Recent Advances in the Development of Semiconductin Transistor Applications

Advanced Materials 25, 1859-1880 DOI: 10.1002/adma.201201795

Citation Report

#	Article	IF	CITATIONS
1	Ambipolar Polymer Field-Effect Transistors Based on Fluorinated Isoindigo: High Performance and Improved Ambient Stability. Journal of the American Chemical Society, 2012, 134, 20025-20028.	6.6	316
2	Alkyl Chain Extension as a Route to Novel Thieno[3,2- <i>b</i>]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. Macromolecules, 2013, 46, 5961-5967.	2.2	67
3	High mobility isoindigo-based π-extended conjugated polymers bearing di(thienyl)ethylene in thin-film transistors. Polymer Chemistry, 2013, 4, 5688.	1.9	55
4	Relation between Structure and Electronic Properties of Amorphous MEH-PPV Polymers. Journal of the American Chemical Society, 2013, 135, 11247-11256.	6.6	65
5	Observation of a Distinct Surface Molecular Orientation in Films of a High Mobility Conjugated Polymer. Journal of the American Chemical Society, 2013, 135, 1092-1101.	6.6	150
6	DiketopyrrolopyrroleThiopheneâ€Based Acceptor–Donor–Acceptor Conjugated Materials for Highâ€Performance Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2013, 8, 2813-2821.	1.7	34
7	Strong two-photon absorption enhancement in a unique bis-porphyrin bearing a diketopyrrolopyrrole unit. Chemical Communications, 2013, 49, 8368.	2.2	61
8	Photocurrent Enhancement from Diketopyrrolopyrrole Polymer Solar Cells through Alkyl-Chain Branching Point Manipulation. Journal of the American Chemical Society, 2013, 135, 11537-11540.	6.6	258
9	25th Anniversary Article: Recent Advances in nâ€Type and Ambipolar Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 5372-5391.	11.1	608
10	Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore. Scientific Reports, 2013, 3, 2446.	1.6	143
11	Dramatically enhanced molecular ordering and charge transport of a DPP-based polymer assisted by oligomers through antiplasticization. Journal of Materials Chemistry C, 2013, 1, 4423.	2.7	31
12	A benzothiadiazole end capped donor–acceptor based small molecule for organic electronics. Physical Chemistry Chemical Physics, 2013, 15, 17064.	1.3	34
13	Synthesis of pyridine-capped diketopyrrolopyrrole and its use as a building block of low band-gap polymers for efficient polymer solar cells. Chemical Communications, 2013, 49, 8495.	2.2	67
14	Microstructural Control over Soluble Pentacene Deposited by Capillary Pen Printing for Organic Electronics. ACS Applied Materials & Interfaces, 2013, 5, 7838-7844.	4.0	17
15	New Fused Bis-Thienobenzothienothiophene Copolymers and Their Use in Organic Solar Cells and Transistors. Macromolecules, 2013, 46, 727-735.	2.2	43
16	Role of the Comonomeric Units in Reaching Linear Backbone, High Solid-State Order and Charge Mobilities in Heptacyclic Arene-Based Alternating Copolymers. Macromolecules, 2013, 46, 7687-7695.	2.2	38
17	Nanoscale phase domain structure and associated device performance of organic solar cells based on a diketopyrrolopyrrole polymer. RSC Advances, 2013, 3, 20113.	1.7	15
18	Modulation of carrier mobility of diketopyrrolopyrrole and quaterthiophene containing copolymer with self-assembled monolayers on gate dielectrics of thin film transistors. Synthetic Metals, 2013, 184. 61-67.	2.1	4

ARTICLE IF CITATIONS # Imide/amide based I€-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 11.8 68 19 38, 1815-1831. A cyano-terminated dithienyldiketopyrrolopyrrole dimer as a solution processable ambipolar 2.2 semiconductor under ambient conditions. Chemical Communications, 2013, 49, 11272. Nearâ€Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo 21 1.1 22 Acceptor Units. Macromolecular Chemistry and Physics, 2013, 214, 2388-2397. Effect of structure on the solubility and photovoltaic properties of bis-diketopyrrolopyrrole molecules. Journal of Materials Chemistry A, 2013, 1, 15150. Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer 23 194 6.6 Aggregation. Journal of the American Chemical Society, 2013, 135, 19229-19236. Synthesis, characterization and organic field effect transistor performance of a diketopyrrolopyrrole–fluorenone copolymer. Physical Chemistry Chemical Physics, 2013, 15, 7475. 1.3 Polymers for electronics and spintronics. Chemical Society Reviews, 2013, 42, 8895. 25 18.7 370 Dithienylbenzodipyrrolidone: New Acceptor for Donor–Acceptor Low Band Gap Polymers. 26 57 Macromolecules, 2013, 46, 7232-7238. Designing i€-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 27 11.8 698 1832-1908. Narrow-optical-gap π-conjugated small molecules based on terminal isoindigo and thienoisoindigo 1.7 acceptor units for photovoltaic application. RSC Advances, 2013, 3, 16259. Control of Polymer-Packing Orientation in Thin Films through Synthetic Tailoring of Backbone 29 206 3.2 Coplanarity. Chemistry of Materials, 2013, 25, 4088-4096. Strong acceptors in donor–acceptor polymers for high performance thin film transistors. Energy 15.6 182 and Environmental Science, 2013, 6, 392. A fluorenone based low band gap solution processable copolymer for air stable and high mobility $\mathbf{31}$ 2.2 41 organic field effect transistors. Chemical Communications, 2013, 49, 1588-1590. Rational design on n-type organic materials for high performance organic photovoltaics. RSC 1.7 138 Advances, 2013, 3, 7160. Synthesis and Optical Properties of Pyrrolo[3,2-<i>b</i>)pyrrole-2,5(1<i>H</i>),4<i>H</i>)-dione 33 1.1 26 (iDPP)-Based Molecules. Journal of Physical Chemistry A, 2013, 117, 2782-2789. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors. Journal of the 1,280 American Chemical Society, 2013, 135, 6724-6746. Hydrogen-bonds in molecular solids – from biological systems to organic electronics. Journal of 35 2.9 264 Materials Chemistry B, 2013, 1, 3742. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy and Environmental Science, 2013, 6, 1684.

#	Article	IF	CITATIONS
37	Electron-Deficient Poly(<i>p</i> -phenylene vinylene) Provides Electron Mobility over 1 cm ² V ^{–1} s ^{–1} under Ambient Conditions. Journal of the American Chemical Society, 2013, 135, 12168-12171.	6.6	280
38	3,6-Dithiophen-2-yl-diketopyrrolo[3,2-b]pyrrole (isoDPPT) as an Acceptor Building Block for Organic Opto-Electronics. Macromolecules, 2013, 46, 3895-3906.	2.2	62
39	Naphthalenediimide-Benzothiadiazole Copolymer Semiconductors: Rational Molecular Design for Air-Stable Ambipolar Charge Transport. Chemistry of Materials, 2013, 25, 2178-2183.	3.2	42
40	Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chemical Science, 2013, 4, 2447.	3.7	109
41	Highâ€Molecularâ€Weight Regular Alternating Diketopyrrolopyrroleâ€based Terpolymers for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 8341-8344.	7.2	398
43	Self-Organizing Mesomorphic Diketopyrrolopyrrole Derivatives for Efficient Solution-Processed Organic Solar Cells. Chemistry of Materials, 2013, 25, 2549-2556.	3.2	126
44	Improved Field-Effect Transistor Performance of a Benzotrithiophene Polymer through Ketal Cleavage in the Solid State. ACS Applied Materials & Interfaces, 2013, 5, 1806-1810.	4.0	23
45	A BDOPVâ€Based Donor–Acceptor Polymer for Highâ€Performance nâ€Type and Oxygenâ€Doped Ambipolar Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 6589-6593.	11.1	172
46	Graphene as a Target for Polymer Synthesis. Advances in Polymer Science, 2013, , 61-92.	0.4	12
47	Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Materials, 2013, 1, .	2.2	32
48	Charge-Transporting Polymers. , 2013, , 1-11.		0
49	Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport. Polymers, 2013, 5, 1272-1324.	2.0	88
50	Diketopyrrolopyrrole-based conjugated polymers and small molecules for organic ambipolar transistors and solar cells. Journal of Polymer Science Part A, 2013, 51, 4241-4260.	2.5	87
51	Polymers for Transistors. , 2013, , 1-12.		0
52	Control of charge transport in a semiconducting copolymer by solvent-induced long-range order. Scientific Reports, 2013, 3, 3425.	1.6	134
53	Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells. Beilstein Journal of Organic Chemistry, 2014, 10, 2683-2695.	1.3	23
54	Organic Semiconductor/Insulator Polymer Blends for High-Performance Organic Transistors. Polymers, 2014, 6, 1057-1073.	2.0	78
55	Utilizing high resolution and reconfigurable patterns in combination with inkjet printing to produce high performance circuits. Applied Physics Letters, 2014, 105, .	1.5	20

#	Article	IF	CITATIONS
56	Selenium in Diketopyrrolopyrroleâ€based Polymers: Influence on Electronic Properties and Charge Carrier Mobilities. Israel Journal of Chemistry, 2014, 54, 817-827.	1.0	6
57	Dependence of Crystallite Formation and Preferential Backbone Orientations on the Side Chain Pattern in PBDTTPD Polymers. ACS Applied Materials & Interfaces, 2014, 6, 19477-19481.	4.0	36
58	New Donor–Donor Type Copolymers with Rigid and Coplanar Structures for High-Mobility Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 6907-6910.	3.2	49
59	Fundamental Limitations for Electroluminescence in Organic Dualâ€Gate Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 4450-4455.	11.1	14
60	A Study of Diphenylfumaronitrile and Furanâ€6ubstituted Diketopyrrolopyrrole Alternating Copolymer and Its Thinâ€Film Transistors. Macromolecular Chemistry and Physics, 2014, 215, 725-732.	1.1	14
61	Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Coreâ€Hole Clock Spectroscopy. Advanced Materials, 2014, 26, 7880-7888.	11.1	31
62	Understanding the Microscopic Origin of the Very High Charge Mobility in PBTTT: Tolerance of Thermal Disorder. Advanced Functional Materials, 2014, 24, 925-933.	7.8	59
63	Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. Chemistry of Materials, 2014, 26, 647-663.	3.2	377
64	Organic spin transporting materials: present and future. Journal of Materials Chemistry A, 2014, 2, 48-57.	5.2	63
65	A fluorescence turn-on and colorimetric probe based on a diketopyrrolopyrrole–tellurophene conjugate for efficient detection of hydrogen peroxide and glutathione. Dyes and Pigments, 2014, 100, 118-126.	2.0	33
66	Superheated high-temperature size-exclusion chromatography with chloroform as the mobile phase for π-conjugated polymers. Polymer Chemistry, 2014, 5, 558-561.	1.9	8
67	π-Building Blocks for Organic Electronics: Revaluation of "Inductive―and "Resonance―Effects of Ï€-Electron Deficient Units. Chemistry of Materials, 2014, 26, 587-593.	3.2	211
68	25th Anniversary Article: Organic Fieldâ€Effect Transistors: The Path Beyond Amorphous Silicon. Advanced Materials, 2014, 26, 1319-1335.	11.1	2,031
69	"Conformation Locked―Strong Electron-Deficient Poly(<i>p</i> -Phenylene Vinylene) Derivatives for Ambient-Stable n-Type Field-Effect Transistors: Synthesis, Properties, and Effects of Fluorine Substitution Position. Journal of the American Chemical Society, 2014, 136, 2135-2141.	6.6	300
70	25th Anniversary Article: Highâ€Mobility Hole and Electron Transport Conjugated Polymers: How Structure Defines Function. Advanced Materials, 2014, 26, 2119-2136.	11.1	199
71	Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers. Accounts of Chemical Research, 2014, 47, 1117-1126.	7.6	370
72	A direct arylation-derived DPP-based small molecule for solution-processed organic solar cells. Nanotechnology, 2014, 25, 014006.	1.3	30
73	New Organic Semiconductors with Imide/Amideâ€Containing Molecular Systems. Advanced Materials, 2014, 26, 6965-6977.	11.1	183

#	Article	IF	CITATIONS
74	25th Anniversary Article: Organic Electronics Marries Photochromism: Generation of Multifunctional Interfaces, Materials, and Devices. Advanced Materials, 2014, 26, 1827-1845.	11.1	259
75	A comparative study of diketopyrrolopyrrole and isoindigo based polymers for organic photovoltaic applications. Dyes and Pigments, 2014, 106, 121-127.	2.0	16
76	New Conjugated Molecules with Two and Three Dithienyldiketopyrrolopyrrole (DPP) Moieties Substituted at <i>meta</i> Positions of Benzene toward p―and nâ€Type Organic Photovoltaic Materials. Chemistry - an Asian Journal, 2014, 9, 1570-1578.	1.7	18
77	Synthesis and Properties of Semiconducting Bispyrrolothiophenes for Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2014, 20, 5938-5945.	1.7	23
78	Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor. Advanced Materials, 2014, 26, 3304-3309.	11.1	245
79	High performance tetrathienoacene-DDP based polymer thin-film transistors using a photo-patternable epoxy gate insulating layer. Organic Electronics, 2014, 15, 991-996.	1.4	10
80	Pyrene and Diketopyrrolopyrrole-Based Oligomers Synthesized via Direct Arylation for OSC Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 6765-6775.	4.0	68
81	Impact of N-substitution of a carbazole unit on molecular packing and charge transport of DPP–carbazole copolymers. Journal of Materials Chemistry C, 2014, 2, 1683.	2.7	17
82	Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells. Chemical Communications, 2014, 50, 679-681.	2.2	70
83	Incorporation of benzocarborane into conjugated polymer systems: synthesis, characterisation and optoelectronic properties. Journal of Materials Chemistry C, 2014, 2, 232-239.	2.7	21
84	Benzocarborano[2,1- <i>b</i> :3,4- <i>b</i> ′]dithiophene Containing Conjugated Polymers: Synthesis, Characterization, and Optoelectronic Properties. Macromolecules, 2014, 47, 89-96.	2.2	19
85	Effect of end-groups on the photovoltaic property of diphenyl substituted diketopyrrolopyrrole derivatives. Synthetic Metals, 2014, 188, 66-71.	2.1	16
86	Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials, 2014, 26, 664-678.	3.2	319
87	High balanced ambipolar charge carrier mobility in benzodipyrrolidone conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 731-735.	2.7	32
88	Influence of the Position of the Side Chain on Crystallization and Solar Cell Performance of DPP-Based Small Molecules. Chemistry of Materials, 2014, 26, 916-926.	3.2	113
89	Recent developments on isoindigo-based conjugated polymers. Polymer Chemistry, 2014, 5, 3298-3305.	1.9	132
90	Ordered fibrillar morphology of donor–acceptor conjugated copolymers at multiple scales via blending with flexible polymers and solvent vapor annealing: insight into photophysics and mechanism. Physical Chemistry Chemical Physics, 2014, 16, 1441-1450.	1.3	11
91	Synthesis and Characterization of Angular-Shaped Naphtho[1,2- <i>b</i> j5,6- <i>b</i> ′]difuran–Diketopyrrolopyrrole-Containing Copolymers for High-Performance Organic Field-Effect Tr <u>ansistors. Macromolecules, 2014. 47, 616-625</u> .	2.2	39

#	Article	IF	CITATIONS
92	Facile conversion of polymer organic thin film transistors from ambipolar and p-type into unipolar n-type using polyethyleneimine (PEI)-modified electrodes. Organic Electronics, 2014, 15, 3787-3794.	1.4	13
93	Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515, 384-388.	13.7	844
94	Synthesis of diketopyrrolopyrrole based copolymers via the direct arylation method for p-channel and ambipolar OFETs. Physical Chemistry Chemical Physics, 2014, 16, 4275.	1.3	43
95	Ultrasonic Spray Coating of 6.5% Efficient Diketopyrrolopyrrole-Based Organic Photovoltaics. IEEE Journal of Photovoltaics, 2014, 4, 1538-1544.	1.5	26
96	Benzodithiophene-based polymers containing novel electron accepting selenophene-incorporated pyrrolo[3,4-c]pyrrole-1,3-dione units for highly efficient thin film transistors and polymer solar cells. Synthetic Metals, 2014, 198, 230-238.	2.1	25
97	New dithienyl-diketopyrrolopyrrole-based conjugated molecules entailing electron withdrawing moieties for organic ambipolar semiconductors and photovoltaic materials. Journal of Materials Chemistry C, 2014, 2, 10101-10109.	2.7	27
98	The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. Journal of Materials Chemistry C, 2014, 2, 8789-8795.	2.7	23
99	The role of the ethynylene bond on the optical and electronic properties of diketopyrrolopyrrole copolymers. RSC Advances, 2014, 4, 58404-58411.	1.7	3
100	Phenothiazine-based benzoxazole derivates exhibiting mechanochromic luminescence: the effect of a bromine atom. Journal of Materials Chemistry C, 2014, 2, 3942-3950.	2.7	107
101	Alternating copolymers of diketopyrrolopyrrole or benzothiadiazole and alkoxy-substituted oligothiophenes: spectroscopic, electrochemical and spectroelectrochemical investigations. Electrochimica Acta, 2014, 144, 211-220.	2.6	37
102	Nonadiabatic Molecular Dynamics Modeling of the Intrachain Charge Transport in Conjugated Diketopyrrolo-pyrrole Polymers. Journal of Physical Chemistry C, 2014, 118, 6631-6640.	1.5	30
103	Electron deficient diketopyrrolopyrrole dyes for organic electronics: synthesis by direct arylation, optoelectronic characterization, and charge carrier mobility. Journal of Materials Chemistry A, 2014, 2, 4198-4207.	5.2	83
104	Electron-deficient truxenone derivatives and their use in organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 12348-12354.	5.2	32
105	Air-stable organic semiconductors based on 6,6′-dithienylindigo and polymers thereof. Journal of Materials Chemistry C, 2014, 2, 8089-8097.	2.7	56
106	A new class of organic photovoltaic materials: poly(rod-coil) polymers having alternative conjugated and non-conjugated segments. Chemical Communications, 2014, 50, 7720-7722.	2.2	16
107	Synthesis and properties of azothiazole based π-conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 7096-7103.	2.7	6
108	Extended conjugation in poly(triarylamine)s: synthesis, structure and impact on field-effect mobility. Journal of Materials Chemistry C, 2014, 2, 6520-6528.	2.7	13
109	Influence of side chain length and bifurcation point on the crystalline structure and charge transport of diketopyrrolopyrrole-quaterthiophene copolymers (PDQTs). Journal of Materials Chemistry C, 2014, 2, 2183-2190.	2.7	51

#	Article	IF	CITATIONS
110	Ambipolar charge-transport property for the D–A complex with naphthalene diimide motif. Journal of Materials Chemistry C, 2014, 2, 2869-2876.	2.7	34
111	Tetramethylbithiophene in π-conjugated alternating copolymers as an effective structural component for the formation of spherical assemblies. Polymer Chemistry, 2014, 5, 3583-3587.	1.9	19
112	Conformation-Insensitive Ambipolar Charge Transport in a Diketopyrrolopyrrole-Based Co-polymer Containing Acetylene Linkages. Chemistry of Materials, 2014, 26, 3928-3937.	3.2	63
113	Twoâ€Photonâ€Induced Fluorescence in New Ï€â€Expanded Diketopyrrolopyrroles. Chemistry - A European Journal, 2014, 20, 12493-12501.	1.7	65
114	Contactless charge carrier mobility measurement in organic field-effect transistors. Organic Electronics, 2014, 15, 2855-2861.	1.4	2
115	Diketopyrrolopyrrole-bitellurophene containing a conjugated polymer and its high performance thin-film transistor sensor for bromine detection. Chemical Communications, 2014, 50, 14394-14396.	2.2	35
116	Enhancing Fieldâ€Effect Mobility of Conjugated Polymers Through Rational Design of Branched Side Chains. Advanced Functional Materials, 2014, 24, 3734-3744.	7.8	112
117	Hydrogen-bonded diketopyrrolopyrrole (DPP) pigments as organic semiconductors. Organic Electronics, 2014, 15, 3521-3528.	1.4	99
118	Systematic Investigation of Sideâ€Chain Branching Position Effect on Electron Carrier Mobility in Conjugated Polymers. Advanced Functional Materials, 2014, 24, 6270-6278.	7.8	116
119	Synthesis and properties of pyrrolo[3,4-c]pyrrole-1,3-dione based polymer semiconductors and their performance in organic thin film transistors. Polymer Chemistry, 2014, 5, 5247-5254.	1.9	8
120	Imide- and Amide-Functionalized Polymer Semiconductors. Chemical Reviews, 2014, 114, 8943-9021.	23.0	874
121	Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjetâ€Printed Chemical Doping for High Performance Complementary Circuits. Advanced Functional Materials, 2014, 24, 6252-6261.	7.8	116
122	Use of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?. Physical Chemistry Chemical Physics, 2014, 16, 17253-17265.	1.3	54
123	Lightâ€Induced Degradation of Polymer:Fullerene Photovoltaic Devices: An Intrinsic or Materialâ€Dependent Failure Mechanism?. Advanced Energy Materials, 2014, 4, 1400848.	10.2	40
124	Thermal Stabilisation of Polymer–Fullerene Bulk Heterojunction Morphology for Efficient Photovoltaic Solar Cells. Advanced Materials, 2014, 26, 5831-5838.	11.1	149
125	Novel Diketopyrroloppyrrole Random Copolymers: High Chargeâ€Carrier Mobility From Environmentally Benign Processing. Advanced Materials, 2014, 26, 6612-6616.	11.1	80
126	Indanthrone dye revisited after sixty years. Chemical Communications, 2014, 50, 11543-11546.	2.2	25
127	Improved Performance in Diketopyrrolopyrrole-Based Transistors with Bilayer Gate Dielectrics. ACS Applied Materials & amp; Interfaces, 2014, 6, 3170-3175.	4.0	33

#	Article	IF	CITATIONS
128	Thieno[3,2â€ <i>b</i>]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. Advanced Functional Materials, 2014, 24, 7109-7115.	7.8	58
129	New Form of an Old Natural Dye: Bay-Annulated Indigo (BAI) as an Excellent Electron Accepting Unit for High Performance Organic Semiconductors. Journal of the American Chemical Society, 2014, 136, 15093-15101.	6.6	123
130	Conjugated polymers containing benzo- and naphthodione units in the main chain. Polymer Chemistry, 2014, 5, 6391-6406.	1.9	18
131	A corannulene-based donor–acceptor polymer for organic field-effect transistors. RSC Advances, 2014, 4, 56749-56755.	1.7	34
132	A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage. Physical Chemistry Chemical Physics, 2014, 16, 23837-23842.	1.3	63
133	Thieno[3,2â€ <i>b</i>]thiopheneâ€Diketopyrrolopyrroleâ€Based Quinoidal Small Molecules: Synthesis, Characterization, Redox Behavior, and nâ€Channel Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2014, 20, 13755-13761.	1.7	37
134	Intertwined Lamello-Columnar Coassemblies in Liquid-Crystalline Side-Chain Î-Conjugated Polymers: Toward a New Class of Nanostructured Supramolecular Organic Semiconductors. Macromolecules, 2014, 47, 1715-1731.	2.2	38
135	Organic field-effect transistor and its photoresponse using a benzo[1,2-b:4,5-b′]difuran-based donor–acceptor conjugated polymer. Organic Electronics, 2014, 15, 1050-1055.	1.4	88
136	Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3450-3459.	3.2	100
137	Photophysical, electrochemical and solid state properties of diketopyrrolopyrrole based molecular materials: importance of the donor group. Journal of Materials Chemistry C, 2014, 2, 3457-3466.	2.7	96
138	Spray-coating semiconducting conjugated polymers for organic thin film transistor applications. RSC Advances, 2014, 4, 30145.	1.7	23
139	Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimideâ€Based Coâ€Polymers with Different Oligothiophene Donor Units. Advanced Functional Materials, 2014, 24, 1151-1162.	7.8	65
140	Synthesis of squaraine-based alternated π-conjugated copolymers: from conventional cross-coupling reactions to metal-free polycondensation. Polymer Chemistry, 2014, 5, 7100-7108.	1.9	17
141	Bis-lactam-based donor polymers for organic solar cells: Evolution by design. Thin Solid Films, 2014, 560, 82-85.	0.8	3
142	Combination of Two Diketopyrrolopyrrole Isomers in One Polymer for Ambipolar Transport. Chemistry of Materials, 2014, 26, 3595-3598.	3.2	41
143	Acene-Containing Donor–Acceptor Conjugated Polymers: Correlation between the Structure of Donor Moiety, Charge Carrier Mobility, and Charge Transport Dynamics in Electronic Devices. Macromolecules, 2014, 47, 3747-3754.	2.2	39
144	Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrroleâ€Based Polymer Solar Cells. Advanced Materials, 2014, 26, 1565-1570.	11.1	207
145	25th Anniversary Article: Microstructure Dependent Bias Stability of Organic Transistors. Advanced Materials, 2014, 26, 1660-1680.	11.1	156

#	Article	IF	CITATIONS
146	Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nature Communications, 2014, 5, 4097.	5.8	233
147	Nanoscopic Management of Molecular Packing and Orientation of Small Molecules by a Combination of Linear and Branched Alkyl Side Chains. ACS Nano, 2014, 8, 5988-6003.	7.3	52
148	Engineering semiconducting polymers for efficient charge transport. MRS Communications, 2015, 5, 383-395.	0.8	78
149	Chargeâ€Transport Anisotropy in a Uniaxially Aligned Diketopyrrolopyrroleâ€Based Copolymer. Advanced Materials, 2015, 27, 7356-7364.	11.1	144
150	Direct Arylation Polycondensation of Thienothiophenes with Various Dibromoarylenes. Bulletin of the Chemical Society of Japan, 2015, 88, 1530-1535.	2.0	10
151	Effects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane doping on diketopyrrolopyrrole-based, low crystalline, high mobility polymeric semiconductor. Applied Physics Letters, 2015, 107, .	1.5	5
152	New Semiconducting Polymer Based on Benzo[1,2â€b:4,5â€b′]diselenophene Donor and Diketopyrrolopyrrole/Isoindigo Acceptor Unit: Synthesis, Characterization and Photovoltaics. Chinese Journal of Chemistry, 2015, 33, 909-916.	2.6	4
153	Effect of Spacer Length of Siloxaneâ€Terminated Side Chains on Charge Transport in Isoindigoâ€Based Polymer Semiconductor Thin Films. Advanced Functional Materials, 2015, 25, 3455-3462.	7.8	79
154	Controlling Crystallite Orientation of Diketopyrrolopyrroleâ€Based Small Molecules in Thin Films for Highly Reproducible Multilevel Memory Device: Role of Furan Substitution. Advanced Functional Materials, 2015, 25, 4246-4254.	7.8	76
155	High Performance Polymer Nanowire Fieldâ€Effect Transistors with Distinct Molecular Orientations. Advanced Materials, 2015, 27, 4963-4968.	11.1	79
156	Balanced Ambipolar Poly(diketopyrrolopyrroleâ€ <i>alt</i> â€ŧetrafluorobenzene) Semiconducting Polymers Synthesized via Direct Arylation Polymerization. Macromolecular Rapid Communications, 2015, 36, 2162-2170.	2.0	43
157	Highly Fluorescent and Waterâ€Soluble Diketopyrrolopyrrole Dyes for Bioconjugation. Angewandte Chemie, 2015, 127, 3038-3042.	1.6	17
158	Selfâ€Assembled Nanodielectrics for Highâ€5peed, Lowâ€Voltage Solutionâ€Processed Polymer Logic Circuits. Advanced Electronic Materials, 2015, 1, 1500226.	2.6	23
159	Design of Highâ€Mobility Diketopyrrolopyrroleâ€Based Ï€â€Conjugated Copolymers for Organic Thinâ€Film Transistors. Advanced Materials, 2015, 27, 3589-3606.	11.1	350
160	Effective Controlling of Film Texture and Carrier Transport of a Highâ€Performance Polymeric Semiconductor by Magnetic Alignment. Advanced Functional Materials, 2015, 25, 5126-5133.	7.8	37
161	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. Polymer Chemistry, 2015, 6, 4775-4783.	1.9	34
162	Organic Semiconductors for Field-Effect Transistors. Lecture Notes in Quantum Chemistry II, 2015, , 51-164.	0.3	2
163	Versatile Organic Transistors by Solution Processing. ChemPhysChem, 2015, 16, 1118-1132.	1.0	54

#	Article	IF	CITATIONS
164	Low band-gap diketopyrrolopyrrole-containing polymers for near infrared electrochromic and photovoltaic applications. Journal of Polymer Science Part A, 2015, 53, 1287-1295.	2.5	28
165	Polar Diketopyrrolopyrroleâ€Imidazolium Salts as Selective Probes for Staining Mitochondria in Twoâ€Photon Fluorescence Microscopy. Chemistry - A European Journal, 2015, 21, 9101-9110.	1.7	65
166	New acceptor–donor–acceptor-type conjugated molecules bearing naphtho[1,2-b:5,6-bâ€2]dithiophene and (E)-1,2-di(thiophen-2-yl)ethene and their applications in thin-film transistors and photovoltaic cells. Synthetic Metals, 2015, 206, 24-32.	2.1	9
167	Enhanced Performance of Polymer Solar Cells Comprising Diketopyrrolopyrrole-Based Regular Terpolymer Bearing Two Different π-Extended Donor Units. ACS Applied Materials & Interfaces, 2015, 7, 28303-28310.	4.0	35
169	Thiophene–tetrafluorophenyl–thiophene: a promising building block for ambipolar organic field effect transistors. Journal of Materials Chemistry C, 2015, 3, 2080-2085.	2.7	29
170	Synthesis and properties of novel near-infrared dye based on BODIPY and diketopyrrolopyrrole units. Materials Letters, 2015, 139, 130-133.	1.3	8
171	Wafer-scale and environmentally-friendly deposition methodology for extremely uniform, high-performance transistor arrays with an ultra-low amount of polymer semiconductors. Journal of Materials Chemistry C, 2015, 3, 2817-2822.	2.7	11
172	Synthetic Tailoring of Solid-State Order in Diketopyrrolopyrrole-Based Copolymers via Intramolecular Noncovalent Interactions. Chemistry of Materials, 2015, 27, 829-838.	3.2	125
173	Investigation of Structure–Property Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering. Chemistry of Materials, 2015, 27, 1732-1739.	3.2	244
174	Tunable Solubility Parameter of Poly(3-hexyl thiophene) with Hydrophobic Side-Chains to Achieve Rubbery Conjugated Films. ACS Applied Materials & Interfaces, 2015, 7, 1290-1297.	4.0	28
175	Highly Fluorescent and Waterâ€Soluble Diketopyrrolopyrrole Dyes for Bioconjugation. Angewandte Chemie - International Edition, 2015, 54, 2995-2999.	7.2	54
177	Highly fluorescent polycaprolactones decorated with di(thiopheneâ€2â€yl)â€diketopyrrolopyrrole: A covalent strategy of tuning fluorescence properties in solid states. Journal of Polymer Science Part A, 2015, 53, 1032-1042.	2.5	18
178	Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties. Advanced Optical Materials, 2015, 3, 280-320.	3.6	305
179	Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 1314-1321.	6.6	363
180	Effect of branched alkyl side chains on the performance of thin-film transistors and photovoltaic cells fabricated with isoindigo-based conjugated polymers. Journal of Polymer Science Part A, 2015, 53, 1226-1234.	2.5	23
181	Polymer–polymer solar cells with a near-infrared spectral response. Journal of Materials Chemistry A, 2015, 3, 6756-6760.	5.2	41
182	Polarity Engineering of Conjugated Polymers by Variation of Chemical Linkages Connecting Conjugated Backbones. ACS Applied Materials & Interfaces, 2015, 7, 5898-5906.	4.0	25
183	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Điameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	5.2	47

#	Article	IF	CITATIONS
184	Influence of fluorination in π-extended backbone polydiketopyrrolopyrroles on charge carrier mobility and depth-dependent molecular alignment. Journal of Materials Chemistry C, 2015, 3, 8916-8925.	2.7	29
185	Donor–Acceptor Polymers. Journal of the American Chemical Society, 2015, 137, 9503-9505.	6.6	166
186	Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energy and Environmental Science, 2015, 8, 3222-3232.	15.6	90
187	Thin film morphology and charge carrier mobility of diketopyrrolopyrrole based conjugated polymers. Polymer, 2015, 73, 205-213.	1.8	11
188	Diketopyrrolopyrrole-based conjugated polymers containing alkyl and aryl side-chains for bulk heterojunction solar cells. Synthetic Metals, 2015, 203, 221-227.	2.1	2
189	Diketopyrrolopyrroles disubstituted with alkylated thiophenes: effect of the donor unit size and solubilizing substituents on their redox, photo- and electroluminescence properties. RSC Advances, 2015, 5, 59616-59629.	1.7	21
190	1 Volt organic transistors with mixed self-assembled monolayer/Al2O3 gate dielectrics. Organic Electronics, 2015, 26, 20-24.	1.4	27
191	Hole mobility of 3.56 cm ² V ^{â~1} s ^{â~1} accomplished using more extended dithienothiophene with furan flanked diketopyrrolopyrrole polymer. Journal of Materials Chemistry C, 2015, 3, 9299-9305.	2.7	47
192	Synthesis of monolateral and bilateral sulfur-heterocycle fused naphthalene diimides (NDIs) from monobromo and dibromo NDIs. Organic Chemistry Frontiers, 2015, 2, 372-377.	2.3	11
193	Facile synthesis of unsymmetrical and ï€-extended furan-diketopyrrolopyrrole derivatives through C–H direct (hetero)arylation using a heterogeneous catalyst system. New Journal of Chemistry, 2015, 39, 6714-6717.	1.4	25
194	Thienothiopheneâ€2,5â€Dioneâ€Based Donor–Acceptor Polymers: Improved Synthesis and Influence of the Donor Units on Ambipolar Charge Transport Properties. Advanced Electronic Materials, 2015, 1, 1500039.	2.6	32
195	Structural, Spectroscopic, Electrochemical, and Electroluminescent Properties of Tetraalkoxydinaphthophenazines: New Solution-Processable Nonlinear Azaacenes. Journal of Physical Chemistry C, 2015, 119, 10700-10708.	1.5	26
196	An indigo-based polymer bearing thermocleavable side chains for n-type organic thin film transistors. Journal of Materials Chemistry C, 2015, 3, 5226-5232.	2.7	33
197	Donor–Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9038-9051.	4.0	69
198	Crowning of dibenzosilole with a naphthalenediimide functional group to prepare an electron acceptor for organic solar cells. Dyes and Pigments, 2015, 120, 314-321.	2.0	12
199	Ethynylene-linked benzo[1,2-b:4,5-b′]dithiophene-alt-diketopyrrolopyrrole alternating copolymer: optoelectronic properties, film morphology and photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 12972-12981.	5.2	17
200	High Aspect Ratio Conjugated Polymer Nanowires for High Performance Field-Effect Transistors and Phototransistors. ACS Nano, 2015, 9, 5264-5274.	7.3	76
201	High Bulk Electron Mobility Diketopyrrolopyrrole Copolymers with Perfluorothiophene. Advanced Functional Materials, 2015, 25, 2725-2736.	7.8	92

#	Article	IF	CITATIONS
202	Benzodithiopheneâ€Based Broad Absorbing Random Copolymers Incorporating Weak and Strong Electron Accepting Imide and Lactam Functionalized Pyrrolo[3,4]pyrrole Derivatives for Polymer Solar Cells. Macromolecular Chemistry and Physics, 2015, 216, 996-1007.	1.1	12
203	Dithiafulvalene functionalized diketopyrrolopyrrole based sensitizers for efficient hydrogen production. Physical Chemistry Chemical Physics, 2015, 17, 13710-13718.	1.3	22
204	A Pseudoâ€Regular Alternating Conjugated Copolymer Using an Asymmetric Monomer: A Highâ€Mobility Organic Transistor in Nonchlorinated Solvents. Advanced Materials, 2015, 27, 3626-3631.	11.1	84
205	Comparative Study of Effects of Terminal Nonâ€Alkyl Aromatic and Alkyl Groups on Smallâ€Molecule Solar Cell Performance. Advanced Energy Materials, 2015, 5, 1500059.	10.2	42
206	Tuning the Semiconducting Behaviors of New Alternating Dithienyldiketopyrrolopyrrole–Azulene Conjugated Polymers by Varying the Linking Positions of Azulene. Macromolecules, 2015, 48, 2039-2047.	2.2	76
207	Conjugation-Break Spacers in Semiconducting Polymers: Impact on Polymer Processability and Charge Transport Properties. Macromolecules, 2015, 48, 2048-2053.	2.2	106
208	Synthesis of bithiazoleâ€based crystalline polymers via palladiumâ€catalyzed direct CH arylation. Journal of Polymer Science Part A, 2015, 53, 1396-1402.	2.5	26
209	Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids. Scientific Reports, 2015, 5, 9446.	1.6	19
210	Synthesis and characterization of diketopyrrolopyrrole-based conjugated molecules flanked by indenothiophene and benzoindenothiophene derivatives. Journal of Materials Chemistry C, 2015, 3, 11135-11143.	2.7	8
211	Polyethylenimine (PEI) As an Effective Dopant To Conveniently Convert Ambipolar and p-Type Polymers into Unipolar n-Type Polymers. ACS Applied Materials & Interfaces, 2015, 7, 18662-18671.	4.0	49
212	Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering. Chemical Science, 2015, 6, 6949-6960.	3.7	89
213	Diketopyrrolopyrrole-tellurophene polymer for fast, selective, and reversible detection of bromine in solution, vapor, and solid states: AAsystematic study. Dyes and Pigments, 2015, 123, 317-322.	2.0	6
214	Defect Analysis of High Electron Mobility Diketopyrrolopyrrole Copolymers Made by Direct Arylation Polycondensation. Macromolecules, 2015, 48, 7481-7488.	2.2	72
215	A detailed study on the thermal, photo-physical and electrochemical properties and OFET applications of D–Ĩ€â€"A–Ĩ€â€"D structured unsymmetrical diketopyrrolopyrrole materials. RSC Advances, 2015, 5, 94859-94865.	1.7	17
216	Fused Ring Cyclopentadithienothiophenes as Novel Building Blocks for High Field Effect Mobility Conjugated Polymers. Macromolecules, 2015, 48, 5605-5613.	2.2	12
217	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029
218	Systematic investigation of the synthesis and light-absorption broadening of a novel diketopyrrolopyrrole conjugated polymer of low and high molecular weight with thermo-labile groups. Polymer Chemistry, 2015, 6, 7005-7014.	1.9	18
219	Naphtho[1,2b;5,6b′]difuran-based donor–acceptor polymers for high performance organic field-effect transistors. RSC Advances, 2015, 5, 70319-70322.	1.7	8

#	Article	IF	CITATIONS
220	High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors and solar cells. Polymer Chemistry, 2015, 6, 7684-7692.	1.9	7
221	Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment. Nanoscale, 2015, 7, 15945-15952.	2.8	24
222	α-Modified Naphthodithiophene Diimides—Molecular Design Strategy for Air-Stable n-Channel Organic Semiconductors. Chemistry of Materials, 2015, 27, 6418-6425.	3.2	60
223	Systematic Variation of Fluorinated Diketopyrrolopyrrole Low Bandgap Conjugated Polymers: Synthesis by Direct Arylation Polymerization and Characterization and Performance in Organic Photovoltaics and Organic Field-Effect Transistors. Macromolecules, 2015, 48, 6978-6986.	2.2	46
224	High-Performance Organic Field-Effect Transistors with Directionally Aligned Conjugated Polymer Film Deposited from Pre-Aggregated Solution. Chemistry of Materials, 2015, 27, 8345-8353.	3.2	156
225	Conjugated Polymers Based on 4,10-Bis(thiophen-2-yl)anthanthrone: Synthesis, Characterization, and Fluoride-Promoted Photoinduced Electron Transfer. Macromolecules, 2015, 48, 8376-8381.	2.2	19
226	Recent advances in rylene diimide polymer acceptors for all-polymer solar cells. Journal of Energy Chemistry, 2015, 24, 675-685.	7.1	35
227	Naphthodithiophenes: Emerging Building Blocks for Organic Electronics. Chemical Record, 2015, 15, 175-188.	2.9	20
228	Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles. Journal of Materials Chemistry C, 2015, 3, 742-749.	2.7	40
229	Ambientâ€Stable, Annealingâ€Free, and Ambipolar Organic Fieldâ€Effect Transistors Based on Solutionâ€Processable Poly(2,2′â€bis(trifluoromethyl)biphenylâ€ <i>alt</i> â€2,5â€divinylthiophene) without Long Alkyl Side Chains. Advanced Functional Materials, 2015, 25, 606-614.	7.8	17
230	Benzobisthiadiazole-based conjugated donor–acceptor polymers for organic thin film transistors: effects of π-conjugated bridges on ambipolar transport. Journal of Materials Chemistry C, 2015, 3, 1196-1207.	2.7	48
231	Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in Nâ€īype Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 758-767.	7.8	54
232	Simultaneous Control over both Molecular Order and Long-Range Alignment in Films of the Donor–Acceptor Copolymer. Langmuir, 2015, 31, 469-479.	1.6	34
233	A Timely Synthetic Tailoring of Biaxially Extended Thienylenevinyleneâ€Like Polymers for Systematic Investigation on Fieldâ€Effect Transistors. Advanced Functional Materials, 2015, 25, 586-596.	7.8	54
234	Thienoisoindigo-based copolymer with fused thieno[3,2-b]thiophene as a donor in thin film transistor applications with high performance. Journal of Materials Chemistry C, 2015, 3, 33-36.	2.7	25
235	Significantly improved photovoltaic performance of the triangular-spiral TPA(DPP–PN) ₃ by appending planar phenanthrene units into the molecular terminals. Journal of Materials Chemistry A, 2015, 3, 886-893.	5.2	47
236	Diketopyrrolopyrroleâ€Porphyrin Conjugates with High Twoâ€Photon Absorption and Singlet Oxygen Generation for Twoâ€Photon Photodynamic Therapy. Angewandte Chemie - International Edition, 2015, 54, 169-173.	7.2	207
237	Electrochemical polymerization of 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP) derivatives. Polymer Chemistry, 2015, 6, 1005-1013.	1.9	14

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
238	Herringbone to cofacial solid state packing via H-bonding in diketopyrrolopyrrole (DPP) based molecular crystals: influence on charge transport. Chemical Communications, 2015, 51, 97-100.	2.2	56
239	Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. Chemical Society Reviews, 2015, 44, 58-77.	18.7	352
240	Heteroannulated acceptors based on benzothiadiazole. Materials Horizons, 2015, 2, 22-36.	6.4	123
241	A high mobility DPP-based polymer obtained via direct (hetero)arylation polymerization. Polymer Chemistry, 2015, 6, 278-282.	1.9	76
242	High mobility polymer based on a π-extended benzodithiophene and its application for fast switching transistor and high gain photoconductor. Scientific Reports, 2015, 4, 5482.	1.6	53
243	A phthalimide- and diketopyrrolopyrrole-based A ₁ –π–A ₂ conjugated polymer for high-performance organic thin-film transistors. Polymer Chemistry, 2015, 6, 418-425.	1.9	15
244	Impact of Backbone Fluorination on π-Conjugated Polymers in Organic Photovoltaic Devices: A Review. Polymers, 2016, 8, 11.	2.0	151
245	Role of acceptor strength on OFET properties of small molecular organic semiconducting materials with D-A-D architecture. Synthetic Metals, 2016, 220, 236-246.	2.1	20
246	Control of Threshold Voltage for Top-Gated Ambipolar Field-Effect Transistor by Gate Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 17416-17420.	4.0	10
247	Tuning the Ï€â€Ï€ stacking distance and <scp>J</scp> â€aggregation of <scp>DPP</scp> â€based conjugated polymer via introducing insulating polymer. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 838-847.	2.4	23
248	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	11.1	155
249	Mechanical and Electronic Properties of Thinâ€Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications. Advanced Materials, 2016, 28, 4266-4282.	11.1	218
250	Thieno[3,4â€ɛ]Pyrroleâ€4,6â€Dione and Dithiopheneâ€Based Conjugated Polymer for Organic Field Effect Transistors: High Mobility Induced by Synergic Effect of Hâ€Bond and Vinyl Linkage. Macromolecular Rapid Communications, 2016, 37, 1357-1363.	2.0	7
251	Anisotropic Chargeâ€Carrier Transport in Highâ€Mobility Donor–Acceptor Conjugated Polymer Semiconductor Films. Chemistry - an Asian Journal, 2016, 11, 2725-2729.	1.7	7
252	Highâ€Mobility Naphthalene Diimide and Selenopheneâ€Vinyleneâ€Selenopheneâ€Based Conjugated Polymer: nâ€Channel Organic Fieldâ€Effect Transistors and Structure–Property Relationship. Advanced Functional Materials, 2016, 26, 4984-4997.	7.8	75
253	Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. Advanced Materials, 2016, 28, 4513-4523.	11.1	185
254	Dielectric interface-dependent spatial charge distribution in ambipolar polymer semiconductors embedded in dual-gate field-effect transistors. Applied Physics Letters, 2016, 109, .	1.5	9
255	Twist and shout: a surprising synergy between aryl and N-substituents defines the computed charge transport properties in a series of crystalline diketopyrrolopyrroles. CrystEngComm, 2016, 18, 9382-9390.	1.3	10

#	Article	IF	CITATIONS
256	Designing Thermally Stable Conjugated Polymers with Balanced Ambipolar Field-Effect Mobilities by Incorporating Cyanovinylene Linker Unit. Macromolecules, 2016, 49, 2985-2992.	2.2	27
257	Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials. ACS Sustainable Chemistry and Engineering, 2016, 4, 2797-2805.	3.2	64
258	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	1.7	22
259	Analyses of Thiophene-Based Donor–Acceptor Semiconducting Polymers toward Designing Optical and Conductive Properties: A Theoretical Perspective. Journal of Physical Chemistry C, 2016, 120, 8305-8314.	1.5	17
260	A fluorene-fused triphenodioxazine (FTPDO) based polymer with remarkable thermal stability and significantly enhanced charge transport performance in air. Dyes and Pigments, 2016, 132, 329-335.	2.0	11
261	Understanding the morphology of solution processed fullerene-free small molecule bulk heterojunction blends. Physical Chemistry Chemical Physics, 2016, 18, 12476-12485.	1.3	29
262	Synthesis of fluorinated diphenyl-diketopyrrolopyrrole derivatives as new building blocks for conjugated copolymers. Polymer Chemistry, 2016, 7, 3311-3324.	1.9	17
263	Supramolecular ordering of difuryldiketopyrrolopyrrole: the effect of alkyl chains and inter-ring twisting. CrystEngComm, 2016, 18, 4285-4289.	1.3	23
264	Big Data and Predictive Analytics Methods for Modeling and Analysis of Semiconductor Manufacturing Processes. , 2016, , .		6
265	Requirements for Forming Efficient 3-D Charge Transport Pathway in Diketopyrrolopyrrole-Based Copolymers: Film Morphology vs Molecular Packing. ACS Applied Materials & Interfaces, 2016, 8, 12307-12315.	4.0	22
266	Gating That Suppresses Charge Recombination–The Role of Mono- <i>N</i> -Arylated Diketopyrrolopyrrole. Journal of the American Chemical Society, 2016, 138, 12826-12832.	6.6	53
267	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules, 2016, 49, 6431-6438.	2.2	71
268	High-Performance Field-Effect Transistors Fabricated with Donor–Acceptor Copolymers Containing SĀ·Ā·Ā·O Conformational Locks Supplied by Diethoxydithiophenethenes. Macromolecules, 2016, 49, 6401-6410.	2.2	43
269	High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent. ACS Applied Materials & Interfaces, 2016, 8, 24325-24330.	4.0	29
270	Optimized phase separation in low-bandgap polymer:fullerene bulk heterojunction solar cells with criteria of solvent additives. Nano Energy, 2016, 30, 200-207.	8.2	18
271	Importance of varying electron-accepting moieties in regular conjugated terpolymers for use in polymer solar cells. Organic Electronics, 2016, 38, 256-263.	1.4	10
272	Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity. Physical Chemistry Chemical Physics, 2016, 18, 29199-29207.	1.3	49
273	Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications. Journal of Materials Chemistry C, 2016, 4, 9704-9710.	2.7	65

#	Article	IF	CITATIONS
274	Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews, 2016, 116, 13279-13412.	23.0	1,205
275	Stepwise Bay Annulation of Indigo for the Synthesis of Desymmetrized Electron Acceptors and Donor–Acceptor Constructs. Organic Letters, 2016, 18, 5224-5227.	2.4	28
276	Enhancing the photovoltaic performance of binary acceptor-based conjugated polymers incorporating methyl units. RSC Advances, 2016, 6, 98071-98079.	1.7	5
277	Polymerization of Thienothiophenes and Dithienothiophenes via Click-Reaction for Electronic Applications. ChemistrySelect, 2016, 1, 3028-3032.	0.7	11
278	Topâ€Pinning Controlled Dewetting for Fabrication of Largeâ€5caled Polymer Microwires and Applications in OFETs. Advanced Electronic Materials, 2016, 2, 1600111.	2.6	12
279	Synthesis and Spectroscopic Investigation of Diketopyrrolopyrrole - Spiropyran Dyad for Fluorescent Switch Application. Journal of Fluorescence, 2016, 26, 1939-1949.	1.3	13
280	Bis-naphthalimides bridged by electron acceptors: optical and self-assembly characteristics. RSC Advances, 2016, 6, 71638-71651.	1.7	18
281	Copolymers possessing dithienothiophene and boron for optoelectronic applications. Polymer Engineering and Science, 2016, 56, 1390-1398.	1.5	10
282	An ultra-low bandgap diketopyrrolopyrrole (DPP)-based polymer with balanced ambipolar charge transport for organic field-effect transistors. RSC Advances, 2016, 6, 78720-78726.	1.7	10
283	Optically transparent semiconducting polymer nanonetwork for flexible and transparent electronics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14261-14266.	3.3	67
284	The adjustment of bandgap and coplanarity of diketopyrrolopyrrole-based copolymers through fine-tuning of the conjugated backbones and applications in thin film field effect transistors. Journal of Materials Chemistry C, 2016, 4, 9359-9365.	2.7	11
285	Quinacridone-based π-conjugated electronic materials. Journal of Materials Chemistry C, 2016, 4, 9918-9936.	2.7	62
286	Synthetic Routes to TEGâ€6ubstituted Diketopyrrolopyrroleâ€Based Low Bandâ€Gap Polymers. European Journal of Organic Chemistry, 2016, 2016, 3233-3242.	1.2	29
287	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Journal of the American Chemical Society, 2016, 138, 10252-10259.	6.6	270
288	Solution-processable small molecule semiconductors based on pyrene-fused bisimidazole and influence of alkyl side-chain on the charge transport. RSC Advances, 2016, 6, 69277-69281.	1.7	7
289	Diketopyrrolopyrrole-based oligomers accessed via sequential C H activated coupling for fullerene-free organic photovoltaics. Dyes and Pigments, 2016, 134, 139-147.	2.0	49
290	The impact of molecular weight, air exposure and molecular doping on the charge transport properties and electronic defects in dithienyl-diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymers. Journal of Materials Chemistry C, 2016, 4, 10827-10838.	2.7	11
291	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	4.0	26

#	Article	IF	CITATIONS
292	¿Conjugated? Copolymers from a Pechmann Dye Derivative. Macromolecular Chemistry and Physics, 2016, 217, 2068-2073.	1.1	5
293	Electrical Characteristics of Pentacene Films on Cross-Linked Polymeric Insulators of Varying Thicknesses. ACS Omega, 2016, 1, 784-788.	1.6	2
294	Fused Bis-Benzothiadiazoles as Electron Acceptors. Crystal Growth and Design, 2016, 16, 7124-7129.	1.4	11
295	Vinylene-Linked Oligothiophene–Difluorobenzothiadiazole Copolymer for Transistor Applications. ACS Applied Materials & Interfaces, 2016, 8, 31154-31165.	4.0	14
296	A diketopyrrolopyrrole-based low bandgap polymer with enhanced photovoltaic performances through backbone twisting. Journal of Materials Chemistry A, 2016, 4, 18174-18180.	5.2	16
297	Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units. Chemistry of Materials, 2016, 28, 8580-8590.	3.2	48
298	Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for <i>In Vivo</i> Cancer Therapy. Chemistry of Materials, 2016, 28, 8669-8675.	3.2	197
299	Influence of Dielectric Layers on Charge Transport through Diketopyrrolopyrrole-Containing Polymer Films: Dielectric Polarizability vs Capacitance. ACS Applied Materials & Interfaces, 2016, 8, 30344-30350.	4.0	31
300	P-type doped ambipolar polymer transistors by direct charge transfer from a cationic organic dye Pyronin B ferric chloride. Organic Electronics, 2016, 39, 229-235.	1.4	15
301	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. Chemistry of Materials, 2016, 28, 8366-8378.	3.2	52
302	Copolymers Comprising Monomers with Various Dipoles and Quadrupole as Active Material in Organic Field Effect Transistors. Journal of Physical Chemistry C, 2016, 120, 26199-26205.	1.5	23
303	Tuning the photovoltaic performances of the terpolymers based on thiopheneâ€benzeneâ€thiophene via the modification of alkyl side chains. Journal of Applied Polymer Science, 2016, 133, .	1.3	2
304	Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors. Advanced Materials, 2016, 28, 2752-2759.	11.1	179
305	1,2,3â€Triazole–Diketopyrrolopyrrole Derivatives with Tunable Solubility and Intermolecular Interactions. European Journal of Organic Chemistry, 2016, 2016, 2617-2627.	1.2	26
306	Embedding electron-deficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors. Chemical Science, 2016, 7, 5753-5757.	3.7	82
307	Dramatically different charge transport properties of bisthienyl diketopyrrolopyrrole-bithiazole copolymers synthesized via two direct (hetero)arylation polymerization routes. Polymer Chemistry, 2016, 7, 4515-4524.	1.9	31
308	Controlling aggregation and crystallization of solution processed diketopyrrolopyrrole based polymer for high performance thin film transistors by pre-metered slot die coating process. Organic Electronics, 2016, 36, 113-119.	1.4	20
309	Avoid the kinks when measuring mobility. Science, 2016, 352, 1521-1522.	6.0	213

#	Article	IF	CITATIONS
310	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
311	Donor–acceptor optoelectronic molecules based on hexa-peri-hexabenzocoronene and benzothiadiazole units: effectÂofÂdifferent combinations. Tetrahedron, 2016, 72, 4329-4336.	1.0	5
312	Structure–property relationships for bis-diketopyrrolopyrrole molecules in organic photovoltaics. Journal of Materials Chemistry A, 2016, 4, 10532-10541.	5.2	30
313	Side chain assisted different types of molecular aggregation and comparison of aggregation dependent field effect mobility. Dyes and Pigments, 2016, 133, 114-119.	2.0	5
314	Synthesis of conjugated polymers possessing diketopyrrolopyrrole units bearing phenyl, pyridyl, and thiazolyl groups by direct arylation polycondensation: Effects of aromatic groups in DPP on physical properties. Journal of Polymer Science Part A, 2016, 54, 2337-2345.	2.5	20
315	Direct C–H arylation for various Ar-cored diketopyrrolopyrrole containing small molecules in solution-processed field-effect transistors. RSC Advances, 2016, 6, 57163-57173.	1.7	12
316	Hybrid Organic/Photochromic Approaches to Generate Multifunctional Materials, Interfaces, and Devices. , 2016, , 243-280.		0
317	High Conductivity in Molecularly pâ€Doped Diketopyrrolopyrroleâ€Based Polymer: The Impact of a High Dopant Strength and Good Structural Order. Advanced Materials, 2016, 28, 6003-6010.	11.1	130
318	Dithieno[2,3-d;2′,3′-d]benzo[2,1-b;3,4-bâ€~]dithiophene: a novel building-block for a planar copolymer. Polymer Chemistry, 2016, 7, 1545-1548.	1.9	13
319	An ultra-narrow bandgap derived from thienoisoindigo polymers: structural influence on reducing the bandgap and self-organization. Polymer Chemistry, 2016, 7, 1181-1190.	1.9	42
320	2,2′-Bis(trifluoromethyl)biphenyl as a building block for highly ambient-stable, amorphous organic field-effect transistors with balanced ambipolarity. RSC Advances, 2016, 6, 8628-8638.	1.7	9
321	Benzodithiophenedione and diketopyrrolopyrrole based conjugated copolymers for organic thin-film transistors by structure modulation. Dyes and Pigments, 2016, 126, 20-28.	2.0	15
322	A positive synergetic effect observed in the P3HT–SnO ₂ composite semiconductor: the striking increase of carrier mobility. RSC Advances, 2016, 6, 2387-2393.	1.7	3
323	Engineering the morphologies and charge transport properties of newly synthesized dibenzochrysene-based small molecules by attaching various side groups. Dyes and Pigments, 2016, 130, 176-182.	2.0	4
324	Facile Route To Control the Ambipolar Transport in Semiconducting Polymers. Chemistry of Materials, 2016, 28, 2287-2294.	3.2	53
325	Second Generation of Diketopyrrolopyrrole Dyes for NiO-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 7923-7940.	1.5	77
326	Diketopyrrolopyrrole-based polymer with a semi-fluorinated side chain for high-performance organic thin-film transistors. RSC Advances, 2016, 6, 29164-29171.	1.7	13
327	Copolymerization of zinc-activated isoindigo- and naphthalene-diimide based monomers: an efficient route to low bandgap ï€-conjugated random copolymers with tunable properties. Polymer Chemistry, 2016, 7, 2691-2697.	1.9	18

#	Article	IF	CITATIONS
328	Effects of pyridyl group orientations on the optoelectronic properties of regio-isomeric diketopyrrolopyrrole based π-conjugated polymers. Journal of Materials Chemistry C, 2016, 4, 2470-2479.	2.7	13
329	All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Solar Energy Materials and Solar Cells, 2016, 150, 19-31.	3.0	17
330	Lactone-fused electron-deficient building blocks for n-type polymer field-effect transistors: synthesis, properties, and impact of alkyl substitution positions. Polymer Chemistry, 2016, 7, 2264-2271.	1.9	6
331	EDOT–diketopyrrolopyrrole copolymers for polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 3477-3486.	5.2	18
332	Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of low bandgap copolymers with various electron-withdrawing units. Organic Electronics, 2016, 31, 149-170.	1.4	103
333	Monodisperse macromolecules based on benzodithiophene and diketopyrrolopyrrole with strong NIR absorption and high mobility. Journal of Materials Chemistry C, 2016, 4, 3781-3791.	2.7	22
334	Solvatofluorochromic, non-centrosymmetric π-expanded diketopyrrolopyrrole. Organic and Biomolecular Chemistry, 2016, 14, 2025-2033.	1.5	12
335	Narrow band-gap donor–acceptor copolymers based on diketopyrrolopyrrole and diphenylethene: Synthesis, characterization and application in field effect transistor. Dyes and Pigments, 2016, 127, 37-44.	2.0	12
336	Diketopyrrolopyrrole Polymers for Organic Solar Cells. Accounts of Chemical Research, 2016, 49, 78-85.	7.6	435
337	Insertion of conjugated bridges in organic backbone for better multilevel memory performance: The role of alkynyl group. Organic Electronics, 2016, 28, 155-162.	1.4	19
338	OFET based explosive sensors using diketopyrrolopyrrole and metal organic framework composite active channel material. Sensors and Actuators B: Chemical, 2016, 223, 114-122.	4.0	58
339	Modulation of the fluorescence properties of diketopyrrolopyrroles via various electron-rich substituents. Journal of Materials Chemistry C, 2016, 4, 2877-2885.	2.7	15
340	Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable <i>tert</i> Butoxy Groups in the Side Chains. ACS Applied Materials & Interfaces, 2016, 8, 3635-3643.	4.0	107
341	Organic flexible thermoelectric generators: from modeling, a roadmap towards applications. Sustainable Energy and Fuels, 2017, 1, 174-190.	2.5	38
342	Molecular Doping of a High Mobility Diketopyrrolopyrrole–Dithienylthieno[3,2- <i>b</i>]thiophene Donor–Acceptor Copolymer with F6TCNNQ. Macromolecules, 2017, 50, 914-926.	2.2	66
343	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
344	Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). Journal of Materials Chemistry C, 2017, 5, 2247-2258.	2.7	23
345	5,5′â€Diazaisoindigo: an Electronâ€Deficient Building Block for Donor–Acceptor Conjugated Polymers. Chemistry - an Asian Journal, 2017, 12, 302-307.	1.7	27

#	Article	IF	CITATIONS
346	Spectroscopic properties of diketopyrrolopyrrole derivatives with long alkyl chains. Journal of Luminescence, 2017, 185, 219-227.	1.5	13
347	Carrierâ€Selective Traps: A New Approach for Fabricating Circuit Elements with Ambipolar Organic Semiconductors. Advanced Electronic Materials, 2017, 3, 1600537.	2.6	13
348	Acceptor-donor-acceptor conjugated oligomers based on diketopyrrolopyrrole and thienoacenes with four, five and six rings for organic thin-film transistors. Chinese Journal of Polymer Science (English Edition), 2017, 35, 480-489.	2.0	4
349	Semiconducting/insulating polymer blends with dual phase separation for organic field-effect transistors. RSC Advances, 2017, 7, 7526-7530.	1.7	18
350	The Impact of the Interplay between Steric and Electronic Effects on the Synthesis and Optical Properties of Diketopyrrolopyrroles Bearing Pyridine Moieties. ChemPhotoChem, 2017, 1, 243-252.	1.5	12
351	Diketopyrrolopyrrole-based conjugated polymer for printed organic field-effect transistors and gas sensors. Dyes and Pigments, 2017, 140, 244-249.	2.0	33
352	Donor–acceptor stacking arrangements in bulk and thin-film high-mobility conjugated polymers characterized using molecular modelling and MAS and surface-enhanced solid-state NMR spectroscopy. Chemical Science, 2017, 8, 3126-3136.	3.7	64
353	Donor–Acceptor Conjugated Polymers Based on Indacenodithiophene Derivative Bridged Diketopyrrolopyrroles: Synthesis and Semiconducting Properties. Macromolecules, 2017, 50, 2344-2353.	2.2	36
354	Tuning the polarity of charge carriers using electron deficient thiophenes. Chemical Science, 2017, 8, 3254-3259.	3.7	23
355	Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Highly Selective Synthesis of π-Conjugated Polymers with Diketopyrrolopyrrole Units. Macromolecules, 2017, 50, 927-934.	2.2	46
356	The impact of interplay between electronic and steric effects on the synthesis and the linear and non-linear optical properties of diketopyrrolopyrrole bearing benzofuran moieties. Organic Chemistry Frontiers, 2017, 4, 724-736.	2.3	24
357	Influence of Electric Fields on the Electron Transport in Donor–Acceptor Polymers. Journal of Physical Chemistry C, 2017, 121, 3714-3723.	1.5	7
358	Side-chain modulation of dithienofluorene-based copolymers to achieve high field-effect mobilities. Chemical Science, 2017, 8, 2942-2951.	3.7	46
359	Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A ₁ -D-A ₂ Low-Bandgap Conjugated Polymers. Macromolecular Rapid Communications, 2017, 38, 1600720.	2.0	20
360	All Polymer FETs Direct-Written on Flexible Substrates Achieving MHz Operation Regime. IEEE Transactions on Electron Devices, 2017, 64, 1960-1967.	1.6	6
361	Novel low bandgap phenothiazine functionalized DPP derivatives prepared by direct heteroarylation: Application in bulk heterojunction organic solar cells. Dyes and Pigments, 2017, 141, 169-178.	2.0	37
362	Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water. Analytical Chemistry, 2017, 89, 2928-2936.	3.2	49
363	High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS Applied Materials & amp; Interfaces, 2017, 9, 15652-15661.	4.0	46

#	Article	IF	CITATIONS
364	Alkynyl-Functionalized Head-to-Head Linkage Containing Bithiophene as a Weak Donor Unit for High-Performance Polymer Semiconductors. Chemistry of Materials, 2017, 29, 4109-4121.	3.2	32
365	Synergistic effects of an alkylthieno[3,2-b]thiophene π-bridging backbone extension on the photovoltaic performances of donor–acceptor copolymers. Journal of Materials Chemistry A, 2017, 5, 10269-10279.	5.2	23
366	The relationship between molecular structure and electronic properties in dicyanovinyl substituted acceptor-donor-acceptor chromophores. Tetrahedron, 2017, 73, 4994-5004.	1.0	21
367	Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5107-5112.	3.3	347
368	Tuning Frontier Orbital Energetics of Azaisoindigoâ€Based Polymeric Semiconductors to Enhance the Chargeâ€Transport Properties. Advanced Electronic Materials, 2017, 3, 1700078.	2.6	34
369	Phenothiazin-N-yl-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole exhibiting strong two-photon absorption and aggregation-enhanced one- and two-photon excitation red fluorescence. RSC Advances, 2017, 7, 30610-30617.	1.7	8
370	Raman spectroscopy and microscopy of electrochemically and chemically doped high-mobility semiconducting polymers. Journal of Materials Chemistry C, 2017, 5, 6176-6184.	2.7	57
371	High Performance Solution Processed Organic Field Effect Transistors with Novel Diketopyrrolopyrrole-Containing Small Molecules. Scientific Reports, 2017, 7, 164.	1.6	51
372	Coplanar Donor-Acceptor Semiconducting Copolymers to Achieve Better Conjugated Structures: Side-Chain Engineering. Macromolecular Chemistry and Physics, 2017, 218, 1700135.	1.1	4
373	Effect of pre-aggregation in conjugated polymer solution on performance of diketopyrrolopyrrole-based organic field-effect transistors. Dyes and Pigments, 2017, 145, 270-276.	2.0	10
374	Diazaisoindigo bithiophene and terthiophene copolymers for application in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2017, 55, 2691-2699.	2.5	14
375	Highly Planarized Naphthalene Diimide–Bifuran Copolymers with Unexpected Charge Transport Performance. Chemistry of Materials, 2017, 29, 5473-5483.	3.2	45
376	Poly(naphthalene diimide) vinylene: solid state red emission and semiconducting properties for transistors. Chemical Communications, 2017, 53, 4934-4937.	2.2	21
377	Enhancing the Mechanical Durability of an Organic Field Effect Transistor through a Fluoroelastomer Substrate with a Crosslinkingâ€Induced Selfâ€Wrinkled Structure. Advanced Electronic Materials, 2017, 3, 1600477.	2.6	22
378	Bisâ€Diketopyrrolopyrrole Moiety as a Promising Building Block to Enable Balanced Ambipolar Polymers for Flexible Transistors. Advanced Materials, 2017, 29, 1606162.	11.1	99
379	Highly soluble small-molecule organic semiconductor with trihexylsilyloxy side chain for high-performance organic field-effect transistors with mobility of up to 3.10Åcm 2 ÅV â^'1 s â^'1. Dyes and Pigments, 2017, 142, 17-23.	2.0	26
380	Photophysical Study of DPPTTâ€T/PC ₇₀ BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPPâ€Based Polymers. Advanced Functional Materials, 2017, 27, 1604426.	7.8	13
381	Effective Use of Electrically Insulating Units in Organic Semiconductor Thin Films for Highâ€Performance Organic Transistors. Advanced Electronic Materials, 2017, 3, 1600240.	2.6	80

#	Article	IF	CITATIONS
382	High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nature Materials, 2017, 16, 356-362.	13.3	345
383	Hole Mobility and Electron Injection Properties of Dâ€A Conjugated Copolymers with Fluorinated Phenylene Acceptor Units. Advanced Materials, 2017, 29, 1603830.	11.1	45
384	Ambipolar charge distribution in donor–acceptor polymer field-effect transistors. Journal of Materials Chemistry C, 2017, 5, 754-762.	2.7	15
385	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. Journal of Materials Chemistry C, 2017, 5, 566-572.	2.7	51
386	Effect of Donor Building Blocks on the Charge-Transfer Characteristics of Diketopyrrolopyrrole-Based Donor–Acceptor-Type Semiconducting Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 39502-39510.	4.0	25
387	Boron-Stabilized Planar Neutral π-Radicals with Well-Balanced Ambipolar Charge-Transport Properties. Journal of the American Chemical Society, 2017, 139, 14336-14339.	6.6	97
388	Ultrafast Fluorescence Photoswitch Incorporating Diketopyrrolopyrrole and Benzo[1,3]oxazine. Journal of Physical Chemistry C, 2017, 121, 27313-27326.	1.5	6
389	Substituent effects in magnesium tetraethynylporphyrin with two diketopyrrolopyrrole units for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2017, 5, 23067-23077.	5.2	26
390	Biscoumarin-containing acenes as stable organic semiconductors for photocatalytic oxygen reduction to hydrogen peroxide. Journal of Materials Chemistry A, 2017, 5, 20780-20788.	5.2	41
391	Thiophene-fused 1,10-phenanthroline toward a far-red emitting conjugated polymer and its polymer dots: synthesis, properties and subcellular imaging. Materials Chemistry Frontiers, 2017, 1, 2638-2642.	3.2	15
392	Interplay Between Triplet-, Singlet-Charge Transfer States and Free Charge Carriers Defining Bimolecular Recombination Rate Constant of Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 13969-13976.	1.5	36
393	Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 21077-21113.	5.2	90
394	New Fluorinated Dithienyldiketopyrrolopyrrole Monomers and Polymers for Organic Electronics. Macromolecules, 2017, 50, 7080-7090.	2.2	50
395	Inkjet-Printable Hydrochromic Paper for Encrypting Information and Anticounterfeiting. ACS Applied Materials & Interfaces, 2017, 9, 33071-33079.	4.0	92
396	Charge mobility enhancement for diketopyrrolopyrrole-based conjugated polymers by partial replacement of branching alkyl chains with linear ones. Materials Chemistry Frontiers, 2017, 1, 2547-2553.	3.2	39
397	3D-Printed OFETs of the 1,4-bis(3-phenylquinoxalin-2-yl)benzene-based polymer semiconductors. Polymer Chemistry, 2017, 8, 4878-4886.	1.9	13
398	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced Functional Materials, 2017, 27, 1701973.	7.8	80
399	Synthesis and Properties of New Nâ€Heteroheptacenes for Solutionâ€Based Organic Field Effect Transistors. Chemistry - A European Journal, 2017, 23, 12542-12549.	1.7	20

#	Article	IF	CITATIONS
400	Phthalimide and Naphthalimide end apped Diketopyrrolopyrrole for Organic Photovoltaic Applications. Chinese Journal of Chemistry, 2017, 35, 1396-1404.	2.6	5
401	Direct arylation polymerization toward ultraâ€low bandgap poly(thienoisoindigoâ€ <i>alt</i> â€diketopyrrolepyrrole) conjugated polymers: The effect of βâ€protection on the polymerization and properties of the polymers. Journal of Polymer Science Part A, 2017, 55, 3205-3213.	2.5	9
402	Capillaryâ€Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors. Advanced Functional Materials, 2017, 27, 1701347.	7.8	53
403	Recent progress in the development of n-type organic semiconductors for organic field effect transistors. Journal of Materials Chemistry C, 2017, 5, 8654-8681.	2.7	357
404	Effect of capping group on the properties of non-polymeric diketopyrrolopyrroles for solution-processed bulk heterojunction solar cells. Organic Electronics, 2017, 50, 339-346.	1.4	3
405	A Nonchlorinated Solvent-Processable Fluorinated Planar Conjugated Polymer for Flexible Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 28817-28827.	4.0	20
406	Dearomatization Strategy for the Synthesis of Arylated 2 <i>H</i> -Pyrroles and 2,3,5-Trisubstituted 1 <i>H</i> -Pyrroles. Organic Letters, 2017, 19, 4608-4611.	2.4	19
407	Synthesis of High-Crystallinity DPP Polymers with Balanced Electron and Hole Mobility. Chemistry of Materials, 2017, 29, 10220-10232.	3.2	40
408	Structure–Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 40503-40515.	4.0	31
409	Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chemical Reviews, 2017, 117, 10291-10318.	23.0	575
410	Facile synthesis of dimeric aza-BODIPY analogues from electron-deficient bislactams and their intriguing optical and electrochemical properties. Tetrahedron Letters, 2017, 58, 3151-3154.	0.7	17
411	Synthesis and optimization solid-state order using side-chain position of thieno-isoindigo derivative-based D–A polymers for high-performance ambipolar organic thin films transistors. Dyes and Pigments, 2017, 137, 221-228.	2.0	18
412	Control of Major Carriers in an Ambipolar Polymer Semiconductor by Selfâ€Assembled Monolayers. Advanced Materials, 2017, 29, 1602893.	11.1	66
413	Design of Diketopyrrolopyrrole (DPP)â€Based Small Molecules for Organicâ€Solarâ€Cell Applications. Advanced Materials, 2017, 29, 1600013.	11.1	290
414	A conjugated polymer with high planarity and extended π-electron delocalization via a quinoid structure prepared by short synthetic steps. Polymer Chemistry, 2017, 8, 361-365.	1.9	34
415	Influence of fluorination on the microstructure and performance of diketopyrrolopyrroleâ€based polymer solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 49-59.	2.4	7
416	Heterocyclic Building Blocks for Organic Semiconductors. Advances in Heterocyclic Chemistry, 2017, 121, 133-171.	0.9	54
417	Molecular organization in MAPLE-deposited conjugated polymer thin films and the implications for carrier transport characteristics. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 39-48.	2.4	14

#	Article	IF	CITATIONS
418	Probing the intrinsic charge transport in indacenodithiophene-co-benzothiadiazole thin films. AIP Advances, 2017, 7, .	0.6	9
419	Organic Field-Effect Transistor: Device Physics, Materials, and Process. , 0, , .		8
420	Chemical oxidative and solid state synthesis of low molecular weight polymers for organic field effect transistors. Chemical Physics Letters, 2018, 696, 48-54.	1.2	2
421	Electrical Doubleâ€Slope Nonideality in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1707221.	7.8	54
422	α,β-Unsubstituted <i>meso</i> -positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers. Journal of Materials Chemistry C, 2018, 6, 4030-4040.	2.7	22
423	Nematic Order Imposes Molecular Weight Effect on Charge Transport in Conjugated Polymers. ACS Central Science, 2018, 4, 413-421.	5.3	16
424	Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit. Chemistry of Materials, 2018, 30, 3090-3100.	3.2	107
425	Organic phototransistors with bulk heterojunction sensing-channel layers containing soluble difluorinated diketopyrrolopyrrole acceptor. Dyes and Pigments, 2018, 156, 219-224.	2.0	8
426	Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chemical Reviews, 2018, 118, 4731-4816.	23.0	357
427	Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors. Royal Society Open Science, 2018, 5, 172025.	1.1	10
429	Dihedral angle control to improve the charge transport properties of conjugated polymers in organic field effect transistors. Chemical Physics Letters, 2018, 695, 51-58.	1.2	7
431	Fused electron deficient semiconducting polymers for air stable electron transport. Nature Communications, 2018, 9, 416.	5.8	133
432	Solutionâ€Processable Balanced Ambipolar Fieldâ€Effect Transistors Based on Carbonylâ€Regulated Copolymers. Chemistry - an Asian Journal, 2018, 13, 846-852.	1.7	2
433	Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole. Journal of the American Chemical Society, 2018, 140, 1622-1626.	6.6	70
434	Quinolineâ€Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm ² V ^{â~1} s ^{â^11} in Flexible Thin Film Devices. Advanced Materials, 2018, 30, 1704843.	11.1	97
435	A diketopyrrolopyrrole-based fluorescent probe for investigating mitochondrial zinc ions. New Journal of Chemistry, 2018, 42, 3493-3502.	1.4	25
436	Synthesis and Photophysical Properties of <i>N</i> â€Arylated Diketopyrrolopyrroles. European Journal of Organic Chemistry, 2018, 2018, 6643-6648.	1.2	9
437	A Thieno[2,3- <i>b</i>]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors. Macromolecules, 2018, 51, 71-79.	2.2	58

#	Article	IF	CITATIONS
438	Bidirectional Solvatofluorochromism of a Pyrrolo[3,2- <i>b</i>]pyrrole–Diketopyrrolopyrrole Hybrid. Journal of Physical Chemistry C, 2018, 122, 13424-13434.	1.5	23
439	Carbazole and rhodanine based donor molecule with improved processability for high performance organic photovoltaics. Dyes and Pigments, 2018, 151, 272-278.	2.0	12
440	A selection rule of solvent for highly aligned diketopyrrolopyrrole-based conjugated polymer film for high performance organic field-effect transistors. Organic Electronics, 2018, 55, 6-14.	1.4	33
441	Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 12921-12929.	4.0	20
442	Thiophene-Fused Naphthalene Diimides: New Building Blocks for Electron Deficient π-Functional Materials. Bulletin of the Chemical Society of Japan, 2018, 91, 121-140.	2.0	65
443	Two-photon absorption and mechanofluorochromic properties of 1,4-diketo-2,5-dibutyl-3,6-bis(4-(carbazol-N-yl)phenyl)pyrrolo[3,4-c]pyrrole. Journal of Luminescence, 2018, 194, 588-593.	1.5	9
444	Conjugated D–A terpolymers for organic field-effect transistors and solar cells. Polymer Journal, 2018, 50, 21-31.	1.3	23
445	Ambipolar charge transport in a bis-diketopyrrolopyrrole small molecule semiconductor with tunable energetic disorder. Physical Chemistry Chemical Physics, 2018, 20, 1787-1793.	1.3	6
446	Selfâ€Assembly of Functionalized Oligothiophene into Hygroscopic Fibers: Fabrication of Highly Sensitive and Fast Humidity Sensors. Advanced Electronic Materials, 2018, 4, 1700382.	2.6	10
447	Effects of alkyl side chains positioning and presence of fused aromatic units in the backbone of lowâ€bandgap diketopyrrolopyrrole copolymers on the optoelectronic properties of organic solar cells. Journal of Polymer Science Part A, 2018, 56, 138-146.	2.5	9
448	Recent progress on organic donor–acceptor complexes as active elements in organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 3485-3498.	2.7	192
449	One-step rapid synthesis of π-conjugated large oligomers <i>via</i> C–H activation coupling. Organic Chemistry Frontiers, 2018, 5, 653-661.	2.3	39
450	Uniaxial Alignment of Conjugated Polymer Films for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1705463.	11.1	147
451	The effect of side-chain substitution on the aggregation and photovoltaic performance of diketopyrrolopyrrole- <i>alt</i> -dicarboxylic ester bithiophene polymers. Journal of Materials Chemistry A, 2018, 6, 20904-20915.	5.2	18
452	Two-acceptor one-donor random terpolymers comprising thiophene- and phenyl-capped diketopyrrolopyrrole for organic photovoltaics. New Journal of Chemistry, 2018, 42, 20113-20122.	1.4	1
453	BODIPYâ€Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thinâ€Film Transistors. ChemPlusChem, 2019, 84, 18-37.	1.3	95
454	Charge transport in isoindigo-dithiophenepyrrole based D-A type oligomers: A DFT/TD-DFT study for the fabrication of fullerene-free organic solar cells. Journal of Chemical Physics, 2018, 149, 234906.	1.2	34
455	Recent Progress in Fused-Ring Based Nonfullerene Acceptors for Polymer Solar Cells. Frontiers in Chemistry, 2018, 6, 404.	1.8	24

ARTICLE IF CITATIONS # Inkjet-printed unipolar n-type transistors on polymer substrates based on dicyanomethylene-substituted diketopyrrolopyrrole quinoidal compounds. Organic Electronics, 2018, 456 6 1.4 63, 267-275. Experimental and Theoretical Investigations of Different Diketopyrrolopyrrole-Based Polymers. ACS 1.6 Omega, 2018, 3, 11710-11717. Selective Synthesis and Properties of Electronâ€Deficient Hybrid Naphthaleneâ€Based Ï€â€Conjugated 458 1.7 9 Systems. Chemistry - A European Journal, 2018, 24, 19228-19235. A comparative analysis of symmetric diketopyrrolopyrroleâ€cored small conjugated molecules with aromatic flanks: Fróm geometry to charge transport. Journal of Computational Chemistry, 2018, 39, 2526-2538. High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation: Influence of Thiophene Moieties and Side Chains. Macromolecules, 2018, 460 2.2 56 51, 8752-8760. A Facile Approach to Improve Interchain Packing Order and Charge Mobilities by Selfâ€Assembly of Conjugated Polymers on Water. Advanced Science, 2018, 5, 1801497. 5.6 Thiophene–Vinylene–Thiophene-Based Donor–Acceptor Copolymers with Acetylene-Inserted Branched 462 3.2 24 Alkyl Side Chains To Achieve High Field-Effect Mobilities. Chemistry of Materials, 2018, 30, 7611-7622. Electronic properties of isoindigo-based conjugated polymers bearing urea-containing and linear alkyl side chains. Journal of Materials Chemistry C, 2018, 6, 12070-12078. 2.7 20 Organic photovoltaics of diketopyrrolopyrrole copolymers with unsymmetric and regiorandom 464 1.7 10 configuration of the side units. RSC Advances, 2018, 8, 30201-30206. Synthesis and properties of isoindigo and benzo[1,2-<i>b</i>:4,5-<i>b</i>â€2]bis[<i>b</i>]benzothiophene 2.2 oligomers. Chemical Communications, 2018, 54, 11152-11155. n-Type organic electrochemical transistors: materials and challenges. Journal of Materials Chemistry 466 122 2.7 C, 2018, 6, 11778-11784. Hybrid complementary inverter based on carbon nanotube and IGZO thin-film transistors with 2.8 controlled process conditions. Journal of Alloys and Compounds, 2018, 762, 456-462. Self-Assembled Photochromic Molecular Dipoles for High-Performance Polymer Thin-Film 468 4.0 12 Transistors. ACS Applied Materials & amp; Interfaces, 2018, 10, 21492-21498. Anthracene-based semiconductors for organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 7416-7444. 2.7 129 Synthesis and characterization of novel donorâ€"acceptor type electrochromic polymers containing diketopyrrolopyrrole as an acceptor and propylenedioxythiophene or indacenodithiophene as a 470 1.7 14 donor. RSC Advances, 2018, 8, 23119-23129. Correlation of Molecular Structure and Charge Transport Properties: A Case Study in Naphthalenediimide–Based Copolymer Semiconductors. Advanced Electronic Materials, 2018, 4, 471 1800203. Effect of Alkyl hain Length on Charge Transport Properties of Organic Semiconductors and Organic 472 2.6 19 Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1800175. Chalcogen Bridged Thieno- and Selenopheno[2,3-<i>d</i>:5,4-<i>d</i>â€2]bisthiazole and Their 473 2.2 Diketopyrrolopyrrole Based Low-Bandgap Copolymers. Macromolecules, 2018, 51, 6076-6084.

# 474	ARTICLE Solvent-Free Pd-Catalyzed Heteroaryl–Aryl Coupling via C–H Bond Activation for the Synthesis of Extended Heteroaromatic Conjugated Molecules. Journal of Organic Chemistry, 2018, 83, 9312-9321.	lF 1.7	Citations 26
475	Selfâ€Assembly of Chiralâ€atâ€End Diketopyrrolopyrroles: Symmetry Dependent Solution and Film Optical Activity and Photovoltaic Performance. Chemistry - A European Journal, 2018, 24, 14461-14469.	1.7	18
476	An Electron-Transporting Thiazole-Based Polymer Synthesized Through Direct (Hetero)Arylation Polymerization. Molecules, 2018, 23, 1270.	1.7	5
477	Interconnecting semiconducting molecules with non-conjugated soft linkers: a way to improve film formation quality without sacrifice in charge mobility. RSC Advances, 2018, 8, 23546-23554.	1.7	4
478	Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest. Journal of Physical Chemistry Letters, 2018, 9, 2639-2646.	2.1	135
479	Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules, 2018, 19, 1783-1803.	2.6	149
480	Improving the Compatibility of Diketopyrrolopyrrole Semiconducting Polymers for Biological Interfacing by Lysine Attachment. Chemistry of Materials, 2018, 30, 6164-6172.	3.2	37
481	Tuning crystallochromism in diketopyrrolopyrrole- <i>co</i> -thieno[3,2- <i>b</i>]thiophene derivatives by the architecture of their alkyl side chains. Journal of Materials Chemistry C, 2018, 6, 9140-9151.	2.7	13
482	Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure–Property Relationships and Applications. Chemical Reviews, 2018, 118, 8474-8597.	23.0	138
483	Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors. New Journal of Chemistry, 2018, 42, 12374-12385.	1.4	29
484	Diketopyrrolopyrroleâ€Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation for High Mobility Pure nâ€Channel Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1801097.	7.8	92
485	Sequencing conjugated polymers by eye. Science Advances, 2018, 4, eaas9543.	4.7	35
486	Embedding pyridine units in acceptors to construct donor-acceptor conjugated polymers. Chinese Chemical Letters, 2019, 30, 25-30.	4.8	15
487	Bisâ€Diketopyrrolopyrrole and Carbazoleâ€Based Terpolymer for High Performance Organic Fieldâ€Effect Transistors and Infraâ€Red Photodiodes. Macromolecular Chemistry and Physics, 2019, 220, 1900287.	1.1	19
488	Hydrogen-bonded diketopyrrolopyrrole derivatives for energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23451-23475.	5.2	32
489	C–H perfluorobutylation of bislactam dyes. Dyes and Pigments, 2019, 171, 107769.	2.0	1
490	Microscopic observation of efficient charge transport processes across domain boundaries in donor-acceptor-type conjugated polymers. Communications Physics, 2019, 2, .	2.0	24
491	Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers. Chemistry of Materials, 2019, 31, 7033-7045.	3.2	39

		15	6
#	ARTICLE	IF	CITATIONS
492	conjugated polymers. Organic Chemistry Frontiers, 2019, 6, 2974-2980.	2.3	13
493	Recent Advances in Ambipolar Transistors for Functional Applications. Advanced Functional Materials, 2019, 29, 1902105.	7.8	154
494	Synthesis of Conjugated Polymers Containing Bâ†₦ Bonds with Strong Electron Affinity and Extended Absorption. Polymers, 2019, 11, 1630.	2.0	10
495	Polymerâ€Based Organic Fieldâ€Effect Transistors with Active Layers Aligned by Highly Hydrophobic Nanogrooved Surfaces. Advanced Functional Materials, 2019, 29, 1905365.	7.8	16
496	Single-step access to a series of D–A π-conjugated oligomers with 3–10 nm chain lengths. Polymer Chemistry, 2019, 10, 325-330.	1.9	15
497	Fused Bithiophene Imide Oligomer and Diketopyrrolopyrrole Copolymers for nâ€Type Thinâ€Film Transistors. Macromolecular Rapid Communications, 2019, 40, e1900394.	2.0	9
498	Ï€â€Extended Polyaromatic Hydrocarbons by Sustainable Alkyne Annulations through Double Câ^'H/Nâ^'H Activation. Chemistry - A European Journal, 2019, 25, 16246-16250.	1.7	23
499	The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. Advanced Materials, 2019, 31, e1903104.	11.1	153
500	Atom- and step-economic synthesis of π-conjugated large oligomers via C H activated oligomerization. Dyes and Pigments, 2019, 162, 640-646.	2.0	18
501	C3â€Alkenylation between Pyrroles and Aldehydes Mediated by a BrÃ,nsted Acid and a BrÃ,nsted Base. European Journal of Organic Chemistry, 2019, 2019, 6396-6400.	1.2	7
502	Xylindein: Naturally Produced Fungal Compound for Sustainable (Opto)electronics. ACS Omega, 2019, 4, 13309-13318.	1.6	25
503	Effect of Backbone Sequence of a Naphthalene Diimide-Based Copolymer on Performance in n-Type Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 35185-35192.	4.0	14
504	Pyrazine as a noncovalent conformational lock in semiconducting polymers for enhanced charge transport and stability in thin film transistors. Journal of Materials Chemistry C, 2019, 7, 11507-11514.	2.7	3
505	Regioregularity and Electron Deficiency Control of Unsymmetric Diketopyrrolopyrrole Copolymers for Organic Photovoltaics. ACS Omega, 2019, 4, 15645-15652.	1.6	14
506	Effect of conjugation length on the properties of fused perylene diimides with variable isoindigos. Journal of Materials Chemistry C, 2019, 7, 12263-12269.	2.7	12
507	Amidinium–carboxylate salt bridge mediated proton-coupled electron transfer in a donor–acceptor supramolecular system. Organic Chemistry Frontiers, 2019, 6, 584-590.	2.3	9
508	Nearâ€Infrared (NIR) Organic Lightâ€Emitting Diodes (OLEDs): Challenges and Opportunities. Advanced Functional Materials, 2019, 29, 1807623.	7.8	371
509	Structural and Electronic Origin of Bis-Lactam-Based High-Performance Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 8301-8309.	4.0	12

#	Article	IF	CITATIONS
510	Controlling Ambipolar Charge Transport in Isoindigoâ€Based Conjugated Polymers by Altering Fluorine Substitution Position for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1805994.	7.8	51
511	Conjugated Semiconducting Polymer with Thymine Groups in the Side Chains: Charge Mobility Enhancement and Application for Selective Field-Effect Transistor Sensors toward CO and H ₂ S. Chemistry of Materials, 2019, 31, 1800-1807.	3.2	62
512	Variable oxidation state sulfur-bridged bithiazole ligands tune the electronic properties of ruthenium(<scp>ii</scp>) and copper(<scp>i</scp>) complexes. Dalton Transactions, 2019, 48, 1263-1274.	1.6	12
513	π-Expanded diketopyrrolopyrroles as acceptor building blocks for the formation of novel donor–acceptor copolymers. Polymer Chemistry, 2019, 10, 627-632.	1.9	17
514	Efficient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photonâ€ŧo urrent Ratio and Low Energetic Loss. Advanced Functional Materials, 2019, 29, 1902441.	7.8	43
515	Boosting the ambipolar field-effect transistor performance of a DPP-based copolymer via electrohydrodynamic-jet direct writing. Journal of Industrial and Engineering Chemistry, 2019, 78, 172-177.	2.9	9
516	aza-BODIPY synthesis towards vis/NIR functional chromophores based on a Schiff base forming reaction protocol using lactams and heteroaromatic amines. Chemical Communications, 2019, 55, 8722-8743.	2.2	56
517	Synthesis and determination of fluorescence properties of new soluble diketopyrrolopyrrole type photosensitizers. Journal of Molecular Structure, 2019, 1195, 485-493.	1.8	3
518	Direct Arylation Polymerization for Synthesizing a Library of Conjugated Porous Polymers Containing Thiophene-Flanked Building Blocks. ACS Applied Polymer Materials, 2019, 1, 1697-1706.	2.0	13
519	Fluoro-Modulated Molecular Geometry in Diketopyrrolopyrrole-Based Low-Bandgap Copolymers for Tuning the Photovoltaic Performance. Frontiers in Chemistry, 2019, 7, 333.	1.8	3
520	Synthesis and Optoelectronic Properties of New Methoxy-Substituted Diketopyrrolopyrrole Polymers. ACS Omega, 2019, 4, 9427-9433.	1.6	10
521	Rational Design of a Narrow-Bandgap Conjugated Polymer Using the Quinoidal Thieno[3,2- <i>b</i>]thiophene-Based Building Block for Organic Field-Effect Transistor Applications. Macromolecules, 2019, 52, 4749-4756.	2.2	41
522	High-mobility, trap-free charge transport in conjugated polymer diodes. Nature Communications, 2019, 10, 2122.	5.8	92
523	Synergistic Use of Bithiazole and Pyridinyl Substitution for Effective Electron Transport Polymer Materials. Chemistry of Materials, 2019, 31, 3957-3966.	3.2	26
524	Furan-flanked diketopyrrolopyrrole-based chalcogenophene copolymers with siloxane hybrid side chains for organic field-effect transistors. Polymer Chemistry, 2019, 10, 2854-2862.	1.9	33
525	Effect of scaffold structures on the artificial light-harvesting systems: a case study with an AIEE-active pillar[5]arene dyad. Chemical Communications, 2019, 55, 5910-5913.	2.2	47
526	New synthetic methodology paves the way to prepare electron deficient semiconducting mesopolymers with very high performance. Science China Chemistry, 2019, 62, 885-886.	4.2	0
527	Effect of Alkyl Side Chains on Intercrystallite Ordering in Semiconducting Polymers. Macromolecules, 2019, 52, 2853-2862.	2.2	15

#	Article	IF	CITATIONS
528	Direct C-H arylation for small molecules composed of diketopyrrolopyrrole and benzothiadiazole as organic semiconductor materials. Synthetic Metals, 2019, 250, 94-98.	2.1	7
529	Increased charge carrier mobility and molecular packing of a solution sheared diketopyrrolopyrrole-based donor–acceptor copolymer by alkyl side chain modification. Journal of Materials Chemistry C, 2019, 7, 3665-3674.	2.7	19
530	Synthesis of 2,5-Dibutyl-3,6-dimethyl-1 <i>H</i> ,2 <i>H</i> ,4 <i>H</i> ,5 <i>H</i> -pyrrolo[3,4- <i>c</i>]pyrrole-1,4-dione: AÂDiketopyrrolopyrrole Scaffold for the Formation of Alkenyldiketopyrrolopyrrole Compounds. Organic Letters, 2019, 21, 1973-1978.	2.4	7
531	The Critical Role of Electronâ€Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Advanced Electronic Materials, 2019, 5, 1800899.	2.6	89
532	Spontaneous Doping at the Polymer–Polymer Interface for High-Performance Organic Transistors. ACS Applied Materials & Interfaces, 2019, 11, 12709-12716.	4.0	24
533	Synthesis of reactively functionalized 2,5-siloles using kumada-type nickel-mediated intramolecular cyclization and their utilization in polymer synthesis. Polymer, 2019, 170, 204-210.	1.8	3
534	A versatile star-shaped organic semiconductor based on benzodithiophene and diketopyrrolopyrrole. Journal of Materials Chemistry C, 2019, 7, 6622-6629.	2.7	16
535	Emerging efficient charge-transport landscape based on short-range order in conjugated polymers. Synthetic Metals, 2019, 251, 104-119.	2.1	16
536	Influence of Backbone Chlorination on the Electronic Properties of Diketopyrrolopyrrole (DPP)â€Based Dimers. Chemistry - an Asian Journal, 2019, 14, 1050-1058.	1.7	9
537	p- and n-Channel Photothermoelectric Conversion Based on Ultralong Near-Infrared Wavelengths Absorbing Polymers. ACS Applied Polymer Materials, 2019, 1, 542-551.	2.0	14
538	A Freely Soluble, High Electron Affinity Molecular Dopant for Solution Processing of Organic Semiconductors. Chemistry of Materials, 2019, 31, 1500-1506.	3.2	33
539	Cyano-Substituted Head-to-Head Polythiophenes: Enabling High-Performance n-Type Organic Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 10089-10098.	4.0	29
540	Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. Journal of the American Chemical Society, 2019, 141, 4345-4354.	6.6	179
541	Intrinsically distinct hole and electron transport in conjugated polymers controlled by intra and intermolecular interactions. Nature Communications, 2019, 10, 5226.	5.8	36
542	Fluorinated dithienyl-diketopyrrolopyrrole: a new building block for organic optoelectronic materials. New Journal of Chemistry, 2019, 43, 16411-16420.	1.4	8
543	Non-halogenated solution-processed ambipolar plastic transistors based on conjugated polymers prepared by asymmetric donor engineering. Journal of Materials Chemistry C, 2019, 7, 14977-14985.	2.7	9
544	Regio-regular alternating diketopyrrolopyrrole-based D ₁ –A–D ₂ –A terpolymers for the enhanced performance of polymer solar cells. RSC Advances, 2019, 9, 42096-42109.	1.7	3
545	Two competing acceptors: Electronic structure of PNDITBT probed by time-resolved electron paramagnetic resonance spectroscopy. Journal of Chemical Physics, 2019, 151, 234901.	1.2	2

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
546	Liquid-Crystalline Order and Film Thickness Determine the Semicrystalline Morphology in Diketopyrrolopyrrole-Based Copolymers. ACS Macro Letters, 2019, 8, 1611-1616.	2.3	2
547	Electrical transport characteristics of chemically robust PDPP-DTT embedded in a bridged silsesquioxane network. Journal of Materials Chemistry C, 2019, 7, 14889-14896.	2.7	5
548	Diketopyrrolopyrrole tailoring charge transport characteristics of naphthalene diimide based polymers: From unipolar <i>n</i> â€ŧyped to ambipolar polymers. Journal of Applied Polymer Science, 2019, 136, 46926.	1.3	5
549	An Aâ€Dâ€A′â€Dâ€A Conjugated Molecule Entailing Diazapentalene Unit for an nâ€Type Organic Semiconduct Chemistry - an Asian Journal, 2019, 14, 1712-1716.	tor. 1.7	1
550	Diketopyrrolopyrrole Bisâ€Phosphonate Conjugate: A New Fluorescent Probe for In Vitro Bone Imaging. Chemistry - A European Journal, 2019, 25, 3617-3626.	1.7	19
551	Charge Carrier Polarity Modulation in Diketopyrrolopyrrole-Based Low Band Gap Semiconductors by Terminal Functionalization. ACS Applied Materials & amp; Interfaces, 2019, 11, 1088-1095.	4.0	19
552	Electron Transport with Mobility, μ > 86 cm ² /(V s), in a 74 nm Long Polyfluorene. Journal of Physical Chemistry Letters, 2019, 10, 171-175.	2.1	5
553	Solution-processable small molecules for bulk heterojunction ambipolar thin-film transistors and complementary-like inverters. Dyes and Pigments, 2019, 163, 725-733.	2.0	19
554	Diketopyrrolopyrrole based small molecular semiconductors containing thiazole units for solution-processed n-channel thin-film transistors. Dyes and Pigments, 2019, 163, 707-714.	2.0	10
555	Investigation of hydrogen-bonding mediated molecular packing of diketopyrrolopyrrole based donor-acceptor oligomers in the solid state. Polymer, 2019, 160, 238-245.	1.8	16
556	Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two‣tep Cï£;H Activation Strategy. Advanced Materials, 2019, 31, e1806010.	11.1	63
557	Improved Transistor Performance by Modulating Molecular Packing with Donor and Acceptor Moieties. Chemistry - an Asian Journal, 2019, 14, 1686-1691.	1.7	6
558	A Diketopyrrolopyrroleâ€Based Dimer as a Blue Pigment. Chemistry - A European Journal, 2019, 25, 2723-2728.	1.7	9
559	Synthesis of novel diketopyrrolopyrrole-based dyes. Monatshefte Für Chemie, 2019, 150, 59-66.	0.9	4
560	Semiconducting Singleâ€Walled Carbon Nanotubes or Very Rigid Conjugated Polymers: A Comparison. Advanced Electronic Materials, 2019, 5, 1800514.	2.6	18
561	Organic Bidirectional Phototransistors Based on Diketopyrrolopyrrole and Fullerene. Advanced Functional Materials, 2019, 29, 1805684.	7.8	5
562	Adjusting Aggregation Modes and Photophysical and Photovoltaic Properties of Diketopyrrolopyrroleâ€Based Small Molecules by Introducing Bâ†N Bonds. Chemistry - A European Journal, 2019, 25, 564-572.	1.7	19
563	Recent Developments and Novel Applications of Thin Film, Lightâ€Emitting Transistors. Advanced Functional Materials, 2020, 30, 1905269.	7.8	53

#	Article	IF	CITATIONS
564	Organic Semiconducting Materials Based on BDOPV: Structures, Properties, and Applications. Chinese Journal of Chemistry, 2020, 38, 13-24.	2.6	23
565	Donor–Acceptor onjugated Polymer for Highâ€Performance Organic Fieldâ€Effect Transistors: A Progress Report. Advanced Functional Materials, 2020, 30, 1904545.	7.8	260
566	Conjugated polysquaraines synthesized by polycondensation: Physical, optical, and charge transport properties. Dyes and Pigments, 2020, 175, 108162.	2.0	1
567	Tuning the Charge Carrier Polarity of Organic Transistors by Varying the Electron Affinity of the Flanked Units in Diketopyrrolopyrroleâ€Based Copolymers. Advanced Functional Materials, 2020, 30, 1907452.	7.8	45
568	Improved crystallinity of the asymmetrical diketopyrrolopyrrole derivatives by the adamantane substitution. Dyes and Pigments, 2020, 175, 108141.	2.0	6
569	Developments of Diketopyrrolopyrroleâ€Dyeâ€Based Organic Semiconductors for a Wide Range of Applications in Electronics. Advanced Materials, 2020, 32, e1903882.	11.1	212
570	Deep Blue Light Amplification from a Novel Triphenylamine Functionalized Fluorene Thin Film. Molecules, 2020, 25, 79.	1.7	6
571	Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications. Organic Materials, 2020, 02, 253-281.	1.0	25
572	Solventâ€Dependent Singlet Fission in Diketopyrrolopyrrole Dimers: A Mediating Charge Transfer versus a Trapping Symmetryâ€Breaking Charge Separation. Advanced Energy Materials, 2020, 10, 2001496.	10.2	40
573	Direct-writing of organic field-effect transistors on plastic achieving 22 MHz transition frequency. Flexible and Printed Electronics, 2020, 5, 034001.	1.5	6
574	Rational design of BODIPY-carbazole analogues in the context of D-ï€-A approach for facile charge transport: A DFT/TD-DFT study. Journal of Molecular Graphics and Modelling, 2020, 100, 107631.	1.3	8
575	Duale Funktionalisierung von Fluorophoren für die Konstruktion zielgerichteter und selektiver Fluoreszenzâ€ S ensoren. Angewandte Chemie, 2020, 132, 20466-20479.	1.6	11
576	Dualâ€Functionalisation of Fluorophores for the Preparation of Targeted and Selective Probes. Angewandte Chemie - International Edition, 2020, 59, 20290-20301.	7.2	35
577	Effect of thiophene/furan substitution on organic field effect transistor properties of arylthiadiazole based organic semiconductors. Journal of Materials Chemistry C, 2020, 8, 17297-17306.	2.7	13
578	The development of conjugated polymers as the cornerstone of organic electronics. Polymer, 2020, 207, 122874.	1.8	63
579	Low-Voltage, Dual-Gate Organic Transistors with High Sensitivity and Stability toward Electrostatic Biosensing. ACS Applied Materials & Interfaces, 2020, 12, 40581-40589.	4.0	26
580	A Tuned Alternating D–A Copolymer Holeâ€Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. Advanced Materials, 2020, 32, e2004985.	11.1	56
581	Linear hybrid siloxane-based side chains for highly soluble isoindigo-based conjugated polymers. Chemical Communications, 2020, 56, 11867-11870.	2.2	16

#	Article	IF	CITATIONS
582	Highly Ambient-Stable Organic Thin-Film Transistors Fabricated Using Naphthalene Diimide and Thienylene–Vinylene–Thienylene-Based n-Type Polymers with Different Electron-Withdrawing Groups. Journal of Physical Chemistry C, 2020, 124, 20784-20793.	1.5	4
583	High-density polyethylene—an inert additive with stabilizing effects on organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15406-15415.	2.7	15
584	Polymerizations of Diketopyrrolopyrrole-Type Dyes in Unconventional Orientation. ACS Applied Polymer Materials, 2020, 2, 5698-5704.	2.0	5
585	Tuning the Optical Characteristics of Diketopyrrolopyrrole Molecules in the Solid State by Alkyl Side Chains. Journal of Physical Chemistry C, 2020, 124, 25229-25238.	1.5	20
586	Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electronâ€Deficient Polymer Processed by Solution Shear Coating. Advanced Materials, 2020, 32, e2000063.	11.1	38
587	Selenopheneâ€Flanked Diketopyrrolopyrrole Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chinese Journal of Chemistry, 2020, 38, 1075-1080.	2.6	10
588	The Critical Role of Materials' Interaction in Realizing Organic Field-Effect Transistors Via High-Dilution Blending with Insulating Polymers. ACS Applied Materials & Interfaces, 2020, 12, 26239-26249.	4.0	22
589	Impact of Molecular Weight on the Mechanical and Electrical Properties of a High-Mobility Diketopyrrolopyrrole-Based Conjugated Polymer. Macromolecules, 2020, 53, 4490-4500.	2.2	85
590	Metal-free polymerization: synthesis and properties of fused benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]bis[<i>b</i>]benzothiophene (BBBT) polymers. Polymer Chemistry, 2020, 11, 3695-3700.	1.9	6
591	Remarkable effect of ï€-skeleton conformation in finitely conjugated polymer semiconductors. Journal of Materials Chemistry C, 2020, 8, 9055-9063.	2.7	1
592	Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Accounts of Chemical Research, 2020, 53, 1218-1228.	7.6	171
593	Precise tracking and modulating aggregation structures of conjugated copolymers in solutions. Polymer Chemistry, 2020, 11, 3716-3722.	1.9	24
594	The Effect of αâ€Branched Side Chains on the Structural and Optoâ€Electronic Properties of Poly(Diketopyrrolopyrrole―alt â€Terthiophene). Chemistry - A European Journal, 2020, 26, 14221-14228.	1.7	12
595	Highly sensitive organic thin-film transistors based sensor for putrescine detection. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	5
596	Crystal structure and orientation of organic semiconductor thin films by microcrystal electron diffraction and grazing-incidence wide-angle X-ray scattering. Chemical Communications, 2020, 56, 4204-4207.	2.2	27
597	Halfâ€Fused Diketopyrrolopyrroleâ€Based Conjugated Donor–Acceptor Polymer for Ambipolar Fieldâ€Effect Transistors. Advanced Functional Materials, 2020, 30, 1910235.	7.8	39
598	Nâ€Arylation of Diketopyrrolopyrroles with Aryl Triflates. Chemistry - an Asian Journal, 2020, 15, 1369-1375.	1.7	12
599	The effect of alkyl side chain length on the formation of two semi-crystalline phases in low band gap conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 5856-5867.	2.7	18

#	Article	IF	CITATIONS
600	Diketopyrrolopyrrole-Based Donor–Acceptor Conjugated Microporous Polymers for Visible-Light-Driven Photocatalytic Hydrogen Production from Water. Macromolecules, 2020, 53, 2454-2463.	2.2	59
601	Synthesis of Poly(bisisoindigo) Using a Metal-Free Aldol Polymerization for Thin-Film Transistor Applications. ACS Applied Materials & Interfaces, 2020, 12, 14265-14271.	4.0	20
602	A Nearâ€Infrared Emissive ï€â€Conjugated Polymer Consisting of an Excitedâ€State Intramolecular Proton Transfer Unit. Asian Journal of Organic Chemistry, 2020, 9, 1326-1332.	1.3	15
603	Small-bandgap quinoid-based π-conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 14262-14288.	2.7	55
604	Synthetic Routes to Extended Polyconjugated Structures. European Journal of Organic Chemistry, 2020, 2020, 3526-3541.	1.2	5
605	An Efficient Method for the Programmed Synthesis of Multifunctional Diketopyrrolopyrroles. Angewandte Chemie, 2020, 132, 7598-7605.	1.6	3
606	Diketopyrrolopyrrole-based functional supramolecular polymers: next-generation materials for optoelectronic applications. Materials Today Chemistry, 2020, 16, 100242.	1.7	38
607	Rational design of pyrrolopyrrole-aza-BODIPY-based acceptor–donor–acceptor triads for organic photovoltaics application. Chemical Communications, 2020, 56, 2975-2978.	2.2	35
608	Molecular Semiconductors for Logic Operations: Deadâ€End or Bright Future?. Advanced Materials, 2020, 32, e1905909.	11.1	135
609	Synthesis and Properties of Azadipyrrometheneâ€Based Complexes with Nitrile Substitution. European Journal of Organic Chemistry, 2020, 2020, 714-722.	1.2	3
610	Theoretical insights on the high and differential charge transfer performance of dithienyl-diketopyrrolopyrrole-based polymers as ambipolar semiconductors. Synthetic Metals, 2020, 261, 116290.	2.1	4
611	Highly Efficient Microscopic Charge Transport within Crystalline Domains in a Furanâ€Flanked Diketopyrrolopyrroleâ€Based Conjugated Copolymer. Advanced Functional Materials, 2020, 30, 2000389.	7.8	11
612	Effect of post-deposition annealing temperature on the charge carrier mobility and morphology of DPPDTT based organic field effect transistors. Chemical Physics Letters, 2020, 750, 137507.	1.2	15
613	Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors. Materials Horizons, 2020, 7, 1955-1970.	6.4	24
614	Control of Unipolar/Ambipolar Transport in Singleâ€Molecule Transistors through Interface Engineering. Advanced Electronic Materials, 2020, 6, 1901237.	2.6	14
615	Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nature Materials, 2020, 19, 491-502.	13.3	485
616	Chiral Diketopyrrolopyrrole-Helicene Polymer With Efficient Red Circularly Polarized Luminescence. Frontiers in Chemistry, 2020, 8, 237.	1.8	24
617	Recent progress in the development of backplane thin film transistors for information displays.	2.1	60

#	Article	IF	CITATIONS
618	Aza-substitution on naphthalene diimide-based conjugated polymers for n-type bottom gate/top contact polymer transistors under ambient conditions. Journal of Materials Chemistry C, 2021, 9, 633-639.	2.7	7
619	Systematically investigating the effect of the aggregation behaviors in solution on the charge transport properties of BDOPV-based polymers with conjugation-break spacers. Polymer Chemistry, 2021, 12, 370-378.	1.9	10
620	Development of conjugated polymers for organic flexible electronics. , 2021, , 27-70.		4
621	Novel DPP derivatives functionalized with auxiliary electron-acceptor groups and characterized by narrow bandgap and ambipolar charge transport properties. Dyes and Pigments, 2021, 186, 109026.	2.0	11
622	Polymorphism of a semiâ€crystalline diketopyrrolopyrroleâ€ŧerthiophene polymer. Journal of Polymer Science, 2021, 59, 1285-1292.	2.0	2
623	Charge carrier transport in thin conjugated polymer films: influence of morphology and polymer/substrate interactions. Colloid and Polymer Science, 2021, 299, 439-456.	1.0	5
624	Theoretical study of the influence of doped oxygen group elements on the properties of organic semiconductors. Nanoscale Advances, 2021, 3, 3100-3106.	2.2	0
625	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Materials Horizons, 2022, 9, 121-146.	6.4	51
626	An air-stable organometallic polymer containing titanafluorene moieties obtained by the Sonogashira–Hagihara cross-coupling polycondensation. Dalton Transactions, 2021, 50, 3037-3043.	1.6	5
627	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	3.9	36
628	Synthesis of fully asymmetric diketopyrrolopyrrole derivatives. RSC Advances, 2021, 11, 5276-5283.	1.7	5
629	Morphological design strategies to tailor out-of-plane charge transport in conjugated polymer systems for device applications. Physical Chemistry Chemical Physics, 2021, , .	1.3	4
630	Synthesis and Electronic Properties of Diketopyrrolopyrrole-Based Polymers with and without Ring-Fusion. Macromolecules, 2021, 54, 970-980.	2.2	23
631	Seamlessly Integrable Optoelectronics for Clinical Grade Wearables. Advanced Materials Technologies, 2021, 6, 2000853.	3.0	6
632	Keep glowing and going: recent progress in diketopyrrolopyrrole synthesis towards organic optoelectronic materials. Organic Chemistry Frontiers, 2021, 8, 4560-4581.	2.3	31
633	High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chemical Science, 2021, 12, 1193-1205.	3.7	54
634	Physical modeling of charge transport in conjugated polymer field-effect transistors. Journal Physics D: Applied Physics, 2021, 54, 143002.	1.3	25
635	2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5758-5764.	2.7	12

D

#	Article	IF	CITATIONS
636	Effects of Source/Drain Electrodes on the Performance of Organic Phototransistors Based on Cooper Phthalocyanine. Lecture Notes in Electrical Engineering, 2021, , 107-112.	0.3	0
637	Ionic Charge Storage in Diketopyrrolopyrrole-Based Redox-Active Conjugated Polymers. Journal of Physical Chemistry C, 2021, 125, 4449-4457.	1.5	16
638	Synthesis, characterization, and their field-effect properties of azaisoindigo-based conjugated polymers with versatile alkoxycarbonyl substituents. Polymer, 2021, 215, 123347.	1.8	5
639	Hydrogen Bonds Control Single-Chain Conformation, Crystallinity, and Electron Transport in Isoelectronic Diketopyrrolopyrrole Copolymers. Chemistry of Materials, 2021, 33, 2635-2645.	3.2	23
640	Dynamics in Electronically Excited States of Diketopyrrolopyrrole–Thiophene Conjugated Polymer Thin Films. Journal of Physical Chemistry C, 2021, 125, 5572-5580.	1.5	4
641	Bâ†N Coordination: From Chemistry to Organic Photovoltaic Materials. Advanced Energy and Sustainability Research, 2021, 2, 2100016.	2.8	24
642	New Synthetic Approaches to <i>N</i> â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials. Angewandte Chemie - International Edition, 2021, 60, 10700-10708.	7.2	33
643	New Synthetic Approaches to N â€Aryl and Ï€â€Expanded Diketopyrrolopyrroles as New Building Blocks for Organic Optoelectronic Materials. Angewandte Chemie, 2021, 133, 10795-10803.	1.6	3
644	Perspectives of Organic and Perovskiteâ€Based Spintronics. Advanced Optical Materials, 2021, 9, 2100215.	3.6	46
645	Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules, 2021, 54, 3907-3926.	2.2	70
646	Thiophene–Bipyridine Appended Diketopyrrolopyrrole Ligands and Platinum(II) Complexes. Inorganic Chemistry, 2021, 60, 7351-7363.	1.9	4
647	Comparative analysis of self-aggregation of liquid crystalline Pt(II) complexes in solution and in neat films. Journal of Organometallic Chemistry, 2021, 938, 121750.	0.8	1
648	Selenophene-containing semiconducting polymers for high-performance ambipolar thin film transistor application. Polymer, 2021, 223, 123685.	1.8	3
649	Aqueous Self-assembly of Peptide-Diketopyrrolopyrrole Conjugates with Variation of N-alkyl Side Chain and π-Core Lengths. Organic Materials, 0, 03, .	1.0	0
650	Greater than 10 cm ² ÂV ^{â^'1} Âs ^{â^'1} : A breakthrough of organic semiconductors for fieldâ€effect transistors. InformaÄnA-MateriA¡ly, 2021, 3, 613-630.	8.5	51
651	Direct Observation of Confinement Effects of Semiconducting Polymers in Polymer Blend Electronic Systems. Advanced Science, 2021, 8, 2100332.	5.6	12
652	Investigation of the Performance of Donor–Acceptor Conjugated Polymers in Electrolyteâ€Gated Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2021, 7, 2100071.	2.6	7
653	Naphthalene Flanked Diketopyrrolopyrrole: A New Functional Dye Based Optical Sensors for Monitoring Cyanide Ions in Water. Advanced Materials Technologies, 0, , 2100170.	3.0	6

#	Article	IF	CITATIONS
654	Highly Sensitive Evaluation of Density of States in Molecular Semiconductors by Photoelectron Yield Spectroscopy in Air. ACS Applied Materials & amp; Interfaces, 2021, 13, 28574-28582.	4.0	16
655	Efficient Free Triplet Generation Follows Singlet Fission in Diketopyrrolopyrrole Polymorphs with Goldilocks Coupling. Journal of Physical Chemistry C, 2021, 125, 12207-12213.	1.5	14
656	Assessing the Donor–Acceptor Nature and the Electrochemical Stability of a Fluorene–Diketopyrrolopyrrole–Thiophene-Based Copolymer. ACS Applied Polymer Materials, 2021, 3, 4223-4233.	2.0	8
657	Singleâ€Component CMOS‣ike Logic using Diketopyrrolopyrroleâ€Based Ambipolar Organic Electrochemical Transistors. Advanced Functional Materials, 2021, 31, 2102903.	7.8	38
658	Building crystal structures of conjugated polymers through Xâ€ray diffraction and molecular modeling. SmartMat, 2021, 2, 378-387.	6.4	26
659	A mechanochromic donor-acceptor torsional spring. Nature Communications, 2021, 12, 4243.	5.8	47
660	NO ₂ -Affinitive Conjugated Polymer for Selective Sub-Parts-Per-Billion NO ₂ Detection in a Field-Effect Transistor Sensor. ACS Applied Materials & Interfaces, 2021, 13, 31910-31918.	4.0	15
661	Nearâ€Infraredâ€Light Remoteâ€Controlled Activation of Cancer Immunotherapy Using Photothermal Conjugated Polymer Nanoparticles. Advanced Materials, 2021, 33, e2102570.	11.1	58
662	Directionâ€Selectable Ultraâ€Highly Oriented State of Donor–Acceptor Conjugated Polymer Induced by Slow Bar Coating Process. Advanced Electronic Materials, 2021, 7, 2100313.	2.6	10
663	Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS Applied Materials & Interfaces, 2021, 13, 34616-34624.	4.0	16
664	Toward High Mobility Green Solventâ€Processable Conjugated Polymers: A Systematic Study on Chalcogen Effect in Poly(Diketopyrrolopyrroleâ€ <i>alt</i> â€Terchalcogenophene)s. Advanced Functional Materials, 2021, 31, 2104881.	7.8	28
665	Janus Pyrrolopyrrole Azaâ€dipyrrin: Hydrogenâ€Bonded Assemblies and Slow Magnetic Relaxation of the Cobalt(II) Complex in the Solid State. Chemistry - A European Journal, 2021, 27, 12686-12692.	1.7	2
666	The Synthesis and Photophysical Properties of Weakly Coupled Diketopyrrolopyrroles. Molecules, 2021, 26, 4744.	1.7	1
667	Modulating the Photophysical Properties and Electron Transfer Rates in Diketopyrrolopyrrole-Based Coordination Polymers. Journal of Physical Chemistry B, 2021, 125, 9579-9587.	1.2	1
668	Aggregation induced emission (AIE) materials based on diketopyrrolopyrrole chromophore for CdS nanowire solar cell applications. Journal of Electroanalytical Chemistry, 2021, 895, 115451.	1.9	11
669	Air-stable ambipolarity of nanofibril polymer semiconductors in staggered organic field-effect transistors. Journal of the Korean Physical Society, 2021, 79, 468-476.	0.3	2
670	Improved charge transport and trap-state distribution in donor–acceptor-type semiconducting copolymer with a fluoropolymer dielectric film. Current Applied Physics, 2021, 29, 72-77.	1.1	3
671	Adamantane Substitution Effects on Crystallization and Electrooptical Properties of Epindolidione and Quinacridone Dyes. ChemPhotoChem, 0, , .	1.5	1

#	Article	IF	CITATIONS
672	<scp>PAMAM</scp> â€containing semiconducting polymers: Effect of dendritic side chains on optoelectronic and <scp>solidâ€state</scp> properties. Journal of Polymer Science, 2022, 60, 590-601.	2.0	1
673	Structure–property relationship of donor–acceptor type conjugated copolymers with thienoisoquinoline and benzothiadiazole units. Dyes and Pigments, 2021, 195, 109728.	2.0	1
674	The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors. Journal of Materials Chemistry C, 2021, 9, 13338-13346.	2.7	28
675	Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells. ACS Energy Letters, 2021, 6, 598-608.	8.8	175
676	Infrared spectroscopy depth profiling of organic thin films. Materials Horizons, 2021, 8, 1461-1471.	6.4	10
677	DFT study of structural and electronic properties of 1,4-diarylcyclopenta[d] pyridazines and oxazines for non-linear optical applications. Journal of Molecular Modeling, 2021, 27, 60.	0.8	5
678	Diketopyrrolopyrrole-based single molecules in photovoltaic technologies. Journal of Materials Chemistry C, 2021, 9, 16078-16109.	2.7	15
679	The improvement in hole-transporting and electroluminescent properties of diketopyrrolopyrrole pigment by grafting with carbazole dendrons. RSC Advances, 2021, 11, 12710-12719.	1.7	9
680	n-Type organic semiconducting polymers: stability limitations, design considerations and applications. Journal of Materials Chemistry C, 2021, 9, 8099-8128.	2.7	123
681	An Efficient Method for the Programmed Synthesis of Multifunctional Diketopyrrolopyrroles. Angewandte Chemie - International Edition, 2020, 59, 7528-7535.	7.2	17
682	Charge-Transporting Polymers. , 2015, , 360-369.		1
684	Methoxylation of quinoidal bithiophene as a single regioisomer building block for narrow-bandgap conjugated polymers and high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15168-15174.	2.7	18
685	Charge and thermoelectric transport mechanism in donor-acceptor copolymer films. Physical Review Research, 2020, 2, .	1.3	4
686	Contrast-enhanced photoacoustic imaging in the second near-infrared window using semiconducting polymer nanoparticles. Journal of Biomedical Optics, 2018, 24, 1.	1.4	20
687	Use of thiopurines in inflammatory bowel disease: Safety issues. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2014, 5, 63.	0.6	49
688	Diketopyrrolopyrrole-based conjugated polymers synthesized by direct arylation polycondensation for anisole-processed high mobility organic thin-film transistors. Journal of Materials Chemistry C, 2022, 10, 2616-2622.	2.7	11
689	From Chlorinated Solvents to Branched Polyethylene: Solventâ€Induced Phase Separation for the Greener Processing of Semiconducting Polymers. Advanced Electronic Materials, 2022, 8, 2100928.	2.6	3
690	Singleâ€Molecule Chargeâ€Transport Modulation Induced by Steric Effects of Side Alkyl Chains. ChemPhysChem, 2021, 22, 2573-2578.	1.0	5

#	Article	IF	CITATIONS
691	Approaching Trapâ€Minimized Polymer Thinâ€Film Transistors. Advanced Functional Materials, 2021, 31, 2105933.	7.8	8
692	Recent Progress in Advanced Organic Photovoltaics: Emerging Techniques and Materials. ChemSusChem, 2022, 15, .	3.6	15
694	BDOPV—A Strong Electron-Deficient Building Block for Polymer Field-Effect Transistors. Springer Theses, 2015, , 81-112.	0.0	0
695	Polymers for Transistors. , 2015, , 2020-2031.		Ο
698	SYNTHESIS OF PHENOTHIAZINE DERIVATIVES AS NOVEL MOIETIES TOWARD UTILIZATION IN ALTERNATIVE DONOR – ACCEPTOR CONJUGATED POLYMERS. Science and Technology, 2018, 56, 177.	0.1	0
699	Synthesis and characterization of solution processable, high electron affinity molecular dopants. Journal of Materials Chemistry C, 0, , .	2.7	7
700	Aldol Polymerization to Construct Half-Fused Semiconducting Polymers. Macromolecules, 2021, 54, 10312-10320.	2.2	15
701	Realizing Diketopyrrolopyrrole Polymerâ€Based Uniform Largeâ€Area Transistors for Active Circuit via Protonic Acid Mediated Molecular Selfâ€Assembly. Advanced Electronic Materials, 0, , 2100881.	2.6	3
702	Novel Adamantane Asymmetrically Substituted Diketopyrrolopyrroles. , 2021, , 1-11.		0
703	Effect of Branching position of alkyl side chain on charge-transport characteristics of diketopyrrolopyrrole- and dichlorodithienylethene-based organic field-effect transistors. Organic Electronics, 2022, 101, 106403.	1.4	2
704	Exciton transport in amorphous polymers and the role of morphology and thermalisation. New Journal of Physics, 2021, 23, 113038.	1.2	5
705	Charge transport in semiconducting polymers at the nanoscale. APL Materials, 2021, 9, .	2.2	5
706	Hydrogen-bonded dimers of mono-alkylated diketopyrrolopyrroles and their physical properties. Synthetic Metals, 2022, 284, 117007.	2.1	1
707	The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for Ï€-Conjugated Polymer Semiconductors. ACS Applied Materials & Interfaces, 2022, 14, 3613-3620.	4.0	16
708	Building Supramolecular Chirality in Bulk Heterojunctions Enables Amplified Dissymmetry Current for High-Performing Circularly Polarized Light Detection. , 2022, 4, 401-409.		22
709	Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic–Electronic Conductors for Organic Electrochemical Transistors. Chemical Reviews, 2022, 122, 4325-4355.	23.0	100
711	Photocatalytic Water‧plitting by Organic Conjugated Polymers: Opportunities and Challenges. Chemical Record, 2022, 22, e202100336.	2.9	24
712	Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. Advanced Materials, 2022, 34, e2110639.	11.1	20

#	Article	IF	CITATIONS
713	A Highly Fluorescent Ïfâ€Bonded Platinum(II) Diketopyrrolopyrrole Complex. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
714	Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers. Advanced Electronic Materials, 2022, 8, .	2.6	7
715	Dynamics of Preaggregation and Film Formation of Donor–Acceptor π-Conjugated Polymers. , 2022, 4, 205-211.		6
716	Vinylene Flanked Naphtho[1,2- <i>c</i> :5,6- <i>c</i> â€2]bis[1,2,5]thiadiazole Polymer for Low-Crystallinity Ambipolar Transistors. Macromolecules, 2022, 55, 331-337.	2.2	2
717	Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Progress in Polymer Science, 2022, 129, 101548.	11.8	66
720	Enhanced Intra/Intermolecular Charge Transfer for Efficient Multilevel Resistive Memory. SSRN Electronic Journal, 0, , .	0.4	0
721	Implementing the donor–acceptor approach in electronically conducting copolymers <i>via</i> electropolymerization. RSC Advances, 2022, 12, 12089-12115.	1.7	13
722	Efficient Charge Transport Driven by Strong Intermolecular Interactions in Cyclopentadithiopheneâ€Based Donor–Acceptor Type Conjugated Copolymers. Advanced Electronic Materials, 2022, 8, .	2.6	8
723	Air-Stable Crystalline Polymer-Based Field-Effect Transistors Fabricated by a Thermal Gradient Process. Crystal Growth and Design, 0, , .	1.4	3
724	High performance ambipolar semiconductor of pyridine-capped diketopyrrolopyrrole-porphyrin oligomers: Roles of thiophen substitution and oligomer length. Materials Today Communications, 2022, 31, 103636.	0.9	0
725	Aggregation Modes of Chiral Diketopyrrolo[3,4â€ <i>c</i>]pyrrole Dyes in Solution and Thin Films. Chemistry - A European Journal, 2022, 28, .	1.7	10
726	Enhanced intra/intermolecular charge transfer for efficient multilevel resistive memory. Applied Surface Science, 2022, 599, 153877.	3.1	7
727	A′–A–ï€â€"D–ï€â€"A–A′ extended small-molecule photovoltaic donor based on fluorene-diketopyrrolopyrrole with an end-group fluorination effect. Materials Advances, 2022, 3, 6496-6505.	2.6	4
728	Synthesis and Emergent Photophysical Properties of Diketopyrrolopyrrole-Based Supramolecular Self-Assembly. ACS Omega, 2022, 7, 23179-23188.	1.6	4
729	Structure–Property Relationships in Amorphous Thieno[3,2- <i>b</i>]thiophene–Diketopyrrolopyrrole–Thiophene-Containing Polymers. Journal of Physical Chemistry C, 2022, 126, 10842-10854.	1.5	5
730	N-Aryl diketopyrrolopyrrole derivatives towards organic optical and electronic materials. Chinese Chemical Letters, 2023, 34, 107687.	4.8	3
731	Solution Processable Benzotrithiophene (BTT)â€Based Organic Semiconductors: Recent Advances and Review. Macromolecular Rapid Communications, 2022, 43, .	2.0	8
732	Narrow-Wide Copolymer for Strong Red-Color-Selective Absorption. Journal of Physical Chemistry C, 2022, 126, 12230-12237.	1.5	1

#	Article	IF	CITATIONS
733	Diketopyrrolopyrrole based polymers for n-type organic electrochemical transistors. , 2020, , .		0
734	Probing the electronic structure and photophysics of thiophene–diketopyrrolopyrrole derivatives in solution. Physical Chemistry Chemical Physics, 2022, 24, 20138-20151.	1.3	3
735	Screening semiconducting polymers to discover design principles for tuning charge carrier mobility. Journal of Materials Chemistry C, 2022, 10, 14319-14333.	2.7	1
736	Development of non-fullerene electron acceptors for efficient organic photovoltaics. SN Applied Sciences, 2022, 4, .	1.5	8
737	Ultraviolet Photodetectors Based on Polymer Microwire Arrays toward Wearable Medical Devices. ACS Applied Materials & Interfaces, 2022, 14, 41257-41263.	4.0	15
738	Intermolecular Charge Transfer in H- and J-Aggregates of Donor–Acceptor–Donor Chromophores: The Curious Case of Bithiophene-DPP. Journal of Physical Chemistry C, 2022, 126, 18784-18795.	1.5	7
739	Self-Healing Polymers for Electronics and Energy Devices. Chemical Reviews, 2023, 123, 558-612.	23.0	48
740	Isomer-Free Quinoidal Conjugated Polymers with Different Core Lengths for Organic Field-Effect Transistors. ACS Applied Polymer Materials, 2022, 4, 8520-8526.	2.0	5
741	Acceptor-acceptor type polymers based on cyano-substituted benzochalcogenadiazole and diketopyrrolopyrrole for high-efficiency n-type organic thermoelectrics. Polymer Journal, 2023, 55, 507-515.	1.3	6
742	Diketopyrrolopyrrole-based conjugated polymers containing planar benzo[<i>c</i>]cinnoline and tetraazapyrene structures for high-performance and long-term stable triboelectric nanogenerators. Journal of Materials Chemistry C, 2022, 10, 17983-17993.	2.7	3
743	Improving OFFâ€State Biasâ€Stress Stability in Highâ€Mobility Conjugated Polymer Transistors with an Antisolvent Treatment. Advanced Materials, 2023, 35, .	11.1	5
744	An extended quinoid molecule based on bis(thiophene-diketopyrrolopyrrole) with balanced ambipolar semiconducting properties and strong near-infrared absorption. Organic Chemistry Frontiers, 0, , .	2.3	1
745	Organic tetraazacoronene and diazaolympicene dyes: Effects of conjugated structures and substituents on their energy levels and single-crystal stacking motifs. Dyes and Pigments, 2023, 210, 110969.	2.0	0
746	Impact of Narrowing Density of States in Semiconducting Polymers on Performance of Organic Fieldâ€Effect Transistors. Small, 2023, 19, .	5.2	4
747	Charge transport in single polymer fiber transistors in the sub-100 nm regime: temperature dependence and Coulomb blockade. JPhys Materials, 2023, 6, 015001.	1.8	2
748	Conjugated polymers based on selenophene building blocks. Polymer Journal, 2023, 55, 375-385.	1.3	9
749	Charge polarity-dependent ion-insertion asymmetry during electrochemical doping of an ambipolar Ï€-conjugated polymer. Nature Communications, 2022, 13, .	5.8	4
750	Research Progress in n-type Organic Semiconducting Materials Based on Amides or Imides. Acta Chimica Sinica, 2022, 80, 1600.	0.5	0

#	Article	IF	CITATIONS
751	<scp>Fineâ€ŧuning</scp> the backbone conformation of conjugated polymers and the influence on solution aggregation and optoelectronic properties. Journal of Polymer Science, 2023, 61, 951-958.	2.0	1
752	Effect of Molecular Weight on the Morphology of a Polymer Semiconductor–Thermoplastic Elastomer Blend. Advanced Electronic Materials, 2023, 9, .	2.6	9
753	n-Type semiconductors for organic electrochemical transistor applications. Synthetic Metals, 2023, 293, 117295.	2.1	12
754	Exceptional Electron-Rich Heteroaromatic Pentacycle for Ultralow Band Gap Conjugated Polymers and Photothermal Therapy. Journal of the American Chemical Society, 2023, 145, 5474-5485.	6.6	19
755	3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on A Conjugated Polymer Synthesized by Direct Arylation Polycondensation. Chinese Journal of Polymer Science (English Edition), 2023, 41, 824-831.	2.0	3
756	Extended Conjugation Acceptors Increase Specific Energy Densities in π-Conjugated Redox Polymers. Journal of Physical Chemistry C, 2023, 127, 5238-5245.	1.5	0
757	Chiral Diketopyrrolo[3,4â€ <i>c</i>]pyrroleâ€1,2,3â€1 <i>H</i> â€triazole Dyes with Highly Tuneable Properties in Solution and Thin Films. Chemistry - A European Journal, 2023, 29, .	1.7	2
758	Nonâ€symmetric Halfâ€Fused Bâ†N Coordinated Diketopyrrolopyrrole Building Block for nâ€type Semiconducting Polymers. Angewandte Chemie, 0, , .	1.6	0
759	Nonâ€symmetric Halfâ€Fused Bâ†N Coordinated Diketopyrrolopyrrole Building Block for <i>nâ€</i> type Semiconducting Polymers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
760	Configuration-dependent photovoltaic properties of diketopyrrolopyrrole (DPP) based Ir complexes for organic solar cells. Journal of Organometallic Chemistry, 2023, 993, 122714.	0.8	3
761	Highly Efficient nâ€Doping via Proton Abstraction of an Acceptor ₁ â€Acceptor ₂ Alternating Copolymer toward Thermoelectric Applications. Advanced Functional Materials, 2023, 33, .	7.8	2
762	Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning. ACS Applied Materials & amp; Interfaces, 2023, 15, 21537-21548.	4.0	0