Covalent organic frameworks (COFs): from design to ap

Chemical Society Reviews 42, 548-568 DOI: 10.1039/c2cs35072f

Citation Report

#	Article	IF	CITATIONS
1	Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake. Polymer Chemistry, 2013, 4, 4690.	1.9	136
2	A Microporous Hydrogen-Bonded Organic Framework: Exceptional Stability and Highly Selective Adsorption of Gas and Liquid. Journal of the American Chemical Society, 2013, 135, 11684-11687.	6.6	316
3	Periodic mesoporous organosilicas functionalized with a wide variety of amines for CO2 adsorption. Physical Chemistry Chemical Physics, 2013, 15, 9792.	1.3	69
4	Hydrogen storage: beyond conventional methods. Chemical Communications, 2013, 49, 8735.	2.2	417
5	Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews, 2013, 42, 8012.	18.7	1,459
6	A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chemical Communications, 2013, 49, 9773.	2.2	161
7	Naphthalene-Based Microporous Polyimides: Adsorption Behavior of CO ₂ and Toxic Organic Vapors and Their Separation from Other Gases. Journal of Physical Chemistry C, 2013, 117, 24428-24437.	1.5	59
8	Enhancement of Chemical Stability and Crystallinity in Porphyrinâ€Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angewandte Chemie - International Edition, 2013, 52, 13052-13056.	7.2	411
9	Solvothermal Synthesis of Microporous, Crystalline Covalent Organic Framework Nanofibers and Their Colorimetric Nanohybrid Structures. ACS Applied Materials & Interfaces, 2013, 5, 8845-8849.	4.0	124
10	Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 14952-14955.	6.6	433
11	Porous Poly(aryleneethynylene) Networks through Alkyne Metathesis. Chemistry of Materials, 2013, 25, 3718-3723.	3.2	42
12	White-light emitting boronate microparticles for potential use as reusable bright chemosensors in water. Chemical Communications, 2013, 49, 9869.	2.2	36
13	Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction: porosity, gas sorption, and luminescence. Journal of Materials Chemistry A, 2013, 1, 13549.	5.2	65
14	Discrete, soluble covalent organic boronate ester rectangles. Chemical Communications, 2013, 49, 6167.	2.2	17
15	Synthesis of borasiloxane-based macrocycles by multicomponent condensation reactions in solution or in a ball mill. Chemical Communications, 2013, 49, 45-47.	2.2	76
16	Topology-directed design of porous organic frameworks and their advanced applications. Chemical Communications, 2013, 49, 3925.	2.2	225
17	Luminescent microporous organic polymers containing the 1,3,5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction. Polymer Chemistry, 2013, 4, 1932.	1.9	97
18	Graphene in Light: Design, Synthesis and Applications of Photoâ€active Graphene and Graphene‣ike Materials. Small, 2013, 9, 1266-1283.	5.2	129

#	Article	IF	CITATIONS
19	From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities. Chemical Communications, 2013, 49, 3961.	2.2	217
20	Synthesis and Properties of Porous Organic Polymers from a Rigid Macrocyclic Building Block. Chinese Journal of Chemistry, 2013, 31, 577-581.	2.6	9
21	Gas adsorption by nanoporous materials: Future applications and experimental challenges. MRS Bulletin, 2013, 38, 412-421.	1.7	65
22	On-surface single molecule synthesis chemistry: a promising bottom-up approach towards functional surfaces. Nanoscale, 2013, 5, 8269.	2.8	67
23	Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation. Journal of Materials Chemistry A, 2013, 1, 14990.	5.2	192
24	Reversible Phase Transformation at the Solid–Liquid Interface: STM Reveals. Chemistry - an Asian Journal, 2013, 8, 2330-2340.	1.7	24
27	Charge induced formation of crystalline network polymers. RSC Advances, 2014, 4, 59779-59784.	1.7	18
28	Diffusion of vaporous guests into a seemingly non-porous organic crystal. Chemical Communications, 2014, 50, 15509-15512.	2.2	26
29	Insights into the Asymmetric Heterogeneous Catalysis in Porous Organic Polymers: Constructing A TADDOLâ€Embedded Chiral Catalyst for Studying the Structure–Activity Relationship [[] []] . Chemistry - A European Journal, 2014, 20, 11019-11028.	1.7	46
30	Highly Selective CO ₂ Capture by Triazine-Based Benzimidazole-Linked Polymers. Macromolecules, 2014, 47, 8328-8334.	2.2	141
31	Imineâ€Linked Covalent Organic Framework on Surface for Biosensor. Chinese Journal of Chemistry, 2014, 32, 838-843.	2.6	59
33	Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals. Nature Communications, 2014, 5, 5574.	5.8	196
34	Hypercrosslinked microporous polymers based on carbazole for gas storage and separation. RSC Advances, 2014, 4, 61051-61055.	1.7	46
35	Remarkable gas adsorption by carbonized nitrogen-rich hypercrosslinked porous organic polymers. Journal of Materials Chemistry A, 2014, 2, 15139-15145.	5.2	85
36	A Covalent Organic Framework–Cadmium Sulfide Hybrid as a Prototype Photocatalyst for Visibleâ€Lightâ€Driven Hydrogen Production. Chemistry - A European Journal, 2014, 20, 15961-15965.	1.7	217
37	Microporous Organic Polymers for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , 143-180.	0.4	3
38	A one-pot synthetic strategy via tandem Suzuki–Heck reactions for the construction of luminescent microporous organic polymers. Polymer Chemistry, 2014, 5, 471-478.	1.9	67
39	Adsorption by Metal-Organic Frameworks. , 2014, , 565-610.		13

#	Article	IF	CITATIONS
40	Functionalization of 3D covalent organic frameworks using monofunctional boronic acids. Polymer, 2014, 55, 330-334.	1.8	42
41	Preparation of microporous polymer-encapsulated Pd nanoparticles and their catalytic performance for hydrogenation and oxidation. Tetrahedron, 2014, 70, 6150-6155.	1.0	29
42	A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chemical Science, 2014, 5, 2789-2793.	3.7	847
43	Multifunctional and robust covalent organic framework–nanoparticle hybrids. Journal of Materials Chemistry A, 2014, 2, 7944-7952.	5.2	192
44	On the road towards electroactive covalent organic frameworks. Chemical Communications, 2014, 50, 5531-5546.	2.2	237
45	Positional selectivity of reversible azomethine condensation reactions at solid/liquid interfaces leading to supramolecule formation. Journal of Electroanalytical Chemistry, 2014, 716, 145-149.	1.9	13
46	Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide. Chemical Engineering Journal, 2014, 239, 399-407.	6.6	71
47	3D Microporous Baseâ€Functionalized Covalent Organic Frameworks for Sizeâ€Selective Catalysis. Angewandte Chemie - International Edition, 2014, 53, 2878-2882.	7.2	554
48	Constructing hybrid porous polymers from cubic octavinylsilsequioxane and planar halogenated benzene. Polymer Chemistry, 2014, 5, 3634-3642.	1.9	46
49	Molecular Rotors in Porous Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 1043-1047.	7.2	100
50	Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , .	0.4	19
51	Ureaâ€Based Porous Organic Frameworks: Effective Supports for Catalysis in Neat Water. Chemistry - A European Journal, 2014, 20, 3050-3060.	1.7	85
52	Mechanistic Studies of Two-Dimensional Covalent Organic Frameworks Rapidly Polymerized from Initially Homogenous Conditions. Journal of the American Chemical Society, 2014, 136, 8783-8789.	6.6	233
53	Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. Chemical Communications, 2014, 50, 788-791.	2.2	67
54	Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polymer Chemistry, 2014, 5, 3424.	1.9	112
55	Structuring adsorbents and catalysts by processing of porous powders. Journal of the European Ceramic Society, 2014, 34, 1643-1666.	2.8	264
56	A porphyrin-linked conjugated microporous polymer with selective carbon dioxide adsorption and heterogeneous organocatalytic performances. RSC Advances, 2014, 4, 6447.	1.7	61
57	Thin film fabricated from solution-dispersible porous hyperbranched conjugated polymer nanoparticles without surfactants. Nanoscale, 2014, 6, 2375.	2.8	42

#	Article	IF	CITATIONS
58	One-Step Construction of Two Different Kinds of Pores in a 2D Covalent Organic Framework. Journal of the American Chemical Society, 2014, 136, 15885-15888.	6.6	386
59	Gelation of Metalloporphyrin-Based Conjugated Microporous Polymers by Oxidative Homocoupling of Terminal Alkynes. Chemistry of Materials, 2014, 26, 6241-6250.	3.2	29
60	A covalent triazine framework as an efficient catalyst for photodegradation of methylene blue under visible light illumination. New Journal of Chemistry, 2014, 38, 5695-5699.	1.4	71
61	Robust tri(4-ethynylphenyl)amine-based porous aromatic frameworks for carbon dioxide capture. Polymer Chemistry, 2014, 5, 2266.	1.9	49
62	Designing a yolk–shell type porous organic network using a phenyl modified template. Chemical Communications, 2014, 50, 9079-9082.	2.2	16
63	Click-based porous organic framework containing chelating terdentate units and its application in hydrogenation of olefins. Journal of Materials Chemistry A, 2014, 2, 7502-7508.	5.2	30
64	Rational synthesis of bis(hexyloxy)-tetra(hydroxy)-triphenylenes and their derivatives. RSC Advances, 2014, 4, 38281-38292.	1.7	3
65	A highly efficient catalyst for Suzuki–Miyaura coupling reaction of benzyl chloride under mild conditions. RSC Advances, 2014, 4, 36437-36443.	1.7	24
66	Growth of boronic acid based two-dimensional covalent networks on a metal surface under ultrahigh vacuum. Chemical Communications, 2014, 50, 9627-9635.	2.2	64
68	A Tetrathiafulvaleneâ€Based Electroactive Covalent Organic Framework. Chemistry - A European Journal, 2014, 20, 14614-14618.	1.7	143
69	A Review on Robustness of Covalent Organic Polymers for CO ₂ Capture. Applied Mechanics and Materials, 0, 625, 237-240.	0.2	6
70	High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 8054-8059.	5.2	160
71	Hybrid porous polymers constructed from octavinylsilsesquioxane and benzene via Friedel–Crafts reaction: tunable porosity, gas sorption, and postfunctionalization. Journal of Materials Chemistry A, 2014, 2, 2160-2167.	5.2	68
72	Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction. RSC Advances, 2014, 4, 51544-51547.	1.7	59
73	Construction and adsorption properties of porous aromatic frameworks via AlCl ₃ -triggered coupling polymerization. Journal of Materials Chemistry A, 2014, 2, 11091-11098.	5.2	86
74	A facile approach to prepare porphyrinic porous aromatic frameworks for small hydrocarbon separation. Journal of Materials Chemistry A, 2014, 2, 14536-14541.	5.2	82
75	A combined experimental-computational study of benzoxaborole crystal structures. CrystEngComm, 2014, 16, 4999.	1.3	27
76	A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water. Journal of Materials Chemistry A, 2014, 2, 15846-15852.	5.2	44

#	Article	IF	CITATIONS
77	Exceptional CO ₂ Adsorbing Materials under Different Conditions. Chemical Record, 2014, 14, 1134-1148.	2.9	29
78	A fluorene based covalent triazine framework with high CO ₂ and H ₂ capture and storage capacities. Journal of Materials Chemistry A, 2014, 2, 5928-5936.	5.2	159
79	Nanoporous covalent organic polymers incorporating Tröger's base functionalities for enhanced CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 12507.	5.2	90
80	Metallosalen-based microporous organic polymers: synthesis and carbon dioxide uptake. RSC Advances, 2014, 4, 37767-37772.	1.7	14
81	Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules, 2014, 47, 2875-2882.	2.2	108
82	Au-NHC@Porous Organic Polymers: Synthetic Control and Its Catalytic Application in Alkyne Hydration Reactions. ACS Catalysis, 2014, 4, 321-327.	5.5	124
83	Mesoporous Conjugated Polycarbazole with High Porosity via Structure Tuning. Macromolecules, 2014, 47, 5926-5931.	2.2	110
84	Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. Macromolecules, 2014, 47, 4607-4614.	2.2	109
85	A dynamic covalent imine gel as a luminescent sensor. Chemical Communications, 2014, 50, 11942-11945.	2.2	56
86	Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nature Communications, 2014, 5, 5040.	5.8	289
87	A Robust Binary Supramolecular Organic Framework (SOF) with High CO ₂ Adsorption and Selectivity. Journal of the American Chemical Society, 2014, 136, 12828-12831.	6.6	287
88	Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Communications, 2014, 5, 4503.	5.8	535
89	Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chemical Society Reviews, 2014, 43, 5952-5981.	18.7	204
90	Rational Design and Synthesis of Porous Polymer Networks: Toward High Surface Area. Chemistry of Materials, 2014, 26, 4589-4597.	3.2	66
91	A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications, 2014, 50, 13825-13828.	2.2	351
92	Hydrogen storage in nanoporous materials. , 2014, , 410-450.		2
93	Modeling the selectivity of indoor pollution gases over N2 on covalent organic frameworks. Journal of Molecular Modeling, 2014, 20, 2346.	0.8	6
94	Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers. Accounts of Chemical Research, 2014, 47, 1575-1586.	7.6	406

#	Article	IF	CITATIONS
96	Arranging Fullerenes through Hydrogen Bonding. European Journal of Organic Chemistry, 2014, 2014, 523-528.	1.2	12
97	Oriented Thin Films of a Benzodithiophene Covalent Organic Framework. ACS Nano, 2014, 8, 4042-4052.	7.3	188
98	Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine. Journal of Materials Chemistry A, 2014, 2, 13245-13249.	5.2	92
99	Vibrational Properties of Boroxine Anhydride and Boronate Ester Materials: Model Systems for the Diagnostic Characterization of Covalent Organic Frameworks. Chemistry of Materials, 2014, 26, 3781-3795.	3.2	117
100	Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polymer Chemistry, 2014, 5, 4521.	1.9	74
101	Reversible tuning of pore size and CO ₂ adsorption in azobenzene functionalized porous organic polymers. Chemical Science, 2014, 5, 4957-4961.	3.7	106
102	Revealing the structure–property relationship of covalent organic frameworks for CO ₂ capture from postcombustion gas: a multi-scale computational study. Physical Chemistry Chemical Physics, 2014, 16, 15189-15198.	1.3	69
103	Diamondoid Hydrazones and Hydrazides: Sterically Demanding Ligands for Sn/S Cluster Design. Organometallics, 2014, 33, 1678-1688.	1.1	30
104	Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer. Journal of Materials Chemistry A, 2014, 2, 13422-13430.	5.2	138
105	Functional materials derived from open framework templates/precursors: synthesis and applications. Energy and Environmental Science, 2014, 7, 2071.	15.6	619
106	Centrotriindane- and triptindane-based polymers of intrinsic microporosity. Polymer, 2014, 55, 326-329.	1.8	23
107	Effect of cooperative non-covalent interactions on the solid state heterochiral self-assembly: The concepts of isotactic and syndiotactic arrangements in coordination complex. Inorganica Chimica Acta, 2014, 410, 156-170.	1.2	14
108	Hexaphenylâ€ <i>p</i> â€xylene: A Rigid Pseudoâ€Octahedral Core at the Service of Threeâ€Dimensional Porous Frameworks. ChemPlusChem, 2014, 79, 1176-1182.	1.3	8
109	Facile Fabrication of Ultrafine Palladium Nanoparticles with Size- and Location-Control in Click-Based Porous Organic Polymers. ACS Nano, 2014, 8, 5352-5364.	7.3	147
110	Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8854-8858.	5.2	229
111	Porous polyimides from polycyclic aromatic linkers: Selective CO2 capture and hydrogen storage. Polymer, 2014, 55, 1452-1458.	1.8	37
112	Stereoselective Photopolymerization of Tetraphenylporphyrin Derivatives on Ag(110) at the Subâ€Monolayer Level. Chemistry - A European Journal, 2014, 20, 14296-14304.	1.7	35
114	A Highlyâ€Ordered 3D Covalent Fullerene Framework. Angewandte Chemie - International Edition, 2015, 54, 7577-7581.	7.2	19

	Citation R	EPORT	
ARTICLE Room-temperature Synthesis of a Covalent Organic Framework with Enhanced Surface Thermal Stability and Application to Nitrogen-doped Graphite Synthesis. Chemistry Let	e Area and ters 2015 44	IF 0.7	CITATIONS 23
1488-1490. Copperâ€Modified Covalent Triazine Frameworks as Nonâ€Nobleâ€Metal Electrocataly Reduction. Angewandte Chemie - International Edition, 2015, 54, 11068-11072.		7.2	237
Thiophene, Selenophene, and Telluropheneâ€based Threeâ€Dimensional Organic Fram Chemie - International Edition, 2015, 54, 9361-9366. Direct Onâ€6urface Patterning of a Crystalline Laminar Covalent Organic Framework S	, in the second s	7.2	47
Room Temperature. Chemistry - A European Journal, 2015, 21, 10666-10670. Magnetic Properties of a Bottomâ€Up Synthesis Analogous Graphene with Nâ€Doped Advanced Electronic Materials, 2015, 1, 1500084.		1.7 2.6	131 6
Porphyrin Boxes: Rationally Designed Porous Organic Cages. Angewandte Chemie - Int Edition, 2015, 54, 13241-13244.	ernational	7.2	161
An Azine‣inked Covalent Organic Framework: Synthesis, Characterization and Effici Chemistry - A European Journal, 2015, 21, 12079-12084.	ent Gas Storage.	1.7	197
Triarylboronâ€Linked Conjugated Microporous Polymers: Sensing and Removal of Fluo Chemistry - A European Journal, 2015, 21, 17355-17362.	ride lons.	1.7	107
Synthesis of a Sulfonated Twoâ€Dimensional Covalent Organic Framework as an Effici Catalyst for Biobased Chemical Conversion. ChemSusChem, 2015, 8, 3208-3212.	ent Solid Acid	3.6	163
Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Morphological Aspects. Molecules, 2015, 20, 18661-18684.	Media:	1.7	20
Covalently Linked Organic Networks. Frontiers in Materials, 2015, 2, .		1.2	6

132	Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials. Journal of Nanomaterials, 2015, 2015, 1-18.	1.5	69
133	The effect of molecular weight on the porosity of hypercrosslinked polystyrene. Polymer Chemistry, 2015, 6, 7280-7285.	1.9	26
134	Highly porous aerogels based on imine chemistry: syntheses and sorption properties. Journal of Materials Chemistry A, 2015, 3, 10990-10998.	5.2	56
135	Microporous covalent triazine polymers: efficient Friedel–Crafts synthesis and adsorption/storage of CO ₂ and CH ₄ . Journal of Materials Chemistry A, 2015, 3, 6792-6797.	5.2	160
136	Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers. Chemistry of Materials, 2015, 27, 4149-4155.	3.2	60
137	Carbon- and Nitrogen-Based Organic Frameworks. Accounts of Chemical Research, 2015, 48, 1591-1600.	7.6	215
138	Self-Assembly of Nanometer-Sized Boroxine Cages from Diboronic Acids. Journal of the American Chemical Society, 2015, 137, 7015-7018.	6.6	86

#

115

120

122

126

128

131

#	Article	IF	CITATIONS
139	The continuing story of the diammoniate of diborane. Journal of Organometallic Chemistry, 2015, 798, 24-29.	0.8	26
140	[3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO ₂ uptake and nitroaromatic sensing. Journal of Materials Chemistry C, 2015, 3, 7159-7171.	2.7	135
141	PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage. Scientific Reports, 2015, 5, 8307.	1.6	28
142	Hydrogen Bonding in Supramolecular Crystal Engineering. Lecture Notes in Quantum Chemistry II, 2015, , 69-113.	0.3	6
143	Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening. Journal of the American Chemical Society, 2015, 137, 7079-7082.	6.6	351
144	In Situ Synthesis of Covalent Organic Frameworks (COFs) on Carbon Nanotubes and Graphenes by Sonochemical Reaction for CO2 Adsorbents. Chemistry Letters, 2015, 44, 560-562.	0.7	26
145	A DFT/TDDFT mission to probe push–pull vinyl coupled thiophene oligomers for optoelectronic applications. RSC Advances, 2015, 5, 50353-50364.	1.7	22
146	Task-Specific Design of Porous Polymer Heterogeneous Catalysts beyond Homogeneous Counterparts. ACS Catalysis, 2015, 5, 4556-4567.	5.5	152
147	Discovery of the <i>K</i> ₄ Structure Formed by a Triangular π Radical Anion. Journal of the American Chemical Society, 2015, 137, 7612-7615.	6.6	37
148	Nitrogen-Rich Covalent Triazine Frameworks as High-Performance Platforms for Selective Carbon Capture and Storage. Chemistry of Materials, 2015, 27, 8001-8010.	3.2	228
149	Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale, 2015, 7, 1566-1585.	2.8	106
150	Bifunctionalized conjugated microporous polymers for carbon dioxide capture. Polymer, 2015, 61, 36-41.	1.8	53
151	A Kinetic Monte Carlo Study of Fullerene Adsorption within a Pc-PBBA Covalent Organic Framework and Implications for Electron Transport. Journal of Chemical Theory and Computation, 2015, 11, 1172-1180.	2.3	11
152	An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochemistry Communications, 2015, 52, 53-57.	2.3	103
153	Synthesis and characterization of di-, tri- and tetraboronic acids based on phenyl- and thienylsilane cores. Journal of Organometallic Chemistry, 2015, 783, 1-9.	0.8	6
154	Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films. ACS Nano, 2015, 9, 3178-3183.	7.3	318
155	Two-Dimensional and Related Polymers: Concepts, Synthesis, and their Potential Application as Separation Membrane Materials. Polymer Reviews, 2015, 55, 57-89.	5.3	48
156	Metal–organic Kagome lattices M ₃ (2,3,6,7,10,11-hexaiminotriphenylene) ₂ (M =) T Physics, 2015, 17, 5954-5958.	j ETQq1 1 (1.3).784314 rg <mark>8</mark> 108

#	Article	IF	CITATIONS
157	High adsorptive properties of covalent triazine-based frameworks (CTFs) for surfactants from aqueous solution. Chemical Communications, 2015, 51, 484-486.	2.2	68
158	Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polymer Chemistry, 2015, 6, 1896-1911.	1.9	189
159	High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. Journal of the American Chemical Society, 2015, 137, 913-918.	6.6	238
160	Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Advances, 2015, 5, 8933-8937.	1.7	40
161	Highly porous and photoluminescent pyrene-quinoxaline-derived benzimidazole-linked polymers. Journal of Materials Chemistry A, 2015, 3, 3006-3010.	5.2	16
162	Nanoporous hypercrosslinked polymers containing Tg enhancing comonomers. Polymer, 2015, 59, 42-48.	1.8	18
163	The Organic Flatland—Recent Advances in Synthetic 2D Organic Layers. Advanced Materials, 2015, 27, 5762-5770.	11.1	162
164	Synthetic Control of Pore Properties in Conjugated Microporous Polymers Based on Carbazole Building Blocks. Macromolecular Chemistry and Physics, 2015, 216, 504-510.	1.1	26
165	Surface confined synthesis of porphyrin containing two-dimensional polymers: the effect of rigidity and preferential adsorption of building blocks. Chemical Communications, 2015, 51, 5864-5867.	2.2	23
166	Conjugated microporous copolymer networks with enhanced gas adsorption. Polymer Chemistry, 2015, 6, 3217-3223.	1.9	50
167	3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media. ACS Applied Materials & Interfaces, 2015, 7, 17837-17843.	4.0	112
168	Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. Journal of Materials Chemistry C, 2015, 3, 8490-8494.	2.7	103
169	Mono- and tri-β-substituted unsymmetrical metalloporphyrins: synthesis, structural, spectral and electrochemical properties. RSC Advances, 2015, 5, 66824-66832.	1.7	16
170	Synthesis and Electrical Properties of Covalent Organic Frameworks with Heavy Chalcogens. Chemistry of Materials, 2015, 27, 5487-5490.	3.2	91
171	Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. Journal of Materials Chemistry A, 2015, 3, 19615-19637.	5.2	131
172	The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO ₂ capacity. Chemical Communications, 2015, 51, 12178-12181.	2.2	256
173	Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst. Scientific Reports, 2015, 5, 10621.	1.6	60
174	Pd loaded amphiphilic COF as catalyst for multi-fold Heck reactions, C-C couplings and CO oxidation. Scientific Reports, 2015, 5, 10876.	1.6	112

#	Article	IF	CITATIONS
175	Homochiral Porous Organic Cage with High Selectivity for the Separation of Racemates in Gas Chromatography. Analytical Chemistry, 2015, 87, 7817-7824.	3.2	121
176	One-pot approach to Pd-loaded porous polymers with properties tunable by the oxidation state of the phosphorus core. Polymer Chemistry, 2015, 6, 6351-6357.	1.9	29
177	Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nature Communications, 2015, 6, 7786.	5.8	274
178	Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chemical Communications, 2015, 51, 12254-12257.	2.2	232
179	3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. Journal of the American Chemical Society, 2015, 137, 8352-8355.	6.6	838
180	Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Scientific Reports, 2015, 5, 11236.	1.6	64
181	Reversely swellable porphyrin-linked microporous polyimide networks with super-adsorption for volatile organic compounds. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1125-1132.	2.0	7
182	Synthesis of a conjugated porous Co(<scp>ii</scp>) porphyrinylene–ethynylene framework through alkyne metathesis and its catalytic activity study. Journal of Materials Chemistry A, 2015, 3, 4954-4959.	5.2	89
183	Copper phthalocyanine-based CMPs with various internal structures and functionalities. Chemical Communications, 2015, 51, 12783-12786.	2.2	32
184	Thermo-processable covalent scaffolds with reticular hierarchical porosity and their high efficiency capture of carbon dioxide. Journal of Materials Chemistry A, 2015, 3, 14871-14875.	5.2	8
185	Supramolecular organic frameworks of a Schiff base showing selective guest adsorption. Journal of Applied Crystallography, 2015, 48, 909-912.	1.9	0
186	A triazine-based covalent organic framework/palladium hybrid for one-pot silicon-based cross-coupling of silanes and aryl iodides. RSC Advances, 2015, 5, 41017-41024.	1.7	51
187	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	11.1	231
188	Synthesis of a porphyrinic polymer for highly efficient oxidation of arylalkanes in water. Catalysis Communications, 2015, 66, 116-120.	1.6	9
189	polyMOFs: A Class of Interconvertible Polymerâ€Metalâ€Organicâ€Framework Hybrid Materials. Angewandte Chemie - International Edition, 2015, 54, 6152-6157.	7.2	200
190	Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations. Microporous and Mesoporous Materials, 2015, 210, 142-148.	2.2	46
191	Phosphomolybdic acid functionalized covalent organic frameworks: Structure characterization and catalytic properties in olefin epoxidation. Microporous and Mesoporous Materials, 2015, 213, 59-67.	2.2	70
192	Metallophthalocyanineâ€Based Conjugated Microporous Polymers as Highly Efficient Photosensitizers for Singlet Oxygen Generation. Angewandte Chemie - International Edition, 2015, 54, 6536-6539.	7.2	213

#	Article	IF	CITATIONS
193	Microporous carbonaceous adsorbents for CO ₂ separation via selective adsorption. RSC Advances, 2015, 5, 30310-30330.	1.7	119
194	Principles for the Synthesis of Porous Organic Frameworks. Springer Briefs in Molecular Science, 2015, , 13-42.	0.1	2
195	Main-Chain Organic Frameworks with Advanced Catalytic Functionalities. ACS Catalysis, 2015, 5, 2681-2691.	5.5	86
196	The Dynamic Assembly of Covalent Organic Polygons: Finding the Optimal Balance of Solubility, Functionality, and Stability. European Journal of Organic Chemistry, 2015, 2015, 2928-2941.	1.2	9
197	Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chemical Communications, 2015, 51, 7532-7535.	2.2	127
198	Effect of Acid-Catalyzed Formation Rates of Benzimidazole-Linked Polymers on Porosity and Selective CO ₂ Capture from Gas Mixtures. Environmental Science & Technology, 2015, 49, 4715-4723.	4.6	41
199	Strategies to enhance CO ₂ capture and separation based on engineering absorbent materials. Journal of Materials Chemistry A, 2015, 3, 12118-12132.	5.2	98
200	Introduction to Porous Materials. Springer Briefs in Molecular Science, 2015, , 1-11.	0.1	1
201	Chemical sensing in two dimensional porous covalent organic nanosheets. Chemical Science, 2015, 6, 3931-3939.	3.7	504
202	Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chemical Science, 2015, 6, 4049-4053.	3.7	118
203	Organic polymers form fuel from water. Nature, 2015, 521, 41-42.	13.7	76
204	Targeted synthesis of porous aromatic frameworks with stimuli-responsive adsorption properties. Science China Materials, 2015, 58, 38-43.	3.5	13
205	Conjugated microporous polymers with chiral BINAP ligand built-in as efficient catalysts for asymmetric hydrogenation. Catalysis Science and Technology, 2015, 5, 2585-2589.	2.1	40
206	Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. Journal of Materials Chemistry C, 2015, 3, 2244-2254.	2.7	18
207	Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes. RSC Advances, 2015, 5, 27290-27294.	1.7	81
208	Solution and air stable host/guest architectures from a single layer covalent organic framework. Chemical Communications, 2015, 51, 16510-16513.	2.2	48
209	A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications, 2015, 6, 8508.	5.8	940
210	Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chemistry, 2015, 7, 905-912.	6.6	1,206

#	Article	IF	CITATIONS
211	Surface growth of highly oriented covalent organic framework thin film with enhanced photoresponse speed. RSC Advances, 2015, 5, 92573-92576.	1.7	28
212	Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. Journal of Materials Chemistry A, 2015, 3, 24422-24427.	5.2	91
213	Multi-hydroxyl-containing porous organic polymers based on phenol formaldehyde resin chemistry with high carbon dioxide capture capacity. RSC Advances, 2015, 5, 71095-71101.	1.7	23
214	Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared. Journal of Chemical Physics, 2015, 142, 244706.	1.2	11
215	Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chemical Communications, 2015, 51, 14921-14924.	2.2	127
216	Geminal Cross-Coupling of 1,1-Dibromoolefins Facilitating Multiple Topological π-Conjugated Tetraarylethenes. Macromolecules, 2015, 48, 7823-7835.	2.2	33
217	Substrate Orientation Effect in the On-Surface Synthesis of Tetrathiafulvalene-Integrated Single-Layer Covalent Organic Frameworks. Langmuir, 2015, 31, 11755-11759.	1.6	36
218	Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures. Journal of the American Chemical Society, 2015, 137, 13772-13775.	6.6	148
219	A Triptyceneâ€Based Porous Organic Polymer that Exhibited High Hydrogen and Carbon Dioxide Storage Capacities and Excellent CO ₂ /N ₂ Selectivity. Chinese Journal of Chemistry, 2015, 33, 539-544.	2.6	8
220	Preparation of microporous polymers in the form of particles and a thin film from hyperbranched polyphenylenes. Journal of Polymer Science Part A, 2015, 53, 2336-2342.	2.5	8
221	A Porous Tricyclooxacalixarene Cage Based on Tetraphenylethylene. Angewandte Chemie - International Edition, 2015, 54, 9244-9248.	7.2	127
222	Triptycene based 1,2,3-triazole linked network polymers (TNPs): small gas storage and selective CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 23577-23586.	5.2	60
223	One-Pot Preparation of Monolithic Molecular Separation Membranes with Sub-10 nm Reticulated Pores Using Concentration-Polarization-Induced Gelation of Covalent Network Nanoparticles. ACS Macro Letters, 2015, 4, 991-995.	2.3	4
224	A novel 3D covalent organic framework membrane grown on a porous α-Al ₂ O ₃ substrate under solvothermal conditions. Chemical Communications, 2015, 51, 15562-15565.	2.2	121
225	Synthesis of covalent triazine-based frameworks with high CO ₂ adsorption and selectivity. Polymer Chemistry, 2015, 6, 7410-7417.	1.9	108
226	Nitrogen–boron coordination versus OH⋯N hydrogen bonding in pyridoxaboroles – aza analogues of benzoxaboroles. Dalton Transactions, 2015, 44, 16534-16546.	1.6	13
228	Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. Journal of Materials Chemistry C, 2015, 3, 10066-10069.	2.7	103
229	Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment. Macromolecules, 2015, 48, 8509-8514.	2.2	178

#	Article	IF	CITATIONS
230	lsoindigo-based microporous organic polymers for carbon dioxide capture. RSC Advances, 2015, 5, 100322-100329.	1.7	19
231	Facile synthesis of porous organic polymers bifunctionalized with azo and porphyrin groups. RSC Advances, 2015, 5, 98508-98513.	1.7	23
232	Construction of Sole Benzene Ring Porous Aromatic Frameworks and Their High Adsorption Properties. ACS Applied Materials & Interfaces, 2015, 7, 201-208.	4.0	59
233	Synthesis of Microporous Nitrogenâ€Rich Covalentâ€Organic Framework and Its Application in CO ₂ Capture. Chinese Journal of Chemistry, 2015, 33, 90-94.	2.6	67
234	A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium. Journal of Colloid and Interface Science, 2015, 437, 211-218.	5.0	153
235	Structural Evolution of 2D Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors. Journal of the American Chemical Society, 2015, 137, 219-225.	6.6	390
236	Orthoester exchange: a tripodal tool for dynamic covalent and systems chemistry. Chemical Science, 2015, 6, 1399-1403.	3.7	53
238	Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Research, 2015, 8, 709-721.	5.8	52
239	Hierarchical supramolecules and organization using boronic acid building blocks. Chemical Communications, 2015, 51, 2005-2020.	2.2	131
240	Palladium catalyst coordinated in knitting N-heterocyclic carbene porous polymers for efficient Suzuki–Miyaura coupling reactions. Journal of Materials Chemistry A, 2015, 3, 1272-1278.	5.2	155
241	A rational construction of microporous imide-bridged covalent–organic polytriazines for high-enthalpy small gas absorption. Journal of Materials Chemistry A, 2015, 3, 878-885.	5.2	81
242	Towards High Water Permeability in Triazineâ€Frameworkâ€Based Microporous Membranes for Dehydration of Ethanol. ChemSusChem, 2015, 8, 138-147.	3.6	39
243	Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chemical Communications, 2015, 51, 310-313.	2.2	195
244	Bottom-up approach to engineer two covalent porphyrinic frameworks as effective catalysts for selective oxidation. Catalysis Science and Technology, 2015, 5, 101-104.	2.1	49
245	Twoâ€Dimensional Soft Nanomaterials: A Fascinating World of Materials. Advanced Materials, 2015, 27, 403-427.	11.1	437
246	Coordination Polymers Based on Alkylboronate Ligands: Synthesis, Characterization, and Computational Modelling. European Journal of Inorganic Chemistry, 2015, 2015, 1182-1191.	1.0	9
247	Octavinylsilsesquioxane-based luminescent nanoporous inorganic–organic hybrid polymers constructed by the Heck coupling reaction. Polymer Chemistry, 2015, 6, 917-924.	1.9	51
248	Coordination Networks Based on Boronate and Benzoxaborolate Ligands. Crystals, 2016, 6, 48.	1.0	8

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
249	Recent Advances in Boron-Containing Conjugated Porous Polymers. Polymers, 2016, 8	, 191.	2.0	30
250	Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Separations. Processes, 2016, 4, 32.	Gas	1.3	42
251	Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Or Frameworks (COFs). Chemistry of Materials, 2016, 28, 5095-5101.	ganic	3.2	228
252	Palladium Nanoparticles Supported on a Porous Organic Polymer: An Efficient Catalyst Suzukiâ€Miyaura and Sonogashira Coupling Reactions. Chinese Journal of Chemistry, 2		2.6	21
253	Hypercrosslinked polymers incorporated with imidazolium salts for enhancing CO <sub 2016,="" 56,="" 573-582.<="" and="" capture.="" engineering="" polymer="" science,="" td=""><td>>2</td></sub>	>2	1.5	22
254	Sulfurâ€Enriched Conjugated Polymer Nanosheet Derived Sulfur and Nitrogen coâ€Do Nanosheets as Electrocatalysts for Oxygen Reduction Reaction and Zinc–Air Battery. Functional Materials, 2016, 26, 5893-5902.		7.8	214
255	Carbon Nanomembranes. Advanced Materials, 2016, 28, 6075-6103.		11.1	133
256	Organic–Inorganic Hybrid Metal Phosphonates as Recyclable Heterogeneous Catalys 2016, 8, 1607-1616.	ts. ChemCatChem,	1.8	45
257	Nâ€Modified Carbonâ€Based Materials: Nanoscience for Catalysis. Chemical Record, 20	016, 16, 2187-2197.	2.9	10
258	Undulated 2D Covalent Organic Frameworks Based on Bowlâ€Shaped Cyclotricatechyl Journal of Chemistry, 2016, 34, 783-787.	ene. Chinese	2.6	13
259	Facile Uptake and Release of Ammonia by Nickel Halide Ammines. ChemSusChem, 201	6, 9, 1312-1321.	3.6	8
260	Covalent Organic Frameworks for CO2Capture. Advanced Materials, 2016, 28, 2855-28	873.	11.1	873
261	A Photoresponsive Surface Covalent Organic Framework: Surfaceâ€Confined Synthesis and Controlled Guest Capture and Release. Chemistry - A European Journal, 2016, 22, 6	s, Isomerization, 5768-6773.	1.7	79
262	Imidazolium-Based Porous Organic Polymers: Anion Exchange-Driven Capture and Lum of Cr ₂ O ₇ ^{2–} . ACS Applied Materials & Int 18904-18911.	nescent Probe cerfaces, 2016, 8,	4.0	105
263	Catalytic properties of N-hydroxyphthalimide immobilized on a novel porous organic po oxidation of toluene by molecular oxygen. RSC Advances, 2016, 6, 68170-68177.	lymer in the	1.7	19
264	Synthesis and Properties of Nitrogen-Containing Conjugated Microporous Polymers. M Materials and Engineering, 2016, 301, 451-456.	acromolecular	1.7	17
265	Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intr Conductivity. ACS Applied Materials & Interfaces, 2016, 8, 18505-18512.	insic Proton	4.0	259
266	Synthesis of Twoâ€dimensional Microporous Carbonaceous Polymer Nanosheets and T as Highâ€performance CO ₂ Capture Sorbent. Chemistry - an Asian Journa	heir Application I, 2016, 11, 1849-1855.	1.7	11

	CITATION RE	PORT	
#	Article	lF	CITATIONS
267	Synthesis of Boronateâ€Based Benzo[<i>fg</i>]tetracene and Benzo[<i>hi</i>]hexacene via Demethylative Direct Borylation. Chemistry - A European Journal, 2016, 22, 11574-11577.	1.7	90
268	Heterogeneous Catalysis by Covalent Organic Frameworks (COF): Pd(OAc) ₂ @COFâ€300 in Crossâ€Coupling Reactions. ChemCatChem, 2016, 8, 743-750.	1.8	139
269	Bimodal Functionality in a Porous Covalent Triazine Framework by Rational Integration of an Electronâ€Rich and â€Đeficient Pore Surface. Chemistry - A European Journal, 2016, 22, 4931-4937.	1.7	36
270	In situ Generation of Reticulate Micropores through Covalent Network/Polymer Nanocomposite Membranes for Reverseâ€Selective Separation of Carbon Dioxide. Angewandte Chemie, 2016, 128, 1340-1345.	1.6	9
271	Costâ€Effective, Highâ€Performance Porousâ€Organicâ€Polymer Conductors Functionalized with Sulfonic Acid Groups by Direct Postsynthetic Substitution. Angewandte Chemie, 2016, 128, 16357-16360.	1.6	11
272	Microporous organic polymers based on tetraethynyl building blocks with N-functionalized pore surfaces: synthesis, porosity and carbon dioxide sorption. RSC Advances, 2016, 6, 113826-113833.	1.7	15
273	Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO ₂ adsorption. Journal of Materials Chemistry A, 2016, 4, 6259-6263.	5.2	176
274	A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 7416-7421.	5.2	267
275	Indolo[3,2-b]carbazole-containing hypercrosslinked microporous polymer networks for gas storage and separation. Microporous and Mesoporous Materials, 2016, 228, 231-236.	2.2	27
276	A computational study of CH ₄ storage in porous framework materials with metalated linkers: connecting the atomistic character of CH ₄ binding sites to usable capacity. Chemical Science, 2016, 7, 4503-4518.	3.7	21
277	Macrocyclic Tetraimines: Synthesis and Reversible Uptake of Diethyl Phthalate by a Porous Macrocycle. Journal of Organic Chemistry, 2016, 81, 5173-5180.	1.7	10
278	Molecular simulation studies of hydrogen enriched methane (HEM) storage in Covalent Organic Frameworks. Microporous and Mesoporous Materials, 2016, 231, 138-146.	2.2	7
279	Tetraphenylethylene-based microporous organic polymers: insight into structure geometry, porosity, and CO ₂ /CH ₄ selectivity. RSC Advances, 2016, 6, 51411-51418.	1.7	12
280	First-Principles Study of Thermoelectric Properties of Covalent Organic Frameworks. Journal of Electronic Materials, 2016, 45, 3445-3452.	1.0	16
281	Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis. Chinese Journal of Catalysis, 2016, 37, 468-475.	6.9	38
282	Construction of bimodal silsesquioxane-based porous materials from triphenylphosphine or triphenylphosphine oxide and their size-selective absorption for dye molecules. RSC Advances, 2016, 6, 37731-37739.	1.7	31
283	The microwave-assisted solvothermal synthesis of a novel β-ketoenamine-linked conjugated microporous polymer for supercapacitors. RSC Advances, 2016, 6, 49425-49428.	1.7	28
284	Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction. Chemical Communications, 2016, 52, 7834-7837.	2.2	47

#	Article	IF	CITATIONS
285	A supramolecular strategy based on molecular dipole moments for high-quality covalent organic frameworks. Chemical Communications, 2016, 52, 7986-7989.	2.2	50
286	Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chemical Communications, 2016, 52, 6351-6362.	2.2	122
287	Channel-wall functionalization in covalent organic frameworks for the enhancement of CO ₂ uptake and CO ₂ /N ₂ selectivity. RSC Advances, 2016, 6, 38774-38781.	1.7	71
288	Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization. RSC Advances, 2016, 6, 39150-39158.	1.7	31
289	Spontaneous formation of a continuous nanoporous structure in the composite films of a covalent molecular network and polymer. Macromolecular Research, 2016, 24, 205-208.	1.0	7
290	Improved Î-valerolactam templates for the assembly of AÎ2-miniamyloids by boronic ester formation. Organic and Biomolecular Chemistry, 2016, 14, 5032-5048.	1.5	6
291	A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polymer Chemistry, 2016, 7, 3392-3397.	1.9	159
292	Bimetallic docked covalent organic frameworks with high catalytic performance towards tandem reactions. RSC Advances, 2016, 6, 37403-37406.	1.7	48
293	Preparation and engineering of oriented 2D covalent organic framework thin films. RSC Advances, 2016, 6, 39198-39203.	1.7	30
294	Supramolecular organic network assembled from quadruple hydrogen-bonding motifs. Chemical Communications, 2016, 52, 6597-6600.	2.2	15
295	Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. Journal of Chromatography A, 2016, 1445, 140-148.	1.8	94
296	A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO ₂ . Journal of Materials Chemistry A, 2016, 4, 9413-9418.	5.2	148
297	"Stereoscopic―2D super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. Journal of Hazardous Materials, 2016, 314, 95-104.	6.5	147
298	A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu ²⁺ ions. Chemical Communications, 2016, 52, 6613-6616.	2.2	326
299	Bipyridyl palladium embedded porous organic polymer as highly efficient and reusable heterogeneous catalyst for Suzuki–Miyaura coupling reaction. RSC Advances, 2016, 6, 34866-34871.	1.7	26
300	Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO ₂ Capture. Environmental Science & Technology, 2016, 50, 4869-4876.	4.6	173
301	Synthesis of –Cî€N– linked covalent organic frameworks via the direct condensation of acetals and amines. Chemical Communications, 2016, 52, 7217-7220.	2.2	51
302	A two-dimensional conjugated polymer framework with fully sp ² -bonded carbon skeleton. Polymer Chemistry, 2016, 7, 4176-4181.	1.9	350

ARTICLE IF CITATIONS # A Series of Layered Assemblies of Hydrogen-Bonded, Hexagonal Networks of <i>C</i>₃-Symmetric Ĩ€-Conjugated Molecules: A Potential Motif of Porous Organic 303 169 6.6 Materials. Journal of the American Chemical Society, 2016, 138, 6617-6628. Porous aromatic frameworks (PAFs) as efficient supports for N-heterocyclic carbene catalysts. 304 2.1 Catalysis Science and Technology, 2016, 6, 6037-6045. COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in 305 4.5216 Lithiumâ€"Sulfur Batteries. Nano Letters, 2016, 16, 3292-3300. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of 306 amines with CO₂ and phenylsilane. Chemical Communications, 2016, 52, 7082-7085. Significantly increasing porosity of mesoporous carbon by NaNH2 activation for enhanced CO2 307 2.2 47 adsorption. Microporous and Mesoporous Materials, 2016, 230, 100-108. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid. Chemical Communications, 2016, 52, 7588-7591. 308 2.2 Porous Triphenylbenzene-Based Bicyclooxacalixarene Cage for Selective Adsorption of 309 2.4 24 CO₂/N₂. Organic Letters, 2016, 18, 4574-4577. Two-dimensional dual-pore covalent organic frameworks obtained from the combination of two 310 D_{2h} symmetrical building blocks. Chemical Communications, 2016, 52, 11704-11707. A Structurally Variable Porous Organic Salt Based on a Multidirectional Supramolecular Cluster. 311 19 1.7 Chemistry - Á European Journal, 2016, 22, 15430-15436. Phosphonium salt and ZnX₂–PPh₃integrated hierarchical POPs: tailorable synthesis and highly efficient cooperative catalysis in CO₂utilization. Journal of 5.2 Materials Chemistry A, 2016, 4, 16017-16027. Luminescent Porous Polymers Based on Aggregationâ€Induced Mechanism: Design, Synthesis and 313 5.2 96 Functions. Small, 2016, 12, 6513-6527. Hierarchical mesoporous organic polymer with an intercalated metal complex for the efficient 4.6 74 synthesis of cyclic carbonates from flue gas. Green Chemistry, 2016, 18, 6493-6500. Waterâ€dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability. Chemistry - an 315 1.7 11 Asian Journal, 2016, 11, 3178-3182. Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworks. 1.5 36 Journal of Physical Chemistry C, 2016, 120, 23756-23762. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric 317 4.0 102 acid-loaded covalent organic framework. Journal of Power Sources, 2016, 332, 265-273. Band-structure engineering in conjugated 2D polymers. Physical Chemistry Chemical Physics, 2016, 18, 64 29092-29100. Electrochemically active porous organic polymers based on corannulene. Chemical Communications, 319 2.219 2016, 52, 12881-12884. Nanoporous ionic organic networks: from synthesis to materials applications. Chemical Society 18.7 Reviews, 2016, 45, 6627-6656.

#	Article	IF	CITATIONS
321	Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials, 2016, 26, 8455-8462.	7.8	29
322	Design and synthesis of micro–meso–macroporous polymers with versatile active sites and excellent activities in the production of biofuels and fine chemicals. Green Chemistry, 2016, 18, 6536-6544.	4.6	30
323	Pitch-based hyper-cross-linked polymers with high performance for gas adsorption. Journal of Materials Chemistry A, 2016, 4, 16490-16498.	5.2	110
324	Two-dimensional Covalent Organic Framework Thin Films Grown in Flow. Journal of the American Chemical Society, 2016, 138, 11433-11436.	6.6	103
325	A photoluminescent covalent triazine framework: CO ₂ adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. Journal of Materials Chemistry A, 2016, 4, 13450-13457.	5.2	122
326	Construction of Covalent Organic Nanotubes by Light-Induced Cross-Linking of Diacetylene-Based Helical Polymers. Journal of the American Chemical Society, 2016, 138, 11001-11008.	6.6	67
327	A hydroxyl-functionalized microporous organic polymer for capture and catalytic conversion of CO ₂ . RSC Advances, 2016, 6, 76957-76963.	1.7	17
328	Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 2016, 306, 1116-1137.	6.6	1,004
329	Supramolecular Spangling, Crocheting, and Knitting of Functionalized Pyrene Molecules on a Silver Surface. ACS Nano, 2016, 10, 7665-7674.	7.3	32
330	Bicontinuous Nanoporous Frameworks: Caged Longevity for Enzymes. Angewandte Chemie - International Edition, 2016, 55, 11495-11498.	7.2	15
331	Orthogonal Synthesis of Covalent Polydendrimer Frameworks by Fusing Classical and Onion-Peel Phosphorus-Based Dendritic Units. Macromolecules, 2016, 49, 5796-5805.	2.2	14
332	Capture and Reversible Storage of Volatile Iodine by Novel Conjugated Microporous Polymers Containing Thiophene Units. ACS Applied Materials & Interfaces, 2016, 8, 21063-21069.	4.0	212
333	N-Heterocyclic Carbene-based Microporous Organic Polymer Supported Palladium Catalyst for Carbon-Carbon Coupling Reaction. ChemistrySelect, 2016, 1, 1371-1376.	0.7	30
334	Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1049-1061.	6.9	59
335	Facile tunning the morphology and porosity of a superwetting conjugated microporous polymers. Reactive and Functional Polymers, 2016, 106, 105-111.	2.0	18
336	Host–guest chemistry in two-dimensional supramolecular networks. Chemical Communications, 2016, 52, 11465-11487.	2.2	179
337	Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. Journal of the American Chemical Society, 2016, 138, 11489-11492.	6.6	262
338	Exploiting Noncovalent Interactions in an Imineâ€Based Covalent Organic Framework for Quercetin Delivery. Advanced Materials, 2016, 28, 8749-8754.	11.1	302

#	Article	IF	CITATIONS
339	Nitrogen-Rich Triptycene-Based Porous Polymer for Gas Storage and Iodine Enrichment. ACS Macro Letters, 2016, 5, 1039-1043.	2.3	143
340	Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. ACS Central Science, 2016, 2, 667-673.	5.3	349
341	Bicontinuous Nanoporous Frameworks: Caged Longevity for Enzymes. Angewandte Chemie, 2016, 128, 11667-11670.	1.6	1
342	Covalent organic frameworks as pH responsive signaling scaffolds. Chemical Communications, 2016, 52, 11088-11091.	2.2	135
343	Coronene-based metal–organic framework: a theoretical exploration. Physical Chemistry Chemical Physics, 2016, 18, 25277-25283.	1.3	21
344	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	4.1	107
345	Synthesis, Carbonization, and CO ₂ Adsorption Properties of Phloroglucinol–Melamine–Formaldehyde Polymeric Nanofibers. Industrial & Engineering Chemistry Research, 2016, 55, 12667-12674.	1.8	19
346	Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology. ACS Macro Letters, 2016, 5, 1348-1352.	2.3	59
347	Costâ€Effective, Highâ€Performance Porousâ€Organicâ€Polymer Conductors Functionalized with Sulfonic Acid Groups by Direct Postsynthetic Substitution. Angewandte Chemie - International Edition, 2016, 55, 16123-16126.	7.2	72
348	BODIPY-containing porous organic polymers for gas adsorption. New Journal of Chemistry, 2016, 40, 9415-9423.	1.4	37
349	Discrete Self-Assembly and Functionality of Guest Molecules in an Organic Framework. Chemistry of Materials, 2016, 28, 5847-5854.	3.2	16
350	Porous Organic Molecular Frameworks with Extrinsic Porosity: A Platform for Carbon Storage and Separation. Angewandte Chemie - International Edition, 2016, 55, 9474-9480.	7.2	123
351	Recent advances of covalent organic frameworks in electronic and optical applications. Chinese Chemical Letters, 2016, 27, 1383-1394.	4.8	76
352	Organische molekulare Gerüste mit extrinsischer Porositä eine Plattform für die Kohlendioxidâ€Abscheidung und Speicherung. Angewandte Chemie, 2016, 128, 9624-9630.	1.6	32
353	Thermal Conductivity of 3D Boron-Based Covalent Organic Frameworks from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 17060-17068.	1.5	23
354	Hydrogen carriers. Nature Reviews Materials, 2016, 1, .	23.3	602
355	Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials, 2016, 1, .	23.3	1,383
356	Chemical Conversion of Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 15519-15522.	6.6	373

#	Article	IF	Citations
357	Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer. Journal of the American Chemical Society, 2016, 138, 15790-15796.	6.6	414
358	Tin Sulfide Clusters with Polyheteroatomic Ligands: Syntheses, Structures, and Photoluminescence Properties. European Journal of Inorganic Chemistry, 2016, 2016, 5300-5304.	1.0	8
359	Synthesis of triphenylphosphine-based microporous organic nanotube framework supported Pd catalysts with excellent catalytic activity. Polymer Chemistry, 2016, 7, 7408-7415.	1.9	32
360	Precision Construction of 2D Heteropore Covalent Organic Frameworks by a Multipleâ€Linkingâ€6ite Strategy. Chemistry - A European Journal, 2016, 22, 17784-17789.	1.7	46
361	Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nature Communications, 2016, 7, 12104.	5.8	375
363	Metalation of a Mesoporous Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2016, 138, 15134-15137.	6.6	309
364	Synthesis and Characterization of Hydrazide-Linked and Amide-Linked Organic Polymers. ACS Applied Materials & Interfaces, 2016, 8, 32060-32067.	4.0	36
365	Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. Journal of the American Chemical Society, 2016, 138, 14783-14788.	6.6	260
366	One-step conversion from Ni/Fe polyphthalocyanine to N-doped carbon supported Ni-Fe nanoparticles for highly efficient water splitting. Nano Energy, 2016, 30, 426-433.	8.2	119
367	Molecular Scissoring: Facile 3D to 2D Conversion of Lanthanide Metal Organic Frameworks Via Solvent Exfoliation. Inorganic Chemistry, 2016, 55, 10851-10854.	1.9	39
368	Multiple-component covalent organic frameworks. Nature Communications, 2016, 7, 12325.	5.8	227
369	Construction of Layered Assemblies of Two-Dimensional Porous Molecular Sheets Networked through Hydrogen Bonds. Nihon Kessho Gakkaishi, 2016, 58, 209-214.	0.0	0
370	Sophisticated Design of Covalent Organic Frameworks with Controllable Bimetallic Docking for a Cascade Reaction. Chemistry - A European Journal, 2016, 22, 9087-9091.	1.7	86
371	Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie, 2016, 128, 1769-1773.	1.6	88
372	Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie - International Edition, 2016, 55, 1737-1741.	7.2	503
373	Microporous Polymers from a Carbazoleâ€Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake. Chemistry - an Asian Journal, 2016, 11, 294-298.	1.7	36
374	Methyllithiumâ€Doped Naphthylâ€Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance. Chemistry - A European Journal, 2016, 22, 7944-7949.	1.7	11
375	Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 17356-17359.	1.3	19

#	Article	IF	CITATIONS
376	Theoretical study of the physisorption of organic molecules on conjugated microporous polymers: the critical role of skeleton structures on binding strength. RSC Advances, 2016, 6, 54841-54847.	1.7	11
377	Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis. Chemical Communications, 2016, 52, 9212-9215.	2.2	109
378	Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease. Journal of the American Chemical Society, 2016, 138, 7603-7609.	6.6	137
379	Solvent and anion facilitated conformational changes in benzylamine substituted thiazolamine. New Journal of Chemistry, 2016, 40, 6899-6906.	1.4	3
380	Moving Beyond Boron: The Emergence of New Linkage Chemistries in Covalent Organic Frameworks. Macromolecules, 2016, 49, 5297-5305.	2.2	110
381	Discrete, Hexagonal Boronate Ester-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2016, 28, 4884-4888.	3.2	29
382	Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 2016, 45, 5635-5671.	18.7	983
383	Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar Pî€O bonds. Chemical Communications, 2016, 52, 9267-9270.	2.2	14
384	Porous Coordination Polymers Based on {Mn ₆ } Single-Molecule Magnets. Inorganic Chemistry, 2016, 55, 5880-5885.	1.9	23
385	Synthesis of a novel β-ketoenamine-linked conjugated microporous polymer with N H functionalized pore surface for carbon dioxide capture. Applied Surface Science, 2016, 384, 539-543.	3.1	23
386	Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks. Chinese Chemical Letters, 2016, 27, 1376-1382.	4.8	64
387	Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol. Chemical Communications, 2016, 52, 9765-9768.	2.2	15
388	Acene-linked covalent organic frameworks as candidate materials for singlet fission. Journal of Materials Chemistry A, 2016, 4, 10500-10507.	5.2	12
389	Iron(III) Porphyrinâ€Based Porous Material as Photocatalyst for Highly Efficient and Selective Degradation of Congo Red. Macromolecular Chemistry and Physics, 2016, 217, 599-604.	1.1	53
390	In situ Generation of Reticulate Micropores through Covalent Network/Polymer Nanocomposite Membranes for Reverse‧elective Separation of Carbon Dioxide. Angewandte Chemie - International Edition, 2016, 55, 1318-1323.	7.2	17
391	Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catalysis Science and Technology, 2016, 6, 4345-4355.	2.1	62
392	Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties. RSC Advances, 2016, 6, 12009-12020.	1.7	49
393	Massive preparation of pitch-based organic microporous polymers for gas storage. Chemical Communications, 2016, 52, 2780-2783.	2.2	62

#	Article	IF	CITATIONS
394	Permanently porous hydrogen-bonded frameworks of rod-like thiophenes, selenophenes, and tellurophenes capped with MIDA boronates. Dalton Transactions, 2016, 45, 9754-9757.	1.6	12
395	Spectroscopic and Computational Investigations of The Thermodynamics of Boronate Ester and Diazaborole Self-Assembly. Journal of Organic Chemistry, 2016, 81, 969-980.	1.7	14
396	Covalent triazine framework-supported palladium as a ligand-free catalyst for the selective double carbonylation of aryl iodides under ambient pressure of CO. Chemical Communications, 2016, 52, 2960-2963.	2.2	60
397	Designing highly efficient Rh/CPOL-bp&PPh ₃ heterogenous catalysts for hydroformylation of internal and terminal olefins. Catalysis Science and Technology, 2016, 6, 2143-2149.	2.1	54
398	A chiral porous organic cage for molecular recognition using gas chromatography. Analytica Chimica Acta, 2016, 903, 156-163.	2.6	60
399	Morphology controlled synthesis of octahedral covalent imine frameworks through acid modulated aldehyde-amine polycondensation. Macromolecular Research, 2016, 24, 366-370.	1.0	14
400	Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy. Journal of the American Chemical Society, 2016, 138, 4710-4713.	6.6	249
401	Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand. Dalton Transactions, 2016, 45, 7866-7874.	1.6	10
402	Hydrolytically Stable Nanoporous Thorium Mixed Phosphite and Pyrophosphate Framework Generated from Redox-Active Ionothermal Reactions. Inorganic Chemistry, 2016, 55, 3721-3723.	1.9	19
403	Investigating the Reactivity of 1,4-Anthracene-Incorporated Cycloparaphenylene. Organic Letters, 2016, 18, 1574-1577.	2.4	49
404	Ionic self-assembly affords mesoporous ionic networks by crosslinking linear polyviologens with polyoxometalate clusters. Dalton Transactions, 2016, 45, 4504-4508.	1.6	20
405	Nanoscale porous triazine-based frameworks with cyanate ester linkages for efficient drug delivery. RSC Advances, 2016, 6, 20834-20842.	1.7	11
406	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
407	Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. Journal of Chromatography A, 2016, 1436, 109-117.	1.8	103
408	Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). Journal of the American Chemical Society, 2016, 138, 3031-3037.	6.6	1,076
409	Giant magnetic anisotropy of a 5d transition metal decorated two-dimensional polyphthalocyanine framework. Journal of Materials Chemistry C, 2016, 4, 2147-2154.	2.7	35
410	Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis. Journal of the American Chemical Society, 2016, 138, 2182-2185.	6.6	146
411	Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chemical Communications, 2016, 52, 4128-4131.	2.2	384

#	Article	IF	CITATIONS
412	Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires. ACS Nano, 2016, 10, 2644-2651.	7.3	40
413	Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chemical Communications, 2016, 52, 3690-3693.	2.2	369
414	Hollow click-based porous organic polymers for heterogenization of [Ru(bpy)3]2+ through electrostatic interactions. Nano Research, 2016, 9, 779-786.	5.8	23
415	Hyper-Cross-Linked Organic Microporous Polymers Based on Alternating Copolymerization of Bismaleimide. ACS Macro Letters, 2016, 5, 377-381.	2.3	67
416	Perfluoroalkylation of Square-Planar Transition Metal Complexes: A Strategy To Assemble Them into Solid State Materials with a ï€â€"ï€ Stacked Lamellar Structure. Crystal Growth and Design, 2016, 16, 1869-1878.	1.4	20
417	Facile microwave-assisted production of Fe3O4 decorated porous melamine-based covalent organic framework for highly selective removal of Hg2+. Journal of Porous Materials, 2016, 23, 791-800.	1.3	82
418	Enhanced performance of mixed matrix membrane by incorporating a highly compatible covalent organic framework into poly(vinylamine) for hydrogen purification. International Journal of Hydrogen Energy, 2016, 41, 9167-9174.	3.8	85
419	A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2016, 138, 3302-3305.	6.6	628
420	Highly crystalline covalent organic frameworks from flexible building blocks. Chemical Communications, 2016, 52, 4706-4709.	2.2	83
421	A new azodioxy-linked porphyrin-based semiconductive covalent organic framework with I ₂ doping-enhanced photoconductivity. CrystEngComm, 2016, 18, 4259-4263.	1.3	70
422	Removal of TcO ₄ ^{â^'} ions from solution: materials and future outlook. Chemical Society Reviews, 2016, 45, 2724-2739.	18.7	232
423	Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification. ACS Applied Materials & amp; Interfaces, 2016, 8, 8694-8701.	4.0	121
424	Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers. Chemical Communications, 2016, 52, 3989-4001.	2.2	125
425	Preparation of a series of aCTV-based covalent organic frameworks and substituent effects on their properties. CrystEngComm, 2016, 18, 1039-1045.	1.3	12
426	Design and synthesis of nanoporous perylene bis-imide linked metalloporphyrin frameworks and their catalytic activity. Journal of Chemical Sciences, 2016, 128, 1-8.	0.7	13
427	Dimerization of Aromatic <i>C</i> -Nitroso Compounds. Chemical Reviews, 2016, 116, 258-286.	23.0	88
428	Diversity of Covalent Organic Frameworks (COFs): A 2D COF Containing Two Kinds of Triangular Micropores of Different Sizes. ACS Macro Letters, 2016, 5, 99-102.	2.3	87
429	Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 2016, 311, 85-124.	9.5	247

#	Article	IF	CITATIONS
430	Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer, 2016, 82, 100-104.	1.8	32
431	Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impacts on crystalline structures. Chemical Communications, 2016, 52, 1498-1500.	2.2	25
432	Metal–organic frameworks for electrochemical applications. TrAC - Trends in Analytical Chemistry, 2016, 75, 86-96.	5.8	192
433	Tunable porosity of 3D-networks with germanium nodes. Chemical Communications, 2016, 52, 571-574.	2.2	9
434	Polymorphs of layered assemblies of hydrogen-bonded hexagonal networks caused by conformational frustration. Chemical Communications, 2016, 52, 300-303.	2.2	39
435	Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study. Chemical Engineering Science, 2016, 140, 1-9.	1.9	53
436	Covalent triazine polymers using a cyanuric chloride precursor via Friedel–Crafts reaction for CO2 adsorption/separation. Chemical Engineering Journal, 2016, 283, 184-192.	6.6	102
437	Facile Synthesis of Magnetic Covalent Organic Framework with Three-Dimensional Bouquet-Like Structure for Enhanced Extraction of Organic Targets. ACS Applied Materials & Interfaces, 2017, 9, 2959-2965.	4.0	204
438	Two linkers are better than one: enhancing CO ₂ capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers. Journal of Materials Chemistry A, 2017, 5, 3609-3620.	5.2	86
439	Incorporating Pd(OAc) ₂ on Imine Functionalized Microporous Covalent Organic Frameworks: A Stable and Efficient Heterogeneous Catalyst for Suzukiâ€Miyaura Coupling in Aqueous Medium. ChemistrySelect, 2017, 2, 1063-1070.	0.7	25
440	Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Journal of Membrane Science, 2017, 528, 273-283.	4.1	177
441	Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors. Macromolecules, 2017, 50, 956-962.	2.2	46
442	Strategies for the design of porous polymers as efficient heterogeneous catalysts: from co-polymerization to self-polymerization. Catalysis Science and Technology, 2017, 7, 1028-1039.	2.1	48
443	A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Materials Chemistry Frontiers, 2017, 1, 1310-1316.	3.2	78
444	A New Triazineâ€Based Covalent Organic Framework for Highâ€Performance Capacitive Energy Storage. ChemSusChem, 2017, 10, 921-929.	3.6	132
445	Encapsulation of an ionic liquid into the nanopores of a 3D covalent organic framework. RSC Advances, 2017, 7, 1697-1700.	1.7	36
446	Unveiling a New Aspect of Simple Arylboronic Esters: Long-Lived Room-Temperature Phosphorescence from Heavy-Atom-Free Molecules. Journal of the American Chemical Society, 2017, 139, 2728-2733.	6.6	269
447	Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds. Chemical Communications, 2017, 53, 2431-2434.	2.2	46

#	Article	IF	CITATIONS
448	Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chemical Communications, 2017, 53, 2511-2514.	2.2	287
449	Rhodiumâ€Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. Angewandte Chemie, 2017, 129, 2522-2526.	1.6	24
450	Impact of Shape Persistence on the Porosity of Molecular Cages. Journal of the American Chemical Society, 2017, 139, 3259-3264.	6.6	40
451	Nanoporous triptycene based network polyamides (TBPs) for selective CO2 uptake. Polymer, 2017, 111, 275-284.	1.8	43
452	Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta, 2017, 166, 133-140.	2.9	78
453	Competitive Inclusion of Carboxylic Acids with a Metastable Crystal Polymorph of <i>p-tert-</i> Butylthiacalix[4]arene. Crystal Growth and Design, 2017, 17, 891-900.	1.4	24
454	Immobilization of N-Heterocyclic Carbene Compounds: A Synthetic Perspective. Chemical Reviews, 2017, 117, 1970-2058.	23.0	212
455	Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chemistry of Materials, 2017, 29, 2074-2080.	3.2	277
456	Conjugated Covalent Organic Frameworks via Michael Addition–Elimination. Journal of the American Chemical Society, 2017, 139, 2421-2427.	6.6	286
457	Colloidal Covalent Organic Frameworks. ACS Central Science, 2017, 3, 58-65.	5.3	216
458	Rhodium atalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. Angewandte Chemie - International Edition, 2017, 56, 2482-2486.	7.2	89
459	Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. Journal of the American Chemical Society, 2017, 139, 2428-2434.	6.6	519
460	Optical sensing of aqueous boron based on polymeric hydroxytriphenylene derivatives. RSC Advances, 2017, 7, 4627-4634.	1.7	3
461	Palladium nanoparticles supported on a carbazole functionalized mesoporous organic polymer: synthesis and their application as efficient catalysts for the Suzuki–Miyaura cross coupling reaction. Polymer Chemistry, 2017, 8, 1488-1494.	1.9	27
462	Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 2017, 139, 1856-1862.	6.6	432
463	Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society	18.7	938
	Reviews, 2017, 46, 3322-3356.		
464	Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Advanced Materials, 2017, 29, 1606635.	11.1	167

#	Article	IF	CITATIONS
466	Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework. Chemical Communications, 2017, 53, 7266-7269.	2.2	224
467	Two-Dimensional Covalent Organic Framework (COF) Membranes Fabricated via the Assembly of Exfoliated COF Nanosheets. ACS Applied Materials & Interfaces, 2017, 9, 8433-8436.	4.0	222
468	A facile approach for the synthesis of hydroxyl-rich microporous organic networks for efficient CO ₂ capture and H ₂ storage. Chemical Communications, 2017, 53, 2752-2755.	2.2	38
469	Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2017, 9, 5231-5236.	4.0	110
470	Orthogonal self-assembly of a trigonal triptycene triacid: signaling of exfoliation of porous 2D metal–organic layers by fluorescence and selective CO ₂ capture by the hydrogen-bonded MOF. Journal of Materials Chemistry A, 2017, 5, 5402-5412.	5.2	105
471	In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Mikrochimica Acta, 2017, 184, 1169-1176.	2.5	70
472	Precise elucidations of stacking manners of hydrogen-bonded two-dimensional organic frameworks composed of X-shaped π-conjugated systems. CrystEngComm, 2017, 19, 4892-4898.	1.3	49
473	Metal-like Boronic-Organic Frameworks: A Design and Computation. Inorganic Chemistry, 2017, 56, 2490-2495.	1.9	3
474	Triazine-based covalent-organic frameworks: A novel lubricant additive with excellent tribological performances. Tribology International, 2017, 111, 57-65.	3.0	36
475	Efficient removal of organic dye pollutants using covalent organic frameworks. AICHE Journal, 2017, 63, 3470-3478.	1.8	136
476	A Case Study on the Influence of Substitutes on Interlayer Stacking of 2D Covalent Organic Frameworks. Chemistry - A European Journal, 2017, 23, 5668-5672.	1.7	38
477	Surface modification of a polyvinyl alcohol sponge with functionalized boronic acids to develop porous materials for multicolor emission, chemical sensing and 3D cell culture. Chemical Communications, 2017, 53, 3563-3566.	2.2	17
478	Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C–C Bond Forming Reactions and Tandem Processes. Chemistry of Materials, 2017, 29, 1599-1612.	3.2	21
479	Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society, 2017, 139, 2786-2793.	6.6	808
480	Aromatic-rich hydrocarbon porous networks through alkyne metathesis. Materials Chemistry Frontiers, 2017, 1, 1369-1372.	3.2	16
481	Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Applied Materials & Interfaces, 2017, 9, 7481-7488.	4.0	157
482	Solvent-free on-surface synthesis of boroxine COF monolayers. Chemical Communications, 2017, 53, 5147-5150.	2.2	36
483	Flexible monomer-based covalent organic frameworks: design, structure and functions. CrystEngComm, 2017, 19, 4868-4871.	1.3	18

ARTICLE IF CITATIONS # Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic 3.2 160 484 Field-Effect Transistor. Chemistry of Materials, 2017, 29, 4367-4374. Construction of two heteropore covalent organic frameworks with Kagome lattices. CrystEngComm, 485 1.3 2017, 19, 4877-4881. On-Surface Synthesis of Self-Assembled Monolayers of Benzothiazole Derivatives Studied by STM and 486 19 1.6 XPS. Langmuir, 2017, 33, 4216-4223. Recent progress in the application of nanomaterials in the analysis of emerging chemical 487 contaminants. Analytical Methods, 2017, 9, 2768-2783. Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. 488 108 4.6 National Science Review, 2017, 4, 426-436. Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Tröger's base. Polymer, 489 1.8 2017, 126, 324-329 A quaternary-ammonium-functionalized covalent organic framework for anion conduction. 490 1.349 CrystEngComm, 2017, 19, 4905-4910. Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321. 491 18.7 386 Engineering microporous organic framework membranes for CO₂separations. Molecular 492 1.7 15 Systems Design and Engineering, 2017, 2, 182-190. Ullmann coupling of aryl chlorides in water catalyzed by palladium nanoparticles supported on 1.0 amine-grafted porous aromatic polymer. Molecular Catalysis, 2017, 437, 73-79. An Elastic Hydrogen-Bonded Cross-Linked Organic Framework for Effective Iodine Capture in Water. 494 6.6 218 Journal of the American Chemical Society, 2017, 139, 7172-7175. Stepwise Crosslinking: A Facile Yet Versatile Conceptual Strategy to Nanomorphologyâ€Persistent Porous Organic Polymers. Advanced Materials, 2017, 29, 1700723. 11.1 Well-Defined 2D Covalent Organic Polymers for Energy Electrocatalysis. ACS Energy Letters, 2017, 2, 496 8.8 109 1308-1314. Electrostatic Design of 3D Covalent Organic Networks. Advanced Materials, 2017, 29, 1700888. 11.1 Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized 498 carbon nanotubes with enhanced electrochemical performance. Chemical Communications, 2017, 53, 2.2 147 6303-6306. Soluble Porous Coordination Frameworks Constructed from Inorganic Nanoparticles as Homogenized Heterogeneous Photocatalysts for Suzuki Coupling Reactions under Nearâ€Infrared Light. Chemistry - A European Journal, 2017, 23, 8879-8885. Lowâ€dimensional halfâ€metallic materials: theoretical simulations and design. Wiley Interdisciplinary 500 6.2 47 Reviews: Computational Molecular Science, 2017, 7, e1314. Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for 501 Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. Journal of the 6.6 American Chemical Society, 2017, 139, 6736-6743.

#	Article	IF	CITATIONS
502	Orientation transitions during the growth of imine covalent organic framework thin films. Journal of Materials Chemistry C, 2017, 5, 5090-5095.	2.7	35
503	A New Strategy to Construct Functional Porous Crystals by Mixed Crystallization through Charge-transfer Interactions. Chemistry Letters, 2017, 46, 225-227.	0.7	5
504	The intramolecular H-bonding effect on the growth and stability of Schiff-base surface covalent organic frameworks. Physical Chemistry Chemical Physics, 2017, 19, 539-543.	1.3	17
505	A novel metalporphyrin-based microporous organic polymer with high CO ₂ uptake and efficient chemical conversion of CO ₂ under ambient conditions. Journal of Materials Chemistry A, 2017, 5, 1509-1515.	5.2	186
506	Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves. Journal of the American Chemical Society, 2017, 139, 8897-8904.	6.6	151
507	Recent progress in two-dimensional COFs for energy-related applications. Journal of Materials Chemistry A, 2017, 5, 14463-14479.	5.2	243
508	Recent progress in fabrication and application of polydimethylsiloxane sponges. Journal of Materials Chemistry A, 2017, 5, 16467-16497.	5.2	207
509	Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25, 1563-1580.	1.7	27
510	Oneâ€Step Synthesis of Dicyanobenzeneâ€Derived Nitrogenâ€Doped Porous Carbon Monolayers: Porosity and Nearâ€infrared Photoactivity. ChemCatChem, 2017, 9, 4043-4048.	1.8	8
511	Hexaazatriphenyleneâ€Based Hydrogenâ€Bonded Organic Framework with Permanent Porosity and Singleâ€Crystallinity. Chemistry - A European Journal, 2017, 23, 11611-11619.	1.7	80
512	Synthesis and post-metalation of a covalent-porphyrinic framework for highly efficient aerobic epoxidation of olefins. Catalysis Communications, 2017, 99, 146-149.	1.6	22
513	Semiconducting Conjugated Microporous Polymer: An Electrode Material for Photoelectrochemical Water Splitting and Oxygen Reduction. ChemistrySelect, 2017, 2, 4522-4532.	0.7	34
514	3D Porphyrin-Based Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8705-8709.	6.6	369
515	Fluorescence properties and analytical applications of covalent organic frameworks. Analytical Methods, 2017, 9, 3737-3750.	1.3	107
516	Highly microporous free-radically generated polymeric materials using a novel contorted monomer. Polymer, 2017, 126, 330-337.	1.8	6
517	Multivariate Chiral Covalent Organic Frameworks with Controlled Crystallinity and Stability for Asymmetric Catalysis. Journal of the American Chemical Society, 2017, 139, 8277-8285.	6.6	249
518	The controlled synthesis of pillar[6]arene-based hexagonal cylindrical structures on an electrode surface via electrochemical oxidation. Chemical Communications, 2017, 53, 7454-7456.	2.2	16
519	Computational design of 2D functional covalent–organic framework membranes for water desalination. Environmental Science: Water Research and Technology, 2017, 3, 735-743.	1.2	69

#	Article	IF	CITATIONS
520	Novel imine-linked porphyrin covalent organic frameworks with good adsorption removing properties of RhB. New Journal of Chemistry, 2017, 41, 6145-6151.	1.4	50
521	Porous Aromatic Framework as an Efficient Metalâ€Free Electro atalyst for Nonâ€enzymatic H 2 O 2 Sensing. Chemistry - A European Journal, 2017, 23, 9467-9471.	1.7	13
522	Bottomâ€Up Construction of Porous Organic Frameworks with Builtâ€In TEMPO as a Cathode for Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 2955-2961.	3.6	58
523	Robust microporous organic copolymers containing triphenylamine for high pressure CO 2 capture application. Journal of CO2 Utilization, 2017, 19, 214-220.	3.3	36
524	Copper-Catalyzed <i>ipso</i> Borylation of Fluoroarenes. ACS Catalysis, 2017, 7, 4535-4541.	5.5	55
525	Mechanochemical synthesis of two-dimensional aromatic polyamides. Chemical Communications, 2017, 53, 7481-7484.	2.2	36
526	Piezoelectricity in two-dimensional covalent organic frameworks. Journal of Applied Physics, 2017, 121, 225112.	1.1	0
527	Predesigned Metal-Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 13785-13792.	4.0	162
528	Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 8576-8582.	5.2	69
529	Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. Journal of Catalysis, 2017, 348, 168-176.	3.1	64
530	Pdâ€Metalated Conjugated Nanoporous Polycarbazoles for Additiveâ€Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation. ChemSusChem, 2017, 10, 2348-2351.	3.6	12
531	Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates. Journal of the American Chemical Society, 2017, 139, 4999-5002.	6.6	276
532	Salen-Based Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 6042-6045.	6.6	240
533	Assessment of commercial poly(ε-caprolactone) as a renewable candidate for carbon capture and utilization. Journal of CO2 Utilization, 2017, 19, 185-193.	3.3	20
534	A Microporous Amic Acid Polymer for Enhanced Ammonia Capture. ACS Applied Materials & Interfaces, 2017, 9, 33504-33510.	4.0	31
535	A Dynamic Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 4995-4998.	6.6	213
536	Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption. Polymer Chemistry, 2017, 8, 2509-2515.	1.9	11
538	Functionalized Porous Aromatic Framework for Efficient Uranium Adsorption from Aqueous Solutions. ACS Applied Materials & Interfaces, 2017, 9, 12511-12517.	4.0	215

ARTICLE IF CITATIONS Applications of covalent organic frameworks (COFs): From gas storage and separation to drug 539 4.8 198 delivery. Chinese Chemical Letters, 2017, 28, 1135-1143. Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610. 540 Regulating the topology of 2D covalent organic frameworks by the rational introduction of 541 3.7 110 substituents. Chemical Science, 2017, 8, 3866-3870. Design Principles for Covalent Organic Frameworks in Energy Storage Applications. ChemSusChem, 542 149 2017, 10, 2116-2129. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331. 543 23.0 3,940 Dynamic adsorption of ammonia: apparatus, testing conditions, and adsorption capacities. Measurement Science and Technology, 2017, 28, 055901. 544 1.4 Recent advances and remaining challenges of nanostructured materials for hydrogen storage 545 16.0 526 applications. Progress in Materials Science, 2017, 88, 1-48. Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas 546 1.7 20 storage materials. RSC Advances, 2017, 7, 16174-16180. Palladium supported on an amphiphilic porous organic polymer: a highly efficient catalyst for 547 3.2 31 aminocarbonylation reactions in water. Materials Chemistry Frontiers, 2017, 1, 1541-1549. TpPa-2-incorporated mixed matrix membranes for efficient water purification. Journal of Membrane 548 4.1 84 Science, 2017, 526, 355-366. Sub-micron spheres of an imine-based covalent organic framework: supramolecular functionalization 549 1.3 16 and water-dispersibility. CrystEngComm, 2017, 19, 4872-4876. A Hydrazoneâ€Based Covalent Organic Framework asâ€...anâ€...Efficient and Reusable Photocatalyst for the Crossâ€Dehydrogenative Coupling Reaction of <i>N</i>A State Aryltetrahydroisoquinolines. ChemSusChem, 3.6 131 2017, 10, 664-669 Porous Organic Materials: Strategic Design and Structureâ€"Function Correlation. Chemical Reviews, 551 23.0 961 2017, 117, 1515-1563. Versatile Dynamic Covalent Assemblies for Probing πâ€Stacking and Chirality Induction from Homotopic Faces. Chemistry - A European Journal, 2017, 23, 3804-3809. 1.7 Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary 553 1.8 38 phase for high performance liquid chromatography. Journal of Chromatography A, 2017, 1487, 83-88. Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy 554 storage. Carbon, 2017, 114, 608-618. Facilely synthesized meso-macroporous polymer as support of poly(ethyleneimine) for highly efficient 555 6.6 81 and selective capture of CO2. Chemical Engineering Journal, 2017, 314, 466-476. G-quadruplex organic frameworks. Nature Chemistry, 2017, 9, 466-472. 99 6.6

#	Article	IF	CITATIONS
557	Carbon dioxide capture in amorphous porous organic polymers. Journal of Materials Chemistry A, 2017, 5, 1334-1347.	5.2	236
558	Advanced Organic Electrode Materials for Rechargeable Sodiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1601792.	10.2	438
559	Formylation of phenols using formamidine acetate. Organic and Biomolecular Chemistry, 2017, 15, 581-583.	1.5	15
560	Recent advances in the synthesis of covalent organic frameworks for CO 2 capture. Journal of CO2 Utilization, 2017, 17, 137-161.	3.3	94
561	"Click Chemistry―Mediated Functional Microporous Organic Nanotube Networks for Heterogeneous Catalysis. Organic Letters, 2017, 19, 5776-5779.	2.4	19
562	Selectivity and Desorption Free Energies for Methane–Ethane Mixtures in Covalent Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 24692-24700.	1.5	11
563	AFM Nanoindentation To Quantify Mechanical Properties of Nano- and Micron-Sized Crystals of a Metal–Organic Framework Material. ACS Applied Materials & Interfaces, 2017, 9, 39839-39854.	4.0	54
564	A Novel Strategy to Functionalize Covalent Organic Frameworks for High-Energy Rechargeable Lithium Organic Batteries via Graft Polymerization in Nano-Channels. Bulletin of the Chemical Society of Japan, 2017, 90, 1382-1387.	2.0	32
565	Chemically intuited, large-scale screening of MOFs by machine learning techniques. Npj Computational Materials, 2017, 3, .	3.5	107
566	Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A, 2017, 5, 22933-22938.	5.2	176
567	Ferrocene-based porous organic polymer derived high-performance electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 22163-22169.	5.2	61
568	Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. Journal of the American Chemical Society, 2017, 139, 17082-17088.	6.6	506
569	Thin Coating of Microporous Organic Network Makes a Big Difference: Sustainability Issue of Ni Electrodes on the PET Textile for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 36936-36943.	4.0	21
570	Evolution of the formation of a covalent triazine-based framework catalyzed by p-toluenesulfonic acid monohydrate. RSC Advances, 2017, 7, 45818-45823.	1.7	14
571	Interchain-linked Graphene Nanoribbons from Dibenzo[<i>g</i> , <i>p</i>]chrysene via Two-zone Chemical Vapor Deposition. Chemistry Letters, 2017, 46, 1525-1527.	0.7	5
572	A Hydrogenâ€Bonded Hexagonal Buckybowl Framework. Angewandte Chemie - International Edition, 2017, 56, 15294-15298.	7.2	67
573	Spray drying for making covalent chemistry II: synthesis of covalent–organic framework superstructures and related composites. Chemical Communications, 2017, 53, 11372-11375.	2.2	15
574	Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chemical Communications, 2017, 53, 11334-11337.	2.2	81

#	Article	IF	CITATIONS
575	Single-Site Photocatalytic H ₂ Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts. Journal of the American Chemical Society, 2017, 139, 16228-16234.	6.6	292
576	Facile synthesis of –Cĩ€N– linked covalent organic frameworks under ambient conditions. Chemical Communications, 2017, 53, 11956-11959.	2.2	61
577	CO ₂ adsorption and separation in covalent organic frameworks with interlayer slipping. CrystEngComm, 2017, 19, 6950-6963.	1.3	51
578	Morphological diversity of supramolecular polymers of DNA-containing oligopyrenes – formation of chiroptically active nanosheets. Chemical Communications, 2017, 53, 12128-12131.	2.2	13
579	A Hydrogenâ€Bonded Hexagonal Buckybowl Framework. Angewandte Chemie, 2017, 129, 15496-15500.	1.6	18
580	Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. Journal of the American Chemical Society, 2017, 139, 16310-16318.	6.6	121
581	Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy and Environmental Science, 2017, 10, 2552-2562.	15.6	154
582	Hybrid Triazine-Boron Two-Dimensional Covalent Organic Frameworks: Synthesis, Characterization, and DFT Approach to Layer Interaction Energies. ACS Applied Materials & Interfaces, 2017, 9, 31129-31141.	4.0	20
583	Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials, 2017, 4, 042002.	2.0	11
584	ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chemical Engineering Journal, 2017, 330, 1255-1264.	6.6	110
585	Palladium Nanoparticles Supported by Carboxylate-Functionalized Porous Organic Polymers for Additive-Free Hydrogen Generation from Formic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 8061-8069.	3.2	25
586	Covalent Organic Framework Material Bearing Phloroglucinol Building Units as a Potent Anticancer Agent. ACS Applied Materials & amp; Interfaces, 2017, 9, 31411-31423.	4.0	78
587	Hydrogen storage in polymer-based processable microporous composites. Journal of Materials Chemistry A, 2017, 5, 18752-18761.	5.2	43
588	Synthesis of 2D Imine-Linked Covalent Organic Frameworks through Formal Transimination Reactions. Journal of the American Chemical Society, 2017, 139, 12911-12914.	6.6	204
589	Facile synthesis of nitrogen-enriched microporous carbons derived from imine and benzimidazole-linked polymeric framework for efficient CO2 adsorption. Journal of CO2 Utilization, 2017, 21, 503-512.	3.3	45
590	Subnanoporous Highly Oxygen Permselective Membranes from Poly(conjugated hyperbranched) Tj ETQq1 1 0.78 1,3-Bis(silyl)phenylacetylene Using a Single Rh Catalytic System: Control of Their Structures and	4314 rgBT 2.2	/Overlock 11
	Permselectivities. Macromolecules. 2017. 50. 7121-7136.		
593	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie, 2017, 129, 14337-14341.	1.6	83
594	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie - International Edition, 2017, 56, 14149-14153.	7.2	441

CITATION REPORT	

#	Article	IF	CITATIONS
595	Construction of a hydrazone-linked chiral covalent organic framework–silica composite as the stationary phase for high performance liquid chromatography. Journal of Chromatography A, 2017, 1519, 100-109.	1.8	110
596	Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food. Journal of Chromatography A, 2017, 1519, 28-37.	1.8	32
597	Template-Free Synthesis of Highly Porous Boron Nitride: Insights into Pore Network Design and Impact on Gas Sorption. ACS Nano, 2017, 11, 10003-10011.	7.3	96
598	Catalysis and CO ₂ Capture by Palladiumâ€Incorporated Covalent Organic Frameworks. ChemPlusChem, 2017, 82, 1253-1265.	1.3	46
599	Chemically Engineering Magnetic Anisotropy of 2D Metalloporphyrin. Advanced Science, 2017, 4, 1700019.	5.6	22
600	Competitive Inclusion of Disubstituted Benzene Regioisomers with Crystals of <i>p</i> - <i>tert</i> -Butylcalix[4]arene. Crystal Growth and Design, 2017, 17, 5038-5043.	1.4	22
601	Light-Mediated Reversible Assembly of Polymeric Colloids. ACS Macro Letters, 2017, 6, 1060-1065.	2.3	18
602	A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. Journal of Materials Chemistry A, 2017, 5, 21820-21827.	5.2	115
604	A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation. Chemical Communications, 2017, 53, 10536-10539.	2.2	47
605	Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 2017, 139, 13083-13091.	6.6	695
606	Room-temperature fabrication of a three-dimensional porous silicon framework inspired by a polymer foaming process. Chemical Communications, 2017, 53, 8858-8861.	2.2	5
607	Two dimensional covalent organic framework materials for chemical fixation of carbon dioxide: excellent repeatability and high selectivity. Dalton Transactions, 2017, 46, 10780-10785.	1.6	37
608	Nanocoating covalent organic frameworks on nickel nanowires for greatly enhanced-performance supercapacitors. Nanotechnology, 2017, 28, 33LT01.	1.3	36
609	Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution. Science China Chemistry, 2017, 60, 1075-1083.	4.2	46
610	Multiscale Simulations on Charge Transport in Covalent Organic Frameworks Including Dynamics of Transfer Integrals from the FMO-DFTB/LCMO Approach. Journal of Physical Chemistry C, 2017, 121, 17712-17726.	1.5	16
611	Microfluidic-based Synthesis of Covalent Organic Frameworks (COFs): A Tool for Continuous Production of COF Fibers and Direct Printing on a Surface. Journal of Visualized Experiments, 2017, , .	0.2	3
612	Synthesis and characterization of a new covalent organic framework linked by NH linkage. Materials Letters, 2017, 209, 171-174.	1.3	30
613	Design of cluster structure units with large surface areas for high-capacity hydrogen storage: In the case of Si12C12H24. International Journal of Hydrogen Energy, 2017, 42, 20003-20015.	3.8	6

	CITATION REI	CITATION REPORT	
# 614	ARTICLE Porous Organic Polymers for Postâ€Combustion Carbon Capture. Advanced Materials, 2017, 29, 1700229.	IF 11.1	Citations 293
615	Selfâ€Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy. Chemistry - an Asian Journal, 2017, 12, 2183-2188.	1.7	31
616	A thiophene-containing covalent triazine-based framework with ultramicropore for CO2 capture. Journal of Energy Chemistry, 2017, 26, 902-908.	7.1	32
617	A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, andÂits hyphenation to HPLC for quantitation. Mikrochimica Acta, 2017, 184, 3867-3874.	2.5	85
618	Template synthesis of imine-based covalent organic framework core-shell structure and hollow sphere: a case of COFTTA-DHTA. Science China Chemistry, 2017, 60, 1098-1102.	4.2	25
619	Synthesis and CO ₂ Capture Behavior of Porous Cross-Linked Polymers Containing Pendant Triazole Groups. Industrial & Engineering Chemistry Research, 2017, 56, 10155-10163.	1.8	22
620	Chiral covalent organic frameworks for asymmetric catalysis and chiral separation. Science China Chemistry, 2017, 60, 1015-1022.	4.2	79
621	Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(<scp>ii</scp>). Journal of Materials Chemistry A, 2017, 5, 17973-17981.	5.2	186
622	From Fenestrindane towards Saddleâ€ S haped Nanographenes Bearing a Tetracoordinate Carbon Atom. Angewandte Chemie - International Edition, 2017, 56, 12356-12360.	7.2	31
623	Redox Active Metal– and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity. Chemistry - A European Journal, 2017, 23, 16419-16431.	1.7	121
624	Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 2017, 175, 156-162.	1.7	58
625	Auf dem Weg vom Fenestrindan zu sattelförmigen Nanographenen mit einem tetrakoordinierten Kohlenstoffâ€Atom. Angewandte Chemie, 2017, 129, 12528-12532.	1.6	16
626	Precise Solution-Based Deposition of Ultrathin Covalent Molecular Networks by Layer-by-Layer Cross-Linking Polymerization of Tetra- and Bifunctional Amine/Isocyanate Pairs. Macromolecules, 2017, 50, 6796-6803.	2.2	1
627	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	3.6	77
628	Covalent organic frameworks and organic cage structures. CrystEngComm, 2017, 19, 4866-4867.	1.3	3
629	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	3.2	136
630	On‣urface Selfâ€Assembly of a <i>C</i> ₃ ‣ymmetric Ï€â€Conjugated Molecule Family Studied b STM: Twoâ€Dimensional Nanoporous Frameworks. Chemistry - an Asian Journal, 2017, 12, 2558-2564.	'Y _{1.7}	18
631	A triptycene-based two-dimensional porous organic polymeric nanosheet. Polymer Chemistry, 2017, 8, 5533-5538.	1.9	32

#	Article	IF	CITATIONS
632	A facile synthetic route for the morphology-controlled formation of triazine-based covalent organic nanosheets (CONs). Polymer Chemistry, 2017, 8, 5655-5659.	1.9	32
633	Hyper-crosslinked porous polymer based on bulk rigid monomer for gas and dye absorptions. Chemical Research in Chinese Universities, 2017, 33, 479-483.	1.3	4
634	The "bottom-up―construction of chiral porous organic polymers for heterogeneous asymmetric organocatalysis: MacMillan catalyst built-in nanoporous organic frameworks. Polymer Chemistry, 2017, 8, 5561-5569.	1.9	26
635	Pyridine-Functionalized and Metallized Meso-Macroporous Polymers for Highly Selective Capture and Catalytic Conversion of CO ₂ into Cyclic Carbonates. Industrial & Engineering Chemistry Research, 2017, 56, 15008-15016.	1.8	32
636	Postmodification of a supramolecular organic framework: visible-light-induced recyclable heterogeneous photocatalysis for the reduction of azides to amines. Chemical Communications, 2017, 53, 13367-13370.	2.2	42
637	Controlled synthesis of conjugated polycarbazole polymers via structure tuning for gas storage and separation applications. Scientific Reports, 2017, 7, 15394.	1.6	25
638	Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nature Communications, 2017, 8, 1545.	5.8	192
639	Development and Performance Characterization of a Polyimine Covalent Organic Framework Thin-Film Composite Nanofiltration Membrane. Environmental Science & Technology, 2017, 51, 14352-14359.	4.6	166
640	Core-shell nanostructure of single-wall carbon nanotubes and covalent organic frameworks for supercapacitors. Chinese Chemical Letters, 2017, 28, 2269-2273.	4.8	57
641	Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017, 46, 6816-6854.	18.7	1,567
642	Enabling Widespread Use of Microporous Materials for Challenging Organic Solvent Separations. Chemistry of Materials, 2017, 29, 9863-9876.	3.2	50
643	Tessellated multiporous two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2017, 1, .	13.8	319
644	Pd NPs-Loaded Homochiral Covalent Organic Framework for Heterogeneous Asymmetric Catalysis. Chemistry of Materials, 2017, 29, 6518-6524.	3.2	141
645	Functionalized nitrogen ligands for palladium catalyzed cross-coupling reactions (part I). Journal of Organometallic Chemistry, 2017, 848, 22-88.	0.8	36
646	Heteroatomâ€doped Carbon Spheres from Hierarchical Hollow Covalent Organic Framework Precursors for Metalâ€Free Catalysis. ChemSusChem, 2017, 10, 4921-4926.	3.6	75
647	High-Crystallinity Covalent Organic Framework with Dual Fluorescence Emissions and Its Ratiometric Sensing Application. ACS Applied Materials & amp; Interfaces, 2017, 9, 24999-25005.	4.0	224
648	Ionic Conductivity and Potential Application for Fuel Cell of a Modified Imine-Based Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 10079-10086.	6.6	198
649	Eosin Y dye-based porous organic polymers for highly efficient heterogeneous photocatalytic dehydrogenative coupling reaction. RSC Advances, 2017, 7, 408-414.	1.7	55

ARTICLE IF CITATIONS Hybrid microporous and mesoporous organosilicate covalent polymers with high porosity. 650 2.2 6 Microporous and Mesoporous Materials, 2017, 240, 205-215. Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped 5.2 graphene. Journal of Materials Chemistry A, 2017, 5, 4343-4351. Nanoscale Fluorescent Metal–Organic Framework@Microporous Organic Polymer Composites for 652 49 1.7 Enhanced Intracellular Uptake and Bioimaging. Chemistry - A European Journal, 2017, 23, 1379-1385. Selective Molecular Sieving in Selfâ€Standing Porous Covalentâ€Organicâ€Framework Membranes. 11.1 524 Advanced Materials, 2017, 29, 1603945. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography. 654 1.3 97 Journal of Separation Science, 2017, 40, 124-137. A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. Chemistry of Materials, 2017, 29, 149-157. 3.2 Covalent organic framework modified polyamide nanofiltration membrane with enhanced 656 4.1 259 performance for desalination. Journal of Membrane Science, 2017, 523, 273-281. Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent 4.8 pólymers. Chinese Chemical Letters, 2017, 28, 168-183. 1.6 Advanced Polymeric and Organicâ€"Inorganic Membranes for Pressure-Driven Processes., 2017, 659 7 120-136. Two- and Three-dimensional Covalent Organic Frameworks (COFs)., 2017,, 271-290. Crystallization of Covalent Organic Frameworks for Gas Storage Applications. Molecules, 2017, 22, 661 1.7 128 1149. Porous Organic Cages., 2017, , 139-197. 2.7 Design and Preparation of Pervaporation Membranes., 2017, , 176-190. 663 0 Supramolecular frameworks based on [60]fullerene hexakisadducts. Beilstein Journal of Organic 664 1.3 Chemistry, 2017, 13, 1-9. 665 Two-Dimensional Supramolecular Chemistry on Surfaces., 2017, , 181-199. 0 A fluorine-containing hydrophobic covalent triazine framework with excellent selective 5.2 CO₂ capture performance. Journal of Materials Chemistry A, 2018, 6, 6370-6375. Constructing synergistic groups in porous aromatic frameworks for the selective removal and 667 5.257 recovery of lead(<scp>ii</scp>) ions. Journal of Materials Chemistry A, 2018, 6, 5202-5207. Redox-active and semi-conducting donor–acceptor conjugated microporous polymers as metal-free 5.2 69 ORR catalysts. Journal of Materials Chemistry A, 2018, 6, 5587-5591.

#	Article	IF	Citations
669	High-performance lithium sulfur batteries based on nitrogen-doped graphitic carbon derived from covalent organic frameworks. Materials Today Energy, 2018, 7, 141-148.	2.5	30
670	Diboryne Nanostructures Stabilized by Multitopic N-Heterocyclic Carbenes: A Computational Study. Inorganic Chemistry, 2018, 57, 3931-3940.	1.9	9
671	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, 6150-6156.	1.6	67
672	Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polymer Chemistry, 2018, 9, 1430-1438.	1.9	43
673	Efficient Removal of Pb ²⁺ from Aqueous Solution by an Ionic Covalent–Organic Framework: Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2018, 57, 6477-6482.	1.8	33
674	Ground-State Charge-Density Distribution in a Crystal of the Luminescent <i>ortho</i> -Phenylenediboronic Acid Complex with 8-Hydroxyquinoline. Journal of Physical Chemistry A, 2018, 122, 4508-4520.	1.1	4
675	Product Distribution from Precursor Bite Angle Variation in Multitopic Alkyne Metathesis: Evidence for a Putative Kinetic Bottleneck. Journal of the American Chemical Society, 2018, 140, 5825-5833.	6.6	34
676	Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chemical Communications, 2018, 54, 5058-5061.	2.2	19
677	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 7691-7696.	7.2	303
678	Efficient cycloaddition of CO2 to epoxides using novel heterogeneous organocatalysts based on tetramethylguanidine-functionalized porous polyphenylenes. Journal of CO2 Utilization, 2018, 25, 170-179.	3.3	46
679	Massive Preparation of Coumarone-indene Resin-based Hyper-crosslinked Polymers for Gas Adsorption. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1168-1174.	2.0	8
680	Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. Journal of Hazardous Materials, 2018, 353, 312-319.	6.5	83
681	A [4+2] Condensation Strategy to Imine‣inked Singleâ€Crystalline Zeolite‣ike Zinc Phosphate Frameworks. Chemistry - A European Journal, 2018, 24, 6178-6190.	1.7	15
682	Mechanochemical synthesis of covalent organic framework for the efficient extraction of benzoylurea insecticides. Journal of Chromatography A, 2018, 1551, 1-9.	1.8	100
683	Microporous Polycarbazole Materials: From Preparation and Properties to Applications. Macromolecular Rapid Communications, 2018, 39, e1800040.	2.0	54
684	Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration. ACS Applied Materials & Interfaces, 2018, 10, 12295-12299.	4.0	94
685	Post ationic Modification of a Pyrimidineâ€Based Conjugated Microporous Polymer for Enhancing the Removal Performance of Anionic Dyes in Water. Chemistry - A European Journal, 2018, 24, 7480-7488.	1.7	71
686	Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chemical Reviews, 2018, 118, 4731-4816.	23.0	357

#	Article	IF	CITATIONS
687	Electrospun Gelatin Membrane Cross-Linked by a Bis(diarylcarbene) for Oil/Water Separation: A New Strategy To Prepare Porous Organic Polymers. ACS Omega, 2018, 3, 3928-3935.	1.6	12
688	pH-Responsive Nanoscale Covalent Organic Polymers as a Biodegradable Drug Carrier for Combined Photodynamic Chemotherapy of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 14475-14482.	4.0	104
689	Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [ï€Â·Â·Â·Ï€] Stacking on the Solid-State Packing of Fluorinated Aromatics. Journal of the American Chemical Society, 2018, 140, 6014-6026.	6.6	106
690	Fabrication of SiO ₂ @COF5 microspheres and their application in high performance liquid chromatography. Analytical Methods, 2018, 10, 1968-1976.	1.3	24
691	Polycatenated 2D Hydrogen-Bonded Binary Supramolecular Organic Frameworks (SOFs) with Enhanced Gas Adsorption and Selectivity. Crystal Growth and Design, 2018, 18, 2555-2562.	1.4	49
692	Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications, 2018, 9, 576.	5.8	497
693	Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry. Analytica Chimica Acta, 2018, 1014, 58-63.	2.6	29
694	Highly efficient transformation of linear poly(phenylene ethynylene)s into zigzag-shaped π-conjugated microporous polymers through boron-mediated alkyne benzannulation. Materials Chemistry Frontiers, 2018, 2, 807-814.	3.2	13
695	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 6042-6048.	7.2	255
696	Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552, 1-12.	4.1	61
698	Highâ€Flux Membranes Based on the Covalent Organic Framework COF‣ZU1 for Selective Dye Separation by Nanofiltration. Angewandte Chemie - International Edition, 2018, 57, 4083-4087.	7.2	584
699	The construction of fluorescent heteropore covalent organic frameworks and their applications in spectroscopic and visual detection of trinitrophenol with high selectivity and sensitivity. Chemical Communications, 2018, 54, 2308-2311.	2.2	79
700	Advances in covalent organic frameworks in separation science. Journal of Chromatography A, 2018, 1542, 1-18.	1.8	213
701	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	3.2	169
702	Ru Nanoparticles-Loaded Covalent Organic Framework for Solvent-Free One-Pot Tandem Reactions in Air. Inorganic Chemistry, 2018, 57, 2678-2685.	1.9	77
703	Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach. Journal of the American Chemical Society, 2018, 140, 2602-2609.	6.6	117
704	Hydrolytic Stability of Boronate Ester‣inked Covalent Organic Frameworks. Advanced Theory and Simulations, 2018, 1, 1700015.	1.3	57
705	Facile synthesis and characterization of polymer embedded catenated nanosulfur. Materials Research Express, 2018, 5, 025007.	0.8	1

#	Article	IF	CITATIONS
706	Metal Doped Core–Shell Metalâ€Organic Frameworks@Covalent Organic Frameworks (MOFs@COFs) Hybrids as a Novel Photocatalytic Platform. Advanced Functional Materials, 2018, 28, 1707110.	7.8	188
707	Lithium doping on 2D squaraine-bridged covalent organic polymers for enhancing adsorption properties: a theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 6487-6499.	1.3	15
708	Covalent Triazineâ€based Frameworks—Tailorâ€made Catalysts and Catalyst Supports for Molecular and Nanoparticulate Species. ChemCatChem, 2018, 10, 1753-1771.	1.8	80
709	Palladium Nanoparticleâ€Immobilized Porous Polyurethane Material for Quick and Efficient Heterogeneous Catalysis of Suzukiâ€Miyaura Crossâ€Coupling Reaction at Room Temperature. ChemistrySelect, 2018, 3, 1365-1370.	0.7	18
710	Design and Synthesis of Open-Chain Hosts Having a Partial Structure of <i>p</i> - <i>tert</i> -Butylthiacalixarene. Journal of Organic Chemistry, 2018, 83, 2235-2243.	1.7	6
711	Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO ₂ Fixation Reactions. Chemistry - A European Journal, 2018, 24, 7278-7297.	1.7	107
712	Directed Molecular Structure Variations of Three-Dimensional Halogen-Bonded Organic Frameworks (XBOFs). Crystal Growth and Design, 2018, 18, 1967-1977.	1.4	26
713	Task-specific design of a hierarchical porous aromatic framework as an ultrastable platform for large-sized catalytic active site binding. Chemical Communications, 2018, 54, 1603-1606.	2.2	25
714	Sulfur‣inked Covalent Triazine Frameworks Doped with Coordinatively Unsaturated Cu(I) as Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2018, 5, 805-810.	1.7	26
715	Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359, 80-101.	9.5	246
716	Conjugated Microporous Polymers with Extended π-Structures for Organic Vapor Adsorption. Macromolecules, 2018, 51, 947-953.	2.2	80
717	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. CheM, 2018, 4, 308-317.	5.8	364
718	Highly CO ₂ selective pillar[n]arene-based supramolecular organic frameworks. Supramolecular Chemistry, 2018, 30, 648-654.	1.5	23
719	Selective guest inclusion by crystals of calixarenes: potential for application as separation materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 261-277.	0.9	31
720	Wasserâ€Hochflussmembranen auf Basis der kovalenten organischen Gerüststruktur COFâ€LZU1 für die Farbstoffabtrennung durch Nanofiltration. Angewandte Chemie, 2018, 130, 4147-4151.	1.6	35
721	Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm, 2018, 20, 1613-1634.	1.3	108
722	Pd(OAc)2 immobilized on imine-functionalized microporous covalent triazine polymer as efficient heterogeneous catalyst for Mizoroki–Heck cross-coupling reaction. Research on Chemical Intermediates, 2018, 44, 2853-2866.	1.3	9
723	Sorption of CO ₂ in a hydrogen-bonded diamondoid network of sulfonylcalix[4]arene. Supramolecular Chemistry, 2018, 30, 540-544.	1.5	4

#	Article	IF	CITATIONS
724	New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium‧torage Properties. Advanced Materials, 2018, 30, 1705401.	11.1	177
725	Pd nanoparticles on a microporous covalent triazine polymer for H2 production via formic acid decomposition. Materials Letters, 2018, 215, 211-213.	1.3	20
726	Pore Environment Control and Enhanced Performance of Enzymes Infiltrated in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 984-992.	6.6	310
727	Synthetic Two-dimensional Organic Structures. Chinese Journal of Polymer Science (English Edition), 2018, 36, 425-444.	2.0	27
728	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	6.6	646
729	Copper Nanoparticles on Controlled Pore Glass and TEMPO for the Aerobic Oxidation of Alcohols. ChemNanoMat, 2018, 4, 71-75.	1.5	11
730	Superconductivity in a Copper(II)â€Based Coordination Polymer with Perfect Kagome Structure. Angewandte Chemie, 2018, 130, 152-156.	1.6	43
731	Rapid, low temperature synthesis of molecularly imprinted covalent organic frameworks for the highly selective extraction of cyano pyrethroids from plant samples. Analytica Chimica Acta, 2018, 1001, 179-188.	2.6	111
732	Recovery of host crystals from inclusion crystals of p-tert-butylcalix[4]arene and p-tert-butylthiacalix[4]arene by the treatment with a solvent and/or supercritical CO2. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2018, 90, 279-285.	0.9	7
733	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	11.1	85
734	Recent advances of hexaazatriphenylene (HAT) derivatives: Their applications in self-assembly and porous organic materials. Tetrahedron Letters, 2018, 59, 592-604.	0.7	28
735	H ₂ Evolution with Covalent Organic Framework Photocatalysts. ACS Energy Letters, 2018, 3, 400-409.	8.8	318
736	Porous Organic Polymers for Polysulfide Trapping in Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707597.	7.8	154
737	Pd nanoparticles supported on a covalent triazine-based framework material: an efficient and highly chemoselective catalyst for the reduction of nitroarenes. New Journal of Chemistry, 2018, 42, 9684-9689.	1.4	45
738	Electrochemical Synthesis and Doping for Nano-Porous Organic Magnetic Materials. Materials and Energy, 2018, , 207-234.	2.5	0
739	Aptamerâ€Functionalized Magnetic Conjugated Organic Framework for Selective Extraction of Traces of Hydroxylated Polychlorinated Biphenyls in Human Serum. Chemistry - A European Journal, 2018, 24, 10390-10396.	1.7	48
740	A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production. Science China Chemistry, 2018, 61, 830-835.	4.2	33
741	An Ultraâ€Robust and Crystalline Redeemable Hydrogenâ€Bonded Organic Framework for Synergistic Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 7817-7822.	1.6	85

#	Article	IF	CITATIONS
742	Carbon dioxide capture using covalent organic frameworks (COFs) type material—a theoretical investigation. Journal of Molecular Modeling, 2018, 24, 120.	0.8	12
743	A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H ₂ /CO ₂ separation selectivity. Dalton Transactions, 2018, 47, 7206-7212.	1.6	52
744	Synthesis and characterization of a 2D covalent organic framework (COF) of hexagonal topology using boronate linkages. Journal of Chemical Sciences, 2018, 130, 1.	0.7	3
745	Supramolecular Reassembly of Selfâ€Exfoliated Ionic Covalent Organic Nanosheets for Labelâ€Free Detection of Doubleâ€Stranded DNA. Angewandte Chemie - International Edition, 2018, 57, 8443-8447.	7.2	140
746	Silane-based hyper-cross-linked porous polymers and their applications in gas storage and water treatment. Journal of Materials Science, 2018, 53, 10469-10478.	1.7	10
747	Holding Open Micropores with Water: Hydrogen-Bonded Networks Supported by Hexaaquachromium(III) Cations. CheM, 2018, 4, 868-878.	5.8	16
748	Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. New Journal of Chemistry, 2018, 42, 7392-7398.	1.4	8
749	Assemblies of covalent organic framework microcrystals: multiple-dimensional manipulation for enhanced applications. Science China Chemistry, 2018, 61, 143-152.	4.2	28
750	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	6.6	555
751	Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Advanced Materials, 2018, 30, e1705479.	11.1	398
752	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal Ions on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	3.2	27
753	Porosity Prediction through Hydrogen Bonding in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 5138-5145.	6.6	118
754	Methane Adsorption and Separation in Slipped and Functionalized Covalent Organic Frameworks. Industrial & Engineering Chemistry Research, 2018, 57, 4767-4778.	1.8	36
755	Growth-modulating agents for the synthesis of Al-MOF-type materials based on assembled 1D structural subdomains. Dalton Transactions, 2018, 47, 5492-5502.	1.6	8
756	Mechanistic Insight into Hydrogen-Bond-Controlled Crystallinity and Adsorption Property of Covalent Organic Frameworks from Flexible Building Blocks. Chemistry of Materials, 2018, 30, 2299-2308.	3.2	208
757	A ferroceneâ€containing porous organic polymer linked by tetrahedral siliconâ€centered units for gas sorption. Applied Organometallic Chemistry, 2018, 32, e3935.	1.7	22
758	Hypercrosslinked Polymers: A Review. Polymer Reviews, 2018, 58, 1-41.	5.3	194
759	High Surface Area, Thermally Stable, Hydrophobic, Microporous, Rigid Gels Generated at Ambient from MeSi(OEt) ₃ /(EtO) ₃ SiCH ₂ CH ₂ Si(OEt) ₃ Mixtures by F ^{â~'} â€Catalyzed Hydrolysis. Chemistry - A European Journal, 2018, 24, 274-280.	1.7	5

#	Article	IF	CITATIONS
760	Microporous Organic Materials for Membraneâ€Based Gas Separation. Advanced Materials, 2018, 30, 1700750.	11.1	172
761	Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO ₂ under mild conditions. Journal of Materials Chemistry A, 2018, 6, 374-382.	5.2	238
762	Hypercrosslinked silole ontaining microporous organic polymers with <scp>N</scp> â€functionalized pore surfaces for gas storage and separation. Journal of Applied Polymer Science, 2018, 135, 45907.	1.3	12
763	Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix. Journal of Hazardous Materials, 2018, 344, 220-229.	6.5	92
764	Triptycene based microporous polymers (TMPs): Efficient small gas (H2 and CO2) storage and high CO2/N2 selectivity. Microporous and Mesoporous Materials, 2018, 257, 253-261.	2.2	30
765	Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion. Journal of Energy Chemistry, 2018, 27, 99-116.	7.1	35
766	Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials, 2018, 30, 1703646.	11.1	309
767	High and Reversible Lithium Ion Storage in Selfâ€Exfoliated Triazoleâ€Triformyl Phloroglucinolâ€Based Covalent Organic Nanosheets. Advanced Energy Materials, 2018, 8, 1702170.	10.2	174
768	Particle and nanofiber shaped conjugated microporous polymers bearing hydantoin-substitution with high antibacterial activity forÂwater cleanness. Journal of Materials Chemistry A, 2018, 6, 266-274.	5.2	34
769	Synthesis of Two Wellâ€Defined Quadrupleâ€Stranded Copolymers having Two Kinds of Backbones by Postpolymerization of a Helical Template Polymer. Macromolecular Rapid Communications, 2018, 39, 1700556.	2.0	3
770	Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Research, 2018, 11, 3244-3257.	5.8	74
771	Covalent Organic Frameworks as the Coating Layer of Ceramic Separator for High-Efficiency Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2018, 1, 132-138.	2.4	55
772	Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angewandte Chemie - International Edition, 2018, 57, 1300-1305.	7.2	66
773	Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angewandte Chemie, 2018, 130, 1314-1319.	1.6	23
774	Sterically crowded hydrogen-bonded hexagonal network frameworks. Materials Chemistry Frontiers, 2018, 2, 338-346.	3.2	22
775	A design strategy for the construction of 2D heteropore covalent organic frameworks based on the combination of <i>C</i> _{2v} and <i>D</i> _{3h} symmetric building blocks. Polymer Chemistry, 2018, 9, 279-283.	1.9	19
776	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	5.2	103
777	Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 4850-4878.	7.2	405

#	Article	IF	CITATIONS
778	Kovalente organische Netzwerke und KÃ # gverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten. Angewandte Chemie, 2018, 130, 4942-4972.	1.6	97
779	Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. Journal of Supercritical Fluids, 2018, 134, 197-203.	1.6	33
780	Host–Guest Molecular Crystals of Diamino-4,4-bithiazole and Dynamic Molecular Motions via Guest Sorption. Crystal Growth and Design, 2018, 18, 286-296.	1.4	10
781	Selective MeCN/EtCN sorption and preferential inclusion of substituted benzenes in a cage structure with arylsulfonamide-armed anthraquinones. CrystEngComm, 2018, 20, 17-24.	1.3	6
782	Two-dimensional organic cathode materials for alkali-metal-ion batteries. Journal of Energy Chemistry, 2018, 27, 86-98.	7.1	56
783	Superconductivity in a Copper(II)â€Based Coordination Polymer with Perfect Kagome Structure. Angewandte Chemie - International Edition, 2018, 57, 146-150.	7.2	233
784	Scalable ambient pressure synthesis of covalent organic frameworks and their colorimetric nanocomposites through dynamic imine exchange reactions. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1-7.	2.0	35
785	Imineâ€linked porous organic polymers showing mesoporous microspheres architectures with tunable surface roughness. Journal of Polymer Science Part A, 2018, 56, 319-327.	2.5	11
786	Chlorpyrifos Degradation by Crude Enzyme Extracts Obtained from <i>Alcanivorax borkumensis</i> . ACS Symposium Series, 2018, , 81-95.	0.5	0
788	Chemical and Adsorptive Characterization of Adsorbents To Capture Greenhouse Gases Under Atmospheric Conditions of Temperature and Pressure. ACS Symposium Series, 2018, , 105-121.	0.5	0
789	Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1705553.	7.8	892
790	Phase transformation in two-dimensional covalent organic frameworks under compressive loading. Physical Chemistry Chemical Physics, 2018, 20, 29462-29471.	1.3	15
791	Porous organic polymers based on melamine and 5,5′-bis(bromomethyl)-2,2′-bipyridine: functionalization with lanthanide ions for chemical sensing and highly efficient adsorption of methyl orange. New Journal of Chemistry, 2018, 42, 19734-19739.	1.4	6
792	A supramolecular porous material comprising Fe(<scp>ii</scp>) mesocates. Chemical Communications, 2018, 54, 13391-13394.	2.2	15
793	Novel nanoporous covalent organic frameworks for the selective extraction of endogenous peptides. RSC Advances, 2018, 8, 37528-37533.	1.7	10
795	Surface-Supported Boronic Acid Condensation. , 2018, , 424-435.		0
796	Application of Heterogeneous Catalysts in Dechlorination of Chlorophenols. , 2018, , .		0
797	Simple Synthesis of High Specific Surface Carbon Nitride for Adsorption-Enhanced Photocatalytic Performance. Nanoscale Research Letters, 2018, 13, 248.	3.1	20

#	Article	IF	CITATIONS
800	Synthesis of Two-Dimensional (2-D) Polymer in the Realm of Liquid–Liquid Interfaces. , 2018, , 453-471.		3
801	Host–Guest Chemistry in Surface-Confined Two-Dimensional Covalent Organic Frameworks. , 2018, , 285-294.		0
802	1. Introduction: hydrogen storage as solution for a changing energy landscape. , 2018, , 1-34.		0
803	Understanding Water Adsorption and the Impact on CO ₂ Capture in Chemically Stable Covalent Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 27495-27506.	1.5	36
804	Advances in Nanostructured Metal-Encapsulated Porous Organic-Polymer Composites for Catalyzed Organic Chemical Synthesis. Catalysts, 2018, 8, 492.	1.6	17
805	Using Vegetal Biomass for Pollution Adsorption. ACS Symposium Series, 2018, , 1-13.	0.5	1
806	A magnetic knitting aromatic polymer as a new sorbent for use in solid-phase extraction of organics. Mikrochimica Acta, 2018, 185, 554.	2.5	17
807	Ï€-Electron Conjugation in Two-Dimensional Polymers. , 2018, , 509-522.		2
808	Contaminant Accumulation in Stormwater Retention and Detention Pond Sediments: Implications for Maintenance and Ecological Health. ACS Symposium Series, 2018, , 123-153.	0.5	2
809	Highly Fluoro-Substituted Covalent Organic Framework and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42233-42240.	4.0	127
810	Urea-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 16438-16441.	6.6	140
811	Zwitterionic Covalent Organic Frameworks as Catalysts for Hierarchical Reduction of CO ₂ with Amine and Hydrosilane. ACS Applied Materials & Interfaces, 2018, 10, 41350-41358.	4.0	100
812	CO ₂ Mineralization and Utilization by a High-Gravity Carbonation Process: Past, Present, and Future. ACS Symposium Series, 2018, , 97-104.	0.5	0
813	Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan–Lam coupling reaction of aryl boronic acids and amines. Green Chemistry, 2018, 20, 4891-4900.	4.6	142
814	Dynamic Diels–Alder reactions of maleimide–furan amphiphiles and their fluorescence ON/OFF behaviours. Organic and Biomolecular Chemistry, 2018, 16, 7871-7877.	1.5	19
815	Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks. Communications Chemistry, 2018, 1, .	2.0	109
816	Porous Triazine Containing Covalent Organic Polymer Supported Pd Nanoparticles: A Stable and Efficient Heterogeneous Catalyst for Sonogashira Cross oupling and the Reduction of Nitroarenes. ChemistrySelect, 2018, 3, 13442-13455.	0.7	14
817	Stateâ€ofâ€theâ€Art Advances and Challenges of Ironâ€Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications. Small, 2019, 15, e1803088.	5.2	111

#	Article	IF	CITATIONS
818	Biological Degradation of Plastics: Polyethylene Biodegradation by <i>Aspergillus</i> and <i>Streptomyces</i> Species—A Review. ACS Symposium Series, 2018, , 69-79.	0.5	4
819	An AlEgen-based 3D covalent organic framework for white light-emitting diodes. Nature Communications, 2018, 9, 5234.	5.8	293
820	Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 29307-29318.	1.5	68
821	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO ₂ Reduction in Water. ACS Applied Materials & amp; Interfaces, 2018, 10, 43588-43594.	4.0	29
822	Porous Organic Polymers: An Emerged Platform for Photocatalytic Water Splitting. Frontiers in Chemistry, 2018, 6, 592.	1.8	51
823	Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nature Communications, 2018, 9, 5274.	5.8	182
824	Open and Hierarchical Carbon Framework with Ultralarge Pore Volume for Efficient Capture of Carbon Dioxide. ACS Applied Materials & Interfaces, 2018, 10, 36961-36968.	4.0	59
825	Bifunctional Metal-Free Porous Organic Framework Heterogeneous Catalyst for Efficient CO ₂ Conversion under Mild and Cocatalyst-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 15050-15055.	3.2	78
826	New Chiral Stationary Phases: Preparation, Properties, and Applications in Gas Chromatography. Journal of Analytical Chemistry, 2018, 73, 937-945.	0.4	16
827	Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2018, 140, 14342-14349.	6.6	313
828	Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale, 2018, 10, 19509-19516.	2.8	108
829	Layer-by-layer preparation of 3D covalent organic framework/silica composites for chromatographic separation of position isomers. Chemical Communications, 2018, 54, 11765-11768.	2.2	67
830	Anthracene-Resorcinol Derived Covalent Organic Framework as Flexible White Light Emitter. Journal of the American Chemical Society, 2018, 140, 13367-13374.	6.6	179
831	Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nature Communications, 2018, 9, 4143.	5.8	319
832	Preparation of Microporous Organic Polymers via UV-Initiated Radical Copolymerization. ACS Macro Letters, 2018, 7, 1283-1288.	2.3	19
833	A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene. Journal of the American Chemical Society, 2018, 140, 15724-15730.	6.6	207
834	Layer-by-Layer Synthesis of Covalent Organic Frameworks on Porous Substrates for Fast Molecular Separations. ACS Applied Nano Materials, 2018, 1, 6320-6326.	2.4	63
835	Mixed Matrix Membranes for CO2 Separations. , 2018, , 103-153.		3

#	ARTICLE	IF	CITATIONS
836	Conventional and Advanced Processes for the Removal of Pharmaceuticals and Their Human Metabolites from Wastewater. ACS Symposium Series, 2018, , 15-67.	0.5	4
837	Metalloporphyrin Two-Dimensional Polymers via Metal-Catalyst-Free C–C Bond Formation for Efficient Catalytic Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 6442-6450.	2.5	27
838	A new triazine based π-conjugated mesoporous 2D covalent organic framework: its <i>in vitro</i> anticancer activities. Chemical Communications, 2018, 54, 11475-11478.	2.2	37
839	Di-ionic multifunctional porous organic frameworks for efficient CO ₂ fixation under mild and co-catalyst free conditions. Green Chemistry, 2018, 20, 5285-5291.	4.6	38
840	Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities. Organic Chemistry Frontiers, 2018, 5, 3341-3356.	2.3	62
841	Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment. TrAC - Trends in Analytical Chemistry, 2018, 108, 154-166.	5.8	151
842	Heptazine based organic framework as a chemiresistive sensor for ammonia detection at room temperature. Journal of Materials Chemistry A, 2018, 6, 18389-18395.	5.2	61
843	Ligand Isomerism in Coordination Cages. Inorganic Chemistry, 2018, 57, 12222-12231.	1.9	24
844	Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO ₂ uptake and energy storage. Journal of Materials Chemistry A, 2018, 6, 19532-19541.	5.2	184
845	Covalent organic framework TpPaâ€1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Electrophoresis, 2018, 39, 2912-2918.	1.3	17
846	Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering. Advanced Materials, 2018, 30, e1804169.	11.1	66
847	Synthesis and Morphology Evolution of Ultrahigh Content Nitrogenâ€Doped, Microporeâ€Dominated Carbon Materials as Highâ€Performance Supercapacitors. ChemSusChem, 2018, 11, 3932-3940.	3.6	36
848	Benzotrithiophene-Based Covalent Organic Frameworks: Construction and Structure Transformation under Ionothermal Condition. Journal of the American Chemical Society, 2018, 140, 11618-11622.	6.6	76
849	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. Journal of Membrane Science, 2018, 566, 197-204.	4.1	236
850	Covalent Organic Nanosheets as Effective Sodium-Ion Storage Materials. ACS Applied Materials & Interfaces, 2018, 10, 32102-32111.	4.0	77
851	Hydrazone-based covalent organic frameworks for Lewis acid catalysis. Dalton Transactions, 2018, 47, 13824-13829.	1.6	39
852	Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 7429-7432.	6.6	227
853	Adventures in boron chemistry – the prediction of novel ultra-flexible boron oxide frameworks. Faraday Discussions, 2018, 211, 569-591.	1.6	5

#	Article	IF	CITATIONS
854	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	4.1	33
855	Pd loaded and covalent-organic framework involved chitosan aerogels and their application forÂcontinuous flow-through aqueous CB decontamination. Journal of Materials Chemistry A, 2018, 6, 11140-11146.	5.2	64
856	Exploring Applications of Covalent Organic Frameworks: Homogeneous Reticulation of Radicals for Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2018, 140, 6969-6977.	6.6	62
857	Observation of Interpenetration Isomerism in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6763-6766.	6.6	144
858	Monolithic nanofoam based on conjugated microporous polymer nanotubes with ultrahigh mechanical strength and flexibility for energy storage. Journal of Materials Chemistry A, 2018, 6, 11676-11681.	5.2	46
859	Pd NP-Loaded and Covalently Cross-Linked COF Membrane Microreactor for Aqueous CBs Dechlorination at Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 20448-20457.	4.0	70
860	Porous organic materials with ultra-small pores and sulfonic functionality for xenon capture with exceptional selectivity. Journal of Materials Chemistry A, 2018, 6, 11163-11168.	5.2	47
861	Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. Journal of Hazardous Materials, 2018, 355, 145-153.	6.5	91
862	Toward Twoâ€Dimensional π onjugated Covalent Organic Radical Frameworks. Angewandte Chemie, 2018, 130, 8139-8143.	1.6	22
863	Understanding the characteristic of methane hydrate equilibrium in materials and its potential application. Chemical Engineering Journal, 2018, 349, 775-781.	6.6	66
864	Exceptional lodine Capture in 2D Covalent Organic Frameworks. Advanced Materials, 2018, 30, e1801991.	11.1	281
866	Microporous frameworks based on adamantane building blocks: Synthesis, porosity, selective adsorption and functional application. Reactive and Functional Polymers, 2018, 130, 126-132.	2.0	10
867	Superprotonic Conductivity in Flexible Porous Covalent Organic Framework Membranes. Angewandte Chemie, 2018, 130, 11060-11064.	1.6	70
868	New study on the rules of sub-nano level structures of ordered mesoporous polymers by using positron annihilation lifetime spectroscopy. Radiation Physics and Chemistry, 2018, 150, 157-162.	1.4	2
869	Excitonics: A Set of Gates for Molecular Exciton Processing and Signaling. ACS Nano, 2018, 12, 6410-6420.	7.3	26
870	Superprotonic Conductivity in Flexible Porous Covalent Organic Framework Membranes. Angewandte Chemie - International Edition, 2018, 57, 10894-10898.	7.2	207
871	Hydrogen-bonded organic frameworks: design, structures and potential applications. CrystEngComm, 2018, 20, 5884-5898.	1.3	211
872	Ferroceneâ€Functionalized Silsesquioxaneâ€Based Porous Polymer for Efficient Removal of Dyes and Heavy Metal Ions. Chemistry - A European Journal, 2018, 24, 13504-13511.	1.7	58

#	Article	IF	CITATIONS
873	Integrating Superwettability within Covalent Organic Frameworks for Functional Coating. CheM, 2018, 4, 1726-1739.	5.8	157
874	1,3-Diyne-Linked Conjugated Microporous Polymer for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 9254-9260.	1.8	23
875	Hard-template synthesis of micro-mesoporous organic frameworks with controlled hierarchicity. Chemical Communications, 2018, 54, 8335-8338.	2.2	15
876	Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS Nano, 2018, 12, 7445-7481.	7.3	225
877	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. Chemistry of Materials, 2018, 30, 5743-5749.	3.2	108
878	Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nature Communications, 2018, 9, 3132.	5.8	85
879	Convergent Covalent Organic Framework Thin Sheets as Flexible Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 28139-28146.	4.0	134
880	Spherical covalent organic frameworks as advanced adsorbents for preconcentration and separation of phenolic endocrine disruptors, followed by high performance liquid chromatography. RSC Advances, 2018, 8, 26880-26887.	1.7	25
881	Synthesis of novel 2D in-plane anisotropic covalent organic frameworks through a solvent modulated orthogonal strategy. Polymer Chemistry, 2018, 9, 4288-4293.	1.9	10
882	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	11.1	229
883	A triphenylamine-functionalized fluorescent organic polymer as a turn-on fluorescent sensor for Fe3+ ion with high sensitivity and selectivity. Journal of Materials Science, 2018, 53, 15746-15756.	1.7	19
884	S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion. Frontiers of Chemical Science and Engineering, 2018, 12, 346-357.	2.3	9
885	Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 15905-15926.	5.2	258
886	Ionic covalent organic frameworks for highly effective catalysis. Chinese Journal of Catalysis, 2018, 39, 1437-1444.	6.9	39
887	Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction. Applied Catalysis B: Environmental, 2018, 239, 147-153.	10.8	99
888	Large Out-of-Plane Deformations of Two-Dimensional Covalent Organic Framework (COF) Sheets. Journal of Physical Chemistry Letters, 2018, 9, 4215-4220.	2.1	15
889	Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials, 2018, 8, 15.	1.9	134
890	Nonporous Adaptive Crystals of Pillararenes. Accounts of Chemical Research, 2018, 51, 2064-2072.	7.6	364

#	Article	IF	CITATIONS
891	Boronic acid-functionalized porous polycarbazoles: preparation, adsorption performance, and heterogeneous catalysts for selective oxidation. Journal of Materials Science, 2018, 53, 15025-15033.	1.7	8
892	Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nature Communications, 2018, 9, 2785.	5.8	353
893	Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Journal of the American Chemical Society, 2018, 140, 10094-10098.	6.6	500
894	A dual-functionalized, luminescent and highly crystalline covalent organic framework: molecular decoding strategies for VOCs and ultrafast TNP sensing. Journal of Materials Chemistry A, 2018, 6, 16246-16256.	5.2	109
895	Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons. Advanced Science, 2018, 5, 1800293.	5.6	45
896	Rational Design of MOF/COF Hybrid Materials for Photocatalytic H ₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie, 2018, 130, 12282-12286.	1.6	75
897	Rational Design of MOF/COF Hybrid Materials for Photocatalytic H ₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie - International Edition, 2018, 57, 12106-12110.	7.2	508
898	Preparation and energy storage application of a long-life and high rate performance pseudocapacitive COF material linked with –NH– bonds. New Journal of Chemistry, 2018, 42, 13726-13731.	1.4	33
899	Conversion of Imine to Oxazole and Thiazole Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 9099-9103.	6.6	243
900	Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams. Carbon, 2018, 139, 789-800.	5.4	21
901	Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chemical Society Reviews, 2018, 47, 5614-5645.	18.7	89
902	Porous Organic Frameworks-derived Porous Carbons with Outstanding Gas Adsorption Performance.		3
	Chemical Research in Chinese Universities, 2018, 34, 338-343.	1.3	0
903	Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes. Applied Catalysis B: Environmental, 2018, 234, 290-295.	1.3	52
903 904	Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient		
	Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes. Applied Catalysis B: Environmental, 2018, 234, 290-295. Highly Uniform Carbon Sheets with Orientation-Adjustable Ordered Mesopores. ACS Nano, 2018, 12,	10.8	52
904	Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes. Applied Catalysis B: Environmental, 2018, 234, 290-295. Highly Uniform Carbon Sheets with Orientation-Adjustable Ordered Mesopores. ACS Nano, 2018, 12, 5436-5444. Supramolecular Reassembly of Selfâ€Exfoliated Ionic Covalent Organic Nanosheets for Labelâ€Free	10.8 7.3	52 86
904 905	Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes. Applied Catalysis B: Environmental, 2018, 234, 290-295. Highly Uniform Carbon Sheets with Orientation-Adjustable Ordered Mesopores. ACS Nano, 2018, 12, 5436-5444. Supramolecular Reassembly of Selfâ€Exfoliated Ionic Covalent Organic Nanosheets for Labelâ€Free Detection of Doubleâ€Stranded DNA. Angewandte Chemie, 2018, 130, 8579-8583. Grafting of quantum dots on covalent organic frameworks via a reverse microemulsion for highly	10.8 7.3 1.6	52 86 29

ARTICLE IF CITATIONS Heterogeneous nucleation and growth of highly crystalline imine-linked covalent organic 909 2.2 53 frameworks. Chemical Communications, 2018, 54, 5976-5979. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Advances, 2018, 8, 1.7 246 29248-29273. Application of covalent organic framework as the adsorbent for solid-phase extraction of trace 911 levels of pesticide residues prior to high-performance liquid chromatography-ultraviolet detection. 1.8 64 Journal of Chromatography A, 2018, 1572, 20-26. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks 138 for signal amplification. Biosensors and Bioelectronics, 2018, 119, 176-181. Three Switchable Orthogonal Dynamic Covalent Reactions and Complex Networks Based on the 913 1.7 20 Control of Dual Reactivity. Journal of Organic Chemistry, 2018, 83, 9858-9869. A building block exchange strategy for the rational fabrication of <i>de novo</i> unreachable 914 amino-functionalized imine-linked covalent organic frameworks. Journal of Materials Chemistry A, 5.2 2018, 6, 17307-17311. Synthesis of Nitrogen-Rich Polymers by Click Polymerization Reaction and Gas Sorption Property. 915 1.7 11 Molecules, 2018, 23, 1732. Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the 4.1 20 CO2/N2 separation performance. Journal of Membrane Science, 2018, 566, 213-222. Preparation and Properties of Magnetic-fluorescent Microporous Polymer Microspheres. Chemical 917 7 1.3 Research in Chinese Universities, 2018, 34, 684-690. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical 918 1.0 34 bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253. Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation. ACS Applied Materials & amp; Interfaces, 2018, 10, 919 4.034 28664-28671. Roomâ€Temperature Synthesis of Covalent Organic Framework (COFâ€LZU1) Nanobars in 920 3.6 38 CO₂/Water Solvent. ChemSusChem, 2018, 11, 3576-3580. Electronic and Optical Properties of 2D Materials Constructed from Light Atoms. Advanced Materials, 921 11.1 36 2018, 30, e1801600. Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate 5.2 122 lithium–sulfur batteries. Journal of Materials Chemistry Ă, 2018, 6, 17186-17191. Recent advances in covalent organic frameworks for separation and analysis of complex samples. 923 5.8 78 TrAC - Trends in Analytical Chemistry, 2018, 108, 98-109. A covalent organic framework bearing thioether pendant arms for selective detection and recovery 924 114 of Au from ultra-low concentration aqueous solution. Chemical Communications, 2018, 54, 9977-9980. An azine-linked covalent organic framework ACOF-1 membrane for highly selective 925 5.2107 CO₂/CH₄ separation. Journal of Materials Chemistry A, 2018, 6, 16849-16853. Ultra-high selectivity COF-based membranes for biobutanol production. Journal of Materials Chemistry A, 2018, 6, 17602-17611.

CITATION REPORT ARTICLE IF CITATIONS Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a 3.2 78 Highly Stable Heterogeneous Catalyst. Chemistry of Materials, 2018, 30, 4102-4111. A Bird's Eye view on process and engineering aspects of hydrogen storage. Renewable and Sustainable 8.2 Energy Réviews, 2018, 91, 838-860 β yclodextrin Covalent Organic Framework for Selective Molecular Adsorption. Chemistry - A 1.7 91 European Journal, 2018, 24, 10979-10983. A 2D covalent organic framework as a sensor for detecting formaldehyde. Journal of Molecular 0.8 Modeling, 2018, 24, 153. Covalent organic frameworks as heterogeneous catalysts. Chinese Journal of Catalysis, 2018, 39, 6.9 87 1167-1179. Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic Framework with High Surface Area. Angewandte Chemie - International Edition, 2018, 57, 12650-12655. Docking Strategy To Construct Thermostable, Singleâ€Crystalline, Hydrogenâ€Bonded Organic 1.6 23 Framework with High Surface Area. Angewandte Chemie, 2018, 130, 12832-12837. Adsorption of Pharmaceutical Pollutants from Water Using Covalent Organic Frameworks. 1.7 106 Chemistry - A European Journal, 2018, 24, 10601-10605. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. 5.2 241 Journal of Materials Chemistry A, 2018, 6, 13331-13339. Solvent-free synthesis of a porous thiophene polymer by mechanochemical oxidative polymerization. 5.2 24 Journal of Materials Chemistry A, 2018, 6, 21901-21905. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 230 5.8 2018, 9, 2335. Adsorption and diffusion of CO2 and CH4 in covalent organic frameworks: an MC/MD simulation study. Molecular Simulation, 2018, 44, 1244-1251. Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of 5.8 306 CO2. CheM, 2018, 4, 1696-1709. Covalent triazine-based framework for micro solid-phase extraction of parabens. Journal of 1.8 Chromatography A, 2018, 1565, 48-56. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 23.0 505 6189-6235. Palladium Nanoparticles Supported on Nitrogenâ€rich Containing Melamineâ€based Microporous Covalent Triazine Polymers as Efficient Heterogeneous Catalyst for Câ[^]Se Coupling Reactions. 1.8 ChemCatChem, 2018, 10, 3833-3844. Magnetic solidâ€phase extraction of benzoylurea insecticides by Fe₃O₄

943nanoparticles decorated with a hyperâ€crossâ€linked porous organic polymer. Journal of Separation1.323943The use of covalent organic frameworks as template for conductive polymer synthesis and their1.323944The use of covalent organic frameworks as template for conductive polymer synthesis and their1.322

927

929

931

933

934

935

937

938

939

940

941

#	Article	IF	CITATIONS
945	Porous aromatic networks with amine linkers for adsorption of hydroxylated aromatic hydrocarbons. Journal of Applied Polymer Science, 2019, 136, 46919.	1.3	5
946	Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly. Angewandte Chemie - International Edition, 2019, 58, 74-85.	7.2	86
947	Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. Journal of Separation Science, 2019, 42, 6-20.	1.3	63
948	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
949	Einstellbare orthogonale reversible kovalente Bindungen: dynamische Kontrolle über die molekulare Selbstorganisation. Angewandte Chemie, 2019, 131, 76-88.	1.6	22
950	Weak Intermolecular Interactions in Covalent Organic Framework-Carbon Nanofiber Based Crystalline yet Flexible Devices. ACS Applied Materials & Interfaces, 2019, 11, 30828-30837.	4.0	54
951	Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society, 2019, 141, 13324-13329.	6.6	146
952	Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy. Chemical Science, 2019, 10, 9077-9083.	3.7	108
953	2D Crystal–Based Fibers: Status and Challenges. Small, 2019, 15, e1902691.	5.2	35
954	A Highly Stable Porous Viologen Polymer for the Catalysis of Debromination Coupling of Benzyl Bromides with High Recyclability. Asian Journal of Organic Chemistry, 2019, 8, 1912-1918.	1.3	9
955	Ultralow-Content Palladium Dispersed in Covalent Organic Framework for Highly Efficient and Selective Semihydrogenation of Alkynes. Inorganic Chemistry, 2019, 58, 10829-10836.	1.9	28
956	Two-Dimensional Covalent Organic Frameworks (COFs) for Membrane Separation: a Mini Review. Industrial & Engineering Chemistry Research, 2019, 58, 15394-15406.	1.8	124
957	Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chemical Science, 2019, 10, 8889-8894.	3.7	220
958	Porous organic frameworks with mesopores and [Ru(bpy) ₃] ²⁺ ligand built-in as a highly efficient visible-light heterogeneous photocatalyst. Materials Chemistry Frontiers, 2019, 3, 1909-1917.	3.2	21
959	Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations. Journal of Membrane Science, 2019, 591, 117348.	4.1	59
960	An investigation of latency prediction for NoC-based communication architectures using machine learning techniques. Journal of Supercomputing, 2019, 75, 7573-7591.	2.4	10
961	2D molecular crystal lattices: advances in their synthesis, characterization, and application. Journal of Materials Chemistry A, 2019, 7, 23537-23562.	5.2	33
962	Preparation and Study of Reusable Polymerized Catalysts for Ester Hydrogenation. ACS Omega, 2019, 4, 12212-12221.	1.6	3

#	Article	IF	CITATIONS
963	Optical Properties of Isolated and Covalent Organic Framework-Embedded Ruthenium Complexes. Journal of Physical Chemistry A, 2019, 123, 6854-6867.	1.1	7
964	Real-time optical and electronic sensing with a Î ² -amino enone linked, triazine-containing 2D covalent organic framework. Nature Communications, 2019, 10, 3228.	5.8	117
965	A Molecular Coordination Template Strategy for Designing Selective Porous Aromatic Framework Materials for Uranyl Capture. ACS Central Science, 2019, 5, 1432-1439.	5.3	86
966	Electronic Structure of a Semiconducting Imineâ€Covalent Organic Framework. Chemistry - an Asian Journal, 2019, 14, 4645-4650.	1.7	8
967	Pre-mixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: towards predicting the activation behaviour of carbonaceous matter. Journal of Materials Chemistry A, 2019, 7, 17466-17479.	5.2	35
968	Integration of a highly monodisperse covalent organic framework photosensitizer with cation exchange synthesized Ag ₂ Se nanoparticles for enhanced phototherapy. Chemical Communications, 2019, 55, 9164-9167.	2.2	43
969	Location matters: cooperativity of catalytic partners in porous organic polymers for enhanced CO ₂ transformation. Chemical Communications, 2019, 55, 9180-9183.	2.2	24
970	Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors. Beilstein Journal of Organic Chemistry, 2019, 15, 1154-1161.	1.3	24
971	Palladium clusters confined in triazinyl-functionalized COFs with enhanced catalytic activity. Applied Catalysis B: Environmental, 2019, 257, 117942.	10.8	76
972	Rational design of functionalized covalent organic frameworks and their performance towards CO2 capture. RSC Advances, 2019, 9, 21438-21443.	1.7	19
973	Nanoscale Engineering of Grapheneâ€Viologen Based 3D Covalent Organic Polymer Interfaces Leading to Efficient Chargeâ€Transfer for Pseudocapacitive Energy Storage. ChemistrySelect, 2019, 4, 8089-8094.	0.7	4
974	Transport Mechanism and Modeling of Microporous Polymeric Membranes. , 2019, , 259-280.		0
975	A step forward in solvent knitting strategies: ruthenium and gold phosphine complex polymerization results in effective heterogenized catalysts. Catalysis Science and Technology, 2019, 9, 4552-4560.	2.1	14
976	Engineering of the Filler/Polymer Interface in Metal–Organic Frameworkâ€Based Mixedâ€Matrix Membranes to Enhance Gas Separation. Chemistry - an Asian Journal, 2019, 14, 3502-3514.	1.7	67
977	Crystalline Anionic Germanate Covalent Organic Framework for High CO ₂ Selectivity and Fast Li Ion Conduction. Chemistry - A European Journal, 2019, 25, 13479-13483.	1.7	29
978	Covalent triazine framework-decorated phenyl-functionalised SBA-15: its synthesis and application as a novel nanoporous adsorbent. New Journal of Chemistry, 2019, 43, 13058-13067.	1.4	41
979	Metal-Assisted Salphen Organic Frameworks (MaSOFs) with Trinuclear Metal Units for Synergic Gas Sorption. Chemistry of Materials, 2019, 31, 6210-6223.	3.2	15
980	Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Liâ€S Batteries. Chemistry - A European Journal, 2019, 25, 12394-12404.	1.7	37

#	Article	IF	CITATIONS
981	Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coordination Chemistry Reviews, 2019, 397, 54-75.	9.5	103
982	Forming layered conjugated porous BBL structures. Polymer Chemistry, 2019, 10, 4185-4193.	1.9	13
983	Polydopamine-modulated covalent organic framework membranes for molecular separation. Journal of Materials Chemistry A, 2019, 7, 18063-18071.	5.2	86
984	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
985	Constructing "breathing―dynamic skeletons with extra π-conjugated adsorption sites for iodine capture. RSC Advances, 2019, 9, 20852-20856.	1.7	14
986	Dynamic self-assembly of ions with variable size and charge in solution. RSC Advances, 2019, 9, 18627-18640.	1.7	5
987	Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization. Communications Chemistry, 2019, 2, .	2.0	12
988	Flexible Zinc″on Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Small, 2019, 15, e1903817.	5.2	143
989	Synthesis of Twoâ€Ðimensional Covalent Organic Frameworks in Ionic Liquids. Chemistry - A European Journal, 2019, 25, 15488-15492.	1.7	29
990	Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1045-1052.	2.0	18
991	Rational design of crystalline two-dimensional frameworks with highly complicated topological structures. Nature Communications, 2019, 10, 4609.	5.8	54
992	Controllable luminescent behaviors with pyrazine and benzimidazole groups: Syntheses, crystal structures and properties. Optical Materials, 2019, 98, 109432.	1.7	7
993	Formation of a Large Confined Spherical Space with a Small Aperture Using Flexible Hexasubstituted Sumanene. Journal of the American Chemical Society, 2019, 141, 18099-18103.	6.6	24
994	Novel hexaazatrinaphthalene-based covalent triazine frameworks as high-performance platforms for efficient carbon capture and storage. Microporous and Mesoporous Materials, 2019, 290, 109650.	2.2	18
995	Ultrastable Covalent Organic Frameworks via Self-Polycondensation of an A ₂ B ₂ Monomer for Heterogeneous Photocatalysis. Macromolecules, 2019, 52, 7977-7983.	2.2	84
996	lridium complex immobilization on covalent organic framework for effective C—H borylation. APL Materials, 2019, 7, .	2.2	24
998	Chemical recycling of polyenaminones by transamination reaction via amino–enaminone polymerisation/depolymerisation. European Polymer Journal, 2019, 121, 109282.	2.6	4
999	Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chemical Communications, 2019, 55, 167-170.	2.2	56

#	Article	IF	CITATIONS
1000	Coming up for Air: Breathing Air with Metal for Energy Storage. Batteries and Supercaps, 2019, 2, 897-898.	2.4	0
1001	Constructing Robust Covalent Organic Frameworks via Multicomponent Reactions. Journal of the American Chemical Society, 2019, 141, 18004-18008.	6.6	183
1002	A periodic metallo-supramolecular polymer from a flexible building block: self-assembly and photocatalysis for organic dye degradation. Science China Chemistry, 2019, 62, 1634-1638.	4.2	14
1003	Smart Responsive Luminescent Aptamer-Functionalized Covalent Organic Framework Hydrogel for High-Resolution Visualization and Security Protection of Latent Fingerprints. ACS Applied Materials & Interfaces, 2019, 11, 44664-44672.	4.0	40
1004	Porous carbon framework derived from N-rich hypercrosslinked polymer as the efficient metal-free electrocatalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 557, 664-672.	5.0	31
1005	Ion Rejection in Covalent Organic Frameworks: Revealing the Overlooked Effect of In-Pore Transport. ACS Applied Materials & Interfaces, 2019, 11, 45246-45255.	4.0	40
1006	Pentiptycene-based microporous polymer for removal of organic dyes from water. European Polymer Journal, 2019, 120, 109216.	2.6	7
1007	Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale, 2019, 11, 21679-21708.	2.8	82
1008	Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. Journal of Materials Chemistry A, 2019, 7, 24205-24210.	5.2	101
1009	Theory-Driven Design and Targeting Synthesis of a Highly-Conjugated Basal-Plane 2D Covalent Organic Framework for Metal-Free Electrocatalytic OER. ACS Energy Letters, 2019, 4, 2251-2258.	8.8	124
1010	Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nature Communications, 2019, 10, 3898.	5.8	191
1011	Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 2019, 48, 5266-5302.	18.7	630
1012	Porous Cationic Covalent Triazineâ€Based Frameworks as Platforms for Efficient CO ₂ and lodine Capture. Chemistry - an Asian Journal, 2019, 14, 3259-3263.	1.7	35
1013	Enhancing C ₂ H ₂ /C ₂ H ₄ separation by incorporating low-content sodium in covalent organic frameworks. Inorganic Chemistry Frontiers, 2019, 6, 2921-2926.	3.0	24
1014	Quaternary Phosphonium-Grafted Porous Aromatic Framework for Preferential Uranium Adsorption in Alkaline Solution. Industrial & Engineering Chemistry Research, 2019, 58, 18329-18335.	1.8	15
1015	Dielectric and Sorption Responses of Hydrogen-Bonding Network of Amorphous C ₆₀ (OH) ₁₂ and C ₆₀ (OH) ₃₆ . Journal of Physical Chemistry C, 2019, 123, 23545-23553.	1.5	9
1016	Aminal-Linked Covalent Organic Frameworks through Condensation of Secondary Amine with Aldehyde. Journal of the American Chemical Society, 2019, 141, 14981-14986.	6.6	114
1017	Diarylethene-based conjugated polymer networks for ultrafast photochromic films. New Journal of Chemistry, 2019, 43, 15797-15803.	1.4	7

#	Article	IF	CITATIONS
1018	A hybrid of g-C ₃ N ₄ and porphyrin-based covalent organic frameworks <i>via</i> liquid-assisted grinding for enhanced visible-light-driven photoactivity. Dalton Transactions, 2019, 48, 14989-14995.	1.6	76
1019	A Wavy Two-Dimensional Covalent Organic Framework from Core-Twisted Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2019, 141, 14403-14410.	6.6	63
1020	Meso–macroporous organic polymer-supported homogeneously dispersed small Pd nanoparticles obtained by a simple ion-exchange approach for the Heck reaction. New Journal of Chemistry, 2019, 43, 14674-14677.	1.4	7
1021	Luminescent covalent organic framework as a recyclable turn-off fluorescent sensor for cations and anions in aqueous solution. Journal of Materials Chemistry C, 2019, 7, 11919-11925.	2.7	35
1022	Recent Advances in Graphene-like 2D Materials for Spintronics Applications. Chemistry of Materials, 2019, 31, 8260-8285.	3.2	119
1023	Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 2019, 400, 213046.	9.5	387
1024	A Novel One-Dimensional Porphyrin-Based Covalent Organic Framework. Molecules, 2019, 24, 3361.	1.7	6
1025	Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Analytica Chimica Acta, 2019, 1089, 66-77.	2.6	99
1026	A long-life pseudocapacitive triazine-based porous organic framework and resulting N-doped microporous carbons for supercapacitance application. Functional Materials Letters, 2019, 12, 1950065.	0.7	6
1027	Salt-assisted pyrolysis of covalent organic frameworks to porous heteroatom-doped carbons for supercapacitive energy storage. Journal of Materials Chemistry A, 2019, 7, 26829-26837.	5.2	33
1028	Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations. Crystals, 2019, 9, 109.	1.0	10
1029	Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 16810-16816.	6.6	227
1030	Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosensors and Bioelectronics, 2019, 145, 111699.	5.3	124
1031	Design Principles for Covalent Organic Frameworks to Achieve Strong Heteroatom-Synergistic Effect on Anchoring Polysulfides for Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2019, 10, 7445-7451.	2.1	18
1032	Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2. Frontiers in Energy Research, 2019, 7, .	1.2	91
1033	Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 3112-3119.	5.2	87
1034	Novel N-riched crystalline covalent organic framework as a highly porous adsorbent for effective cadmium removal. Journal of Environmental Chemical Engineering, 2019, 7, 102907.	3.3	77
1035	lonic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Materials Chemistry and Physics, 2019, 226, 244-249.	2.0	44

#	Article	IF	CITATIONS
1036	Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chemical Communications, 2019, 55, 1458-1461.	2.2	62
1037	A hollow microshuttle-shaped capsule covalent organic framework for protein adsorption. Journal of Materials Chemistry B, 2019, 7, 1469-1474.	2.9	38
1038	Ionic liquid-decorated COF and its covalent composite aerogel for selective CO ₂ adsorption and catalytic conversion. Journal of Materials Chemistry A, 2019, 7, 4689-4698.	5.2	152
1039	Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Separation and Purification Technology, 2019, 215, 582-589.	3.9	95
1040	Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, and Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1805293.	11.1	98
1041	Structural and Dimensional Transformations between Covalent Organic Frameworks via Linker Exchange. Macromolecules, 2019, 52, 1257-1265.	2.2	67
1042	Covalent triazine frameworks: synthesis and applications. Journal of Materials Chemistry A, 2019, 7, 5153-5172.	5.2	433
1043	Platform for molecular-material dual regulation: A direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 247, 49-56.	10.8	134
1044	Applications of covalent organic frameworks in analytical chemistry. TrAC - Trends in Analytical Chemistry, 2019, 113, 182-193.	5.8	101
1045	Electron Highways into Nanochannels of Covalent Organic Frameworks for High Electrical Conductivity and Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 7661-7665.	4.0	113
1046	Self-assembly of rectangular shape-persistent diazaborole-linked macrocycles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 283-287.	0.9	1
1047	Metal–Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10 ^{â~2} â€S cm ^{â^1} or Higher. Chemistry - A European Journal, 20 25, 6259-6269.	197	117
1048	Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. Journal of Membrane Science, 2019, 576, 116-122.	4.1	75
1049	New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts, 2019, 9, 133.	1.6	56
1050	Three-dimensional Salphen-based Covalent–Organic Frameworks as Catalytic Antioxidants. Journal of the American Chemical Society, 2019, 141, 2920-2924.	6.6	193
1051	Preparation of triazine containing porous organic polymer for high performance supercapacitor applications. RSC Advances, 2019, 9, 1586-1590.	1.7	21
1052	Porosity and Guest Inclusion in Cyclobenzoin Esters. Crystal Growth and Design, 2019, 19, 562-567.	1.4	11
1053	Impact of the position of the imine linker on the optoelectronic performance of ï€-conjugated organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 325-331.	1.7	18

#	Article	IF	CITATIONS
1055	An Fe ^{III} dinuclear metallacycle complex as a size-selective adsorbent for nitrogenous compounds and a potentially effective ammonia storage material. Journal of Materials Chemistry A, 2019, 7, 15225-15232.	5.2	15
1056	Fabrication of a covalent organic framework and its gold nanoparticle hybrids as stable mimetic peroxidase for sensitive and selective colorimetric detection of mercury in water samples. Talanta, 2019, 204, 224-228.	2.9	66
1057	Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science: Nano, 2019, 6, 2311-2331.	2.2	192
1058	Nitrogenâ€Rich Porous Organic Polyamines for Stabilization of Highly Dispersed Metal Nanoparticles and Catalytic Application. Macromolecular Rapid Communications, 2019, 40, 1900100.	2.0	5
1059	Rapid Polymerization of Aromatic Vinyl Monomers to Porous Organic Polymers via Acid Catalysis at Mild Condition. Macromolecular Rapid Communications, 2019, 40, e1900168.	2.0	4
1060	Introduction to Covalent Organic Frameworks: An Advanced Organic Chemistry Experiment. Journal of Chemical Education, 2019, 96, 1745-1751.	1.1	13
1061	PdO nanoparticles supported on triazole functionalized porous triazine polymer as an efficient heterogeneous catalyst for carbonylation of aryl halides. Applied Organometallic Chemistry, 2019, 33, e4994.	1.7	15
1062	Metal– and Covalent Organic Frameworks Threaded with Chiral Polymers for Heterogeneous Asymmetric Catalysis. Organometallics, 2019, 38, 3474-3479.	1.1	24
1063	PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Central Science, 2019, 5, 1352-1359.	5.3	126
1064	A Pd(II)â€Functionalized Covalent Organic Framework for Catalytic Conjugate Additions of Arylboronic Acids to β,βâ€Disubstituted Enones. ChemCatChem, 2019, 11, 4286-4290.	1.8	13
1065	Not always what closes best opens better: mesoporous nanoparticles capped with organic gates. Science and Technology of Advanced Materials, 2019, 20, 699-709.	2.8	3
1066	Ammoniating Covalent Organic Framework (COF) for Highâ€Performance and Selective Extraction of Toxic and Radioactive Uranium Ions. Advanced Science, 2019, 6, 1900547.	5.6	200
1067	Stable Covalent Organic Frameworks for Photochemical Applications. ChemPhotoChem, 2019, 3, 973-983.	1.5	48
1069	Synthesis of network polymer emitters: tunable detection of chemicals by geometric design. Polymer Journal, 2019, 51, 1055-1061.	1.3	8
1070	Covalent organic frameworks on reduced graphene oxide with enhanced electrochemical performance. Microporous and Mesoporous Materials, 2019, 287, 65-70.	2.2	35
1071	Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Communications Chemistry, 2019, 2, .	2.0	90
1072	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organicâ€Polymerâ€Based Iridium Catalysts. Angewandte Chemie - International Edition, 2019, 58, 10671-10676.	7.2	27
1073	Synthesis, Properties, and Their Potential Application of Covalent Organic Frameworks (COFs). , 0, , .		4

#	Article	IF	CITATIONS
1074	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organicâ€Polymerâ€Based Iridium Catalysts. Angewandte Chemie, 2019, 131, 10781-10786.	1.6	4
1075	Computational discovery of nanoporous materials for energy- and environment-related applications. Molecular Simulation, 2019, 45, 1122-1147.	0.9	23
1076	Post-synthetic modification of covalent organic frameworks. Chemical Society Reviews, 2019, 48, 3903-3945.	18.7	444
1077	Engineering Covalent Organic Frameworks for Light-Driven Hydrogen Production from Water. , 2019, 1, 203-208.		69
1078	Dispersible microporous diblock copolymer nanoparticles <i>via</i> polymerisation-induced self-assembly. Polymer Chemistry, 2019, 10, 3879-3886.	1.9	7
1079	New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials, 2019, 9, 859.	1.9	6
1080	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
1081	Isostructural Threeâ€Dimensional Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9872-9877.	1.6	31
1082	Construction and catalytic applications of an amino-functionalized covalent organic framework. Transition Metal Chemistry, 2019, 44, 689-697.	0.7	8
1083	Dual Strategic Approach to Prepare Defluorinated Triazole-Embedded Covalent Triazine Frameworks with High Gas Uptake Performance. Chemistry of Materials, 2019, 31, 3929-3940.	3.2	36
1084	Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts. Organometallics, 2019, 38, 3436-3443.	1.1	9
1085	Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 3229-3264.	18.7	360
1086	A Benzimidazole-Containing Covalent Organic Framework-Based QCM Sensor for Exceptional Detection of CEES. Crystal Growth and Design, 2019, 19, 3543-3550.	1.4	26
1087	Ultrafine silver nanoparticles supported on a covalent carbazole framework as high-efficiency nanocatalysts for nitrophenol reduction. Journal of Materials Chemistry A, 2019, 7, 13449-13454.	5.2	49
1088	Interplay between n→π* Interactions and Dynamic Covalent Bonds: Quantification and Modulation by Solvent Effects. Journal of the American Chemical Society, 2019, 141, 8825-8833.	6.6	24
1089	Isostructural Threeâ€Dimensional Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9770-9775.	7.2	126
1090	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9543-9547.	1.6	20
1091	Energy-storage covalent organic frameworks: improving performance <i>via</i> engineering polysulfide chains on walls. Chemical Science, 2019, 10, 6001-6006.	3.7	121

#	Article	IF	CITATIONS
1092	An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation reaction. Chemical Communications, 2019, 55, 6377-6380.	2.2	107
1093	Pd(II)-immobilized on a nanoporous triazine-based covalent imine framework for facile cyanation of haloarenes with K4Fe(CN)6. Molecular Catalysis, 2019, 473, 110395.	1.0	12
1094	Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science, 2019, 95, 65-117.	11.8	117
1095	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9443-9447.	7.2	81
1096	Rhenium-functionalized covalent organic framework photocatalyst for efficient CO2 reduction under visible light. Microporous and Mesoporous Materials, 2019, 285, 195-201.	2.2	76
1097	Microporous 3D Covalent Organic Frameworks for Liquid Chromatographic Separation of Xylene Isomers and Ethylbenzene. Journal of the American Chemical Society, 2019, 141, 8996-9003.	6.6	171
1098	Construction of two-dimensional supramolecular nanostructure with aggregation-induced emission effect <i>via</i> host–guest interactions. Materials Chemistry Frontiers, 2019, 3, 1532-1537.	3.2	22
1099	A new COF linked by an ether linkage (–O–): synthesis, characterization and application in supercapacitance. RSC Advances, 2019, 9, 13458-13464.	1.7	10
1100	Pyrrolidine-based chiral porous polymers for heterogeneous organocatalysis in water. Polymer Chemistry, 2019, 10, 3298-3305.	1.9	24
1101	COFâ€Derived N,P Coâ€Doped Carbon as a Metalâ€Free Catalyst for Highly Efficient Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 957-963.	1.5	26
1102	Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nature Communications, 2019, 10, 1873.	5.8	93
1103	Construction of a Stable Crystalline Polyimide Porous Organic Framework for C ₂ H ₂ /C ₂ H ₄ and CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2019, 25, 9045-9051.	1.7	36
1104	Mesoporous Composite Nanomaterials for Dye Removal and Other Applications. , 2019, , 265-293.		17
1105	Porous Crystalline Olefin-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 6848-6852.	6.6	333
1106	Construction of three-dimensional anionic molecular frameworks based on hydrogen-bonded metal dithiolene complexes and the crystal solvent effect. CrystEngComm, 2019, 21, 2940-2948.	1.3	12
1107	Insight into the Transimination Process in the Fabrication of Surface Schiff-Based Covalent Organic Frameworks. Langmuir, 2019, 35, 6333-6339.	1.6	15
1108	Boosting the antitumor efficacy over a nanoscale porphyrin-based covalent organic polymer <i>via</i> synergistic photodynamic and photothermal therapy. Chemical Communications, 2019, 55, 6269-6272.	2.2	41
1109	Pillarquinoneâ€Based Porous Polymer for a Highlyâ€Efficient Heterogeneous Organometallic Catalysis. ChemCatChem, 2019, 11, 2864-2869.	1.8	27

~			<u> </u>	
CĽ	ΓΑΤΙ	ION.	REPC	DRT

#	Article	IF	CITATIONS
1110	Synthesis of triazine-based porous organic polymer: A new material for double layer capacitor. Materials Letters, 2019, 249, 53-56.	1.3	14
1111	Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. Journal of the American Chemical Society, 2019, 141, 7518-7525.	6.6	261
1112	Synthesis of tetraphenylethylene-based fluorescent conjugated microporous polymers for fluorescent sensing and adsorbing iodine. Microporous and Mesoporous Materials, 2019, 284, 468-475.	2.2	37
1113	Microporous and hollow carbon spheres derived from soft drinks: Promising CO2 separation materials. Microporous and Mesoporous Materials, 2019, 286, 199-206.	2.2	15
1114	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.4	14
1115	Storage of Hydrogen on Nanoporous Adsorbents. Green Energy and Technology, 2019, , 255-286.	0.4	1
1116	Crystalline Polymers Based on Dative Boron–Nitrogen Bonds and the Quest for Porosity. , 2019, 1, 3-7.		33
1117	Peptide-based capsules with chirality-controlled functionalized interiors – rational design and amplification from dynamic combinatorial libraries. Chemical Science, 2019, 10, 4412-4421.	3.7	17
1118	Recent Developments in Molecular Spin Gyroid Research. Bulletin of the Chemical Society of Japan, 2019, 92, 1068-1093.	2.0	17
1119	Effect of Ionic Liquid Impregnation in Highly Water-Stable Metal–Organic Frameworks, Covalent Organic Frameworks, and Carbon-Based Adsorbents for Post-combustion Flue Gas Treatment. Energy & Fuels, 2019, 33, 3421-3428.	2.5	27
1120	Porous networks based on iron(<scp>ii</scp>) clathrochelate complexes. Dalton Transactions, 2019, 48, 4582-4588.	1.6	17
1121	Chirality in Porous Functional Materials. , 0, , .		0
1122	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbon onjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 6430-6434.	7.2	470
1123	Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5880-5885.	6.6	284
1124	One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton Transactions, 2019, 48, 7352-7357.	1.6	26
1125	Large-scale synthesis of azine-linked covalent organic frameworks in water and promoted by water. New Journal of Chemistry, 2019, 43, 6116-6120.	1.4	40
1126	Synthesis and Gas-Permeation Characterization of a Novel High-Surface Area Polyamide Derived from 1,3,6,8-Tetramethyl-2,7-diaminotriptycene: Towards Polyamides of Intrinsic Microporosity (PIM-PAs). Polymers, 2019, 11, 361.	2.0	22
1127	Designing Hydrogenâ€Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angewandte Chemie, 2019, 131, 11278-11288.	1.6	7

#	Article	IF	CITATIONS
1128	Effect of Different Functional Groups on Photocatalytic Hydrogen Evolution in Covalentâ€Organic Frameworks. ChemCatChem, 2019, 11, 2313-2319.	1.8	145
1129	Designing Hydrogenâ€Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angewandte Chemie - International Edition, 2019, 58, 11160-11170.	7.2	414
1130	Imidazoliumâ€Saltâ€Functionalized Covalent Organic Frameworks for Highly Efficient Catalysis of CO ₂ Conversion. ChemSusChem, 2019, 12, 2421-2427.	3.6	74
1131	Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chemical Engineering Journal, 2019, 369, 920-927.	6.6	146
1132	Facile Preparation of Dual-Shell Novel Covalent–Organic Framework Functionalized Magnetic Nanospheres Used for the Simultaneous Determination of Fourteen Trace Heterocyclic Aromatic Amines in Nonsmokers and Smokers of Cigarettes with Different Tar Yields Based on UPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2019, 67, 3733-3743.	2.4	45
1133	Ag NPs decorated on a COF in the presence of DBU as an efficient catalytic system for the synthesis of tetramic acids <i>via</i> CO ₂ fixation into propargylic amines at atmospheric pressure. Dalton Transactions, 2019, 48, 4657-4666.	1.6	67
1134	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	18.7	103
1135	A Novel Fluorescence and SPE Adsorption Nanomaterials of Molecularly Imprinted Polymers Based on Quantum Dot-Grafted Covalent Organic Frameworks for the High Selectivity and Sensitivity Detection of Ferulic Acid. Nanomaterials, 2019, 9, 305.	1.9	23
1136	Melamine-based covalent organic framework-incorporated thin film nanocomposite membrane for enhanced osmotic power generation. Desalination, 2019, 459, 10-19.	4.0	72
1137	Phenanthroline-based microporous organic polymer as a platform for an immobilized palladium catalyst for organic transformations. RSC Advances, 2019, 9, 8239-8245.	1.7	20
1138	Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks. Advanced Materials, 2019, 31, e1807865.	11.1	158
1139	Tuning Pore Heterogeneity in Covalent Organic Frameworks for Enhanced Enzyme Accessibility and Resistance against Denaturants. Advanced Materials, 2019, 31, e1900008.	11.1	114
1140	Facile Fabrication of Nanoscale Porphyrinic Covalent Organic Polymers for Combined Photodynamic and Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 12321-12326.	4.0	80
1141	A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angewandte Chemie, 2019, 131, 4960-4964.	1.6	22
1142	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie, 2019, 131, 8762-8767.	1.6	40
1143	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie - International Edition, 2019, 58, 8670-8675.	7.2	128
1144	Fabrication of a hydrazoneâ€linked covalent organic frameworkâ€bound capillary column for gas chromatography separation. Separation Science Plus, 2019, 2, 120-128.	0.3	14
1145	Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 2019, 11, 587-594.	6.6	509

#	Article	IF	CITATIONS
1146	Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst. Chemistry of Materials, 2019, 31, 3274-3280.	3.2	108
1147	Triazine-Based Covalent Organic Framework: A Promising Sorbent for Efficient Elimination of the Hydrocarbon Backgrounds of Organic Sample for GC–MS and ¹ H NMR Analysis of Chemical Weapons Convention Related Compounds. ACS Applied Materials & Interfaces, 2019, 11, 16027-16039.	4.0	10
1148	Oneâ€Pot Synthesis of Framework Porphyrin Materials and Their Applications in Bifunctional Oxygen Electrocatalysis. Advanced Functional Materials, 2019, 29, 1901301.	7.8	63
1149	BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. IScience, 2019, 14, 180-198.	1.9	130
1150	Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 16847-16854.	4.0	135
1151	Cu/Cu ₂ O Nanoparticles Supported on a Phenol–Pyridyl COF as a Heterogeneous Catalyst for the Synthesis of Unsymmetrical Diynes via Glaser–Hay Coupling. ACS Applied Materials & Interfaces, 2019, 11, 15670-15679.	4.0	77
1152	N-rich covalent organic frameworks with different pore size for high-pressure CO2 adsorption. Microporous and Mesoporous Materials, 2019, 285, 70-79.	2.2	41
1153	Covalent Organic Frameworks: A New Class of Porous Organic Frameworks for Supercapacitor Electrodes. ChemElectroChem, 2019, 6, 2984-2997.	1.7	64
1155	Squaramide-decorated covalent organic framework as a new platform for biomimetic hydrogen-bonding organocatalysis. Chemical Communications, 2019, 55, 5423-5426.	2.2	33
1156	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie - International Edition, 2019, 58, 6316-6320.	7.2	70
1157	Nanomaterials in Proteomics. Advanced Functional Materials, 2019, 29, 1900253.	7.8	64
1158	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie, 2019, 131, 6382-6386.	1.6	14
1159	Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3265-3273.	3.2	12
1160	2D nanoporous materials: membrane platform for gas and liquid separations. 2D Materials, 2019, 6, 042002.	2.0	37
1161	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbonâ€Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie, 2019, 131, 6496-6500.	1.6	67
1162	Triazine Functionalized Porous Covalent Organic Framework for Photo-organocatalytic <i>E</i> – <i>Z</i> Isomerization of Olefins. Journal of the American Chemical Society, 2019, 141, 6152-6156.	6.6	270
1163	Janus hollow polymeric hairy microspheres as efficient adsorbents and catalyst scaffolds. Materials Chemistry Frontiers, 2019, 3, 922-930.	3.2	7
1164	Eyes of covalent organic frameworks: cooperation between analytical chemistry and COFs. Reviews in Analytical Chemistry, 2019, 38, .	1.5	9

		CITATION REPORT		
#	Article		IF	CITATIONS
1165	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 3	1, e1804863.	11.1	90
1166	Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. A Sustainable Chemistry and Engineering, 2019, 7, 5065-5071.	CS	3.2	54
1167	Oneâ€Pot Synthesis of DOX@Covalent Organic Framework with Enhanced Chemotherapeuti Chemistry - A European Journal, 2019, 25, 4315-4319.	c Efficacy.	1.7	109
1168	Transition Metal–Nitrogen–Carbon (M–N–C) Catalysts for Oxygen Reduction Reactio Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering, 2019, 3, 16.	on. Insights on	1.0	75
1169	Multivariate crystalline porous materials: Synthesis, property and potential application. Coord Chemistry Reviews, 2019, 385, 174-190.	ination	9.5	66
1170	Immobilization of Ir(I) complex on covalent triazine frameworks for C H borylation reactions: combined experimental and computational study. Journal of Catalysis, 2019, 371, 135-143.	Ą	3.1	37
1171	Preparation and characterization of RGO-incorporated hypercross-linked polymers for CO2 ca Carbon Letters, 2019, 29, 21-30.	pture.	3.3	4
1172	Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for M Mannich-Type Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4878-4888.	odified	3.2	46
1173	Interior engineering of seaweed-derived N-doped versatile carbonaceous beads with Co _x O _y for universal organic pollutant degradation. RSC Advances, 5009-5024.	2019, 9,	1.7	14
1174	A general strategy <i>via</i> chemically covalent combination for constructing heterostructu catalysts with enhanced photocatalytic hydrogen evolution. Chemical Communications, 2019 4150-4153.		2.2	45
1175	A facilely synthesized glutathione-functionalized silver nanoparticle-grafted covalent organic framework for rapid and highly efficient enrichment of N-linked glycopeptides. Nanoscale, 20 5526-5534.	19, 11,	2.8	54
1176	A Hollow Microtubular Triazine―and Benzobisoxazoleâ€Based Covalent Organic Framework Spongeâ€Like Shells That Functions as a Highâ€Performance Supercapacitor. Chemistry - an / 2019, 14, 1429-1435.		1.7	76
1177	Dependence of the surface-assisted fullerene-based complex structure on the template molec design. Nano Research, 2019, 12, 1509-1537.	ule	5.8	7
1178	Functional π-Conjugated Two-Dimensional Covalent Organic Frameworks. ACS Applied Mate Interfaces, 2019, 11, 11029-11060.	rials &	4.0	119
1179	Controlling the crystalline structure of imine-linked 3D covalent organic frameworks. Chemica Communications, 2019, 55, 3594-3597.	al	2.2	40
1180	Visible-light-induced tandem radical addition–cyclization of 2-aryl phenyl isocyanides cataly recyclable covalent organic frameworks. Green Chemistry, 2019, 21, 2905-2910.	sed by	4.6	84
1181	Cage Based Crystalline Covalent Organic Frameworks. Journal of the American Chemical Socie 141, 3843-3848.	ety, 2019,	6.6	84
1182	Mechanism unravelling for ultrafast and selective ⁹⁹ TcO ₄ ^{â⁻². uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chemical Science, 2019, 10, 4293-430}		3.7	181

#	Article	IF	CITATIONS
1183	One‣tep Construction of Hydrophobic MOFs@COFs Core–Shell Composites for Heterogeneous Selective Catalysis. Advanced Science, 2019, 6, 1802365.	5.6	134
1184	A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. Angewandte Chemie - International Edition, 2019, 58, 4906-4910.	7.2	76
1185	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 5376-5381.	7.2	230
1186	Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science, 2019, 92, 35-88.	11.8	230
1187	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€l with High Efficiency. Angewandte Chemie, 2019, 131, 5430-5435.	1.6	59
1188	Molecular Insights into Carbon Dioxide Sorption in Hydrazone-Based Covalent Organic Frameworks with Tertiary Amine Moieties. Chemistry of Materials, 2019, 31, 1946-1955.	3.2	71
1189	Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. Journal of Hazardous Materials, 2019, 369, 494-502.	6.5	121
1190	Thiol–Ene Click Synthesis of Phenylboronic Acid-Functionalized Covalent Organic Framework for Selective Catechol Removal from Aqueous Medium. ACS Applied Materials & Interfaces, 2019, 11, 46219-46225.	4.0	46
1191	Mapping out the Degree of Freedom of Hosted Enzymes in Confined Spatial Environments. CheM, 2019, 5, 3184-3195.	5.8	62
1192	Metal ion-assisted carboxyl-containing covalent organic frameworks for the efficient removal of Congo red. Dalton Transactions, 2019, 48, 17763-17769.	1.6	44
1193	Extraction of Metal Ions with Metal–Organic Frameworks. Molecules, 2019, 24, 4605.	1.7	56
1194	A palladium–carbon-connected organometallic framework and its catalytic application. Chemical Communications, 2019, 55, 14414-14417.	2.2	9
1195	Crystalline Covalent Organic Frameworks from Triazine Nodes as Porous Adsorbents for Dye Pollutants. ACS Omega, 2019, 4, 22504-22513.	1.6	57
1196	Covalent organic frameworks from a monomer with reduced symmetry: polymorphism and Sierpiński triangles. Chemical Communications, 2019, 55, 13586-13589.	2.2	17
1197	Template-free synthesis and metalation of hierarchical covalent organic framework spheres for photothermal therapy. Chemical Communications, 2019, 55, 14315-14318.	2.2	34
1198	Inclusion of Alkanes with a Crystal Consisting of Exocavity Complexes of <i>p-tert-</i> Butylthiacalix[4]arene with Diethylamine: Extension of Guest Scope by Changing the Structure of Inclusion Crystals. Crystal Growth and Design, 2019, 19, 7022-7029.	1.4	13
1199	Glutathione-Functionalized Magnetic Covalent Organic Framework Microspheres with Size Exclusion for Endogenous Glycopeptide Recognition in Human Saliva. ACS Applied Materials & Interfaces, 2019, 11, 47218-47226.	4.0	54
1200	Construction of Î ² -Cyclodextrin Covalent Organic Framework-Modified Chiral Stationary Phase for Chiral Separation. ACS Applied Materials & amp; Interfaces, 2019, 11, 48363-48369.	4.0	75

		CITATION REPORT		
#	Article		IF	Citations
1201	Malleable and Recyclable Thermosets: The Next Generation of Plastics. Matter, 2019, 1	., 1456-1493.	5.0	200
1202	Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states covalent organic frameworks. Nanoscale, 2019, 11, 23338-23345.	in dual-pore	2.8	26
1203	Electron delocalization in single-layer phthalocyanine-based covalent organic framewo principle study. RSC Advances, 2019, 9, 29440-29447.	rks: a first	1.7	11
1204	<i>In situ</i> reduction of chloroauric acid (HAuCl ₄) for generation of car nanoparticle embedded triazine based covalent organic polymer networks. RSC Advan 38538-38546.		1.7	19
1205	Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of c pollutants. Chemical Science, 2019, 10, 10815-10820.	organic	3.7	65
1206	Large-scale evaluation of cascaded adsorption heat pumps based on metal/covalentâ€ frameworks. Journal of Materials Chemistry A, 2019, 7, 25010-25019.	"organic	5.2	28
1207	Advances in polyarylethers: opening new opportunities. Journal of Materials Chemistry 14767-14770.	C, 2019, 7,	2.7	4
1208	β-Ketoenamine-linked covalent organic framework coating for ultra-high-performance microextraction of polybrominated diphenyl ethers from environmental samples. Chen Engineering Journal, 2019, 356, 926-933.	solid-phase nical	6.6	141
1209	Ultrasensitive analysis of heat shock protein $90\hat{l}\pm$ with antibodies orderly arrayed on a immunoprobe based on magnetic COFs. Talanta, 2019, 191, 553-560.	novel type of	2.9	23
1210	Pyreneâ€based hypercrosslinked microporous resins for effective CO ₂ ca Applied Polymer Science, 2019, 136, 47448.	pture. Journal of	1.3	4
1211	Recent progress in covalent organic framework thin films: fabrications, applications an perspectives. Chemical Society Reviews, 2019, 48, 488-516.	d	18.7	564
1212	Covalent Organic Framework Decorated with Vanadium as a New Platform for Prins Re Sulfide Oxidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 3070-3079.	action and	4.0	66
1213	Porous Materials Based on 3-Dimensional Td-Directing Functionalized Adamantane Sca Applied as Recyclable Catalysts. Chemistry of Materials, 2019, 31, 619-642.	affolds and	3.2	48
1214	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. C Reviews, 2019, 119, 478-598.	hemical	23.0	521
1215	Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy an Applications. Polymers, 2019, 11, 31.	d Environmental	2.0	65
1216	Accumulation of Classy Poly(ethylene oxide) Anchored in a Covalent Organic Framewo Solid-State Li ⁺ Electrolyte. Journal of the American Chemical Society, 201	ork as a 9, 141, 1227-1234.	6.6	232
1217	Stimuli-Responsive Nano-polymer Composite Materials Based on the Triazine Skeleton in Drug Delivery. Jom, 2019, 71, 308-314.	Structure Used	0.9	6
1218	Local Electronic Structure of Molecular Heterojunctions in a Single‣ayer 2D Covalen Framework. Advanced Materials, 2019, 31, e1805941.	t Organic	11.1	74

#	Article	IF	CITATIONS
1219	Synthetic 2D Polymers: A Critical Perspective and a Look into the Future. Macromolecular Rapid Communications, 2019, 40, e1800719.	2.0	62
1220	Computational Design of 2D Covalent-Organic Framework Membranes for Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2019, 7, 1734-1744.	3.2	52
1221	Covalent Organic Frameworks: Chemistry beyond the Structure. Journal of the American Chemical Society, 2019, 141, 1807-1822.	6.6	931
1222	Prediction of strain-controlled adhesion in a single-layer covalent organic framework. Carbon, 2019, 143, 172-178.	5.4	9
1223	A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chemistry, 2019, 277, 639-645.	4.2	56
1224	Soluble Two-dimensional Supramolecular Organic Frameworks (SOFs): An Emerging Class of 2D Supramolecular Polymers with Internal Long-range Orders. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1-10.	2.0	22
1225	Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). Journal of Membrane Science, 2019, 572, 520-531.	4.1	190
1226	Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science, 2019, 6, 1801410.	5.6	368
1227	Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials. Physical Review Letters, 2019, 122, 026001.	2.9	11
1228	Acid Responsive Hydrogen-Bonded Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 2111-2121.	6.6	205
1229	Ordered Porous Poly(ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO ₂ Capture and Fixation. ACS Applied Materials & Interfaces, 2019, 11, 6031-6041.	4.0	76
1230	Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 1923-1927.	6.6	217
1231	Designed synthesis of Co salenâ€based metalated crystalline polymers. Journal of Polymer Science Part A, 2019, 57, 641-647.	2.5	5
1232	Q-graphene-scaffolded covalent organic frameworks as fluorescent probes and sorbents for the fluorimetry and removal of copper ions. Analytica Chimica Acta, 2019, 1057, 88-97.	2.6	24
1233	Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of N-glycopeptides. Analytica Chimica Acta, 2019, 1057, 145-151.	2.6	12
1234	Study on the synthesis and application of porous polymers based on silanes containing 4-cyanophenyl groups. Materials Letters, 2019, 239, 200-202.	1.3	2
1235	Scalable and Sustainable Synthesis of Advanced Porous Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 3647-3670.	3.2	54
1236	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Materials Today Chemistry, 2019, 12, 34-60.	1.7	105

#	Article	IF	CITATIONS
1237	Porous aromatic framework (PAF-1) as hyperstable platform for enantioselective organocatalysis. Science China Materials, 2019, 62, 194-202.	3.5	19
1238	Microfluidics for synthesis and morphology control of hierarchical porous covalent organic polymer monolith. Chemical Engineering Science, 2019, 195, 801-809.	1.9	12
1239	Covalent-organic frameworks as adsorbent and matrix of SALDI-TOF MS for the enrichment and rapid determination of fluorochemicals. Talanta, 2019, 194, 522-527.	2.9	57
1240	Difluoroborate-based conjugated organic polymer: a high-performance heterogeneous photocatalyst for oxidative coupling reactions. Journal of Materials Science, 2019, 54, 1205-1212.	1.7	15
1241	One-step preparation of polyimide-inlaid amine-rich porous organic block copolymer for efficient removal of chlorophenols from aqueous solution. Journal of Environmental Sciences, 2019, 78, 215-229.	3.2	7
1242	Porous Organic Polymer Gel Derived Electrocatalysts for Efficient Oxygen Reduction. ChemElectroChem, 2019, 6, 485-492.	1.7	19
1243	Guanidinium-Based Ionic Covalent Organic Framework for Rapid and Selective Removal of Toxic Cr(VI) Oxoanions from Water. Environmental Science & Technology, 2019, 53, 878-883.	4.6	101
1244	Ultrasensitive Determination of Tetrabromobisphenol A by Covalent Organic Framework Based Solid Phase Microextraction Coupled with Constant Flow Desorption Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 772-775.	3.2	60
1245	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. Advanced Materials, 2019, 31, e1805062.	11.1	31
1246	Single and Polystorage Technologies for Renewable-Based Hybrid Energy Systems. , 2019, , 77-131.		28
1247	Newly designed 1,2,3-triazole functionalized covalent triazine frameworks with exceptionally high uptake capacity for both CO ₂ and H ₂ . Journal of Materials Chemistry A, 2019, 7, 1055-1068.	5.2	57
1248	Luminescent Triazene-Based Covalent Organic Frameworks Functionalized with Imine and Azine: N ₂ and H ₂ Sorption and Efficient Removal of Organic Dye Pollutants. Crystal Growth and Design, 2019, 19, 362-368.	1.4	32
1249	Exfoliated Triazineâ€Based Covalent Organic Nanosheets with Multielectron Redox for Highâ€Performance Lithium Organic Batteries. Advanced Energy Materials, 2019, 9, 1801010.	10.2	174
1250	First-principles modeling of water permeation through periodically porous graphene derivatives. Journal of Colloid and Interface Science, 2019, 538, 367-376.	5.0	16
1251	Three-dimensional nanoporous organic frameworks based on rigid unites. Materials Letters, 2019, 236, 155-158.	1.3	2
1252	Introduction: hydrogen storage as solution for a changing energy landscape. Physical Sciences Reviews, 2019, 4, .	0.8	2
1253	Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: From synthesis to material applications. Coordination Chemistry Reviews, 2019, 378, 188-206.	9.5	106
1254	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	9.5	82

#	Article	IF	CITATIONS
1255	Metal–organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coordination Chemistry Reviews, 2019, 378, 32-65.	9.5	329
1256	Assessment of the long-term stability of the polymer of intrinsic microporosity PIM-1 for hydrogen storage applications. International Journal of Hydrogen Energy, 2019, 44, 332-337.	3.8	17
1257	A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chinese Chemical Letters, 2020, 31, 193-196.	4.8	31
1258	A heteropore covalent organic framework for adsorptive removal of Cd(II) from aqueous solutions with high efficiency. Chinese Chemical Letters, 2020, 31, 386-390.	4.8	53
1259	Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Builtâ€In Functions. Angewandte Chemie - International Edition, 2020, 59, 5050-5091.	7.2	394
1260	Kovalente organische Gerüstverbindungen: chemische AnsÃæe für Designerstrukturen und integrierte Funktionen. Angewandte Chemie, 2020, 132, 5086-5129.	1.6	54
1261	Integration of α-amylase into covalent organic framework for highly efficient biocatalyst. Microporous and Mesoporous Materials, 2020, 291, 109700.	2.2	39
1262	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	6.4	291
1263	Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-A review. Journal of Cleaner Production, 2020, 242, 118409.	4.6	194
1264	Amino bearing core-shell structured magnetic covalent organic framework nanospheres: Preparation, postsynthetic modification with phenylboronic acid and enrichment of monoamine neurotransmitters in human urine. Analytica Chimica Acta, 2020, 1093, 61-74.	2.6	52
1265	Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film. Chemical Engineering Journal, 2020, 382, 123008.	6.6	159
1266	Review of functional materials for potential use as wearable infection sensors in limb prostheses. Biomedical Engineering Letters, 2020, 10, 43-61.	2.1	7
1267	Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. Small, 2020, 16, e1903879.	5.2	27
1268	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie, 2020, 132, 1103-1108.	1.6	3
1269	Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate. Chemical Engineering Journal, 2020, 384, 123240.	6.6	96
1270	Electrochemically Facile Hydrogen Evolution Using Ruthenium Encapsulated Two Dimensional Covalent Organic Framework (2D COF). ChemNanoMat, 2020, 6, 99-106.	1.5	24
1271	Porous Materials for Catalysis. , 2020, , 115-137.		11
1272	Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chemical Engineering Journal, 2020, 383, 123117.	6.6	63

ARTICLE IF CITATIONS Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic 1273 10.8 113 water oxidation. Applied Catalysis B: Environmental, 2020, 262, 118271. Polymernetzwerke: Von Kunststoffen und Gelen zu porÄgsen Gerļsten. Angewandte Chemie, 2020, 132, 1274 1.6 5054-5085. Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International 1275 7.2 194 Edition, 2020, 59, 5022-5049. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel 1276 magnetic covalent organic framework material as the adsorbents. Food Chemistry, 2020, 306, 125455. Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous 1277 6.6 62 smelting industry. Chemical Engineering Journal, 2020, 381, 122559. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous 6.5 180 solution. Journal of Hazardous Materials, 2020, 383, 121126. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible 1279 1.6 40 Exfoliation and Controlled Bacterial Growth. Angewandte Chemie, 2020, 132, 8791-8797. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angewandte Chemie - International Edition, 2020, 59, 1280 7.2 59 8713-8719. Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye 1281 6.6 131 separation. Chemical Engineering Journal, 2020, 384, 123347. An imine based COF as a smart carrier for targeted drug delivery: From synthesis to computational 2.2 studies. Microporous and Mesoporous Materials, 2020, 294, 109850. Covalent Organic Framework for Improving Nearâ€Infrared Light Induced Fluorescence Imaging 1283 1.6 16 through Twoâ€Photon Induction. Angewandte Chemie, 2020, 132, 10173-10180. Light Hydrocarbon Separations Using Porous Organic Framework Materials. Chemistry - A European 1284 Journal, 2020, 26, 3205-3221. MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126. 1285 13.198 Covalent Organic Framework for Improving Nearâ€Infrared Light Induced Fluorescence Imaging through Twoâ€Photon Induction. Angewandte Chemie - International Edition, 2020, 59, 10087-10094. 1286 7.2 84 New Anthraquinoneâ€Based Conjugated Microporous Polymer Cathode with Ultrahigh Specific Surface 1287 7.8 91 Area for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1908074. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and 1288 4.8 228 innovative technologies. Environment International, 2020, 134, 105281. Supramolecularâ€Macrocycleâ€Based Crystalline Organic Materials. Advanced Materials, 2020, 32, 1289 11.1 110 e1904824. Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie - International Edition, 1290 34 2020, 59, 1087-1092.

#	Article	IF	CITATIONS
1291	Covalent Organic Frameworks: A Sustainable Photocatalyst toward Visibleâ€Lightâ€Accelerated C3 Arylation and Alkylation of Quinoxalinâ€2(1 <i>H</i>)â€ones. Chemistry - A European Journal, 2020, 26, 369-373.	1.7	82
1292	Covalent organic polymer-derived carbon nanotube-twined carbon nanospheres for efficient oxygen electroreduction and capacitance storage. lonics, 2020, 26, 927-937.	1.2	16
1293	Recent advances of application of porous molecular cages for enantioselective recognition and separation. Journal of Separation Science, 2020, 43, 134-149.	1.3	55
1294	Precision Nanotube Mimics via Self-Assembly of Programmed Carbon Nanohoops. Journal of Organic Chemistry, 2020, 85, 129-141.	1.7	23
1295	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34
1296	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 6007-6014.	7.2	254
1297	Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Applied Materials Today, 2020, 19, 100550.	2.3	36
1298	Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nature Communications, 2020, 11, 178.	5.8	279
1299	Postsynthetic functionalization of covalent organic frameworks. National Science Review, 2020, 7, 170-190.	4.6	142
1300	Triphenylamine-based covalent imine framework for CO2 capture and catalytic conversion into cyclic carbonates. Microporous and Mesoporous Materials, 2020, 297, 110011.	2.2	36
1301	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	5.5	426
1302	Hydrogen-bonded porous frameworks constructed by rigid ï€-conjugated molecules with carboxy groups. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 215-231.	0.9	58
1303	Recent Advances in Covalent Organic Frameworks for Molecule-Based Two-Dimensional Materials. ACS Omega, 2020, 5, 948-958.	1.6	37
1304	Development of catalysts for ammonia synthesis based on metal phthalocyanine materials. Catalysis Science and Technology, 2020, 10, 844-852.	2.1	22
1305	Conjugated polymers for visible-light-driven photocatalysis. Energy and Environmental Science, 2020, 13, 24-52.	15.6	452
1306	Multifunctional carbon nanotubes covalently coated with imine-based covalent organic frameworks: exploring structure–property relationships through nanomechanics. Nanoscale, 2020, 12, 1128-1137.	2.8	20
1307	Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis. Chemical Science, 2020, 11, 1494-1502.	3.7	116
1308	Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11, 989-996.	3.7	57

#	Article	IF	CITATIONS
1309	Gas chromatographic separation of enantiomers on novel chiral stationary phases. TrAC - Trends in Analytical Chemistry, 2020, 124, 115808.	5.8	72
1310	lonization of a covalent organic framework for catalyzing the cycloaddition reaction between epoxides and carbon dioxide. Chinese Journal of Catalysis, 2020, 41, 485-493.	6.9	54
1311	Covalent organic framework/nanofibrillated cellulose composite membrane loaded with Pd nanoparticles for dechlorination of dichlorobenzene. Materials Chemistry and Physics, 2020, 246, 122574.	2.0	12
1312	Imine-based covalent triazine framework: Synthesis, characterization, and evaluation its adsorption. Materials Letters, 2020, 263, 127221.	1.3	29
1313	Microporous organic polymers for efficient removal of sulfamethoxazole from aqueous solutions. Microporous and Mesoporous Materials, 2020, 296, 109979.	2.2	37
1314	One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: Isotherm, kinetic, and thermodynamic studies. Journal of Molecular Liquids, 2020, 300, 112367.	2.3	43
1315	Restricting structural relaxation of a phosphorescent copper emitter via polymer framework: Characterization and performance. Journal of Molecular Structure, 2020, 1202, 127275.	1.8	0
1316	Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, 2020, 120, 109620.	8.2	536
1317	Screening of Covalent–Organic Frameworks for Adsorption Heat Pumps. ACS Applied Materials & Interfaces, 2020, 12, 3265-3273.	4.0	34
1318	Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1367-1374.	6.6	58
1319	Highly dispersed gold nanoparticles anchoring on post-modified covalent organic framework for catalytic application. Chemical Engineering Journal, 2020, 391, 123471.	6.6	72
1320	Flexible films derived from PIM-1 with ultralow dielectric constants. Microporous and Mesoporous Materials, 2020, 294, 109887.	2.2	8
1321	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion. , 2020, , 393-423.		8
1322	An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography. Journal of Chromatography A, 2020, 1615, 460722.	1.8	42
1323	Covalent organic frameworks hybird membrane with optimized mass transport nanochannel for aromatic/aliphatic mixture pervaporation. Journal of Membrane Science, 2020, 598, 117652.	4.1	33
1324	Emerging Functional Porous Polymeric and Carbonaceous Materials for Environmental Treatment and Energy Storage. Advanced Functional Materials, 2020, 30, 1907006.	7.8	176
1325	Design, Synthesis and Characterization of Nickelâ€Functionalized Covalent Organic Framework NiCl@RIOâ€12 for Heterogeneous Suzuki–Miyaura Catalysis. Chemistry - A European Journal, 2020, 26, 2051-2059.	1.7	18
1326	Programming Covalent Organic Frameworks for Photocatalysis: Investigation of Chemical and Structural Variations. Matter, 2020, 2, 416-427.	5.0	110

#	Article	IF	CITATIONS
1327	Ensemble Learning of Partition Functions for the Prediction of Thermodynamic Properties of Adsorption in Metal–Organic and Covalent Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 1907-1917.	1.5	13
1328	Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded covalent-organic frameworks for determination of histamine. Mikrochimica Acta, 2020, 187, 28.	2.5	26
1329	Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angewandte Chemie, 2020, 132, 2271-2275.	1.6	29
1332	Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. Journal of Materials Science, 2020, 55, 3034-3044.	1.7	26
1333	Recent Advances in Covalent Organic Frameworks for Catalysis. Chemistry - an Asian Journal, 2020, 15, 338-351.	1.7	103
1334	Synthesis of a pH-Responsive Functional Covalent Organic Framework via Facile and Rapid One-Step Postsynthetic Modification and Its Application in Highly Efficient <i>N</i> ¹ -Methyladenosine Extraction. Analytical Chemistry, 2020, 92, 1424-1430.	3.2	18
1335	Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization. Chinese Journal of Chemical Engineering, 2020, 28, 1039-1045.	1.7	25
1336	Facile synthesis of a core-shell structured magnetic covalent organic framework for enrichment of organophosphorus pesticides in fruits. Analytica Chimica Acta, 2020, 1101, 65-73.	2.6	61
1337	A rings-in-pores net: crown ether-based covalent organic frameworks for phase-transfer catalysis. Chemical Communications, 2020, 56, 595-598.	2.2	39
1338	Superhydrophobic Covalent Organic Frameworks Prepared via Pore Surface Modifications for Functional Coatings under Harsh Conditions. ACS Applied Materials & Interfaces, 2020, 12, 2926-2934.	4.0	59
1339	Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angewandte Chemie - International Edition, 2020, 59, 2251-2255.	7.2	105
1340	Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Composites Part B: Engineering, 2020, 182, 107616.	5.9	97
1341	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angewandte Chemie - International Edition, 2020, 59, 3624-3629.	7.2	227
1342	Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H ₂ . ACS Applied Materials & amp; Interfaces, 2020, 12, 1404-1411.	4.0	58
1343	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angewandte Chemie, 2020, 132, 3653-3658.	1.6	45
1344	Recent Advances in Visibleâ€Lightâ€Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem, 2020, 12, 689-704.	1.8	100
1345	Rational combination of covalent-organic framework and nano TiO2 by covalent bonds to realize dramatically enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020, 266, 118586.	10.8	149
1346	Synthesis of bis-BN-Naphthalene-Fused Oxepins and Their Photoluminescence Including White-Light Emission. Journal of Organic Chemistry, 2020, 85, 526-536.	1.7	15

#	Article	IF	CITATIONS
1347	Porous Ladder Polymer Networks. CheM, 2020, 6, 2558-2590.	5.8	36
1348	Hierarchical flower-like MnO2@nitrogen-doped porous carbon composite for symmetric supercapacitor: Constructing a 9.0ÂV symmetric supercapacitor cell. Electrochimica Acta, 2020, 364, 137291.	2.6	31
1349	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. ChemPhysChem, 2020, 21, 2489-2505.	1.0	5
1350	Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting. Catalysts, 2020, 10, 1111.	1.6	35
1351	The influences of the structure of thiophene-based conjugated microporous polymers on the fluorescence sensing properties. New Journal of Chemistry, 2020, 44, 19663-19671.	1.4	7
1352	Synthesis of Imine-Based Covalent Organic Frameworks Catalyzed by Metal Halides and <i>in Situ</i> Growth of Perovskite@COF Composites. , 2020, 2, 1561-1566.		43
1353	Small-angle X-ray scattering as a multifaceted tool for structural characterization of covalent organic frameworks. Journal of Applied Crystallography, 2020, 53, 1376-1386.	1.9	9
1354	Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding. Inorganic Chemistry, 2020, 59, 15646-15658.	1.9	16
1355	Facile preparation of novel COFs functionalized magnetic core-shell structured nanocomposites and used for rapid detection of trace polycyclic aromatic hydrocarbons in food. Microchemical Journal, 2020, 159, 105460.	2.3	16
1356	Design and Synthesis of Polyimide Covalent Organic Frameworks. Macromolecular Rapid Communications, 2020, 41, e2000402.	2.0	44
1357	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	6.6	87
1358	Recent progress on thin film composite membranes for CO2 separation. Journal of CO2 Utilization, 2020, 42, 101296.	3.3	52
1359	A novel nitrogen-containing covalent organic framework adsorbent for the efficient removal of bisphenol A from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 204-213.	2.7	18
1360	N-doped carbon dots derived from covalent organic frameworks embedded in molecularly imprinted polymers for optosensing of flonicamid. Microchemical Journal, 2020, 159, 105585.	2.3	13
1361	Hydrogen and CO2 storage in high surface area covalent triazine–based frameworks. Materials Today Energy, 2020, 18, 100506.	2.5	16
1362	Syntheses of two- and three-dimensional covalent organic frameworks in deep eutectic solvents. Green Chemistry, 2020, 22, 7537-7542.	4.6	44
1363	The fabrication of a covalent triazine-based organic framework for the solid-phase extraction of fourteen kinds of sulfonamides from meat samples. RSC Advances, 2020, 10, 35941-35948.	1.7	10
1364	Selective single-atom electrocatalysts: a review with a focus on metal-doped covalent triazine frameworks. Chemical Science, 2020, 11, 8339-8349.	3.7	53

#	Article	IF	CITATIONS
1365	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
1366	Recent Advances in Covalent Organic Framework-Based Nanosystems for Bioimaging and Therapeutic Applications. , 2020, 2, 1074-1092.		89
1367	Microporous Materials in Scalable Shapes: Fiber Sorbents. Chemistry of Materials, 2020, 32, 7081-7104.	3.2	15
1368	Organic solid-state lasers: a materials view and future development. Chemical Society Reviews, 2020, 49, 5885-5944.	18.7	250
1369	Three-Dimensional Large-Pore Covalent Organic Framework with stp Topology. Journal of the American Chemical Society, 2020, 142, 13334-13338.	6.6	149
1370	Proton-Triggered Fluorescence Switching in Self-Exfoliated Ionic Covalent Organic Nanosheets for Applications in Selective Detection of Anions. ACS Applied Materials & (Interfaces, 2020, 12, 13248-13255.	4.0	69
1371	Water-Soluble Flexible Organic Frameworks That Include and Deliver Proteins. Journal of the American Chemical Society, 2020, 142, 3577-3582.	6.6	54
1372	Multiscale study on ammonia adsorption by Li-Doped COF-10. Computational and Theoretical Chemistry, 2020, 1175, 112744.	1.1	2
1373	Novel amino-functionalized hypercrosslinked polymer nanoparticles constructed from commercial macromolecule polystyrene via a two-step strategy for CO2 adsorption. New Journal of Chemistry, 2020, 44, 21125-21133.	1.4	7
1374	Materials Informatics with PoreBlazer v4.0 and the CSD MOF Database. Chemistry of Materials, 2020, 32, 9849-9867.	3.2	132
1375	Synthesis methods of organic twoâ€dimensional materials. Journal of Polymer Science, 2020, 58, 3387-3401.	2.0	7
1376	Microregulation of Pore Channels in Covalent-Organic Frameworks Used for the Selective and Efficient Separation of Ethane. ACS Applied Materials & Interfaces, 2020, 12, 52819-52825.	4.0	35
1377	Pyrimidazole-Based Covalent Organic Frameworks: Integrating Functionality and Ultrastability via Isocyanide Chemistry. Journal of the American Chemical Society, 2020, 142, 20956-20961.	6.6	62
1378	Electronic and Optical Properties of Protonated Triazine Derivatives. Journal of Physical Chemistry C, 2020, 124, 27801-27810.	1.5	5
1379	A Single-Walled Carbon Nanotube/Covalent Organic Framework Nanocomposite Ultrathin Membrane with High Organic Solvent Resistance for Molecule Separation. ACS Applied Materials & Interfaces, 2020, 12, 53096-53103.	4.0	30
1380	Two-Dimensional COF–Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H ₂ /CO ₂ Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Interfaces, 2020, 12, 52899-52907.	4.0	59
1381	3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. Journal of the American Chemical Society, 2020, 142, 20335-20339.	6.6	97
1382	Sulfur―and Nitrogenâ€Rich Porous Ï€â€Conjugated COFs as Stable Electrode Materials for Electroâ€ŀonic Soft Actuators. Advanced Functional Materials, 2020, 30, 2003863.	7.8	30

#	Article	IF	CITATIONS
1383	Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Materials Today, 2020, 40, 160-172.	8.3	56
1384	Five-Minute Mechanosynthesis of Hypercrosslinked Microporous Polymers. Chemistry of Materials, 2020, 32, 7694-7702.	3.2	41
1385	Improved Quantum Yield and Excellent Luminescence Stability of Europiumâ€Incorporated Polymeric Hydrogenâ€Bonded Heptazine Frameworks Due to an Efficient Hydrogenâ€Bonding Effect. Advanced Functional Materials, 2020, 30, 2003656.	7.8	20
1386	Covalent Organic Frameworks for Nextâ€Generation Batteries. ChemElectroChem, 2020, 7, 3905-3926.	1.7	41
1387	Versatile Platform of Ion Conducting 2D Anionic Germanate Covalent Organic Frameworks with Potential for Capturing Toxic Acidic Gases. ACS Applied Materials & Interfaces, 2020, 12, 40372-40380.	4.0	22
1388	Ultrafine Pd nanoparticles loaded benzothiazole-linked covalent organic framework for efficient photocatalytic C–C cross-coupling reactions. RSC Advances, 2020, 10, 29402-29407.	1.7	24
1389	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	5.2	93
1390	Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units. ACS Applied Materials & Interfaces, 2020, 12, 37986-37992.	4.0	72
1391	Chiral covalent organic frameworks: design, synthesis and property. Chemical Society Reviews, 2020, 49, 6248-6272.	18.7	211
	19, 02 10 0272.		
1392	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288.	1.7	30
1392 1393		1.7 4.6	30 92
	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288. Recent investigations and progress in environmental remediation by using covalent organic		
1393	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360. Selective extraction and determination of aromatic amine metabolites in urine samples by using	4.6	92
1393 1394	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360. Selective extraction and determination of aromatic amine metabolites in urine samples by using magnetic covalent framework nanocomposites and HPLC-MS/MS. RSC Advances, 2020, 10, 28437-28446. Ester-Linked Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society,	4.6 1.7	92 13
1393 1394 1395	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360. Selective extraction and determination of aromatic amine metabolites in urine samples by using magnetic covalent framework nanocomposites and HPLC-MS/MS. RSC Advances, 2020, 10, 28437-28446. Ester-Linked Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 14450-14454.	4.6 1.7 6.6	92 13 80
1393 1394 1395 1396	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360. Selective extraction and determination of aromatic amine metabolites in urine samples by using magnetic covalent framework nanocomposites and HPLC-MS/MS. RSC Advances, 2020, 10, 28437-28446. Ester-Linked Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 14450-14454. Covalently Linked, Two-Dimensional Quantum Dot Assemblies. Langmuir, 2020, 36, 9944-9951. Covalent organic frameworks embedded membrane via acetic-acid-catalyzed interfacial polymerization	4.6 1.7 6.6 1.6	92 13 80 4
1393 1394 1395 1396 1397	Covalent Organic Frameworks in Sample Preparation. Molecules, 2020, 25, 3288. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360. Selective extraction and determination of aromatic amine metabolites in urine samples by using magnetic covalent framework nanocomposites and HPLC-MS/MS. RSC Advances, 2020, 10, 28437-28446. Ester-Linked Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 14450-14454. Covalently Linked, Two-Dimensional Quantum Dot Assemblies. Langmuir, 2020, 36, 9944-9951. Covalent organic frameworks embedded membrane via acetic-acid-catalyzed interfacial polymerization for dyes separation: Enhanced permeability and selectivity. Chemosphere, 2020, 261, 127580. Preparation of COF-LZUI/PAN membranes by an evaporation/casting method for separation of dyes.	 4.6 1.7 6.6 1.6 4.2 	 92 13 80 4 26

#	Article	IF	CITATIONS
1401	Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nature Chemistry, 2020, 12, 1115-1122.	6.6	88
1402	Advances in magnetic porous organic frameworks for analysis and adsorption applications. TrAC - Trends in Analytical Chemistry, 2020, 132, 116048.	5.8	37
1403	Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework Monolayer and Graphene. Chemistry of Materials, 2020, 32, 9228-9237.	3.2	18
1404	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	1.6	19
1405	Taking the power of plasmon-assisted chemistry on copper NPs: Preparation and application of COFs nanostructures for CO2 sensing in water. Microporous and Mesoporous Materials, 2020, 309, 110577.	2.2	10
1406	Tunable synthesis of Pd/COF-LZU1 for efficient catalysis in nitrophenol reduction. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	15
1407	Toward a Deformable Two-Dimensional Covalent Organic Network with a Noncovalently Connected Skeleton. Chemistry of Materials, 2020, 32, 8139-8145.	3.2	4
1408	Directâ€Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data. Angewandte Chemie - International Edition, 2020, 59, 22638-22644.	7.2	23
1409	Covalent Organic Framework-Based Nanocomposite for Synergetic Photo-, Chemodynamic-, and Immunotherapies. ACS Applied Materials & Interfaces, 2020, 12, 43456-43465.	4.0	49
1410	Boronate Covalent and Hybrid Organic Frameworks Featuring P III and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12688-12688.	1.7	4
1411	CO ₂ , N ₂ , and H ₂ Adsorption by Hyper-Cross-Linked Polymers and Their Selectivity Evaluation by Gas–Solid Equilibrium. Journal of Chemical & Engineering Data, 2020, 65, 4905-4913.	1.0	41
1412	Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics, 2020, 22, 19401-19442.	1.3	38
1413	Crystallinity and stability of covalent organic frameworks. Science China Chemistry, 2020, 63, 1367-1390.	4.2	95
1414	COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale, 2020, 12, 21218-21224.	2.8	25
1415	Porous organic polymer bearing triazine and pyrene moieties as an efficient organocatalyst. Molecular Catalysis, 2020, 497, 111198.	1.0	7
1416	Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid I ₂ Adsorption. Angewandte Chemie, 2020, 132, 22886-22894.	1.6	26
1417	Pd Nanoparticles Loaded on Two-Dimensional Covalent Organic Frameworks with Enhanced Catalytic Performance for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 18489-18499.	1.8	26
1418	Reticular Synthesis of tbo Topology Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16346-16356.	6.6	120

#	Article	IF	CITATIONS
1419	Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid I ₂ Adsorption. Angewandte Chemie - International Edition, 2020, 59, 22697-22705.	7.2	163
1420	Structural Approaches to Control Interlayer Interactions in 2D Covalent Organic Frameworks. Advanced Materials, 2020, 32, e2002366.	11.1	60
1421	Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores. Advanced Materials, 2020, 32, e2003270.	11.1	52
1422	"Eggs in egg cartonsâ€ı co-crystallization to embed molecular cages into crystalline lattices. Chemical Science, 2020, 11, 10457-10460.	3.7	18
1423	The Application of Covalent Organic Frameworks for Chiral Chemistry. Macromolecular Rapid Communications, 2020, 41, e2000404.	2.0	14
1424	Directâ€Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data. Angewandte Chemie, 2020, 132, 22827-22833.	1.6	2
1425	Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. Accounts of Chemical Research, 2020, 53, 2225-2234.	7.6	149
1426	A chiral porous organic polymer as a heterogeneous ligand for enantioselective Pd-catalyzed C(sp ³)–H functionalization. Catalysis Science and Technology, 2020, 10, 7697-7705.	2.1	13
1427	Recent Advances of Solid‣tate NMR Spectroscopy for Microporous Materials. Advanced Materials, 2020, 32, e2002879.	11.1	50
1428	Functionalized porous organic materials as efficient media for the adsorptive removal of Hg(<scp>ii</scp>) ions. Environmental Science: Nano, 2020, 7, 2887-2923.	2.2	44
1429	Equilibrium Solubility Determination and Correlation of Isobutoxyphenylboronic Acids in Organic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 4605-4612.	1.0	4
1430	Smart covalent organic networks (CONs) with "on-off-on―light-switchable pores for molecular separation. Science Advances, 2020, 6, eabb3188.	4.7	71
1431	Homogeneous Polymerization of Self-standing Covalent Organic Framework Films with High Performance in Molecular Separation. ACS Applied Materials & Interfaces, 2020, 12, 41942-41949.	4.0	33
1432	Facile synthesis of a covalent organic framework (COF) based on the reaction of melamine and trimesic acid incorporated electrospun nanofiber and its application as an electrochemical tyrosinamide aptasensor. New Journal of Chemistry, 2020, 44, 14922-14927.	1.4	28
1433	Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. ChemPlusChem, 2020, 85, 2051-2066.	1.3	37
1434	Near-infrared fluorescent organic porous crystal that responds to solvent vapors. Journal of Materials Chemistry C, 2020, 8, 12437-12444.	2.7	15
1435	Thiol-functionalized PIM-1 for removal and sensing for mercury (II). Journal of Environmental Chemical Engineering, 2020, 8, 104545.	3.3	8
1436	Microfluidic interface boosted synthesis of covalent organic polymer capsule. Green Chemical Engineering, 2020, 1, 63-69.	3.3	21

	CITATION	Report	
#	ARTICLE Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen	IF	CITATIONS
1437	Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	6.6	163
1438	Efficient Photocatalytic Oxidation of Aromatic Alcohols over Thiopheneâ€based Covalent Triazine Frameworks with A Narrow Band Gap. ChemistrySelect, 2020, 5, 14438-14446.	0.7	21
1439	Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 8469-8500.	18.7	315
1440	Highly C2/C1-Selective Covalent Organic Frameworks Substituted with Azo Groups. ACS Applied Materials & Interfaces, 2020, 12, 51517-51522.	4.0	20
1441	Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.	5.0	94
1442	Two-dimensional diamine-linked covalent organic frameworks for CO ₂ /N ₂ capture and separation: theoretical modeling and simulations. Physical Chemistry Chemical Physics, 2020, 22, 25918-25929.	1.3	16
1443	Recent Progress in 2D Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2020, 8, 2000110.	3.6	85
1444	Divergent Chemistry Paths for 3D and 1D Metalloâ€Covalent Organic Frameworks (COFs). Angewandte Chemie, 2020, 132, 11624-11629.	1.6	10
1445	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	18.7	617
1446	Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application. RSC Advances, 2020, 10, 17396-17403.	1.7	37
1447	Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, 2020, 49, 4135-4165.	18.7	649
1448	Recent Progress in Metalâ€Free Covalent Organic Frameworks as Heterogeneous Catalysts. Small, 2020, 16, e2001070.	5.2	229
1449	Recent advances in synthesis and application of organic near-infrared fluorescence polymers. Journal of Materials Science, 2020, 55, 9918-9947.	1.7	23
1450	Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination. ACS Applied Materials & Interfaces, 2020, 12, 27777-27785.	4.0	62
1451	Two-dimensional covalent organic frameworks with hierarchical porosity. Chemical Society Reviews, 2020, 49, 3920-3951.	18.7	302
1452	A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angewandte Chemie, 2020, 132, 16730-16736.	1.6	59
1453	A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angewandte Chemie - International Edition, 2020, 59, 16587-16593.	7.2	214
1454	Building Lithiophilic Ion onduction Highways on Garnetâ€Type Solidâ€6tate Li ⁺ Conductors. Advanced Energy Materials, 2020, 10, 1904230.	10.2	62

#	Article	IF	CITATIONS
1455	<scp>Noncovalent</scp> modification of <scp>selfâ€assembled</scp> functionalized <scp>COF</scp> by <scp>PNIPAM</scp> and its properties of Pickering emulsion. Journal of the Chinese Chemical Society, 2020, 67, 2004-2011.	0.8	1
1456	Selective Separation of CO ₂ from Flue Gas Using Carbon and Boron Nitride Nanotubes as a Membrane. Energy & Fuels, 2020, 34, 7223-7231.	2.5	7
1457	Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks – from 3D solids to 2D sheets. Chemical Society Reviews, 2020, 49, 4835-4866.	18.7	129
1458	Heteroatom-Doped Carbon Electrocatalysts Derived from Nanoporous Two-Dimensional Covalent Organic Frameworks for Oxygen Reduction and Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 5481-5488.	2.4	46
1459	A covalent organic framework exhibiting amphiphilic selective adsorption toward ionic organic dyes tuned by pH value. European Polymer Journal, 2020, 133, 109764.	2.6	38
1460	Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction. Journal of the American Chemical Society, 2020, 142, 11131-11138.	6.6	158
1461	Surface controlled pseudo-capacitive reactions enabling ultra-fast charging and long-life organic lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4179-4185.	2.5	30
1462	Threeâ€Dimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie, 2020, 132, 19801-19806.	1.6	13
1463	Boronate Covalent and Hybrid Organic Frameworks Featuring P ^{III} and P=O Lewis Base Sites. Chemistry - A European Journal, 2020, 26, 12758-12768.	1.7	10
1464	Covalent organic frameworks for photocatalytic applications. Applied Catalysis B: Environmental, 2020, 276, 119174.	10.8	277
1465	Tröger's Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. Journal of Membrane Science, 2020, 610, 118255.	4.1	31
1466	Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions. Microporous and Mesoporous Materials, 2020, 308, 110314.	2.2	41
1467	A new dual-mode SERS and RRS aptasensor for detecting trace organic molecules based on gold nanocluster-doped covalent-organic framework catalyst. Sensors and Actuators B: Chemical, 2020, 319, 128308.	4.0	35
1468	A highly fluorescent covalent organic framework as a hydrogen chloride sensor: roles of Schiff base bonding and π-stacking. Journal of Materials Chemistry C, 2020, 8, 9520-9528.	2.7	96
1469	Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries. Chemical Engineering Journal, 2020, 399, 125833.	6.6	68
1470	Semiconductive Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Applied Materials & Interfaces, 2020, 12, 37427-37434.	4.0	67
1471	Multifunctional porous aromatic frameworks: State of the art and opportunities. EnergyChem, 2020, 2, 100037.	10.1	35
1472	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311

#	Article	IF	CITATIONS
1473	Enhancement of crystallinity of imine-linked covalent organic frameworks <i>via</i> aldehyde modulators. Polymer Chemistry, 2020, 11, 4464-4468.	1.9	33
1474	Boronic acid-functionalized mesoporous magnetic particles with a hydrophilic surface for the multimodal enrichment of glycopeptides for glycoproteomics. Analyst, The, 2020, 145, 5252-5259.	1.7	12
1475	A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chemical Science, 2020, 11, 6882-6888.	3.7	87
1476	Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules, 2020, 25, 2586.	1.7	7
1477	Two-Dimensional Co-Compounded Carbonaceous Nanoplates for Rubber Tire Composites with Enhanced Mechanical Properties. ACS Applied Nano Materials, 2020, 3, 6321-6327.	2.4	1
1478	Irreversible Amide‣inked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angewandte Chemie, 2020, 132, 17760-17766.	1.6	18
1479	Irreversible Amide‣inked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angewandte Chemie - International Edition, 2020, 59, 17607-17613.	7.2	174
1480	High-throughput screening of bisphenols using magnetic covalent organic frameworks as a SELDI-TOF-MS probe. Mikrochimica Acta, 2020, 187, 370.	2.5	17
1481	Recent applications of covalent organic frameworks and their multifunctional composites for food contaminant analysis. Food Chemistry, 2020, 330, 127255.	4.2	58
1482	Rational Design of Covalent Cobaloxime–Covalent Organic Framework Hybrids for Enhanced Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 12146-12156.	6.6	123
1483	Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e2000556.	11.1	134
1484	Organic–Inorganic Hybrid Nanomaterials for Electrocatalytic CO ₂ Reduction. Small, 2020, 16, e2001847.	5.2	79
1485	Pd Nanoclusters Supported by Amine-Functionalized Covalent Organic Frameworks for Benzyl Alcohol Oxidation. ACS Applied Nano Materials, 2020, 3, 6416-6422.	2.4	32
1486	Anion Substitution in Porous Aromatic Frameworks: Boosting Molecular Permeability and Selectivity for Membrane Acetylene Separation. Advanced Materials, 2020, 32, e1907449.	11.1	34
1487	In situ fabrication of 3D COF-300 in aÂcapillary for separation of aromatic compounds by open-tubular capillary electrochromatography. Mikrochimica Acta, 2020, 187, 233.	2.5	34
1488	All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. Journal of the American Chemical Society, 2020, 142, 6548-6553.	6.6	31
1489	Single crystal of a one-dimensional metallo-covalent organic framework. Nature Communications, 2020, 11, 1434.	5.8	77
1490	Improved photocatalytic performance of covalent organic frameworks by nanostructure construction. Chemical Communications, 2020, 56, 4567-4570.	2.2	29

			2
#	ARTICLE	IF	CITATIONS
1491	Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C–C coupling reactions. Green Chemistry, 2020, 22, 2605-2612.	4.6	47
1492	Asymmetric photocatalysis over robust covalent organic frameworks with tetrahydroquinoline linkage. Chinese Journal of Catalysis, 2020, 41, 1288-1297.	6.9	54
1493	2D sp ² Carbonâ€Conjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. Angewandte Chemie - International Edition, 2020, 59, 9088-9093.	7.2	212
1494	Construction of Covalent Organic Frameworks via Three-Component One-Pot Strecker and Povarov Reactions. Journal of the American Chemical Society, 2020, 142, 6521-6526.	6.6	146
1495	2D sp 2 Carbon onjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. Angewandte Chemie, 2020, 132, 9173-9178.	1.6	17
1496	A Versatile Approach to Dynamic Amide Bond Formation with Imine Nucleophiles. Chemistry - A European Journal, 2020, 26, 5709-5716.	1.7	4
1497	A facile solution-phase synthetic approach for constructing phenol-based porous organic cages and covalent organic frameworks. Green Chemistry, 2020, 22, 2498-2504.	4.6	32
1498	Three-dimensional Covalent Organic Frameworks as Host Materials for Lithium-Sulfur Batteries. Chinese Journal of Polymer Science (English Edition), 2020, 38, 550-557.	2.0	35
1499	Enantioselective inclusion of pyrene-1-sulfonate salts of α-amino acids with crystals of α-cyclodextrin. Tetrahedron, 2020, 76, 131100.	1.0	5
1500	Discrete boronate ester ladders from the dynamic covalent self-assembly of oligo(phenylene) Tj ETQq1 1 1082-1094.	0.784314 rgBT 2.3	/Overlock 10 T 6
1501	Switching porosity of stable triptycene-based cage <i>via</i> solution-state assembly processes. RSC Advances, 2020, 10, 9088-9092.	1.7	8
1502	Synthesis of anionic ionic liquids@TpBd-(SO ₃) ₂ for the selective adsorption of cationic dyes with superior capacity. RSC Advances, 2020, 10, 5443-5453.	1.7	10
1503	Modulation of imine chemistry with intramolecular hydrogen bonding: Effects from ortho-OH to NH. Tetrahedron, 2020, 76, 131128.	1.0	12
1504	High surface area benzimidazole based porous covalent organic framework for removal of methylene blue from aqueous solutions. Polymer International, 2020, 69, 712-718.	1.6	23
1505	Copper nanoparticles supported on highly nitrogen-rich covalent organic polymers as heterogeneous catalysts for the <i>ipso</i> -hydroxylation of phenyl boronic acid to phenol. New Journal of Chemistry, 2020, 44, 6222-6231.	1.4	16
1506	Exploration of a novel triazine-based covalent organic framework for solid-phase extraction of antibiotics. RSC Advances, 2020, 10, 11557-11564.	1.7	29
1507	Topological two-dimensional polymers. Chemical Society Reviews, 2020, 49, 2007-2019.	18.7	76
1508	Porous Organic Polymers with Thiourea Linkages (POP-TUs): Effective and Recyclable Organocatalysts for the Michael Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 17861-17869.	4.0	11

#	Article	IF	CITATIONS
1509	Antifouling Fieldâ€Effect Transistor Sensing Interface Based on Covalent Organic Frameworks. Advanced Electronic Materials, 2020, 6, 1901169.	2.6	26
1510	Thermal Conductivity of a 2D Covalent Organic Framework and Its Enhancement Using Fullerene 3D Self-Assembly: a Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 8386-8393.	1.5	17
1511	Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 19054-19061.	4.0	40
1512	Differential Metal Ion-Sensing Properties of Isomeric Crystalline Polyacylhydrazone Organogelators. ACS Applied Polymer Materials, 2020, 2, 1781-1789.	2.0	2
1513	A porous fluorinated organic [4+4] imine cage showing CO ₂ and H ₂ adsorption. Chemical Communications, 2020, 56, 4761-4764.	2.2	43
1514	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
1515	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	10.2	425
1516	Divergent Chemistry Paths for 3D and 1D Metallo ovalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2020, 59, 11527-11532.	7.2	35
1517	Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 4841-4877.	1.2	34
1518	Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium–sulfur batteries. Energy, 2020, 199, 117372.	4.5	46
1519	Picolinohydrazide-Based Covalent Organic Polymer for Metal-Free Catalysis and Removal of Heavy Metals from Wastewater. Journal of Physical Chemistry C, 2020, 124, 7835-7843.	1.5	20
1520	The influence of ortho-substituents on the properties of phenylboronic acids. Journal of Organometallic Chemistry, 2020, 913, 121202.	0.8	14
1521	Covalent Organic Framework for Efficient Two-Photon Absorption. Matter, 2020, 2, 1049-1063.	5.0	69
1522	Encapsulating Metal Nanocatalysts within Porous Organic Hosts. Trends in Chemistry, 2020, 2, 214-226.	4.4	55
1523	Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS Energy Letters, 2020, 5, 1022-1031.	8.8	156
1524	Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Communications Chemistry, 2020, 3, .	2.0	40
1525	Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 6957-6983.	5.2	190
1526	Ultramicroporous organic materials for selective separation of xenon from krypton. Microporous and Mesoporous Materials, 2020, 305, 110390.	2.2	6

#	Article	IF	CITATIONS
1527	How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals. Chemical Society Reviews, 2020, 49, 5140-5158.	18.7	27
1528	Thiophene-embedded conjugated microporous polymers for photocatalysis. Catalysis Science and Technology, 2020, 10, 5171-5180.	2.1	37
1529	Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 2020, 10, 720.	1.6	47
1530	Fe(III)â€Functionalized Magnetic Covalent Organic Frameworks for Fast Adsorption and Removal of Phenylbutazone in Aqueous Solution. ChemistrySelect, 2020, 5, 7497-7504.	0.7	5
1531	A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chemical Engineering Journal, 2020, 401, 126139.	6.6	71
1532	8-Hydroxyquinoline functionalized covalent organic framework as a pH sensitive carrier for drug delivery. Materials Science and Engineering C, 2020, 117, 111243.	3.8	45
1533	Ultralow Surface Tension Solvents Enable Facile COF Activation with Reduced Pore Collapse. ACS Applied Materials & amp; Interfaces, 2020, 12, 33121-33127.	4.0	61
1534	Applications of Dynamic Covalent Chemistry Concept toward Tailored Covalent Organic Framework Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6239-6269.	2.4	96
1535	Highly durable covalent organic framework for the simultaneous ultrasensitive detection and removal of noxious Hg2+. Microporous and Mesoporous Materials, 2020, 306, 110399.	2.2	31
1536	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	11.1	148
1537	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie, 2020, 132, 19770-19777.	1.6	13
1538	Control by one drop of solvent: selective preparation of guest release/trap-triggered interconvertible molecular crystals. Chemical Communications, 2020, 56, 9687-9690.	2.2	8
1539	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	5.5	200
1540	Theoretical Study of Thermoelectric Properties of Covalent Organic Frameworks with Slipped Arrangement. Journal of Electronic Materials, 2020, 49, 5498-5507.	1.0	1
1541	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169.	6.6	85
1542	Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale, 2020, 12, 15611-15619.	2.8	78
1543	Preparation of Porous Pentacoordinate Organosilicon Frameworks Using Organoalkoxysilanes and Tris-catechol Linkers. Chemistry Letters, 2020, 49, 1075-1077.	0.7	4
1544	Preparation and characterization of polyzwitterionic hydrogel coated polyamideâ€based mixed matrix membrane for heavy metal ions removal. Journal of Applied Polymer Science, 2020, 137, 49595.	1.3	21

#	Article	IF	CITATIONS
1545	Solubility of Phenylboronic Acid and its Cyclic Esters in Organic Solvents. Journal of Solution Chemistry, 2020, 49, 814-824.	0.6	10
1546	Integrated effect of NH2-functionalized/triazine based covalent organic framework black phosphorus on reducing fire hazards of epoxy nanocomposites. Chemical Engineering Journal, 2020, 401, 126058.	6.6	55
1547	Magnetic covalent organic framework as a solid-phase extraction absorbent for sensitive determination of trace organophosphorus pesticides in fatty milk. Journal of Chromatography A, 2020, 1627, 461387.	1.8	40
1548	Covalent-organic frameworks (COFs)-based membranes for CO2 separation. Journal of CO2 Utilization, 2020, 41, 101224.	3.3	31
1549	2D-Covalent Organic Frameworks with Interlayer Hydrogen Bonding Oriented through Designed Nonplanarity. Journal of the American Chemical Society, 2020, 142, 12987-12994.	6.6	51
1550	Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 12995-13002.	6.6	99
1551	Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Azaâ€Diels–Alder Reaction: Towards Highâ€Performance Supercapacitor Materials. Angewandte Chemie - International Edition, 2020, 59, 19602-19609.	7.2	133
1552	Pyrazine-Linked 2D Covalent Organic Frameworks as Coating Material for High-Nickel Layered Oxide Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10597-10606.	4.0	35
1553	Comprehensive Structural and Microscopic Characterization of an Azine–Triazine-Functionalized Highly Crystalline Covalent Organic Framework and Its Selective Detection of Dichloran and 4-Nitroaniline. ACS Applied Materials & Interfaces, 2020, 12, 10224-10232.	4.0	46
1554	Supramolecular Alternating Donor–Acceptor Assembly toward Intercalated Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 3712-3717.	6.6	38
1555	n → π* interactions as a versatile tool for controlling dynamic imine chemistry in both organic and aqueous media. Chemical Science, 2020, 11, 2707-2715.	3.7	29
1556	Twoâ€Dimensional Microporous Materialâ€based Mixed Matrix Membranes for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2303-2315.	1.7	24
1557	Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. Journal of Materials Chemistry A, 2020, 8, 5907-5912.	5.2	50
1558	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
1559	Multifunctional porous organic polymers (POPs): Inverse adsorption of hydrogen over nitrogen, stabilization of Pd(0) nanoparticles, and catalytic cross-coupling reactions and reductions. Journal of Catalysis, 2020, 384, 61-71.	3.1	32
1560	Polycarbazole and biomass-derived flexible nitrogen-doped porous carbon materials for gas adsorption and sensing. Journal of Materials Chemistry A, 2020, 8, 6804-6811.	5.2	16
1561	The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach. Progress in Polymer Science, 2020, 103, 101230.	11.8	75
1562	The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 1909842.	7.8	224

#	Article	IF	CITATIONS
1563	A spherical covalent-organic framework for enhancing laser desorption/ionization mass spectrometry for small molecule detection. Analyst, The, 2020, 145, 3125-3130.	1.7	20
1564	Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Microporous and Mesoporous Materials, 2020, 299, 110105.	2.2	28
1565	Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis. Journal of the American Chemical Society, 2020, 142, 4862-4871.	6.6	304
1566	Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Applied Catalysis B: Environmental, 2020, 269, 118799.	10.8	117
1567	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
1568	Grenzflähenpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11
1569	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
1570	Fabrication of a New Corrole-Based Covalent Organic Framework as a Highly Efficient and Selective Chemosensor for Heavy Metal Ions. Chemistry of Materials, 2020, 32, 2532-2540.	3.2	76
1572	Three-Dimensional Mesoporous Covalent Organic Frameworks through Steric Hindrance Engineering. Journal of the American Chemical Society, 2020, 142, 3736-3741.	6.6	113
1573	Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 3718-3723.	6.6	83
1574	Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials, 2020, 235, 119792.	5.7	78
1575	Mesoporous covalent organic framework: An active photo-catalyst for formic acid synthesis through carbon dioxide reduction under visible light. Molecular Catalysis, 2020, 484, 110730.	1.0	45
1576	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Double‣ayer Capacitors. Advanced Materials, 2020, 32, e1907289.	11.1	136
1577	Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 6082-6089.	7.2	181
1578	A responsive supramolecular-organic framework: Functionalization with organic laser dye and lanthanide ions for sensing of nitrobenzene. Journal of Solid State Chemistry, 2020, 284, 121171.	1.4	10
1579	Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broadâ€ S cope Ultrafine Nanoparticles. Small, 2020, 16, e1906005.	5.2	82
1580	Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 2020, 120, 8814-8933.	23.0	1,968
1581	Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angewandte Chemie, 2020, 132, 6138-6145.	1.6	16

#	Article	IF	CITATIONS
1582	Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 2020, 277, 102108.	7.0	34
1583	Large Area Selfâ€Assembled Ultrathin Polyimine Nanofilms Formed at the Liquid–Liquid Interface Used for Molecular Separation. Advanced Materials, 2020, 32, e1905621.	11.1	59
1584	Small amount COFs enhancing storage of large anions. Energy Storage Materials, 2020, 27, 35-42.	9.5	62
1585	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 6063-6070.	1.6	65
1586	Ultrahigh Responsivity Photodetectors of 2D Covalent Organic Frameworks Integrated on Graphene. Advanced Materials, 2020, 32, e1907242.	11.1	114
1587	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	8.2	143
1588	Advances in Conjugated Microporous Polymers. Chemical Reviews, 2020, 120, 2171-2214.	23.0	810
1589	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
1590	Covalent triazine frameworks – a sustainable perspective. Green Chemistry, 2020, 22, 1038-1071.	4.6	138
1591	A new series of lanthanide-based complexes with a bis(hydroxy)benzoxaborolone ligand: synthesis, crystal structure, and magnetic and optical properties. CrystEngComm, 2020, 22, 2020-2030.	1.3	6
1592	A pre-synthetic strategy to construct single ion conductive covalent organic frameworks. Chemical Communications, 2020, 56, 2747-2750.	2.2	29
1593	Sunlightâ€Driven Synthesis of 1,2,4â€Thiadiazoles via Oxidative Construction of a Nitrogenâ€Sulfur Bond Catalyzed by a Reusable Covalent Organic Framework. ChemPhotoChem, 2020, 4, 445-450.	1.5	19
1594	Hexacyclic monomeric boronates derived from tridentate shiff-base ligands fused by dative N→B bond. Journal of Molecular Structure, 2020, 1207, 127779.	1.8	6
1595	Defective 2D Covalent Organic Frameworks for Postfunctionalization. Advanced Functional Materials, 2020, 30, 1909267.	7.8	103
1596	Synergy between Covalent Organic Frameworks and Surfactants to Promote Water-Based Lubrication and Corrosion Resistance. ACS Applied Nano Materials, 2020, 3, 1400-1411.	2.4	20
1597	Photocatalytic Reduction of CO ₂ by Metalâ€Freeâ€Based Materials: Recent Advances and Future Perspective. Solar Rrl, 2020, 4, 1900546.	3.1	177
1598	Covalent Organic Framework as a Heterogeneous Ligand for the Regioselective Oxidative Heck Reaction. Organic Letters, 2020, 22, 1480-1484.	2.4	20
1599	Construction of Magnetic Covalent Organic Frameworks with Inherent Hydrophilicity for Efficiently Enriching Endogenous Glycopeptides in Human Saliva. ACS Applied Materials & Interfaces, 2020, 12, 9814-9823.	4.0	60

#	Article	IF	CITATIONS
1600	Recent Advances on Metal Organic Framework–Derived Catalysts for Electrochemical Oxygen Reduction Reaction. ACS Symposium Series, 2020, , 231-278.	0.5	6
1601	Cationic covalent organic framework based all-solid-state electrolytes. Materials Chemistry Frontiers, 2020, 4, 1164-1173.	3.2	80
1602	Proximity Effect in Crystalline Framework Materials: Stackingâ€Induced Functionality in MOFs and COFs. Advanced Functional Materials, 2020, 30, 1908004.	7.8	64
1603	Two-dimensional covalent–organic frameworks for ultrahigh iodine capture. Journal of Materials Chemistry A, 2020, 8, 9523-9527.	5.2	92
1604	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	7.8	172
1605	A Thiadiazole-Based Covalent Organic Framework: A Metal-Free Electrocatalyst toward Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 5623-5630.	5.5	140
1606	Facile synthesis of conjugated microporous polymer with spherical structure for solid phase extraction of phenyl urea herbicides. Journal of Chromatography A, 2020, 1622, 461131.	1.8	21
1607	Unravelling Crystal Structures of Covalent Organic Frameworks by Electron Diffraction Tomography. Chinese Journal of Chemistry, 2020, 38, 1153-1166.	2.6	31
1608	Electron Beam Irradiation as a General Approach for the Rapid Synthesis of Covalent Organic Frameworks under Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 9169-9174.	6.6	90
1609	Synthesis of Amidesâ€Functionalized POPsâ€Supported Nanoâ€Pd Catalysts for Phosphine Ligandâ€Free Heterogeneous Hydroaminocarbonylation of Alkynes. Advanced Synthesis and Catalysis, 2020, 362, 2348-2353.	2.1	11
1610	Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 13826-13837.	1.6	48
1611	Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 13722-13733.	7.2	231
1612	Microporous Polymeric Spheres as Highly Efficient and Metal-Free Catalyst for the Cycloaddition of CO2 to Cyclic Organic Carbonates at Ambient Conditions. Catalysis Letters, 2020, 150, 2970-2977.	1.4	8
1613	Synthesis and characterization of a novel fluorene-based covalent triazine framework as a chemical adsorbent for highly efficient dye removal. Polymer, 2020, 195, 122430.	1.8	53
1614	Covalent organic framework film as an effective electrocatalyst for the simultaneous determination of dihydroxybenzene isomers in water samples. Sensors and Actuators B: Chemical, 2020, 313, 128033.	4.0	37
1615	Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS Applied Materials & Interfaces, 2020, 12, 20354-20365.	4.0	80
1616	Connecting Microscopic Structures, Mesoscale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams. Journal of the American Chemical Society, 2020, 142, 8252-8261.	6.6	115
1617	Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the C-3 functionalization of indoles. Journal of Materials Chemistry A, 2020, 8, 8706-8715.	5.2	66

#	Article	IF	CITATIONS
1618	pHâ€Dependent Slipping and Exfoliation of Layered Covalent Organic Framework. Chemistry - A European Journal, 2020, 26, 12996-13001.	1.7	35
1619	βâ€Cyclodextrinâ€modified covalent organic framework as chiral stationary phase for the separation of amino acids and βâ€blockers by capillary electrochromatography. Chirality, 2020, 32, 1008-1019.	1.3	39
1620	Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals. Applied Catalysis B: Environmental, 2020, 272, 119035.	10.8	38
1621	Mass Transfer Modulation and Gas Mapping Based on Covalent Organic Frameworks-Covered Theta Micropipette. Analytical Chemistry, 2020, 92, 7343-7348.	3.2	11
1622	Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry - A European Journal, 2020, 26, 10912-10935.	1.7	53
1623	Research Progress in Covalent Organic Frameworks for Photoluminescent Materials. Chemistry - A European Journal, 2020, 26, 16568-16581.	1.7	31
1624	<scp>Waterâ€Soluble Threeâ€Dimensional</scp> Polymers: <scp>Nonâ€Covalent</scp> and Covalent Synthesis and Functions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 970-980.	2.6	18
1625	An Ionic Liquid on a Porous Organic Framework Support: A Recyclable Catalyst for the Knoevenagel Condensation in an Aqueous System. ChemPlusChem, 2020, 85, 943-947.	1.3	6
1626	New Chiral Hydrogen-Bonded Organic Framework Based on Substituted Diarylacetylene Dicarboxylic Acid. Crystal Growth and Design, 2020, 20, 3713-3721.	1.4	9
1627	Hydrophobic MOFs@Metal Nanoparticles@COFs for Interfacially Confined Photocatalysis with High Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 20589-20595.	4.0	61
1628	New Opportunities for Functional Materials from Metal Phosphonates. , 2020, 2, 582-594.		33
1629	Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 8104-8108.	6.6	226
1630	Covalent Organic Frameworks in Separation. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 131-153.	3.3	50
1631	Construction of Large-Pore Crystalline Covalent Organic Framework as High-Performance Adsorbent for Rhodamine B Dye Removal. Industrial & Engineering Chemistry Research, 2020, 59, 8315-8322.	1.8	43
1632	Cucurbit[<i>n</i>]urilâ€Based Supramolecular Frameworks Assembled through Outerâ€Surface Interactions. Angewandte Chemie - International Edition, 2021, 60, 15166-15191.	7.2	83
1633	Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Research, 2021, 14, 381-386.	5.8	16
1634	Cucurbit[<i>n</i>]urilâ€Based Supramolecular Frameworks Assembled through Outerâ€5urface Interactions. Angewandte Chemie, 2021, 133, 15294-15319.	1.6	14
1635	Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discussions, 2021, 225, 226-240.	1.6	41

ARTICLE IF CITATIONS Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction. Chemistry - A 1636 1.7 30 European Journal, 2021, 27, 3817-3822. Green synthesis of covalent organic frameworks based on reaction media. Materials Chemistry 3.2 Frontiers, 2021, 5, 1253-1267 Covalent Organic Frameworks for Water Treatment. Advanced Materials Interfaces, 2021, 8, . 1.9 70 1638 Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless 1639 steel fiber for efficient adsorption of bisphenol A. Analytica Chimica Acta, 2021, 1142, 99-107. A solution-processed nanoscale COF-like material towards optoelectronic applications. Science China 1640 4.2 38 Chemistry, 2021, 64, 82-91. Facile fabrication of COF-LZU1/PES composite membrane via interfacial polymerization on 1641 4.1 microfiltration substrate for dye/salt separation. Journal of Membrane Science, 2021, 618, 118706. Reversible adhesive based on self-repair behavior. Journal of Adhesion Science and Technology, 2021, 1642 1.4 8 35, 111-132. A Carboxylâ EFunctionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye 1643 1.7 Adsorption. Chemistry - A European Journal, 2021, 27, 2692-2698. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. 1644 1.3 13 Journal of Separation Science, 2021, 44, 1148-1173. Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water. 1645 6.6 101 Chemical Engineering Journal, 2021, 407, 127221. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. 1646 22 7.2 Angewandte Chemie - International Edition, 2021, 60, 14222-14235. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. 1647 1.6 Angewandte Chemie, 2021, 133, 14342-14355. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with 1648 6.6 104 ruthenium nanoparticles. Chemical Engineering Journal, 2021, 405, 127011. A review on carbon and non-precious metal based cathode catalysts in microbial fuel cells. 1649 3.8 International Journal of Hydrogen Energy, 2021, 46, 3056-3089 Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux 1650 39 4.1 nanofiltration. Journal of Membrane Science, 2021, 618, 118727. Recent Progress in Porous Fused Aromatic Networks and Their Applications. Small Science, 2021, 1, 5.8 14 2000007. Ĩ²-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano 1652 5.8 15 Research, 2021, 14, 1018-1025. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Research, 5.8 69 2021, 14, 1-28.

#	Article	IF	Citations
1654	Evaluation of C60 and C70 analogs bearing Cycloâ€metaâ€Phenylene faces as improved devices for Polymer:Fullerene solar cells from DFT calculations. Dyes and Pigments, 2021, 184, 108782.	2.0	2
1655	Covalent organic framework-based materials for energy applications. Energy and Environmental Science, 2021, 14, 688-728.	15.6	209
1656	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 5423-5429.	1.6	17
1657	Selective Binding and Removal of Aromatic Guests in a Porous Halogen-Bonded Organic Framework. Crystal Growth and Design, 2021, 21, 482-489.	1.4	15
1658	Thioether-terminated triazole-bridged covalent organic framework for dual-sensitive drug delivery application. Materials Science and Engineering C, 2021, 120, 111704.	3.8	25
1659	Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem, 2021, 3, 100048.	10.1	94
1660	New aspects of covalent triazine frameworks in heterogeneous catalysis. , 2021, , 1-32.		1
1661	Functional porous carbons: Synthetic strategies and catalytic application in fine chemical synthesis. , 2021, , 299-352.		2
1662	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	6.4	48
1663	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	18.7	191
1664	Visible light assisted chemical fixation of atmospheric CO2 into cyclic Carbonates using covalent organic framework as a potential photocatalyst. Molecular Catalysis, 2021, 499, 111253.	1.0	34
1665	Cobalt-modified 2D porous organic polymer for highly efficient electrocatalytic removal of toxic urea and nitrophenol. Chemosphere, 2021, 265, 129052.	4.2	14
1666	Highly selective gas sensing enabled by filters. Materials Horizons, 2021, 8, 661-684.	6.4	45
1667	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie, 2021, 133, 3011-3016.	1.6	3
1668	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 5363-5369.	7.2	67
1669	Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. Materials Chemistry Frontiers, 2021, 5, 944-949.	3.2	26
1670	Developing hierarchical porous organic polymers with tunable nitrogen base sites via theoretical calculation-directed monomers selection for efficient capture and catalytic utilization of CO2. Chemical Engineering Journal, 2021, 420, 127621.	6.6	10
1671	Carbon polymer hybrid supported nanomaterials for hydrogen production and storage application. , 2021, , 133-152.		1

#	Article	IF	CITATIONS
1672	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie - International Edition, 2021, 60, 2974-2979.	7.2	16
1673	Confinementâ€Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 6086-6093.	7.2	48
1674	Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 1869-1874.	7.2	186
1675	Threeâ€Dimensional Covalentâ€Organic Frameworks Loaded with Highly Dispersed Ultrafine Palladium Nanoparticles as Efficient Heterogeneous Catalyst. ChemNanoMat, 2021, 7, 95-99.	1.5	21
1676	Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics. Chemical Engineering Journal, 2021, 417, 128034.	6.6	26
1677	Electrochemical sensor based on covalent organic frameworks-MWCNT-NH2/AuNPs for simultaneous detection of dopamine and uric acid. Journal of Electroanalytical Chemistry, 2021, 880, 114932.	1.9	69
1678	Room-temperature synthesis of amino-functionalized magnetic covalent organic frameworks for efficient extraction of perfluoroalkyl acids in environmental water samples. Journal of Hazardous Materials, 2021, 407, 124782.	6.5	41
1679	Synthesis of magnetic covalent organic framework molecularly imprinted polymers at room temperature: A novel imprinted strategy for thermo-sensitive substance. Talanta, 2021, 225, 121958.	2.9	29
1680	Precisely regulating the BrÃ,nsted acidity and catalytic reactivity of novel allylic C–H acidic catalysts. Fuel, 2021, 289, 119845.	3.4	1
1681	A new squaraine-triazine based covalent organic polymer as an electrode material with long life and high performance for supercapacitors. New Journal of Chemistry, 2021, 45, 679-684.	1.4	13
1682	Sodium alginate assisted preparation of oxygen-doped microporous carbons with enhanced electrochemical energy storage and hydrogen uptake. International Journal of Hydrogen Energy, 2021, 46, 896-905.	3.8	19
1683	Acidic triggering of reversible electrochemical activity in a pyrenetetraone-based 2D polymer. Polymer, 2021, 212, 123273.	1.8	1
1684	Intrinsically Porous Molecular Materials (IPMs) for Natural Gas and Benzene Derivatives Separations. Accounts of Chemical Research, 2021, 54, 155-168.	7.6	66
1685	Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society, 2021, 143, 92-96.	6.6	84
1686	Crystalline C—C and Câ•C Bond-Linked Chiral Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 369-381.	6.6	117
1687	Passing the framework skeleton and properties of coordination materials onto organic framework materials. Chemical Communications, 2021, 57, 1348-1351.	2.2	2
1688	Confinementâ€Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 6151-6158.	1.6	7
1689	Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Driven Hydrogen Evolution. Angewandte Chemie, 2021, 133, 1897-1902.	1.6	27

#	Article	IF	CITATIONS
1690	Silver Nanoparticles Immobilized Covalent Organic Microspheres for Hydrogenation of Nitroaromatics with Intriguing Catalytic Activity. ACS Applied Polymer Materials, 2021, 3, 310-318.	2.0	25
1691	Optoelectronic processes in covalent organic frameworks. Chemical Society Reviews, 2021, 50, 1813-1845.	18.7	264
1692	Rational design of porous organic molecules (POMs) based on B-heterocyclic carbenes. Molecular Systems Design and Engineering, 2021, 6, 132-138.	1.7	5
1693	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 2021, 428, 213578.	9.5	28
1694	Gas Storage in Porous Molecular Materials. Chemistry - A European Journal, 2021, 27, 4531-4547.	1.7	30
1695	Twoâ€Dimensional Covalentâ€Organic Frameworks for Photocatalysis: The Critical Roles of Building Block and Linkage. Solar Rrl, 2021, 5, 2000458.	3.1	40
1696	Construction of new covalent organic frameworks with benzimidazole moiety as Fe3+ selective fluorescence chemosensors. Journal of Molecular Structure, 2021, 1227, 129546.	1.8	22
1697	Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane. Korean Journal of Chemical Engineering, 2021, 38, 121-128.	1.2	11
1698	A simple, low cost, and template-free method for synthesis of boron nitride using different precursors. Ceramics International, 2021, 47, 5977-5984.	2.3	12
1699	Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions. Journal of Hazardous Materials, 2021, 407, 124390.	6.5	44
1700	In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta, 2021, 221, 121612.	2.9	32
1701	Microwaveâ€Assisted Synthesis of Covalent Organic Frameworks: A Review. ChemSusChem, 2021, 14, 208-233.	3.6	80
1702	Recent Development of Porous Porphyrinâ€based Nanomaterials for Photocatalysis. ChemCatChem, 2021, 13, 140-152.	1.8	48
1703	Integrated Effect of the Triazine Based Covalent Organic Framework/-NH2 Functionalized Black Phosphorene on Reducing Fire Hazards of Epoxy Resin Composites. Springer Theses, 2021, , 111-134.	0.0	0
1704	Two-dimensional crystalline covalent triazine frameworks <i>via</i> dual modulator control for efficient photocatalytic oxidation of sulfides. Journal of Materials Chemistry A, 2021, 9, 16405-16410.	5.2	29
1705	Titanium-based metal-organic frameworks for photocatalytic applications. , 2021, , 37-63.		2
1706	Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chemical Society Reviews, 2021, 50, 5243-5280.	18.7	23
1707	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Materials Horizons, 2022, 9, 121-146.	6.4	51

#	Article	IF	CITATIONS
1708	Hyaluronic acid modified covalent organic polymers for efficient targeted and oxygen-evolved phototherapy. Journal of Nanobiotechnology, 2021, 19, 4.	4.2	13
1709	Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 6116-6128.	2.9	23
1710	Three-dimensional covalent organic framework membrane for efficient proton conduction. Journal of Materials Chemistry A, 2021, 9, 17720-17723.	5.2	32
1711	A novel 2D mesoporous phosphazene-anthraquinone-based covalent organic polymer: synthesis, characterization and supercapacitor applications. New Journal of Chemistry, 2021, 45, 19125-19131.	1.4	10
1712	Exfoliated covalent organic framework nanosheets. Journal of Materials Chemistry A, 2021, 9, 7336-7365.	5.2	53
1713	One-Dimensional van der Waals Heterostructures as Efficient Metal-Free Oxygen Electrocatalysts. ACS Nano, 2021, 15, 3309-3319.	7.3	79
1714	Facile synthesis of 3D covalent organic frameworks <i>via</i> a two-in-one strategy. Chemical Communications, 2021, 57, 2136-2139.	2.2	11
1715	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
1716	Modulation of Crystallinity and Optical Properties in Composite Materials Combining Iron Oxide Nanoparticles and Dye-Containing Covalent Organic Frameworks. Organic Materials, 2021, 03, 017-024.	1.0	1
1717	An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catalysis Science and Technology, 2021, 11, 4272-4279.	2.1	32
1718	Metal–organic and Covalent Organic Frameworks Incorporating Ru Species. , 2021, , 389-427.		1
1719	Understanding the origin of serrated stacking motifs in planar two-dimensional covalent organic frameworks. Nanoscale, 2021, 13, 9339-9353.	2.8	9
1720	Smart covalent organic frameworks: dual channel sensors for acids and bases. Chemical Communications, 2021, 57, 9418-9421.	2.2	20
1721	Interactions of aromatic rings in the crystal structures of hybrid polyoxometalates and Ru clusters. CrystEngComm, 2021, 23, 6409-6417.	1.3	9
1722	Crystalline supramolecular organic frameworks <i>via</i> hydrogen-bonding between nucleobases. Chemical Communications, 2021, 57, 1659-1662.	2.2	9
1723	Chemical fixation of CO ₂ on nanocarbons and hybrids. Journal of Materials Chemistry A, 2021, 9, 20857-20873.	5.2	20
1724	Surface self-assembly of hydrogen-bonded frameworks. , 2021, , 1-16.		0
1725	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	1.6	12

#	Article	IF	CITATIONS
1726	Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics, 2021, 23, 22835-22853.	1.3	2
1727	Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. Journal of Materials Chemistry A, 2021, 9, 11073-11080.	5.2	25
1728	Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090.	3.9	97
1729	Tailored covalent organic frameworks for simultaneously capturing and converting CO ₂ into cyclic carbonates. Journal of Materials Chemistry A, 2021, 9, 20941-20956.	5.2	73
1730	Conjugation- and Aggregation-Directed Design of Covalent Organic Frameworks as White-Light-Emitting Diodes. Journal of the American Chemical Society, 2021, 143, 1061-1068.	6.6	75
1731	Dual-functional ionic porous organic framework for palladium scavenging and heterogeneous catalysis. Nanoscale, 2021, 13, 3967-3973.	2.8	13
1732	Conjugated macrocycle polymers. Polymer Chemistry, 2021, 12, 4613-4620.	1.9	17
1733	Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors. Catalysis Science and Technology, 2021, 11, 392-415.	2.1	50
1734	A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. Journal of the American Chemical Society, 2021, 143, 2123-2129.	6.6	105
1735	Advances in electrochemical energy storage with covalent organic frameworks. Materials Advances, 0, , .	2.6	26
1736	Acid-triggered interlayer sliding of two-dimensional copper(<scp>i</scp>)–organic frameworks: more metal sites for catalysis. Chemical Science, 2021, 12, 6280-6286.	3.7	53
1737	Commentary toward the 20th Anniversary of the Society ofComputer Chemistry, Japan. Journal of Computer Chemistry Japan, 2021, 20, A26-A40.	0.0	0
1738	Au clusters-based visible light photocatalysis. Research on Chemical Intermediates, 2021, 47, 29-50.	1.3	10
1739	Design and application of covalent organic frameworks for ionic conduction. Polymer Chemistry, 2021, 12, 4874-4894.	1.9	27
1740	A pillar[5]arene-based covalent organic framework with pre-encoded selective host–guest recognition. Chemical Science, 2021, 12, 13316-13320.	3.7	32
1741	Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture <i>via</i> electrostatic interactions. Materials Chemistry Frontiers, 2021, 5, 5463-5470.	3.2	39
1742	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
1743	Research Progress on the Synthesis of Covalent Organic Frameworks and Their Applications in Tumor Therapy. Acta Chimica Sinica, 2021, 79, 600.	0.5	8

#	Article	IF	CITATIONS
1744	Asymmetric Organocatalysis with Chiral Covalent Organic Frameworks. Organic Materials, 2021, 03, 245-253.	1.0	5
1745	Ferric acetylacetonate/covalent organic framework composite for high performance photocatalytic oxidation. Green Energy and Environment, 2022, 7, 1281-1288.	4.7	9
1746	Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect, 2021, 6, 1127-1161.	0.7	17
1747	Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation(China), 2021, 2, 100076.	5.2	235
1748	Antifouling strategies for protecting bioelectronic devices. APL Materials, 2021, 9, .	2.2	20
1749	Stable nitrogen-containing covalent organic framework as porous adsorbent for effective iodine capture from water. Reactive and Functional Polymers, 2021, 159, 104806.	2.0	29
1750	3D Thioetherâ€Based Covalent Organic Frameworks for Selective and Efficient Mercury Removal. Small, 2021, 17, e2006112.	5.2	34
1751	Synopsis of Factors Affecting Hydrogen Storage in Biomass-Derived Activated Carbons. Sustainability, 2021, 13, 1947.	1.6	18
1752	Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. Journal of the American Chemical Society, 2021, 143, 2654-2659.	6.6	94
1753	Post-synthetic metalation of porous framework materials for achieving high natural gas storage and working capacity: A GCMC simulation study. Microporous and Mesoporous Materials, 2021, 315, 110931.	2.2	3
1754	Strong and flaw-insensitive two-dimensional covalent organic frameworks. Matter, 2021, 4, 1017-1028.	5.0	23
1755	Application of Electronâ€Rich Covalent Organic Frameworks COFâ€JLU25 for Photocatalytic Aerobic Oxidative Hydroxylation of Arylboronic Acids to Phenols. European Journal of Organic Chemistry, 2021, 2021, 3986-3991.	1.2	10
1756	Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO2 capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126078.	2.3	13
1757	Donor-acceptor 2D covalent organic frameworks for efficient heterogeneous photocatalytic α-oxyamination. Science China Chemistry, 2021, 64, 827-833.	4.2	46
1758	Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 1354.	5.8	286
1759	Unprecedented Application of Covalent Organic Frameworks for Polymerization Catalysis: Rh/TPB-DMTP-COF in Polymerization of Phenylacetylene and Its Functional Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 13693-13704.	4.0	9
1760	Computational Identification of Connected MOF@COF Materials. Journal of Physical Chemistry C, 2021, 125, 5897-5903.	1.5	12
1761	N-Heterocyclic Carbene Functionalized Covalent Organic Framework for Transesterification of Glycerol with Dialkyl Carbonates. Catalysts, 2021, 11, 423.	1.6	8

#	Article	IF	Citations
1762	Direct synthesis of hierarchical porous polymer nanoparticles from nitrile monomers and its application for methylene blue adsorption. Materials Research Express, 2021, 8, 035001.	0.8	6
1763	Crystalline Porous Materials for Nonlinear Optics. Small, 2021, 17, e2006416.	5.2	52
1764	Highly Fluorinated Trianglimine Macrocycles: A Supramolecular Organic Framework. Synlett, 2022, 33, 161-165.	1.0	10
1765	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	2.8	29
1766	Low Power, Low Temperature and Atmospheric Pressure Plasmaâ€Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 9984-9989.	7.2	57
1767	Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nature Communications, 2021, 12, 1982.	5.8	147
1768	Polymer nanocomposites with aligned two-dimensional materials. Progress in Polymer Science, 2021, 114, 101360.	11.8	39
1769	Toward Covalent Organic Framework Metastructures. Journal of the American Chemical Society, 2021, 143, 5003-5010.	6.6	37
1770	Low Power, Low Temperature and Atmospheric Pressure Plasmaâ€Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 10072-10077.	1.6	8
1771	Pioneering Iodine-125-Labeled Nanoscale Covalent Organic Frameworks for Brachytherapy. Bioconjugate Chemistry, 2021, 32, 755-762.	1.8	18
1772	Fabrication of efficient Zn-MOF/COF catalyst for the Knoevenagel condensation reaction. Journal of the Iranian Chemical Society, 2021, 18, 2657-2664.	1.2	24
1773	Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS Nano, 2021, 15, 3621-3630.	7.3	81
1774	Efficiency increase in hypercrosslinked polymer based on polystyrene in CO2 adsorption process. Polymer Bulletin, 2022, 79, 3681-3702.	1.7	17
1775	Dual-Functionalized Covalent Triazine Framework Nanosheets as Hierarchical Nonviral Vectors for Intracellular Gene Delivery. ACS Applied Nano Materials, 2021, 4, 4948-4955.	2.4	14
1776	Acetic Anhydride Polymerization as a Pathway to Functional Porous Organic Polymers and Their Application in Acid–Base Catalysis. ACS Applied Polymer Materials, 2021, 3, 2588-2597.	2.0	19
1777	Enantioselective Mixed Matrix Membranes for Chiral Resolution. Membranes, 2021, 11, 279.	1.4	20
1778	Recent advances of covalent organic frameworks for solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2021, 137, 116208.	5.8	102
1779	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	10.2	78

#	Article	IF	CITATIONS
1780	Highly stable dioxin-linked metallophthalocyanine covalent organic frameworks. Chinese Chemical Letters, 2021, 32, 3799-3802.	4.8	17
1781	Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Separation and Purification Technology, 2021, 260, 118221.	3.9	60
1782	Chemical Design and Physical Properties of Dynamic Molecular Assemblies. Bulletin of the Chemical Society of Japan, 2021, 94, 1400-1420.	2.0	37
1783	Catalyst-Enabled <i>In Situ</i> Linkage Reduction in Imine Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 21740-21747.	4.0	12
1785	Construction of hydrophilic N, O-rich carboxylated triazine-covalent organic frameworks for the application in selective simultaneous electrochemical detection. Applied Surface Science, 2021, 545, 149047.	3.1	25
1786	Rapid, Ambient Temperature Synthesis of Imine Covalent Organic Frameworks Catalyzed by Transition-Metal Nitrates. Chemistry of Materials, 2021, 33, 3394-3400.	3.2	26
1787	CO ₂ Capture by Hydroxylated Azineâ€Based Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 8048-8055.	1.7	21
1788	Inclusion of Amine Isomers with Open-Chain Hosts Having a Partial Structure of <i>p-tert-</i> Butylthiacalixarene. Journal of Organic Chemistry, 2021, 86, 7046-7058.	1.7	3
1789	Cross-Linked Covalent Organic Framework-Based Membranes with Trimesoyl Chloride for Enhanced Desalination. ACS Applied Materials & amp; Interfaces, 2021, 13, 21379-21389.	4.0	33
1790	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
1791	Synthesis of homogeneously distributed gold nanoparticles built-in metal free organic framework: Electrochemical detection of riboflavin in pharmaceutical and human fluids samples. Journal of Electroanalytical Chemistry, 2021, 887, 115143.	1.9	14
1792	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	1.7	22
1793	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117
1794	Open Framework Material Based Thin Films: Electrochemical Catalysis and Stateâ€ofâ€theâ€art Technologies. Advanced Energy Materials, 2022, 12, 2003499.	10.2	25
1795	Structural Characteristics and Environmental Applications of Covalent Organic Frameworks. Energies, 2021, 14, 2267.	1.6	24
1796	Palladium Immobilized on a Polyimide Covalent Organic Framework: An Efficient and Recyclable Heterogeneous Catalyst for the Suzuki–Miyaura Coupling Reaction and Nitroarene Reduction in Water. Catalysis Letters, 0, , 1.	1.4	8
1797	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	10.2	41
1798	Covalent organic nanospheres modified magnetic nanoparticles for extraction of blood lipid regulators in water samples. Journal of Separation Science, 2021, 44, 2301-2309.	1.3	1

#	Article	IF	CITATIONS
1799	Thermochemical Investigation of Oxyanion Coordination in a Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, , .	4.0	5
1800	Crystal structure of self-assembled inclusion complex of symmetric dicyclohexanocucurbit[6]uril with 1H-benzotriazole. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 100, 209-215.	0.9	3
1801	Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. Journal of the American Chemical Society, 2021, 143, 7897-7902.	6.6	58
1802	Synthesis and Characterization of Macrocyclic Ionic Liquids for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2021, 60, 8218-8226.	1.8	6
1803	A Permanent Porous Hydrogen-Bonded Framework with Room-Temperature Phosphorescence. Crystal Growth and Design, 2021, 21, 3420-3427.	1.4	13
1804	Tailoring Pore Structure and Morphologies in Covalent Organic Frameworks for Xe/Kr Capture and Separation. Chemical Research in Chinese Universities, 2021, 37, 679-685.	1.3	17
1805	Porphyrin- and porphyrinoid-based covalent organic frameworks (COFs): From design, synthesis to applications. Coordination Chemistry Reviews, 2021, 435, 213778.	9.5	117
1806	Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices. Journal of Materials Science, 2021, 56, 13875-13924.	1.7	8
1807	Pure Crystalline Covalent Organic Framework Aerogels. Chemistry of Materials, 2021, 33, 4216-4224.	3.2	62
1808	Photoactive Anthraquinone-Based Host–Guest Assembly for Long-Lived Charge Separation. Journal of Physical Chemistry C, 2021, 125, 10891-10900.	1.5	6
1809	Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small, 2021, 17, e2006742.	5.2	171
1810	A flame-retardant post-synthetically functionalized COF sponge as absorbent for spilled oil recovery. Journal of Materials Science, 2021, 56, 13031.	1.7	6
1811	Oligoboroxine-based architectures. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 19-29.	0.9	5
1812	Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From pts to Unprecedented ljh . Journal of the American Chemical Society, 2021, 143, 7279-7284.	6.6	84
1813	Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials, 2021, 14, 3214.	1.3	9
1814	All sp2 carbon covalent organic frameworks. Trends in Chemistry, 2021, 3, 431-444.	4.4	71
1815	Room-temperature synthesis of magnetic covalent organic frameworks for analyzing trace benzoylurea insecticide residue in tea beverages. Food Chemistry, 2021, 347, 129075.	4.2	39
1816	Elucidating the Aromatic Properties of Covalent Organic Frameworks Surface for Enhanced Polar Solvent Adsorption. Polymers, 2021, 13, 1861.	2.0	3

		ATION REPORT	
#	Article	IF	CITATIONS
1817	Supramolecular Chemistry: Host–Guest Molecular Complexes. Molecules, 2021, 26, 3995.	1.7	38
1818	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
1819	Twoâ€Photon Absorption Induced Cancer Immunotherapy Using Covalent Organic Frameworks. Advanced Functional Materials, 2021, 31, 2103056.	7.8	45
1820	Accelerating the Selection of Covalent Organic Frameworks with Automated Machine Learning. ACS Omega, 2021, 6, 17149-17161.	1.6	18
1821	Porous Covalent Organic Polymers for Efficient Fluorocarbonâ€Based Adsorption Cooling. Angewandte Chemie, 2021, 133, 18185-18191.	1.6	0
1822	Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs) under Tensile Stress. Chemistry of Materials, 2021, 33, 4529-4540.	3.2	30
1823	Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications. Coordination Chemistry Reviews, 2021, 437, 213741.	9.5	22
1824	A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules, 2021, 54, 6595-6604.	2.2	34
1825	A self-assembled framework that interpenetrates in crystal but does not interpenetrate in solution. Science China Chemistry, 2021, 64, 1228-1234.	4.2	12
1826	Identifying Promising Covalent-Organic Frameworks for Decarburization and Desulfurization from Biogas via Computational Screening. ACS Sustainable Chemistry and Engineering, 2021, 9, 8858-8867	, <u>3.2</u>	10
1827	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion Small, 2021, 17, e2100323.	n. 5.2	53
1828	Modulating the Stacking Model of Covalent Organic Framework Isomers with Different Generation Efficiencies of Reactive Oxygen Species. ACS Applied Materials & amp; Interfaces, 2021, 13, 29471-294	4.0	43
1829	Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 2021, 6, 100054.	2.5	142
1830	Application of microporous organic networks in separation science. TrAC - Trends in Analytical Chemistry, 2021, 139, 116268.	5.8	33
1831	Porous Covalent Organic Polymers for Efficient Fluorocarbonâ€Based Adsorption Cooling. Angewandte Chemie - International Edition, 2021, 60, 18037-18043.	7.2	16
1832	Competitive Reactivity of SO ₂ and NO ₂ with <i>N</i> -Heterocyclic Carbene: Mechanistic Study. Journal of Physical Chemistry A, 2021, 125, 5718-5725.	: A _{1.1}	6
1833	Nano-sheets of two-dimensional polymers with dinuclear (arene)ruthenium nodes, synthesised at a liquid/liquid interface. Nanotechnology, 2021, 32, 355603.	1.3	0
1834	Strategies for Improving the Catalytic Performance of 2D Covalent Organic Frameworks for Hydrogen Evolution and Oxygen Evolution Reactions. Chemistry - an Asian Journal, 2021, 16, 1851-186	63. ^{1.7}	12

#	Article	IF	CITATIONS
1835	Photocatalytic Oxidation Reactions Mediated by Covalent Organic Frameworks and Related Extended Organic Materials. Frontiers in Chemistry, 2021, 9, 708312.	1.8	10
1836	Manifestation of an Enhanced Photoreduction of CO ₂ to CO over the <i>In Situ</i> Synthesized rGO–Covalent Organic Framework under Visible Light Irradiation. ACS Applied Energy Materials, 2021, 4, 6005-6014.	2.5	30
1837	Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand. Chinese Journal of Catalysis, 2021, 42, 1216-1226.	6.9	13
1838	Synthesis of the COFs: From Design Principle to Synthetic Reactions. Key Engineering Materials, 0, 894, 21-30.	0.4	1
1839	Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Industrial & Engineering Chemistry Research, 2021, 60, 10917-10959.	1.8	12
1840	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie - International Edition, 2021, 60, 18051-18058.	7.2	81
1841	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
1842	In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. Journal of Membrane Science, 2021, 630, 119302.	4.1	17
1843	Ruthenium Nanoparticles Confined in Covalent Organic Framework/Reduced Graphene Oxide As Electrocatalyst toward Hydrogen Evolution Reaction in Alkaline Media. Industrial & Engineering Chemistry Research, 2021, 60, 11070-11078.	1.8	15
1844	Ionic liquid-impregnated covalent organic framework/silk nanofibril composite membrane for efficient proton conduction. Chemical Engineering Journal, 2021, 415, 129021.	6.6	48
1845	Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets. International Journal of Hydrogen Energy, 2021, 46, 26550-26559.	3.8	23
1846	Improved oxygen permeation of a multi-stranded network two-dimensional polymer synthesized by three-step polymerizations of a novel monomer bearing three different polymerizable groups followed by photoexfoliation. Polymer, 2021, 228, 123857.	1.8	1
1847	Magnetic COFs as satisfactory support for lipase immobilization and recovery to effectively achieve the production of biodiesel by maintenance of enzyme activity. Biotechnology for Biofuels, 2021, 14, 156.	6.2	27
1848	Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021, 20, 1551-1558.	13.3	195
1849	Triazine-triphenylphosphine based porous organic polymer as sorbent for solid phase extraction of nitroimidazoles from honey and water. Journal of Chromatography A, 2021, 1649, 462238.	1.8	36
1850	<scp>Imineâ€based</scp> covalent organic framework as photocatalyst for <scp>visibleâ€lightâ€induced</scp> atom transfer radical polymerization. Journal of Polymer Science, 2021, 59, 2036-2044.	2.0	6
1851	Fabrication of Biomolecule–Covalent-Organic-Framework Composites as Responsive Platforms for Smart Regulation of Fermentation Application. ACS Applied Materials & Interfaces, 2021, 13, 32058-32066.	4.0	13
1852	Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. Coordination Chemistry Reviews, 2021, 439, 213875.	9.5	147

#	Article	IF	CITATIONS
1853	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie, 2021, 133, 18199-18206.	1.6	7
1854	Heteroatom-doped mesoporous carbon prepared from a covalent organic framework/α-MnO2 composite for high-performance supercapacitor. Carbon Letters, 2021, 31, 1309-1316.	3.3	22
1855	Facile fabrication of porous magnetic covalent organic frameworks as robust platform for multicomponent reaction. Applied Organometallic Chemistry, 2021, 35, e6373.	1.7	3
1856	Syntheses and Crystal Structures of Three Pyrrole-2-Carboxylate with C3-Symmetry. Journal of Chemical Crystallography, 2022, 52, 105-112.	0.5	0
1857	Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. Journal of Environmental Sciences, 2021, 105, 184-203.	3.2	57
1858	Highly Crystalline Covalent Organic Frameworks Act as a Dual-Functional Fluorescent-Sensing Platform for Myricetin and Water, and Adsorbents for Myricetin. ACS Applied Materials & Interfaces, 2021, 13, 33449-33463.	4.0	39
1859	In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Journal of Chromatography A, 2021, 1649, 462239.	1.8	19
1860	Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nature Communications, 2021, 12, 5077.	5.8	63
1861	Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release. Analytical Chemistry, 2021, 93, 11751-11757.	3.2	35
1862	Covalent Organic Frameworks and Supramolecular Nano-Synthesis. ACS Nano, 2021, 15, 12723-12740.	7.3	81
1863	Synthesis of microporous hydrogen-bonded supramolecular organic frameworks through guanosine self-assembly. Cell Reports Physical Science, 2021, 2, 100519.	2.8	3
1864	Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coordination Chemistry Reviews, 2021, 440, 213957.	9.5	111
1865	Arylamineâ€Linked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie, 2021, 133, 20922-20927.	1.6	13
1866	Covalent Organic Framework Membranes for Efficient Chemicals Separation. Small Structures, 2021, 2, 2100061.	6.9	48
1867	Facile synthesis of covalent organic frameworks functionalized with graphene hydrogel for effectively extracting organophosphorus pesticides from vegetables. Food Chemistry, 2021, 352, 129187.	4.2	36
1868	Highly Selective and Sensitive Detection of Hg(I), Hg(II) Ions by a Covalent Organic Framework Embedding Active Sulfur Sites in the Pore Wall. Bulletin of the Chemical Society of Japan, 2021, 94, 2133-2138.	2.0	6
1869	A review of CO ₂ adsorbents performance for different carbon capture technology processes conditions. , 2021, 11, 1076-1117.		61
1870	Preparation of a Novel Resin Based Covalent Framework Material and Its Application in the Determination of Phenolic Endocrine Disruptors in Beverages by SPE-HPLC. Polymers, 2021, 13, 2935.	2.0	8

#	Article	IF	CITATIONS
1871	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	7.3	71
1872	Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis. Science of the Total Environment, 2021, 783, 146838.	3.9	42
1873	Mechanistic Consideration for the Selective Inclusion of Disubstituted Benzene Isomers with <i>p</i> - <i>tert</i> -Butylcalix[4]arene Crystals. Crystal Growth and Design, 2021, 21, 5006-5016.	1.4	8
1874	A core-shell structured magnetic covalent organic framework as a magnetic solid-phase extraction adsorbent for phenylurea herbicides. Journal of Chromatography A, 2021, 1651, 462301.	1.8	37
1875	Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989.	9.5	91
1876	Arylamine‣inked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20754-20759.	7.2	107
1877	Combined GCMC, MD, and DFT Approach for Unlocking the Performances of COFs for Methane Purification. Industrial & Engineering Chemistry Research, 2021, 60, 12999-13012.	1.8	14
1878	Synthesis of polystyrene-based hyper-cross-linked polymers for Cd(II) ions removal from aqueous solutions: Experimental and RSM modeling. Journal of Hazardous Materials, 2021, 416, 125923.	6.5	36
1879	Heteroporous 3D covalent organic framework-based magnetic nanospheres for sensitive detection of bisphenol A. Talanta, 2021, 231, 122343.	2.9	23
1880	Exploring the corrosion resistance of epoxy coated steel by integrating mechanochemical synthesized 2D covalent organic framework. Progress in Organic Coatings, 2021, 157, 106299.	1.9	8
1881	Heterogeneous Reaction Mechanisms and Functional Materials for Elemental Mercury Removal from Industrial Flue Gas. ACS ES&T Engineering, 2021, 1, 1383-1400.	3.7	27
1882	Dependence of Linker Length and Composition on Ionic Conductivity and Lithium Deposition in Single-Ion Conducting Network Polymers. Macromolecules, 2021, 54, 7582-7589.	2.2	11
1883	Prediction on the highâ€energy density covalent organic frameworks with diamond network. International Journal of Quantum Chemistry, 2021, 121, e26790.	1.0	0
1884	Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide. Photochemistry and Photobiology, 2022, 98, 150-159.	1.3	10
1885	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	23.0	115
1886	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	0.9	18
1887	Surfactants Mediated Synthesis of Highly Crystalline Thin Films of Imineâ€Linked Covalent Organic Frameworks on Water Surface. Chinese Journal of Chemistry, 0, , .	2.6	11
1888	Macromolecular Design for Oxygen/Nitrogen Permselective Membranes—Top-Performing Polymers in 2020—. Polymers, 2021, 13, 3012.	2.0	13

#	Article	IF	CITATIONS
1889	Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. Small Methods, 2021, 5, e2100762.	4.6	30
1890	Palladium Nanoparticles Anchored on COFs Prepared by Simple Calcination for Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2021, 60, 13523-13533.	1.8	11
1891	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie, 2021, 133, 25527-25531.	1.6	0
1892	Porous Organic Compounds – Small Pores on the Rise. European Journal of Organic Chemistry, 2021, 2021, 5844-5856.	1.2	20
1893	Threeâ€Đimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angewandte Chemie, 2021, 133, 22404-22409.	1.6	12
1894	The need for a new generation of substructure searching software. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 676-682.	0.5	2
1895	Analysis of eight bile acids in urine of gastric cancer patients based on covalent organic framework enrichment coupled with liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2021, 1653, 462422.	1.8	4
1896	Upconverting Er ³⁺ –Yb ³⁺ Inorganic/Covalent Organic Framework Core–Shell Nanoplatforms for Simultaneous Catalysis and Nanothermometry. ACS Applied Materials & Interfaces, 2021, 13, 47010-47018.	4.0	14
1897	Threeâ€Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angewandte Chemie - International Edition, 2021, 60, 22230-22235.	7.2	37
1898	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie - International Edition, 2021, 60, 25323-25327.	7.2	8
1899	Ligand Functionalized Ironâ€Based Metalâ€Organic Frameworks for Efficient Electrocatalytic Oxygen Evolution. ChemCatChem, 2021, 13, 4976-4984.	1.8	10
1901	Synthesis and tailored properties of covalent organic framework thin films and heterostructures. Materials Today, 2021, 51, 427-448.	8.3	24
1902	Synthesis of MXene/COF/Cu2O heterojunction for photocatalytic bactericidal activity and mechanism evaluation. Chemical Engineering Journal, 2022, 430, 132663.	6.6	25
1903	Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodineâ€Capture Capacity. Angewandte Chemie - International Edition, 2021, 60, 22432-22440.	7.2	148
1904	lonic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine apture Capacity. Angewandte Chemie, 2021, 133, 22606-22614.	1.6	9
1905	Three-Dimensional Covalent Organic Frameworks with Cross-Linked Pores for Efficient Cancer Immunotherapy. Nano Letters, 2021, 21, 7979-7988.	4.5	38
1906	Two-dimensional materials for electrochromic applications. EnergyChem, 2021, 3, 100060.	10.1	21
1907	Adsorption of dyes on multifunctionalized nano-silica KCC-1. Journal of Molecular Liquids, 2021, 338, 116573.	2.3	30

#	Article	IF	CITATIONS
1908	Advanced design of cathodes and interlayers for highâ€performance lithiumâ€selenium batteries. SusMat, 2021, 1, 393-412.	7.8	26
1909	Flexible and Robust Three-Dimensional Covalent Organic Framework Membranes for Precise Separations under Extreme Conditions. Nano Letters, 2021, 21, 8355-8362.	4.5	62
1910	Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer. Journal of Membrane Science, 2021, 635, 119476.	4.1	30
1911	Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Materials, 2021, 41, 354-379.	9.5	52
1912	Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. TrAC - Trends in Analytical Chemistry, 2021, 143, 116386.	5.8	31
1913	Large magnetic anisotropy in Tetraoxa[8]circulene-based organometallic nanosheet. Journal of Magnetism and Magnetic Materials, 2021, 535, 168068.	1.0	1
1914	Fabricating compact covalent organic framework membranes with superior performance in dye separation. Journal of Membrane Science, 2021, 637, 119667.	4.1	26
1915	Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes and Pigments, 2021, 195, 109710.	2.0	29
1916	Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. Chinese Journal of Catalysis, 2021, 42, 2010-2019.	6.9	45
1917	Molecular structure, covalent and non-covalent interactions of an oxaborole derivative (L-PRO2F3PBA): FTIR, X-ray diffraction and QTAIM approach. Journal of Molecular Structure, 2021, 1243, 130911.	1.8	5
1918	Sulfonated covalent organic frameworks (COFs) incorporated cellulose triacetate/cellulose acetate (CTA/CA)-based mixed matrix membranes for forward osmosis. Journal of Membrane Science, 2021, 638, 119725.	4.1	31
1919	Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks. Journal of CO2 Utilization, 2021, 53, 101716.	3.3	26
1920	Highly sensitive determination of acetaminophen and 4-aminophenol based on COF/3D NCNF-T/Au NPs composite electrochemical sensing platform. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127624.	2.3	13
1921	Facile synthesis of Ti4+-immobilized magnetic covalent organic frameworks for enhanced phosphopeptide enrichment. Talanta, 2021, 235, 122789.	2.9	16
1922	Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications. Coordination Chemistry Reviews, 2021, 449, 214219.	9.5	62
1923	Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework. Biosensors and Bioelectronics, 2021, 194, 113582.	5.3	24
1924	Accelerating discovery of COFs for CO2 capture and H2 purification using structurally guided computational screening. Chemical Engineering Journal, 2022, 427, 131574.	6.6	26
1925	Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 428, 131040.	6.6	29

#	Article	IF	CITATIONS
1926	Synthesis of porphyrin-incorporating covalent organic frameworks for sonodynamic therapy. Chemical Communications, 2021, 57, 8178-8181.	2.2	17
1927	Covalent organic frameworks for optical applications. Aggregate, 2021, 2, e24.	5.2	41
1928	Readily useable bulk phenoxazine-based covalent organic framework cathode materials with superior kinetics and high redox potentials. Journal of Materials Chemistry A, 2021, 9, 10661-10665.	5.2	20
1929	COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. Journal of Materials Chemistry A, 2021, 9, 24148-24174.	5.2	37
1930	Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chemical Science, 2021, 12, 8452-8457.	3.7	87
1931	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	4.6	37
1932	A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. Materials Chemistry Frontiers, 2021, 5, 2255-2260.	3.2	45
1933	Separation of stereoisomers by gas chromatography. , 2021, , 581-614.		4
1934	A mesoporous ionic solid with 272 AuI6AgI3CuII3 complex cations in a super huge crystal lattice. Chemical Science, 2021, 12, 11045-11055.	3.7	4
1935	Construction of a magnetic covalent organic framework with synergistic affinity strategy for enhanced glycopeptide enrichment. Journal of Materials Chemistry B, 2021, 9, 6377-6386.	2.9	11
1936	Electrical conductivity in a non-covalent two-dimensional porous organic material with high crystallinity. Chemical Science, 2021, 12, 2955-2959.	3.7	3
1937	Presenting porous–organic–polymers as next-generation invigorating materials for nanoreactors. Chemical Communications, 2021, 57, 8550-8567.	2.2	37
1938	Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale, 2021, 13, 1443-1484.	2.8	28
1939	Stable hydrazone-linked chiral covalent organic frameworks: Synthesis, modīī¬cation, and chiral signal inversion from monomers. Chinese Chemical Letters, 2021, 32, 107-112.	4.8	15
1940	Rational design of bifunctional conjugated microporous polymers. Nanoscale Advances, 2021, 3, 4891-4906.	2.2	23
1941	Crystalline two-dimensional organic porous polymers (covalent organic frameworks) for photocatalysis. , 2021, , 505-521.		0
1942	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
1943	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461

#	Article	IF	CITATIONS
1944	Macroscopic covalent organic framework architectures for water remediation. Environmental Science: Water Research and Technology, 2021, 7, 1895-1927.	1.2	18
1945	Tunability of the Electronic Properties of Covalent Organic Frameworks. ACS Applied Electronic Materials, 2021, 3, 720-732.	2.0	26
1946	Mehr als nur ein Netzwerk: Strukturierung retikuläer Materialien im Nano― Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1947	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1948	Threeâ€Đimensional Chemically Stable Covalent Organic Frameworks through Hydrophobic Engineering. Angewandte Chemie - International Edition, 2020, 59, 19633-19638.	7.2	49
1949	Effective enhancement of selectivities and capacities for <scp>CO₂</scp> over <scp>CH₄</scp> and <scp>N₂</scp> of polymers of intrinsic microporosity via postsynthesis metalation. Journal of Polymer Science, 2020, 58, 2619-2624.	2.0	6
1950	Two-Dimensional Polymer Synthesis by Dynamic Chemistry at the Air–Water Interface. , 2018, , 486-498.		1
1951	Adsorption of marine phycotoxin okadaic acid on a covalent organic framework. Journal of Chromatography A, 2017, 1525, 17-22.	1.8	50
1952	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	10.1	129
1953	Remarkable isosteric heat of hydrogen adsorption on Cu(I)-exchanged SSZ-39. International Journal of Hydrogen Energy, 2020, 45, 34972-34982.	3.8	15
1954	Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework. Inorganic Chemistry Communication, 2019, 101, 160-163.	1.8	28
1955	One-pot synthesis of hierarchical porous covalent organic frameworks and two-dimensional nanomaterials for selective removal of anionic dyes. Journal of Environmental Chemical Engineering, 2020, 8, 104054.	3.3	73
1956	Chiral BINAP-based hierarchical porous polymers as platforms for efficient heterogeneous asymmetric catalysis. Chinese Journal of Catalysis, 2017, 38, 890-897.	6.9	23
1957	Transformation of One-Dimensional Linear Polymers into Two-Dimensional Covalent Organic Frameworks Through Sequential Reversible and Irreversible Chemistries. Chemistry of Materials, 2021, 33, 413-419.	3.2	25
1958	Screening and Improving Porous Materials for Ultradeep Desulfurization of Gasoline. Industrial & Engineering Chemistry Research, 2021, 60, 604-613.	1.8	6
1959	Calcination of Porphyrin-Based Conjugated Microporous Polymers Nanotubes As Nanoporous N-Rich Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 5260-5268.	2.5	29
1960	A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine. RSC Advances, 2017, 7, 54407-54415.	1.7	35
1961	Screen printing directed synthesis of covalent organic framework membranes with water sieving property. Chemical Communications, 2020, 56, 6519-6522.	2.2	23

#	Article	IF	CITATIONS
1962	Tuning the pore structures and photocatalytic properties of a 2D covalent organic framework with multi-branched photoactive moieties. Nanoscale, 2020, 12, 16136-16142.	2.8	25
1963	Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 11448-11459.	5.2	88
1964	Computational Screening of Covalent Organic Frameworks for Hydrogen Storage. Journal of the Turkish Chemical Society, Section A: Chemistry, 2020, 7, 65-76.	0.4	3
1965	Metal and Covalent Organic Frameworks for Membrane Applications. Membranes, 2020, 10, 107.	1.4	38
1966	Development of Robust Electrocatalysts Comprising Single-atom Sites with Designed Coordination Environments. Electrochemistry, 2020, 88, 489-496.	0.6	5
1967	Electrochemical CO ₂ Reduction Using Gas Diffusion Electrode Loading Ni-doped Covalent Triazine Frameworks in Acidic Electrolytes. Electrochemistry, 2020, 88, 359-364.	0.6	17
1968	Molecular design of heterogeneous electrocatalysts using tannic acid-derived metal–phenolic networks. Nanoscale, 2021, 13, 20374-20386.	2.8	13
1969	Recent advances in porous organic frameworks for sample pretreatment of pesticide and veterinary drug residues: a review. Analyst, The, 2021, 146, 7394-7417.	1.7	14
1970	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
1971	Branched Poly(ethylene glycol)-Functionalized Covalent Organic Frameworks as Solid Electrolytes. ACS Applied Energy Materials, 2021, 4, 11720-11725.	2.5	13
1972	Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2021, 16, 3833-3850.	1.7	14
1973	Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1974	Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angewandte Chemie, 0, , .	1.6	10
1975	3Dâ€Boronic Ester Architectures: Synthesis, Hostâ€Guest Chemistry, Dynamic Behavior, and Supramolecular Catalysis. Chemical Record, 2022, 22, .	2.9	5
1976	Rational Synthesis of Imine-Linked Fluorescent Covalent Organic Frameworks with Different p <i>K</i> _a for pH Sensing In Vitro and In Vivo. ACS Applied Materials & Interfaces, 2021, 13, 51351-51361.	4.0	30
1977	Manipulating Grain Boundary Defects in Ï€â€Conjugated Covalent Organic Frameworks Enabling Intrinsic Radical Generation for Photothermal Conversion. Solar Rrl, 2021, 5, 2100762.	3.1	13
1978	Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 11377-11385.	2.5	31
1979	Ni Nanoparticle-Immobilized Imine-Linked Microspherical Covalent Organic Polymer for Degradation Studies of Organic Dyes. ACS Applied Polymer Materials, 2021, 3, 5460-5469.	2.0	11

		CITATION I	Report	
#	Article		IF	CITATIONS
1980	Ionic Covalent Organic Frameworks for Energy Devices. Advanced Materials, 2021, 33, e2	105647.	11.1	64
1981	Design and synthesis of noble metal–based electrocatalysts using metal–organic fran derivatives. Materials Today Nano, 2022, 17, 100144.	neworks and	2.3	17
1982	Impregnated Copper Ferrite on Mesoporous Graphitic Carbon Nitride: A Highâ€Performan Heterogeneous Catalyst for A ³ oupling Reaction. ChemistrySelect, 2021,	ice , 6, 10619-10624.	0.7	4
1983	Functional Hybrid Micro/Nanoentities Promote Agro-Food Safety Inspection. Journal of Ag and Food Chemistry, 2021, 69, 12402-12417.	ricultural	2.4	18
1984	Elemental 2D Materials: Solutionâ€Processed Synthesis and Applications in Electrochemic Production. Advanced Functional Materials, 2022, 32, 2107280.	cal Ammonia	7.8	20
1985	Facile separation of enantiomers via covalent organic framework bonded stationary phase Mikrochimica Acta, 2021, 188, 367.	2.	2.5	10
1986	Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electroca Journal of the American Chemical Society, 2021, 143, 18052-18060.	talysts.	6.6	127
1987	An overview on covalent organic frameworks: synthetic reactions and miscellaneous appli Materials Today Chemistry, 2021, 22, 100573.	cations.	1.7	10
1988	Synthesis of Two-dimensional Polymer for Molecular-sieve Membranes. Membrane, 2014,	39, 118-131.	0.0	0
1989	Chapter 1. Surfaces for Supramolecular Systems. Monographs in Supramolecular Chemist 1-54.	ry, 2016, ,	0.2	0
1990	Recent Research Progresses on the CO ₂ Adsorption Materials. Journal of Adv Physical Chemistry, 2017, 06, 121-127.	vances in	0.1	0
1992	Chapter 8. Cucurbit[8]uril-based 2D and 3D Regular Porous Frameworks. RSC Smart Mate 175-192.	erials, 2019, ,	0.1	0
1994	Porous Organic Frameworks Constructed through Hydrogen-Bonding of Carboxy Groups. Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 706-715.	Yuki Gosei	0.0	1
1995	Machine Learning-Guided Equations for Super-Fast Prediction of Methane Storage Capaci SSRN Electronic Journal, 0, , .	ties of COFs.	0.4	Ο
1996	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advance Perspectives. Small Methods, 2021, 5, e2100945.	s and	4.6	36
1998	Covalent Organic Frameworks as Tunable Supports for HER, OER, and ORR Catalysts: A Note to Heterogeneous Electrocatalysts. Nanostructure Science and Technology, 2022, , 389-4	ew Addition 44.	0.1	0
1999	Facile synthesis of 2D covalent organic frameworks for cooperative photocatalysis with TI selective aerobic oxidation of benzyl amines. Applied Catalysis B: Environmental, 2022, 30		10.8	63
2001	Computational Design of Porous Framework Materials with Transition-Metal Alkoxide Liga Highly Selective Separation of N ₂ over CH ₄ . Industrial & En Chemistry Research, 2021, 60, 378-386.		1.8	7

#	Article	IF	CITATIONS
2002	Homogeneous Ni nanoparticles anchored on mesoporous N-doped carbon as highly efficient catalysts for Cr(VI), tetracycline and dyes reduction. Applied Surface Science, 2022, 575, 151748.	3.1	9
2003	Synthesis and generation of polymeric materials from interfaces. , 2020, , 89-129.		0
2004	Tunable molecular transport and sieving enabled by covalent organic framework with programmable surface charge. Materials Today, 2021, 51, 56-64.	8.3	19
2005	Calix[4]pyrroleâ€based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
2006	Chemically Stable Carbazole-Based Imine Covalent Organic Frameworks with Acidochromic Response for Humidity Control Applications. Journal of the American Chemical Society, 2021, 143, 18368-18373.	6.6	40
2007	Covalent organic framework-based porous materials for harmful gas purification. Chemosphere, 2022, 291, 132795.	4.2	17
2008	Covalentâ€Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect, 2021, 6, 11201-11223.	0.7	13
2009	Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. Chinese Chemical Letters, 2022, 33, 3267-3271.	4.8	16
2010	Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. Journal of the American Chemical Society, 2021, 143, 18941-18951.	6.6	54
2011	A 2-D microporous covalent organic framework for high-performance supercapacitor electrode. Materials Letters, 2022, 308, 131229.	1.3	11
2012	Calix[4]pyrroleâ€based Crosslinked Polymer Networks for Highly Effective Iodine Adsorption from Water. Angewandte Chemie, 0, , .	1.6	10
2013	Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications. Chinese Journal of Organic Chemistry, 2021, 41, 4167.	0.6	0
2014	Hierarchical self-assembly into chiral nanostructures. Chemical Science, 2022, 13, 633-656.	3.7	63
2015	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98.	6.4	33
2016	Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment. , 2022, , 127-159.		0
2017	Development of a needle trap device packed with the Schiff base network-1/single-walled carbon nanotube for sampling phenolic compounds in air. Microchemical Journal, 2022, 172, 106984.	2.3	4
2018	Polyamide-Supported Covalent Organic Framework Nanomembranes for Molecular Size-Dependent Selective Separation. ACS Applied Nano Materials, 2021, 4, 13967-13975.	2.4	12
2019	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Post ynthetic Click Chemistry. Angewandte Chemie, 2022, 134, .	1.6	11

#	Article	IF	CITATIONS
2020	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie, 2022, 134, .	1.6	15
2021	Advanced Ordered Nanoporous Materials. Engineering Materials, 2022, , 259-317.	0.3	2
2022	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
2023	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals, 2022, 41, 1160-1175.	3.6	16
2024	Molecular dynamics study of a covalent organic framework as highly-efficient and biocompatible carriers for doxorubicin delivery: the role of nanopores. Journal Physics D: Applied Physics, 2022, 55, 105402.	1.3	2
2025	Confined ionic liquids in covalent organic frameworks toward the rational design of high-safety lithium metal battery. Chemical Engineering Journal, 2022, 433, 133749.	6.6	7
2026	Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, 2021, 33, 9618-9623.	3.2	45
2027	Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 56777-56792.	4.0	19
2028	Facile Synthesis of a Cubic Porphyrin-Based Covalent Organic Framework for Combined Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 56873-56880.	4.0	29
2029	Determination of Phthalate Esters in Beverages and Water Samples by Solid Phase Extraction with Resin Based COFs as Filler. Water (Switzerland), 2021, 13, 3338.	1.2	1
2030	On-Surface Synthesis of 2D Porphyrin-Based Covalent Organic Frameworks Using Terminal Alkynes. Chemistry of Materials, 2021, 33, 8677-8684.	3.2	2
2031	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Postâ€Synthetic Click Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
2032	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	23.0	128
2033	Topology modulation of 2D covalent organic frameworks <i>via</i> a "two-in-one―strategy. Nanoscale, 2021, 13, 19385-19390.	2.8	19
2034	N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chemical Society Reviews, 2021, 50, 13559-13586.	18.7	42
2035	Synthesis methods of microporous organic polymeric adsorbents: a review. Polymer Chemistry, 2021, 12, 6962-6997.	1.9	11
2036	Porphyrin-based donor–acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chemical Science, 2021, 12, 16092-16099.	3.7	50
2037	Emerging Covalent Organic Framework and Linear Polymer (COF–LP) Composites: Synthetic Approaches and Applications. RSC Smart Materials, 2021, , 344-374.	0.1	1

#	Article	IF	CITATIONS
2038	Covalent organic frameworks as multifunctional materials for chemical detection. Chemical Society Reviews, 2021, 50, 13498-13558.	18.7	114
2039	Design of solvatomorphic structures based on a polyboronated tetraphenyladamantane molecular tecton. CrystEngComm, 2021, 23, 8169-8182.	1.3	2
2040	Dual functional sp ² carbon-conjugated covalent organic frameworks for fluorescence sensing and effective removal and recovery of Pd ²⁺ ions. Journal of Materials Chemistry A, 2021, 9, 26861-26866.	5.2	29
2041	Covalent Organic Frameworks. RSC Smart Materials, 2021, , 226-343.	0.1	0
2043	Pillar[5]arene-derived covalent organic materials with pre-encoded molecular recognition for targeted and synergistic cancer photo- and chemotherapy. Chemical Communications, 2022, 58, 1689-1692.	2.2	35
2044	Recent progress on the design and development of diaminotriazine based molecular catalysts for light-driven hydrogen production. Coordination Chemistry Reviews, 2022, 456, 214375.	9.5	17
2045	Chemistry of magnetic covalent organic frameworks (MagCOFs): from synthesis to separation applications. Materials Advances, 2022, 3, 1432-1458.	2.6	9
2046	Are Highly Stable Covalent Organic Frameworks the Key to Universal Chiral Stationary Phases for Liquid and Gas Chromatographic Separations?. Journal of the American Chemical Society, 2022, 144, 891-900.	6.6	72
2047	Porous organic polymers for electrocatalysis. Chemical Society Reviews, 2022, 51, 761-791.	18.7	154
2048	Pd Nanoparticles Anchored on Carbon Nanotubes/Covalent Organic Frameworks for Catalytic Ethanol Electrooxidation. ACS Applied Nano Materials, 2022, 5, 597-604.	2.4	10
2049	Charge Separation by Imidazole and Sulfonic Acid-Functionalized Covalent Organic Frameworks for Enhanced Proton Conductivity. ACS Applied Energy Materials, 2022, 5, 1298-1304.	2.5	15
2050	A novel functionalized covalent organic framework/carbon nanotube composite as an effective online solid-phase extraction sorbent for simultaneous detection of 33 steroid hormones in pork. Food Chemistry, 2022, 379, 132111.	4.2	14
2051	High antibacterial activity of chitosan films with covalent organic frameworks immobilized silver nanoparticles. International Journal of Biological Macromolecules, 2022, 202, 407-417.	3.6	25
2052	Covalent organic frameworks for environmental analysis. TrAC - Trends in Analytical Chemistry, 2022, 147, 116516.	5.8	45
2053	Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. Journal of Membrane Science, 2022, 645, 120186.	4.1	10
2054	β-Cyclodextrin covalent organic framework modified-cellulose acetate membranes for enantioseparation of chiral drugs. Separation and Purification Technology, 2022, 285, 120336.	3.9	17
2055	Highly crystalline covalent organic frameworks for ratiometric fluorescent sensing of trace water in honey and N2 gas. Sensors and Actuators B: Chemical, 2022, 355, 131323.	4.0	15
2056	A covalent organic framework (COF)-MnO2 based dual signal sensing platform for sensitive alkaline phosphatase activity detection via dynamic regulating the mimicking oxidase content. Arabian Journal of Chemistry, 2022, 15, 103643.	2.3	6

#	Article	IF	CITATIONS
2057	First-principles calculations of molecular adsorption on the surface of two-dimensional BCOH. Chemical Physics, 2022, 555, 111442.	0.9	1
2058	Core-shell structured magnetic covalent-organic frameworks for rapid extraction and preconcentration of okadaic acid in seawater and shellfish followed with LC-MS/MS quantification. Food Chemistry, 2022, 374, 131778.	4.2	13
2059	Production of polyacrylonitrile/ionic covalent organic framework hybrid nanofibers for effective removal of chromium(VI) from water. Journal of Hazardous Materials, 2022, 427, 128167.	6.5	42
2060	Rational design and preparation of covalent organic frameworks and their functional mechanism analysis for lithium-ion and lithium sulfur/selenium cells. Energy Storage Materials, 2022, 46, 29-67.	9.5	12
2061	Engineering linkage as functional moiety into irreversible thiourea-linked covalent organic framework for ultrafast adsorption of Hg(II). Journal of Hazardous Materials, 2022, 427, 128156.	6.5	26
2062	Emerging new-generation covalent organic frameworks composites as green catalysts: design, synthesis and solar to fuel production. Chemical Engineering Journal, 2022, 433, 134594.	6.6	16
2063	Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us?. Chemical Research in Chinese Universities, 2022, 38, 296-309.	1.3	4
2064	Organoboron and Related Group 13 Polymers. , 2022, , 71-134.		5
2065	Corroles at work: a small macrocycle for great applications. Chemical Society Reviews, 2022, 51, 1277-1335.	18.7	67
2066	Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR). Chemical Research in Chinese Universities, 2022, 38, 396-401.	1.3	14
2067	Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction. Nano Research, 2022, 15, 3907-3912.	5.8	14
2068	Construction of Azobenzene Covalent Organic Frameworks as High-Performance Heterogeneous Photocatalyst. Catalysis Letters, 2022, 152, 3233-3242.	1.4	6
2069	Solvent Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie, 0, , .	1.6	0
2070	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
2071	A New Covalent Organic Framework Modified with Sulfonic Acid for CO ₂ Uptake and Selective Dye Adsorption. Acta Chimica Sinica, 2022, 80, 37.	0.5	3
2072	Organic Molecule-Ionic Solids of Structurally Mismatched Ion Pairs Formed via Attractive Interactions. Crystal Growth and Design, 2022, 22, 1212-1220.	1.4	2
2073	Recent Advances of Covalent Organic Frameworks for Chiral Separation. Chemical Research in Chinese Universities, 2022, 38, 350-355.	1.3	2
2074	Polyoxometalate–covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy. Journal of Materials Chemistry B, 2022, 10, 1128-1135.	2.9	18

#	Article	IF	Citations
#	Functional Nanoparticles with Magnetic 3D Covalent Organic Framework for the Specific Recognition		CHAHONS
2075	and Separation of Bovine Serum Albumin. Nanomaterials, 2022, 12, 411.	1.9	9
2076	A Zn(<scp>ii</scp>)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO ₂ . Organic and Biomolecular Chemistry, 2022, 20, 1707-1722.	1.5	18
2077	Synthesis and Resolution of a Chiral Open-Chain Host Having a Partial Structure of <i>p</i> - <i>tert</i> -Butylsulfinylcalix[4]arene. Bulletin of the Chemical Society of Japan, 2022, 95, 440-442.	2.0	2
2078	Precise fabrication of porous polymer frameworks using rigid polyisocyanides as building blocks: from structural regulation to efficient iodine capture. Chemical Science, 2022, 13, 1111-1118.	3.7	40
2079	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8
2080	Synthesis of an Fe(terpy-cage) ₂ dumbbell. RSC Advances, 2022, 12, 3402-3405.	1.7	1
2081	Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 8761-8771.	5.2	33
2083	Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chemical Society Reviews, 2022, 51, 434-449.	18.7	47
2084	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 4097-4115.	1.3	75
2085	Polycationic Rh–JosiPhos Polymers Supported on Phosphotungstic Acid/Al ₂ O ₃ by Multiple Electrostatic Attractions. ACS Catalysis, 2022, 12, 2034-2044.	5.5	2
2086	Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nature Communications, 2022, 13, 100.	5.8	107
2087	Evaluation of a porous imine-based covalent organic framework for solid-phase extraction of nitroimidazoles. Analytical Methods, 2022, 14, 627-634.	1.3	8
2088	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie, 2022, 134, .	1.6	2
2089	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
2090	Threeâ€Dimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
2091	Solventâ€Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
2092	Asymmetric poly (vinyl alcohol)/Schiff base network framework hybrid pervaporation membranes for ethanol dehydration. European Polymer Journal, 2022, 162, 110924.	2.6	16
2093	Facile preparation of covalent organic frameworks@alginate composite beads for enhanced uranium(VI) adsorption. Rare Metals, 2022, 41, 1323-1331.	3.6	15

#	Article	IF	CITATIONS
2094	Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges. , 2022, 2, 100027.		13
2095	Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia. Green Energy and Environment, 2023, 8, 1174-1184.	4.7	5
2096	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
2097	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
2098	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	1.6	7
2099	Threeâ€Dimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie, 0, , .	1.6	12
2100	Hierarchical Core–Shell ACOF-1@BiOBr as an Efficient Photocatalyst for the Degradation of Emerging Organic Contaminants. Journal of Physical Chemistry C, 2022, 126, 2503-2516.	1.5	14
2101	Multi-scale computational screening to accelerate discovery of IL/COF composites for CO2/N2 separation. Separation and Purification Technology, 2022, 287, 120578.	3.9	12
2102	Inorganic Matrices Assisted Laser Desorption/Ionization Mass Spectrometry for Metabolic Analysis in Biofluids. Chemistry - an Asian Journal, 2022, 17, .	1.7	13
2103	Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 1398-1405.	2.1	16
2104	Dynamic Covalent Reactions Controlled by Ringâ€Chain Tautomerism of 2â€Formylbenzoic Acid. European Journal of Organic Chemistry, 2022, 2022, e202101461.	1.2	3
2105	Functionalized Graphene Quantum Dots Modified Dioxin‣inked Covalent Organic Frameworks for Superior Lithium Storage. Chemistry - A European Journal, 2022, 28, e202103901.	1.7	8
2106	Potential photo-switching sorbents for CO2 capture – A review. Renewable and Sustainable Energy Reviews, 2022, 158, 112079.	8.2	18
2107	Synthesis of phenol esters by direct C-H activation of aldehydes using highly efficient and reusable copper immobilized polyimide covalent organic framework (Cu@PI-COF). New Journal of Chemistry, 0, , .	1.4	2
2108	Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen Generation. Chemistry of Materials, 2022, 34, 1956-1964.	3.2	35
2109	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	6.6	106
2110	Structural design and determination of 3D covalent organic frameworks. Trends in Chemistry, 2022, 4, 437-450.	4.4	51
2111	Porous materials for hydrogen storage. CheM, 2022, 8, 693-716.	5.8	143

#	Article	IF	Citations
2112	The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chemical Reviews, 2022, 122, 6459-6513.	23.0	155
2113	Constructing Stable Chromenoquinoline-Based Covalent Organic Frameworks via Intramolecular Povarov Reaction. Journal of the American Chemical Society, 2022, 144, 2488-2494.	6.6	57
2114	Fully Hydrocarbon Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells and Electrolyzers: An Engineering Perspective. Advanced Energy Materials, 2022, 12, .	10.2	34
2115	A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. Journal of Environmental Chemical Engineering, 2022, 10, 107325.	3.3	26
2116	Photocatalytic detoxification of hazardous pymetrozine pesticide over two-dimensional covalent-organic frameworks coupling with Ag3PO4 nanospheres. Separation and Purification Technology, 2022, 288, 120644.	3.9	17
2117	Perspectives of ionic covalent organic frameworks for rechargeable batteries. Coordination Chemistry Reviews, 2022, 458, 214431.	9.5	27
2118	Hypercrosslinked triazine-phloroglucinol hierarchical porous polymers for the effective removal of organic micropollutants. Chemical Engineering Journal, 2022, 435, 134990.	6.6	26
2119	Molecular Recognition with Covalent-Organic-Framework Nanofilms at Terahertz Band. SSRN Electronic Journal, 0, , .	0.4	0
2120	Hypercrosslinked Triazine-Phloroglucinol Hierarchical Porous Polymers for the Effective Removal of Organic Micropollutants. SSRN Electronic Journal, 0, , .	0.4	0
2121	Functional crystalline porous materials. , 2023, , 336-354.		1
2122	Porous organic polymers for high-performance supercapacitors. Chemical Society Reviews, 2022, 51, 3181-3225.	18.7	114
2123	H ₂ physisorption on covalent organic framework linkers and metalated linkers: a strategy to enhance binding strength. Molecular Systems Design and Engineering, 2022, 7, 577-591.	1.7	7
2124	Covalent organic framework-based materials as electrocatalysts for fuel cells. , 2022, , 229-250.		1
2125	Selectivity in trace gas sensing: recent developments, challenges, and future perspectives. Analyst, The, 2022, 147, 1024-1054.	1.7	11
2126	Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33, 2856-2866.	4.8	27
2127	Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors. New Carbon Materials, 2022, 37, 109-135.	2.9	21
2128	Ultrastable Porous Covalent Organic Framework Assembled Carbon Nanotube as a Novel Nanocontainer for Anti-Corrosion Coatings: Experimental and Computational Studies. ACS Applied Materials & Interfaces, 2022, 14, 19958-19974.	4.0	32
2129	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	6.6	54

#	Article	IF	CITATIONS
2130	βâ€Ketoenamineâ€linked covalent organic framework absorbent for online microâ€solid phase extraction of trace levels bisphenols in plastic samples. Journal of Separation Science, 2022, 45, 1493-1501.	1.3	4
2131	Engineering Multienzymeâ€Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Advanced Materials, 2022, 34, e2108174.	11.1	91
2132	Waterâ€dispersible and soluble porous organic polymers for biomedical applications. Aggregate, 2022, 3,	5.2	13
2133	Aggregated Structures of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 3192-3199.	6.6	31
2134	Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications. Chemical Research in Chinese Universities, 2022, 38, 310-324.	1.3	10
2135	Design and Synthesis of a Zeolitic Organic Framework. Angewandte Chemie, 0, , .	1.6	0
2136	Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2
2137	Design and Synthesis of a Zeolitic Organic Framework**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
2138	Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation. Chinese Journal of Chemical Engineering, 2022, 43, 152-160.	1.7	9
2139	Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal–Sulfur and Selenium Batteries. Chemical Reviews, 2022, 122, 8053-8125.	23.0	132
2140	In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nature Communications, 2022, 13, 1355.	5.8	140
2141	Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration. Chemical Research in Chinese Universities, 2022, 38, 356-363.	1.3	11
2142	Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D2h and C2 Building Blocks. Chemical Research in Chinese Universities, 2022, 38, 639-642.	1.3	3
2143	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
2145	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	23.0	175
2146	3D Covalent Organic Frameworks with Interpenetrated pcb Topology Based on 8-Connected Cubic Nodes. Journal of the American Chemical Society, 2022, 144, 5728-5733.	6.6	66
2147	Covalent Organic Frameworks with Record Pore Apertures. Journal of the American Chemical Society, 2022, 144, 5145-5154.	6.6	85
2148	Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nature Communications, 2022, 13, 1370.	5.8	60

		CITATION REP	PORT	
#	Article		IF	Citations
2149	One-Dimensional Helical Aggregates Organized from Achiral Imine-Based Polymers. , 20)22, 4, 715-723.		6
2150	Novel Porphyrinâ€Based Hypercrosslinked Polymers as Highly Efficient Electrocatalysts Reduction Reaction. Energy Technology, 2022, 10, .	for Oxygen	1.8	1
2151	Synthesis and Crystal Structure of a New Chiral Hydrogen-Bonded Organic Framework Growth and Design, 2022, 22, 2547-2556.	ZIOC-2. Crystal	1.4	1
2152	Copper Coordination and the Induced Morphological Changes in Covalent Organic Fra Langmuir, 2022, 38, 3082-3089.	meworks.	1.6	2
2153	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie, 2022, 134, .		1.6	6
2154	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficien Generation. Angewandte Chemie, 0, , .	nt Solar Steam	1.6	4
2155	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie - International Edit	ion, 2022, 61, .	7.2	77
2157	Porous solid inspired hyper-crosslinked polymer liquids with highly efficient regeneratic purification. Science China Materials, 2022, 65, 1937-1942.	on for gas	3.5	3
2158	Isoreticular Series of Two-Dimensional Covalent Organic Frameworks with the kgd Top Controllable Micropores. Journal of the American Chemical Society, 2022, 144, 6475-6	ology and 482.	6.6	41
2159	Fused-Ring-Linked Covalent Organic Frameworks. Journal of the American Chemical So 6594-6603.	ciety, 2022, 144,	6.6	48
2160	Precise and controllable tandem strategy triggering boosted oxygen reduction activity Journal of Catalysis, 2022, 43, 1042-1048.	Chinese	6.9	10
2161	Constructing ionic porous organic polymers with high specific surface area through crostrategy. Chemical Engineering Journal, 2022, 442, 136275.	osslinking	6.6	23
2162	MOF@COF nanocapsule for the enhanced microwave thermal-dynamic therapy and an of colorectal cancer. Biomaterials, 2022, 283, 121472.	ti-angiogenesis	5.7	42
2163	A novel covalent organic framework with high-density imine groups for lithium storage material in lithium-ion batteries. Journal of Materials Science, 2022, 57, 9980-9991.	as anode	1.7	18
2164	Amorphous-to-Crystalline Transformation: General Synthesis of Hollow Structured Cov Organic Frameworks with High Crystallinity. Journal of the American Chemical Society, 6583-6593.		6.6	77
2165	A Two-dimensional Dual-pore Covalent Organic Framework for Efficient Iodine Capture Research in Chinese Universities, 2022, 38, 472-477.	. Chemical	1.3	2
2166	Three-Dimensional Covalent Organic Framework Membranes: Synthesis by Oligomer In Ripening and Application in Precise Separations. Macromolecules, 2022, 55, 3259-326		2.2	16
2167	Synthesis of Metal-Free Chiral Covalent Organic Framework for Visible-Light-Mediated Enantioselective Photooxidation in Water. Journal of the American Chemical Society, 2 6681-6686.	022, 144,	6.6	46

#	Article	IF	CITATIONS
2168	Spherical covalent organic framework supported Cu/Ag bimetallic nanoparticles with highly catalytic activity for reduction of 4-nitrophenol. Journal of Solid State Chemistry, 2022, 311, 123116.	1.4	15
2169	Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials, 2022, 283, 121428.	5.7	25
2170	Diformylphloroglucinol derived imine based covalent organic frameworks (PHTA) as efficient organocatalyst for conversion of isocyanates to urea derivatives. Molecular Catalysis, 2022, 522, 112213.	1.0	2
2171	Porphyrinic conjugated microporous polymer anode for Li-ion batteries. Journal of Power Sources, 2022, 531, 231340.	4.0	9
2172	Covalent-organic polymer-derived carbons: An effective adsorbent to remove sulfonamide antibiotics from water. Chemical Engineering Journal, 2022, 437, 135386.	6.6	21
2173	AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coordination Chemistry Reviews, 2022, 463, 214539.	9.5	40
2174	Porous aromatic frameworks with metallized catecholate ligands for CO2 capture from gas mixtures: A molecular simulation study. Fuel, 2022, 319, 123768.	3.4	7
2175	Capture and Release of [PdCl ₄] ^{2–} by TMeQ[6]-Based Supramolecular Frameworks Assembled via the Outer Surface Interaction of Q[<i>n</i>]s. Crystal Growth and Design, 2022, 22, 747-750.	1.4	2
2176	Construction of a Three-dimensional Covalent Organic Framework via the Linker Exchange Strategy. Chemical Research in Chinese Universities, 2022, 38, 402-408.	1.3	7
2177	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	5.8	46
2178	Thiophene-Based Covalent Organic Frameworks: Synthesis, Photophysics and Light-Driven Applications. Molecules, 2021, 26, 7666.	1.7	10
2179	Achieving a stable COF with the combination of "flat―and "twist―large-size rigid synthons for selective gas adsorption and separation. Chinese Chemical Letters, 2022, 33, 3017-3020.	4.8	9
2180	Preparation of Recyclable and Versatile Porous Poly(aryl thioether)s by Reversible Pd-Catalyzed C–S/C–S Metathesis. Journal of the American Chemical Society, 2021, 143, 21331-21339.	6.6	19
2181	Characteristic Synthesis of a Covalent Organic Framework and Its Application in Multifunctional Tumor Therapy. ACS Applied Bio Materials, 2022, 5, 59-81.	2.3	19
2182	A cobalt covalent organic framework: a dual-functional atomic-level catalyst for visible-light-driven C–H annulation of amides with alkynes. Journal of Materials Chemistry A, 2022, 10, 11514-11523.	5.2	17
2183	Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer. Journal of Colloid and Interface Science, 2022, 622, 11-20.	5.0	11
2184	Gold–Silver Bimetallic Alloy Nanoparticles in a Covalent Organic Framework for Real-Time Monitoring of Hydrogen Peroxide from Live Cells. ACS Applied Nano Materials, 2022, 5, 6340-6351.	2.4	19
2185	Visible Lightâ€Driven Carboxylation of Olefins by Using 2D Metalâ€Free Covalent Organic Framework as Intrinsic Photocatalyst: A Sustainable Approach for CO ₂ Utilization. ChemCatChem, 2022, 14, .	1.8	7

#	Article	IF	CITATIONS
2186	Strategies in constructing covalent organic framework membranes for molecular sieving. Science China Chemistry, 2022, 65, 836-839.	4.2	5
2187	Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. Science of the Total Environment, 2022, 833, 155279.	3.9	35
2188	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Advanced Energy Materials, 2022, 12, .	10.2	72
2189	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
2190	Three-Step Mechanism of Antisolvent Crystallization. Crystal Growth and Design, 2022, 22, 3119-3127.	1.4	14
2191	Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nature Communications, 2022, 13, 2180.	5.8	53
2192	Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks. Nature Communications, 2022, 13, 2171.	5.8	30
2193	Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 337, 111914.	2.2	2
2194	Ionic covalent organic nanosheet (iCON)–quaternized polybenzimidazole nanocomposite anion-exchange membranes to enhance the performance of membrane capacitive deionization. Desalination, 2022, 533, 115777.	4.0	12
2195	Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosensors and Bioelectronics, 2022, 209, 114274.	5.3	13
2196	An olefinâ€based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines. Chemistry - an Asian Journal, 2022, , .	1.7	3
2197	Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. Science of the Total Environment, 2022, 835, 155423.	3.9	11
2201	Exploration of an Imine-Based Covalent Organic Framework Based Solid Phase Extraction for Analysis of Nitroimidazoles in Food Samples. SSRN Electronic Journal, 0, , .	0.4	0
2202	Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations. RSC Advances, 2022, 12, 12283-12291.	1.7	6
2203	Highly Efficiency and Selective Recovery of Gold Using Magnetic Covalent Organic Framework Through Synergistic Adsorption and Reduction. SSRN Electronic Journal, 0, , .	0.4	0
2204	The Fabrication of a Covalent Imine-Based Organic Framework for the Solid-Phase Extraction of Nitroimidazoles from Food Samples. SSRN Electronic Journal, 0, , .	0.4	Ο
2205	Construction of cucurbit[<i>n</i>]uril-based supramolecular frameworks <i>via</i> host–guest inclusion and functional properties thereof. Inorganic Chemistry Frontiers, 2022, 9, 2753-2809.	3.0	11
2206	The Fabrication of a Covalent Imine-Based Organic Framework for the Solid-Phase Extraction of Nitroimidazoles from Food Samples. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2207	Ionic Porous Organic Polymer (Ipop) Based on Twisted Bimesityl Scaffold: Green and Efficient Heterogeneous Catalytic Synthesis OfÂl'-Arylthioketones and Biscoumarins. SSRN Electronic Journal, 0, ,	0.4	0
2208	A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chemical Letters, 2023, 34, 107454.	4.8	6
2209	Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials. Nanomaterials, 2022, 12, 1443.	1.9	7
2210	Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS Omega, 2022, 7, 15275-15295.	1.6	14
2211	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
2212	Covalent Organic Frameworks-based Nanocomposites for Oxygen reduction reaction. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 477-485.	0.9	2
2213	Ultrastable and Highâ€Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithiumâ€Ion Batteries. Small Methods, 2022, 6, e2200306.	4.6	18
2214	Metallosalphen-Based 2D Covalent Organic Frameworks with an Unprecedented tju Topology via K-Shaped Two-in-One Monomers. Chemistry of Materials, 2022, 34, 5888-5895.	3.2	18
2215	Staggered Stacking Covalent Organic Frameworks for Boosting Cancer Immunotherapy. Advanced Functional Materials, 2022, 32, .	7.8	37
2216	2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108.	2.0	17
2217	Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 9101-9112.	6.6	71
2218	A magnetic covalent organic framework as selective adsorbent for preconcentration of multi strobilurin fungicides in foods. Food Chemistry, 2022, 392, 133190.	4.2	8
2219	Switching of support materials for the hydrogenation of nitroarenes: A review. Catalysis Reviews - Science and Engineering, 2024, 66, 259-342.	5.7	2
2220	Modulated Synthesis of Selfâ€5tanding Covalent Organic Framework Films. Chemistry - A European Journal, 2022, , .	1.7	2
2221	A Three-dimensional Covalent Organic Framework for CO2 Uptake and Dyes Adsorption. Chemical Research in Chinese Universities, 2022, 38, 834-837.	1.3	6
2222	Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1535.	1.9	0
2223	Linkages take charge. , 2022, 1, 341-343.		5
2224	Design of Twoâ€Dimensional Heteropolyacidâ€Covalent Organic Frameworks Composite Materials for Acid Catalysis. ChemCatChem, 2022, 14, .	1.8	4

#	Article	IF	CITATIONS
2225	Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nature Communications, 2022, 13, 2615.	5.8	42
2226	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
2227	Synthesis, characterization, antibacterial activities, molecular docking, and computational investigation of novel imine-linked covalent organic framework. Journal of Molecular Liquids, 2022, 358, 119191.	2.3	18
2228	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	9.5	74
2229	Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214563.	9.5	72
2230	A catalyst-free preparation of conjugated poly iron-phthalocyanine and its superior oxygen reduction reaction activity. Chemical Engineering Journal, 2022, 445, 136784.	6.6	33
2231	Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis. Coordination Chemistry Reviews, 2022, 466, 214604.	9.5	78
2232	Coordination chemistry for innovative carbon-related materials. Coordination Chemistry Reviews, 2022, 466, 214577.	9.5	5
2233	Palladium nanocrystals-embedded covalent organic framework as an efficient catalyst for Heck cross-coupling reaction. Microporous and Mesoporous Materials, 2022, 339, 111961.	2.2	10
2234	Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy and Environment, 2023, 8, 1596-1618.	4.7	22
2235	Lithium-ion distribution and motion in two-dimensional covalent organic frameworks: the example of TAPB-PDA COF. Journal of Materials Chemistry C, 2022, 10, 13834-13843.	2.7	8
2236	Dibenzylidene- <i>s</i> -indacenetetraone Linked <i>n</i> -Type Semiconducting Covalent Organic Framework via Aldol Condensation. , 2022, 4, 1154-1159.		4
2237	Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214592.	9.5	16
2238	Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coordination Chemistry Reviews, 2022, 467, 214598.	9.5	17
2239	Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification of a sulfur mustard simulant. Journal of Materials Chemistry A, 2022, 10, 13325-13332.	5.2	18
2240	Benzene and triazine-based porous organic polymers with azo, azoxy and azodioxy linkages: a computational study. CrystEngComm, 2022, 24, 4748-4763.	1.3	4
2241	Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chemical Research in Chinese Universities, 2022, 38, 382-395.	1.3	8
2242	Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical Transformations of CO2. Chemical Research in Chinese Universities, 2022, 38, 446-455.	1.3	5

#	Article	IF	CITATIONS
2243	Atomic structure of the continuous random network of amorphous C[(C6H4)2]2 PAF-1. Cell Reports Physical Science, 2022, , 100899.	2.8	0
2244	Soluble Two-Dimensional Donor–Acceptor Aza-Fused Aromatic Frameworks and their Electrochromism between the Visible and Near-Infrared Regions. Chemistry of Materials, 2022, 34, 4896-4909.	3.2	5
2245	Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 2022, 13, .	5.8	101
2246	Covalent organic frameworks for applications in lithium batteries. Journal of Polymer Science, 2022, 60, 2225-2238.	2.0	13
2247	Interface engineering for modulating catalytic selectivity of covalent organic frameworks for oxygen reduction. Materials Today Chemistry, 2022, 24, 100936.	1.7	3
2248	An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative coupling of amines. Materials Today Chemistry, 2022, 25, 100953.	1.7	2
2249	Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chemical Communications, 2022, 58, 7136-7139.	2.2	7
2250	A Photo- and Redox Actives Mesoporous 3d Covalent Organic Framework Enables Highly Efficient Metal-Free Photoredox Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
2251	Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. RSC Advances, 2022, 12, 16354-16357.	1.7	8
2253	Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. Molecules, 2022, 27, 3427.	1.7	0
2254	<scp>Threeâ€Dimensional</scp> sp ² <scp>Carbonâ€Linked</scp> Covalent Organic Frameworks as a Drug Carrier Combined with Fluorescence Imaging. Chinese Journal of Chemistry, 2022, 40, 2081-2088.	2.6	26
2255	Porphyrin-based framework materials for energy conversion. , 2022, 1, e9120009.		174
2256	Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal of the American Chemical Society, 2022, 144, 9827-9835.	6.6	39
2257	Covalent organic frameworks catalyzed by organic Lewis acid. Science China Chemistry, 2022, 65, 1315-1320.	4.2	23
2258	A stable MOF@COFâ€Pd catalyst for C–C coupling reaction of pyrimidine sulfonate and arylboronic acid. Applied Organometallic Chemistry, 2022, 36, .	1.7	10
2259	The Kinetics of Formation of Microporous Polytriazine in Diphenyl Sulfone. Molecules, 2022, 27, 3605.	1.7	4
2260	Covalent organic frameworks: from linkages to biomedical applications. Chemical Engineering Journal, 2022, 446, 137148.	6.6	25
2261	A study of contemporary progress relating to COF materials for CO ₂ capture and fixation reactions. Materials Advances, 2022, 3, 5575-5597.	2.6	18

#	Article	IF	CITATIONS
2262	Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(<scp>vi</scp>) in water. Dalton Transactions, 2022, 51, 10351-10356.	1.6	3
2263	Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 220-254.	0.2	1
2264	Building-block exchange synthesis of amino-based three-dimensional covalent organic frameworks for gas chromatographic separation of isomers. Chemical Communications, 2022, 58, 8133-8136.	2.2	12
2265	Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis. CheM, 2022, 8, 2217-2227.	5.8	25
2266	CO2 capture and a route to transform it in formic acid: a theoretical approach. Journal of Molecular Modeling, 2022, 28, .	0.8	3
2267	Rapid room temperature synthesis of a new 2D AIE-chromophore COFs at room temperature and highly selective naked eye sensing of Fe3+ ions. Journal of Porous Materials, 2022, 29, 1531-1538.	1.3	3
2268	Hydrophobicity Tuning in Isostructural Urchin-Shaped Covalent Organic Framework Nanoparticles by Pore Surface Engineering for Oil–Water Separation. ACS Applied Nano Materials, 2022, 5, 13745-13751.	2.4	9
2269	Thiourea-Isocyanate-Based Covalent Organic Frameworks with Tunable Surface Charge and Surface Area for Methylene Blue and Methyl Orange Removal from Aqueous Media. Micromachines, 2022, 13, 938.	1.4	5
2270	Evolving Trends for Câ^'C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect, 2022, 7, .	0.7	6
2271	In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography. Journal of Pharmaceutical Analysis, 2022, 12, 610-616.	2.4	12
2272	Covalent Organic Frameworks with Nanopores for Biological Applications: A Review. ACS Applied Nano Materials, 2022, 5, 13972-13984.	2.4	20
2273	Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport. Nature Communications, 2022, 13, .	5.8	42
2274	Three-dimensional covalent organic frameworks as enzyme nanoprotector: preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Materials Today Nano, 2022, 19, 100236.	2.3	6
2275	Dispersive 2D Triptycene-Based Crystalline Polymers: Influence of Regioisomerism on Crystallinity and Morphology. Jacs Au, 2022, 2, 1638-1650.	3.6	5
2276	A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angewandte Chemie, 0, , .	1.6	9
2277	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
2278	A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
2279	Heterogeneous photocatalytic borylation of aryl iodides mediated by isoreticular 2D covalent organic frameworks. Chinese Chemical Letters, 2023, 34, 107584.	4.8	6

#	Article	IF	Citations
2280	Exploring covalent organic frameworks for H2S+CO2 separation from natural gas using efficient computational approaches. Journal of CO2 Utilization, 2022, 62, 102077.	3.3	4
2281	Hydrogen storage metal-organic framework classification models based on crystal graph convolutional neural networks. Chemical Engineering Science, 2022, 259, 117813.	1.9	16
2282	Confined construction of COF@Cu-nanozyme with high activity and stability as laccase biomimetic catalyst for the efficient degradation of phenolic pollutants. Chemical Engineering Journal, 2022, 448, 137701.	6.6	39
2283	Anion extractants constructed by macrocycle-based anion recognition. Journal of Materials Chemistry A, 2022, 10, 15297-15308.	5.2	11
2284	Substituent Effects on the Photocatalytic Properties of A Symmetric Covalent Organic Framework. Chinese Journal of Chemical Physics, 0, , .	0.6	0
2285	An overview of the advances in porous and hybrid materials research for air pollution mitigation. , 2022, , 17-63.		0
2286	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	18.7	109
2287	Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units. Chemical Science, 2022, 13, 9305-9309.	3.7	15
2288	Two-Dimensional Covalent Organic Frameworks with Spatial-Distribution Defined D-A Structures for Efficient Near-Infrared Photothermal Conversion. SSRN Electronic Journal, 0, , .	0.4	0
2289	Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient Iodine Vapor Capture Performance. Journal of the American Chemical Society, 2022, 144, 12390-12399.	6.6	77
2290	Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films. Nature Communications, 2022, 13, .	5.8	8
2291	Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications. EnergyChem, 2022, 4, 100079.	10.1	21
2292	Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angewandte Chemie, 2022, 134, .	1.6	6
2293	Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
2294	Fluorescent Covalent Organic Frameworks: A Promising Material Platform for Explosive Sensing. Frontiers in Chemistry, 0, 10, .	1.8	13
2295	Application progress of covalent organic framework materials in extraction of toxic and harmful substances. Chinese Journal of Chromatography (Se Pu), 2022, 40, 600-609.	0.1	3
2296	Ionic porous organic polymer (IPOP) based on twisted biphenyl Scaffold: Green and efficient heterogeneous catalytic synthesis of β-Arylthioketones and biscoumarins. Journal of Catalysis, 2022, 413, 769-778.	3.1	8
2297	Fluorescence turn on amine detection in a cationic covalent organic framework. Nature Communications, 2022, 13, .	5.8	50

#	Article	IF	CITATIONS
2298	An electrochemical biosensor for exosome detection based on covalent organic frameworks conjugated with DNA and horseradish peroxidase. Journal of Electroanalytical Chemistry, 2022, 920, 116576.	1.9	11
2299	Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coordination Chemistry Reviews, 2022, 470, 214696.	9.5	11
2300	Ultra-trace levels voltammetric determination of Pb2+ in the presence of Bi3+ at food samples by a Fe3O4@Schiff base Network1 modified glassy carbon electrode. Talanta, 2022, 250, 123716.	2.9	9
2301	Dynamic covalent chemistry concept towardÂpreparing crystalline covalent organic frameworks for dual-mode acidochromic responses. Materials Today Chemistry, 2022, 26, 101027.	1.7	1
2302	Carbon-based elastic foams supported redox-active covalent organic frameworks for flexible supercapacitors. Chemical Engineering Journal, 2022, 449, 137858.	6.6	23
2303	Recent progress on covalent organic framework materials as CO2 reduction electrocatalysts. Frontiers in Chemistry, 0, 10, .	1.8	6
2304	Recent advancements of photo- and electro-active hydrogen-bonded organic frameworks. Science China Chemistry, 2022, 65, 2077-2095.	4.2	33
2305	Cuâ€Based Organicâ€Inorganic Composite Materials for Electrochemical CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	12
2306	Urea and Thiourea-Functionalized, Pyridinium-Based Ionic Polymers Convert CO ₂ to Cyclic Carbonate under Mild Conditions. ACS Applied Polymer Materials, 2022, 4, 5851-5860.	2.0	9
2307	A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. Journal of Catalysis, 2022, 413, 692-702.	3.1	4
2308	Rational design of Cu(I)-anchored porous covalent triazine framework (CTF) for simultaneous capture and conversion of CO2 at ambient conditions. Journal of CO2 Utilization, 2022, 63, 102132.	3.3	8
2309	Headspace solid-phase microextraction: Fundamentals and recent advances. Advances in Sample Preparation, 2022, 3, 100035.	1.1	19
2310	Mechanism for Topology Selection of Isomeric Two-Dimensional Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 7087-7093.	2.1	3
2311	Green and Scalable Fabrication of Highâ€Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
2312	Insight into the Nanotribological Mechanism of Two-Dimensional Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 40173-40181.	4.0	7
2314	Efficient Adsorption of Acetylene over CO ₂ in Bioinspired Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 14992-14996.	6.6	65
2315	Twoâ€Dimensional Covalent Heptazineâ€Based Framework Enables Highly Photocatalytic Performance for Overall Water Splitting. Advanced Science, 2022, 9, .	5.6	15
2316	Green and Scalable Fabrication of Highâ€Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angewandte Chemie, 2022, 134, .	1.6	9

#	Article	IF	CITATIONS
2317	Exploration of an imine-based covalent organic framework for the solid phase extraction of nitroimidazoles in milk and meat samples. Journal of Chromatography A, 2022, 1678, 463357.	1.8	10
2318	Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 2022, 18, .	5.2	41
2319	Photocatalytic Hydrogen Production on a sp ² â€Carbonâ€Linked Covalent Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	17
2320	Photocatalytic Hydrogen Production on a sp ² arbonâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	76
2321	Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygenâ€Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors. Small, 2022, 18, .	5.2	24
2323	A critical review of covalent organic frameworks-based sorbents in extraction methods. Analytica Chimica Acta, 2022, 1224, 340207.	2.6	50
2324	Ultra-tough, photothermal healing and fire safety polystyrene/hydroxylated black phosphorus-triazine COF composites. Composites Part B: Engineering, 2022, 244, 110166.	5.9	12
2325	Metalâ^`free catalysis of the reductive amination of aldehydes using a phosphoniumâ^`doped porous aromatic framework. Molecular Catalysis, 2022, 530, 112600.	1.0	3
2326	Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2. Chinese Journal of Catalysis, 2022, 43, 2395-2404.	6.9	27
2327	An AlEgen-based hydrazone-linked covalent organic polymer for solid-state fluorescent materials. Dyes and Pigments, 2022, 206, 110636.	2.0	3
2328	Graphene quantum dots-based nanocomposite for electrocatalytic application of L-cysteine in whole blood and live cells. Electrochimica Acta, 2022, 428, 140937.	2.6	10
2329	Emerging adsorbents for micro/nanoplastics removal from contaminated water: Advances and perspectives. Journal of Cleaner Production, 2022, 371, 133676.	4.6	22
2330	Covalent organic frameworks (COFs)-derived nitrogen-doped carbon/reduced graphene oxide nanocomposite as electrodes materials for supercapacitors. Journal of Energy Storage, 2022, 55, 105375.	3.9	35
2331	Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchemical Journal, 2022, 182, 107865.	2.3	13
2332	Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 2022, 52, 299-319.	9.5	43
2333	Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coordination Chemistry Reviews, 2022, 471, 214760.	9.5	29
2334	Effect of the interlayer construction on the performances of the TFC-FO membranes: A review from materials perspective. Desalination, 2022, 541, 116033.	4.0	11
2335	Construction of magnetic covalent organic frameworks functionalized by benzoboroxole for efficient enrichment of glycoproteins in the physiological environment. Talanta, 2023, 251, 123772.	2.9	17

#	Article	IF	CITATIONS
2336	Facile, Direct, De Novo Synthesis of an Alkyl Phosphoric Acidâ€Decorated Covalent Organic Framework. Macromolecular Rapid Communications, 2023, 44, .	2.0	7
2337	Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. Environmental Pollution, 2022, 314, 120232.	3.7	24
2338	Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coordination Chemistry Reviews, 2022, 473, 214835.	9.5	25
2339	Oxidized thin aluminum films used as the polarized liquid-liquid interface support for norcocaine detection. Sensors and Actuators B: Chemical, 2022, 373, 132651.	4.0	2
2340	TiO2-promoted electron-tunneling of COF-based MIS nanostructures for efficient photocatalytic hydrogen production. Materials Today Chemistry, 2022, 26, 101150.	1.7	6
2341	Recent progress on the construction of supramolecular organic frameworks based on macrocyclic hosts. Molecular Systems Design and Engineering, 2022, 7, 1570-1587.	1.7	8
2342	Confining enzymes in porous organic frameworks: from synthetic strategy and characterization to healthcare applications. Chemical Society Reviews, 2022, 51, 6824-6863.	18.7	108
2343	Functions and fundamentals of porous molecular crystals sustained by labile bonds. Chemical Communications, 2022, 58, 11887-11897.	2.2	9
2344	Polymer networks of imine-crosslinked metal–organic cages: tuneable viscoelasticity and iodine adsorption. Chemical Communications, 2022, 58, 12122-12125.	2.2	9
2345	Recent advances in high-crystalline conjugated organic polymeric materials for photocatalytic CO ₂ conversion. Nanoscale, 2022, 14, 15217-15241.	2.8	13
2346	Controlled growth of organic 2D layered material thin films <i>via</i> interfacial methods. Chemical Communications, 2022, 58, 12384-12398.	2.2	7
2347	In Situ Growth of Cofs within Wood Microchannels for Wastewater Treatment and Oil-Water Separation. SSRN Electronic Journal, 0, , .	0.4	0
2348	Thermodynamic, kinetic, and mechanistic studies of the thermal guanidine metathesis reaction. Organic and Biomolecular Chemistry, 2022, 20, 5861-5868.	1.5	2
2349	Chemical conversion of metal–organic frameworks into hemi-covalent organic frameworks. Inorganic Chemistry Frontiers, 2022, 9, 4776-4784.	3.0	4
2350	A covalent organic framework-catalyzed visible-light-induced three-component cascade synthesis of trifluoroalkyl and trifluoroalkenyl quinoxalin-2(1 <i>H</i>)-one derivatives. New Journal of Chemistry, 2022, 46, 20412-20418.	1.4	13
2351	Research Progress of Chan-Lam Coupling Reaction in Heterogeneous Catalysis. Chinese Journal of Organic Chemistry, 2022, 42, 2342.	0.6	2
2352	Understanding fragility and engineering activation stability in two-dimensional covalent organic frameworks. Chemical Science, 2022, 13, 9655-9667.	3.7	15
2353	A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. New Journal of Chemistry, 2022, 46, 17153-17160.	1.4	4

#	Article	IF	CITATIONS
2354	Recent trends in covalent organic frameworks (COFs) for carbon dioxide reduction. Materials Advances, 2022, 3, 8063-8080.	2.6	12
2355	Impact of Pore Flexibility in Imine-Linked Covalent Organic Frameworks on Benzene and Cyclohexane Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 40890-40901.	4.0	11
2356	Humidity-Independent Artificial Olfactory Array Enabled by Hydrophobic Core–Shell Dye/MOFs@COFs Composites for Plant Disease Diagnosis. ACS Nano, 2022, 16, 14297-14307.	7.3	24
2357	Determination of water in organic solvents and raw food products by fluorescence quenching of a crystalline vinyl-functionalized COF. Mikrochimica Acta, 2022, 189, .	2.5	14
2358	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogenous and Heterogeneous Catalysis. Angewandte Chemie, 0, , .	1.6	0
2359	Recent Advances in Membrane-Based Biogas and Biohydrogen Upgrading. Processes, 2022, 10, 1918.	1.3	7
2360	A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. Materials Today, 2022, 60, 227-270.	8.3	13
2361	Applications of Covalent Organic Frameworks (COFs) in Oncotherapy. , 0, , .		1
2362	Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect, 2022, 7,	0.7	7
2363	Cyanurate-Linked Covalent Organic Frameworks Enabled by Dynamic Nucleophilic Aromatic Substitution. Journal of the American Chemical Society, 2022, 144, 17737-17742.	6.6	19
2364	Two-dimensional covalent organic frameworks with spatial-distribution defined D-A structures for efficient near-infrared photothermal conversion. Microporous and Mesoporous Materials, 2022, 343, 112191.	2.2	3
2365	Ultrathin Covalent Organic Framework Membranes Prepared by Rapid Electrophoretic Deposition. Advanced Materials, 2022, 34, .	11.1	20
2366	High-Performance Lithium-Ion Battery and Supercapacitors Using Covalent Organic Frameworks (COFs)/Graphitic Carbon Nitride (g-C ₃ N ₄)-Derived Hierarchical N-Doped Carbon. ACS Applied Energy Materials, 2022, 5, 12828-12836.	2.5	25
2367	Engineering of Covalent Organic Frameworkâ€Based Advanced Platforms for Enzyme Immobilization: Strategies, Research Progress, and Prospects. Advanced Materials Interfaces, 2022, 9, .	1.9	9
2368	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
2369	Engineering Covalent Organic Frameworks as Heterogeneous Photocatalysts for Organic Transformations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
2370	Engineering Covalent Organic Frameworks as Heterogeneous Photocatalysts for Organic Transformations. Angewandte Chemie, 2022, 134, .	1.6	2
2371	Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 34323-34375.	3.8	13

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
2372	Supercapacitors of Nanocrystalline Covalent Organic Frameworks—A Review. Crystals, 2022, 12, 1350.	1.0	5
2373	Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2022, 144, 17209-17218.	6.6	60
2374	Interfacial Polymerization of Self-Standing Covalent Organic Framework Membranes at Alkane/Ionic Liquid Interfaces for Dye Separation. ACS Applied Polymer Materials, 2022, 4, 7528-7536.	2.0	9
2375	Photoredox Catalysis by Covalent Organic Frameworks. , 0, , .		1
2376	Construction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient lodinating Agents. ACS Applied Materials & Interfaces, 2022, 14, 43621-43627.	4.0	10
2377	Three-Dimensional Covalent Organic Frameworks with she Topology. Journal of the American Chemical Society, 2022, 144, 18511-18517.	6.6	55
2378	In situ growth of COFs within wood microchannels for wastewater treatment and oil-water separation. Separation and Purification Technology, 2022, 303, 122275.	3.9	12
2379	Ibuprofen tagged imine RT-COF-1 as customisable vehicle for controlled drug delivery application. Inorganic Chemistry Communication, 2022, 145, 110043.	1.8	8
2380	Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen peroxide enrichment. Journal of Membrane Science, 2022, 663, 121043.	4.1	1
2381	Facile room temperature synthesis of NiFe2O4-based magnetic covalent organic framework for the extraction of tetracycline residues in environmental water samples prior to HPLC Analytical Methods, 0, , .	1.3	2
2382	Single-atom substitution in donor–acceptor covalent organic frameworks for tunable visible light photocatalytic Cr(<scp>vi</scp>) reduction. Materials Chemistry Frontiers, 2022, 6, 3748-3754.	3.2	12
2383	Visible-light-induced photocatalytic reductive carbonylation of nitroarenes using formic acid as a hydrogen source over a water-dispersible CTF-based palladium catalyst. Catalysis Science and Technology, 2022, 12, 7481-7493.	2.1	2
2384	A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers, 2022, 14, 4512.	2.0	1
2385	Thienothiophene and Triphenylbenzene Based Electroactive Conjugated Porous Polymer for Oxygen Reduction Reaction (ORR). ACS Applied Energy Materials, 2022, 5, 13284-13292.	2.5	15
2386	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	5.6	8
2387	Light Harvesting Antenna Properties of Framework Solids. Accounts of Materials Research, 2022, 3, 1149-1159.	5.9	2
2388	Betaâ€cyclodextrin covalent organic framework coated silica composite as chiral stationary phase for highâ€performance liquid chromatographic separation. Separation Science Plus, 2022, 5, 671-681.	0.3	1
2389	Topology control of three-dimensional covalent organic frameworks by adjusting steric hindrance effect. Science China Chemistry, 2022, 65, 2177-2181.	4.2	9

#	Article	IF	CITATIONS
2390	Photoactive Covalent Organic Frameworks for Catalyzing Organic Reactions. ChemPlusChem, 2022, 87, .	1.3	8
2391	Three-Dimensional Covalent Organic Framework with scu-c Topology for Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 48045-48051.	4.0	27
2392	Fabricating Industryâ€Compatible Olefinâ€Linked COF Resins for Oxoanion Pollutant Scavenging. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
2393	Conductive Covalent Organic Frameworks Meet Micro-Electrical Energy Storage: Mechanism, Synthesis and Applications—A Review. Crystals, 2022, 12, 1405.	1.0	4
2394	Design principles based on intramolecular interactions for hydroxyl-functionalized covalent organic frameworks. Cell Reports Physical Science, 2022, 3, 101114.	2.8	7
2395	Chromatographic Regulation by the Building Blocks for Triazine Polymer-Based Core–Shell Stationary Phases. ACS Applied Polymer Materials, 2022, 4, 8057-8064.	2.0	1
2396	Covalent Organic Frameworks Based Inorganic/Organic Composite Materials for Photocatalytic Applications. ChemNanoMat, 2023, 9, .	1.5	4
2397	FabricatingÂIndustryâ€compatible Olefinâ€Linked COF Resins for Oxoanion Pollutant Scavenging. Angewandte Chemie, 0, , .	1.6	0
2398	Natural Sunlight Photocatalytic Synthesis of Benzoxazole-Bridged Covalent Organic Framework for Photocatalysis. Journal of the American Chemical Society, 2022, 144, 18750-18755.	6.6	63
2399	Îâ€Electronâ€Extended Porphyrinâ€Linked Covalent Organic Framework for a Qâ€Switched Allâ€Solidâ€State Las Advanced Photonics Research, 2023, 4, .	ser. 1.7	2
2400	Industry-compatible covalent organic frameworks for green chemical engineering. Science China Chemistry, 2022, 65, 2144-2162.	4.2	10
2401	Scalable Mechanochemical Synthesis of <i>β</i> â€Ketoenamineâ€ŀinked Covalent Organic Frameworks for Methane Storage. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
2402	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	6.6	33
2403	Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production. Chemical Engineering Journal, 2023, 454, 140121.	6.6	35
2404	Toward Coarse-Grained Elasticity of Single-Layer Covalent Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 18943-18951.	1.5	6
2405	A multifunctional covalent organic framework with localized radicals for selective ion capture and photocatalysis. Materials Today Chemistry, 2022, 26, 101225.	1.7	3
2406	Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coordination Chemistry Reviews, 2023, 475, 214917.	9.5	80
2407	Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coordination Chemistry Reviews, 2023, 475, 214882.	9.5	71

#	Article	IF	CITATIONS
2408	Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coordination Chemistry Reviews, 2023, 475, 214889.	9.5	97
2409	Mixed matrix membranes for H2/CO2 gas separation- a critical review. Fuel, 2023, 333, 126285.	3.4	27
2410	In situ passivation and thiol-mediated anchoring of perovskite quantum dots in mesoporous covalent-organic frameworks. Chemical Engineering Journal, 2023, 454, 140285.	6.6	7
2411	Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor–Acceptor Interaction. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
2412	A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection. Nanomaterials, 2022, 12, 4034.	1.9	1
2413	Organic Chargeâ€Transfer Complexes for Nearâ€Infraredâ€Triggered Photothermal Materials. Small Structures, 2023, 4, .	6.9	10
2414	Covalent Organic Frameworks for Separator Modification of Lithium–Sulfur Batteries. Macromolecular Rapid Communications, 2023, 44, .	2.0	6
2415	Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C–H Bonds. ACS Applied Materials & Interfaces, 2022, 14, 51867-51880.	4.0	1
2416	Dynamic Covalent Chemistry for Synthesis and Co onformational Control of Mechanically Interlocked Molecules. European Journal of Organic Chemistry, 2023, 26, .	1.2	9
2417	On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nature Chemistry, 2023, 15, 136-142.	6.6	15
2418	Fabrication of the Microenvironment and Active Structure of Single-Rh-Site Catalysts for Efficient Hydroformylation of Olefins. ACS Sustainable Chemistry and Engineering, 2022, 10, 15467-15479.	3.2	6
2419	Highly efficiency and selective recovery of gold using magnetic covalent organic framework through synergistic adsorption and reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130593.	2.3	15
2420	A chiral covalent-organic framework for asymmetric photooxidation in water. Chem Catalysis, 2022, 2, 2820-2822.	2.9	1
2421	Fluorine ontaining Covalent Organic Frameworks: Synthesis and Application. Macromolecular Rapid Communications, 2023, 44, .	2.0	5
2422	Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Advances, 2022, 12, 34245-34267.	1.7	2
2423	Isomeric effect of naphthyl spacers on structures and properties of isostructural porous crystalline frameworks. Materials Chemistry Frontiers, 2022, 7, 106-116.	3.2	9
2424	Rational design of a phenothiazine-based donor–acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides. Journal of Materials Chemistry A, 2023, 11, 1208-1215.	5.2	30
2425	Palladium nanoparticles immobilized on COF-modified honeycomb chitosan microcapsules as catalysts for the Suzuki reaction and <i>p</i> -nitrophenol reduction. New Journal of Chemistry, 2022, 47, 297-306.	1.4	7

#	Article	IF	CITATIONS
2426	Dative Bâ†N bonds based crystalline organic framework with permanent porosity for acetylene storage and separation. Chemical Science, 2023, 14, 533-539.	3.7	13
2427	Synthesis of crystallinity covalent organic framework and its ratiometric fluorescent detection of trace water. Microporous and Mesoporous Materials, 2023, 348, 112401.	2.2	4
2428	Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope. Micron, 2023, 165, 103395.	1.1	1
2429	Flexible three-dimensional covalent organic frameworks for ultra-fast and selective extraction of uranium via hydrophilic engineering. Journal of Hazardous Materials, 2023, 445, 130442.	6.5	12
2430	Electrosprayed hierarchically porous microparticles with tunable morphology for selective dye adsorption. Materials Chemistry and Physics, 2023, 295, 127154.	2.0	2
2431	Frontiers and recent developments on supercapacitor's materials, design, and applications: Transport and power system applications. Journal of Energy Storage, 2023, 58, 106104.	3.9	32
2432	Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Separation and Purification Technology, 2023, 308, 122862.	3.9	26
2433	Computer-aided Screening of High Performance Covalent-Organic Frameworks for Removal of SO2 from Flue Gases. Fluid Phase Equilibria, 2023, 567, 113710.	1.4	1
2434	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	0.5	5
2435	HALOGEN BOND IN POROUS MATERIALS: RATIONAL SELECTION OF BUILDING BLOCKS. Journal of Structural Chemistry, 2022, 63, 1880-1886.	0.3	1
2436	Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chemical Engineering Journal, 2023, 455, 140654.	6.6	17
2437	Effect of solvent and acid on the morphology of the β-ketoenamine-linked covalent organic frameworks (COFs). Materials Today: Proceedings, 2023, 78, 885-890.	0.9	2
2438	Covalent organic framework film–based laser desorption/ionization mass spectrometry for rapid and sensitive quantification of homocysteine in human serum. Rapid Communications in Mass Spectrometry, 2023, 37, .	0.7	1
2439	Shapeâ€Controlled Synthesis of Covalent Organic Frameworks Enabled by Polymerizationâ€Induced Phase Separation. Small, 2023, 19, .	5.2	2
2440	Phosphineâ€Functionalized Porous Materials for Catalytic Organic Synthesis. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
2441	Covalent organic frameworks: Recent advances in synthesis, characterization and their application in the environmental and agricultural sectors. Results in Chemistry, 2022, , 100719.	0.9	0
2442	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-29.	0.5	0
2443	Triazine–Porphyrin-Based Hyperconjugated Covalent Organic Framework for High-Performance Photocatalysis. Journal of the American Chemical Society, 2022, 144, 23396-23404.	6.6	53

		CITATION RE	PORT	
#	Article		IF	Citations
2444	Porous Materials for Water Purification. Angewandte Chemie - International Edition, 20)23, 62, .	7.2	38
2445	Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photoser Covalent Organic Framework. ACS Nano, 2022, 16, 21565-21575.	nsitizing	7.3	24
2446	Porous Materials for Water Purification. Angewandte Chemie, 2023, 135, .		1.6	0
2447	Photocatalysis of Covalent Organic Frameworks. , 0, , .			1
2448	Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Batteries. ACS Applied Electronic Materials, 2022, 4, 6237-6252.	Lithium-lon	2.0	2
2449	Electrochemical sensor based on confined synthesis of gold nanoparticles @ covalent frameworks for the detection of bisphenol A. Analytica Chimica Acta, 2023, 1239, 340		2.6	21
2450	Fluoro-Functionalized Spherical Covalent Organic Frameworks as a Liquid Chromatogr Stationary Phase for the High-Resolution Separation of Organic Halides. Analytical Che 94, 18067-18073.	aphic mistry, 2022,	3.2	9
2451	Cobalt-Doped MoS ₂ -Integrated Hollow Structured Covalent Organic Fran Nanospheres for the Effective Photoreduction of CO ₂ under Visible Light. Fuels, 2023, 37, 2329-2339.	nework . Energy &	2.5	6
2452	Non-covalent interactions (NCIs) in π-conjugated functional materials: advances and p Chemical Society Reviews, 2023, 52, 454-472.	perspectives.	18.7	23
2453	The efficient degradation of paracetamol using covalent triazine framework-derived Fe peroxymonosulfate via a non-radical pathway: Analysis of high-valent iron oxide, single electron transfer. Separation and Purification Technology, 2023, 310, 123034.		3.9	4
2454	Porous framework materials for energy & environment relevant applications: A sy Green Energy and Environment, 2024, 9, 217-310.	stematic review.	4.7	12
2455	Precise fabrication of ternary ordered covalent organic frameworks for photocatalysis. China Chemistry, 2023, 66, 436-442.	Science	4.2	6
2456	Covalent organic frameworks (COF) materials for selective radionuclides removal from Journal of Radioanalytical and Nuclear Chemistry, 2023, 332, 1101-1111.	water.	0.7	2
2457	Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Po 267.	ymers, 2023, 15,	2.0	14
2458	Ultramicroporous Covalent Organic Framework Nanosheets with Functionality Pair for C ₂ H ₂ /C ₂ H ₄ Separation. Angewar		1.6	1
2459	Phenanthroimidazole-Based Covalent Organic Frameworks with Enhanced Activity for Photocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 1		2.5	5
2460	Imine-linked covalent organic frameworks with stable and microporous structure for ef carbon dioxide and iodine uptake. Microporous and Mesoporous Materials, 2023, 349		2.2	3
2461	What induces the dense storage of hydrogen of liquid- or solid-like density levels in car nanopores with sub-1 nm diameters?. Carbon, 2023, 204, 594-600.	bon	5.4	3

#	Article	IF	CITATIONS
2462	Zinc incorporated covalent organic framework (Zn@DBPG): an efficient catalyst for the synthesis of carbamates through CO2 and non CO2 fixation pathways under sustainable condition. Molecular Catalysis, 2023, 536, 112900.	1.0	1
2463	Rapid charge transfer in covalent organic framework via through-bond for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2023, 458, 141360.	6.6	11
2464	Engineering covalently integrated COF@CeO2 Z-scheme heterostructure for visible light driven photocatalytic CO2 conversion. Applied Surface Science, 2023, 615, 156335.	3.1	4
2465	Determination of opiates in urine samples using a composite of covalent organic framework and polypyrrole as a sorbent for microextraction in a packed syringe combined with HPLC/UV. Talanta Open, 2023, 7, 100183.	1.7	8
2466	A sensitive fluorescent assay based on gold-nanoclusters coated on molecularly imprinted covalent organic frameworks and its application in malachite green detection. Food Chemistry, 2023, 410, 135425.	4.2	12
2467	Controlled Iodine Phase Transfer of Covalent Organic Framework Membranes for Instant but Sustained Disinfection. Langmuir, 2023, 39, 597-609.	1.6	1
2468	Theoretical Study on Electroreduction of CO2 to C3+ Catalyzed by Polymetallic Phthalocyanine Covalent Organic Frameworks (COFs) in Tandem. Catalysis Letters, 2023, 153, 3270-3283.	1.4	3
2469	Dual Role of Ligand for Porphyrin-Based Covalent Organic Framework Exfoliation and Turn-Up Fluorescence Sensing. ACS Applied Polymer Materials, 2023, 5, 784-790.	2.0	7
2470	Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. Journal of the American Chemical Society, 2023, 145, 1022-1030.	6.6	42
2471	Stabilization of 2D Imineâ€Linked Covalent Organic Frameworks: From Linkage Chemistry to Interlayer Interaction. Chemistry - A European Journal, 2023, 29, .	1.7	9
2472	2D quantum materials and sensors devices. , 2023, , 19-41.		0
2473	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie, 2023, 135, .	1.6	4
2474	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
2475	Covalent organic framework-functionalized Au and Ag nanoparticles: Synthesis and applications. , 2023, , 355-378.		1
2476	Ultramicroporous Covalent Organic Framework Nanosheets with Functionality Pair for Membrane C ₂ H ₂ /C ₂ H ₄ Separation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
2477	Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS. Mikrochimica Acta, 2023, 190, .	2.5	3
2478	2D supramolecular organic framework with tunable luminescence <i>via</i> cucurbit[<i>n</i>]uril-based hydrogen bonds, outer-surface interactions and host–guest interactions. Materials Chemistry Frontiers, 2023, 7, 1354-1364.	3.2	6
2479	Building <i>N</i> -hydroxyphthalimide organocatalytic sites into a covalent organic framework for metal-free and selective oxidation of silanes. Chemical Communications, 2023, 59, 2019-2022.	2.2	2

#	Article	IF	CITATIONS
2480	Understanding the electronic pi-system of 2D covalent organic frameworks with Wannier functions. Scientific Reports, 2023, 13, .	1.6	4
2481	Magnetically solid-phase extraction of diazinon and chlorpyrifos pesticides in vegetables using covalent triazine-based framework incorporated chitosan nanocomposite. Journal of Food Composition and Analysis, 2023, 118, 105158.	1.9	6
2482	Progress on nano-scaled alloys and mixed metal oxides in solid-state hydrogen storage; an overview. Journal of Energy Storage, 2023, 61, 106722.	3.9	22
2483	κ-Carrageenan/triazin-based covalent organic framework bionanocomposite: Preparation, characterization, and its application in fast removing of BB41 dye from aqueous solution. Journal of Environmental Management, 2023, 333, 117400.	3.8	6
2484	Hydrogen Bonding in Insensitive High Explosives. Russian Journal of Applied Chemistry, 2022, 95, 1069-1084.	0.1	1
2485	Chiral covalent organic frameworks synthesized <i>via</i> a Suzuki–Miyaura-coupling reaction: enantioselective recognition of <scp>d</scp> / <scp>l</scp> -amino acids. New Journal of Chemistry, 2023, 47, 6378-6384.	1.4	3
2486	Covalent organic frameworks with triazine units for iodine capture <i>via</i> weak molecular interactions. New Journal of Chemistry, 2023, 47, 7642-7647.	1.4	2
2487	Design, synthesis, and application of covalent organic frameworks as catalysts. New Journal of Chemistry, 2023, 47, 6765-6788.	1.4	4
2488	Recent advances in modified commercial separators for lithium–sulfur batteries. Journal of Materials Chemistry A, 2023, 11, 7833-7866.	5.2	23
2489	Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquidâ€covalent organic framework complex. Journal of Applied Polymer Science, 2023, 140, .	1.3	4
2491	Structural Regulation of Thiophene-Based Two-Dimensional Covalent Organic Frameworks toward Highly Efficient Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2023, 15, 16794-16800.	4.0	20
2492	Sustainable nanocomposite porous absorbent and membrane sieves: Definition, classification, history, properties, synthesis, applications, and future prospects. Journal of Environmental Chemical Engineering, 2023, 11, 109367.	3.3	4
2493	Transformation of an Imine Cage to a Covalent Organic Framework Film at the Liquid–Liquid Interface. Angewandte Chemie, 2023, 135, .	1.6	1
2494	Regulating interlayer spacing of aminated graphene oxide membranes for efficient flow reactions. Matter, 2023, 6, 1173-1187.	5.0	11
2495	High sensitivity for detecting trace Sn2+ in canned food using novel covalent organic frameworks. Talanta, 2023, 257, 124338.	2.9	3
2496	Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coordination Chemistry Reviews, 2023, 483, 215097.	9.5	61
2497	A review on covalent organic frameworks as adsorbents for organic pollutants. Journal of Cleaner Production, 2023, 400, 136737.	4.6	28
2498	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29

#	Article	IF	CITATIONS
2499	Fast ion conduction assisted by covalent organic frameworks in poly(ethylene oxide)-based composite electrolyte enabling high-energy and strong-stability all-solid-state lithium metal batteries. Electrochimica Acta, 2023, 449, 142267.	2.6	2
2500	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	14.8	5
2501	Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244, 107705.	3.7	8
2502	Interfacial synthesis: a scalable fabrication method of two-dimensional membranes. Current Opinion in Chemical Engineering, 2023, 40, 100903.	3.8	0
2503	Boron-rich triphenylene COF based electrides having excellent nonlinear optical activity. Materials Science in Semiconductor Processing, 2023, 160, 107468.	1.9	4
2504	Tailoring of peroxidase mimetics bifunctional nanocomposite: Dual mode electro-spectroscopic screening of cholesterol and hydrogen peroxide in real food samples and live cells. Food Chemistry, 2023, 414, 135747.	4.2	6
2505	Eu ³⁺ -Functionalized Nanoporous Covalent Organic Frameworks for Fluorescence Detection and Removal of Tetracycline. ACS Applied Nano Materials, 2023, 6, 6627-6636.	2.4	10
2506	Covalent framework derived internal-doped porous carbon supported SnO2 composite: Construction of a 10ÂV asymmetric supercapacitor and selective electrochemical determination of N-(4-Hydroxyphenyl) acetamide. Journal of Alloys and Compounds, 2023, 948, 169726.	2.8	1
2507	Green and Fast Strategies for Energyâ€Efficient Preparation of the Covalent Organic Framework TpPaâ€1. Chemistry - A European Journal, 2023, 29, .	1.7	4
2508	Calix[4]arene-Decorated Covalent Organic Framework Conjugates for Lithium Isotope Separation. ACS Applied Materials & Interfaces, 2023, 15, 5657-5666.	4.0	6
2509	Record Ultralargeâ€Pores, Low Density Threeâ€Dimensional Covalent Organic Framework for Controlled Drug Delivery**. Angewandte Chemie, 2023, 135, .	1.6	3
2510	Record Ultralargeâ€Pores, Low Density Threeâ€Dimensional Covalent Organic Framework for Controlled Drug Delivery**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
2511	Two new imine-linked covalent organic frameworks <i>via</i> flexible units for high iodine uptake. New Journal of Chemistry, 2023, 47, 3668-3671.	1.4	2
2512	Covalent Organic Frameworks as Emerging Nonlinear Optical Materials. Angewandte Chemie, 2023, 135,	1.6	2
2513	Covalent Organic Frameworks as Emerging Nonlinear Optical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
2514	Covalent Organic Frameworks for Capacitive Energy Storage: Recent Progress and Technological Challenges. Advanced Materials Technologies, 2023, 8, .	3.0	7
2515	A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis. Nature Communications, 2023, 14, .	5.8	11
2516	Nanoporous Sulfonic Covalent Organic Frameworks for Selective Adsorption and Separation of Lanthanide Elements. ACS Applied Nano Materials, 2023, 6, 2498-2506.	2.4	4

#	Article	IF	CITATIONS
2517	Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Science China Chemistry, 0, , .	4.2	2
2518	Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. , 2023, 2,		65
2519	State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews, 2023, 481, 215055.	9.5	9
2520	Rich nitrogen atoms in an azine covalent organic framework for gas uptake. New Journal of Chemistry, 2023, 47, 5160-5163.	1.4	3
2521	Advances in harvesting water and energy from ubiquitous atmospheric moisture. Journal of Materials Chemistry A, 2023, 11, 12456-12481.	5.2	13
2522	Efficient Photocatalytic Hydrogen Evolution by Modulating Excitonic Effects in Niâ€Intercalated Covalent Organic Frameworks. Advanced Energy Materials, 2023, 13, .	10.2	42
2523	Interfacial Synthesis of an Ultrathin Two-Dimensional Polymer Film via [2 + 2] Photocycloaddition. Molecules, 2023, 28, 1930.	1.7	0
2524	Recent advances in photocatalytic oxidation techniques for decontamination of water. Journal of Water Process Engineering, 2023, 52, 103572.	2.6	11
2525	Metal ion-catalyzed interfacial polymerization of functionalized covalent organic framework films for efficient separation. European Polymer Journal, 2023, 188, 111939.	2.6	2
2526	Insertion of CO ₂ in metal ion-doped two-dimensional covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
2527	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Polymers, 2023, 24, 1167-1182.	1.1	4
2528	Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation. Molecules, 2023, 28, 2173.	1.7	3
2529	二维sp2碳å±ä»·æœ‰æœºæ¡†æž¶åŠé«~æ•^å‰å,¬åŒ–å^¶æº¢. Science China Materials, 2023, 66, 2283-2	2289.	13
2530	Hierarchical Microtubular Covalent Organic Frameworks Achieved by COFâ€ŧo OF Transformation. Angewandte Chemie, 2023, 135, .	1.6	2
2531	Hierarchical Microtubular Covalent Organic Frameworks Achieved by COFâ€ŧo OF Transformation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
2532	In Situ Synthesis of AlEgenâ€based Porous Organic Polymer Films by Interfacial Aminoâ€yne Click Polymerization for Efficient Lightâ€Harvesting. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
2533	Porous Carbon in Food Industry. Materials Horizons, 2023, , 733-761.	0.3	0
2534	Porous Carbon-Based Sensors and Their Applications. Materials Horizons, 2023, , 381-404.	0.3	0

щ		IF	CITATIONS
#	ARTICLE In Situ Synthesis of AlEgenâ€based Porous Organic Polymer Films by Interfacial Aminoâ€yne Click	IF	CITATIONS
2535	Polymerization for Efficient Lightâ€Harvesting. Angewandte Chemie, 2023, 135, .	1.6	0
2536	Construction of Multiform Hollowâ€Structured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie, 2023, 135, .	1.6	2
2537	Construction of Multiform Hollow‧tructured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
2538	Cu ₂ O/2D COFs Core/Shell Nanocubes with Antiphotocorrosion Ability for Efficient Photocatalytic Hydrogen Evolution. ACS Nano, 2023, 17, 5994-6001.	7.3	27
2539	Switching of Guest Selectivity for the Inclusion of Regioisomers of Monosubstituted Phenols with Crystals of <i>p</i> - <i>tert</i> -Butylcalix[4]arene. Crystal Growth and Design, 2023, 23, 3264-3274.	1.4	3
2540	Post-cyclization of a bisimine-linked covalent organic framework to enhance the performance of visible-light photocatalytic hydrogen evolution. Polymer Chemistry, 2023, 14, 1323-1329.	1.9	1
2541	Virus Management Using Metal–Organic Framework-Based Technologies. ACS Applied Materials & Interfaces, 0, , .	4.0	2
2542	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
2543	Covalent organic frameworks (COFs): a promising CO ₂ capture candidate material. Polymer Chemistry, 2023, 14, 1293-1317.	1.9	6
2544	Construction of Monophosphine–Metal Complexes in Privileged Diphosphine-Based Covalent Organic Frameworks for Catalytic Asymmetric Hydrogenation. Journal of the American Chemical Society, 2023, 145, 6100-6111.	6.6	23
2545	Development of an exogenous coreactant-free electrochemiluminescent sensor for sensing glucose. Analyst, The, 2023, 148, 1764-1769.	1.7	4
2546	Application of COFs in capture/conversion of CO2 and elimination of organic/inorganic pollutants. , 2023, 2, 76-92.		22
2547	Transformation of an Imine Cage to a Covalent Organic Framework Film at the Liquid–Liquid Interface. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
2548	Three-Component Donorâ~'ï€â€"Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 0, , .	6.6	12
2549	Anchoring ultra-small molybdenum oxide species on covalent triazine frameworks for efficient electrochemical nitrogen fixation. Chemical Communications, 2023, 59, 4352-4355.	2.2	1
2550	ReDD-COFFEE: a ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. Journal of Materials Chemistry A, 2023, 11, 7468-7487.	5.2	7
2551	Cu@CTF as an efficient heterogeneous catalyst in click reaction between azide and alkyne towards disubstituted triazoles. Journal of Molecular Structure, 2023, 1284, 135350.	1.8	4
2552	Simultaneous electrochemical determination of Pb2+ and Cd2+ ions in food samples by a silver nanoparticle/COF composite modified glassy carbon electrode. Journal of Food Measurement and Characterization, 2023, 17, 3505-3514.	1.6	4

		CITATION REPORT		
#	Article		IF	CITATIONS
2553	Applications of Polyacetylene Derivatives in Gas and Liquid Separation. Molecules, 202	3, 28, 2748.	1.7	2
2554	Redox-active 2D porous organic polymers for high-performance supercapacitor. Journa and Engineering Chemistry, 2023, 123, 320-329.	l of Industrial	2.9	3
2555	Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie - Int Edition, 2023, 62, .	ernational	7.2	14
2556	Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie, 0, ,		1.6	1
2557	Hydrophobicity Tailoring of Ferric Covalent Organic Framework/MXene Nanosheets for High‣fficiency Nitrogen Electroreduction to Ammonia. Advanced Science, 2023, 10,		5.6	8
2558	Carbazolyleneâ€Ethynylene Macrocycle based Conductive Covalent Organic Framewor Chemie, 0, , .	rks. Angewandte	1.6	0
2559	Carbazolyleneâ€Ethynylene Macrocycle based Conductive Covalent Organic Framewor Chemie - International Edition, 2023, 62, .	ks. Angewandte	7.2	7
2560	Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules, 2023, 28, 311	.2.	1.7	6
2561	Recent developments in open tubular liquid chromatography and electrochromatograp 2019–2021. TrAC - Trends in Analytical Chemistry, 2023, 164, 117045.	bhy from	5.8	4
2562	A Non-Hydrolytic Sol–Gel Route to Organic-Inorganic Hybrid Polymers: Linearly Expa Silsesquioxanes. Gels, 2023, 9, 291.	nded Silica and	2.1	2
2563	Tailoring On-Surface Molecular Reactions and Assembly through Hydrogen-Modified Sy Triarylamine Monomer to 2D Covalent Organic Framework. ACS Nano, 2023, 17, 7366	ynthesis: From -7376.	7.3	2
2564	Dynamic Covalent Reactions and Chirality Sensing with Diphenylethene Derived Hemia ChemPlusChem, 0, , .	minals.	1.3	1
2565	Selective oxidation of amines powered with green light and oxygen over an anthraquin organic framework. Journal of Colloid and Interface Science, 2023, 643, 340-349.	one covalent	5.0	5
2566	Smart superwetting COF membrane for controllable oil/water separation. Separation a Technology, 2023, 317, 123825.	nd Purification	3.9	20
2567	Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in o organic frameworks. Nano Research, 2023, 16, 9387-9397.	covalent	5.8	2
2568	Design of Smartphone-Assisted Point-of-Care Platform for Colorimetric Sensing of Uric Visible Light-Induced Oxidase-Like Activity of Covalent Organic Framework. Sensors, 20		2.1	2
2569	æ–°åž‹çº³ç±³ææ–™åœ¨åæ़æ∙å"固ç›,è∮å⊷ä,的应ç"∹ Chinese Science Bulletin, 2023,	·,·	0.4	0
2570	On-Surface Synthesis and Applications of 2D Covalent Organic Framework Nanosheet: Materials, 2023, 4, 49-61.	s. Electronic	0.9	1

ARTICLE IF CITATIONS # The synthesis of highly crystalline covalent organic frameworks via the monomer crystal induction for the photocatalytic asýmmetric αâ€alkylation of aldehydes. Journal of Polymer Science, 2024, 62, 2571 2.0 0 1621-1628. Efficient proton conduction in porous and crystalline covalent-organic frameworks (COFs). Journal 2572 7.1 of Energy Chemistry, 2023, 82, 198-218. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. 2573 6.6 13 Journal of the American Chemical Society, 2023, 145, 9198-9206. Recent advances in the mechanics of 2D materials. International Journal of Extreme Manufacturing, 2574 6.3 2023, 5, 032002. Metal-Free Highly Stable and Crystalline Covalent Organic Nanosheet for Visible-Light-Driven 2575 5.5 13 Selective Solar Fuel Production in Aqueous Medium. ACS Catalysis, 2023, 13, 5926-5937. A Brickâ€Wall Topological 2D Covalent Organic Framework Constructed from an Hâ€Shaped "Twoâ€inâ€Oneâ€. Monomer. Chemistry - A European Journal, 2023, 29, . Superheterojunction covalent organic frameworks: Supramolecular synergetic charge transfer for 2577 10.8 12 highly efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 333, 122782. Halogen bonding: a designer strategy for graphyne-like two-dimensional architectures. Theoretical 2578 0.5 Chemistry Accounts, 2023, 142, . Aggregation-Induced Emission of a Two-Dimensional Covalent Organic Framework for Molecular 2579 2.0 3 Recognition in Quantitative Metrics. ACS Applied Polymer Materials, 2023, 5, 3762-3767. Encapsulation of porous materials., 2023, , 93-114. Solid Materials for Heterogeneous Catalysis., 2017, , 345-395. 0 2586 Enzyme-immobilized spherical covalent organic frameworks as nanoreactors for heterogeneous 2603 1.3 biocatalysis. CrystEngComm, 2023, 25, 3604-3608. Carbon-centered radical based dynamic covalent chemistry for stimuli-responsive chromic materials. 2634 2.7 3 Journal of Materials Chemistry C, 2023, 11, 7957-7969. Room-temperature stacking disorder in layered covalent-organic frameworks from machine-learning 6.4 force fields. Materials Horizons, 2023, 10, 2883-2891. From conventional inorganic semiconductors to covalent organic frameworks: advances and 2648 opportunities in heterogeneous photocatalytic CO₂ reduction. Journal of Materials 5.24 Chemistry A, 2023, 11, 13815-13843. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Transactions, 2023, 52, 2662 15178-15192. A Review of Advanced Electrode Materials for Supercapacitors: Challenges and Opportunities. Journal 2663 1.0 7 of Electronic Materials, 2023, 52, 5775-5794. Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators. 2672 Energy and Environmental Science, 2023, 16, 3654-3678.

#	Article	IF	CITATIONS
2683	Porous organic polymers as a promising platform for efficient capture of heavy metal pollutants in wastewater. Polymer Chemistry, 2023, 14, 4000-4032.	1.9	5
2695	Structural Characterization of Porous Organic Materials. , 2023, , 287-334.		0
2697	Structural tailoring of covalent organic frameworks with steric effects. Science China Chemistry, 2023, 66, 2977-2985.	4.2	0
2699	Combination of covalent organic frameworks (COFs) and polyoxometalates (POMs): the preparation strategy and potential application of COF–POM hybrids. Materials Horizons, 2023, 10, 4710-4723.	6.4	5
2713	Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology. Journal of Applied Electrochemistry, 2024, 54, 215-243.	1.5	2
2718	Tailor-made β-ketoenamine-linked covalent organic polymer nanofilms for precise molecular sieving. Materials Horizons, 2023, 10, 5133-5142.	6.4	1
2719	Two-step fabrication of COF membranes for efficient carbon capture. Materials Horizons, 2023, 10, 5016-5021.	6.4	6
2722	Polymeric adsorbents for gas adsorption. , 2024, , 205-258.		0
2723	Covalent connections between metal–organic frameworks and polymers including covalent organic frameworks. Chemical Society Reviews, 2023, 52, 6379-6416.	18.7	7
2724	Picking the lock of coordination cage catalysis. Chemical Science, 2023, 14, 11300-11331.	3.7	4
2727	Fabricating <i>s</i> -collidine-derived vinylene-linked covalent organic frameworks for photocatalysis. Chemical Communications, 2023, 59, 11728-11731.	2.2	0
2729	Potential of nonporous adaptive crystals for hydrocarbon separation. Chemical Society Reviews, 2023, 52, 6075-6119.	18.7	13
2742	Polymer Chemistry: An Overview. , 2023, , 1-54.		0
2747	Ru-doped functional porous materials for electrocatalytic water splitting. Nano Research, 2024, 17, 982-1002.	5.8	5
2753	Utilization of functionalized porous covalent organic framework based adsorbent materials for effectual remediation of heavy metals contaminates. , 2023, , .		0
2759	Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. Nanoscale, 2023, 15, 17270-17312.	2.8	1
2761	Current state and challenges for hydrogen storage technologies. , 2024, , 101-132.		0
2771	Green synthesis of covalent organic frameworks for use in reclamation of saline water in water treatment plants. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
2789	Single-crystal polymers (SCPs): from 1D to 3D architectures. Chemical Society Reviews, 2023, 52, 8165-8193.	18.7	2
2797	Nanomaterials for Electrochemical Sensing of Heavy Metals in Wastewater Streams. , 2024, , 1-24.		0
2803	Expanding the horizons of covalent organic frameworks: sub-stoichiometric synthesis as an emerging toolkit for functional COFs. Journal of Materials Chemistry A, 2023, 11, 26340-26370.	5.2	0
2808	Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018–2023). Journal of Fluorescence, 0, , .	1.3	0
2833	Revolutionizing the structural design and determination of covalent–organic frameworks: principles, methods, and techniques. Chemical Society Reviews, 0, , .	18.7	0
2843	TEMPERATURE DEPENDENCE OF THE CRYSTAL GROWTH OF IMINE-BONDED 3-DIMENSIONAL COVALENT ORGANIC FRAMEWORK (3D-COF). , 2023, , .		0
2848	Recent advances in enhancing the photodetector performance of 2D materials combining with organic thin films. Journal of Materials Chemistry C, 0, , .	2.7	0
2854	Crystalline porous organic salts. Chemical Society Reviews, 2024, 53, 1495-1513.	18.7	0
2867	New metal–organic frameworks and other porous filler–based hybrid membranes for gas separation and wastewater treatment. , 2024, , 139-186.		0
2872	Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. Nanoscale Advances, 2024, 6, 1286-1330.	2.2	0
2893	Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews, 2024, 53, 2530-2577.	18.7	0
2908	Nanomaterials for Electrochemical Sensing of Heavy Metals in Wastewater Streams. , 2024, , 1-24.		0