Jahn–Teller distortions in transition metal compound functional molecular and inorganic materials

Chemical Society Reviews 42, 1784-1795

DOI: 10.1039/c2cs35253b

Citation Report

#	Article	IF	CITATIONS
2	Multiredox Active [3 $ ilde{A}- ilde{3}$] Copper Grids. Inorganic Chemistry, 2013, 52, 9714-9716.	1.9	30
3	Theoretical Study of Mononuclear Nickel(I), Nickel(O), Copper(I), and Cobalt(I) Dioxygen Complexes: New Insight into Differences and Similarities in Geometry and Bonding Nature. Inorganic Chemistry, 2013, 52, 13146-13159.	1.9	12
4	A new copper-based metal–organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of β-ketoesters. Chemical Communications, 2013, 49, 10299.	2.2	160
5	Reversible switching of the electronic ground state in a pentacoordinated Cu(ii) complex. Chemical Communications, 2013, 49, 7806.	2.2	13
6	Supramolecular Organization and Magnetic Properties of Mesogen-Hybridized Mixed-Valent Manganese Single Molecule Magnets [Mn ^{III} ₈ Mn ^{IV} ₄ O ₁₂ (L _{<i>x</i>,<i>y</i>,<i 135,="" 2013,="" 2708-2722.<="" american="" chemical="" journal="" of="" society,="" td="" the="" yolvalor)=""><td>>z-CB</td><td></td></i>})	>z-CB	
7	Cu ²⁺ in Layered Compounds: Origin of the Compressed Geometry in the Model System K ₂ ZnF ₄ :Cu ²⁺ . Inorganic Chemistry, 2013, 52, 6923-6933.	1.9	23
8	Thermochromism, the Alexandrite Effect, and Dynamic Jahnâ€"Teller Distortions in Ho ₂ Cu(TeO ₃) ₂ (SO ₄) ₂ . Inorganic Chemistry, 2013, 52, 13278-13281.	1.9	20
10	Hooked on switch: strain-managed cooperative Jahn–Teller effect in Li _{0.95} Mn _{2.05} O ₄ spinel. RSC Advances, 2014, 4, 65205-65212.	1.7	12
11	Room temperature syntheses, crystal structures and properties of two new heterometallic polymers based on 3-ethoxy-2-hydroxybenzaldehyde ligand. Journal of Solid State Chemistry, 2014, 220, 206-212.	1.4	21
12	The Ï€â€Backâ€Bonding Modulation and Its Impact in the Electronic Properties of Cu ^{II} Antineoplastic Compounds: An Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 13730-13741.	1.7	35
13	Crystal structure of bis(1,3-bis{[(1H-pyrrol-2-yl)methylidene]amino-l̂ºN}propan-2-olato-l̂ºO)manganese(III) nitrate methanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 210-212.	0.2	0
14	Five heterometallic Srll–MII (M=Co, Ni, Zn, Cu) 3-D coordination polymers: Synthesis, structures and magnetic properties. Polyhedron, 2014, 71, 91-98.	1.0	12
15	Anion modulated structural variations in copper(II) complexes with a semicarbazone Schiff base: Synthesis, characterization and self assembly. Polyhedron, 2014, 77, 103-114.	1.0	14
16	Computational Insights on the Geometrical Arrangements of Cu(II) with a Mixed-Donor N ₃ S ₃ Macrobicyclic Ligand. Inorganic Chemistry, 2014, 53, 512-521.	1.9	6
17	Synthesis, structure and catalytic applications of amidoterephthalate copper complexes in the diastereoselective Henry reaction in aqueous medium. New Journal of Chemistry, 2014, 38, 4837-4846.	1.4	46
18	Mixed-ligand hydroxocopper(ii)/pyridazine clusters embedded into 3D framework lattices. Dalton Transactions, 2014, 43, 8530-8542.	1.6	17
19	Reversible Switching of Electronic Ground State in a Pentacoordinated Cu(II) 1D Cationic Polymer and Structural Diversity. Inorganic Chemistry, 2014, 53, 6665-6674.	1.9	15
20	Remarkable Stability of Copper(II)–N-Heterocyclic Carbene Complexes Void of an Anionic Tether. Organometallics, 2014, 33, 2027-2038.	1.1	54

#	Article	IF	CITATIONS
21	Cooperative Anion Recognition in Copper(II) and Zinc(II) Complexes with a Ditopic Tripodal Ligand Containing a Urea Group. Inorganic Chemistry, 2014, 53, 2554-2568.	1.9	29
22	Carbon Centered Trigonal Prismatic Tungsten Clusters [W ₆ CCl ₁₈] <i>^{nâ€"}</i> (<i>n</i> = 1, 2) containing Copper(I) and Copper(II). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2245-2249.	0.6	5
23	Integration of Ligand Field Molecular Mechanics in Tinker. Journal of Chemical Information and Modeling, 2015, 55, 1282-1290.	2.5	13
24	The vibrational Jahn–Teller effect in E⊗e systems. Chemical Physics, 2015, 460, 31-42.	0.9	7
25	Computational Insights into the Isomerism of Hexacoordinate Metal–Sarcophagine Complexes: The Relationship between Structure and Stability. European Journal of Inorganic Chemistry, 2015, 2015, 503-511.	1.0	1
26	Sulfonated Schiff base dinuclear and polymeric copper(<scp>ii</scp>) complexes: crystal structures, magnetic properties and catalytic application in Henry reaction. New Journal of Chemistry, 2015, 39, 3424-3434.	1.4	50
27	Mapping the Ultrafast Changes of Continuous Shape Measures in Photoexcited Spin Crossover Complexes without Long-Range Order. Journal of Physical Chemistry C, 2015, 119, 3322-3330.	1.5	23
28	Dynamic Jahn–Teller Effect in the Metastable High-Spin State of Solvated [Fe(terpy) ₂] ²⁺ . Journal of Physical Chemistry C, 2015, 119, 3312-3321.	1.5	29
29	Raman Detected Sensing of Volatile Organic Compounds by Vapochromic $Cu[AuX < sub > 2 < /sub > (CN) < sub > 2 < /sub > (X = Cl, Br) Coordination Polymer Materials. Chemistry of Materials, 2015, 27, 1465-1478.$	3.2	47
30	The synthesis, structure, topology and catalytic application of a novel cubane-based copper(<scp>ii</scp>) metal†organic framework derived from a flexible amido tripodal acid. Dalton Transactions, 2015, 44, 10156-10165.	1.6	56
31	Heterometallic Sr ^{II} â€M ^{II} (M=Co, Ni, Zn and Cu) Coordination Polymers: Synthesis, Temperatureâ€Dependent Structural Transformation, and Luminescent and Magnetic Properties. Chemistry - an Asian Journal, 2015, 10, 411-421.	1.7	21
32	Single crystal EPR spectroscopy, magnetic studies and catalytic activity of a self-assembled [2×2] Cull4 cluster obtained from a carbohydrazone based ligand. Polyhedron, 2015, 88, 48-56.	1.0	31
33	[XeF5]+/Metal and [XeF5]+/Non-Metal Mixed-Cation Salts of Hexafluoridoantimonate(V). European Journal of Inorganic Chemistry, 2015, 2015, 1453-1456.	1.0	10
34	As-grown superconducting Pr ₂ CuO ₄ under thermodynamic constraints. Applied Physics Express, 2015, 8, 053101.	1.1	9
35	Synthesis, X-ray structural and thermal analysis of a novel copper compound containing dissymmetric independent 5- and 6-coordinate CuL(H2O)n (n=2,3) units and hydrogen bond bridges. Acta Chimica Slovenica, 2015, 62, 88-94.	0.2	6
36	An enolato-bridged dinuclear Cu(<scp>ii</scp>) complex with a coumarin-assisted precursor: a spectral, magnetic and biological study. New Journal of Chemistry, 2015, 39, 7309-7321.	1.4	13
37	Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate. Journal of Molecular Structure, 2015, 1093, 135-143.	1.8	21
38	New binuclear copper(<scp>ii</scp>) coordination polymer based on mixed pyrazolic and oxalate ligands: structural characterization and mechanical properties. RSC Advances, 2015, 5, 32369-32375.	1.7	6

#	Article	IF	CITATIONS
39	The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry, 2015, 116, 193-363.	0.9	12
40	A heterospin pressure sensor. Journal of Materials Chemistry C, 2015, 3, 7788-7791.	2.7	21
41	Crystal structure oftrans-(1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane-lº4N3,N6,N10,N13)bis(perchlorato-lºO)copper(II) from synchrotron data. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 136-138.	0.2	5
42	Crystal structure oftrans-(1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane-κ4N3,N6,N10,N13)bis(5-methyltetrazolato-κN)nickel(from synchrotron data. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 173-175.	ll) 0.2	2
43	Crystal structure oftrans-(1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane-κ4N3,N6,N10,N13)bis(isonicotinato-κO)copper(II) from synchrotron data. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 203-205.	0.2	1
44	Effect of Mo and V on the Hydrothermal Crystallization of Hematite from Ferrihydrite: An <i>in Situ</i> Energy Dispersive X-ray Diffraction and X-ray Absorption Spectroscopy Study. Crystal Growth and Design, 2015, 15, 4768-4780.	1.4	38
45	Abrupt versus Gradual Spin-Crossover in Fe ^{II} (phen) ₂ (NCS) ₂ and Fe ^{III} (dedtc) ₃ Compared by X-ray Absorption and Emission Spectroscopy and Quantum-Chemical Calculations. Inorganic Chemistry, 2015, 54, 11606-11624.	1.9	24
46	Synthesis and characterization of {[Cul3Sn2(OBut)6]+[Cull(hfac)3]â^'} â€" A heterometallic cluster with unique triangular copper(I) core. Inorganica Chimica Acta, 2015, 424, 156-161.	1.2	6
47	Synthesis, structure, magnetic properties and EPR spectroscopy of a copper(<scp>ii</scp>) coordination polymer with a ditopic hydrazone ligand and acetate bridges. Dalton Transactions, 2015, 44, 1782-1789.	1.6	48
48	Synthesis and coordination chemistry of $1,1,1$ -tris-(pyrid-2-yl)ethane. Dalton Transactions, 2015, 44, 1060-1069.	1.6	23
49	Post-coordination backbone functionalization of an imidazol-2-ylidene and its application to synthesize heteropolymetallic complexes incorporating the ambidentate IMes ^{CO2â^²} ligand. Dalton Transactions, 2016, 45, 11953-11957.	1.6	26
50	A Copper–Nitroxide Adduct Exhibiting Separate Single Crystal-to-Single Crystal Polymerization–Depolymerization and Spin Crossover Transitions. Inorganic Chemistry, 2016, 55, 5853-5861.	1.9	36
51	Actinide-embedded gold superatom models: Electronic structure, spectroscopic properties, and applications in surface-enhanced Raman scattering. Nano Research, 2016, 9, 622-632.	5.8	38
52	Solvent-Induced Single Crystal–Single Crystal Transformation of an Interpenetrated Three-Dimensional Copper Triazole Catalytic Framework. Inorganic Chemistry, 2016, 55, 4069-4071.	1.9	26
53	Pressure-driven suppression of the Jahn–Teller effects and structural changes in cupric oxide. Journal of Physics Condensed Matter, 2016, 28, 025401.	0.7	7
54	Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model. Chinese Physics B, 2016, 25, 083102.	0.7	16
55	Transformation of One-Dimensional Achiral Structure to Three-Dimensional Chiral Structure: Mechanistic Study and Catalytic Activities of Chiral Structure. Inorganic Chemistry, 2016, 55, 12669-12674.	1.9	11
56	Mononuclear pivalates of metals of the first transition series. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 584-590.	0.3	2

#	Article	IF	CITATIONS
57	A New Cu ^{II} Coordination Polymer: Structural Elucidation, EPR and Sensing Studies for Detection of Volatile Organic Solvents. ChemistrySelect, 2016, 1, 2192-2198.	0.7	5
58	A Cu(<scp>ii</scp>) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 2016, 45, 12779-12789.	1.6	28
59	Zinc(II) and Copper(II) Metal-Organic Frameworks Constructed from a Terphenyl-4,4′′-dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes. European Journal of Inorganic Chemistry, 2016, 2016, 5557-5567.	1.0	27
60	A Genuine Jahn–Teller System with Compressed Geometry and Quantum Effects Originating from Zeroâ€Point Motion. ChemPhysChem, 2016, 17, 2146-2156.	1.0	14
61	Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coordination Chemistry Reviews, 2016, 308, 395-408.	9.5	206
62	Multifrequency cw-EPR and DFT Studies of an Apparent Compressed Octahedral Cu(II) Complex. Inorganic Chemistry, 2016, 55, 1497-1504.	1.9	16
63	The chemical biology of Cu(II) complexes with imidazole or thiazole containing ligands: Synthesis, crystal structures and comparative biological activity. Journal of Inorganic Biochemistry, 2016, 157, 52-61.	1.5	20
64	Synthesis, characterization, X-ray crystallography analysis, and catalytic activity of bis(2-pyridylmethyl)amine copper complexes containing coupled pendent olefinic arms in atom transfer radical addition (ATRA) reactions. Polyhedron, 2016, 114, 256-267.	1.0	11
65	Room Temperature Synthesis, Crystal Structure, and Properties of a New Heterometallic One-Dimensional Cu-Na Polymer. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1462-1467.	0.6	0
66	Crystal engineering of a hybrid metal–organic host framework and its single-crystal-to-single-crystal guest exchange using second sphere coordination. CrystEngComm, 2016, 18, 2284-2288.	1.3	13
67	Copper oxalate complexes: synthesis and structural characterisation‡. Chemical Papers, 2016, 70, .	1.0	6
68	Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. ChemBioChem, 2017, 18, 574-612.	1.3	75
69	Jahn–Teller and Non-Jahn–Teller Systems Involving CuF ₆ ^{4–} Units: Role of the Internal Electric Field in Ba ₂ ZnF ₆ :Cu ²⁺ and Other Insulating Systems. Journal of Physical Chemistry C, 2017, 121, 5215-5224.	1.5	17
70	Neutron and X-ray investigations of the Janna€ Teller switch in partially deuterated ammonium copper Tutton salt, (NH ₄) ₂ [Cu(H ₂ 0) ₆](SO ₄) ₂ . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73,	0.5	3
71	Design of end-on cyanato bridged trinuclear Cu(II) Schiff base complex with salen type Schiff base ligand: synthesis, structural investigation and DFT study. Journal of Coordination Chemistry, 2017, 70, 1389-1405.	0.8	20
72	Explaining the MoVO4â^' photoelectron spectrum: Rationalization of geometric and electronic structure. Journal of Chemical Physics, 2017, 146, 104301.	1.2	14
73	Dihydroxo-bridged dimeric Cu(II) system containing sandwiched non-coordinating phenylacetate anion: Crystal structure, spectroscopic, anti-bacterial, anti-fungal and DNA-binding studies of [(phen)(H 2 O)Cu(OH) 2 Cu(H 2 O)(phen)]2L.6H 2 O: (HLÂ=Âphenylacetic acid; phenÂ=Â1,10-phenanthroline). Journal of Molecular Structure, 2017, 1143, 23-30.	1.8	15
74	Magnetic Tuning of an Anionic Co ^{II} â€MOF through Deionization of the Framework: Spinâ€Canting, Spinâ€Flop, and Easyâ€Plane Magnetic Anisotropy. Chemistry - A European Journal, 2017, 23, 767-772.	1.7	20

#	Article	IF	CITATIONS
75	Anomalous radial and angular strain relaxation around dilute p-, isoelectronic-, and n-type dopants in Si crystal. Physica B: Condensed Matter, 2017, 506, 198-204.	1.3	0
76	One-dimensional helical Cu(II) coordination polymer: Synthesis, structures, and properties. Inorganic Chemistry Communication, 2017, 85, 49-51.	1.8	1
77	Variable coordination of tris(2-pyridyl)phosphine and its oxide toward M(hfac) ₂ : a metal-specifiable switching between the formation of mono- and bis-scorpionate complexes. Dalton Transactions, 2017, 46, 5965-5975.	1.6	18
78	Ammoniated Complexes of Uracil and Transition Metal Ions: Structures of [M(Ura-H)(Ura)(NH ₃)] ⁺ by IRMPD Spectroscopy and Computational Methods (M) T	j ETQq21 1 (0.78 4 314 rg8
79	Synthesis and Characterization of OD–3D Copper-Containing Tungstobismuthates Obtained from the Lacunary Precursor Na ₉ [B-α-BiW ₉ O ₃₃]. Inorganic Chemistry, 2017, 56, 327-335.	1.9	30
80	Synthesis and Characterization of a Binuclear Copper(II) Naphthoisoamethyrin Complex Displaying Weak Antiferromagnetic Coupling. Inorganic Chemistry, 2017, 56, 12665-12669.	1.9	13
81	Determination of Geometry Arrangement of Copper Ions in HKUST-1 by XAFS During a Prolonged Exposure to Air. Journal of Physical Chemistry C, 2017, 121, 24853-24860.	1.5	26
82	Synthesis, structure, and magnetic properties of the tetranuclear complex [Cu(tmhd)2Pb(hfa)2]2. Influence of temperature-dependent rotation of CF3 groups upon EPR spectra. Journal of Coordination Chemistry, 2017, 70, 3434-3448.	0.8	3
83	The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes. Dalton Transactions, 2017, 46, 12185-12200.	1.6	15
84	General Formalism of Vibronic Hamiltonians for Tetrahedral and Octahedral Systems: Problems That Involve T, E States and t, e Vibrations. Journal of Chemical Theory and Computation, 2017, 13, 5004-5018.	2.3	18
85	The Quest for Mononuclear Gold(II) and Its Potential Role in Photocatalysis and Drug Action. Angewandte Chemie - International Edition, 2017, 56, 16126-16134.	7.2	30
86	Die Suche nach einkernigem Gold(II) und seine mögliche Rolle in Photokatalyse und Medizinalchemie. Angewandte Chemie, 2017, 129, 16342-16350.	1.6	8
87	Invar effect accompanying charge order in La 0.25 Ca 0.75 MnO 3. Solid State Sciences, 2017, 72, 144-149.	1.5	2
88	Heteroleptic Complexes of the Tridentate Pyridineâ€2,6â€diâ€ŧetrazolate Ligand. ChemistrySelect, 2017, 2, 5849-5859.	0.7	1
89	Revisiting the (E + A) \hat{a} S— (e + a) problems of polyatomic systems with trigonal symmetry: general expansions of their vibronic Hamiltonians. Physical Chemistry Chemical Physics, 2017, 19, 11098-11110.	1.3	18
90	Pronounced conformational flexibility of physiological (l -histidinato)(l -threoninato)copper(II) in aqueous solution disclosed by a quantum chemical study. Polyhedron, 2017, 135, 121-133.	1.0	4
91	High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2017, 139, 12076-12083.	6.6	331
92	Dimensional reduction by pressure in the magnetic framework material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CuF</mml:mi><m< td=""><td>ml:mn>2<!--</td--><td>mml:mn></td></td></m<></mml:msub></mml:mrow></mml:math>	ml:mn>2 </td <td>mml:mn></td>	mml:mn>

(pyz): From spin-wave to spinon excitations. Physical Review B, 2017, 96

#	ARTICLE Large exchange anisotropy in quasi-one-dimensional spin- < mml:math	IF	CITATIONS
93	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfrac><mml:mn>1</mml:mn><mml:mn>2<mml:mrow><mml:mi>d</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mi>d</mml:mi><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>1.1</td><td>15</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:mn></mml:mfrac>	1.1	15
94	3D hierarchical flower of copper molybdate Cu3Mo2O9: Synthesis, nanostructure and lithium storage properties. Journal of Alloys and Compounds, 2017, 723, 512-519.	2.8	25
95	Local structure study of the orbital order/disorder transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaMnO</mml:mi><mml:mn>3<td>ılımın><td>nralzmsub><!--</td--></td></td></mml:mn></mml:msub></mml:math>	ıl ımı n> <td>nralzmsub><!--</td--></td>	nr al zmsub> </td
96	Molecular Switching of Copper Complexes with Quaterpyridine. European Journal of Inorganic Chemistry, 2017, 2017, 859-872.	1.0	11
97	New mixed-valence MnII4MnIV clusters from an unusual ligand transformation. Polyhedron, 2017, 122, 71-78.	1.0	13
98	Octahedral Distortions at Highâ€Temperature Superconducting La ₂ CuO ₄ Interfaces: Visualizing Jahn–Teller Effects. Advanced Materials Interfaces, 2017, 4, 1700737.	1.9	15
99	Growth and characterization of ammonium nickel-cobalt sulfate Tutton's salt for UV light applications. Journal of Crystal Growth, 2018, 487, 104-115.	0.7	25
100	Octahedral copper(II) carboxylate complex: synthesis, structural description, DNA-binding and anti-bacterial studies. Journal of Coordination Chemistry, 2018, 71, 991-1002.	0.8	17
101	Evidence for Jahn-Teller compression in the (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxide: A DFT study. Materials Letters, 2018, 217, 300-303.	1.3	68
102	Reversible Redox, Spin Crossover, and Superexchange Coupling in 3 <i>d</i> Transitionâ€Metal Complexes of <i>Bis</i> â€azinyl Analogues of 2,2′:6′,2′â€₹erpyridine. European Journal of Inorganic Chemistry, 2 2018, 1212-1223.	2018,	8
103	An investigation of the pH dependence of copper-substituted anthrax lethal factor and its mechanistic implications. Journal of Inorganic Biochemistry, 2018, 182, 1-8.	1.5	4
104	Studies of Electrode Reactions and Coordination Geometries of Cu(I) and Cu(II) Complexes with Bicinchoninic Acid. Electroanalysis, 2018, 30, 479-485.	1.5	2
105	Polymeric Copper(II) Paddlewheel Carboxylate: Structural Description, Electrochemistry, and DNAâ€binding Studies. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 172-179.	0.6	9
106	Ratio-Controlled Precursors of Anderson–Evans Polyoxometalates: Synthesis, Structural Transformation, and Magnetic and Catalytic Properties of a Series of Triol Ligand-Decorated {M2Mo6} Clusters (M = Cu2+, Co2+, Ni2+, Zn2+). Inorganic Chemistry, 2018, 57, 3731-3741.	1.9	27
107	Structural Diversity, Electrochemical, and DNA-Binding Properties of Copper(II) Carboxylates. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1859-1871.	0.7	3
108	Characterization of a sodium molybdate compound \hat{l}^2 -Na4Cu(MoO4)3. Journal of Alloys and Compounds, 2018, 731, 955-963.	2.8	9
109	Charge and spin coupling in copper compounds with hemilabile noninnocent ligands – Ambivalence in three dimensions. Coordination Chemistry Reviews, 2018, 355, 173-179.	9.5	12
110	Redox-coupled structural changes in copper chemistry: Implications for atom transfer catalysis. Coordination Chemistry Reviews, 2018, 375, 173-190.	9.5	31

#	Article	IF	CITATIONS
111	Copper signalling: causes and consequences. Cell Communication and Signaling, 2018, 16, 71.	2.7	128
112	Growth and characterization of ammonium nickel-copper sulfate hexahydrate: A new crystal of Tutton's salt family for the application in solar-blind technology. Optical Materials, 2018, 85, 425-437.	1.7	21
113	Leadâ€Free Highly Efficient Blueâ€Emitting Cs ₃ Cu ₂ I ₅ with OD Electronic Structure. Advanced Materials, 2018, 30, e1804547.	11.1	477
114	Crystal structures of [Cu2(2,2′-bipyridine-N,N′)2(H2O)2(Î⅓2-OH)2](barbiturate)2·2H2O and [Cu(2,2′-bipyridine-N,N′)(H2O)(barbiturate-O)Cl]·2H2O. Inorganic Chemistry Communication, 2018, 97, 88-92.	1.8	4
115	Coordination number in copper(II) complexes with bipyridine-dicarboxylate anion and diamine derivatives. Research on Chemical Intermediates, 2018, 44, 7411-7426.	1.3	14
116	Jahn–Teller distortion in 2-pyridyl-(1,2,3)-triazole-containing copper(ii) compounds. New Journal of Chemistry, 2018, 42, 16335-16345.	1.4	10
117	Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic—Acid Moieties. Molecules, 2018, 23, 479.	1.7	16
118	Disorder–order transitions in the perovskite metal–organic frameworks [(CH ₃) ₂ NH ₂][M(HCOO) ₃] at high pressure. CrystEngComm, 2018, 20, 3512-3521.	1.3	47
119	Enhanced superconducting properties of Ti doped (Cu0.5Tl0.5)Ba2(Ca2â^'xTix)Cu3O10â^'δ samples. Journal of Materials Science: Materials in Electronics, 2018, 29, 12414-12418.	1.1	0
120	General formalism for vibronic Hamiltonians in tetragonal symmetry and beyond. Physical Chemistry Chemical Physics, 2018, 20, 12312-12322.	1.3	13
121	van der Waals Metallic Transition Metal Dichalcogenides. Chemical Reviews, 2018, 118, 6297-6336.	23.0	252
122	Improvement of multiferroic property and change of magnetic ordering in new ANiO3 (A = Ti, Ge, Zr, Sn,) Tj E	Π <u>Ω</u> μ1 Ι	1 0.784314 rg
123	The Jahn-Teller Distortion at High Pressure: The Case of Copper Difluoride. Crystals, 2018, 8, 140.	1.0	20
124	Interplay between Dopant Species and a Spin-Crossover Host Lattice during Light-Induced Excited-Spin-State Trapping Probed by Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2018, 57, 8709-8713.	1.9	6
125	Gold with +4 and +6 Oxidation States in AuF $<$ sub $>$ 4 $<$ /sub $>$ and AuF $<$ sub $>$ 6 $<$ /sub $>$. Journal of the American Chemical Society, 2018, 140, 9545-9550.	6.6	80
126	A vanillin-based copper(<scp>ii</scp>) metal complex with a DNA-mediated apoptotic activity. RSC Advances, 2018, 8, 16873-16886.	1.7	21
127	General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: Problems that involve A-type states and a-type vibrations. Chemical Physics, 2018, 515, 36-45.	0.9	9
128	Multiferroism and magnetic ordering in new NiBO3 (B = Ti, Ge, Zr, Sn, Hf and Pb) materials: A DFT study. Journal of Magnetism and Magnetic Materials, 2018, 465, 412-420.	1.0	13

#	Article	IF	CITATIONS
129	Hamiltonian formalism of spin–orbit Jahn–Teller and pseudo-Jahn–Teller problems in trigonal and tetragonal symmetries. Physical Chemistry Chemical Physics, 2019, 21, 18939-18957.	1.3	8
130	Conformational Analyses of Physiological Binary and Ternary Copper(II) Complexes with <scp>I</scp> â€Asparagine and <scp>I</scp> â€Histidine; Study of Tridentate Binding of Copper(II) in Aqueous Solution. ChemistryOpen, 2019, 8, 852-868.	0.9	3
131	What Is the Nature of Interactions of BF ₄ [–] , NO ₃ [–] , and ClO ₄ [–] to Cu(II) Complexes with Girard's T Hydrazine? When Can Binuclear Complexes Be Formed?. Crystal Growth and Design, 2019, 19, 4810-4821.	1.4	13
132	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. Chemistry of Materials, 2019, 31, 9003-9011.	3.2	111
133	Tetrahedral Zinc(II) Complexes with Chiral Diamine Ligands: Synthesis, Characterization, and Photoluminescence. Bulletin of the Korean Chemical Society, 2019, 40, 921-924.	1.0	4
134	Multitechnique Analysis of the Hydration in Three Different Copper Paddle-Wheel Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 28219-28232.	1.5	10
135	Elucidating the Electronic Structure and Magnetic and Conducting Properties of ν-Oxo Mn-phthalocyanine [MnPc(CN)] ₂ O Complex. Journal of Physical Chemistry C, 2019, 123, 28359-28369.	1.5	1
136	The effect of the orientation of the Jahn–Teller distortion on the magnetic interactions of trinuclear mixed-valence Mn(<scp>ii</scp>)/Mn(<scp>iii</scp>) complexes. Dalton Transactions, 2019, 48, 13799-13812.	1.6	20
137	A heterotrimetallic synthetic approach in versatile functionalization of nanosized {MxCu13â€"xW7}3+ and {M1Cu8W6} (M = Co, Ni, Mn, Fe) metalâ€"cyanide magnetic clusters. Inorganic Chemistry Frontiers, 2019, 6, 3104-3118.	3.0	8
138	Insight into Compounds with Cu(H2O)62+Units: New Ideas for Understanding Cu2+in Tutton Salts. Journal of Physical Chemistry C, 2019, 123, 3088-3101.	1.5	19
139	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	5.2	26
140	One-dimensional magnetic chain composed of Cu ^{II} and polychlorinated dipyridylphenylmethyl radical: temperature-dependent Jahn–Teller distortion correlated to π-conjugation and magnetic properties. Dalton Transactions, 2019, 48, 7090-7093.	1.6	7
141	Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)–Prion Peptide Complex. Inorganic Chemistry, 2019, 58, 8995-9003.	1.9	1
142	Magnetic dimensionality and the crystal structure of two copper(<scp>ii</scp>) coordination polymers containing Cu ₆ and Cu ₂ building units. Dalton Transactions, 2019, 48, 11421-11432.	1.6	12
143	Bichalcogenide Model Systems for Magnetic Chains with Variable Spin Sizes and Optional Crystallographic Inversion Symmetry. Inorganic Chemistry, 2019, 58, 11978-11982.	1.9	1
144	Deciphering preferred solid-state conformations in nitrogen-containing bisphosphonates and their coordination compounds. A case study of discrete Cu(ii) complexes based on Cl±-substituted analogues of zoledronic acid: crystal structures and solid-state characterization. CrystEngComm, 2019, 21, 4340-4353.	1.3	4
145	A copper-amidocarboxylate based metal organic macrocycle and framework: synthesis, structure and catalytic activities towards microwave assisted alcohol oxidation and Knoevenagel reactions. New Journal of Chemistry, 2019, 43, 9843-9854.	1.4	16
146	Pyridine-2,6-Dicarboxylic Acid Esters (pydicR2) as O,N,O-Pincer Ligands in Cull Complexes. Inorganics, 2019, 7, 53.	1.2	15

#	Article	IF	CITATIONS
147	Chiral self-assembly of a novel (Cull/ReVII)-heterobimetallic l-Arginine complex: Crystal structure, Hirshfeld surface analysis, spectroscopic properties and biochemical studies. Journal of Molecular Structure, 2019, 1186, 307-316.	1.8	5
148	QM/MM nonadiabatic dynamics simulation on ultrafast excited-state relaxation in osmium(II) compounds in solution. Computational and Theoretical Chemistry, 2019, 1155, 90-100.	1.1	14
149	Synthesis, characterization and antiproliferative activity of mixed ligand complexes of Cu2+ and Co2+ with lapachol. Polyhedron, 2019, 165, 73-78.	1.0	4
150	Copper–nitroxide based breathing crystals: a unified mechanism of gradual magnetostructural transition supported by quantum chemistry calculations. Inorganic Chemistry Frontiers, 2019, 6, 1228-1237.	3.0	5
151	Selective separation of copper and nickel ions from aqueous solutions containing calcium by emulsion liquid membranes using central composite design. Canadian Journal of Chemical Engineering, 2019, 97, 1881-1893.	0.9	11
152	Magnetic, electronic, ferroelectric, structural and topological analysis of AlFeO3, FeAlO3, FeVO3, BiFeO3 and PbFeO3 materials: Theoretical evidences of magnetoelectric coupling. Journal of Magnetism and Magnetic Materials, 2019, 480, 199-208.	1.0	27
153	A unique copper coordination structure with both mono- and bi-dentate ethylenediamine ligands. CrystEngComm, 2019, 21, 2718-2726.	1.3	8
154	Bi-stable spin-crossover characteristics of a highly distorted [Fe(1-BPP-COOC ₂ H ₅) ₂ [ClO ₄) ₂ A·CH ₃ complex. Dalton Transactions, 2019, 48, 3825-3830.	u b &CN	27
155	Density functional theory calculated data of different electronic states and bond stretch isomers of tris(trifluoroacetylacetonato)-manganese(III). Data in Brief, 2019, 27, 104758.	0.5	6
156	One-step solution synthesis of white-light-emitting films via dimensionality control of the Cs–Cu–I system. APL Materials, 2019, 7, .	2.2	73
157	Jahn-Teller effect in high spin d4 and d9 octahedral metal-complexes. Inorganica Chimica Acta, 2019, 486, 193-199.	1.2	30
158	In-situ modification of castor oil with divalent metal ions like Zn (II), Cu (II), Co (II) and Ba (II) and their comparative antioxidant study by in-vitro methods. Food Chemistry, 2019, 284, 213-218.	4.2	6
159	Syntheses, crystal structures and biological evaluation of two new Cu(II) and Co(II) complexes based on (E)-2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-6-methoxyphenol. Journal of Inorganic Biochemistry, 2019, 193, 52-59.	1.5	21
160	Facile synthesis, characterization, nucleic acid interaction and photoluminescent properties of (E)-furan-2-yl(2-(2-hydroxybenzylidene)hydrazinyl) methaniminium and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes. Journal of Molecular Structure, 2019, 1178, 333-340.	1.8	10
161	A novel chromogenic molecular sensing platform for highly sensitive and selective detection of Cu2+ions in aqueous environment. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 369, 54-69.	2.0	12
162	Synthesis and electronic structure of a mononuclear copper(II) complex supported by tris(2-hydroxyliminopropyl)amine. Polyhedron, 2020, 177, 114306.	1.0	3
163	VHEGEN: A vibronic Hamiltonian expansion generator for trigonal and tetragonal polyatomic systems. Computer Physics Communications, 2020, 247, 106946.	3.0	6
164	Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7, 530-540.	6.4	164

#	Article	IF	Citations
165	Ground State and Optical Excitations in Compounds with Tetragonal CuF64– Units: Insight into KAlCuF6 and CuFAsF6. Inorganic Chemistry, 2020, 59, 539-547.	1.9	5
166	Color Tunable Selfâ€Trapped Emissions from Leadâ€Free All Inorganic IAâ€IB Bimetallic Halides Csâ€Agâ€X (X =	Cl, _{},Tj} etQ	q1 ₄ 1 0.7843
167	New members of the polynuclear manganese family: MnII2MnIII2 single-molecule magnets and MnII3MnIII8 antiferromagnetic complexes. Synthesis and magnetostructural correlations. Dalton Transactions, 2020, 49, 13970-13985.	1.6	6
168	Reversible Spin-State Switching and Tuning of Nuclearity and Dimensionality via Nonlinear Pseudohalides in Cobalt(II) Complexes. Inorganic Chemistry, 2020, 59, 17638-17649.	1.9	17
169	Unveiling the Occurrence of Co(III) in NiCo Layered Electroactive Hydroxides: The Role of Distorted Environments. Chemistry - A European Journal, 2020, 26, 17081-17090.	1.7	10
170	Interplay between local structure, vibrational and electronic properties on CuO under pressure. Physical Chemistry Chemical Physics, 2020, 22, 24299-24309.	1.3	3
171	Is Less More? Influence of the Coordination Geometry of Copper(II) Picolinate Chelate Complexes on Metabolic Stability. Inorganic Chemistry, 2020, 59, 16095-16108.	1.9	15
172	A dual-ion accepting vanadium carbide nanowire cathode integrated with carbon cloths for high cycling stability. Nanoscale, 2020, 12, 20868-20874.	2.8	10
173	Tuning of Spin Crossover Properties in a Series of Mononuclear Cobalt(II) Complexes Based on Macrocyclic Tetradentate Ligand and Pseudohalide Coligands. Dalton Transactions, 2020, , .	1.6	11
174	Cull Complexes and Coordination Polymers with Pyridine or Pyrazine Amides and Amino Benzamides—Structures and EPR Patterns. Inorganics, 2020, 8, 65.	1.2	4
175	Solvent-triggered single-crystal-to-single-crystal transformation from a monomeric to polymeric copper(II) complex based on an aza macrocyclic ligand. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 225-232.	0.5	2
176	Synthesis, crystal structures, fluorescence, electrochemiluminescent properties, and Hirshfeld surface analysis of four Cu/Mn Schiffâ€basecomplexes. Applied Organometallic Chemistry, 2020, 34, e5712.	1.7	11
177	Modulating the Magnetic Properties of Copper(II)/Nitroxyl Heterospin Complexes by Suppression of the Jahn–Teller Distortion. Inorganic Chemistry, 2020, 59, 8657-8662.	1.9	5
178	Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 2020, 511, 119801.	1.2	75
179	Oxygen Transfer from Trimethylamine <i>N</i> à€Oxide to Cu ^I Complexes Supported by Pentanitrogen Ligands. European Journal of Inorganic Chemistry, 2020, 2020, 2798-2808.	1.0	4
180	Copper(<scp>ii</scp>) and zinc(<scp>ii</scp>) complexes of mono- and bis-1,2,3-triazole-substituted heterocyclic ligands. Dalton Transactions, 2020, 49, 9002-9015.	1.6	14
181	Structural and electrical characterization of semiconducting xCuO-(100-x)TeO2 glasses. Journal of Non-Crystalline Solids, 2020, 534, 119884.	1.5	10
182	Local structure and excitations in systems with CuF ₆ ^{4â^'} units: lack of Jahnâ€"Teller effect in the low symmetry compound Na ₂ CuF ₄ . Physical Chemistry Chemical Physics, 2020, 22, 7875-7887.	1.3	8

#	Article	IF	CITATIONS
183	Photophysics in Cs $<$ sub $>$ 3 $<$ /sub $>$ Cu $<$ sub $>$ 2 $<$ /sub $>$ X $<$ sub $>$ 5 $<$ /sub $>$ (X = Cl, Br, or I): Highly Luminescent Self-Trapped Excitons from Local Structure Symmetrization. Chemistry of Materials, 2020, 32, 3462-3468.	3.2	177
184	Oxygen-vacancy induced magnetic phase transitions in multiferroic thin films. Npj Computational Materials, 2020, 6, .	3.5	25
185	Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate. Scientific Reports, 2020, 10, 10836.	1.6	19
186	Heteroleptic Coordination Environments in Metal-Mediated DNA G-Quadruplexes. Frontiers in Chemistry, 2020, 8, 26.	1.8	6
187	Heavy-atom tunnelling in Cu(<scp>ii</scp>)N ₆ complexes: theoretical predictions and experimental manifestation. Chemical Science, 2020, 11, 2828-2833.	3.7	5
188	Synthesis, structural characterization and antiproliferative activity on MCF-7 and A549 tumor cell lines of [Cu(N-N)(β3-aminoacidate)]NO3 complexes (CasiopeÃnas®). Inorganica Chimica Acta, 2020, 506, 119542.	1.2	11
189	Facile synthesis of homogeneous hollow microsphere Cu–Mn based catalysts for catalytic oxidation of toluene. Chemosphere, 2020, 247, 125812.	4.2	50
190	<i>tert</i> -Butylpyridine Coordination with [Cu(dmp) ₂] ^{2+/+} Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5812-5819.	4.0	30
191	Synthesis, crystal structure and magnetic properties of a pentanuclear Mn(III) cluster with 1,2,4-triazole based Schiff base ligand. Inorganica Chimica Acta, 2020, 505, 119461.	1.2	20
192	Solvent-Dependent Formations of Supramolecular Isomers and a Single-Crystal to Single-Crystal Transformation from a Cyclic Dimer Complex to a One-Dimensional Coordination Polymer. Crystal Growth and Design, 2020, 20, 3284-3292.	1.4	12
193	Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(14/2-1,1-acetato)2]. Molecules, 2020, 25, 1446.	1.7	5
194	Synthesis, growth, and characterisation of a novel organic–inorganic perovskite-type hybrid system based on glycine. Journal of Molecular Structure, 2021, 1224, 129008.	1.8	5
195	Octahedral Copper(II) Carboxylates with 1,10-Phenanthroline: Synthesis, Structural Characterization, DNA-Binding and Anti-Fungal Properties. Journal of Chemical Crystallography, 2021, 51, 418-431.	0.5	3
196	Two-dimensional vanadium tetrafluoride with antiferromagnetic ferroelasticity and bidirectional negative Poisson's ratio. Journal of Materials Chemistry C, 2021, 9, 95-100.	2.7	18
197	Structural and Electronic Control of the Bidentate 1â€(2â€pyridyl)benzotriazole Ligand in Copper Chemistry with Application to Catalysis in the A ³ Coupling Reaction. Chemistry - A European Journal, 2021, 27, 4394-4400.	1.7	16
198	Structural and dielectric properties of Cu-doped α-ZnMoO4 ceramic system for enhanced green light emission and potential microwave applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 12881-12889.	1.1	7
199	A fumarole in a one-pot: synthesis, crystal structure and properties of Zn- and Mg-analogs of itelmenite and a synthetic analog of glikinite. Physics and Chemistry of Minerals, 2021, 48, 1.	0.3	5
200	Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Materials Chemistry Frontiers, 2021, 5, 4445-4473.	3.2	14

#	Article	IF	CITATIONS
201	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy and Environmental Science, 2021, 14, 5864-5874.	15.6	30
202	Improved lifetime and stability of copper species in hierarchical, copper-incorporated CuSAPO-34 verified by catalytic model reactions. Physical Chemistry Chemical Physics, 2021, 23, 16785-16794.	1.3	2
203	Electrocatalytic water oxidation by a water-soluble copper complex with a pentadentate amine-pyridine ligand. Dalton Transactions, 2021, 50, 10888-10895.	1.6	16
204	Influence of anchoring moieties on new benzimidazole-based Schiff base copper(<scp>ii</scp>) complexes towards estrogen dependent breast cancer cells. Dalton Transactions, 2021, 50, 3701-3716.	1.6	22
205	Sonochemical synthesis of a trinuclear Cu(<scp>ii</scp>) complex with open coordination sites for the differentiable optical detection of volatile amines. RSC Advances, 2021, 11, 12218-12226.	1.7	8
206	Effect of pressure on the structure of multispin complexes. Russian Chemical Reviews, 2022, 91, RCR5028.	2.5	6
207	Theoretical investigation of tetrahedral distortion of four-coordinate iron(<scp>ii</scp>) centres in FePd(CN) ₄ . Dalton Transactions, 2021, 50, 1990-1994.	1.6	2
208	Solutionâ€Processed Leadâ€Free Perovskite Nanocrystal Scintillators for Highâ€Resolution Xâ€Ray CT Imaging. Advanced Optical Materials, 2021, 9, 2002144.	3.6	65
209	Lead-free p-type Mn:Cs3Cu2I5 perovskite with tunable dual-color emission through room-temperature grinding method. Journal of Materials Science, 2021, 56, 12326-12335.	1.7	9
210	The versatile coordination chemistry of 1,3-benzenedicarboxylate in the last 20 years: An investigation from the coordination modes to spectroscopic insights. Polyhedron, 2021, 198, 115068.	1.0	6
211	Node Distortion Modulation for Anisotropic Thermal Expansions of Twoâ€dimensional Coordination Polymers. ChemNanoMat, 2021, 7, 534-538.	1.5	5
212	Antibacterial Activity of 2-Picolyl-polypyridyl-Based Ruthenium (II/III) Complexes on Non-Drug-Resistant and Drug-Resistant Bacteria. Bioinorganic Chemistry and Applications, 2021, 2021, 1-11.	1.8	4
213	The Reactivity of Multidentate Schiff Base Ligands Derived from Bi―and Terphenyl Polyamines towards M(II) (M=Ni, Cu, Zn, Cd) and M(III) (M=Co, Y, Lu). European Journal of Inorganic Chemistry, 2021, 2021, 1869-1889.	1.0	6
214	Self-assembled eco-friendly metal halide heterostructures for bright and color-tunable white radioluminescence. Cell Reports Physical Science, 2021, 2, 100437.	2.8	16
215	Unified Hamiltonian Formalism of Jahn–Teller and Pseudo-Jahn–Teller Problems in Axial Symmetries. Journal of Chemical Theory and Computation, 2021, 17, 4392-4402.	2.3	8
216	Combining benzotriazoles and azides in copper(II) chemistry: synthesis, structural and spectroscopic characterization of a 1-D corrugated tape $[Cu(N3)2(1-Mebta)]n$ coordination polymer (1-Mebta =) Tj ETQq1 1 0.	.78 4.3 :14 rg	gB T /Overloc
217	Structural and Thermal Investigations of Co(II) and Ni(II) Coordination Polymers Based on biphenyl-4,4′-dioxydiacetate Linker. Materials, 2021, 14, 3545.	1.3	3
218	Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021, 49, 351-377.	8.3	91

#	Article	IF	CITATIONS
219	Epitaxial Nickel Ferrocyanide Stabilizes Jahn–Teller Distortions of Manganese Ferrocyanide for Sodium″on Batteries. Angewandte Chemie, 2021, 133, 18667-18674.	1.6	25
220	Local and Bulk Probe of Vanadium-Substituted α-Manganese Oxide (α-K <i>_x(İsub></i> V <i>_y</i> Mn _{8â€"<i>y</i>} O ₁₆) Lithium Electrochemistry. Inorganic Chemistry, 2021, 60, 10398-10414.	1.9	3
221	Epitaxial Nickel Ferrocyanide Stabilizes Jahn–Teller Distortions of Manganese Ferrocyanide for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 18519-18526.	7.2	63
222	Enhanced thermal stability and red-ox activity of PrBaMn2-xFexO6– oxides. Materials Research Bulletin, 2021, 140, 111309.	2.7	5
223	Atomic Stripe Formation in Infinite-Layer Cuprates. ACS Omega, 2021, 6, 21884-21891.	1.6	6
224	Investigation of iron(III) ionic structural complexes for seebeck coefficient enhancement using variation of ligand lengths with extended Î-conjugated bipyridyl ligands. Journal of Molecular Structure, 2021, 1237, 130202.	1.8	0
225	Effect of Molecular Crowding on Complexation of Metal Ions and 8-Quinolinol-5-Sulfonic Acid. Journal of Physical Chemistry B, 2021, 125, 9853-9859.	1.2	5
226	Near-infrared emitting iridium complexes: Molecular design, photophysical properties, and related applications. IScience, 2021, 24, 102858.	1.9	37
227	First principle calculations of structural and electronic properties of pyrochlore Y2Ru2O7 and Y1-M Ru2O7â^Î (M=Mg, Ca, Sr, Ba, Zn, Cd and Hg). Journal of Physics and Chemistry of Solids, 2021, 156, 110145.	1.9	4
228	Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews, 2021, 2, .	2.6	8
229	Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden–Popper phases. Nature Communications, 2021, 12, 5527.	5.8	17
230	A Single Crystal Hybrid Ligand Framework of Copper(II) with Stable Intrinsic Blue-Light Luminescence in Aqueous Solution. Nanomaterials, 2021, 11, 2281.	1.9	6
231	Mechanistic insights into the spontaneous reaction between CO2 and La2–xSrxCuO4. Canadian Journal of Chemistry, 2021, 99, 773-779.	0.6	3
232	New classes of organic Chelate-Free coordination Polymers: An End-On Azido-Bridged Cu(II) 1-D chain composed of {Cu6(N3)12} repeating units. Polyhedron, 2021, 206, 115315.	1.0	4
233	Structure prediction of neutral physiological copper(II) compounds with l-cysteine and l-histidine. Journal of Inorganic Biochemistry, 2021, 223, 111536.	1.5	5
234	A new Schiff base ligand as a fluorescence probe for Cu(II) detection in semi-aqueous solution: synthesis, characterization, fluorescence and mechanistic insight. Inorganica Chimica Acta, 2021, 528, 120623.	1.2	14
235	Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media. Applied Catalysis B: Environmental, 2021, 298, 120528.	10.8	55
236	Correlating structure and orbital occupation with the stability and mechanical properties of 3d transition metal carbides. Journal of Alloys and Compounds, 2022, 891, 161866.	2.8	12

#	Article	IF	CITATIONS
237	Stable down-conversion white light-emitting devices based on highly luminescent copper halides synthesized at room temperature. Journal of Materials Chemistry $C,0,\ldots$	2.7	33
238	Photophysics in Cs ₃ Cu ₂ I ₅ and CsCu ₂ I ₃ . Materials Chemistry Frontiers, 2021, 5, 7088-7107.	3.2	39
239	Study of a phosphorescent cationic iridium(<scp>iii</scp>) complex displaying a blue-shift in crystals. Physical Chemistry Chemical Physics, 2021, 23, 24789-24800.	1.3	2
240	Experimental and theoretical studies of a pyridylvinyl(benzoate) based coordination polymer structure. CrystEngComm, 2021, 23, 8139-8149.	1.3	1
241	Synthesis, Crystal Structures, Magnetic Properties and Hirshfeld Surface Analysis of Cu/Mn Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2219.	0.6	0
242	A Novel Porous Tiâ€Squarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation. Advanced Materials, 2021, 33, e2106627.	11.1	35
243	Room-Temperature Cu(II) Radical-Triggered Alkyne C–H Activation. Jacs Au, 2021, 1, 1937-1948.	3.6	11
244	Jahnâ€Teller Effects in a Vanadateâ€Stabilized Manganeseâ€Oxo Cubane Water Oxidation Catalyst. Chemistry - A European Journal, 2021, 27, 17066-17077.	1.7	8
245	Salpyran: A Cu(II) Selective Chelator with Therapeutic Potential. Inorganic Chemistry, 2021, 60, 15310-15320.	1.9	3
246	Coexistence of Interchanged and Normal Orbital Levels in a Molecular Conductor Consisting of a Metal–Dithiolene Complex. Journal of the Physical Society of Japan, 2021, 90, .	0.7	1
247	Crystal structure oftrans-(1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane-lº4N3,N6,N10,N13)bis(thiocyanato-lºN)nickel(II) from synchrotron data. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 779-782.	0.2	1
248	Crystal structure of [bis(2-aminoethyl-lºN)(2-{[4-(trifluoromethyl)benzylidene]amino}ethyl)amine-lºN]dichloridocopper(II). Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 83-86.	0.2	0
249	$Bis\{2,6\text{-bis}[(\mbox{$<$i$}>E\mbox{$<$/$i$})\text{-}(4\text{-fluorobenzylimino}) methyl] pyridine} nickel(II) \ dinitrate \ dihydrate. \ IUCrData, 2019, 4, .$	0.1	0
250	Understanding the Mechanism of Amorphization for Coâ€URJCâ€5. European Journal of Inorganic Chemistry, 0, , .	1.0	2
251	New insights to the interactions between amorphous georgite pigment and linseed oil binder that lead to a drastic color change. Inorganica Chimica Acta, 2022, 529, 120661.	1,2	2
252	Environmentally stable one-dimensional copper halide based ultra-flexible composite film for low-cost X-ray imaging screens. Chemical Engineering Journal, 2022, 430, 132826.	6.6	28
253	On the Hirshfeld surface for copper(II) atoms in different coordination environments. Journal of Applied Crystallography, 2020, 53, 1321-1333.	1.9	2
254	Unified one-electron Hamiltonian formalism of spin–orbit Jahn–Teller and pseudo-Jahn–Teller problems in axial symmetries. Journal of Chemical Physics, 2021, 155, 224108.	1.2	4

#	Article	IF	CITATIONS
255	Molecular Recognition of Biologically Relevant Anions with an Expanded Dinuclear Copper(II) Complex: An Efficient Sensor for Oxalate Anion in Aqueous Solution. ChemistrySelect, 2021, 6, 11908-11914.	0.7	0
256	Engineering Heteronuclear Arrays from <scp>lr^{lll}â€Metalloligand</scp> and <scp>Co^{ll}</scp> Showing Coexistence of Slow Magnetization Relaxation and Photoluminescence. Chinese Journal of Chemistry, 2022, 40, 931-938.	2.6	4
257	Jahn-Teller effect analysis at coordination complex [Cu(NH3)4]2+ ion, growth by green synthesis in CuS nanocrystals. Optik, 2022, 251, 168470.	1.4	1
258	Rietveld Refinement, Morphology, and Optical and Photoluminescence Properties of a Î ² -Ag1.94Cu0.06MoO4 Solid Solution. Inorganic Chemistry, 2022, 61, 1530-1537.	1.9	3
259	Downscaling an open quantum system: An atomistic approach applied to photovoltaics., 2022,, 147-181.		0
260	Springboard Role for Iridium Photocatalyst: Theoretical Insight of C(sp ³)â^'N Crossâ€Coupling by Photoredoxâ€Mediated Iridium/Copper Dual Catalysis versus Singleâ€Copper Catalysis. ChemCatChem, 2022, 14, .	1.8	7
261	Comparison of Fe-enhanced oxygen evolution electrocatalysis in amorphous and crystalline nickel oxides to evaluate the structural contribution. Energy and Environmental Science, 2022, 15, 610-620.	15.6	37
262	Computational studies of the magneto-structural correlations in a manganese dimer with Jahn–Teller distortions. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
263	Crystal Growth, Structure, and Noninteracting Quantum Spins in Cyanochroite, K ₂ Cu(SO ₄) ₂ A·6H ₂ O. ACS Omega, 2022, 7, 5139-5145.	1.6	4
264	Maximizing Performance of a Hybrid MnO2/Ni Electrochemical Actuator through Tailoring Lattice Tunnels and Cation Vacancies. ACS Applied Materials & Samp; Interfaces, 2022, , .	4.0	7
265	Isolation of monomeric copper(<scp>ii</scp>) phenolate selenoether complexes using chelating <i>ortho</i> -bisphenylselenide-phenolate ligands and their electrocatalytic hydrogen gas evolution activity. Dalton Transactions, 2022, 51, 7284-7293.	1.6	8
266	Quantitative structure–property relationship analysis of the spectrochemical series by employing electronic descriptors from DFT calculations. Molecular Physics, 0, , .	0.8	2
267	DFT Study of bis(1,10-phenanthroline)copper complexes: Molecular and electronic structure, redox and spectroscopic properties and application to Solar Cells. Electrochimica Acta, 2022, 418, 140276.	2.6	11
268	Light Emission of Selfâ€√rapped Excitons in Inorganic Metal Halides for Optoelectronic Applications. Advanced Materials, 2022, 34, e2201008.	11.1	81
269	High-Stability Light-Element Magnetic Superatoms Determined by Hund's Rule. Journal of Physical Chemistry Letters, 2022, 13, 2632-2637.	2.1	4
270	Unified one-electron Hamiltonian formalism of spin–orbit Jahn–Teller and pseudo-Jahn–Teller problems in tetrahedral and octahedral symmetries. Journal of Chemical Physics, 2022, 157, .	1.2	2
273	Lattice Expansion and Electronic Reconfiguration of Mncu Oxide Catalysts for Enhanced Transfer Hydrogenation of Levulinate. SSRN Electronic Journal, 0, , .	0.4	0
274	Concurrent Pressure-Induced Spin-State Transitions and Jahn–Teller Distortions in MnTe. Chemistry of Materials, 2022, 34, 3931-3940.	3.2	6

#	Article	IF	CITATIONS
276	Polarization-induced efficient charge separation in an electromagnetic coupling MOF for enhancing CO2 photocatalytic reduction. Journal of Colloid and Interface Science, 2022, 622, 402-409.	5.0	12
277	New phase space formulations and quantum dynamics approaches. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	11
278	Controllable synthesis of a nanoparticle-modified thin-layer 3D flower-like CuZnAl-LDHs material with high NO ₂ gas sensing performance at room temperature. New Journal of Chemistry, 2022, 46, 11510-11519.	1.4	4
279	Solely 3-Coordinated Organic–Inorganic Hybrid Copper(I) Halide: Hexagonal Channel Structure, Turn-On Response to Mechanical Force, Moisture, and Amine. Inorganic Chemistry, 2022, 61, 8320-8327.	1.9	7
280	Synthesis, structural and electrochemical properties of a new family of amino-acid-based coordination complexes. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 520-536.	0.5	1
281	<scp>Fine‶uning</scp> of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(<scp>II</scp>) Complexes. Chinese Journal of Chemistry, 2022, 40, 2193-2202.	2.6	12
282	Pressure Effects on 3d ⁿ (n=4, 9) Insulating Compounds: Long Axis Switch in Na ₃ MnF ₆ not Due to the Jahnâ€Teller Effect. Chemistry - A European Journal, 2022, 28, .	1.7	3
283	Theoretical Study of the Structural, Optoelectronic, and Reactivity Properties of N- $[5\hat{a}\in^2$ -Methyl- $3\hat{a}\in^2$ -Isoxasolyl]-N- $[(E)$ -1- $(-2$ -)]Methylidene] Amine and Some of Its Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ Complexes for OLED and OFET Applications. Journal of Chemistry, 2022, 2022, 1-18.	0.9	2
284	Synthesis, crystal structure, thermal studies, and antimicrobial activity of benzene-1,4-dicarboxylate-copper(II) based coordination polymer incorporating <i>N,N,N′,N′-</i> tetramethylethylenediamine. Journal of Coordination Chemistry, 2022, 75, 1341-1351.	0.8	2
285	Understanding the effect of structural changes on slow magnetic relaxation in mononuclear octahedral copper(<scp>ii</scp>) complexes. Dalton Transactions, 2022, 51, 12041-12055.	1.6	6
286	Emerging Metal-Halide Perovskite Materials for Enhanced Solar Cells and Light-Emitting Applications. Engineering Materials, 2022, , 45-85.	0.3	1
287	Bis-Citrullinato Copper(II) Complex: Synthesis, Crystal Structure, and Non-Covalent Interactions. Crystals, 2022, 12, 1386.	1.0	3
288	Lattice Expansion and Electronic Reconfiguration of MnCu Oxide Catalysts for Enhanced Transfer Hydrogenation of Levulinate. ACS Sustainable Chemistry and Engineering, 2022, 10, 13402-13414.	3.2	0
289	Versatile Layered Hydroxide Precursors for Generic Synthesis of Cuâ€Based Materials. Small Structures, 2023, 4, .	6.9	3
290	Synthesis and Physicochemical Studies for Novel Bioactive Metal Complexes of Macrolide Antibiotic Tylosin. Materials Sciences and Applications, 2022, 13, 532-557.	0.3	0
291	A low-cost commercial Cu(<scp>ii</scp>)â€"EDTA complex for electrocatalytic water oxidation in neutral aqueous solution. Chemical Communications, 2022, 58, 12835-12838.	2.2	5
292	Modulation of Charge Distribution in Cobalt-α-Diimine Complexes toward Valence Tautomerism. Inorganic Chemistry, 2022, 61, 17609-17622.	1.9	6
293	Synthesis and Physicochemical Studies for Novel Bioactive Metal Complexes of Macrolide Antibiotic Tylosin. Materials Sciences and Applications, 2022, 13, 532-557.	0.3	O

#	ARTICLE	IF	Citations
294	A mixed-valence copper chloride coordination polymer composed of one-dimensional cationic and anionic substructures. CrystEngComm, 2022, 24, 8354-8362.	1.3	1
295	Chelidamic acid tautomers in copper(II) compounds. One-pot synthesis, crystal structure, spectroscopic and DFT studies. Polyhedron, 2022, , 116210.	1.0	0
296	High performing asymmetric supercapacitor fabricated by defect induced cathodic MnV2O7 and biowaste derive anodic activated carbon. Journal of Energy Storage, 2023, 57, 106177.	3.9	9
297	Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coordination Chemistry Reviews, 2023, 477, 214943.	9.5	13
298	The influence of ancillary NCS∹ ions on structural, spectroscopic, magnetic and biological properties of copper(II) l-argininato complex. Journal of Molecular Structure, 2023, 1276, 134776.	1.8	2
299	Zero-Strain Cathodes for Lithium-Based Rechargeable Batteries: A Comprehensive Review. ACS Applied Energy Materials, 2023, 6, 12-30.	2.5	2
300	<i>N</i> , <i>N</i> -Alkylation Clarifies the Role of <i>N</i> - and <i>O</i> -Protonated Intermediates in Cyclen-Based ⁶⁴ Cu Radiopharmaceuticals. Inorganic Chemistry, 2023, 62, 1362-1376.	1.9	0
301	Synthesis of Efficient and Stable Tetrabutylammonium Copper Halides with Dual Emissions for Warm White Lightâ€Emitting Diodes. Chemistry - A European Journal, 2023, 29, .	1.7	5
302	Controlled properties of perovskite oxide films by engineering oxygen octahedral rotation. , 2023, 53, 1.		0
303	Structure, Optical and Magnetic Properties of Two Isomeric 2-Bromomethylpyridine Cu(II) Complexes [Cu(C6H9NBr)2(NO3)2] with Very Different Binding Motives. Molecules, 2023, 28, 731.	1.7	0
304	Orbital Degree of Freedom in Conducting Platinum–Dithiolene Complex Salts. Journal of the Physical Society of Japan, 2023, 92, .	0.7	0
306	Synthesis, Physicochemical Studies and Powder Xâ€Ray Diffraction Analyses for New Niclosamide Metal Complexes with Significant Bioactive Behavior. ChemistrySelect, 2023, 8, .	0.7	0
307	Structural effects of incorporating Cu ⁺ and Cu ²⁺ ions into silicate bioactive glasses using molecular dynamics simulations. Materials Advances, 2023, 4, 2078-2087.	2.6	2
308	Crystal Structures of CuCl2·2H2O (Eriochalcite) and NiCl2â ^{^™} 6H2O (Nickelbischofite) at Low Temperature: Full Refinement of Hydrogen Atoms Using Non-Spherical Atomic Scattering Factors. Crystals, 2023, 13, 293.	1.0	5
309	Influence of divalent metal ions on CO2 valorization at room temperature by isostructural MOF-74 materials. Journal of Environmental Chemical Engineering, 2023, 11, 109497.	3.3	2
310	Synthesis, structural, magnetic and thermal studies of copper(II) 5,5-diethylbarbiturate complexes with nicotinamide, 2,2′-bipyridine and triethanolamine. Journal of Coordination Chemistry, 2023, 76, 414-423.	0.8	0
311	Fabrication, Optical Property, and White LED Application of Novel Lanthanideâ€Based Family Cs ₂ NaLnX ₆ (X = Cl, Br, I) Perovskite Nanomaterials. Laser and Photonics Reviews, 2023, 17, .	4.4	7
312	Strong Electron–Phonon Coupling Induced Selfâ€Trapped Excitons in Double Halide Perovskites. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	3

#	ARTICLE	IF	CITATIONS
313	Crystal Chemistry of the Copper Oxalate Biomineral Moolooite: The First Single-Crystal X-ray Diffraction Studies and Thermal Behavior. International Journal of Molecular Sciences, 2023, 24, 6786.	1.8	0
314	High-entropy oxides for energy storage and catalysis. , 2023, , 209-236.		0
318	Perovskite in catalysis and electrocatalysis. , 2023, , 577-594.		1
330	Mn-based cathode materials for rechargeable batteries. Science China Chemistry, 2024, 67, 87-105.	4.2	3