Periodic Mesoporous Organosilicas: from simple to comoverview of functions, morphologies and applications

Chemical Society Reviews 42, 3913-3955

DOI: 10.1039/c2cs35222b

Citation Report

#	Article	IF	CITATIONS
1	Preparation of Palladium-Supported Periodic Mesoporous Organosilicas and their Use as Catalysts in the Suzuki Cross-Coupling Reaction. Materials, 2013, 6, 1554-1565.	2.9	22
2	Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Physical Chemistry Chemical Physics, 2013, 15, 9792.	2.8	69
3	Preparation of crystal-like periodic mesoporous phenylene-silica derivatized with ferrocene and its use as a catalyst for the oxidation of styrene. Dalton Transactions, 2013, 42, 14612.	3.3	6
4	Structural Stability of Si–C Bonds in Periodic Mesoporous Thiophene-Silicas Prepared under Acidic Conditions. Journal of Physical Chemistry C, 2013, 117, 21441-21449.	3.1	8
5	Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. Journal of Materials Chemistry C, 2013, 1, 3961.	5.5	8
6	100% thiol-functionalized ethylene PMOs prepared by "thiol acid–ene―chemistry. Chemical Communications, 2013, 49, 2344.	4.1	46
7	Helium ion microscopy: a new tool for imaging novel mesoporous silica and organosilica materials. Chemical Communications, 2013, 49, 1645.	4.1	23
8	Adsorption of the herbicide S-Metolachlor on periodic mesoporous organosilicas. Chemical Engineering Journal, 2013, 228, 205-213.	12.7	29
9	Self-Assembly of Bridged Silsesquioxanes: Modulating Structural Evolution via Cooperative Covalent and Noncovalent Interactions. Langmuir, 2013, 29, 5581-5588.	3.5	30
10	Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation. Materials, 2013, 6, 3556-3570.	2.9	21
11	A Designed 5â€Fluorouracilâ€Based Bridged Silsesquioxane as an Autonomous Acidâ€Triggered Drugâ€Delivery System. Chemistry - A European Journal, 2013, 19, 12806-12814.	3.3	14
12	Organorhodiumâ€Functionalized Periodic Mesoporous Organosilica: High Hydrophobicity Promotes Asymmetric Transfer Hydrogenation in Aqueous Medium. Chemistry - an Asian Journal, 2013, 8, 3108-3115.	3.3	27
14	A Nanospherical Ordered Mesoporous Lewis Acid Polymer for the Direct Glycosylation of Unprotected and Unactivated Sugars in Water. Angewandte Chemie - International Edition, 2014, 53, 8498-8502.	13.8	27
15	Periodic Mesoporous Organosilicas as Adsorbents of Toxic Trace Gases out of the Ambient Air. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 632-640.	1.2	25
16	Chiral periodic mesoporous copper(II) bis(oxazoline) phenyleneâ€"silica: A highly efficient and reusable asymmetric heterogeneous catalyst. Journal of Catalysis, 2014, 320, 63-69.	6.2	9
17	Monolithic silsesquioxane materials with well-defined pore structure. Journal of Materials Research, 2014, 29, 2773-2786.	2.6	27
19	Adsorption by Ordered Mesoporous Materials. , 2014, , 529-564.		7
20	Evaluation of functionalized mesoporous silicas for reverse phase high performance liquid chromatography: An application for the separation of steroids. Microchemical Journal, 2014, 114, 53-58.	4.5	10

#	ARTICLE	IF	CITATIONS
21	Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography. Journal of Colloid and Interface Science, 2014, 414, 14-23.	9.4	22
22	Stability and catalytic properties of porous acidic (organo)silica materials for conversion of carbohydrates. Journal of Molecular Catalysis A, 2014, 388-389, 81-89.	4.8	31
23	Influence of alkylene-bridging group length on mesostructure and porosity in cubic (Pm3n) periodic mesoporous bridged polysilsesquioxanes. Journal of Porous Materials, 2014, 21, 39-44.	2.6	10
24	Mesoporous, ligand free Cu-Fe solid catalyst mediated CS cross coupling of thiols with aryl halides. Applied Catalysis A: General, 2014, 476, 54-60.	4.3	18
25	Selective oxidation of alcohols with hydrogen peroxide catalyzed byÂtungstate ions (WO4=) supported on periodic mesoporous organosilica with imidazolium frameworks (PMO-IL). Tetrahedron, 2014, 70, 6114-6119.	1.9	71
26	Ruthenium on chitosan: a recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chemistry, 2014, 16, 2122.	9.0	108
27	Preparation, characterization, and highly effective mercury adsorption of <scp>l</scp> -cysteine-functionalized mesoporous silica. New Journal of Chemistry, 2014, 38, 248-254.	2.8	37
28	Evaluation of phenylene-bridged periodic mesoporous organosilica as a stationary phase for solid phase extraction. Journal of Chromatography A, 2014, 1370, 25-32.	3.7	22
29	Periodic mesoporous organosilica (PMO) for catalytic applications. Korean Journal of Chemical Engineering, 2014, 31, 1707-1719.	2.7	41
30	Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(<scp>vi</scp>). RSC Advances, 2014, 4, 32710.	3.6	135
31	Organic–inorganic light-harvesting scaffolds for luminescent hybrids. Journal of Materials Chemistry C, 2014, 2, 3055-3064.	5.5	56
32	A Siteâ€Isolated Organorutheniumâ€IOrganopalladiumâ€Bifunctionalized Periodic Mesoporous Organosilica Catalyzes Cascade Asymmetric Transfer Hydrogenation and Suzuki Crossâ€Coupling. ChemCatChem, 2014, 6, 2998-3003.	3.7	35
33	Probing framework–guest interactions in phenylene-bridged periodic mesoporous organosilica using spin-probe EPR. Physical Chemistry Chemical Physics, 2014, 16, 22623-22631.	2.8	11
34	Formation of hexagonal and cubic fluorescent periodic mesoporous organosilicas in the channels of anodic alumina membranes. Journal of Materials Chemistry C, 2014, 2, 50-55.	5 . 5	15
35	An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks. Journal of Materials Chemistry A, 2014, 2, 12403-12412.	10.3	75
36	Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metal–organic framework for interlayer dielectric materials. Journal of Materials Chemistry C, 2014, 2, 3762-3768.	5.5	64
37	Heteropoly acid and ZrO ₂ bifunctionalized organosilica hollow nanospheres for esterification and transesterification. Journal of Materials Chemistry A, 2014, 2, 14127-14138.	10.3	38
38	Mesoporous Cerium Phosphonate Nanostructured Hybrid Spheres as Label-Free Hg ²⁺ Fluorescent Probes. ACS Applied Materials & Interfaces, 2014, 6, 16344-16351.	8.0	47

3

#	Article	IF	Citations
39	Impact of Plasma Pretreatment and Pore Size on the Sealing of Ultra-Low- $\langle i \rangle k \langle j \rangle$ Dielectrics by Self-Assembled Monolayers. Langmuir, 2014, 30, 3832-3844.	3.5	28
40	Yolk–Shell Structured Mesoporous Nanoparticles with Thioether-Bridged Organosilica Frameworks. Chemistry of Materials, 2014, 26, 5980-5987.	6.7	94
41	Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions. Materials Chemistry and Physics, 2014, 148, 403-410.	4.0	10
42	Probing structural and catalytic characteristics of galactose oxidase confined in nanoscale chemical environments. RSC Advances, 2014, 4, 21939-21950.	3.6	7
43	Superhydrophobic mesoporous silica nanospheres achieved via a high level of organo-functionalization. Chemical Communications, 2014, 50, 10830.	4.1	26
44	Hybrid periodic mesoporous organosilica designed to improve the properties of immobilized enzymes. RSC Advances, 2014, 4, 34356-34368.	3.6	31
45	A General Method for Preparing Bridged Organosilanes with Pendant Functional Groups and Functional Mesoporous Organosilicas. Chemistry - A European Journal, 2014, 20, 10371-10382.	3.3	41
46	Vulcanized Ethene-PMO: A New Strategy to Create Ultrastable Support Materials and Adsorbents. Journal of Physical Chemistry C, 2014, 118, 17862-17869.	3.1	10
47	New Insights into the Microstructure-Separation Properties of Organosilica Membranes with Ethane, Ethylene, and Acetylene Bridges. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9357-9364.	8.0	69
48	Immobilized Lipase from Candida sp. 99–125 on Hydrophobic Silicate: Characterization and Applications. Applied Biochemistry and Biotechnology, 2014, 173, 1802-1814.	2.9	12
49	Synthesis of Helical and Supplementary Chirally Doped PMO Materials. Suitable Catalysts for Asymmetric Synthesis. Langmuir, 2014, 30, 881-890.	3.5	20
50	Pickering emulsion stabilized by lipase-containing periodic mesoporous organosilica particles: A robust biocatalyst system for biodiesel production. Bioresource Technology, 2014, 153, 278-283.	9.6	78
51	Periodic mesoporous organosilicas for advanced applications. NPG Asia Materials, 2014, 6, e96-e96.	7.9	163
52	Hybrid Materials – Past, Present and Future Hybrid Materials, 2014, 1, .	0.7	26
53	Novel supports in chiral stationary phase development for liquid chromatography. Preparation, characterization and application of ordered mesoporous silica particles. Journal of Chromatography A, 2014, 1363, 27-40.	3.7	43
54	Periodic Mesoporous Silica-Supported Scandium Triflate as a Robust and Reusable Lewis Acid Catalyst for Carbon–Carbon Coupling Reactions in Water. ACS Sustainable Chemistry and Engineering, 2014, 2, 486-492.	6.7	34
56	Surface Chemistry and Properties of Oxides as Catalyst Supports., 0,, 6986-6999.		0
57	Nucleophilic substitution on silica surfaces: Comparison of the reactivity of & Department of the Ceramic & Society of Japan, 2015, 123, 764-769.	1.1	5

#	ARTICLE	IF	CITATIONS
58	Block Copolymer Packing Limits and Interfacial Reconfigurability in the Assembly of Periodic Mesoporous Organosilicas. Advanced Functional Materials, 2015, 25, 4120-4128.	14.9	16
60	Electrostatic Grafting of a Palladium Nâ€Heterocyclic Carbene Catalyst on a Periodic Mesoporous Organosilica and its Application in the Suzuki–Miyaura Reaction. ChemCatChem, 2015, 7, 3513-3518.	3.7	17
61	Directional Materialsâ€"Nanoporous Organosilica Monoliths with Multiple Gradients Prepared Using Click Chemistry. Angewandte Chemie - International Edition, 2015, 54, 10465-10469.	13.8	28
62	Oneâ€Pot Preparation of Propargylamines Catalyzed by Heterogeneous Copper Catalyst Supported on Periodic Mesoporous Organosilica with Ionic Liquid Framework. ChemPlusChem, 2015, 80, 1573-1579.	2.8	30
63	Wiring functional groups in mesoporous organosilica materials. Journal of Materials Chemistry C, 2015, 3, 2195-2203.	5.5	7
64	One-pot relay reduction–isomerization of β-trifluoromethylated-α,β-unsaturated ketones to chiral β-trifluoromethylated saturated ketones over combined catalysts in aqueous medium. Green Chemistry, 2015, 17, 3916-3922.	9.0	13
65	A Facile Multi-interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres. Journal of the American Chemical Society, 2015, 137, 7935-7944.	13.7	238
66	Palladium Nanoparticles Supported in the Nanospaces of Imidazolium-Based Bifunctional PMOs: The Role of Plugs in Selectivity Changeover in Aerobic Oxidation of Alcohols. ACS Catalysis, 2015, 5, 4189-4200.	11.2	93
67	Hydrothermal Saline Promoted Grafting of Periodic Mesoporous Organic Sulfonic Acid Silicas for Sustainable FAME Production. Catalysis Letters, 2015, 145, 1483-1490.	2.6	15
68	Developing a new and versatile ordered mesoporous organosilica as a pH and temperature stable chromatographic packing material. RSC Advances, 2015, 5, 5546-5552.	3.6	25
69	Multiple scale investigation of molecular diffusion inside functionalized porous hosts using a combination of magnetic resonance methods. Physical Chemistry Chemical Physics, 2015, 17, 15976-15988.	2.8	16
70	Novel method to synthesize highly ordered ethane-bridged PMOs under mild acidic conditions: Taking advantages of phosphoric acid. Microporous and Mesoporous Materials, 2015, 207, 61-70.	4.4	6
71	Spherical \hat{l}^2 -cyclodextrin-silica hybrid materials for multifunctional chiral stationary phases. Journal of Chromatography A, 2015, 1383, 70-78.	3.7	31
72	Mesoporous Organosilica Nanoparticles Containing Superacid and Click Functionalities Leading to Cooperativity in Biocidal Coatings. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1021-1029.	8.0	37
73	Mesoporous Iron Phosphonate Electrodes with Crystalline Frameworks for Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 1082-1089.	6.7	138
74	Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews, 2015, 44, 1974-2018.	38.1	198
75	Haemolytic activity and cellular toxicity of SBA-15-type silicas: elucidating the role of the mesostructure, surface functionality and linker length. Journal of Materials Chemistry B, 2015, 3, 2714-2724.	5.8	21
76	Eu ³⁺ @PMO: synthesis, characterization and luminescence properties. Journal of Materials Chemistry C, 2015, 3, 2909-2917.	5.5	31

#	Article	IF	Citations
77	Control of plugging in bifunctional periodic mesoporous organosilica with imidazolium framework (BFPMO) via stepwise addition of silica precursors. Journal of Materials Chemistry A, 2015, 3, 6575-6585.	10.3	24
78	Evaluation of different bridged organosilicas as efficient adsorbents for the herbicide S-metolachlor. RSC Advances, 2015, 5, 24158-24166.	3.6	4
79	A flexible insulator of a hollow SiO ₂ sphere and polyimide hybrid for flexible OLEDs. Physical Chemistry Chemical Physics, 2015, 17, 2416-2420.	2.8	19
80	Amino-modified periodic mesoporous biphenylene-silica. Microporous and Mesoporous Materials, 2015, 217, 167-172.	4.4	12
81	Sonochemical synthesis of cyclophosphazene bridged mesoporous organosilicas and their application in methyl orange, congo red and Cr(<scp>vi</scp>) removal. RSC Advances, 2015, 5, 67690-67699.	3.6	35
82	Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Scientific Reports, 2015, 5, 11236.	3.3	64
83	Minute-made and low carbon fingerprint microwave synthesis of high quality templated mesoporous silica. Green Chemistry, 2015, 17, 3130-3140.	9.0	21
84	Controlling nanostructure in periodic mesoporous hexylene-bridged polysilsesquioxanes. Journal of Non-Crystalline Solids, 2015, 419, 6-11.	3.1	11
85	A "one-step―sulfonic acid PMO as a recyclable acid catalyst. Journal of Catalysis, 2015, 326, 139-148.	6.2	33
86	Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. Journal of Materials Chemistry B, 2015, 3, 3681-3684.	5.8	55
87	Tungstate Supported on Periodic Mesoporous Organosilica with Imidazolium Framework as an Efficient and Recyclable Catalyst for the Selective Oxidation of Sulfides. ChemPlusChem, 2015, 80, 990-999.	2.8	46
88	The low dielectric constant and relaxation dielectric behavior in hydrogen-bonding metal–organic frameworks. RSC Advances, 2015, 5, 45213-45216.	3.6	13
89	Mechanical Stability of Porous Low-k Dielectrics. ECS Journal of Solid State Science and Technology, 2015, 4, N3058-N3064.	1.8	40
90	Bimodal mesoporous silica with bottleneck pores. Dalton Transactions, 2015, 44, 17960-17967.	3.3	23
91	Organosilica-metallic sandwich materials as precursors for palladium and platinum nanoparticle synthesis. RSC Advances, 2015, 5, 77619-77628.	3.6	4
92	Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41. Journal of Materials Chemistry A, 2015, 3, 23809-23820.	10.3	73
93	Embedding lanthanide-functionalized polymers into hollow mesoporous silica spheres: a ship-in-a-bottle approach to luminescent hybrid materials. RSC Advances, 2015, 5, 67077-67081.	3.6	7
94	Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth. Nanoscale, 2015, 7, 19408-19412.	5.6	77

#	Article	IF	CITATIONS
95	Design and synthesis of periodic mesoporous organosilica materials with a multi-compartment structure. RSC Advances, 2015, 5, 89397-89406.	3.6	2
96	Plug and play synthesis of an organic/inorganic hybrid electrode with adjustable porosity: redox-active organosilica confined in mesoporous carbon. Journal of Materials Chemistry A, 2015, 3, 22017-22020.	10.3	5
97	Lanthanide complex-incorporated periodic mesoporous organosilica nanospheres with tunable photoluminescence. RSC Advances, 2015, 5, 83368-83376.	3.6	15
98	Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO ₂ Adsorption Performance in Silica/PEI Composite Sorbents. Langmuir, 2015, 31, 9356-9365.	3.5	26
99	Recent advances in hybrid periodic mesostructured organosilica materials: opportunities from fundamental to biomedical applications. RSC Advances, 2015, 5, 79129-79151.	3.6	35
100	Optimization of the time and temperature of the microwave-assisted amination of phenylene-PMO. RSC Advances, 2015, 5, 9208-9216.	3.6	12
101	Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale, 2015, 7, 20318-20334.	5.6	232
102	Carbon Dotâ€Incorporated PMO Nanoparticles as Versatile Platforms for the Design of Ratiometric Sensors, Multichannel Traceable Drug Delivery Vehicles, and Efficient Photocatalysts. Advanced Optical Materials, 2015, 3, 57-63.	7.3	45
103	Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catalysis Today, 2015, 243, 173-183.	4.4	48
104	A Cinchona Alkaloidâ€Functionalized Mesostructured Silica for Construction of Enriched Chiral βâ€Trifluoromethylâ€Î²â€Hydroxy Ketones over An Epoxidationâ€Relay Reduction Process. Chemistry - an Asian Journal, 2016, 11, 2072-2077.	3.3	7
105	Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic–Inorganic Hybridization into Frameworks. Advanced Materials, 2016, 28, 3235-3272.	21.0	291
106	Facile Synthesis of Yolk-Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine. Small, 2016, 12, 3550-3558.	10.0	73
107	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	3.3	46
108	Metal Complexes Supported on Solid Matrices for Visibleâ€Lightâ€Driven Molecular Transformations. Chemistry - A European Journal, 2016, 22, 11122-11137.	3.3	42
110	Heterogene molekulare Systeme für eine photokatalytische CO ₂ â€Reduktion mit Wasseroxidation. Angewandte Chemie, 2016, 128, 15146-15174.	2.0	46
111	Enantioselective tandem reaction over a site-isolated bifunctional catalyst. Chemical Communications, 2016, 52, 6005-6008.	4.1	24
112	Chiral chemistry of metal–camphorate frameworks. Chemical Society Reviews, 2016, 45, 3122-3144.	38.1	229
113	Probing the molecular character of periodic mesoporous organosilicates via photoluminescence of Lewis acid–base adducts. Physical Chemistry Chemical Physics, 2016, 18, 13746-13749.	2.8	3

#	Article	IF	CITATIONS
114	Enhanced hydrogen and methane storage of hybrid mesoporous organosilicas. Journal of Materials Chemistry A, 2016, 4, 9275-9285.	10.3	10
115	Insight into the PEG-linked bis-imidazolium bridged framework of mesoporous organosilicas as ion exchangers. Microporous and Mesoporous Materials, 2016, 230, 145-153.	4.4	17
116	Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material. Microporous and Mesoporous Materials, 2016, 236, 244-249.	4.4	9
117	Heterogeneous Molecular Systems for Photocatalytic CO ₂ Reduction with Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 14924-14950.	13.8	360
118	Periodic mesoporous organosilicas functionalized with iron(<scp>iii</scp>) complexes: preparation, characterization and catalysis on direct hydroxylation of benzene to phenol. RSC Advances, 2016, 6, 98406-98412.	3.6	10
119	An imidazolium-modified chiral rhodium/diamine-functionalized periodic mesoporous organosilica for asymmetric transfer hydrogenation of α-haloketones and benzils in aqueous medium. Green Chemistry, 2016, 18, 5651-5657.	9.0	19
120	Isocyanurate-based periodic mesoporous organosilica (PMO-ICS): a highly efficient and recoverable nanocatalyst for the one-pot synthesis of substituted imidazoles and benzimidazoles. RSC Advances, 2016, 6, 86982-86988.	3.6	43
121	Co-Condensation Assisted Preparation of MoVI Schiff Base Modified Mesoporous Silica Catalyst for Enhanced Epoxidation of Olefins. Australian Journal of Chemistry, 2016, 69, 817.	0.9	4
122	Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. Journal of the American Chemical Society, 2016, 138, 11489-11492.	13.7	262
123	Heterogeneous Ru(<scp>iii</scp>) oxidation catalysts via â€~click' bidentate ligands on a periodic mesoporous organosilica support. Green Chemistry, 2016, 18, 6035-6045.	9.0	14
124	Installing Stable Molecular Chirality within the Walls of Periodic Mesoporous Organosilicas via Self-Assembly. Chemistry of Materials, 2016, 28, 7605-7612.	6.7	8
125	Hybrid/porous materials obtained from nano-emulsions. Current Opinion in Colloid and Interface Science, 2016, 25, 75-82.	7.4	13
126	Unprecedented adsorptive removal of Cr ₂ O ₇ ^{2â^'} and methyl orange by using a low surface area organosilica. Journal of Materials Chemistry A, 2016, 4, 17866-17874.	10.3	42
127	NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS ₂ -nanosheets wrapped periodic mesoporous organosilicas. Journal of Materials Chemistry B, 2016, 4, 7708-7717.	5.8	44
128	Size and Fiber Density Controlled Synthesis of Fibrous Nanosilica Spheres (KCC-1). Scientific Reports, 2016, 6, 24888.	3.3	138
129	Insights into CO2 and CH4 Adsorption by Pristine and Aromatic Amine-Modified Periodic Mesoporous Phenylene-Silicas. Journal of Physical Chemistry C, 2016, 120, 14236-14245.	3.1	19
130	Accessible bidentate diol functionality within highly ordered composite periodic mesoporous organosilicas. New Journal of Chemistry, 2016, 40, 6487-6497.	2.8	3
131	Synthesis of Xylylene-Bridged Periodic Mesoporous Organosilicas and Related Hollow Spherical Nanoparticles. Langmuir, 2016, 32, 900-908.	3.5	18

#	Article	IF	CITATIONS
132	Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials, 2016, 91, 90-127.	11.4	224
133	Evaporation-induced Self-assembly Process Controlled for Obtaining Highly Ordered Mesoporous Materials with Demanded Morphologies. Chemical Record, 2016, 16, 445-457.	5.8	26
134	High azobenzene functionalization enhances stability of the cis isomer: Periodic mesoporous organosilica network on the way to new light triggered applicable materials. Microporous and Mesoporous Materials, 2016, 228, 30-36.	4.4	8
135	A one-step synthesis of hollow periodic mesoporous organosilica spheres with radially oriented mesochannels. Chemical Communications, 2016, 52, 3544-3547.	4.1	53
136	One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water. Journal of Materials Chemistry A, 2016, 4, 4145-4154.	10.3	34
137	Development of Ethenylene-Bridged Organosilica Membranes for Desalination Applications. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 2183-2190.	3.7	32
138	129Xenon NMR: Review of recent insights into porous materials. Microporous and Mesoporous Materials, 2016, 225, 41-65.	4.4	67
139	Zeolite-derived hybrid materials with adjustable organic pillars. Chemical Science, 2016, 7, 3589-3601.	7.4	26
140	Solid acid catalyzed synthesis of furans from carbohydrates. Catalysis Reviews - Science and Engineering, 2016, 58, 36-112.	12.9	111
141	Synthesis of cyclophosphazene bridged mesoporous organosilicas for CO 2 capture and Cr (VI) removal. Microporous and Mesoporous Materials, 2016, 219, 93-102.	4.4	43
142	Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing. Biosensors and Bioelectronics, 2016, 77, 746-751.	10.1	35
143	Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials. Colloids and Surfaces B: Biointerfaces, 2016, 137, 77-90.	5.0	31
144	Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. TrAC - Trends in Analytical Chemistry, 2017, 88, 167-184.	11.4	61
145	Yolk–shell Fe ₃ O ₄ @SiO ₂ @PMO: amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability. Green Chemistry, 2017, 19, 1336-1344.	9.0	59
146	Synthesis, functionalization and evaluation of ethylene-bridged PMOs as adsorbents for sorption dehumidification and cooling systems. Microporous and Mesoporous Materials, 2017, 244, 151-157.	4.4	14
147	Plasma induced damage mitigation in spin-on self-assembly based ultra low- k dielectrics using template residues. Applied Physics Letters, 2017, 110, .	3.3	14
148	Architecture of novel periodic mesoporous organosilicas based on the flexible skeleton of aspartic acid-bridged organosilane. Materials Letters, 2017, 193, 299-304.	2.6	6
149	Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2017, 23, 4344-4352.	3.3	30

#	Article	IF	CITATIONS
150	Evolution of block copolymer template structure during the synthesis of ordered mesoporous silica. Colloid and Polymer Science, 2017, 295, 549-554.	2.1	4
151	Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase. Journal of Materials Chemistry B, 2017, 5, 2625-2634.	5.8	27
152	Microwave-assisted N,N-dialkylation of amine-functionalized periodic mesoporous phenylene-silica: An easy and fast way to design materials. Microporous and Mesoporous Materials, 2017, 249, 10-15.	4.4	11
153	Hierarchical 3D-ordered macro-/mesoporous organosilicas with inverse opal morphology synthesized by a combination of nanocasting and pseudomorphic transformation. Journal of Materials Chemistry C, 2017, 5, 5263-5268.	5. 5	9
154	Asymmetric transfer hydrogenation–Sonogashira coupling one-pot enantioselective tandem reaction catalysed by Pd(0)–Ru(<scp>iii</scp>)/diamine-bifunctionalized periodic mesoporous organosilica. RSC Advances, 2017, 7, 22592-22598.	3 . 6	16
155	Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. Journal of Hazardous Materials, 2017, 339, 368-377.	12.4	33
156	Fluorescent chemosensors for copper(II) ion: Structure, mechanism and application. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 78-103.	11.6	142
157	Synthesis of L-serine modified benzene bridged periodic mesoporous organosilica and its catalytic performance towards aldol condensations. Microporous and Mesoporous Materials, 2017, 251, 1-8.	4.4	14
158	Redox-Responsive Polysulfide-Based Biodegradable Organosilica Nanoparticles for Delivery of Bioactive Agents. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21133-21146.	8.0	76
159	Transformation from single-mesoporous to dual-mesoporous organosilica nanoparticles. Nanoscale, 2017, 9, 6362-6369.	5 . 6	11
160	Synthesis of multiple-shelled organosilica hollow nanospheres via a dual-template method by using compressed CO 2. Microporous and Mesoporous Materials, 2017, 247, 66-74.	4.4	12
162	Impact of organic linking and terminal groups on the mechanical properties of self-assembly based low-k dielectrics. Applied Physics Letters, 2017, 111, 161906.	3.3	6
163	Propylsulfonic Acid-Anchored Isocyanurate-Based Periodic Mesoporous Organosilica (PMO-ICS-PrSO3H): A Highly Efficient and Recoverable Nanoporous Catalyst for the One-Pot Synthesis of Substituted Polyhydroquinolines. Catalysis Letters, 2017, 147, 2656-2663.	2.6	26
164	Enhancement of the photocatalytic activity of rhenium(<scp>i</scp>) complexes by encapsulation in light-harvesting soft nanotubes. Chemical Communications, 2017, 53, 10116-10119.	4.1	11
165	Leakage current induced by surfactant residues in self-assembly based ultralow-k dielectric materials. Applied Physics Letters, 2017, 111, .	3.3	8
166	Investigation on the function of nonionic surfactants during compressed CO2-mediated periodic mesoporous organosilica formation. Soft Matter, 2017, 13, 5704-5713.	2.7	9
167	Tumor Acidic Microenvironment Targeted Drug Delivery Based on pHLIP-Modified Mesoporous Organosilica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30543-30552.	8.0	54
168	Periodic Mesoporous Organosilica Films with a Tunable Steadyâ€State Mesophase. ChemPhysChem, 2017, 18, 2846-2849.	2.1	1

#	Article	IF	CITATIONS
169	On the mechanical and electrical properties of self-assembly-based organosilicate porous films. Journal of Materials Chemistry C, 2017, 5, 8599-8607.	5.5	7
170	Nickel containing ionic liquid based ordered nanoporous organosilica: a powerful and recoverable catalyst for synthesis of polyhydroquinolines. RSC Advances, 2017, 7, 54789-54796.	3.6	25
171	Chiral enantiopure organosilane precursors for the synthesis of periodic mesoporous organosilicas. Tetrahedron: Asymmetry, 2017, 28, 1675-1685.	1.8	5
172	Siloxane-based linkers in the construction of hydrogen bonded assemblies and porous 3D MOFs. Chemical Communications, 2017, 53, 12524-12527.	4.1	26
173	Phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper: An efficient nanocatalyst for clean production of polyhydroquinolines. Journal of Colloid and Interface Science, 2017, 505, 1177-1184.	9.4	22
174	A one-step method for pore expansion and enlargement of hollow cavity of hollow periodic mesoporous organosilica spheres. Journal of Materials Science, 2017, 52, 2868-2878.	3.7	15
175	Tuning component enrichment in amino acid functionalized (organo)silicas. Catalysis Communications, 2017, 88, 85-89.	3.3	10
176	Silica Membrane Application for Desalination Process. , 2017, , 181-216.		3
177	Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose. Catalysts, 2017, 7, 127.	3.5	11
178	Highly ordered Nanomaterial Functionalized Copper Schiff Base Framework: Synthesis, Characterization, and Hydrogen Peroxide Decomposition Performance. Catalysts, 2017, 7, 216.	3.5	6
179	Synthesis of novel periodic mesoporous organosilicas with large content of lysineâ€bridged organosilane skeleton. Micro and Nano Letters, 2017, 12, 1006-1010.	1.3	0
180	Gold/Periodic Mesoporous Organosilicas with Controllable Mesostructure by Using Compressed CO ₂ . Langmuir, 2018, 34, 3642-3653.	3.5	9
181	Template-Free Self-Assembly of Mesoporous Organosilicas. Chemistry of Materials, 2018, 30, 2218-2228.	6.7	8
182	Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Controlled Release, 2018, 282, 62-75.	9.9	108
183	Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. Journal of Materials Chemistry B, 2018, 6, 3865-3875.	5.8	13
184	Synergistic effect of VUV photons and F atoms on damage and etching of porous organosilicate films. Plasma Processes and Polymers, 2018, 15, 1700213.	3.0	10
185	Iridescent Chiral Nematic Mesoporous Organosilicas with Alkylene Spacers. Advanced Optical Materials, 2018, 6, 1800163.	7.3	14
186	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018, 47, 4112-4155.	38.1	117

#	Article	IF	CITATIONS
187	Sulfonated periodic-mesoporous-organosilicas column for selective separation of C $_2$ H $_2$ /CH $_4$ mixtures. Journal of Solid State Chemistry, 2018, 264, 113-118.	2.9	12
188	Swollen mixed Pluronic surfactant micelles as templates for mesoporous nanotubes with diverse bridged-organosilica frameworks. Journal of Colloid and Interface Science, 2018, 524, 445-455.	9.4	16
189	Facile and Scalable Flow-Induced Deposition of Organosilica on Porous Polymer Supports for Reverse Osmosis Desalination. ACS Applied Materials & Interfaces, 2018, 10, 14070-14078.	8.0	17
190	Aerosol-Assisted Rapid Fabrication of a Heterogeneous Organopalladium Catalyst with Hierarchical Bimodal Pores. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13914-13923.	8.0	8
191	Pendant/bridged/mesoporous silsesquioxane nanoparticles: Versatile and biocompatible platforms for smart delivery of therapeutics. Chemical Engineering Journal, 2018, 340, 125-147.	12.7	32
192	Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6055-6072.	8.0	115
193	Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6G. Research on Chemical Intermediates, 2018, 44, 4633-4640.	2.7	11
195	Modelling the self-assembly of silica-based mesoporous materials. Molecular Simulation, 2018, 44, 435-452.	2.0	16
196	Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution Catalyzed by Shell Thickness-Controlled Arenesulfonic Acid-Functionalized Ethyl-Bridged Organosilica Hollow Nanospheres. ACS Sustainable Chemistry and Engineering, 2018, 6, 3113-3123.	6.7	32
197	Upgrading of pyrolysis biofuel via esterification of acetic acid with benzyl alcohol catalyzed by BrÁnsted acidic ionic liquid functionalized ethyl-bridged organosilica hollow nanospheres. Fuel, 2018, 228, 175-186.	6.4	29
198	Surface Properties and Chemical Constitution as Crucial Parameters for the Sorption Properties of Ionosilicas: The Case of Chromate Adsorption. ACS Applied Nano Materials, 2018, 1, 2076-2087.	5.0	14
199	lon extraction applications of bilayer-structured hybrid silicas. Materials Chemistry Frontiers, 2018, 2, 1031-1039.	5.9	4
200	Hollow Mesoporous Functional Hybrid Materials: Fascinating Platforms for Advanced Applications. Advanced Functional Materials, 2018, 28, 1703814.	14.9	57
201	Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 214-221.	9.4	28
202	Periodic mesoporous organosilicas as porous matrix for heterogeneous lyophobic systems. Microporous and Mesoporous Materials, 2018, 260, 166-171.	4.4	14
203	Template-dependent hydrophobicity in mesoporous organosilica films. Microporous and Mesoporous Materials, 2018, 259, 111-115.	4.4	7
204	Tuning solid catalysts to control regioselectivity in cross aldol condensations with unsymmetrical ketones for biomass conversion. Molecular Catalysis, 2018, 458, 247-260.	2.0	12
205	Catalytic performance of surface-silylated and phenyl-bridged Ti-containing mesoporous silica for epoxidation of propylene. Microporous and Mesoporous Materials, 2018, 262, 251-257.	4.4	19

#	Article	IF	CITATIONS
206	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	7.6	415
207	Adsorption of short chain carboxylic acids from aqueous solution by swellable organically modified silica materials. Adsorption, 2018, 24, 53-63.	3.0	13
208	Silicaâ€Supported Molecular Catalysts for Tandem Reactions. ChemCatChem, 2018, 10, 1739-1752.	3.7	38
209	PMOâ€Immobilized Au ^I â€"NHC Complexes: Heterogeneous Catalysts for Sustainable Processes. ChemPhysChem, 2018, 19, 430-436.	2.1	13
210	From Molecules to Silicon-Based Biohybrid Materials by Ball Milling. ACS Sustainable Chemistry and Engineering, 2018, 6, 511-518.	6.7	15
212	Large-Pore Periodic Mesoporous Organosilicas as Advanced Bactericide Platforms. ACS Applied Bio Materials, 2018, 1, 1787-1792.	4.6	14
213	Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. The Enzymes, 2018, 43, 181-214.	1.7	25
214	Efficient H ₂ Generation Using Thiourea-based Periodic Mesoporous Organosilica with Pd Nanoparticles. Chemistry Letters, 2018, 47, 1243-1245.	1.3	27
215	Flue gas adsorption on periodic mesoporous phenylene-silica: a DFT approach. Physical Chemistry Chemical Physics, 2018, 20, 16686-16694.	2.8	15
216	Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion. Applied Catalysis B: Environmental, 2018, 236, 518-545.	20.2	100
217	Macro-mesoporous organosilica monoliths with bridged-ethylene and terminal-vinyl: High-density click functionalization for chromatographic separation. Analytica Chimica Acta, 2018, 1038, 198-205.	5.4	17
218	Mesoporous Silica Nanoparticles for Targeted and Stimuliâ€Responsive Delivery of Chemotherapeutics: A Review. Advanced Biology, 2018, 2, 1800020.	3.0	82
219	Loading Acid–Base Pairs into Periodic Mesoporous Organosilica for High Anhydrous Proton Conductivity over a Wide Operating Temperature Window. ACS Applied Energy Materials, 2018, 1, 5068-5074.	5.1	31
220	Mesoporous Polysilsesquioxanes: Preparation, Properties, and Applications. , 2018, , 3177-3211.		0
221	Facile synthesis of mesoporous organosilica nanobowls with bridged silsesquioxane framework by one-pot growth and dissolution mechanism. Journal of Colloid and Interface Science, 2018, 528, 379-388.	9.4	19
222	Effect of terminal methyl groups concentration on properties of organosilicate glass low dielectric constant films. Japanese Journal of Applied Physics, 2018, 57, 07MC01.	1.5	20
223	Synthesis of Novel Periodic Mesoporous Organosilicas Containing 1,4,5,8-Naphthalenediimides within the Pore Walls and Their Reduction To Generate Wall-Embedded Free Radicals. Langmuir, 2018, 34, 8195-8204.	3.5	14
224	Diving into the chiral pool: enantiopure microporous polysilsesquioxane spheres from both enantiomers with an oxazolidinone motif. Journal of Sol-Gel Science and Technology, 2019, 89, 148-155.	2.4	2

#	Article	IF	Citations
225	Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 2019, 107, 2643-2666.	4.0	44
226	Switchable Catalysts Used To Control Suzuki Cross-Coupling and Aza–Michael Addition/Asymmetric Transfer Hydrogenation Cascade Reactions. ACS Catalysis, 2019, 9, 8693-8701.	11.2	31
227	Charge transport mechanism in periodic mesoporous organosilica low-k dielectric. Applied Physics Letters, 2019, 115, 082904.	3.3	11
228	Layerâ€Wise Titania Growth Within Dimeric Organic Functional Group Viologen Periodic Mesoporous Organosilica as Efficient Photocatalyst for Oxidative Formic Acid Decomposition. ChemCatChem, 2019, 11, 4803-4809.	3.7	78
229	Functionalized Periodic Mesoporous Organosilica Nanoparticles for Loading and Delivery of Suramin. Inorganics, 2019, 7, 16.	2.7	5
230	General microemulsion synthesis of organic–inorganic hybrid hollow mesoporous silica spheres with enlarged pore size. New Journal of Chemistry, 2019, 43, 11164-11170.	2.8	19
231	Inorganic Salt Assisted Self-Assembly of Periodic Mesoporous Organosilicas with Various Structures under Alkaline Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 4063-4069.	2.0	3
232	Novel Thioacetal-Bridged Hollow Mesoporous Organosilica Nanoparticles with ROS-Responsive Biodegradability for Smart Drug Delivery. Nano, 2019, 14, 1950141.	1.0	3
233	Mesoporous Silica Micromotors with a Reversible Temperature Regulated On–Off Polyphosphazene Switch. Macromolecular Rapid Communications, 2019, 40, 1900328.	3.9	9
234	Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel. Frontiers in Chemistry, 2019, 7, 756.	3.6	7
236	Fractal Diffusion Limited Aggregation of Soot Particles Based on Fuzzy Membership Functions. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950073.	1.7	2
237	Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials. Journal of Materials Chemistry A, 2019, 7, 5111-5152.	10.3	103
238	Surfactant-Free Synthesis of Cyclomatrix and Linear Organosilica Phosphazene-Based Hybrid Nanoparticles. ACS Applied Nano Materials, 2019, 2, 655-660.	5.0	11
239	Independent Tailoring of Macropore and Mesopore Space in TiO ₂ Monoliths. Inorganic Chemistry, 2019, 58, 2599-2609.	4.0	7
240	Multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids as novel and efficient catalysts for heterogeneous Knoevenagel condensation. Journal of Saudi Chemical Society, 2019, 23, 740-752.	5.2	21
241	Novel and effective strategy of dual bis(trifluoromethylsulfonyl)imide imidazolium ionic liquid immobilized on periodic mesoporous organosilica for greener cycloaddition of carbon dioxide to epoxides. New Journal of Chemistry, 2019, 43, 2583-2590.	2.8	40
242	Effect of the C-bridge on UV properties of organosilicate films. Thin Solid Films, 2019, 685, 329-334.	1.8	10
243	Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials. Journal of Materials Chemistry C, 2019, 7, 8109-8119.	5.5	33

#	Article	IF	CITATIONS
244	Enhanced Thermal Stability of Low- <i>k</i> Ethyl-Bridged Organosilicas Using Laser Spike Annealing. ACS Applied Electronic Materials, 2019, 1, 1243-1250.	4.3	2
245	Polar Molecule Confinement Effects on Dielectric Modulations of Sr-Based Metal–Organic Frameworks. ACS Applied Electronic Materials, 2019, 1, 836-844.	4.3	10
246	Functionalized periodic mesoporous organosilicas: from metal free catalysis to sensing. Journal of Materials Chemistry A, 2019, 7, 14060-14069.	10.3	21
247	Millimeter-sized micellar-templated silica beads and phenylene-bridged mesoporous organosilica beads. Microporous and Mesoporous Materials, 2019, 284, 327-335.	4.4	4
248	Use of Confinement Effects in Mesoporous Materials to Build Tailored Nanoarchitectures. , 2019, , 331-348.		8
249	Structure rearrangement of periodic mesoporous organosilicas through a post-synthesis approach. Materials Letters, 2019, 245, 73-76.	2.6	2
250	Straightforward Immobilization of Phosphonic Acids and Phosphoric Acid Esters on Mesoporous Silica and Their Application in an Asymmetric Aldol Reaction. Nanomaterials, 2019, 9, 249.	4.1	16
251	Synthesis and characterization of MgO nanoparticles supported on ionic liquidâ€based periodic mesoporous organosilica (MgO@PMOâ€IL) as a highly efficient and reusable nanocatalyst for the synthesis of novel spirooxindoleâ€furan derivatives. Applied Organometallic Chemistry, 2019, 33, e4805.	3.5	24
252	A Critical Review of Solid Materials for Low-Temperature Thermochemical Storage of Solar Energy Based on Solid-Vapour Adsorption in View of Space Heating Uses. Molecules, 2019, 24, 945.	3.8	35
253	Further Understanding of the Reactivity Control of Bisphosphonates to a Metal Source for Fabricating Highly Ordered Mesoporous Films. Chemistry - A European Journal, 2019, 25, 5971-5977.	3.3	7
254	Nanothermometers based on lanthanide incorporated Periodic Mesoporous Organosilica. Journal of Materials Chemistry C, 2019, 7, 4222-4229.	5.5	22
255	Imidazolium-based mesoporous organosilicas with bridging organic groups for microextraction by packed sorbent of phenoxy acid herbicides, polycyclic aromatic hydrocarbons and chlorophenols. Mikrochimica Acta, 2019, 186, 239.	5.0	23
256	Metal barrier induced damage in self-assembly based organosilica low-k dielectrics and its reduction by organic template residues. Applied Surface Science, 2019, 485, 170-178.	6.1	7
257	Platinum(II) complexes bearing bulky Schiff base ligands anchored onto mesoporous SBAâ€15 supports as efficient catalysts for hydrosilylation. Applied Organometallic Chemistry, 2019, 33, e4874.	3.5	15
258	Synthesis and support interaction effects on the palladium nanoparticle catalyst characteristics. Advances in Catalysis, 2019, , 1-120.	0.2	12
259	Synthesis and Applications of Periodic Mesoporous Organosilicas. , 2019, , 1-25.		6
260	Facile preparation of near-infrared fluorescence and magnetic resonance dual-modality imaging probes based on mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2019, 539, 277-286.	9.4	9
261	Synthetic Routes and New Precursors for the Preparation of PMOs. Springer Series in Materials Science, 2019, , 87-100.	0.6	2

#	Article	IF	CITATIONS
262	PMOs for Adsorption. Springer Series in Materials Science, 2019, , 219-266.	0.6	1
263	Removal of S-metolachlor herbicide from aqueous solutions by meso and microporous organosilica materials. Microporous and Mesoporous Materials, 2019, 278, 35-43.	4.4	12
264	Magnetic mesoporous MCM-41 supported boric acid: A novel, efficient and ecofriendly nanocomposite. Composites Part B: Engineering, 2019, 164, 10-17.	12.0	33
265	Oneâ€Pot Synthesis and Structure Evolution of Copperâ€Containing Ethaneâ€Silica Induced by Copper Sources. ChemistrySelect, 2019, 4, 737-741.	1.5	0
266	Functionalized Periodic Mesoporous Organosilicas: Tunable Hydrophobic Solid Acids for Biomass Conversion. Molecules, 2019, 24, 239.	3.8	24
267	PMOs with a Range of Morphologies. Springer Series in Materials Science, 2019, , 101-124.	0.6	1
269	Studies on the structural diversity of MOFs containing octahedral siloxane-backboned connectors. Polyhedron, 2019, 157, 25-32.	2.2	4
270	Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications. Advanced Materials, 2019, 31, e1707612.	21.0	179
271	Dehydration of fructose to HMF in presence of (H3O)xSbxTe(2-x)O6 (x = 1, 1.1, 1.25) in H2O-MIBK. Molecular Catalysis, 2020, 481, 110276.	2.0	18
272	Recent Advances in Facile Liquid Phase Epoxidation of Light Olefins over Heterogeneous Molybdenum Catalysts. Chemical Record, 2020, 20, 230-251.	5.8	5
273	Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. Microporous and Mesoporous Materials, 2020, 291, 109687.	4.4	39
274	Stabilization of nanosized MgFe2O4 nanoparticles in phenylene-bridged KIT-6-type ordered mesoporous organosilica (PMO). Microporous and Mesoporous Materials, 2020, 293, 109783.	4.4	5
275	Merging periodic mesoporous organosilica (PMO) with mesoporous aluminosilica (Al/Si-PMO): A catalyst for green oxidation. Molecular Catalysis, 2020, 482, 110676.	2.0	33
276	Organosiloxane tunability in mesoporous organosilica and punctuated Pd nanoparticles growth; theory and experiment. Microporous and Mesoporous Materials, 2020, 293, 109832.	4.4	59
277	Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials, 2020, 30, 1906950.	14.9	62
278	Nanoporous hybrid core–shell nanoparticles for sequential release. Journal of Materials Chemistry B, 2020, 8, 776-786.	5.8	13
280	The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 1319-1333.	6.0	14
281	Periodic mesoporous organosilicas containing naphthalenediimides within the pore walls for asphaltene adsorption. Microporous and Mesoporous Materials, 2020, 294, 109909.	4.4	10

#	Article	IF	CITATIONS
282	Dynamic adsorption separation of benzene/cyclohexane mixtures on micro-mesoporous silica SBA-2. Microporous and Mesoporous Materials, 2020, 294, 109942.	4.4	20
283	Porous Macroligands: Materials for Heterogeneous Molecular Catalysis. ChemCatChem, 2020, 12, 1270-1275.	3.7	27
284	Recent Development to Explore the Use of Biodegradable Periodic Mesoporous Organosilica (BPMO) Nanomaterials for Cancer Therapy. Pharmaceutics, 2020, 12, 890.	4.5	19
285	Readily accessible mesoporous silica nanoparticles supported chiral ureaâ€amine bifunctional catalysts for enantioselective reactions. Applied Organometallic Chemistry, 2020, 34, e6015.	3.5	2
286	Strategies for development of nanoporous materials with 2D building units. Chemical Society Reviews, 2020, 49, 6039-6055.	38.1	30
287	Recent advances in preparation and application of sulfonic acid derivatives bonded to inorganic supports. Journal of the Iranian Chemical Society, 2020, 17, 3095-3178.	2.2	9
288	Inhibitor-self-gated stimuli-responsive anticorrosion system based on π-π stacking. Chemical Engineering Journal, 2020, 400, 125917.	12.7	11
289	Effective toluene adsorption over defective UiO-66-NH2: An experimental and computational exploration. Journal of Molecular Liquids, 2020, 316, 113812.	4.9	152
290	Copolymerization of Mesoporous Styreneâ∈Bridged Organosilica Nanoparticles with Functional Monomers for the Stimuliâ∈Responsive Remediation of Water. ChemSusChem, 2020, 13, 5100-5111.	6.8	6
291	Highly ordered mesoporous functionalized pyridinium protic ionic liquids framework as efficient system in esterification reactions for biofuels production. Molecular Catalysis, 2020, 498, 111238.	2.0	11
292	Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomaterialia, 2020, 114, 358-368.	8.3	62
293	Preparation of periodic mesoporous organosilica with large mesopores using silica colloidal crystals as templates. Nanoscale, 2020, 12, 21155-21164.	5.6	13
294	Mesoscale model of the synthesis of periodic mesoporous benzene-silica. Journal of Molecular Liquids, 2020, 316, 113861.	4.9	3
295	Carbamate-Isocyanurate-Bridged Periodic Mesoporous Organosilica for van der Waals CO ₂ Capture. Inorganic Chemistry, 2020, 59, 11223-11227.	4.0	25
296	Evaluation of Mechanical Properties of Porous OSG Films by PFQNM AFM and Benchmarking with Traditional Instrumentation. Langmuir, 2020, 36, 9377-9387.	3.5	23
297	Trends in Degradable Mesoporous Organosilica-Based Nanomaterials for Controlling Drug Delivery: A Mini Review. Materials, 2020, 13, 3668.	2.9	23
298	Magnetically Separable Chiral Periodic Mesoporous Organosilica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 5960.	2.5	4
299	Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 5769.	2.5	4

#	Article	IF	CITATIONS
300	Influence of Site Pairing in Hydrophobic Silica-Supported Sulfonic Acid Bifunctional Catalysts. Langmuir, 2020, 36, 13743-13751.	3.5	10
301	Synthesis and characterization of silver nanoparticles supported on highly ordered Biphenylene-Bridged Periodic Mesoporous Organosilica. IOP Conference Series: Materials Science and Engineering, 2020, 959, 012015.	0.6	O
302	Polymer-Scaffolded Synthesis of Periodic Mesoporous Organosilica Nanomaterials for Delivery Systems in Cancer Cells. ACS Biomaterials Science and Engineering, 2020, 6, 6671-6679.	5.2	5
303	Controlling Particle Morphology and Pore Size in the Synthesis of Ordered Mesoporous Materials. Molecules, 2020, 25, 4909.	3.8	14
304	Effects of Methyl Terminal and Carbon Bridging Groups Ratio on Critical Properties of Porous Organosilicate Glass Films. Materials, 2020, 13, 4484.	2.9	17
305	Platinumâ€lmidazolyl Schiff Base Complexes Immobilized in Periodic Mesoporous Organosilica Frameworks as Catalysts for Hydrosilylation. Applied Organometallic Chemistry, 2020, 34, e5697.	3.5	11
306	Major advances in the development of ordered mesoporous materials. Chemical Communications, 2020, 56, 7836-7848.	4.1	74
307	The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Advances, 2020, 10, 17327-17335.	3.6	3
308	Synthesis, characterization, and application of zinc supported on ionic liquidâ€based periodic mesoporous organosilica (Zn@PMO-IL) in A3-coupling reaction for the synthesis of propargylamines. Monatshefte FÁ⅓r Chemie, 2020, 151, 991-997.	1.8	4
309	Amidoxime-based materials for uranium recovery and removal. Journal of Materials Chemistry A, 2020, 8, 7588-7625.	10.3	234
310	Water as a tuneable solvent: a perspective. Chemical Society Reviews, 2020, 49, 2557-2569.	38.1	51
311	Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13540-13550.	8.0	44
312	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	3.7	21
313	Absorption of organic compounds by mesoporous silica discoids. Microporous and Mesoporous Materials, 2020, 306, 110379.	4.4	3
314	Thiol-Functionalized Ethylene Periodic Mesoporous Organosilica as an Efficient Scavenger for Palladium: Confirming the Homogeneous Character of the Suzuki Reaction. Materials, 2020, 13, 623.	2.9	5
315	Tailoring Bifunctional Periodic Mesoporous Organosilicas for Cooperative Catalysis. ACS Applied Nano Materials, 2020, 3, 2373-2382.	5.0	19
316	Highly porous hybrid metallosilicate materials prepared by non-hydrolytic sol-gel: Hydrothermal stability and catalytic properties in ethanol dehydration. Microporous and Mesoporous Materials, 2020, 297, 110028.	4.4	17
317	Single-template periodic mesoporous organosilica with organized bimodal mesoporosity. Microporous and Mesoporous Materials, 2020, 297, 110042.	4.4	17

#	Article	IF	Citations
318	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	9.0	138
319	Damage to porous SiCOH low- $\langle i \rangle k \langle i \rangle$ dielectrics by O, N and F atoms at lowered temperatures. Journal Physics D: Applied Physics, 2020, 53, 175203.	2.8	8
320	Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials. Materials, 2020, 13, 566.	2.9	21
321	Amine-bridged periodic mesoporous organosilica nanomaterial for efficient removal of selenate. Chemical Engineering Journal, 2020, 396, 125278.	12.7	26
322	Recent progress on functional mesoporous materials as catalysts in organic synthesis. Emergent Materials, 2020, 3, 247-266.	5.7	17
323	Deformable double-shelled hollow mesoporous organosilica nanocapsules: A multi-interfacial etching strategy. Chinese Chemical Letters, 2021, 32, 1101-1105.	9.0	5
324	Synthesis of phenylalanine and leucine dipeptide functionalized silica-based nanoporous material as a safe UV filter for sunscreen. Journal of Sol-Gel Science and Technology, 2021, 97, 466-478.	2.4	5
325	Novel periodic mesoporous organosilicas containing pyromellitimides and their application for the photodegradation of asphaltenes. Microporous and Mesoporous Materials, 2021, 312, 110740.	4.4	4
326	Controlled synthesis and osmotic properties of ionosilica nanoparticles. Microporous and Mesoporous Materials, 2021, 310, 110644.	4.4	3
327	Charge Transport Mechanism and Trap Origin in Methylâ€Terminated Organosilicate Glass Lowâ€Îº Dielectrics. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000654.	1.8	2
328	Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. Journal of Drug Targeting, 2021, 29, 131-154.	4.4	60
329	Synthesis of hybrid materials: methods and classification. , 2021, , 177-212.		1
330	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	3.3	12
331	Copper on Carbamate-Isocyanurate-Bridged Periodic Mesoporous Organosilica: An Efficient Catalyst for Sustainable and Selective Alcohol Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
332	Bipyridine-silica nanotubes with high bipyridine contents in the framework. Microporous and Mesoporous Materials, 2021, 313, 110854.	4.4	2
333	The Synthesis and Application of Functionalized Mesoporous Silica SBA-15 as Heterogeneous Catalyst in Organic Synthesis. Current Organic Chemistry, 2021, 25, 361-387.	1.6	18
334	Non-hydrolytic sol–gel as a versatile route for the preparation of hybrid heterogeneous catalysts. Journal of Sol-Gel Science and Technology, 2021, 97, 505-522.	2.4	10
335	Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanoparticles: a promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine. Journal of Nanobiotechnology, 2021, 19, 95.	9.1	9

# 336	ARTICLE Study of the light emission from Eu3+ doped nanoporous organosilicate films**Resrach supported by the National Natural Science Foundation of China (Grant No. 61874002), Natural Science Foundation	IF	CITATIONS
337	of Beijing, China (4182021) and Scientific Research Startup Foundation of North China University of Technology, 2021, , . Exploring periodic mesoporous organosilicas for ethane–ethylene adsorption–separation. Microporous and Mesoporous Materials, 2021, 317, 110975.	4.4	5
338	Synthesis and properties of porous ester-silica nanoparticles. Microporous and Mesoporous Materials, 2021, 317, 110991.	4.4	7
339	Dynamics of heterogeneous wetting in periodic hybrid nanopores. Journal of Chemical Physics, 2021, 154, 164710.	3.0	5
340	Palladium-Catalyzed (4 + 4) Annulation of Silacyclobutanes and 2-lodobiarenes to Eight-Membered Silacycles via C–H and C–Si Bond Activation. ACS Catalysis, 2021, 11, 5703-5708.	11.2	36
341	Preparation of an Ordered Nanoporous Silicone-based Material Using Silica Colloidal Crystals as a Hard Template. Chemistry Letters, 2021, 50, 1038-1040.	1.3	3
342	Polyoxometalates-based heterogeneous catalysts in acid catalysis. Science China Chemistry, 2021, 64, 1117-1130.	8.2	40
343	Structure modulation of periodic mesoporous organosilicas with organic salts. Journal of Materials Science, 2021, 56, 13590-13603.	3.7	1
344	Visible Lightâ€Promoted Aryl Azoline Formation over Mesoporous Organosilica as Heterogeneous Photocatalyst. ChemCatChem, 2021, 13, 3410-3413.	3.7	5
345	Salenâ€decorated Periodic Mesoporous Organosilica: From Metalâ€assisted Epoxidation to Metalâ€free CO 2 Insertion. Chemistry - an Asian Journal, 2021, 16, 2126-2135.	3.3	3
346	Light-harvesting photocatalysis for H2 evolution by methylacridone-bridged periodic mesoporous organosilica. Applied Catalysis B: Environmental, 2021, 287, 119965.	20.2	12
347	Self-Healing Lamellar Silsesquioxane Thin Films. ACS Applied Polymer Materials, 2021, 3, 4118-4126.	4.4	6
348	Role of Adsorbents in Treatment of Pollutants from Aqueous Medium. Oriental Journal of Chemistry, 2021, 37, 868-879.	0.3	1
349	Microstructure analysis of porous lead zirconate–titanate films. Journal of the American Ceramic Society, 2022, 105, 639.	3.8	5
350	Hydrophobic Metalâ^'Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry - A European Journal, 2021, 27, 16543-16563.	3.3	4
351	lonic liquid/Mn complex immobilized on phenylene based periodic mesoporous organosilica: An efficient and reusable nanocatalyst for green oxidation of alcohols. Applied Surface Science Advances, 2021, 5, 100099.	6.8	6
352	Application of hollow mesoporous organosilica nanoparticles as pH and redox double stimuli-responsive nanocontainer in the controlled release of corrosion inhibitor molecules. Progress in Organic Coatings, 2021, 159, 106437.	3.9	10
353	The synthetic approaches, properties, classification and heavy metal adsorption applications of periodic mesoporous organosilicas. Separation and Purification Technology, 2021, 277, 119453.	7.9	17

#	Article	IF	CITATIONS
354	Plugged bifunctional periodic mesoporous organosilica as a high-performance solid phase microextraction coating for improving extraction efficiency of chlorophenols in different matrices. Talanta, 2021, 235, 122724.	5.5	13
355	Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coordination Chemistry Reviews, 2021, 448, 214172.	18.8	38
356	Theoretical analysis of means of preventing Si–C bond cleavage during polycondensation of organosilanes to organosilicas. New Journal of Chemistry, 2021, 45, 6120-6128.	2.8	1
357	Degradable and colloidally stable zwitterionic-functionalized silica nanoparticles. Nanomedicine, 2021, 16, 85-96.	3.3	2
358	Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 as a novel and recoverable hybrid catalyst for expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction. Research on Chemical Intermediates, 2020, 46, 3891-3909.	2.7	22
359	Novel family of periodic mesoporous organosilicas containing azobenzene within the pore walls. Microporous and Mesoporous Materials, 2017, 249, 157-164.	4.4	13
360	One-pot synthesis of optically pure \hat{l}^2 -hydroxy sulfones via a heterogeneous ruthenium/diamine-promoted nucleophilic substitution-asymmetric transfer hydrogenation tandem process. Catalysis Science and Technology, 2017, 7, 4444-4450.	4.1	16
361	Effect of Bridging and Terminal Alkyl Groups on Structural and Mechanical Properties of Porous Organosilicate Films. ECS Journal of Solid State Science and Technology, 2017, 6, N182-N188.	1.8	22
362	Disiloxanes and Functionalized Silica Gels: One Route, Two Complementary Outcomesâ€"Guanidinium and Pyridinium Ion-Exchangers. PLoS ONE, 2015, 10, e0145680.	2.5	1
363	Flexible and Transparent Silica Aerogels: An Overview. Journal of the Korean Ceramic Society, 2017, 54, 184-199.	2.3	83
364	Mesoporous Polysilsesquioxanes: Preparation, Properties, and Applications., 2016,, 1-35.		1
365	Surfactant-Templated Sol-Gel Materials. , 2020, , 457-495.		O
366	Mechanical properties of nanoporous organo silicate glass films for the use in integrated circuits interconnects. AIP Conference Proceedings, 2020, , .	0.4	2
367	Pyromellitic diamide-diacid bridged mesoporous organosilica nanospheres with controllable morphologies: A novel PMO for the facile and expeditious synthesis of imidazole derivatives. Nanoscale Advances, 0, , .	4.6	13
368	Periodic mesoporous organosilicas (PMOs): From synthesis strategies to applications. Progress in Materials Science, 2022, 125, 100896.	32.8	39
369	Lanthanide–based luminescent hybrid silica materials prepared by sol-gel methodologies: a review. Journal of Sol-Gel Science and Technology, 2022, 102, 63-85.	2.4	8
370	Hybridized double-shell periodic mesoporous organosilica nanotheranostics for ultrasound imaging guided photothermal therapy. Journal of Colloid and Interface Science, 2022, 608, 2964-2972.	9.4	6
371	Supported copper on a diamide–diacid-bridged PMO: an efficient hybrid catalyst for the cascade oxidation of benzyl alcohols/Knoevenagel condensation. RSC Advances, 2021, 12, 437-450.	3.6	13

#	Article	IF	CITATIONS
372	Recent advanced development of metal-loaded mesoporous organosilicas as catalytic nanoreactors. Nanoscale Advances, 2021, 3, 6827-6868.	4.6	15
373	Cobaloxime tethered pyridine-functionalized ethylene-bridged periodic mesoporous organosilica as an efficient HER catalyst. Sustainable Energy and Fuels, 2022, 6, 398-407.	4.9	6
374	Ethane-bridge periodic mesoporous organosilica materials as a novel fiber coating in headspace solid-phase microextraction of phthalate esters from saliva and PET container samples. Analytical and Bioanalytical Chemistry, 2022, 414, 2285-2296.	3.7	3
375	Single-pot tandem oxidative/C–H modification amidation process using ultrasmall PdNP-encapsulated porous organosilica nanotubes. RSC Advances, 2022, 12, 4276-4287.	3.6	3
376	A Redoxâ€Active Microporous Organosiloxane Containing a Stable Neutral Radical, Trioxotriangulene. Chemistry - A European Journal, 2022, 28, .	3.3	3
377	Yolk–shell smart Pickering nanoreactors for base-free one-pot cascade Knoevenagel-hydrogenation with high catalytic efficiency in water. Inorganic Chemistry Frontiers, 2022, 9, 1395-1405.	6.0	5
378	Copper-complexed dipyridyl-pyridazine functionalized periodic mesoporous organosilica as a heterogeneous catalyst for styrene epoxidation. Dalton Transactions, 2022, 51, 4884-4897.	3.3	10
379	The importance, status, and perspectives of hybrid lanthanide-doped upconversion nanothermometers for theranostics. Chemical Communications, 2022, 58, 4288-4307.	4.1	17
380	Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica. Catalysts, 2022, 12, 254.	3.5	4
381	Efficient Synthesis of Dihydropyrimidines Using a Highly Ordered Mesoporous Functionalized Pyridinium Organosilica. Catalysts, 2022, 12, 350.	3.5	3
382	Recent advances in amine catalyzed aldol condensations. Catalysis Reviews - Science and Engineering, 0, , 1-83.	12.9	7
383	Sustainable synthesis of ordered mesoporous materials without additional solvents. Journal of Colloid and Interface Science, 2022, 619, 116-122.	9.4	7
384	Interfacially Superâ€Assembled Benzimidazole Derivativeâ€Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells. Chemistry - A European Journal, 2022, 28, .	3.3	5
385	Luminescent Nanorattles Based on Bipyridine Periodic Mesoporous Organosilicas for Simultaneous Thermometry and Catalysis. Chemistry of Materials, 2022, 34, 3770-3780.	6.7	6
387	Molecular recognition of catechols on the crystal-like surface of periodic mesoporous organosilica containing pyridinylethynylpyridine. Inorganic Chemistry Frontiers, 2022, 9, 3669-3678.	6.0	2
388	Hybrid agarose gel for bone substitutes. AIMS Materials Science, 2022, 9, 430-445.	1.4	0
389	Tissue engineering using scaffolds for bone reconstruction: a review of sol-gel silica materials for bone morphogenetic proteins (BMP) encapsulation and release. Journal of Sol-Gel Science and Technology, 0, , .	2.4	0
390	Synthesis of (E)-2-(1H-tetrazole-5-yl)-3-phenylacrylenenitrile derivatives catalyzed by new ZnO nanoparticles embedded in a thermally stable magnetic periodic mesoporous organosilica under green conditions. Scientific Reports, 2022, 12, .	3.3	17

#	Article	IF	CITATIONS
391	Periodic Mesoporous Organosilicas Containing Naphthalenediimides as Organic Sensitizers for Sulfadiazine Photodegradation. SSRN Electronic Journal, $0, , .$	0.4	0
392	Hybridising inorganic materials with fluorescent BOPHY dyes: A structural and optical comparative study. Frontiers in Chemistry, 0, 10 , .	3.6	0
393	Novel and sustainable carboxylation of terminal alkynes and CO2 to alkynyl carboxylic acids using triazolium ionic liquid-modified PMO-supported transition metal acetylacetonate as effective cooperative catalysts. Environmental Science and Pollution Research, 2022, 29, 83247-83261.	5.3	2
394	Modification of Porous Ultralow- <i>k</i> Film by Vacuum Ultraviolet Emission. ACS Applied Electronic Materials, 2022, 4, 2760-2776.	4.3	3
395	Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coordination Chemistry Reviews, 2022, 470, 214696.	18.8	11
396	Current status of sol–gel processing of glasses, ceramics, and organic–inorganic hybrids: a brief review. Journal of the Ceramic Society of Japan, 2022, 130, 575-583.	1.1	5
397	Influence of Surface Chemistry on the Surfactant Organization and Interfacial Structure of Mesoporous Silica and Organosilica. Journal of Physical Chemistry C, 2022, 126, 14693-14703.	3.1	1
398	Benzene bridged hybrid organosilicate films with improved stiffness and small pore size. Materials Chemistry and Physics, 2022, 290, 126571.	4.0	5
399	Coupling of CO ₂ with epoxides catalyzed by bifunctional periodic mesoporous organosilica with ionic liquid framework. Reaction Chemistry and Engineering, 0, , .	3.7	2
400	Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chemical Science, 2022, 13, 13291-13302.	7.4	9
401	Design and characterization of an urea-bridged PMO supporting Cu(II) nanoparticles as highly efficient heterogeneous catalyst for synthesis of tetrazole derivatives. Scientific Reports, 2022, 12, .	3.3	10
402	lonic Liquid-Based Periodic Mesoporous Organosilicas: Metal/Solvent-Free Synthesis of Formamides and Formamidines. Journal of Molecular Structure, 2022, , 134473.	3.6	0
403	Periodic mesoporous organosilicas containing naphthalenediimides as organic sensitizers for sulfadiazine photodegradation. Journal of Hazardous Materials, 2023, 443, 130224.	12.4	1
404	Chromatographic separation of peptides and proteins for characterization of proteomes. Chemical Communications, 2023, 59, 270-281.	4.1	2
405	Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications. TrAC - Trends in Analytical Chemistry, 2023, 158, 116895.	11.4	6
406	Ru- and Ir-complex decorated periodic mesoporous organosilicas as sensitizers for artificial photosynthesis. Dalton Transactions, 2022, 51, 18708-18721.	3.3	6
407	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	2.8	4
408	Damage to OSG lowâ€∢i>k films during IPVD deposition of the Ta barrier layer. Plasma Processes and Polymers, 2023, 20, .	3.0	1

#	Article	IF	Citations
409	Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. Environmental Pollution, 2023, 320, 121045.	7.5	14
410	Solar driven CO ₂ reduction with a molecularly engineered periodic mesoporous organosilica containing cobalt phthalocyanine. Nanoscale, 2023, 15, 2114-2121.	5.6	3
411	Synthesis of bridged-organosilica nanotubes with widely adjustable inner diameter based on temperature-dependent templating by swollen mixed surfactant micelles. Microporous and Mesoporous Materials, 2023, 349, 112433.	4.4	0
412	Influence of Crystallization on the 3D Structure of Pores in Ferroelectric PZT Films. JETP Letters, 2022, 116, 716-722.	1.4	0
413	Effect of POSS Size on the Porosity and Adsorption Performance of Hybrid Porous Polymers. Macromolecules, 2023, 56, 1243-1252.	4.8	11
414	Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: Performance and mechanisms. Journal of Hazardous Materials, 2023, 449, 131047.	12.4	8
415	WO _{<i>x</i>} /ZrO _{<i>x</i>} functionalised periodic mesoporous organosilicas as water-tolerant catalysts for carboxylic acid esterification. Sustainable Energy and Fuels, 2023, 7, 1677-1686.	4.9	1
416	Periodic Mesoporous Organosilica Nanomaterials with Unconventional Structures and Properties. Chemistry - A European Journal, 2023, 29, .	3.3	4
417	1,10-Phenanthroline-based periodic mesoporous organosilica: from its synthesis to its application in the cobalt-catalyzed alkyne hydrosilylation. RSC Advances, 2023, 13, 7828-7833.	3.6	0
418	Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules, 2023, 28, 2639.	3.8	16
419	Photocatalyzed Thiosulfonylation of Sila-enynes with Thiosulfonates. Organic Letters, 2023, 25, 2846-2851.	4.6	5
420	UV-Excited Luminescence in Porous Organosilica Films with Various Organic Components. Nanomaterials, 2023, 13, 1419.	4.1	0
421	Synthesis of double-shelled periodic mesoporous organosilica nanospheres/MIL-88A-Fe composite and its elevated performance for Pb2+ removal in water. Scientific Reports, 2023, 13, .	3.3	3
423	Pd Nanoparticles Supported on N-Incorporated Hybrid Organosilica as an Active and Selective Low-Temperature Phenol Hydrogenation Catalyst. ACS Applied Nano Materials, 0, , .	5.0	0
424	Hydroformylation of Alkenes over Phosphorous-Free Rhodium Supported on N-Doped Silica. Catalysts, 2023, 13, 818.	3.5	2
425	Acid-Resistant Luminescent Si/UiO-66-Amidoxime (AO) Nanostructures for Rapid and Efficient Recovery of U(VI): Experimental and Theoretical Studies. ACS Applied Nano Materials, 2023, 6, 8222-8237.	5.0	3
426	Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes. Heliyon, 2023, 9, e17662.	3.2	5
429	Preparation of Novel Solid Phase Extraction Sorbents for Polycyclic Aromatic Hydrocarbons (PAHs) in Aqueous Media. Molecules, 2023, 28, 6129.	3.8	1

#	ARTICLE	IF	CITATIONS
430	Pt-loaded nitrogen-doped porous carbon/silica composites derived from Pt complex-immobilized bipyridine-bridged mesoporous organosilica. Microporous and Mesoporous Materials, 2023, , 112789.	4.4	O
431	Periodic mesoporous organosilica nanoparticles: Morphology control and sorption properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677, 132325.	4.7	O
432	Challenges in porosity characterization of thin films: Cross-evaluation of different techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41, .	2.1	3
433	In situ carboxyl functionalization of hybrid organosilica reverse osmosis membranes for water desalination. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	1
434	Temperature evolution of organosilicate glass films with organic bridges. Microporous and Mesoporous Materials, 2024, 363, 112783.	4.4	0
435	Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal–organic frameworks. Chemical Society Reviews, 2023, 52, 8059-8076.	38.1	1
436	Ni-catalyzed highly regio- and stereo-selective diborylative cyclization of 1,6-enynes with diboron reagent. Science China Chemistry, 2024, 67, 981-989.	8.2	0
437	Suzukiâ€Miyaura Crossâ€Coupling Reaction Using Palladium Catalysts Supported on Phosphine Periodic Mesoporous Organosilica. Chemistry - A European Journal, 2024, 30, .	3.3	0
438	Asymmetric Monolayer Mesoporous Nanosheets of Regularly Arranged Semi-Opened Pores via a Dual-Emulsion-Directed Micelle Assembly. Journal of the American Chemical Society, 2023, 145, 27708-27717.	13.7	1
439	Challenges in scaling of IPVD deposited Ta barriers on OSG lowâ€ <i>k</i> films: Carbonization of TaÂby CH _{<i>x</i>} radicals generated through VUVâ€induced decomposition of carbonâ€containing groups. Plasma Processes and Polymers, 0, , .	3.0	0
440	Molecular, supramolecular, and macromolecular engineering at hybrid mesoporous interfaces: choose your own nanoarchitectonic adventure., 2024,, 453-517.		0
441	Kinetic Insights into Bridge Cleavage Pathways in Periodic Mesoporous Organosilicas. Small, 0, , .	10.0	0
442	Synthesis of dithioglycol-functionalized periodic mesoporous organosilicas for the simultaneous removal of mercury ions and organic dyes from water. New Journal of Chemistry, 2024, 48, 4109-4117.	2.8	0
443	A broad spectrum of electrospun organosilica membrane properties by tuning the chemical nature of the precursor building block. Materials Today Chemistry, 2024, 36, 101950.	3.5	0
444	Unravelling the structure of CO ₂ in silica adsorbents: an NMR and computational perspective. Chemical Communications, 2024, 60, 4015-4035.	4.1	0