Exosomes in Tumor Angiogenesis—Multifunctional Messengers With Mixed Intentions. , 2018, , 235-245.		Ο
185	Composition, Physicochemical and Biological Properties of Exosomes Secreted From Cancer Cells. , 2018, , 27-57.		6
186	Extracellular vesicles in hematological malignancies. Leukemia and Lymphoma, 2019, 60, 29-36.	1.3	18
187	Effect of immunosuppression in miRNAs from extracellular vesicles of colorectal cancer and their influence on the pre-metastatic niche. Scientific Reports, 2019, 9, 11177.	3.3	11
188	Color-coded Imaging of the Fate of Cancer-cell-derived Exosomes During Pancreatic Cancer Metastases in a Nude-mouse Model. Anticancer Research, 2019, 39, 4055-4060.	1.1	16
189	Breast cancer cellâ€derived exosomal miRâ€20aâ€5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Medicine, 2019, 8, 5687-5701.	2.8	86
190	New insight into isolation, identification techniques and medical applications of exosomes. Journal of Controlled Release, 2019, 308, 119-129.	9.9	130
191	Stem Cell Therapies for Renal Diseases. , 2019, , 127-127.		0
192	Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications. Cell Communication and Signaling, 2019, 17, 73.	6.5	138
193	Cell derived extracellular vesicles: from isolation to functionalization and biomedical applications. Biomaterials Science, 2019, 7, 3552-3565.	5.4	15
194	Focus on exosomes—From pathogenic mechanisms to the potential clinical application value in lymphoma. Journal of Cellular Biochemistry, 2019, 120, 19220-19228.	2.6	8
195	<p>Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 6843-6854.	6.7	23
196	Nuclear-cytoplasmic Shuttling in Chronic Myeloid Leukemia: Implications in Leukemia Maintenance and Therapy. Cells, 2019, 8, 1248.	4.1	3
197	The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities. Molecular Aspects of Medicine, 2019, 70, 21-32.	6.4	22
198	HPV DNA Associates With Breast Cancer Malignancy and It Is Transferred to Breast Cancer Stromal Cells by Extracellular Vesicles. Frontiers in Oncology, 2019, 9, 860.	2.8	30
199	Application of Heat Pump Energy-Saving Flue-Cured Tobacco Technology. IOP Conference Series: Earth and Environmental Science, 2019, 252, 032042.	0.3	0
200	Design and applications of stretchable and self-healable conductors for soft electronics. Nano Convergence, 2019, 6, 25.	12.1	83

#	Article	IF	CITATIONS
201	Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease. Theranostics, 2019, 9, 196-209.	10.0	50
202	Hepatocyte-derived exosomal MiR-194 activates PMVECs and promotes angiogenesis in hepatopulmonary syndrome. Cell Death and Disease, 2019, 10, 853.	6.3	16
203	Cancer-Derived Exosomes as Effectors of Key Inflammation-Related Players. Frontiers in Immunology, 2019, 10, 2103.	4.8	87
204	Hematologic Malignancy Biomarkers in Proximal Fluids. , 2019, , 219-253.		1
205	Cancer Biomarkers in Body Fluids. , 2019, , .		5
206	Exosomes in head and neck cancer. Updating and revisiting. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1641-1651.	5.2	19
207	Exosomal MiRNAs in Pediatric Cancers. International Journal of Molecular Sciences, 2019, 20, 4600.	4.1	29
208	Nonselective Cyclooxygenase Inhibition Retards Cyst Progression in a Murine Model of Autosomal Dominant Polycystic Kidney Disease. International Journal of Medical Sciences, 2019, 16, 180-188.	2.5	9
209	Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics, 2019, 9, 4494-4507.	10.0	77
210	Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiology of Disease, 2019, 130, 104512.	4.4	78
211	Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends. Cells, 2019, 8, 511.	4.1	26
212	Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype. International Journal of Molecular Sciences, 2019, 20, 2547.	4.1	51
213	microRNA-126 inhibits tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway. Biomedicine and Pharmacotherapy, 2019, 116, 109007.	5.6	15
214	Biogenesis and function of extracellular miRNAs. ExRNA, 2019, 1, .	1.0	76
215	Exosomes as Mediators of Chemical-Induced Toxicity. Current Environmental Health Reports, 2019, 6, 73-79.	6.7	17
216	Liquid Biopsy: General Concepts. Acta Cytologica, 2019, 63, 449-455.	1.3	186
217	Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes. QJM - Monthly Journal of the Association of Physicians, 2019, 112, 581-590.	0.5	76
218	piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene, 2019, 38, 5227-5238.	5.9	98

#	Article	IF	CITATIONS
219	Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Molecular Cancer, 2019, 18, 32.	19.2	271
220	Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL Bioengineering, 2019, 3, 011503.	6.2	327
221	Usefulness of serum microRNA as a predictive marker of recurrence and prognosis in biliary tract cancer after radical surgery. Scientific Reports, 2019, 9, 5925.	3.3	6
222	Tumorâ€derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. Journal of Cellular Physiology, 2019, 234, 16885-16903.	4.1	92
223	The Relationship between Exosomes and Cancer: Implications for Diagnostics and Therapeutics. BioDrugs, 2019, 33, 137-158.	4.6	18
224	Plasma Corticotropin-Releasing Factor Receptors and B7-2+ Extracellular Vesicles in Blood Correlate with Irritable Bowel Syndrome Disease Severity. Cells, 2019, 8, 101.	4.1	12
225	Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019, 40, 564-573.	6.1	53
226	Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood, 2019, 133, 2707-2717.	1.4	29
227	Exosomes in Cancer: Circulating Immune-Related Biomarkers. BioMed Research International, 2019, 2019, 1-9.	1.9	32
228	Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors. Non-coding RNA, 2019, 5, 1.	2.6	48
229	Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysisâ€mediated vascular remodeling. Journal of Cellular Physiology, 2019, 234, 10602-10614.	4.1	60
230	Effects of tumor necrosis factorâ€Î±â€induced exosomes on the endothelial cellular behavior, metabolism and bioenergetics. Microcirculation, 2019, 26, e12515.	1.8	6
231	Exosomal miR-155 Derived from Hepatocellular Carcinoma Cells Under Hypoxia Promotes Angiogenesis in Endothelial Cells. Digestive Diseases and Sciences, 2019, 64, 792-802.	2.3	88
232	Extracellular vesicle secretion of miRâ€142â€3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cellâ€cell communication. Molecular Carcinogenesis, 2019, 58, 376-387.	2.7	51
233	Atherosclerotic Conditions Promote the Packaging of Functional MicroRNA-92a-3p Into Endothelial Microvesicles. Circulation Research, 2019, 124, 575-587.	4.5	121
234	Laminin γ2â€enriched extracellular vesicles of oral squamous cell carcinoma cells enhance <i>in vitro</i> lymphangiogenesis <i>via</i> integrin α3â€dependent uptake by lymphatic endothelial cells. International Journal of Cancer, 2019, 144, 2795-2810.	5.1	45
235	Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biology, 2019, 75-76, 201-219.	3.6	134
236	Exosomes, microvesicles, and their friends in solid tumors. , 2020, , 39-80.		3

#	Article	IF	CITATIONS
237	Human airway epithelial extracellular vesicle miRNA signature is altered upon asthma development. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 346-356.	5.7	60
238	Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Seminars in Cancer Biology, 2020, 60, 214-224.	9.6	74
239	Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis. Cancer Letters, 2020, 471, 38-48.	7.2	185
240	Delivery of LNA-antimiR-142-3p by Mesenchymal Stem Cells-Derived Exosomes to Breast Cancer Stem Cells Reduces Tumorigenicity. Stem Cell Reviews and Reports, 2020, 16, 541-556.	3.8	58
241	The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 7363.	4.1	17
242	Exosomes and Extracellular Vesicles as Emerging Theranostic Platforms in Cancer Research. Cells, 2020, 9, 2569.	4.1	46
243	Potential Roles of Tumor Cell- and Stroma Cell-Derived Small Extracellular Vesicles in Promoting a Pro-Angiogenic Tumor Microenvironment. Cancers, 2020, 12, 3599.	3.7	17
244	Formulation, manufacturing and regulatory strategies for extracellular vesicles-based drug products for targeted therapy of central nervous system diseases. Expert Review of Precision Medicine and Drug Development, 2020, 5, 469-481.	0.7	8
245	The regulatory role of exosomes in leukemia and their clinical significance. Journal of International Medical Research, 2020, 48, 030006052095013.	1.0	8
246	Silencing of Exosomal miR-181a Reverses Pediatric Acute Lymphocytic Leukemia Cell Proliferation. Pharmaceuticals, 2020, 13, 241.	3.8	23
247	Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers, 2020, 12, 2534.	3.7	25
248	Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. BioFactors, 2020, 46, 698-715.	5.4	9
249	SRSF1 regulates exosome microRNA enrichment in human cancer cells. Cell Communication and Signaling, 2020, 18, 130.	6.5	23
250	Extracellular Vesicles in Hematological Malignancies: From Biomarkers to Therapeutic Tools. Diagnostics, 2020, 10, 1065.	2.6	20
251	Vincristine and prednisone regulates cellular and exosomal miR-181a expression differently within the first time diagnosed and the relapsed leukemia B cells. Leukemia Research Reports, 2020, 14, 100221.	0.4	3
252	High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Computational and Structural Biotechnology Journal, 2020, 18, 2670-2677.	4.1	8
253	Tiny Actors in the Big Cellular World: Extracellular Vesicles Playing Critical Roles in Cancer. International Journal of Molecular Sciences, 2020, 21, 7688.	4.1	12
254	Bioinspired Extracellular Vesicles: Lessons Learned From Nature for Biomedicine and Bioengineering. Nanomaterials, 2020, 10, 2172.	4.1	17

#	Article	IF	CITATIONS
255	Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis, 2020, 23, 599-610.	7.2	73
256	Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications. Journal of Translational Medicine, 2020, 18, 249.	4.4	82
257	MicroRNA-92a as a marker of treatment response and survival in adult acute myeloid leukemia patients. Leukemia and Lymphoma, 2020, 61, 2475-2481.	1.3	2
258	Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e752-e768.	0.4	28
259	Antibody-Conjugated Signaling Nanocavities Fabricated by Dynamic Molding for Detecting Cancers Using Small Extracellular Vesicle Markers from Tears. Journal of the American Chemical Society, 2020, 142, 6617-6624.	13.7	74
260	Exosomes in Prostate Cancer Diagnosis, Prognosis and Therapy. International Journal of Molecular Sciences, 2020, 21, 2118.	4.1	79
261	Exosome–transmitted microRNAâ€133b inhibited bladder cancer proliferation by upregulating dualâ€specificity protein phosphatase 1. Cancer Medicine, 2020, 9, 6009-6019.	2.8	32
262	Role of Non-Coding RNAs in the Development of Targeted Therapy and Immunotherapy Approaches for Chronic Lymphocytic Leukemia. Journal of Clinical Medicine, 2020, 9, 593.	2.4	13
263	AÂtreatise on endothelial biology and exosomes: homage to Theresa Maria Listowska Whiteside. Hno, 2020, 68, 71-79.	1.0	2
264	A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers, 2020, 12, 298.	3.7	83
265	Circulating Small Noncoding RNAs Have Specific Expression Patterns in Plasma and Extracellular Vesicles in Myelodysplastic Syndromes and Are Predictive of Patient Outcome. Cells, 2020, 9, 794.	4.1	26
266	Exosomal miRNAs in hepatitis B virus related liver disease: a new hope for biomarker. Gut Pathogens, 2020, 12, 23.	3.4	30
267	Basic knowledge on BCR-ABL1-positive extracellular vesicles. Biomarkers in Medicine, 2020, 14, 451-458.	1.4	8
268	A Circular RNA, Cholangiocarcinomaâ€Associated Circular RNA 1, Contributes to Cholangiocarcinoma Progression, Induces Angiogenesis, and Disrupts Vascular Endothelial Barriers. Hepatology, 2021, 73, 1419-1435.	7.3	103
269	Deciphering the messages carried by extracellular vesicles in hematological malignancies. Blood Reviews, 2021, 46, 100734.	5.7	21
270	The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188488.	7.4	45
271	miRâ€218 contributes to drug resistance in multiple myeloma via targeting LRRC28. Journal of Cellular Biochemistry, 2021, 122, 305-314.	2.6	10
272	Contribution of extracellular vesicles in normal hematopoiesis and hematological malignancies. Heliyon, 2021, 7, e06030.	3.2	6

		CITATION REPORT		
#	Article		IF	CITATIONS
273	Study of microRNAs carried by exosomes. Methods in Cell Biology, 2021, 165, 187-192	7.	1.1	3
274	Basing on microRNA-mRNA analysis identifies microRNA in exosomes associated with v diabetic ulcers. Biocell, 2021, 45, 27-39.	vound repair of	0.7	5
276	Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers, 2021, 13, 8		3.7	40
277	Remodeling of Bone Marrow Niches and Roles of Exosomes in Leukemia. International Molecular Sciences, 2021, 22, 1881.	Journal of	4.1	15
278	The "Vesicular Intelligence―Strategy of Blood Cancers. Genes, 2021, 12, 416.		2.4	7
279	miRNAs mediated drug resistance in hematological malignancies. Seminars in Cancer E 283-302.	iology, 2022, 83,	9.6	17
280	Uptake and Distribution of Administered Bone Marrow Mesenchymal Stem Cell Extraction In Retina. Cells, 2021, 10, 730.	ellular Vesicles	4.1	28
281	Extracellular genetic materials and their application in clinical practice. Cancer Genetice 252-253, 48-63.	s, 2021,	0.4	2
282	Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesic hematological malignancies?. Life Sciences, 2021, 271, 119177.	les in	4.3	5
283	Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Phenotype. International Journal of Molecular Sciences, 2021, 22, 6161.	e Metastatic	4.1	12
284	Characterization of the exosomes in the allantoic fluid of the chicken embryo. Canadia Animal Science, 2021, 101, 307-317.	n Journal of	1.5	1
285	Interplay within tumor microenvironment orchestrates neoplastic <scp>RNA</scp> me transcriptome diversity. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1676.	tabolism and	6.4	11
286	Specific and Aspecific Molecular Checkpoints as Potential Targets for Dismantling Tum and Preventing Relapse and Metastasis Through Shielded Cytolytic Treatments. Frontie Developmental Biology, 2021, 9, 665321.	or Hierarchy ers in Cell and	3.7	2
287	Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Frontiers in Cell and E Biology, 2021, 9, 703989.	Developmental	3.7	44
288	Exosomal DNMT1 mRNA transcript is elevated in acute lymphoblastic leukemia which r leukemia progression. Cancer Genetics, 2022, 260-261, 57-64.	night reprograms	0.4	6
289	Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochi Biophysica Acta: Reviews on Cancer, 2021, 1876, 188553.	mica Et	7.4	17
290	Trends in the biological functions and medical applications of extracellular vesicles and Acta Pharmaceutica Sinica B, 2021, 11, 2114-2135.	analogues.	12.0	30
291	Exosome-derived miR-2682-5p suppresses cell viability and migration by HDAC1-silence upregulation of ADH1A in non-small cell lung cancer. Human and Experimental Toxicolo 096032712110419.	e-mediated bgy, 2021, 40,	2.2	11

#	Article	IF	CITATIONS
292	Exosomal miRNAs as New Players of Cancers: A Mini-review Study. Gene, Cell and Tissue, 2021, In Press, .	0.2	0
293	S. Typhi derived vaccines and a proposal for outer membrane vesicles (OMVs) as potential vaccine for typhoid fever. Microbial Pathogenesis, 2021, 158, 105082.	2.9	6
294	Small extracellular vesicles in cancer. Bioactive Materials, 2021, 6, 3705-3743.	15.6	61
295	Hierarchically Releasing Bio-Responsive Nanoparticles for Complete Tumor Microenvironment Modulation via TGF-12 Pathway Inhibition and TAF Reduction. ACS Applied Materials & Interfaces, 2021, 13, 2256-2268.	8.0	11
296	Microglia exosomal miRNA-137 attenuates ischemic brain injury through targeting Notch1. Aging, 2021, 13, 4079-4095.	3.1	56
297	Exosomes in Tumor Angiogenesis. Methods in Molecular Biology, 2016, 1464, 25-34.	0.9	32
298	EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight, 2019, 4, .	5.0	88
299	The functions and clinical applications of tumor-derived exosomes. Oncotarget, 2016, 7, 60736-60751.	1.8	70
300	Visualization of exosome-mediated miR-210 transfer from hypoxic tumor cells. Oncotarget, 2017, 8, 9899-9910.	1.8	115
301	Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget, 2017, 8, 19592-19608.	1.8	267
302	Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. Oncotarget, 2017, 8, 15252-15266.	1.8	68
303	Teriflunomide restores 5-azacytidine sensitivity via activation of pyrimidine salvage in 5-azacytidine-resistant leukemia cells. Oncotarget, 2017, 8, 69906-69915.	1.8	8
304	Cx25 contributes to leukemia cell communication and chemosensitivity. Oncotarget, 2015, 6, 31508-31521.	1.8	21
305	Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget, 2016, 7, 19709-19722.	1.8	56
306	Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget, 2016, 7, 24585-24595.	1.8	77
307	Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget, 2013, 4, 346-361.	1.8	199
308	Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget, 2016, 7, 32707-32722.	1.8	81
309	Extracellular vesicles secreted by highly metastatic clonal variants of osteosarcoma preferentially localize to the lungs and induce metastatic behaviour in poorly metastatic clones. Oncotarget, 2016, 7, 43570-43587.	1.8	38

	CITATION	N REPORT	
#	Article	IF	CITATIONS
310	Role of exosome-associated adenosine in promoting angiogenesis. Vessel Plus, 2020, 2020, .	0.4	10
311	Canonical and Non-Canonical Barriers Facing AntimiR Cancer Therapeutics. Current Medicinal Chemistry, 2013, 20, 3582-3593.	2.4	48
312	Intercellular Crosstalk Via Extracellular Vesicles in Tumor Milieu as Emerging Therapies for Cancer Progression. Current Pharmaceutical Design, 2019, 25, 1980-2006.	1.9	11
313	Exosomes: Structure, Biogenesis, Types and Application in Diagnosis and Gene and Drug Delivery. Current Gene Therapy, 2020, 20, 195-206.	2.0	22
314	Exosomes Function in Pro- and Anti-Angiogenesis. Current Angiogenesis, 2013, 2, 54-59.	0.1	140
315	Current application of exosomes in medicine. Medical Journal of Cell Biology (discontinued), 2020, 8, 101-111.	0.3	6
316	Proteomic Analysis on Exosomes Derived from Patients' Sera Infected with Echinococcus granulosus. Korean Journal of Parasitology, 2019, 57, 489-497.	1.3	11
317	Downregulation of extracellular vesicle microRNA†101 derived from bone marrow mesenchymal stromal cells in myelodysplastic syndrome with disease progression. Oncology Letters, 2020, 19, 2053-2061.	1.8	5
318	Liquid biopsy using extracellular vesicle–derived DNA in lung adenocarcinoma. Journal of Pathology and Translational Medicine, 2020, 54, 453-461.	1.1	16
319	Pancreatic cancer diagnosis by free and exosomal miRNA. World Journal of Gastrointestinal Pathophysiology, 2013, 4, 74.	1.0	67
320	Selective miRNA Expression Profile in Chronic Myeloid Leukemia K562 Cell-derived Exosomes. Asian Pacific Journal of Cancer Prevention, 2013, 14, 7501-7508.	1.2	30
321	Exosomal microRNA remodels the tumor microenvironment. PeerJ, 2017, 5, e4196.	2.0	27
322	Comparison of serum exosome isolation methods on co-precipitated free microRNAs. PeerJ, 2020, 8, e9434.	2.0	18
323	Can Soluble Immune Checkpoint Molecules on Exosomes Mediate Inflammation?. Journal of NeuroImmune Pharmacology, 2021, , 1.	4.1	2
324	Polyphenols from Hippophae rhamnoides suppressed colon cancer growth by regulating miRNA-mediated cell cycle arrest and apoptosis in vitro and in vivo. Journal of Functional Foods, 2021, 87, 104780.	3.4	9
325	Translational Implications for Noncoding RNA in Cancer. , 2014, , 265-282.		0
326	Small but mighty: microRNAs as novel signalling molecules in cancer. RNA & Disease (Houston, Tex), 0, , .	1.0	1
327	Profile of differentially expressed Toll-like receptor signaling genes in the natural killer cells of patients with Sézary syndrome. Oncotarget, 2017, 8, 92183-92194.	1.8	6

# 328	ARTICLE Liquid biopsies in myeloid malignancies. , 2019, 2, 1044-1061.	IF	Citations 5
329	Colorectal cancer cells differentially impact migration and microRNA expression in endothelial cells. Oncology Letters, 2019, 18, 6361-6370.	1.8	4
330	The role of tumor-derived exosomes in tumor angiogenesis and tumor progression. Current Issues in Pharmacy and Medical Sciences, 2019, 32, 193-202.	0.4	12
332	Hallmarks ofÂexosomes. Future Science OA, 2022, 8, FSO764.	1.9	14
333	Role of cell-free network communication in alcohol-associated disorders and liver metastasis. World Journal of Gastroenterology, 2021, 27, 7080-7099.	3.3	5
334	Exosomes: Insights from Retinoblastoma and Other Eye Cancers. International Journal of Molecular Sciences, 2020, 21, 7055.	4.1	21
335	Verification of the role of exosomal microRNA in colorectal tumorigenesis using human colorectal cancer cell lines. PLoS ONE, 2020, 15, e0242057.	2.5	9
337	The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells. Iranian Journal of Basic Medical Sciences, 2016, 19, 1031-1039.	1.0	12
338	Exosome mediated multidrug resistance in cancer. American Journal of Cancer Research, 2018, 8, 2210-2226.	1.4	17
339	Focus on exosomes: novel pathogenic components of leukemia. American Journal of Cancer Research, 2019, 9, 1815-1829.	1.4	17
342	Altered protein profile of plasma extracellular vesicles in oral squamous cell carcinoma development. Journal of Proteomics, 2022, 251, 104422.	2.4	0
343	An Exploration of Non-Coding RNAs in Extracellular Vesicles Delivered by Swine Anterior Pituitary. Frontiers in Genetics, 2021, 12, 772753.	2.3	3
344	Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. International Journal of Molecular Sciences, 2022, 23, 1461.	4.1	28
345	Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. Molecular Therapy - Nucleic Acids, 2022, 27, 983-997.	5.1	24
346	Exosome as a target for cancer treatment. Journal of Investigative Medicine, 2022, 70, 1212-1218.	1.6	12
347	Molecular functions and therapeutic applications of exosomal noncoding RNAs in cancer. Experimental and Molecular Medicine, 2022, 54, 216-225.	7.7	21
348	Exosomes in Age-Related Cognitive Decline: Mechanistic Insights and Improving Outcomes. Frontiers in Aging Neuroscience, 2022, 14, 834775.	3.4	4
349	Comparative computational RNA analysis of cardiac-derived progenitor cells and their extracellular vesicles. Genomics, 2022, 114, 110349.	2.9	4

#	Article	IF	CITATIONS
350	miR-17-5p in bovine oviductal fluid affects embryo development. Molecular and Cellular Endocrinology, 2022, 551, 111651.	3.2	5
357	Role of Exosomes in Tumor Induced Neo-Angiogenesis. , 0, , .		1
358	Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering, 2022, 17, 1-175.	0.1	0
359	Roles of Extracellular Vesicles in Cancer Metastasis. Physiology, 0, , .	10.0	0
360	The Role of Cancer Stem Cell-Derived Exosomes in Cancer Progression. Stem Cells International, 2022, 2022, 1-13.	2.5	8
361	Role of Acute Myeloid Leukemia (AML)-Derived exosomes in tumor progression and survival. Biomedicine and Pharmacotherapy, 2022, 150, 113009.	5.6	14
362	Extracellular vesicle-induced cyclic AMP signaling. Cellular Signalling, 2022, 95, 110348.	3.6	1
363	miR-133a—A Potential Target for Improving Cardiac Mitochondrial Health and Regeneration After Injury. Journal of Cardiovascular Pharmacology, 2022, 80, 187-193.	1.9	2
364	Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. Nanoscale Horizons, 2022, 7, 682-714.	8.0	37
365	The Role of Exosomes in the Progression and Therapeutic Resistance of Hematological Malignancies. Frontiers in Oncology, 0, 12, .	2.8	4
367	miR-494 in Extracellular Vesicles as a Potent Biomarker of Chronic Myeloid Leukemia Treatment with Tyrosine Kinase Inhibitors. Hemato, 2022, 3, 373-384.	0.6	0
368	The Landscape of Exosome-Derived Non-Coding RNA in Leukemia. Frontiers in Pharmacology, 0, 13, .	3.5	4
369	Exosome-mediated miR-4655–3p contributes to UV radiation-induced bystander effects. Experimental Cell Research, 2022, 418, 113247.	2.6	5
370	Emerging role of exosomes in hematological malignancies. Clinical and Experimental Medicine, 2023, 23, 1123-1136.	3.6	3
371	Age associated changes in miRNA profile of bovine follicular fluid. Reproduction, 2022, , .	2.6	1
372	Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cellular and Molecular Biology Letters, 2022, 27, .	7.0	15
373	Cancer as an infective disease: the role of <scp>EVs</scp> in tumorigenesis. Molecular Oncology, 2023, 17, 390-406.	4.6	4
374	The role of exosomal survivin in the diagnosis of breastÂcancer. International Journal of Clinical Biochemistry and Research, 2022, 9, 254-259.	0.1	0

#	Article	IF	CITATIONS
375	Hypothesis: can transfer of primary neoplasm-derived extracellular vesicles and mitochondria contribute to the development of donor cell–derived hematologic neoplasms after allogeneic hematopoietic cell transplantation?. Cytotherapy, 2022, 24, 1169-1180.	0.7	1
376	Tuning pro-survival effects of human induced pluripotent stem cell-derived exosomes using elastin-like polypeptides. Biomaterials, 2022, 291, 121864.	11.4	2
377	Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	0
378	Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Seminars in Cancer Biology, 2022, 87, 196-213.	9.6	6
379	Exosomal MicroRNA Profiling. Methods in Molecular Biology, 2023, , 13-47.	0.9	15
380	Drug Resistance: The Role of Exosomal miRNA in the Microenvironment of Hematopoietic Tumors. Molecules, 2023, 28, 116.	3.8	5
381	MicroRNA-based engineering of mesenchymal stem cell extracellular vesicles for treatment of retinal ischemic disorders. Acta Biomaterialia, 2023, 158, 782-797.	8.3	11
382	Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology, 2023, 12, 110.	2.8	21
383	Exosomes and cancer immunotherapy: A review of recent cancer research. Frontiers in Oncology, 0, 12, .	2.8	4
384	The Role of Exosomes in Human Carcinogenesis and Cancer Therapy—Recent Findings from Molecular and Clinical Research. Cells, 2023, 12, 356.	4.1	13
385	Endothelial plasticity across PTEN and Hippo pathways: A complex hormetic rheostat modulated by extracellular vesicles. Translational Oncology, 2023, 31, 101633.	3.7	1
386	Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Experimental and Therapeutic Medicine, 2023, 25, .	1.8	1
387	Extracellular vesicles in tumor angiogenesis and resistance to antiâ€angiogenic therapy. Cancer Science, 2023, 114, 2739-2749.	3.9	3
388	Physiological and pathological consequences of exosomes at the blood–brain-barrier interface. Cell Communication and Signaling, 2023, 21, .	6.5	5
389	Extracellular <scp>LGALS3BP</scp> : a potential disease marker and actionable target for antibody–drug conjugate therapy in glioblastoma. Molecular Oncology, 2023, 17, 1460-1473.	4.6	8
390	Exosomes from chondrocytes overexpressing miR-214-3p facilitate M2 macrophage polarization and angiogenesis to relieve Legg Calvé-Perthes disease. Cytokine, 2023, 168, 156233.	3.2	0
391	MicroRNAs in Tumor Endothelial Cells: Regulation, Function and Therapeutic Applications. Cells, 2023, 12, 1692.	4.1	1
392	Role of non-coding RNAs in neuroblastoma. Cancer Gene Therapy, 0, , .	4.6	4

#	Article	IF	CITATIONS
394	Exosomal non-coding RNAs in angiogenesis: Functions, mechanisms and potential clinical applications. Heliyon, 2023, 9, e18626.	3.2	3
395	Emerging role of exosome-derived non-coding RNAs in tumor-associated angiogenesis of tumor microenvironment. Frontiers in Molecular Biosciences, 0, 10, .	3.5	0
396	The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach. Cancers, 2023, 15, 4027.	3.7	0
397	MiR-146a-5p enrichment in small-extracellular vesicles of relapsed pediatric ALCL patients promotes macrophages infiltration and differentiation. Biochemical Pharmacology, 2023, 215, 115747.	4.4	1
398	Exosomes in Cancer Progression and Therapy Resistance: Molecular Insights and Therapeutic Opportunities. Life, 2023, 13, 2033.	2.4	4
399	MicroRNAs: The next generation of cancer biomarkers. Biomedical Letters, 2023, 9, .	0.3	0
400	Exploring the Impact of Exosomal Cargos on Osteosarcoma Progression: Insights into Therapeutic Potential. International Journal of Molecular Sciences, 2024, 25, 568.	4.1	0
401	Roles of exosomes in immunotherapy for solid cancers. Cell Death and Disease, 2024, 15, .	6.3	0
402	Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathology Research and Practice, 2024, 255, 155214.	2.3	0
403	Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer. Cancers, 2024, 16, 883.	3.7	0