Modifying enzyme activity and selectivity by immobiliz

Chemical Society Reviews 42, 6290-6307 DOI: 10.1039/c2cs35231a

Citation Report

#	Article	IF	CITATIONS
1	Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 2012, 47, 2373-2378.	1.8	55
2	Enzymatic Production of Zero-Trans Plastic Fat Rich in α-Linolenic Acid and Medium-Chain Fatty Acids from Highly Hydrogenated Soybean Oil, Cinnamomum camphora Seed Oil, and Perilla Oil by Lipozyme TL IM. Journal of Agricultural and Food Chemistry, 2013, 61, 1189-1195.	2.4	25
3	Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules, 2013, 14, 2433-2462.	2.6	429
4	Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. Journal of Biotechnology, 2013, 164, 354-362.	1.9	77
5	Enzymatic hydrolysis of racemic ibuprofen esters using Rhizomucor miehei lipase immobilized on different supports. Process Biochemistry, 2013, 48, 669-676.	1.8	38
6	Quantitating intraparticle O ₂ gradients in solid supported enzyme immobilizates: Experimental determination of their role in limiting the catalytic effectiveness of immobilized glucose oxidase. Biotechnology and Bioengineering, 2013, 110, 2086-2095.	1.7	35
7	Enhancing Catalytic Performance of Porcine Pancreatic Lipase by Covalent Modification Using Functional Ionic Liquids. ACS Catalysis, 2013, 3, 1976-1983.	5.5	69
8	Ordered mesoporous materials containing Mucor Miehei Lipase as biocatalyst for transesterification reaction. Process Biochemistry, 2013, 48, 831-837.	1.8	21
9	Optimization of the immobilization of sweet potato amylase using glutaraldehyde-agarose support. Characterization of the immobilized enzyme. Process Biochemistry, 2013, 48, 1054-1058.	1.8	53
10	Enzymatic Synthesis of Extra Virgin Olive Oil Based Infant Formula Fat Analogues Containing ARA and DHA: One-Stage and Two-Stage Syntheses. Journal of Agricultural and Food Chemistry, 2013, 61, 10590-10598.	2.4	24
11	Modulation of the Microenvironment Surrounding the Active Site of Penicillin G Acylase Immobilized on Acrylic Carriers Improves the Enzymatic Synthesis of Cephalosporins. Molecules, 2013, 18, 14349-14365.	1.7	35
12	Continuous production of \hat{l}^2 -cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydrate Polymers, 2013, 98, 1311-1316.	5.1	53
13	Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent. Enzyme and Microbial Technology, 2013, 52, 336-343.	1.6	52
14	Catalytic properties of lipases immobilized onto ultrasound-treated chitosan supports. Biotechnology and Bioprocess Engineering, 2013, 18, 1090-1100.	1.4	18
15	Application of a Chitosan-Immobilized Talaromyces thermophilus Lipase to a Batch Biodiesel Production from Waste Frying Oils. Applied Biochemistry and Biotechnology, 2013, 171, 1986-2002.	1.4	23
16	Improving the properties of β-galactosidase from Aspergillus oryzae via encapsulation in aggregated silica nanoparticles. New Journal of Chemistry, 2013, 37, 3793.	1.4	14
17	Enantioselective transesterification ofN-hydroxymethyl vince lactam catalyzed by lipase under ultrasound irradiation. Biocatalysis and Biotransformation, 2013, 31, 299-304.	1.1	6
18	Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 1-11.	1.8	386

#	ARTICLE	IF	CITATIONS
19	Kinetic study of the acidolysis of high oleic sunflower oil with stearic–palmitic acid mixtures catalysed by immobilised Rhizopus oryzae lipase. Biochemical Engineering Journal, 2013, 73, 17-28.	1.8	20
20	Novel trypsin–FITC@MOF bioreactor efficiently catalyzes protein digestion. Journal of Materials Chemistry B, 2013, 1, 928.	2.9	157
21	Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles. RSC Advances, 2013, 3, 9924.	1.7	29
22	Conformational changes of enzymes upon immobilisation. Chemical Society Reviews, 2013, 42, 6250.	18.7	484
23	Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresource Technology, 2013, 134, 417-422.	4.8	94
24	Real-time measurement and modeling of intraparticle pH gradient formation in immobilized cephalosporin C amidase. Process Biochemistry, 2013, 48, 593-604.	1.8	12
25	Bioactive flake–shell capsules: soft silica nanoparticles for efficient enzyme immobilization. Journal of Materials Chemistry B, 2013, 1, 3248.	2.9	37
26	Solid-phase modification with succinic polyethyleneglycol of aminated lipase B from Candida antarctica: Effect of the immobilization protocol on enzyme catalytic properties. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 75-82.	1.8	18
27	Biocatalytic Performance of pHâ€Sensitive Magnetic Nanoparticles Derived from Layerâ€byâ€Layer Ionic Selfâ€Assembly of Chitosan with Glucoamylase. Chemistry - an Asian Journal, 2013, 8, 3116-3122.	1.7	5
28	Potential Applications of Carbohydrases Immobilization in the Food Industry. International Journal of Molecular Sciences, 2013, 14, 1335-1369.	1.8	58
29	Structure-Guided Modification of Rhizomucor miehei Lipase for Production of Structured Lipids. PLoS ONE, 2013, 8, e67892.	1.1	11
30	Optimized butyl butyrate synthesis catalyzed by <i>Thermomyces lanuginosus</i> lipase. Biotechnology Progress, 2013, 29, 1416-1421.	1.3	21
31	Enhanced stability of newly isolated trimeric <scp>l</scp> â€methionineâ€ <i>N</i> arbamoylase from <i>Brevibacillus reuszeri</i> HSN1 by covalent immobilization. Biotechnology and Applied Biochemistry, 2013, 60, 305-315.	1.4	5
33	Antibiofilm Properties of Interfacially Active Lipase Immobilized Porous Polycaprolactam Prepared by LB Technique. PLoS ONE, 2014, 9, e96152.	1.1	21
34	Lipases Aided Esterification of (2,2-Dimethyl-1,3-dioxolan-4-yl)methanol. Letters in Organic Chemistry, 2014, 11, 6-12.	0.2	3
35	Catalytic Behavior of Lipase Immobilized onto Congo Red and PEG-Decorated Particles. Molecules, 2014, 19, 8610-8628.	1.7	11
36	Additives Enhancing the Catalytic Properties of Lipase from Burkholderia cepacia Immobilized on Mixed-Function-Grafted Mesoporous Silica Gel. Molecules, 2014, 19, 9818-9837.	1.7	37
37	Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications. Molecules, 2014, 19, 11860-11882.	1.7	43

#	Article	IF	CITATIONS
38	Influence of the Morphology of Core-Shell Supports on the Immobilization of Lipase B from Candida antarctica. Molecules, 2014, 19, 12509-12530.	1.7	38
39	Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of β-Glucosidase Immobilized in Calcium Alginate. Molecules, 2014, 19, 19390-19406.	1.7	55
40	Optimized Production of Vanillin from Green Vanilla Pods by Enzyme-Assisted Extraction Combined with Pre-Freezing and Thawing. Molecules, 2014, 19, 2181-2198.	1.7	14
41	Immobilization of Trichoderma harzianum Î \pm -Amylase on Treated Wool: Optimization and Characterization. Molecules, 2014, 19, 8027-8038.	1.7	39
42	Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. Bioresource Technology, 2014, 170, 445-453.	4.8	47
44	Dissecting Physical and Biochemical Factors of Catalytic Effectiveness in Immobilized <scp>D</scp> â€Amino Acid Oxidase by Realâ€Time Sensing of O ₂ Availability Inside Porous Carriers. ChemCatChem, 2014, 6, 981-986.	1.8	19
45	Comparison of physical and covalent immobilization of lipase fromCandida antarcticaon polyamine microspheres of alkylamine matrix. Biocatalysis and Biotransformation, 2014, 32, 314-326.	1.1	15
46	Immobilization of lipase from Burkholderia cepacia into calcium carbonate microcapsule and its use for enzymatic reactions in organic and aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2014, 109, 94-100.	1.8	7
48	An efficient amperometric transketolase assay: Towards inhibitor screening. Biosensors and Bioelectronics, 2014, 62, 90-96.	5.3	11
49	Enzymatic resolution of ibuprofen in an organic solvent under ultrasound irradiation. Biotechnology and Applied Biochemistry, 2014, 61, 655-659.	1.4	4
50	Immobilized <i>Drosophila melanogaster</i> Deoxyribonucleoside Kinase (<i>Dm</i> dNK) as a High Performing Biocatalyst for the Synthesis of Purine Arabinonucleotides. Advanced Synthesis and Catalysis, 2014, 356, 563-570.	2.1	26
51	Nanorods with Biocatalytically Induced Selfâ€Electrophoresis. ChemCatChem, 2014, 6, 866-872.	1.8	29
52	Immobilization of endo-inulinase on poly-d-lysine coated CaCO3 micro-particles. Food Research International, 2014, 66, 485-492.	2.9	22
53	Lipase Immobilized on Graphene Oxide As Reusable Biocatalyst. Industrial & Engineering Chemistry Research, 2014, 53, 19878-19883.	1.8	44
54	Reusable and Mediator-Free Cholesterol Biosensor Based on Cholesterol Oxidase Immobilized onto TGA-SAM Modified Smart Bio-Chips. PLoS ONE, 2014, 9, e100327.	1.1	25
55	Immobilization of <i>α</i> â€amylase on reactive modified fiber and its application for continuous starch hydrolysis in a packed bed bioreactor. Starch/Staerke, 2014, 66, 376-384.	1.1	5
56	Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods. Enzyme and Microbial Technology, 2014, 58-59, 60-67.	1.6	17
57	Enantioselective resolution of racemic ibuprofen esters using different lipases immobilized on octyl sepharose. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 87-94.	1.8	36

#	Article	IF	CITATIONS
58	Immobilization of Thermomyces lanuginosus Lipase by Different Techniques on Immobead 150 Support: Characterization and Applications. Applied Biochemistry and Biotechnology, 2014, 172, 2507-2520.	1.4	32
59	Understanding enzymatic acceleration at nanoparticle interfaces: Approaches and challenges. Nano Today, 2014, 9, 102-131.	6.2	187
60	Tuning lipase B from Candida antarctica C–C bond promiscuous activity by immobilization on poly-styrene-divinylbenzene beads. RSC Advances, 2014, 4, 6219.	1.7	31
61	Application of lipase immobilized on the biocompatible ternary blend polymer matrix for synthesis of citronellyl acetate in non-aqueous media: Kinetic modelling study. Enzyme and Microbial Technology, 2014, 57, 16-25.	1.6	52
62	Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 483-487.	7.2	52
63	A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: Preparation, characterization and application in biodiesel production. Bioresource Technology, 2014, 151, 43-48.	4.8	86
64	Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 18-25.	1.8	58
65	Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydrate Polymers, 2014, 103, 193-197.	5.1	72
66	Reversible, selective immobilization of nuclease P1 from a crude enzyme solution on a weak base anion resin activated by polyethylenimine. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 92-100.	1.8	13
67	Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochemical Engineering Journal, 2014, 88, 131-141.	1.8	62
68	Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: Isotherm, thermodynamic and mass transfer studies. Chemical Engineering Journal, 2014, 251, 392-403.	6.6	74
69	Carbon Nanotubes as Activating Tyrosinase Supports for the Selective Synthesis of Catechols. ACS Catalysis, 2014, 4, 810-822.	5.5	50
70	Synthesis of geranyl acetate in non-aqueous media using immobilized Pseudomonas cepacia lipase on biodegradable polymer film: Kinetic modelling and chain length effect study. Process Biochemistry, 2014, 49, 1304-1313.	1.8	70
71	Antimicrobial activity of n-butyl lactate obtained via enzymatic esterification of lactic acid with n-butanol in supercritical trifluoromethane. Journal of Supercritical Fluids, 2014, 85, 143-150.	1.6	21
72	Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: Selective hydrolysis of fish oil using immobilized preparations. Process Biochemistry, 2014, 49, 1314-1323.	1.8	44
73	Bisepoxide Crossâ€Linked Enzyme Aggregates—New Immobilized Biocatalysts for Selective Biotransformations. ChemCatChem, 2014, 6, 1463-1469.	1.8	14
74	Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochemical Engineering Journal, 2014, 82, 139-149.	1.8	58
75	Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 59-67.	1.8	75

#	Article	IF	CITATIONS
76	Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catalysis Communications, 2014, 45, 59-62.	1.6	26
77	Easily handling penicillin G acylase magnetic cross-linked enzymes aggregates: Catalytic and morphological studies. Process Biochemistry, 2014, 49, 38-46.	1.8	38
78	Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 2014, 4, 1583-1600.	1.7	669
79	Polyelectrolyte Doped Hollow Nanofibers for Positional Assembly of Bienzyme System for Cascade Reaction at O/W Interface. ACS Catalysis, 2014, 4, 4548-4559.	5.5	35
80	Efficient immobilization of the enzyme and substrate for a single-step caspase-3 inhibitor assay using a combinable PDMS capillary sensor array. RSC Advances, 2014, 4, 7682-7687.	1.7	13
81	Resolution of 1,1,1-trifluoro-2-octanol by Pseudomonas sp. lipase encapsulated in aggregated silica nanoparticles. RSC Advances, 2014, 4, 6103.	1.7	2
82	Modification of PEGylated enzyme with glutaraldehyde can enhance stability while avoiding intermolecular crosslinking. RSC Advances, 2014, 4, 28036-28040.	1.7	9
83	3D-Electrode Architectures for Enhanced Direct Bioelectrocatalysis of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase. ACS Applied Materials & Interfaces, 2014, 6, 17887-17893.	4.0	12
84	Simple Technique for Preparing Stable and Recyclable Cross-Linked Enzyme Aggregates with Crude-Pored Microspherical Silica Core. Industrial & Engineering Chemistry Research, 2014, 53, 16176-16182.	1.8	24
85	Enzymes Extracted from Apple Peels Have Activity in Reducing Higher Alcohols in Chinese Liquors. Journal of Agricultural and Food Chemistry, 2014, 62, 9529-9538.	2.4	18
86	Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Advances, 2014, 4, 38350-38374.	1.7	117
87	Lipase catalyzed synthesis of 3,3′-(arylmethylene)bis(2-hydroxynaphthalene-1,4-dione). RSC Advances, 2014, 4, 35686-35689.	1.7	23
88	Direct, Rapid, and Label-Free Detection of Enzyme–Substrate Interactions in Physiological Buffers Using CMOS-Compatible Nanoribbon Sensors. Nano Letters, 2014, 14, 5315-5322.	4.5	52
89	Enzyme immobilization in biosensor constructions: self-assembled monolayers of calixarenes containing thiols. RSC Advances, 2014, 4, 19900-19907.	1.7	36
90	Ultrasensitive ELISA Using Enzyme-Loaded Nanospherical Brushes as Labels. Analytical Chemistry, 2014, 86, 9367-9371.	3.2	92
91	Immobilization of <i>Clostridium cellulolyticum</i> <scp>d</scp> -Psicose 3-Epimerase on Artificial Oil Bodies. Journal of Agricultural and Food Chemistry, 2014, 62, 6771-6776.	2.4	29
92	Immobilization of Lambda Exonuclease onto Polymer Micropillar Arrays for the Solid-Phase Digestion of dsDNAs. Analytical Chemistry, 2014, 86, 4447-4454.	3.2	21
93	Enzyme Catalytic Efficiency: A Function of Bio–Nano Interface Reactions. ACS Applied Materials & Interfaces, 2014, 6, 5393-5403.	4.0	77

#	Article	IF	CITATIONS
94	Facile immobilization of enzyme by entrapment using a plasma-deposited organosilicon thin film. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 77-86.	1.8	20
95	Ordered Mesoporous Silica Matrix for Immobilization of Chloroperoxidase with Enhanced Biocatalytic Performance for Oxidative Decolorization of Azo Dye. Industrial & Engineering Chemistry Research, 2014, 53, 12201-12208.	1.8	14
96	Probing structural and catalytic characteristics of galactose oxidase confined in nanoscale chemical environments. RSC Advances, 2014, 4, 21939-21950.	1.7	7
97	Enzyme Immobilization on Silane-Modified Surface through Short Linkers: Fate of Interfacial Phases and Impact on Catalytic Activity. Langmuir, 2014, 30, 4066-4077.	1.6	35
98	Highly enantioselective acylation of chlorohydrins using Amano AK lipase from P. fluorescens immobilized on silk fibroin–alginate spheres. Tetrahedron Letters, 2014, 55, 5062-5065.	0.7	25
99	Chemical modification of lipase B from Candida antarctica for improving biochemical properties of activity, stability and selectivity. New Biotechnology, 2014, 31, S85.	2.4	2
100	Production of Thermostable Lipase by Thermomyces lanuginosus on Solid-State Fermentation: Selective Hydrolysis of Sardine Oil. Applied Biochemistry and Biotechnology, 2014, 174, 1859-1872.	1.4	19
101	Development of Coconut Shell Activated Carbon-Tethered Urease for Degradation of Urea in a Packed Bed. ACS Sustainable Chemistry and Engineering, 2014, 2, 433-439.	3.2	19
102	Versatile and Efficient Immobilization of 2-Deoxyribose-5-phosphate Aldolase (DERA) on Multiwalled Carbon Nanotubes. ACS Catalysis, 2014, 4, 3059-3068.	5.5	26
103	Efficient 2-step biocatalytic strategies for the synthesis of all nor(pseudo)ephedrine isomers. Green Chemistry, 2014, 16, 3341-3348.	4.6	66
104	Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Advances, 2014, 4, 37244-37265.	1.7	104
105	Enhanced Activity and Stability of Lysozyme by Immobilization in the Matching Nanochannels of Mesoporous Silica Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 6734-6743.	1.5	82
106	Enzyme immobilization by adsorption: a review. Adsorption, 2014, 20, 801-821.	1.4	676
107	Homologous yeast lipases/acyltransferases exhibit remarkable cold-active properties. Applied Microbiology and Biotechnology, 2014, 98, 8927-8936.	1.7	18
108	Preparation of reversibly immobilized Jack bean urease on microchannel surface and application for enzyme inhibition assay. Microfluidics and Nanofluidics, 2014, 17, 721-728.	1.0	9
109	Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sensors and Actuators B: Chemical, 2014, 203, 44-53.	4.0	39
110	Dye decolorisation by laccase immobilised in lens-shaped poly(vinyl alcohol) hydrogel capsules. Chemical Papers, 2014, 68, .	1.0	8
111	Preparation of cross-linked enzyme aggregates in water-in-oil emulsion: Application to trehalose synthase. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 84-90.	1.8	12

#	Article	IF	CITATIONS
	Improved performance of α-amylase immobilized on poly(glycidyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 747 Td	(methacry	late-co-ethyle
112	2014, 65, 492-499.	3.6	15
113	New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization. Enzyme and Microbial Technology, 2014, 64-65, 17-23.	1.6	52
114	Characteristics and Feasibility of <i>Trans-</i> Free Plastic Fats through Lipozyme TL IM-Catalyzed Interesterification of Palm Stearin and <i>Akebia trifoliata</i> Variety <i>Australis</i> Seed Oil. Journal of Agricultural and Food Chemistry, 2014, 62, 3293-3300.	2.4	31
115	Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochemistry, 2014, 49, 604-616.	1.8	65
116	Covalent attachment of lipases on glyoxyl-agarose beads: Application in fruit flavor and biodiesel synthesis. International Journal of Biological Macromolecules, 2014, 70, 78-85.	3.6	25
117	A novel biomimetic catalyst templated by montmorillonite clay for degradation of 2,4,6-trichlorophenol. Chemical Engineering Journal, 2014, 254, 276-282.	6.6	17
118	Key residues responsible for enhancement of catalytic efficiency of Thermomyces lanuginosus lipase Lip revealed by complementary protein engineering strategy. Journal of Biotechnology, 2014, 188, 29-35.	1.9	14
119	Methods for Improving Enzymatic Trans-glycosylation for Synthesis of Human Milk Oligosaccharide Biomimetics. Journal of Agricultural and Food Chemistry, 2014, 62, 9615-9631.	2.4	76
120	Improvement of Chitosan Derivatization for the Immobilization of <i>Bacillus circulans</i> β-Galactosidase and Its Further Application in Galacto-oligosaccharide Synthesis. Journal of Agricultural and Food Chemistry, 2014, 62, 10126-10135.	2.4	26
121	Kinetics and optimization of lipase-catalyzed synthesis of rose fragrance 2-phenylethyl acetate through transesterification. Process Biochemistry, 2014, 49, 437-444.	1.8	43
122	A new method for the enamination of 1,3-dicarbonyl compounds catalyzed by laccase in water. RSC Advances, 2014, 4, 19512-19515.	1.7	8
123	Immobilization of (S)-mandelate dehydrogenase and its catalytic performance on stereoselective transformation of mandelic acid. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 744-748.	2.7	9
124	Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. Electronic Journal of Biotechnology, 2014, 17, 83-88.	1.2	41
125	Improving the catalytic properties of immobilized Lecitase via physical coating with ionic polymers. Enzyme and Microbial Technology, 2014, 60, 1-8.	1.6	61
126	Amidohydrolase Process: Expanding the use of l-N-carbamoylase/N-succinyl-amino acid racemase tandem for the production of different optically pure l-amino acids. Process Biochemistry, 2014, 49, 1281-1287.	1.8	14
127	Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 13-20.	1.8	64
128	Fast Multipoint Immobilized MOF Bioreactor. Chemistry - A European Journal, 2014, 20, 8923-8928.	1.7	58
129	Enzyme catalytic promiscuity: lipase catalyzed synthesis of substituted 2H-chromenes by a	1.7	38

#	Article	IF	CITATIONS
130	Glucose Oxidase Immobilization on Guar Gum–Gelatin Dual-Templated Silica Hybrid Xerogel. Industrial & Engineering Chemistry Research, 2014, 53, 3854-3860.	1.8	18
131	Amino silicones finished fabrics for lipase immobilization: Fabrics finishing and catalytic performance of immobilized lipase. Process Biochemistry, 2014, 49, 1488-1496.	1.8	17
132	Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochemistry, 2014, 49, 1511-1515.	1.8	70
133	Trends in Protein-Based Biosensor Assemblies for Drug Screening and Pharmaceutical Kinetic Studies. Molecules, 2014, 19, 12461-12485.	1.7	30
134	Immobilization as a Strategy for Improving Enzyme Properties-Application to Oxidoreductases. Molecules, 2014, 19, 8995-9018.	1.7	415
135	Evaluation of Styrene-Divinylbenzene Beads as a Support to Immobilize Lipases. Molecules, 2014, 19, 7629-7645.	1.7	62
136	Biocatalytic Behaviour of Immobilized Rhizopus oryzae Lipase in the 1,3-Selective Ethanolysis of Sunflower Oil to Obtain a Biofuel Similar to Biodiesel. Molecules, 2014, 19, 11419-11439.	1.7	26
137	Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules, 2014, 19, 14139-14194.	1.7	354
138	Lipase-Catalyzed Kinetic Resolution of 1-(2-Hydroxycyclohexyl)Indoles in Batch and Continuous-Flow Systems. Journal of Flow Chemistry, 2014, 4, 125-134.	1.2	10
139	Immobilization of <i>Amano Lipase A</i> onto Stöber silica surface: process characterization and kinetic studies. Open Chemistry, 2015, 13, .	1.0	30
140	Reversible immobilization of cephalosporin C acylase on epoxy supports coated with polyethyleneimine. Biocatalysis and Biotransformation, 2015, 33, 250-259.	1.1	8
141	Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability. Scientific Reports, 2015, 5, 14203.	1.6	26
142	Selfâ€Ðefensive Coating for Antibiotics Degradation — Atmospheric Pressure Chemical Vapor Deposition of Functional and Conformal Coatings for the Immobilization of Enzymes. Advanced Materials Interfaces, 2015, 2, 1500253.	1.9	13
143	A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microbial Cell Factories, 2015, 14, 180.	1.9	16
144	Recent Advances in Biocatalytic Promiscuity: Hydrolase atalyzed Reactions for Nonconventional Transformations. Chemical Record, 2015, 15, 743-759.	2.9	83
145	Phenylalanine Ammonia‣yaseâ€Catalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. ChemBioChem, 2015, 16, 2283-2288.	1.3	46
146	A Green Chemoenzymatic Process for the Synthesis of Azoxybenzenes. ChemCatChem, 2015, 7, 3450-3453.	1.8	29
147	Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem, 2015, 7, 2413-2432.	1.8	466

#	Article	IF	Citations
148	Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochemistry and Analytical Biochemistry: Current Research, 2015, 04	0.4	115
149	From Synthetic Chemistry and Stereoselective Biotransformations to Enzyme Biochemistry – The Bioorganic Chemistry Group at the Budapest University of Technology and Economics. Periodica Polytechnica: Chemical Engineering, 2015, 59, 59-71.	0.5	3
150	A Highly Stable Biocatalyst Obtained from Covalent Immobilization of a Non-Commercial Cysteine Phytoprotease. Journal of Bioprocessing & Biotechniques, 2015, 05, .	0.2	0
151	Purification and Immobilization of the Recombinant Brassica oleracea Chlorophyllase 1 (BoCLH1) on DIAION®CR11 as Potential Biocatalyst for the Production of Chlorophyllide and Phytol. Molecules, 2015, 20, 3744-3757.	1.7	11
152	Investigation of Film with β-Galactosidase Designed for Stabilization and Handling in Dry Configuration. Molecules, 2015, 20, 17180-17193.	1.7	4
153	Immobilization of Cyclooxygenase-2 on Silica Gel Microspheres: Optimization and Characterization. Molecules, 2015, 20, 19971-19983.	1.7	9
154	Purification and Partial Characterization of β-Glucosidase in Chayote (Sechium edule). Molecules, 2015, 20, 19372-19392.	1.7	10
155	Immobilization, Regiospecificity Characterization and Application of Aspergillus oryzae Lipase in the Enzymatic Synthesis of the Structured Lipid 1,3-Dioleoyl-2-Palmitoylglycerol. PLoS ONE, 2015, 10, e0133857.	1.1	34
156	A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides. Molecules, 2015, 20, 13550-13562.	1.7	19
157	Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer–enzyme conjugates for localized enzymatic cascade reactions. RSC Advances, 2015, 5, 44530-44544.	1.7	41
158	Sustainable synthesis of N-acetyllactosamine using an immobilized β-galactosidase on a tailor made porous polymer. RSC Advances, 2015, 5, 40375-40383.	1.7	9
159	Immobilization of acetylcholinesterase on electrospun poly(acrylic acid)/multi-walled carbon nanotube nanofibrous membranes. RSC Advances, 2015, 5, 42572-42579.	1.7	44
160	Rational re-design of the "double-racemase hydantoinase process―for optically pure production of natural and non-natural l-amino acids. Biochemical Engineering Journal, 2015, 101, 68-76.	1.8	13
161	Low-temperature crosslinking of proteins using non-toxic citric acid in neutral aqueous medium: Mechanism and kinetic study. Industrial Crops and Products, 2015, 74, 234-240.	2.5	76
162	Synthesis and characterization of surface-functionalized paramagnetic nanoparticles and their application to immobilization of α-acetolactate decarboxylase. Process Biochemistry, 2015, 50, 1388-1393.	1.8	14
163	Efficient biological conversion of carbon monoxide (CO) to carbon dioxide (CO ₂) and for utilization in bioplastic production by Ralstonia eutropha through the display of an enzyme complex on the cell surface. Chemical Communications, 2015, 51, 10202-10205.	2.2	19
164	Immobilization of lipases on glyoxyl–octyl supports: Improved stability and reactivation strategies. Process Biochemistry, 2015, 50, 1211-1217.	1.8	73
165	Immobilization of lipase on biocompatible co-polymer of polyvinyl alcohol and chitosan for synthesis of laurate compounds in supercritical carbon dioxide using response surface methodology. Process Biochemistry, 2015, 50, 1224-1236.	1.8	51

#	Article	IF	CITATIONS
166	Improvement of glycine oxidase by DNA shuffling, and site-saturation mutagenesis of F247 residue. International Journal of Biological Macromolecules, 2015, 79, 965-970.	3.6	17
167	Operational Stability of Glucoamylase in Continuously Operated Ultrafiltration Membrane Reactor – Experimental Methods and Mathematical Model. Chemical and Biochemical Engineering Quarterly, 2015, 28, 473-480.	0.5	0
168	Efficient production of peracetic acid in aqueous solution with cephalosporin-deacetylating acetyl xylan esterase from Bacillus subtilis. Process Biochemistry, 2015, 50, 2121-2127.	1.8	8
169	The Surface Characteristics of Chitosan Modified PSt-GMA Microspheres Influenced the Interactions and Properties of Immobilized Pepsin. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 20-29.	1.2	6
170	Molecular Assembly of Schiff Base Interactions: Construction and Application. Chemical Reviews, 2015, 115, 1597-1621.	23.0	392
171	Enhanced thermal stability and pH behavior of glucose oxidase on electrostatic interaction with polyethylenimine. International Journal of Biological Macromolecules, 2015, 75, 453-459.	3.6	23
172	Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel. Journal of Hazardous Materials, 2015, 287, 287-295.	6.5	13
173	Enhanced Activity of Acetyl CoA Synthetase Adsorbed on Smart Microgel: an Implication for Precursor Biosynthesis. ACS Applied Materials & amp; Interfaces, 2015, 7, 1500-1507.	4.0	29
174	Immobilization of <i>Pseudomonas fluorescens</i> lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 523-535.	1.4	55
175	Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 2015, 71, 53-57.	1.6	429
176	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	1.7	104
177	Nanobiocatalyst advancements and bioprocessing applications. Journal of the Royal Society Interface, 2015, 12, 20140891.	1.5	197
178	Immobilization and stabilization of cephalosporin C acylase on aminated support by crosslinking with glutaraldehyde and further modifying with aminated macromolecules. Biotechnology Progress, 2015, 31, 387-395.	1.3	16
179	Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. RSC Advances, 2015, 5, 11212-11222.	1.7	129
180	Chemical amination of Rhizopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: Modulation of stability and selectivity. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 128-134.	1.8	36
181	Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 83-89.	1.8	52
182	Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Biotechnology Advances, 2015, 33, 511-525.	6.0	141
183	Selective biomineralization of Co ₃ (PO ₄) ₂ -sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chemical Communications, 2015, 51, 8753-8756.	2.2	59

ARTICLE IF CITATIONS Determination of concentration and activity of immobilized enzymes. Analytical Biochemistry, 2015, 184 1.1 9 484, 169-172. Synthesis of trans-10,cis-12 conjugated linoleic acid-enriched triacylglycerols via two-step lipase-catalyzed esterification. LWT - Food Science and Technology, 2015, 62, 249-256. 2.5 Superparamagnetic Fe3O4nanoparticles modified by water-soluble and biocompatible polyethylenimine 186 1.7 11 for lipase immobilization with physical and chemical mechanisms. RSC Advances, 2015, 5, 23039-23045. Immobilization of Phenylalanine Ammoniaâ€Lyase on Singleâ€Walled Carbon Nanotubes for Stereoselective Biotransformations in Batch and Continuous $\hat{a}\in Flow$ Modes. ChemCatChem, 2015, 7, 1.8 1122-1128. Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids and Surfaces A: 188 2.3 31 Physicochemical and Engineering Aspects, 2015, 472, 69-77. Activation and deformation of immobilized lipase on self-assembled monolayers with tailored wettability. Physical Chemistry Chemical Physics, 2015, 17, 13457-13465. 1.3 Optimization and characterization of CLEAs of the very thermostable dimeric peroxidase from 190 1.7 5 Roystonea regia. RSC Advances, 2015, 5, 53047-53053. Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering 1.6 its nanoenvironment. Enzyme and Microbial Technology, 2015, 77, 1-7. 192 Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catalysis, 2015, 5, 4503-4513. 5.5 348 Synergistic effects of amine and protein modified epoxy-support on immobilized lipase activity. 2.5 Colloids and Surfaces B: Biointerfaces, 2015, 133, 51-57. Efficient two-step chemo-enzymatic synthesis of all-trans-retinyl palmitate with high substrate 194 1.7 15 concentration and product yield. Applied Microbiology and Biotechnology, 2015, 99, 8891-8902. Dodecenyl succinylated alginate as a novel material for encapsulation and hyperactivation of lipases. 5.1 Carbohydrate Polýmers, 2015, 133, 194-202. Physisorption of enzymatically active chymotrypsin on titania colloidal particles. Journal of Colloid 196 5.0 13 and Interface Science, 2015, 455, 236-244. Immobilization of \hat{l} ±-amylase on gold nanorods: An ideal system for starch processing. Process Biochemistry, 2015, 50, 1394-1399. 1.8 63 Improved activity of lipase immobilized in microemulsion-based organogels for (R, S)-ketoprofen ester resolution: Long-term stability and reusability. Biotechnology Reports (Amsterdam, Netherlands), 198 2.1 19 2015, 7, 1-8. Current status and new developments of biodiesel production using fungal lipases. Fuel, 2015, 159, 199 116 52-67. Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia : Application 200 1.8 81 to the kinetic resolution of myo-inositol derivatives. Process Biochemistry, 2015, 50, 1557-1564. An efficient condensation of substituted salicylaldehyde and malononitrile catalyzed by lipase under microwave irradiation. RSC Advances, 2015, 5, 57122-57126.

#	Article	IF	CITATIONS
202	Asymmetric synthesis of optically active methyl-2-benzamido-methyl-3-hydroxy-butyrate by robust short-chain alcohol dehydrogenases from Burkholderia gladioli. Chemical Communications, 2015, 51, 12328-12331.	2.2	21
203	Polyethyleneimine-modified graphene oxide nanocomposites for effective protein functionalization. Nanoscale, 2015, 7, 14284-14291.	2.8	46
204	Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Advances, 2015, 5, 55588-55594.	1.7	43
205	Advances in bioprocessing for efficient bio manufacture. RSC Advances, 2015, 5, 52444-52451.	1.7	7
206	Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. Journal of Molecular Catalysis B: Enzymatic, 2015, 120, 75-83.	1.8	68
207	Immobilization of Protein on Nanoporous Metal-Organic Framework Materials. Comments on Inorganic Chemistry, 2015, 35, 331-349.	3.0	52
208	Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica. Applied Biochemistry and Biotechnology, 2015, 176, 999-1011.	1.4	17
209	Versatility of divinylsulfone supports permits the tuning of CALB properties during its immobilization. RSC Advances, 2015, 5, 35801-35810.	1.7	70
210	Transesterification reaction using Staphylococcus haemolyticus L62 lipase crosslinked on magnetic microparticles. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 76-82.	1.8	4
211	Laccase biosensor based on low temperature co-fired ceramics for the permanent monitoring of water solutions. Electrochimica Acta, 2015, 165, 372-382.	2.6	14
212	Effects of additives on the lyophilized and thermal stability of d-galactose-6-sulfurylase activity from Eucheuma striatum (Rhodophyta). Journal of Applied Phycology, 2015, 27, 1709-1715.	1.5	1
213	Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. Process Biochemistry, 2015, 50, 918-927.	1.8	91
214	Redesigning the synthesis of vidarabine via a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases. RSC Advances, 2015, 5, 23569-23577.	1.7	26
215	Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays. Nanoscale, 2015, 7, 7340-7351.	2.8	33
216	Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnology Advances, 2015, 33, 435-456.	6.0	568
217	Highly efficient and regioselective acylation of arbutin catalyzed by lipase from Candida sp Process Biochemistry, 2015, 50, 789-792.	1.8	11
218	Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis. International Journal of Biological Macromolecules, 2015, 77, 105-113.	3.6	62
219	A mixed-function-grafted magnetic mesoporous hollow silica microsphere immobilized lipase strategy for ultrafast transesterification in a solvent-free system. RSC Advances, 2015, 5, 43074-43080.	1.7	33

#	Article	IF	CITATIONS
220	Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC Advances, 2015, 5, 32698-32705.	1.7	47
221	Amine-functionalized magnetic nanocomposite particles for efficient immobilization of lipase: effects of functional molecule size on properties of the immobilized lipase. RSC Advances, 2015, 5, 33313-33327.	1.7	48
222	Characterization of cell-free extracts from fenpropathrin-degrading strain Bacillus cereus ZH-3 and its potential for bioremediation of pyrethroid-contaminated soils. Science of the Total Environment, 2015, 523, 50-58.	3.9	25
223	Advances in carrier-bound and carrier-free immobilized nanobiocatalysts. Chemical Engineering Science, 2015, 135, 21-32.	1.9	42
224	Metal–organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catalysis Science and Technology, 2015, 5, 5077-5085.	2.1	216
225	On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties. RSC Advances, 2015, 5, 87206-87215.	1.7	15
226	Enhancement of thermal and pH stability of an alkaline metalloprotease by nano-hydroxyapatite and its potential applications. RSC Advances, 2015, 5, 89346-89362.	1.7	15
227	Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chemical Communications, 2015, 51, 17361-17374.	2.2	37
228	Chemical improvement of chitosan-modified beads for the immobilization of Enterococcus faecium DBFIQ E36 l-arabinose isomerase through multipoint covalent attachment approach. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1325-1340.	1.4	11
229	Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification. Applied Biochemistry and Biotechnology, 2015, 177, 771-779.	1.4	1
230	Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature. Bioprocess and Biosystems Engineering, 2015, 38, 1983-1991.	1.7	6
231	Specificity enhancement towards phenolic substrate by immobilization of laccase on surface plasmon resonance sensor chip. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 32-36.	1.8	9
232	Significance of anionic functional group in betaine-type metabolite analogs on the facilitation of enzyme reactions. Bioprocess and Biosystems Engineering, 2015, 38, 1811-1817.	1.7	7
233	The combine use of ultrasound and lipase immobilized on co-polymer matrix for efficient biocatalytic application studies. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 255-264.	1.8	32
234	Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 147-155.	1.8	21
235	Novozym® 435-catalyzed production of ascorbyl oleate in organic solvent ultrasound-assisted system. Biocatalysis and Agricultural Biotechnology, 2015, 4, 514-520.	1.5	15
236	Mesoporous Silica Materials Labeled for Optical Oxygen Sensing and Their Application to Development of a Silica-Supported Oxidoreductase Biocatalyst. ACS Catalysis, 2015, 5, 5984-5993.	5.5	46
237	Enhancing enzyme stability and metabolic functional ability of β-galactosidase through functionalized polymer nanofiber immobilization. Bioprocess and Biosystems Engineering, 2015, 38, 1915-1923.	1.7	27

#	Article	IF	CITATIONS
238	Temperature-Invariant Aqueous Microgels as Hosts for Biomacromolecules. Biomacromolecules, 2015, 16, 3134-3144.	2.6	9
239	Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents. Applied Biochemistry and Biotechnology, 2015, 177, 1313-1326.	1.4	14
240	Optimization of production parameters for preparation of natto-pigeon pea with immobilized Bacillus natto and sensory evaluations of the product. Innovative Food Science and Emerging Technologies, 2015, 31, 160-169.	2.7	19
241	Cross-linked enzyme aggregates (CLEAs) of PepX and PepN – production, partial characterization and application of combi-CLEAs for milk protein hydrolysis. Biocatalysis and Agricultural Biotechnology, 2015, 4, 752-760.	1.5	21
242	Ultrasound enhanced laccase applications. Green Chemistry, 2015, 17, 1362-1374.	4.6	52
243	Immobilization of <scp>l</scp> -aspartate oxidase from Sulfolobus tokodaii as a biocatalyst for resolution of aspartate solutions. Catalysis Science and Technology, 2015, 5, 1106-1114.	2.1	5
244	A green and one-pot synthesis of benzo[g]chromene derivatives through a multi-component reaction catalyzed by lipase. RSC Advances, 2015, 5, 5213-5216.	1.7	49
245	Saturation mutagenesis in selected amino acids to shift Pseudomonas sp. acidic lipase Lip I.3 substrate specificity and activity. Chemical Communications, 2015, 51, 1330-1333.	2.2	23
246	Optimized preparation and characterization of CLEA-lipase from cocoa pod husk. Journal of Biotechnology, 2015, 202, 153-161.	1.9	36
247	Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Critical Reviews in Biotechnology, 2015, 35, 15-28.	5.1	212
248	The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrasonics Sonochemistry, 2015, 22, 89-94.	3.8	102
249	Kinetic resolution of (<i>R, S</i>)â€2â€{2â€chloroâ€1â€hydroxyethyl) thiophene via immobilizing lipase from <i>Alcaligenes sp</i> . onto magnetic nanoparticles. Journal of Chemical Technology and Biotechnology, 2015, 90, 492-499.	1.6	8
250	Improving the activity and stability of actinidin by immobilization on gold nanorods. International Journal of Biological Macromolecules, 2015, 72, 1176-1181.	3.6	43
251	Modulation of the activity and selectivity of the immobilized lipases by surfactants and solvents. Biochemical Engineering Journal, 2015, 93, 274-280.	1.8	43
252	Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized l-N-carbamoylase and N-succinyl-amino acid racemase. Applied Microbiology and Biotechnology, 2015, 99, 283-291.	1.7	17
253	Isolation, Screening, and Identification of Potential Cellulolytic and Xylanolytic Producers for Biodegradation of Untreated Oil Palm Trunk and Its Application in Saccharification of Lemongrass Leaves. Preparative Biochemistry and Biotechnology, 2015, 45, 279-305.	1.0	19
254	Enantiopreference of Candida antarctica lipase B toward carboxylic acids: Substrate models and enantioselectivity thereof. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 98-116.	1.8	31
255	Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis. Molecules, 2016, 21, 796.	1.7	11

#	Article	IF	CITATIONS
256	Adsorption and Activity of Lipase on Polyphosphazene-Modified Polypropylene Membrane Surface. Catalysts, 2016, 6, 174.	1.6	6
257	Recent Updates on Immobilization of Microbial Cellulase. , 2016, , 107-139.		9
258	Immobilization of Neutral Protease from Bacillus subtilis for Regioselective Hydrolysis of Acetylated Nucleosides: Application to Capecitabine Synthesis. Molecules, 2016, 21, 1621.	1.7	19
259	Immobilized Aspergillus niger Lipase with SiO2 Nanoparticles in Sol-Gel Materials. Catalysts, 2016, 6, 149.	1.6	16
260	Candida antarctica Lipase B Immobilized onto Chitin Conjugated with POSS® Compounds: Useful Tool for Rapeseed Oil Conversion. International Journal of Molecular Sciences, 2016, 17, 1581.	1.8	13
261	Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor. Molecules, 2016, 21, 565.	1.7	11
262	Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules, 2016, 21, 646.	1.7	58
263	Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI). Molecules, 2016, 21, 751.	1.7	47
264	Catalytic Oxidation of Phenol and 2,4-Dichlorophenol by Using Horseradish Peroxidase Immobilized on Graphene Oxide/Fe3O4. Molecules, 2016, 21, 1044.	1.7	54
265	Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives. Molecules, 2016, 21, 1074.	1.7	47
266	Immobilization of α-Amylase from Anoxybacillus sp. SK3-4 on ReliZyme and Immobead Supports. Molecules, 2016, 21, 1196.	1.7	26
267	Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers, 2016, 8, 243.	2.0	181
268	CaLB Catalyzed Conversion of Îμ-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels. Polymers, 2016, 8, 372.	2.0	20
269	Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions. PLoS ONE, 2016, 11, e0169094.	1.1	9
270	Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules, 2016, 21, 1577.	1.7	227
271	Toward the Reconstitution of a Two-Enzyme Cascade for Resveratrol Synthesis on Potyvirus Particles. Frontiers in Plant Science, 2016, 7, 89.	1.7	14
272	Cross-linked enzyme aggregates (CLEA) in enzyme improvement – a review. Biocatalysis, 2016, 1, .	2.3	68
273	Mechanisms of Enhanced Catalysis in Enzyme–DNA Nanostructures Revealed through Molecular Simulations and Experimental Analysis. ChemBioChem, 2016, 17, 1430-1436.	1.3	35

#	Article	IF	CITATIONS
274	Chemoenzymatic Synthesis of αâ€ÂCyano Epoxides by a Tandemâ€ÂKnoevenagel–Epoxidation Reaction. European Journal of Organic Chemistry, 2016, 2016, 1251-1254.	1.2	12
275	Magnetic mesoporous enzyme–silica composites with high activity and enhanced stability. Journal of Chemical Technology and Biotechnology, 2016, 91, 1905-1913.	1.6	19
276	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie, 2016, 128, 2759-2763.	1.6	38
277	Vinyl sulfone-activated silica for efficient covalent immobilization of alkaline unstable enzymes: application to levansucrase for fructooligosaccharide synthesis. RSC Advances, 2016, 6, 64175-64181.	1.7	28
278	Continuous-flow biochemical reactors: Biocatalysis, bioconversion, and bioanalytical applications utilizing immobilized microfluidic enzyme reactors. Journal of Flow Chemistry, 2016, 6, 8-12.	1.2	44
279	Improved ethyl butyrate synthesis catalyzed by an immobilized recombinant Rhizopus oryzae lipase: A comprehensive statistical study by production, reaction rate and yield analysis. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S371-S376.	1.8	6
280	Physisorption of α-chymotrypsin on SiO2 and TiO2: A comparative study via experiments and molecular dynamics simulations. Biointerphases, 2016, 11, 011007.	0.6	12
281	Lipase immobilized on rosin-based functional polymers as a biocatalyst for the synthesis of ethyl dodecanoate. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S106-S113.	1.8	3
282	Preparation and characterization of a highly stable phenoxazinone synthase nanogel. Chemistry Central Journal, 2016, 10, 34.	2.6	5
283	A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Scientific Reports, 2016, 6, 33438.	1.6	42
284	Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 128, 10-18.	1.8	70
285	Lectin Agglutinated Multienzyme Catalyst with Enhanced Substrate Affinity and Activity. ACS Catalysis, 2016, 6, 3789-3795.	5.5	47
286	Inactivation thermodynamics and iso-kinetic profiling for evaluating operational suitability of milk clotting enzyme immobilized in composite polymer matrix. International Journal of Biological Macromolecules, 2016, 91, 317-328.	3.6	11
287	Surface and interface engineering for organic–inorganic composite membranes. Journal of Materials Chemistry A, 2016, 4, 9716-9729.	5.2	143
288	Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems. Methods in Enzymology, 2016, 571, 87-112.	0.4	4
289	Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Applied Biochemistry and Biotechnology, 2016, 180, 558-575.	1.4	22
290	Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	28
291	Lyotropic Liquid Crystalline Cubic Phases as Versatile Host Matrices for Membrane-Bound Enzymes. Journal of Physical Chemistry Letters, 2016, 7, 1507-1512.	2.1	33

#	Article	IF	Citations
292	Biosensors based on oxidative enzymes for detection of environmental pollutants. Biocatalysis, 2016, 1, .	2.3	16
293	Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal–Organic Frameworks. ACS Catalysis, 2016, 6, 3461-3468.	5.5	152
294	A robust chemo-enzymatic lactone synthesis using acyltransferase from Mycobacterium smegmatis. Catalysis Communications, 2016, 81, 37-40.	1.6	17
295	Electrocatalysis and bioelectrocatalysis – Distinction without a difference. Nano Energy, 2016, 29, 466-475.	8.2	53
296	Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochemistry, 2016, 51, 865-874.	1.8	88
297	Albuminated Glycoenzymes: Enzyme Stabilization through Orthogonal Attachment of a Single-Layered Protein Shell around a Central Glycoenzyme Core. Bioconjugate Chemistry, 2016, 27, 1285-1292.	1.8	1
298	Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection. Talanta, 2016, 155, 265-271.	2.9	23
299	Production of superparamagnetic nanobiocatalysts for green chemistry applications. Applied Microbiology and Biotechnology, 2016, 100, 7281-7296.	1.7	10
300	Ion exchange of β-galactosidase: The effect of the immobilization pH on enzyme stability. Process Biochemistry, 2016, 51, 875-880.	1.8	52
301	Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture. Nano Letters, 2016, 16, 3379-3384.	4.5	41
302	A lipase–glucose oxidase system for the efficient oxidation of N-heteroaromatic compounds and tertiary amines. Green Chemistry, 2016, 18, 3518-3521.	4.6	24
303	Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme. Langmuir, 2016, 32, 9604-9610.	1.6	23
304	Clean Enzymatic Preparation of Oxygenated Biofuels from Vegetable and Waste Cooking Oils by Using Spongelike Ionic Liquids Technology. ACS Sustainable Chemistry and Engineering, 2016, 4, 6125-6132.	3.2	30
305	A polysulfobetaine hydrogel for immobilization of a glucose-binding protein. RSC Advances, 2016, 6, 83890-83900.	1.7	11
306	Hybrid Cross-Linked Lipase Aggregates with Magnetic Nanoparticles: A Robust and Recyclable Biocatalysis for the Epoxidation of Oleic Acid. Journal of Agricultural and Food Chemistry, 2016, 64, 7179-7187.	2.4	89
307	Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart. Bioscience Reports, 2016, 36, .	1.1	23
308	An Enzyme Net Coating the Surface of Nanoparticles: A Simple and Efficient Method for the Immobilization of Phospholipase D. Industrial & Engineering Chemistry Research, 2016, 55, 10555-10565.	1.8	21
309	Aqueous–Solid System for Highly Efficient and Environmentally Friendly Transphosphatidylation Catalyzed by Phospholipase D To Produce Phosphatidylserine. Journal of Agricultural and Food Chemistry, 2016, 64, 7555-7560.	2.4	26

# 310	ARTICLE Advantages of Heterofunctional Octyl Supports: Production of 1,2-Dibutyrin by Specific and Selective Hydrolysis of Tributyrin Catalyzed by Immobilized Linases. ChemistrySelect. 2016, 1, 3259-3270.	IF 0.7	Citations
311	Enzyme Immobilization. Advances in Food and Nutrition Research, 2016, 79, 179-211.	1.5	180
312	Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics. Soft Matter, 2016, 12, 8718-8725.	1.2	7
313	Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale, 2016, 8, 17440-17445.	2.8	60
314	Stabilized enzyme immobilization on micron-size PSt–GMA microspheres: different methods to improve the carriers' surface biocompatibility. RSC Advances, 2016, 6, 91431-91439.	1.7	5
315	Efficient kinetic resolution of 1,5-dihydroxy-1,2,3,4-tetrahydronaphthalene catalyzed by immobilized Burkholderia cepacia lipase in batch and continuous-flow system. Process Biochemistry, 2016, 51, 2076-2083.	1.8	9
316	Temperatureâ€Mediated Regulation of Enzymatic Activity. ChemCatChem, 2016, 8, 2740-2747.	1.8	27
317	Adhesive Reactive Nanoparticles of Poly(ethyleneimine)/Poly(maleic acid-co -propylene) Complexes: A Novel Concept for the Immobilization of Pollutant Removing Laccase. Macromolecular Chemistry and Physics, 2016, 217, 2360-2371.	1.1	5
318	Stabilization of β-Gal-3 ATCC 31382 on agarose gels: synthesis of β-(1→3) galactosides under sustainable conditions. RSC Advances, 2016, 6, 79554-79562.	1.7	4
319	Evaluation of different immobilized lipases in transesterification reactions using tributyrin: Advantages of the heterofunctional octyl agarose beads. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 117-123.	1.8	69
320	Reuse of anion exchangers as supports for enzyme immobilization: Reinforcement of the enzyme-support multiinteraction after enzyme inactivation. Process Biochemistry, 2016, 51, 1391-1396.	1.8	50
321	Preparation and Comparison of Hydrolase-Coated Plastics. ChemistrySelect, 2016, 1, 1490-1495.	0.7	4
322	Immobilization of soybean peroxidase on silica-coated magnetic particles: a magnetically recoverable biocatalyst for pollutant removal. RSC Advances, 2016, 6, 83856-83863.	1.7	33
323	β-xylosidase from <i>Selenomonas ruminantium</i> : Immobilization, stabilization, and application for xylooligosaccharide hydrolysis. Biocatalysis and Biotransformation, 2016, 34, 161-171.	1.1	10
324	Quick Activation/Stabilization of a α-Glucosidase-catalyzed Hydrolysis Reaction by Addition of a Betaine-type Metabolite Analogue. Chemistry Letters, 2016, 45, 1174-1176.	0.7	4
325	Immobilization of Lipase from <i>Pseudomonas fluorescens</i> on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol. ACS Applied Materials & Interfaces, 2016, 8, 25714-25724.	4.0	50
326	Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane. Carbohydrate Polymers, 2016, 152, 710-717.	5.1	36
327	Magnetic Nanoâ€Sponges for Highâ€Capacity Protein Enrichment and Immobilization. Small, 2016, 12, 4815-4820.	5.2	17

#	Article	IF	CITATIONS
328	Efficiency of Enzymatic O ₂ Reduction by <i>Myrothecium verrucaria</i> Bilirubin Oxidase Probed by Surface Plasmon Resonance, PMIRRAS, and Electrochemistry. ACS Catalysis, 2016, 6, 5482-5492.	5.5	44
329	Colorimetric Assay for Detection of Organophosphorus Pesticides by Decrease of Standard Catalytic Activity of Chloroperoxidase. Environmental Engineering Science, 2016, 33, 951-961.	0.8	6
330	Immobilization of lipase onto functional cyclomatrix polyphosphazene microspheres. Journal of Molecular Catalysis B: Enzymatic, 2016, 132, 67-74.	1.8	14
331	Rational immobilization of lipase by combining the structure analysis and unnatural amino acid insertion. Journal of Molecular Catalysis B: Enzymatic, 2016, 132, 54-60.	1.8	16
332	Rapid protein immobilization for thin film continuous flow biocatalysis. Chemical Communications, 2016, 52, 10159-10162.	2.2	37
333	Efficient asymmetric biosynthesis of (R)-(â^')-epinephrine in hydrophilic ionic liquid-containing systems. RSC Advances, 2016, 6, 102292-102295.	1.7	4
334	Evaluation of different commercial hydrophobic supports for the immobilization of lipases: tuning their stability, activity and specificity. RSC Advances, 2016, 6, 100281-100294.	1.7	73
335	Synthesis of Fe3O4/P(St-AA) nanoparticles for enhancement of stability of the immobilized lipases. RSC Advances, 2016, 6, 108583-108589.	1.7	10
336	Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnology Journal, 2016, 11, 1386-1396.	1.8	34
337	Covalent immobilization of glucose oxidase on amino MOFs via post-synthetic modification. RSC Advances, 2016, 6, 108051-108055.	1.7	39
338	Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Scientific Reports, 2016, 6, 27928.	1.6	103
339	Conformational Changes of Enzymes and Aptamers Immobilized on Electrodes. Bioconjugate Chemistry, 2016, 27, 2581-2591.	1.8	32
340	Ice-like water supports hydration forces and eases sliding friction. Science Advances, 2016, 2, e1600763.	4.7	52
341	In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A. Nature Communications, 2016, 7, 11140.	5.8	33
342	Nanomaterials for biocatalyst immobilization – state of the art and future trends. RSC Advances, 2016, 6, 104675-104692.	1.7	267
343	Site-Specific and High-Loading Immobilization of Proteins by Using Cohesin–Dockerin and CBM–Cellulose Interactions. Bioconjugate Chemistry, 2016, 27, 1579-1583.	1.8	18
344	Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chemical Record, 2016, 16, 1436-1455.	2.9	183
345	Functional hydrogels with a multicatalytic activity for bioremediation: Singleâ \in step preparation and characterization. Journal of Applied Polymer Science, 2016, 133, .	1.3	4

#	Article	IF	CITATIONS
346	The enzyme-mediated autodeposition of casein: effect of enzyme immobilization on deposition of protein structures. Journal of Coatings Technology Research, 2016, 13, 597-611.	1.2	8
347	Immobilized multienzymatic systems for catalysis of cascade reactions. Process Biochemistry, 2016, 51, 1193-1203.	1.8	83
348	Biosilica and bioinspired silica studied by solid-state NMR. Coordination Chemistry Reviews, 2016, 327-328, 110-122.	9.5	23
349	Robust glucose oxidase with a Fe ₃ O ₄ @C-silica nanohybrid structure. Journal of Materials Chemistry B, 2016, 4, 4726-4731.	2.9	29
350	Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase. RSC Advances, 2016, 6, 61707-61715.	1.7	93
351	Improvement of microbial α-amylase stability: Strategic approaches. Process Biochemistry, 2016, 51, 1380-1390.	1.8	44
352	Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor. Colloids and Surfaces B: Biointerfaces, 2016, 146, 490-497.	2.5	31
353	Enzyme-containing silica inverse opals prepared by using water-soluble colloidal crystal templates: Characterization and application. Biochemical Engineering Journal, 2016, 112, 123-129.	1.8	12
354	Immobilized sialyltransferase fused to a fungal biotin-binding protein: Production, properties, and applications. Journal of Bioscience and Bioengineering, 2016, 121, 390-393.	1.1	4
355	Enzymatic transesterification for biodiesel production: a comprehensive review. RSC Advances, 2016, 6, 60034-60055.	1.7	131
356	Design of a core–shell support to improve lipase features by immobilization. RSC Advances, 2016, 6, 62814-62824.	1.7	76
357	Ultrasensitive ELISA ⁺ enhanced by dendritic mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2016, 4, 4975-4979.	2.9	39
358	A Continuousâ€Flow Cascade Reactor System for Subtilisin A―Catalyzed Dynamic Kinetic Resolution of <i>N</i> â€ <i>tert</i> â€Butyloxycarbonylphenylalanine Ethyl Thioester with Benzylamine. Advanced Synthesis and Catalysis, 2016, 358, 1608-1617.	2.1	32
359	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie - International Edition, 2016, 55, 2709-2713.	7.2	113
360	A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal, 2016, 11, 1082-1087.	1.8	145
361	Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catalysis Today, 2016, 259, 66-80.	2.2	152
362	Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: conformational changes and catalysis. RSC Advances, 2016, 6, 12977-12992.	1.7	7
363	Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. International Journal of Biological Macromolecules, 2016, 86, 288-295.	3.6	70

#	Article	IF	Citations
364	Continuous production of pure maltodextrin from cyclodextrin using immobilized Pyrococcus furiosus thermostable amylase. Process Biochemistry, 2016, 51, 282-287.	1.8	12
365	An immobilization multienzyme microfluidic chip for acetylcholinesterase inhibition assay by fluorescence method. RSC Advances, 2016, 6, 20867-20875.	1.7	3
366	Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Advances, 2016, 6, 4043-4052.	1.7	26
367	Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles. Bioresource Technology, 2016, 205, 67-74.	4.8	29
368	Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme and Microbial Technology, 2016, 83, 78-87.	1.6	108
369	Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20. Applied Microbiology and Biotechnology, 2016, 100, 3567-3575.	1.7	19
370	Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electronic Journal of Biotechnology, 2016, 19, 1-7.	1.2	32
371	Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Enzyme and Microbial Technology, 2016, 84, 1-10.	1.6	25
372	Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chemistry, 2016, 196, 1272-1278.	4.2	96
373	Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase. Bioprocess and Biosystems Engineering, 2016, 39, 785-792.	1.7	4
374	The influence of putrescine on the structure, enzyme activity and stability of α-chymotrypsin. RSC Advances, 2016, 6, 29264-29278.	1.7	33
375	Biomimetic catalysis of metal–organic frameworks. Dalton Transactions, 2016, 45, 9744-9753.	1.6	138
376	A new <scp>l</scp> -arabinose isomerase with copper ion tolerance is suitable for creating protein–inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Advances, 2016, 6, 30791-30794.	1.7	32
377	Bienzymatic Sequential Reaction on Microgel Particles and Their Cofactor Dependent Applications. Biomacromolecules, 2016, 17, 1610-1620.	2.6	34
378	Rational surface silane modification for immobilizing glucose oxidase. International Journal of Biological Macromolecules, 2016, 87, 191-194.	3.6	9
379	A new lipase–inorganic hybrid nanoflower with enhanced enzyme activity. RSC Advances, 2016, 6, 19413-19416.	1.7	83
380	Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. Nanoscale, 2016, 8, 6071-6078.	2.8	141
381	Effect of spacer modification on enzymatic synthetic and hydrolytic activities of immobilized trypsin. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 88-96.	1.8	8

#	Article	IF	CITATIONS
382	Multifunctional nanoparticle–protein conjugates with controllable bioactivity and pH responsiveness. Nanoscale, 2016, 8, 4387-4394.	2.8	20
383	Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environmental Science and Pollution Research, 2016, 23, 8929-8939.	2.7	49
384	Enhancement of Enzymatic Activity Using Microfabricated Poly(ε-caprolactone)/Silica Hybrid Microspheres with Hierarchically Porous Architecture. Journal of Physical Chemistry C, 2016, 120, 3955-3963.	1.5	20
385	Large-scale aerosol-assisted synthesis of biofriendly Fe ₂ O ₃ yolk–shell particles: a promising support for enzyme immobilization. Nanoscale, 2016, 8, 6728-6738.	2.8	144
386	Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal–organic framework material: a biocatalyst for esterification. Dalton Transactions, 2016, 45, 6998-7003.	1.6	128
387	Covalent immobilization of glucose oxidase on mesocellular silica foams: Characterization and stability towards temperature and organic solvents. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 26-33.	1.8	39
388	Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 67-75.	1.8	49
389	Enzyme Engineering for Oligosaccharide Biosynthesis. , 2016, , 9-31.		3
390	Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins. Journal of Physical Chemistry B, 2016, 120, 485-491.	1.2	16
391	Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess and Biosystems Engineering, 2016, 39, 449-459.	1.7	38
392	The co-immobilization of P450-type nitric oxide reductase and glucose dehydrogenase for the continuous reduction of nitric oxide via cofactor recycling. Enzyme and Microbial Technology, 2016, 85, 71-81.	1.6	12
393	Cellulose as an efficient matrix for lipase and transaminase immobilization. RSC Advances, 2016, 6, 6665-6671.	1.7	35
394	A facile technique to prepare cross-linked enzyme aggregates of bovine pancreatic lipase using bovine serum albumin as an additive. Korean Journal of Chemical Engineering, 2016, 33, 610-615.	1.2	30
395	Selective characterization of proteins on nanoscale concave surfaces. Biomaterials, 2016, 75, 305-312.	5.7	8
396	Enzyme Immobilization for Organic Synthesis. , 2016, , 99-126.		8
397	Hydroxyl ammonium ionic liquids as media for biocatalytic oxidations. Green Chemistry, 2016, 18, 1147-1158.	4.6	40
398	Covalent immobilization of a flavoprotein monooxygenase via its flavin cofactor. Enzyme and Microbial Technology, 2016, 82, 138-143.	1.6	20
399	In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochemical Engineering Journal, 2016, 105, 273-280.	1.8	53

#	Article	IF	CITATIONS
400	Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2016, 259, 130-139.	2.2	48
401	Construction of enzyme immobilization system through metal-polyphenol assisted Fe3O4/chitosan hybrid microcapsules. Chemical Engineering Journal, 2016, 283, 397-403.	6.6	52
402	Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. Catalysis Today, 2016, 259, 107-118.	2.2	68
403	Pectinase Immobilization on a Chitosan oated Chitin Support. Journal of Food Process Engineering, 2016, 39, 97-104.	1.5	12
404	Catalytic and Operational Stability of Acidic Proteases from Monterey Sardine (Sardinops sagax) Tj ETQq0 0 0 rg 41, e12287.	BT /Overlo 1.2	ck 10 Tf 50 5 5
405	A review on the important aspects of lipase immobilization on nanomaterials. Biotechnology and Applied Biochemistry, 2017, 64, 496-508.	1.4	120
406	Enantioselective esterification of (<i>R,S</i>)-flurbiprofen catalyzed by lipase in ionic liquid. Green Chemistry Letters and Reviews, 2017, 10, 23-28.	2.1	6
407	A combined sorption and kinetic model for multiphasic ethyl esterification of fatty acids from soybean soapstock acid oil catalyzed by a fermented solid with lipase activity in a solvent-free system. Biochemical Engineering Journal, 2017, 120, 84-92.	1.8	10
408	A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process Biochemistry, 2017, 55, 96-103.	1.8	53
409	Catalytically Active Protein Coatings: Toward Enzymatic Cascade Reactions at the Intercolloidal Level. ACS Catalysis, 2017, 7, 1664-1672.	5.5	28
410	Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion. Talanta, 2017, 166, 275-283.	2.9	35
411	Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports. Bioresource Technology, 2017, 230, 56-66.	4.8	27
412	Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating. International Journal of Biological Macromolecules, 2017, 98, 887-896.	3.6	29
413	Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions. Enzyme and Microbial Technology, 2017, 100, 52-59.	1.6	80
414	Production of High Galacto-oligosaccharides by Pectinex Ultra SP-L: Optimization of Reaction Conditions and Immobilization on Glyoxyl-Functionalized Silica. Journal of Agricultural and Food Chemistry, 2017, 65, 1649-1658.	2.4	14
415	Bleached kenaf microfiber as a support matrix for cyclodextrin glucanotransferase immobilization via covalent binding by different coupling agents. Process Biochemistry, 2017, 56, 81-89.	1.8	14
416	Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils. Food Chemistry, 2017, 229, 509-516.	4.2	43
417	Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. Journal of Biotechnology, 2017, 257, 131-138.	1.9	40

#	Article	IF	CITATIONS
418	Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresource Technology, 2017, 232, 53-63.	4.8	41
419	Biotechnological advances and perspectives of gamma-aminobutyric acid production. World Journal of Microbiology and Biotechnology, 2017, 33, 64.	1.7	77
420	Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochemistry, 2017, 56, 117-123.	1.8	115
421	The Potential for Imaging Dynamic Processes in Liquids with High Temporal Resolution. , 0, , 456-475.		1
422	Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes. Journal of Materials Chemistry B, 2017, 5, 4478-4486.	2.9	55
423	Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnology Reports (Amsterdam, Netherlands), 2017, 14, 16-26.	2.1	72
424	Production of Whole-Cell Lipase from Streptomyces clavuligerus in a Bench-Scale Bioreactor and Its First Evaluation as Biocatalyst for Synthesis in Organic Medium. Applied Biochemistry and Biotechnology, 2017, 183, 218-240.	1.4	8
425	Encapsulating Proteins in Nanoparticles. Methods in Enzymology, 2017, 590, 1-31.	0.4	10
426	Immobilization of Ulp1 protease on NHS-activated Sepharose: a useful tool for cleavage of the SUMO tag of recombinant proteins. Biotechnology Letters, 2017, 39, 1025-1031.	1.1	6
427	Mycelium-bound lipase from a locally isolated strain of Aspergillus westerdijkiae. Biocatalysis and Agricultural Biotechnology, 2017, 10, 321-328.	1.5	15
428	Based on DNA Strand Displacement and Functionalized Magnetic Nanoparticles: A Promising Strategy for Enzyme Immobilization. Industrial & Engineering Chemistry Research, 2017, 56, 5127-5137.	1.8	22
429	Poly-L-lysine brushes on magnetic nanoparticles for ultrasensitive detection of Escherichia coli O157: H7. Talanta, 2017, 172, 53-60.	2.9	14
430	Tailor-made resealable micro(bio)reactors providing easy integration of <i>in situ</i> sensors. Journal of Micromechanics and Microengineering, 2017, 27, 065012.	1.5	10
431	Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C, 2017, 79, 525-532.	3.8	11
432	Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica. Langmuir, 2017, 33, 5065-5076.	1.6	39
433	Enzyme Shielding in a Large Mesoporous Hollow Silica Shell for Improved Recycling and Stability Based on CaCO ₃ Microtemplates and Biomimetic Silicification. Journal of Agricultural and Food Chemistry, 2017, 65, 3883-3890.	2.4	21
434	Immobilization of enzyme on chiral polyelectrolyte surface. Analytica Chimica Acta, 2017, 952, 88-95.	2.6	21
435	Synthesis, characterization and optimization of a two-step immobilized lipase. Renewable Energy, 2017, 103, 383-387.	4.3	22

#	Article	IF	CITATIONS
436	Synthesis and formulation of functional bionanomaterials with superoxide dismutase activity. Nanoscale, 2017, 9, 369-379.	2.8	42
437	Immobilized endo-xylanase of Aspergillus tamarii Kita: an interesting biological tool for production of xylooligosaccharides at high temperatures. Process Biochemistry, 2017, 53, 145-152.	1.8	24
438	Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzyme and Microbial Technology, 2017, 105, 24-29.	1.6	69
439	Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environmental Science and Pollution Research, 2017, 24, 17993-18009.	2.7	42
440	Enzymatic-photocatalytic synergetic effect on the decolorization of dyes by single chloroperoxidase molecule immobilization on TiO2 mesoporous thin film. Materials and Design, 2017, 129, 219-226.	3.3	9
441	Facile fabrication of 3D porous hybrid sphere by co-immobilization of multi-enzyme directly from cell lysates as an efficient and recyclable biocatalyst for asymmetric reduction with coenzyme regeneration in situ. International Journal of Biological Macromolecules, 2017, 103, 424-434.	3.6	17
442	Stereoselective biotransformation of racemic mandelic acid using immobilized laccase and (S)-mandelate dehydrogenase. Bioresources and Bioprocessing, 2017, 4, 2.	2.0	13
443	Coimmobilization of enzymes in bilayers using pei as a glue to reuse the most stable enzyme: Preventing pei release during inactivated enzyme desorption. Process Biochemistry, 2017, 61, 95-101.	1.8	47
444	Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochemical Engineering Journal, 2017, 125, 104-115.	1.8	79
445	Advances in biotechnological synthetic applications of carbon nanostructured systems. Journal of Materials Chemistry B, 2017, 5, 6490-6510.	2.9	21
446	Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chemical Communications, 2017, 53, 6207-6210.	2.2	47
447	Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst. New Journal of Chemistry, 2017, 41, 6089-6097.	1.4	22
448	Directed immobilization of CGTase: The effect of the enzyme orientation on the enzyme activity and its use in packed-bed reactor for continuous production of cyclodextrins. Process Biochemistry, 2017, 58, 120-127.	1.8	22
449	An Enzymatic Ethanol Biosensor and Ethanol/Air Biofuel Cell Using Liquid-Crystalline Cubic Phases as Hosting Matrices to Co-Entrap Enzymes and Mediators. Journal of the Electrochemical Society, 2017, 164, G82-G86.	1.3	7
450	Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4. International Journal of Biological Macromolecules, 2017, 104, 322-332.	3.6	17
451	Immobilization of Candida antarctic Lipase B on Functionalized Ionic Liquid Modified MWNTs. Applied Biochemistry and Biotechnology, 2017, 183, 807-819.	1.4	13
452	Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device. Analytical and Bioanalytical Chemistry, 2017, 409, 3573-3585.	1.9	19
453	Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel, 2017, 200, 1-10.	3.4	118

#	Article	IF	CITATIONS
454	A Flexible Method for the Stable, Covalent Immobilization of Enzymes at Electrode Surfaces. ChemElectroChem, 2017, 4, 1528-1534.	1.7	48
455	Stabilization of ficin extract by immobilization on glyoxyl agarose. Preliminary characterization of the biocatalyst performance in hydrolysis of proteins. Process Biochemistry, 2017, 58, 98-104.	1.8	54
456	Effects of immobilization, pH and reaction time in the modulation of α-, β- or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process. Carbohydrate Polymers, 2017, 169, 41-49.	5.1	16
457	Biosensor for detection of dissolved chromium in potable water: A review. Biosensors and Bioelectronics, 2017, 94, 589-604.	5.3	108
458	Support engineering: relation between development of new supports for immobilization of lipases and their applications. Biotechnology Research and Innovation, 2017, 1, 26-34.	0.3	36
459	Co-localization of proteins with defined sequential order and controlled stoichiometric ratio on magnetic nanoparticles. Nanoscale, 2017, 9, 4397-4400.	2.8	7
460	An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases. Molecular Biotechnology, 2017, 59, 98-116.	1.3	39
461	Biomedical and Catalytic Opportunities of Virus-Like Particles in Nanotechnology. Advances in Virus Research, 2017, 97, 1-60.	0.9	82
462	Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained from agricultural waste. RSC Advances, 2017, 7, 16460-16466.	1.7	34
463	A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application. International Journal of Biological Macromolecules, 2017, 95, 650-657.	3.6	35
464	Preparation of spherical cross-linked lipase aggregates with improved activity, stability and reusability characteristic in water-in-ionic liquid microemulsion. Journal of Chemical Technology and Biotechnology, 2017, 92, 1785-1793.	1.6	35
465	Highly Active Nanobiocatalyst from Lipase Noncovalently Immobilized on Multiwalled Carbon Nanotubes for Baeyer–Villiger Synthesis of Lactones. ACS Sustainable Chemistry and Engineering, 2017, 5, 1685-1691.	3.2	55
466	Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. Materials Science and Engineering C, 2017, 73, 417-424.	3.8	32
467	Encapsulation of Spherical Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Mesoporous Biosilica. Journal of Agricultural and Food Chemistry, 2017, 65, 618-625.	2.4	40
468	Effect of protein load on stability of immobilized enzymes. Enzyme and Microbial Technology, 2017, 98, 18-25.	1.6	176
469	Tuneable 3D printed bioreactors for transaminations under continuous-flow. Green Chemistry, 2017, 19, 5345-5349.	4.6	63
470	Enzymatic Catalysis at Nanoscale: Enzyme-Coated Nanoparticles as Colloidal Biocatalysts for Polymerization Reactions. ACS Omega, 2017, 2, 7305-7312.	1.6	30
471	Green enzymatic production of glyceryl monoundecylenate using immobilized <i>Candida antarctica</i> lipase B. Preparative Biochemistry and Biotechnology, 2017, 47, 1050-1058.	1.0	9

#	Article	IF	CITATIONS
472	Immobilization ofCandida antarcticaLipase B Onto ECR1030 Resin and its Application in the Synthesis of n-3 PUFA-Rich Triacylglycerols. European Journal of Lipid Science and Technology, 2017, 119, 1700266.	1.0	10
473	Heterogeneous Systems Biocatalysis: The Path to the Fabrication of Selfâ€&ufficient Artificial Metabolic Cells. Chemistry - A European Journal, 2017, 23, 17841-17849.	1.7	40
474	Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 2017, 352, 249-263.	9.5	194
475	A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Advances, 2017, 7, 48199-48207.	1.7	21
476	Chitosan-glutaraldehyde activated calcium pectinate beads as a covalent immobilization support. Biocatalysis and Agricultural Biotechnology, 2017, 12, 266-274.	1.5	13
477	Improving the catalytic characteristics of lipase-displaying yeast cells by hydrophobic modification. Bioprocess and Biosystems Engineering, 2017, 40, 1689-1699.	1.7	20
478	Effects of methanol and enzyme pretreatment to Ceiba pentandra biodiesel production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 1548-1555.	1.2	9
479	Kinetic Analysis of Enzymes Immobilized in Porous Film Arrays. Analytical Chemistry, 2017, 89, 10311-10320.	3.2	22
480	Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances. Molecular Catalysis, 2017, 442, 66-73.	1.0	95
481	In situ hybridization of enzymes and their metal–organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale, 2017, 9, 15298-15302.	2.8	55
482	Immobilized enzymes: understanding enzyme – surface interactions at the molecular level. Organic and Biomolecular Chemistry, 2017, 15, 9539-9551.	1.5	134
483	Asymmetric Reduction of Prochiral Ketones by Using Self‣ufficient Heterogeneous Biocatalysts Based on NADPHâ€Dependent Ketoreductases. Chemistry - A European Journal, 2017, 23, 16843-16852.	1.7	61
484	Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chemistry, 2017, 19, 4900-4911.	4.6	83
485	Agar-carrageenan hydrogel blend as a carrier for the covalent immobilization of β-D-galactosidase. Macromolecular Research, 2017, 25, 913-923.	1.0	30
486	Improved performance of immobilized lipase by interfacial activation on Fe ₃ O ₄ @PVBC nanoparticles. RSC Advances, 2017, 7, 35169-35174.	1.7	27
487	Development of a thiolâ€ene based screening platform for enzyme immobilization demonstrated using horseradish peroxidase. Biotechnology Progress, 2017, 33, 1267-1277.	1.3	9
488	Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor. International Journal of Biological Macromolecules, 2017, 105, 693-701.	3.6	49
489	Nitrilotriacetic Amine-Functionalized Polymeric Core–Shell Nanoparticles as Enzyme Immobilization Supports. Biomacromolecules, 2017, 18, 2777-2788.	2.6	31

#	Article	IF	CITATIONS
490	Porous chitosan beads of superior mechanical properties for the covalent immobilization of enzymes. International Journal of Biological Macromolecules, 2017, 105, 894-904.	3.6	46
491	High yield preparation of uniform polyurea microspheres through precipitation polymerization and their application as laccase immobilization support. Chemical Engineering Journal, 2017, 328, 1043-1050.	6.6	42
492	Toward Rational Design of High-efficiency Enzyme Cascades. ACS Catalysis, 2017, 7, 6018-6027.	5.5	156
493	Effect of feather meal as proteic feeder on combi-CLEAs preparation for grape juice clarification. Process Biochemistry, 2017, 62, 122-127.	1.8	18
494	Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. Journal of Materials Chemistry B, 2017, 5, 7461-7490.	2.9	228
495	Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. Scientific Reports, 2017, 7, 16473.	1.6	42
496	SnO2 hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Scientific Reports, 2017, 7, 15333.	1.6	61
497	Thermal Stabilization of Enzymes with Molecular Brushes. ACS Catalysis, 2017, 7, 8675-8684.	5.5	20
498	Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme and Microbial Technology, 2017, 106, 67-74.	1.6	63
499	A sensitive and real-time assay of restriction endonuclease activity and inhibition based on photo-induced electron transfer. Sensors and Actuators B: Chemical, 2017, 252, 477-482.	4.0	6
500	Sucrose hydrolysis by invertase immobilized on Duolite A-568 employing a packed-bed reactor. Chemical Engineering Communications, 2017, 204, 1007-1019.	1.5	8
501	Effect of Surface Crowding and Surface Hydrophilicity on the Activity, Stability and Molecular Orientation of a Covalently Tethered Enzyme. Langmuir, 2017, 33, 7152-7159.	1.6	28
502	Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst. Chemical Engineering Journal, 2017, 327, 1192-1197.	6.6	62
503	Achieving efficient room-temperature catalytic H2 evolution from formic acid through atomically controlling the chemical environment of bimetallic nanoparticles immobilized by isoreticular amine-functionalized metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 460-469.	10.8	62
504	Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe ₃ O ₄ @KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. New Journal of Chemistry, 2017, 41, 8222-8231.	1.4	33
505	Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas–Solid–Liquid Interfaces and Controlled Wettability. Journal of the American Chemical Society, 2017, 139, 10441-10446.	6.6	72
506	Preserving enzymatic activity and enhancing biochemical stability of glutathione transferase by soluble additives under free and tethered conditions. Biotechnology and Applied Biochemistry, 2017, 64, 754-764.	1.4	7
507	Microenvironmental pH changes in immobilized cephalosporin C acylase during a proton-producing reaction and regulation by a two-stage catalytic process. Bioresource Technology, 2017, 223, 157-165.	4.8	18

#	Article	IF	CITATIONS
508	A study on composite catalytic membrane manufacturing based on sodium alginate and lipase to be used in a pervaporation reactor. Research on Chemical Intermediates, 2017, 43, 1149-1163.	1.3	5
509	Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of Î ² -sitosterol. Steroids, 2017, 117, 38-43.	0.8	9
510	Structured interlocked-microcapsules: A novel scaffold for enzyme immobilization. Catalysis Communications, 2017, 88, 35-38.	1.6	13
511	Immobilization of recombinant pectate lyase from <scp><i>C</i></scp> <i>lostridium thermocellum</i> ATCCâ€27405 on magnetic nanoparticles for bioscouring of cotton fabric. Biotechnology Progress, 2017, 33, 236-244.	1.3	15
512	Vmh2 hydrophobin as a tool for the development of "selfâ€immobilizing―enzymes for biosensing. Biotechnology and Bioengineering, 2017, 114, 46-52.	1.7	36
513	Decorating outer membrane vesicles with organophosphorus hydrolase and cellulose binding domain for organophosphate pesticide degradation. Chemical Engineering Journal, 2017, 308, 1-7.	6.6	39
514	Enzymatic production of 5′-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae. Food Chemistry, 2017, 216, 275-281.	4.2	8
515	Enzyme-functionalized DNA nanostructures as tools for organizing and controlling enzymatic reactions. MRS Bulletin, 2017, 42, 920-924.	1.7	24
516	A mild and efficient Dakin reaction mediated by lipase. Green Chemistry Letters and Reviews, 2017, 10, 269-273.	2.1	14
517	Immobilization of <i>Thermomyces lanuginosus</i> lipase on multi-walled carbon nanotubes and its application in the hydrolysis of fish oil. Materials Research Express, 2017, 4, 125402.	0.8	14
518	Lipase B from Candida antarctica Immobilized on a Silica-Lignin Matrix as a Stable and Reusable Biocatalytic System. Catalysts, 2017, 7, 14.	1.6	36
519	Immobilization of Cellulase on a Functional Inorganic–Organic Hybrid Support: Stability and Kinetic Study. Catalysts, 2017, 7, 374.	1.6	46
520	Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites. Molecules, 2017, 22, 91.	1.7	49
521	Novel Magnetic Cross-Linked Cellulase Aggregates with a Potential Application in Lignocellulosic Biomass Bioconversion. Molecules, 2017, 22, 269.	1.7	82
522	Prevention of Bacterial Contamination of a Silica Matrix Containing Entrapped Î ² -Galactosidase through the Action of Covalently Bound Lysozymes. Molecules, 2017, 22, 377.	1.7	15
523	New Heterofunctional Supports Based on Glutaraldehyde-Activation: A Tool for Enzyme Immobilization at Neutral pH. Molecules, 2017, 22, 1088.	1.7	39
524	Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads. Molecules, 2017, 22, 2165.	1.7	63
525	Microbial Production of Added-Value Ingredients: State of the Art. , 2017, , 1-32.		2

#	Article	IF	CITATIONS
526	Chitosan–Collagen Coated Magnetic Nanoparticles for Lipase Immobilization—New Type of "Enzyme Friendly―Polymer Shell Crosslinking with Squaric Acid. Catalysts, 2017, 7, 26.	1.6	41
527	Lipase-Catalyzed Synthesis of Indolyl 4H-Chromenes via a Multicomponent Reaction in Ionic Liquid. Catalysts, 2017, 7, 185.	1.6	24
528	Formulation of Laccase Nanobiocatalysts Based on Ionic and Covalent Interactions for the Enhanced Oxidation of Phenolic Compounds. Applied Sciences (Switzerland), 2017, 7, 851.	1.3	14
529	Immobilization of Lipases on Magnetic Collagen Fibers and Its Applications for Short-Chain Ester Synthesis. Catalysts, 2017, 7, 178.	1.6	16
530	Exploiting the Versatility of Aminated Supports Activated with Glutaraldehyde to Immobilize β-galactosidase from Aspergillus oryzae. Catalysts, 2017, 7, 250.	1.6	53
531	A Novel Oxidation of Salicyl Alcohols Catalyzed by Lipase. Catalysts, 2017, 7, 354.	1.6	9
532	Aminated Single-walled Carbon Nanotubes as Carrier for Covalent Immobilization of Phenylalanine Ammonia-lyase. Periodica Polytechnica: Chemical Engineering, 2017, 61, 59.	0.5	13
533	Approaching Immobilization of Enzymes onto Open Porous Basotect®. Catalysts, 2017, 7, 359.	1.6	3
534	Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling. Molecules, 2017, 22, 179.	1.7	37
535	Lipase-Mediated Amidation of Anilines with 1,3-Diketones via C–C Bond Cleavage. Catalysts, 2017, 7, 115.	1.6	12
536	Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil. Molecules, 2017, 22, 1508.	1.7	16
537	Enzyme Armoring by an Organosilica Layer. Methods in Enzymology, 2017, 590, 77-91.	0.4	2
538			
	A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules, 2018, 19, 1065-1073.	2.6	18
539	A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules, 2018, 19, 1065-1073. Comparison of the influence of pH on the selectivity of free and immobilized trypsin for Î ² -lactoglobulin hydrolysis. Food Chemistry, 2018, 253, 194-202.	2.6 4.2	18 19
539 540	A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules, 2018, 19, 1065-1073.Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Food Chemistry, 2018, 253, 194-202.Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Research, 2018, 11, 4380-4389.	2.6 4.2 5.8	18 19 45
539 540 541	A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules, 2018, 19, 1065-1073.Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Food Chemistry, 2018, 253, 194-202.Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Research, 2018, 11, 4380-4389.Fabrication of a nano-biocatalyst for regioselective acylation of arbutin. Green Chemistry Letters and Reviews, 2018, 11, 55-61.	2.6 4.2 5.8 2.1	18 19 45 12
539 540 541 542	A Versatile and Robust Approach to Stimuli-Responsive Protein Multilayers with Biologically Enabled Unique Functions. Biomacromolecules, 2018, 19, 1065-1073.Comparison of the influence of pH on the selectivity of free and immobilized trypsin for I²-lactoglobulin hydrolysis. Food Chemistry, 2018, 253, 194-202.Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Research, 2018, 11, 4380-4389.Fabrication of a nano-biocatalyst for regioselective acylation of arbutin. Green Chemistry Letters and Reviews, 2018, 11, 55-61.A Portable Nitrate Biosensing Device Using Electrochemistry and Spectroscopy. IEEE Sensors Journal, 2018, 18, 3080-3089.	2.6 4.2 5.8 2.1 2.4	18 19 45 12 40

#	Article	IF	CITATIONS
544	Enzymatic synthesis of structured lipids from liquid and fully hydrogenated high oleic sunflower oil. International Journal of Food Properties, 2018, 21, 702-716.	1.3	7
545	Self Assembly through Sonication: An Expeditious and Green Approach for the Synthesis of Organicâ€Inorganic Hybrid Nanopetals and their Application as Biocatalyst. ChemNanoMat, 2018, 4, 670-681.	1.5	4
546	Improvement of functional properties of a thermostable βâ€glycosidase for milk lactose hydrolysis. Biopolymers, 2018, 109, e23118.	1.2	3
547	Enzymatic production of natural sweetener trilobatin from citrus flavanone naringin using immobilised αâ€ <scp>l</scp> â€rhamnosidase as the catalyst. International Journal of Food Science and Technology, 2018, 53, 2097-2103.	1.3	14
548	Comparative study of stirred and fluidized tank reactor for hydroxyl-kojic acid derivatives synthesis and their biological activities. Biyokimya Dergisi, 2018, 43, 205-219.	0.1	7
549	Enantioselective Formation of 2â€Azetidinones by Ringâ€Assisted Cyclization of Interlocked <i>N</i> â€(αâ€Methyl)benzyl Fumaramides. Angewandte Chemie - International Edition, 2018, 57, 6563-6567.	7.2	37
550	Enantioselective Formation of 2â€Azetidinones by Ringâ€Assisted Cyclization of Interlocked <i>N</i> â€{αâ€Methyl)benzyl Fumaramides. Angewandte Chemie, 2018, 130, 6673-6677.	1.6	19
551	Immobilized lipase catalyzed synthesis of <i>n</i> â€amyl acetate: parameter optimization, heterogeneous kinetics, continuous flow operation and reactor modeling. Journal of Chemical Technology and Biotechnology, 2018, 93, 2906-2916.	1.6	10
552	Improving reuse cycles of <i>Thermomyces lanuginosus</i> lipase (NS-40116) by immobilization in flexible polyurethane. Biocatalysis and Biotransformation, 2018, 36, 372-380.	1.1	25
553	Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. International Journal of Biological Macromolecules, 2018, 114, 306-316.	3.6	41
554	Using factorial experimental design to optimize biocatalytic biodiesel production from Mucor Miehei Lipase immobilized onto ordered mesoporous materials. Microporous and Mesoporous Materials, 2018, 268, 39-45.	2.2	19
555	Controlling enzyme function through immobilisation on graphene, graphene derivatives and other two dimensional nanomaterials. Journal of Materials Chemistry B, 2018, 6, 3200-3218.	2.9	49
556	Whey protein isolate for the preparation of covalent immobilization beads. Biocatalysis and Agricultural Biotechnology, 2018, 14, 328-337.	1.5	11
557	Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification. International Journal of Biological Macromolecules, 2018, 115, 35-44.	3.6	55
558	Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. New Journal of Chemistry, 2018, 42, 8458-8468.	1.4	20
559	Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability. Journal of Colloid and Interface Science, 2018, 524, 114-121.	5.0	23
560	Covalently immobilized Trp60Cys mutant of ω-transaminase from Chromobacterium violaceum for kinetic resolution of racemic amines in batch and continuous-flow modes. Biochemical Engineering Journal, 2018, 132, 270-278.	1.8	29
561	Different organic components on silica hybrid matrices modulate the lipase inhibition by the glycerol formed in continuous transesterification reactions. Journal of Industrial and Engineering Chemistry, 2018, 62, 462-470.	2.9	27

#	Article	IF	CITATIONS
562	Highly enhancing the characteristics of immobilized thermostable Î ² -glucosidase by Zn2+. Process Biochemistry, 2018, 66, 89-96.	1.8	10
563	Novel approaches to immobilize <i>Candida rugosa</i> lipase on nanocomposite membranes prepared by covalent attachment of magnetic nanoparticles on poly acrylonitrile membrane. RSC Advances, 2018, 8, 4561-4570.	1.7	20
564	Hyper-activation of ß-galactosidase from Aspergillus oryzae via immobilization onto amino-silane and chitosan magnetic maghemite nanoparticles. Journal of Cleaner Production, 2018, 179, 225-234.	4.6	24
565	Ultrasensitive Single-Molecule Enzyme Detection and Analysis Using a Polymer Microarray. Analytical Chemistry, 2018, 90, 3091-3098.	3.2	18
566	Preparation of porous hollow Fe3O4/P(GMA–DVB–St) microspheres and application for lipase immobilization. Bioprocess and Biosystems Engineering, 2018, 41, 771-779.	1.7	6
567	Development of novel delivery system for nanoencapsulation of catalase: formulation, characterization, and <i>in vivo</i> evaluation using oxidative skin injury model. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 362-371.	1.9	18
568	Rapid, selective and stable HaloTag- <i>Lb</i> ADH immobilization directly from crude cell extract for the continuous biocatalytic production of chiral alcohols and epoxides. Reaction Chemistry and Engineering, 2018, 3, 8-12.	1.9	35
569	Biotechnological Applications of Proteases in Food Technology. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 412-436.	5.9	183
570	Lipase Regioselective <i>O</i> â€Acetylations of a <i>myo</i> â€Inositol Derivative: Efficient Desymmetrization of 1,3â€Diâ€ <i>O</i> â€benzylâ€ <i>myo</i> â€inositol. European Journal of Organic Chemistry, 2018, 2018, 386-391.	1.2	10
571	One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. Journal of Biotechnology, 2018, 266, 1-8.	1.9	28
572	Stabilization of dimeric β-glucosidase from Aspergillu s nige r via glutaraldehyde immobilization under different conditions. Enzyme and Microbial Technology, 2018, 110, 38-45.	1.6	77
573	Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel, 2018, 215, 705-713.	3.4	113
574	Immobilization of Candida rugosa lipase onto graphene oxide Fe 3 O 4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 2018, 159, 42-53.	4.4	261
575	Layer-by-layer assembly of brushes of vertically-standing enzymatic nanotubes. Journal of Colloid and Interface Science, 2018, 514, 592-598.	5.0	7
576	Covalently Immobilized Lipase on a Thermoresponsive Polymer with an Upper Critical Solution Temperature as an Efficient and Recyclable Asymmetric Catalyst in Aqueous Media. ChemCatChem, 2018, 10, 1166-1172.	1.8	21
577	Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresource Technology, 2018, 252, 72-75.	4.8	125
578	Protection of Opening Lids: Very High Catalytic Activity of Lipase Immobilized on Core–Shell Nanoparticles. Macromolecules, 2018, 51, 289-296.	2.2	21
579	Efficient fructose production from plant extracts by immobilized inulinases from Kluyveromyces marxianus and Helianthus tuberosus. International Journal of Biological Macromolecules, 2018, 115, 829-834.	3.6	16

#	Article	IF	CITATIONS
580	Modification of Immobead 150 support for protein immobilization: Effects on the properties of immobilized <i>Aspergillus oryzae</i> βâ€galactosidase. Biotechnology Progress, 2018, 34, 934-943.	1.3	17
581	A novel step towards immobilization of biocatalyst using agro waste and its application for ester synthesis. International Journal of Biological Macromolecules, 2018, 117, 366-376.	3.6	12
582	1,3â€Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnology Progress, 2018, 34, 910-920.	1.3	27
583	Novel In Situ Magnetic Separator for Magnetic Particleâ€Based Enzyme Purification or Biocatalysis. Chemie-Ingenieur-Technik, 2018, 90, 358-365.	0.4	Ο
584	Orientation of a Trametes versicolor laccase on amorphous carbon nitride coated graphite electrodes for improved electroreduction of dioxygen to water. Electrochimica Acta, 2018, 277, 255-267.	2.6	5
585	Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. International Journal of Biological Macromolecules, 2018, 116, 182-193.	3.6	60
586	<i>Thermomyces lanuginosus</i> lipase immobilized on magnetic nanoparticles and its application in the hydrolysis of fish oil. Journal of Food Biochemistry, 2018, 42, e12549.	1.2	17
587	Coordination of GMP ligand with Cu to enhance the multiple enzymes stability and substrate specificity by co-immobilization process. Biochemical Engineering Journal, 2018, 136, 102-108.	1.8	31
588	Immobilization of alcohol dehydrogenase on ceramic silicon carbide membranes for enzymatic CH ₃ OH production. Journal of Chemical Technology and Biotechnology, 2018, 93, 2952-2961.	1.6	18
589	Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis, 2018, 449, 106-113.	1.0	8
590	Kinetic resolution of drug intermediates catalyzed by lipase B from <i>Candida antarctica</i> i>immobilized on immobeadâ€350. Biotechnology Progress, 2018, 34, 878-889.	1.3	104
591	Prominent Study on Surface Properties and Diffusion Coefficient of Urease-Conjugated Magnetite Nanoparticles. Applied Biochemistry and Biotechnology, 2018, 186, 174-185.	1.4	14
592	Processed gellan gum beads as covalent immobilization carriers. Biocatalysis and Agricultural Biotechnology, 2018, 14, 270-278.	1.5	14
593	Stabilization of Lipase in Polymerized High Internal Phase Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 3619-3623.	2.4	11
594	Efficient gamma-aminobutyric acid bioconversion by engineered <i>Escherichia coli</i> . Biotechnology and Biotechnological Equipment, 2018, 32, 566-573.	0.5	5
595	Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. International Journal of Biological Macromolecules, 2018, 114, 106-113.	3.6	65
596	Melting proteins confined in nanodroplets with 10.6 $\hat{1}$ /4m light provides clues about early steps of denaturation. Chemical Communications, 2018, 54, 3270-3273.	2.2	18
597	Sequential reactors for the removal of endocrine disrupting chemicals by laccase immobilized onto fumed silica microparticles. Biocatalysis and Biotransformation, 2018, 36, 254-264.	1.1	14

#	Article	IF	CITATIONS
598	Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification. Trends in Biotechnology, 2018, 36, 73-88.	4.9	237
599	Singleâ€Particle Studies to Advance the Characterization of Heterogeneous Biocatalysts. ChemCatChem, 2018, 10, 654-665.	1.8	20
600	A new heterofunctional amino-vinyl sulfone support to immobilize enzymes: Application to the stabilization of β-galactosidase from A spergillus oryzae. Process Biochemistry, 2018, 64, 200-205.	1.8	36
601	Selective synthesis of partial glycerides of conjugated linoleic acids via modulation of the catalytic properties of lipases by immobilization on different supports. Food Chemistry, 2018, 245, 39-46.	4.2	29
602	Hydrogenâ€Borrowing Alcohol Bioamination with Coimmobilized Dehydrogenases. ChemCatChem, 2018, 10, 731-735.	1.8	56
603	Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering Journal, 2018, 334, 760-767.	6.6	27
604	β-galactosidase covalent immobilization over large-pore mesoporous silica supports for the production of high galacto-oligosaccharides (GOS). Microporous and Mesoporous Materials, 2018, 257, 51-61.	2.2	30
605	Experimental and computational evaluation of area selectively immobilized horseradish peroxidase in a microfluidic device. Chemical Engineering Journal, 2018, 332, 16-23.	6.6	13
606	Lipase immobilization on functionalized mesoporous TiO 2 : Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochemistry, 2018, 64, 152-159.	1.8	37
607	Analysis of Aspergillus sp. lipase immobilization for the application in organic synthesis. International Journal of Biological Macromolecules, 2018, 108, 1165-1175.	3.6	23
608	Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. Water Science and Technology, 2018, 77, 809-818.	1.2	37
609	Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. Journal of Colloid and Interface Science, 2018, 514, 102-107.	5.0	67
610	Sodium bicarbonateâ€gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes. Biotechnology Progress, 2018, 34, 347-361.	1.3	17
611	Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. International Journal of Biological Macromolecules, 2018, 108, 674-686.	3.6	61
612	Simplified immobilisation method for histidine-tagged enzymes in poly(methyl methacrylate) microfluidic devices. New Biotechnology, 2018, 47, 31-38.	2.4	27
613	Effect of immobilization site on the orientation and activity of surface-tethered enzymes. Physical Chemistry Chemical Physics, 2018, 20, 1021-1029.	1.3	43
614	Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater. International Journal of Environmental Science and Technology, 2018, 15, 2203-2212.	1.8	28
615	Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis. ACS Nano, 2018, 12, 942-953.	7.3	86

#	Article	IF	CITATIONS
616	Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes. Chemical Engineering Journal, 2018, 336, 152-159.	6.6	73
617	Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydrate Polymers, 2018, 182, 245-253.	5.1	48
618	Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: Hydrolysis of triacylglycerol and soy lecithin. Process Biochemistry, 2018, 65, 71-80.	1.8	30
619	Production of Hydroxynitrile Lyase from <i>Davallia tyermannii</i> (<i>Dt</i> HNL) in <i>Komagataella phaffii</i> and Its Immobilization as a CLEA to Generate a Robust Biocatalyst. ChemBioChem, 2018, 19, 312-316.	1.3	12
620	Isolation and characterization of a novel tyrosinase produced by Sahara soil actinobacteria and immobilization on nylon nanofiber membranes. Journal of Biotechnology, 2018, 265, 54-64.	1.9	27
621	Immobilization of horseradish peroxidase on electrospun poly(vinyl alcohol)–polyacrylamide blend nanofiber membrane and its use in the conversion of phenol. Polymer Bulletin, 2018, 75, 1843-1865.	1.7	43
622	Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads. Applied Biochemistry and Biotechnology, 2018, 184, 538-552.	1.4	60
623	Efficient Physisorption of Candida Antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis. Catalysts, 2018, 8, 369.	1.6	19
624	Study on immobilization of papain with magnetic porous alginate microspheres. IOP Conference Series: Materials Science and Engineering, 0, 397, 012031.	0.3	2
625	Carrier-Free Enzyme Immobilization by Cross-Linked Enzyme Aggregates (CLEA) Technology. , 2018, , 93-107.		1
626	A Middle-Aged Enzyme Still in Its Prime: Recent Advances in the Field of Cutinases. Catalysts, 2018, 8, 612.	1.6	60
627	Further Stabilization of Alcalase Immobilized on Glyoxyl Supports: Amination Plus Modification with Glutaraldehyde. Molecules, 2018, 23, 3188.	1.7	17
628	Multifaceted Protocol in Biotechnology. , 2018, , .		2
629	Characterization of immobilized tyrosinase – an enzyme that is stable in organic solvent at 100 °C. RSC Advances, 2018, 8, 39529-39535.	1.7	7
630	Sustainable synthesis and precise characterisation of bio-based star polycaprolactone synthesised with a metal catalyst and with lipase. Polymer Chemistry, 2018, 9, 5594-5607.	1.9	21
631	Novozym 40086 as a novel biocatalyst to improve benzyl cinnamate synthesis. RSC Advances, 2018, 8, 37184-37192.	1.7	14
632	New insights into the structure–performance relationships of mesoporous materials in analytical science. Chemical Society Reviews, 2018, 47, 8766-8803.	18.7	136
633	EFFECT OF REACTION CONDITIONS ON THE SYNTHESIS OF CYCLODEXTRIN (CD) BY USING IMMOBILIZED ENZYME. Jurnal Teknologi (Sciences and Engineering), 2018, 80, .	0.3	0
#	Article	IF	CITATIONS
-----	--	-----	-----------
634	How Do Enzymes Orient When Trapped on Metal–Organic Framework (MOF) Surfaces?. Journal of the American Chemical Society, 2018, 140, 16032-16036.	6.6	138
635	Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties. Molecules, 2018, 23, 2993.	1.7	45
636	Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catalysis, 2018, 8, 12004-12014.	5.5	42
637	Lipase B from Candida antarctica Immobilized on Epoxy-functionalized Hollow Silica Microspheres: Efficient Biocatalysts for Enantiomer Selective Acylation of Alcohols and Amines. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	0.5	7
638	Immobilization of Eversa Lipase on Octyl Agarose Beads and Preliminary Characterization of Stability and Activity Features. Catalysts, 2018, 8, 511.	1.6	49
639	Chemoselective Acetylation of 2-Aminophenol Using Immobilized Lipase: Process Optimization, Mechanism, and Kinetics. ACS Omega, 2018, 3, 18528-18534.	1.6	8
640	Chemoenzymatic Dynamic Kinetic Resolution of Amines in Fully Continuous-Flow Mode. Organic Letters, 2018, 20, 8052-8056.	2.4	21
641	Review of Catalytic Transesterification Methods for Biodiesel Production. , 0, , .		24
642	Preparation of Magnetic Cross-Linked Amyloglucosidase Aggregates: Solving Some Activity Problems. Catalysts, 2018, 8, 496.	1.6	32
643	Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials. International Journal of Molecular Sciences, 2018, 19, 2896.	1.8	16
644	A Facile Route for Oriented Covalent Immobilization of Recombinant Protein A on Epoxy Agarose Gels: In Situ Generation of Heterofunctional Aminoâ€Epoxy Supports. ChemistrySelect, 2018, 3, 10320-10324.	0.7	5
645	Reversible Thermal Cycling of DNA Material for Efficient Cellulose Hydrolysis. ACS Applied Bio Materials, 2018, 1, 1118-1123.	2.3	3
646	Exploiting the Benefits of Homogeneous and Heterogeneous Biocatalysis: Tuning the Molecular Interaction of Enzymes with Solvents via Polymer Modification. ACS Catalysis, 2018, 8, 11579-11588.	5.5	11
647	Polyelectrolytes Tailored Enzyme Cascades with Enhanced Stability and Activity for Oneâ€pot Synthesis. ChemCatChem, 2018, 10, 5391-5396.	1.8	10
648	Lipase in biodiesel production. African Journal of Biochemistry Research, 2018, 12, 73-85.	0.2	6
649	Design of a New Multienzyme Complex Synthesis System Based on <i>Yarrowia lipolytica</i> Simultaneously Secreted and Surface Displayed Fusion Proteins for Sustainable Production of Fatty Acid-Derived Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 17035-17043.	3.2	22
650	Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresource Technology, 2018, 270, 377-382.	4.8	82
651	Lipase immobilization on high water adsorbing capacity bagasse: applications in bio-based plasticizer synthesis. Molecular Biology Reports, 2018, 45, 2095-2102.	1.0	2

#	Article	IF	CITATIONS
652	An Improved Method to Encapsulate Laccase from Trametes versicolor with Enhanced Stability and Catalytic Activity. Catalysts, 2018, 8, 286.	1.6	19
653	Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catalysis Science and Technology, 2018, 8, 5217-5224.	2.1	11
654	Expanding Application of Immobilized Candida Antarctica Lipase B: A Green Enzyme Catalyst for Knoevenagel Condensation Reaction. Fibers and Polymers, 2018, 19, 1611-1617.	1.1	11
655	Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules, 2018, 19, 4098-4112.	2.6	21
656	Immobilization of Candida antarctica Lipase B onto organically-modified SBA-15 for efficient production of soybean-based mono and diacylglycerols. International Journal of Biological Macromolecules, 2018, 120, 886-895.	3.6	24
657	Preparation and Evaluation of Coal Fly Ash/Chitosan Composites as Magnetic Supports for Highly Efficient Cellulase Immobilization and Cellulose Bioconversion. Polymers, 2018, 10, 523.	2.0	16
658	Novel amphiphilic polyvinylpyrrolidone functionalized silicone particles as carrier for low-cost lipase immobilization. Royal Society Open Science, 2018, 5, 172368.	1.1	16
659	Efficient Asymmetric Synthesis of Carbohydrates by Aldolase Nano-Confined in Lipidic Cubic Mesophases. ACS Catalysis, 2018, 8, 5810-5815.	5.5	28
660	Optimization of 2-alkoxyacetates as acylating agent for enzymatic kinetic resolution of chiral amines. Tetrahedron, 2018, 74, 3663-3670.	1.0	8
661	Synergistic Enhancement of Enzyme Performance and Resilience via Orthogonal Peptide–Protein Chemistry Enabled Multilayer Construction. Biomacromolecules, 2018, 19, 2700-2707.	2.6	7
662	Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coordination Chemistry Reviews, 2018, 370, 22-41.	9.5	162
663	Polydopamine tethered CPO/HRP-TiO2 nano-composites with high bio-catalytic activity, stability and reusability: Enzyme-photo bifunctional synergistic catalysis in water treatment. Chemical Engineering Journal, 2018, 347, 703-710.	6.6	44
664	Synthesis of functionalized 4H-Chromenes catalyzed by lipase immobilized on magnetic nanoparticles. Green Chemistry Letters and Reviews, 2018, 11, 246-253.	2.1	11
665	Quantitative Improvements and Insights into CALBâ€Catalyzed Resolution of trans ―and cis â€2â€Phenylcyclopropyl Azolides. ChemistrySelect, 2018, 3, 5353-5360.	0.7	2
666	Two-step enzymatic strategy for the synthesis of a smart phenolic polymer and further immobilization of a β-galactosidase able to catalyze transglycosydation reaction. International Journal of Biological Macromolecules, 2018, 117, 264-270.	3.6	6
667	Enzyme shielding by mesoporous organosilica shell on Fe3O4@silica yolk-shell nanospheres. International Journal of Biological Macromolecules, 2018, 117, 673-682.	3.6	41
668	Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme and Microbial Technology, 2018, 117, 45-55.	1.6	12
669	Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. Journal of Biotechnology, 2018, 280, 19-30.	1.9	32

#	Article	IF	Citations
670	Enhanced reusability and activity: DNA directed immobilization of enzyme on polydopamine modified magnetic nanoparticles. Biochemical Engineering Journal, 2018, 137, 108-115.	1.8	16
671	A Magnetic Heterogeneous Biocatalyst Composed of Immobilized Laccase and 2,2,6,6â€Tetramethylpiperidineâ€1â€oxyl (TEMPO) for Green Oneâ€Pot Cascade Synthesis of 2â€Substituted Benzimidazole and Benzoxazole Derivatives under Mild Reaction Conditions. Advanced Synthesis and Catalysis, 2018, 360, 3563-3571.	2.1	30
672	Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture. Biochemical Engineering Journal, 2018, 138, 1-11.	1.8	29
673	Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol. Journal of Biotechnology, 2018, 281, 67-73.	1.9	13
674	Preparation and characterization of cross-linked enzyme aggregates of dextransucrase from Leuconostoc mesenteroides B-512F. Process Biochemistry, 2018, 71, 101-108.	1.8	9
675	Silica encapsulated catalase@metal-organic framework composite: A highly stable and recyclable biocatalyst. Chemical Engineering Journal, 2018, 351, 506-514.	6.6	93
676	Decolorization of dyes by a novel sodium azide-resistant spore laccase from a halotolerant bacterium, Bacillus safensis sp. strain S31. Water Science and Technology, 2018, 77, 2867-2875.	1.2	32
677	Protease-based cross-linked enzyme aggregates with improved catalytic stability, silver removal, and dehairing potentials. International Journal of Biological Macromolecules, 2018, 118, 1247-1256.	3.6	31
678	Preparation of Functional Silica Using a Bioinspired Method. Journal of Visualized Experiments, 2018, ,	0.2	10
679	The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. International Journal of Biological Macromolecules, 2018, 119, 692-700.	3.6	31
680	Correlating Structural and Functional Heterogeneity of Immobilized Enzymes. ACS Nano, 2018, 12, 8091-8103.	7.3	38
681	Chitosan-alginate immobilized lipase based catalytic constructs: Development, characterization and potential applications. International Journal of Biological Macromolecules, 2018, 119, 992-1001.	3.6	19
682	Kinetic and thermodynamic features of nanomagnetic cross-linked enzyme aggregates of naringinase nanobiocatalyst in naringin hydrolysis. International Journal of Biological Macromolecules, 2018, 119, 717-725.	3.6	15
683	A tailorâ€made, selfâ€sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase. Biotechnology and Bioengineering, 2018, 115, 2416-2425.	1.7	27
684	Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of Biotechnology, 2018, 283, 81-96.	1.9	33
685	Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites. International Journal of Biological Macromolecules, 2018, 119, 624-632.	3.6	56
686	Lipase-mediated direct in situ ring-opening polymerization of ε-caprolactone formed by a chemo-enzymatic method. Journal of Biotechnology, 2018, 281, 74-80.	1.9	8
687	Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 105-118.	2.7	36

#	Article	IF	CITATIONS
688	Immobilization of cellulase on a core-shell structured metal-organic framework composites: Better inhibitors tolerance and easier recycling. Bioresource Technology, 2018, 268, 577-582.	4.8	86
689	Synthesis and continuous catalytic application of alkaline protease nanoflowers–PVA composite hydrogel. Catalysis Communications, 2018, 116, 5-9.	1.6	32
690	Facile immobilization of Pseudomonas fluorescens lipase on polyaniline nanofibers (PANFs-PFL): A route to develop robust nanobiocatalyst. International Journal of Biological Macromolecules, 2018, 119, 8-14.	3.6	9
691	Facile fabrication of a recyclable nanobiocatalyst: immobilization of <i>Burkholderia cepacia</i> lipase on carbon nanofibers for the kinetic resolution of a racemic atenolol intermediate. RSC Advances, 2018, 8, 27763-27774.	1.7	14
692	Chloroperoxidase-Mediated Halogenation of Selected Pharmaceutical Micropollutants. Catalysts, 2018, 8, 32.	1.6	18
693	Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses. Catalysts, 2018, 8, 149.	1.6	69
694	Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates. Catalysts, 2018, 8, 170.	1.6	27
695	One-Pot, One-Step Production of Dietary Nucleotides by Magnetic Biocatalysts. Catalysts, 2018, 8, 184.	1.6	15
696	Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by Entrapment in Polyvinyl Alcohol and Its Application to Neo-Fructooligosaccharides Production. Catalysts, 2018, 8, 201.	1.6	18
697	Designing Microreactors Resembling Cellular Microenvironment via Polyamine-Mediated Nanoparticle-Assembly for Tuning Glucose Oxidase Kinetics. Bioconjugate Chemistry, 2018, 29, 2586-2593.	1.8	6
698	Integrating Proteins in Layer-by-Layer Assemblies Independently of their Electrical Charge. ACS Nano, 2018, 12, 8372-8381.	7.3	44
699	Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochemical Engineering Journal, 2018, 138, 63-73.	1.8	27
700	An Ultrafast Sonochemical Strategy to Synthesize Lipaseâ€Manganese Phosphate Hybrid Nanoflowers with Promoted Biocatalytic Performance in the Kinetic Resolution of βâ€Aryloxyalcohols. ChemNanoMat, 2018, 4, 1007-1020.	1.5	15
701	Controllable Assembly of Flexible Protein Nanotubes for Loading Multifunctional Modules. ACS Applied Materials & Interfaces, 2018, 10, 25135-25145.	4.0	10
702	Multiscale immobilized lipase for rapid separation and continuous catalysis. New Journal of Chemistry, 2018, 42, 13471-13478.	1.4	18
703	Encapsulation and immobilization of ficin extract in electrospun polymeric nanofibers. International Journal of Biological Macromolecules, 2018, 118, 2287-2295.	3.6	22
704	Solid phase chemical modification of agarose glyoxyl-ficin: Improving activity and stability properties by amination and modification with glutaraldehyde. Process Biochemistry, 2018, 73, 109-116.	1.8	26
705	"Smart―chemistry and its application in peroxidase immobilization using different support materials. International Journal of Biological Macromolecules, 2018, 119, 278-290.	3.6	150

#	Article	IF	CITATIONS
706	Feruloyl esterase immobilization in mesoporous silica particles and characterization in hydrolysis and transesterification. BMC Biochemistry, 2018, 19, 1.	4.4	44
707	Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochemistry, 2018, 73, 65-73.	1.8	39
708	Relieving Allosteric Inhibition by Designing Active Inclusion Bodies and Coating of the Inclusion Bodies with Fe ₃ O ₄ Nanomaterials for Sustainable 2-Oxobutyric Acid Production. ACS Catalysis, 2018, 8, 8889-8901.	5.5	12
709	Enzyme–Nanowire Mesocrystal Hybrid Materials with an Extremely High Biocatalytic Activity. Nano Letters, 2018, 18, 5919-5926.	4.5	31
710	A versatile strategy for enzyme immobilization: Fabricating lipase/inorganic hybrid nanostructures on macroporous resins with enhanced catalytic properties. Biochemical Engineering Journal, 2018, 139, 101-108.	1.8	32
712	Pilotâ€scale development of core–shell polymer supports for the immobilization of recombinant lipase B from <i>Candida antarctica</i> and their application in the production of ethyl esters from residual fatty acids. Journal of Applied Polymer Science, 2018, 135, 46727.	1.3	30
713	Oriented covalent immobilization of recombinant protein A on the glutaraldehyde activated agarose support. International Journal of Biological Macromolecules, 2018, 120, 100-108.	3.6	22
714	Effect of particle size and enzyme load on the simultaneous reactions of lactose hydrolysis and transgalactosylation with glyoxyl-agarose immobilized β-galactosidase from Aspergillus oryzae. Process Biochemistry, 2018, 73, 56-64.	1.8	19
715	Controlled manipulation of enzyme specificity through immobilization-induced flexibility constraints. Applied Catalysis A: General, 2018, 565, 59-67.	2.2	24
716	Lipases as Biocatalyst for Biodiesel Production. Methods in Molecular Biology, 2018, 1835, 377-390.	0.4	11
717	Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study. Molecules, 2018, 23, 501.	1.7	15
718	Polydopamine grafted on an advanced Fe3O4/lignin hybrid material and its evaluation in biosensing. Applied Surface Science, 2018, 455, 455-464.	3.1	49
719	Nano-magnetic cross-linked enzyme aggregates of naringinase an efficient nanobiocatalyst for naringin hydrolysis. International Journal of Biological Macromolecules, 2018, 117, 134-143.	3.6	22
720	Cross-linked cytochrome P450 BM3 aggregates promoted by Ru(II)-diimine complexes bearing aldehyde groups. Journal of Inorganic Biochemistry, 2018, 186, 130-134.	1.5	8
721	Enzymatic Synthesis of Glycerol Carbonate Using a Lipase Immobilized on Magnetic Organosilica Nanoflowers as a Catalyst. ACS Omega, 2018, 3, 6642-6650.	1.6	48
722	Immobilization of trypsin onto Fe3O4@SiO2 –NH2 and study of its activity and stability. Colloids and Surfaces B: Biointerfaces, 2018, 170, 553-562.	2.5	71
723	Continuous flow biocatalysis. Chemical Society Reviews, 2018, 47, 5891-5918.	18.7	258

#	ARTICLE	IF	CITATIONS
725	Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renewable Energy, 2019, 130, 574-581.	4.3	57
726	Lipaseâ€catalyzed hydrolysis of (<i>+</i> , <i>â€</i>)â€2â€(4â€methylphenyl) propionic methyl ester enhanced by hydroxypropylâ€ <i>l²</i> â€cyclodextrin. Journal of Chemical Technology and Biotechnology, 2019, 94, 147-158.	1.6	10
727	Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects. Journal of Colloid and Interface Science, 2019, 533, 1-8.	5.0	18
728	β-Agarase immobilized on tannic acid-modified Fe3O4 nanoparticles for efficient preparation of bioactive neoagaro-oligosaccharide. Food Chemistry, 2019, 272, 586-595.	4.2	30
729	Immobilization of Lipase A from Candida antarctica onto Chitosan-Coated Magnetic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 4018.	1.8	86
730	One-Step Fabrication of Enzyme-Immobilized Reusable Polymerized Microcapsules from Microfluidic Droplets. ACS Omega, 2019, 4, 13790-13794.	1.6	8
731	Combi-CLEAs of Glucose Oxidase and Catalase for Conversion of Glucose to Gluconic Acid Eliminating the Hydrogen Peroxide to Maintain Enzyme Activity in a Bubble Column Reactor. Catalysts, 2019, 9, 657.	1.6	29
732	Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express, 2019, 9, 126.	1.4	25
733	Preparation of immobilized/stabilized biocatalysts of βâ€glucosidases from different sources: Importance of the support active groups and the immobilization protocol. Biotechnology Progress, 2019, 35, e2890.	1.3	5
734	Trimethyl-ε-caprolactone synthesis with a novel immobilized glucose dehydrogenase and an immobilized thermostable cyclohexanone monooxygenase. Applied Catalysis A: General, 2019, 585, 117187.	2.2	6
735	Optimized immobilization of polygalacturonase from Aspergillus niger following different protocols: Improved stability and activity under drastic conditions. International Journal of Biological Macromolecules, 2019, 138, 234-243.	3.6	41
736	Effect of operative variables and kinetic study of butyl butyrate synthesis by Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves. Enzyme and Microbial Technology, 2019, 130, 109367.	1.6	25
737	Increasing the Enzyme Loading Capacity of Porous Supports by a Layer-by-Layer Immobilization Strategy Using PEI as Glue. Catalysts, 2019, 9, 576.	1.6	39
738	Sustainable production of nucleoside analogues by a high-efficient purine 2′-deoxyribosyltransferase immobilized onto Ni2+ chelate magnetic microparticles. Bioresource Technology, 2019, 289, 121772.	4.8	6
739	Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Advances in Colloid and Interface Science, 2019, 270, 278-292.	7.0	39
740	Application of polysaccharides in enzyme immobilization. , 2019, , 357-395.		5
741	Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. International Journal of Biological Macromolecules, 2019, 138, 168-180.	3.6	21
742	Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochemistry, 2019, 85, 97-105.	1.8	19

		15	C
#	ARTICLE	IF	CITATIONS
743	Biotechnology Reports (Amsterdam, Netherlands), 2019, 23, e00353.	2.1	5
744	Clean Enzymatic Production of Flavor Esters in Spongelike Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 13307-13314.	3.2	22
745	Immobilization of Enzymes in/on Membranes and their Applications. Advanced Synthesis and Catalysis, 2019, 361, 5500-5515.	2.1	69
746	Dextran Aldehyde in Biocatalysis: More Than a Mere Immobilization System. Catalysts, 2019, 9, 622.	1.6	32
747	Affinity Immobilization of a Bacterial Prolidase onto Metal-Ion-Chelated Magnetic Nanoparticles for the Hydrolysis of Organophosphorus Compounds. International Journal of Molecular Sciences, 2019, 20, 3625.	1.8	10
748	Proteolytic Rafts for Improving Intraparenchymal Migration of Minimally Invasively Administered Hydrogel-Embedded Stem Cells. International Journal of Molecular Sciences, 2019, 20, 3083.	1.8	3
749	Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme and Microbial Technology, 2019, 130, 109365.	1.6	19
750	Stability/activity features of the main enzyme components of rohapect 10L. Biotechnology Progress, 2019, 35, e2877.	1.3	10
751	Hierarchical Micro―and Mesoporous Znâ€Based Metal–Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. Small, 2019, 15, e1902927.	5.2	108
752	Co-Immobilization of Tri-Enzymes for the Conversion of Hydroxymethylfurfural to 2,5-Diformylfuran. Molecules, 2019, 24, 3648.	1.7	23
754	Sequential Electrostatic Assembly of a Polymer Surfactant Corona Increases Activity of the Phosphotriesterase arPTE. Bioconjugate Chemistry, 2019, 30, 2771-2776.	1.8	8
755	Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages. New Journal of Chemistry, 2019, 43, 1733-1742.	1.4	16
756	Interfacial synthesis of ultrathin two-dimensional 2PbCO ₃ ·Pb(OH) ₂ nanosheets with high enzyme mimic catalytic activity. Inorganic Chemistry Frontiers, 2019, 6, 498-503.	3.0	1
757	Artificial Multienzyme Scaffolds: Pursuing <i>in Vitro</i> Substrate Channeling with an Overview of Current Progress. ACS Catalysis, 2019, 9, 10812-10869.	5.5	115
758	Facile and green fabrication of biocatalytic chitosan beads by one-step genipin-mediated β-glucosidase immobilization for production of bioactive genistein. Sustainable Chemistry and Pharmacy, 2019, 14, 100187.	1.6	5
759	Deciphering the Effect of Microbead Size Distribution on the Kinetics of Heterogeneous Biocatalysts through Single-Particle Analysis Based on Fluorescence Microscopy. Catalysts, 2019, 9, 896.	1.6	8
760	Developing a Novel Enzyme Immobilization Process by Activation of Epoxy Carriers with Glucosamine for Pharmaceutical and Food Applications. Catalysts, 2019, 9, 843.	1.6	7
761	Efficiency Analysis and Improvement of an Intelligent Transportation System for the Application in Greenhouse. Electronics (Switzerland), 2019, 8, 946.	1.8	11

#	Article	IF	CITATIONS
762	Biosynthesis of methyl glucoside and its antibacterial activity against Staphylococcus aureus and Escherichia coli. Bioactive Carbohydrates and Dietary Fibre, 2019, 20, 100197.	1.5	7
764	Bio-catalytic transesterification of mustard oil for biodiesel production. Biofuels, 2022, 13, 69-76.	1.4	15
765	Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochemistry, 2019, 87, 128-137.	1.8	29
766	Novel Method to Simultaneously Adjust the Size and pH Value of Individual Microdroplets in Silicone Oil. IEEE Access, 2019, 7, 114183-114190.	2.6	1
767	l-Asparaginase production in rotating bed reactor from Rhizopus microsporus IBBL-2 using immobilized Ca-alginate beads. 3 Biotech, 2019, 9, 349.	1.1	7
768	Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784	3 Þ41 rgBT	/Ovr erlock 10
769	Continuous artificial synthesis of glucose precursor using enzyme-immobilized microfluidic reactors. Nature Communications, 2019, 10, 4049.	5.8	60
770	Predicting Protein–Polymer Block Copolymer Self-Assembly from Protein Properties. Biomacromolecules, 2019, 20, 3713-3723.	2.6	17
771	The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules, 2019, 24, 3460.	1.7	48
772	Acid-resistant enzyme@MOF nanocomposites with mesoporous silica shells for enzymatic applications in acidic environments. Journal of Biotechnology, 2019, 306, 54-61.	1.9	30
773	Selective Functionalization of Microgels with Enzymes by Sortagging. Bioconjugate Chemistry, 2019, 30, 2859-2869.	1.8	22
774	A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application. Materials Science and Engineering C, 2019, 99, 25-36.	3.8	29
775	Improved catalytic performance of lipase under non-aqueous conditions by entrapment into alkyl-functionalized mesoporous silica. New Journal of Chemistry, 2019, 43, 364-370.	1.4	7
776	Graphene Oxide Nanosheets Shielding of Lipase Immobilized on Magnetic Composites for the Improvement of Enzyme Stability. ACS Sustainable Chemistry and Engineering, 2019, 7, 4486-4494.	3.2	51
777	Preparation of salidroside with <i>n</i> -butyl <i>β</i> -D-glucoside as the glycone donor via a two-step enzymatic synthesis catalyzed by immobilized <i>β</i> -glucosidase from bitter almonds. Biocatalysis and Biotransformation, 2019, 37, 246-260.	1.1	5
778	Virus-like organosilica nanoparticles for lipase immobilization: Characterization and biocatalytic applications. Biochemical Engineering Journal, 2019, 144, 125-134.	1.8	30
779	Enzyme immobilization on photopatterned temperatureâ€response poly (Nâ€isopropylacrylamide) for microfluidic biocatalysis. Journal of Chemical Technology and Biotechnology, 2019, 94, 1670-1678.	1.6	9
780	Construction of multiple enzyme metal–organic frameworks biocatalyst via DNA scaffold: A promising strategy for enzyme encapsulation. Chemical Engineering Journal, 2019, 363, 174-182.	6.6	69

#	Article	IF	CITATIONS
781	Self-assembly of a magnetic DNA hydrogel as a new biomaterial for enzyme encapsulation with enhanced activity and stability. Chemical Communications, 2019, 55, 2449-2452.	2.2	40
782	CALB Immobilized onto Magnetic Nanoparticles for Efficient Kinetic Resolution of Racemic Secondary Alcohols: Long-Term Stability and Reusability. Molecules, 2019, 24, 490.	1.7	27
783	Nanoporous Phyllosilicate Assemblies for Enzyme Immobilization. ACS Applied Bio Materials, 2019, 2, 777-786.	2.3	16
784	Juvenile myoclonic epilepsy has hyper dynamic functional connectivity in the dorsolateral frontal cortex. NeuroImage: Clinical, 2019, 21, 101604.	1.4	20
785	Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 2019, 373, 1254-1278.	6.6	257
787	Carbon nanotubes molybdenum disulfide 3D nanocomposite as novel nanoscaffolds to immobilize Lens culinaris β-galactosidase (Lsbgal): Robust stability, reusability, and effective bioconversion of lactose in whey. Food Chemistry, 2019, 297, 125005.	4.2	18
788	Novel Combi-lipase Systems for Fatty Acid Ethyl Esters Production. Catalysts, 2019, 9, 546.	1.6	30
789	Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 2361-2368.	1.9	18
790	Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. International Journal of Biological Macromolecules, 2019, 136, 1133-1141.	3.6	18
791	One-step immobilization-purification of enzymes by carbohydrate-binding module family 56 tag fusion. Food Chemistry, 2019, 299, 125037.	4.2	28
792	Ameliorating the activity and stability of β galactosidase by tailoring potential nanobiocatalyst on functionalized nanographene: Headway to lactose hydrolysis. LWT - Food Science and Technology, 2019, 112, 108260.	2.5	8
793	Influence of Water on Enzymatic Esterification of Racemic Ketoprofen with Ethanol in a Solvent-Free System. Topics in Catalysis, 2019, 62, 968-976.	1.3	7
794	Alternative method to improve the ethyl valerate yield using an immobilised <i>Burkholderia cepacia</i> lipase. Journal of Microencapsulation, 2019, 36, 327-337.	1.2	8
795	Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chemical Reviews, 2019, 119, 9509-9558.	23.0	321
796	Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 741-747.	1.1	43
797	Direct immobilization and recovery of recombinant proteins from cell lysates by using EctP1-peptide as a short fusion tag for silica and titania supports. International Journal of Biological Macromolecules, 2019, 135, 969-977.	3.6	23
798	Selective Deformation of Single Macromolecules and Biomolecular Structures as a Method for Remote Control of Their Properties and Functions for Next-Generation Medicine. Russian Metallurgy (Metally), 2019, 2019, 374-384.	0.1	1
799	A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. International Journal of Biological Macromolecules, 2019, 136, 66-82.	3.6	31

#	Article	IF	CITATIONS
800	Rapid and high yield production of phospholipids enriched in CLA via acidolysis: The critical role of the enzyme immobilization protocol. Food Chemistry, 2019, 296, 123-131.	4.2	22
801	Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts, 2019, 9, 487.	1.6	39
802	Fabrication and Optimization of a Lipase Immobilized Enzymatic Membrane Bioreactor based on Polysulfone Gradient-Pore Hollow Fiber Membrane. Catalysts, 2019, 9, 495.	1.6	15
803	Reversible Twoâ€Enzyme Coimmobilization on pHâ€Responsive Imprinted Monolith for Glucose Detection. Biotechnology Journal, 2019, 14, e1900028.	1.8	8
804	Improvisation of diffusion coefficient in surface modified magnetite nanoparticles: A novel perspective. Materials Science and Engineering C, 2019, 103, 109832.	3.8	8
805	Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochemistry, 2019, 84, 73-80.	1.8	41
806	Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. International Journal of Biological Macromolecules, 2019, 135, 677-690.	3.6	53
807	Lecitase ultra: A phospholipase with great potential in biocatalysis. Molecular Catalysis, 2019, 473, 110405.	1.0	43
808	Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 2019, 84, 30-38.	1.8	29
809	Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme. Journal of Environmental Management, 2019, 244, 235-246.	3.8	26
810	Metal-nucleobase hybrid nanoparticles for enhancing the activity and stability of metal-activated enzymes. Chemical Communications, 2019, 55, 6293-6296.	2.2	12
811	Targeted Heating of Enzyme Systems Based on Photothermal Materials. ChemBioChem, 2019, 20, 2467-2473.	1.3	6
812	Hydrogen peroxide driven biocatalysis. Green Chemistry, 2019, 21, 3232-3249.	4.6	133
813	Organophosphorus pesticides detection using acetylcholinesterase biosensor based on gold nanoparticles constructed by electroless plating on vertical nitrogen-doped single-walled carbon nanotubes. International Journal of Environmental Analytical Chemistry, 2019, 99, 913-927.	1.8	18
814	Facile immobilization of Trametes versicolor laccase on highly monodisperse superparamagnetic iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 181, 470-479.	2.5	26
815	Fine-tuned preparation of cross-linked laccase nanoaggregates. Biocatalysis and Biotransformation, 2019, 37, 431-447.	1.1	2
816	Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromolecular Chemistry and Physics, 2019, 220, 1800561.	1.1	86
817	Immobilization of Burkholderia cepacia lipase on crosslinked chitosan-based support for the synthesis of geranyl acetate. Biocatalysis and Agricultural Biotechnology, 2019, 19, 101133.	1.5	7

#	Article	IF	CITATIONS
818	Lipaseâ€Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angewandte Chemie, 2019, 131, 8076-8080.	1.6	19
819	Amination of ficin extract to improve its immobilization on glyoxyl-agarose: Improved stability and activity versus casein. International Journal of Biological Macromolecules, 2019, 133, 412-419.	3.6	23
820	Dramatic Increase in Catalytic Performance of Immobilized Lipases by Their Stabilization on Polymer Brush Supports. ACS Catalysis, 2019, 9, 4992-5001.	5.5	36
821	Polymeric catalytically active membranes for reaction-separation coupling: A review. Journal of Membrane Science, 2019, 583, 118-138.	4.1	79
822	Lipaseâ€Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angewandte Chemie - International Edition, 2019, 58, 7992-7996.	7.2	78
823	In-situ-Investigation of Enzyme Immobilization on Polymer Brushes. Frontiers in Chemistry, 2019, 7, 101.	1.8	14
824	Improvement of lipase activity by synergistic immobilization on polyurethane and its application for large-scale synthesizing vitamin A palmitate. Preparative Biochemistry and Biotechnology, 2019, 49, 485-492.	1.0	5
825	Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Industrial & Engineering Chemistry Research, 2019, 58, 5358-5378.	1.8	97
826	Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets. International Journal of Biological Macromolecules, 2019, 130, 564-572.	3.6	49
827	Phospholipase D encapsulated into metal-surfactant nanocapsules for enhancing biocatalysis in a two-phase system. RSC Advances, 2019, 9, 6548-6555.	1.7	9
828	Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal–Organic Frameworks for Large-Substrate Biocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 12133-12141.	4.0	82
829	Construction of Novel Enzyme–Graphene Oxide Catalytic Interface with Improved Enzymatic Performance and Its Assembly Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 11349-11359.	4.0	22
830	Polyketone-based membrane support improves the organic solvent resistance of laccase catalysis. Journal of Colloid and Interface Science, 2019, 544, 230-240.	5.0	11
831	Studying Direct Electron Transfer by Siteâ€Directed Immobilization of Cellobiose Dehydrogenase. ChemElectroChem, 2019, 6, 700-713.	1.7	27
832	Lipase Immobilized on Layer-by-Layer Polysaccharide-Coated Fe ₃ O ₄ @SiO ₂ Microspheres as a Reusable Biocatalyst for the Production of Structured Lipids. ACS Sustainable Chemistry and Engineering, 2019, 7, 6685-6695.	3.2	48
833	Carbon Nanoparticle-Stabilized Pickering Emulsion as a Sustainable and High-Performance Interfacial Catalysis Platform for Enzymatic Esterification/Transesterification. ACS Sustainable Chemistry and Engineering, 2019, 7, 7619-7629.	3.2	84
834	New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase. International Journal of Biological Macromolecules, 2019, 131, 989-997.	3.6	73
835	Production of Whey-Derived DPP-IV Inhibitory Peptides Using an Enzymatic Membrane Reactor. Food and Bioprocess Technology, 2019, 12, 799-808.	2.6	17

#	Article	IF	CITATIONS
836	State-of-the-art strategies for the biofunctionalization of photoactive inorganic nanoparticles for nanomedicine. , 2019, , 211-257.		7
837	Production of trans-free interesterified fat using indigenously immobilized lipase. Preparative Biochemistry and Biotechnology, 2019, 49, 444-452.	1.0	4
838	Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 2019, 37, 746-770.	6.0	409
839	Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochemical Engineering Journal, 2019, 147, 89-99.	1.8	17
840	Transesterification of microalgae for biodiesel production. , 2019, , 469-510.		9
841	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	2.1	393
842	Functionalized kaolin as support for endoglucanase immobilization. Bioprocess and Biosystems Engineering, 2019, 42, 1165-1173.	1.7	15
843	HKUST-1 catalyzed efficient in situ regeneration of NAD+ for dehydrogenase mediated oxidation. Chemical Engineering Science, 2019, 203, 43-53.	1.9	31
844	Biocatalytic Proteinâ€Based Materials for Integration into Energy Devices. ChemBioChem, 2019, 20, 1977-1985.	1.3	11
845	Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catalysis, 2019, 9, 4402-4425.	5.5	277
846	Highâ€Performance Integrated Enzyme Cascade Bioplatform Based on Protein–BiPt Nanochain@Graphene Oxide Hybrid Guided Oneâ€Pot Selfâ€Assembly Strategy. Small, 2019, 15, e1804987.	5.2	25
847	Degradation of Proteins and Starch by Combined Immobilization of Protease, α-Amylase and β-Galactosidase on a Single Electrospun Nanofibrous Membrane. Molecules, 2019, 24, 508.	1.7	11
848	Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. International Journal of Biological Macromolecules, 2019, 130, 798-809.	3.6	103
849	Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. Frontiers in Plant Science, 2019, 10, 158.	1.7	39
850	Preparation of Crosslinked Enzyme Aggregates of a Thermostable Cyclodextrin Glucosyltransferase from Thermoanaerobacter sp. Critical Effect of the Crosslinking Agent. Catalysts, 2019, 9, 120.	1.6	28
851	Immobilization and stabilization of different Î ² -glucosidases using the glutaraldehyde chemistry: Optimal protocol depends on the enzyme. International Journal of Biological Macromolecules, 2019, 129, 672-678.	3.6	71
852	Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. Biocatalysis and Biotransformation, 2019, 37, 159-182.	1.1	121
853	A novel strategy to synthesize dualâ€responsive polymeric nanocarriers for investigating the activity and stability of immobilized pectinase. Biotechnology and Applied Biochemistry, 2019, 66, 376-388.	1.4	4

	C	ITATION REPORT	
#	Article	IF	CITATIONS
854	Carbonic Anhydrase@ZIF-8 Hydrogel Composite Membrane with Improved Recycling and Stability fo Efficient CO ₂ Capture. Journal of Agricultural and Food Chemistry, 2019, 67, 3372-337	r 2.4 9.	54
855	Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coordination Chemistry Reviews, 2019, 388, 1-23.	9.5	167
856	Catalytic Activity and Application of Immobilized Chloroperoxidase by Biometric Magnetic Nanoparticles. Industrial & Engineering Chemistry Research, 2019, 58, 3555-3560.	1.8	17
857	Monoamine oxidase B immobilized on magnetic nanoparticles for screening of the enzyme's inhibito from herbal extracts. Microchemical Journal, 2019, 146, 1181-1189.	ors 2.3	16
858	An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 102961.	3.3	175
859	Magnetic Bio-Derivatives: Preparation and Their Uses in Biotechnology. , 2019, , .		1
860	Ultrasound affects the selectivity and activity of immobilized lipases applied to fatty acid ethyl ester synthesis. Acta Scientiarum - Technology, 2019, 42, e46582.	0.4	2
861	Coupling and Regulation of Porous Carriers Using Plasma and Amination to Improve the Catalytic Performance of Glucose Oxidase and Catalase. Frontiers in Bioengineering and Biotechnology, 2019 426.	, 7, 2.0	21
862	Enhanced Performance of Immobilized Xylanase/Filter Paper-ase on a Magnetic Chitosan Support. Catalysts, 2019, 9, 966.	1.6	17
863	Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS Applied Materials & Interfaces, 2019, 11, 43902-43919.	4.0	49
864	Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts' Performance under Ultrasonic Irradiation. International Journal of Molecular Sciences, 2019, 20, 5807.	1.8	58
865	Improving the Yields and Reaction Rate in the Ethanolysis of Soybean Oil by Using Mixtures of Lipase CLEAs. Molecules, 2019, 24, 4392.	2 1.7	32
866	Surface treatments and functionalization of metalâ€ceramic membranes for improved enzyme immobilization performance. Journal of Chemical Technology and Biotechnology, 2020, 95, 993-100	7. 1.6	17
867	Self-Assembled Regenerated Silk Fibroin Microsphere-Embedded Fe ₃ O ₄ Magnetic Nanoparticles for Immobilization of Zymolyase. ACS Omega, 2019, 4, 21612-21619.	1.6	17
869	Three-Dimensional Bioelectrodes Utilizing Graphene Based Bioink. Journal of the Electrochemical Society, 2019, 166, G170-G177.	1.3	8
870	Editorial for Special Issue: Enzyme Immobilization and Its Applications. Molecules, 2019, 24, 4619.	1.7	12
871	Immobilization of <i>Rhizomucor miehei</i> lipase onto montmorillonite K-10 and polyvinyl alcohol gel. Biocatalysis and Biotransformation, 0, , 1-9.	1.1	4
872	Genipin as An Emergent Tool in the Design of Biocatalysts: Mechanism of Reaction and Applications. Catalysts, 2019, 9, 1035.	1.6	55

#	ARTICLE	IF	CITATIONS
873	Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. International Journal of Environmental Research and Public Health, 2019, 16, 4917.	1.2	8
874	Improving the retention and reusability of Alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. International Journal of Biological Macromolecules, 2019, 122, 1253-1261.	3.6	29
875	A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system. Food Chemistry, 2019, 274, 535-542.	4.2	22
876	Application of Nanobiocatalysts on Food Waste. , 2019, , 785-793.		1
877	Enhancing the catalytic performance of chloroperoxidase by co-immobilization with glucose oxidase on magnetic graphene oxide. Biochemical Engineering Journal, 2019, 143, 101-109.	1.8	23
878	Lipolytic bacterial strains mediated transesterification of non-edible plant oils for generation of high quality biodiesel. Journal of Bioscience and Bioengineering, 2019, 127, 609-617.	1.1	23
879	Synthesis of Enantiomerically Pure 5,6â€Dihydropyranâ€2â€ones via Chemoenzymatic Sequential DKRâ€RCM Reaction. European Journal of Organic Chemistry, 2019, 2019, 1653-1658.	1.2	12
880	Highly efficient production of chiral amines in batch and continuous flow by immobilized ï‰-transaminases on controlled porosity glass metal-ion affinity carrier. Journal of Biotechnology, 2019, 291, 52-60.	1.9	32
881	Effect of metal ions present in milk on the structure and functional integrity of native and polyaniline chitosan nanocomposites bound β-galactosidase: A multi-spectroscopic approach. Food Chemistry, 2019, 279, 312-320.	4.2	19
882	Application of central composite design for the optimization of electrode surface composition for glucose biosensor fabrication. Analytical and Bioanalytical Chemistry, 2019, 411, 413-425.	1.9	10
883	Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Materials Science and Engineering C, 2019, 96, 356-364.	3.8	61
884	Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 2019, 124, 742-749.	3.6	130
885	Improvement of activity and stability of <i>Rhizomucor miehei</i> lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters. Biocatalysis and Biotransformation, 2019, 37, 210-223.	1.1	14
886	Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocolloids, 2019, 89, 691-699.	5.6	46
887	Enhancement of activity and reusability of lipase immobilized on magnetic mesoporous silica for the resolution of racemic secondary alcohols. Journal of the Chinese Chemical Society, 2019, 66, 427-433.	0.8	4
888	Poly (lactic-co-glycolic acid) nanospheres allow for high l-asparaginase encapsulation yield and activity. Materials Science and Engineering C, 2019, 98, 524-534.	3.8	15
889	Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with Yarrowia lipolytica. 3 Biotech, 2019, 9, 38.	1.1	9
890	Preparation of a reversible soluble-insoluble β-d-Glucosidase with perfect stability and activity. Journal of Biotechnology, 2019, 291, 46-51.	1.9	7

#	Article	IF	CITATIONS
891	Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity. Biotechnology Progress, 2019, 35, e2768.	1.3	22
892	Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Applied Biochemistry and Biotechnology, 2019, 188, 677-689.	1.4	24
893	MOFâ€Based Nanotubes to Hollow Nanospheres through Proteinâ€Induced Softâ€Templating Pathways. Advanced Science, 2019, 6, 1801684.	5.6	64
894	Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5′-monophospate analogues. Bioresource Technology, 2019, 276, 244-252.	4.8	24
895	Expansin assisted bio-affinity immobilization of endoxylanase from Bacillus subtilis onto corncob residue: Characterization and efficient production of xylooligosaccharides. Food Chemistry, 2019, 282, 101-108.	4.2	27
896	Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. Journal of Colloid and Interface Science, 2019, 536, 261-270.	5.0	67
897	Immobilization on octylâ€agarose beads and some catalytic features of commercial preparations of lipase a from <i>Candida antarctica</i> (Novocor ADL): Comparison with immobilized lipase B from <i>Candida antarctica</i> . Biotechnology Progress, 2019, 35, e2735.	1.3	44
898	DNA-directed enzyme immobilization on Fe3O4 modified with nitrogen-doped graphene quantum dots as a highly efficient and stable multi-catalyst system. Journal of Materials Science, 2019, 54, 2535-2551.	1.7	21
899	<i>Inâ€Situ</i> Coâ€Crossâ€Linking of Phospholipase D and Polyâ€Lâ€Lysine for the Highly Efficient Synthesis of Phosphatidylglycerol. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 15-23.	0.8	5
900	Effects of Reaction Operation Policies on Properties of Core–Shell Polymer Supports Used for Preparation of Highly Active Biocatalysts. Macromolecular Reaction Engineering, 2019, 13, 1800055.	0.9	6
901	Constructing a Continuous Flow Bioreactor Based on a Hierarchically Porous Cellulose Monolith for Ultrafast and Nonstop Enzymatic Esterification/Transesterification. ACS Sustainable Chemistry and Engineering, 2019, 7, 2056-2063.	3.2	29
902	Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. Renewable Energy, 2019, 135, 1-9.	4.3	94
903	Efficient and green aqueousâ^'solid system for transphosphatidylation to produce phosphatidylhydroxybutyrate: Potential drugs for central nervous system's diseases. Biotechnology Progress, 2019, 35, e2726.	1.3	7
904	Potential application of Thermomyces lanuginosus lipase (TLL) immobilized on nonporous polystyrene particles. Environmental Progress and Sustainable Energy, 2019, 38, 608-613.	1.3	17
905	A facile method to oriented immobilization of His-tagged BirA on Co3+-NTA agarose beads. Enzyme and Microbial Technology, 2019, 120, 36-42.	1.6	6
906	A method using angiotensin converting enzyme immobilized on magnetic beads for inhibitor screening. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 223-230.	1.4	9
907	Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 2019, 76, 95-110.	1.8	95
908	The synthesis of sulfonated polyethersulfone (SPES) and the preparation of its membranes as matrix in the immobilization of Candida antarctica lipase B (Cal-B). Polymer Bulletin, 2020, 77, <u>3735-3748.</u>	1.7	9

#	Article	IF	CITATIONS
909	A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catalysis Today, 2020, 348, 127-136.	2.2	76
910	Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocomposites. Enzyme and Microbial Technology, 2020, 132, 109439.	1.6	20
911	Thermal and Mechanical Stability of Immobilized <i>Candida antarctica</i> Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis ChemCatChem, 2020, 12, 803-811.	1.8	16
912	Nature-Inspired Chemical Engineering. , 2020, , 19-31.		8
913	Cross-linked enzyme lyophilisates (CLELs) of urease: A new method to immobilize ureases. Enzyme and Microbial Technology, 2020, 132, 109390.	1.6	15
914	One-phase synthesis of single enzyme nanoparticles (SENs) of <i>Trametes versicolor</i> laccase by <i>in situ</i> acrylamide polymerisation. Biocatalysis and Biotransformation, 2020, 38, 64-74.	1.1	9
915	Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzyme and Microbial Technology, 2020, 132, 109397.	1.6	63
916	Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140251.	1.1	8
917	Enhancing Activity by Supercritical CO2 Mediated Immobilization of Lipase on Mesocellular Foam in Preparation of Hexyl Laurate. Applied Biochemistry and Biotechnology, 2020, 190, 686-702.	1.4	1
918	Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme and Microbial Technology, 2020, 133, 109461.	1.6	49
919	Strategies to rationalize enzyme immobilization procedures. Methods in Enzymology, 2020, 630, 81-110.	0.4	21
920	Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. Renewable Energy, 2020, 148, 689-696.	4.3	45
921	Vault packaged enzyme mediated degradation of amino-aromatic energetic compounds. Chemosphere, 2020, 242, 125117.	4.2	11
922	Comparative behavior of various nano additives in a DIESEL engine powered by novel Garcinia gummi-gutta biodiesel. Journal of Cleaner Production, 2020, 245, 118940.	4.6	84
923	Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. International Journal of Biological Macromolecules, 2020, 145, 856-864.	3.6	37
924	Aldolase Cascade Facilitated by Selfâ€Assembled Nanotubes from Short Peptide Amphiphiles. Angewandte Chemie - International Edition, 2020, 59, 4329-4334.	7.2	45
925	Aldolase Cascade Facilitated by Selfâ€Assembled Nanotubes from Short Peptide Amphiphiles. Angewandte Chemie, 2020, 132, 4359-4364.	1.6	9
926	Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environmental Science & Amp; Technology, 2020, 54, 647-664.	4.6	327

#	Article	IF	CITATIONS
927	Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydrate Research, 2020, 488, 107904.	1.1	28
928	Production of xylooligosaccharides from xylan catalyzed by endo-1,4-β-D-xylanase-immobilized nanoscale carbon, silica and zirconia matrices. Molecular Catalysis, 2020, 484, 110745.	1.0	7
929	Epoxy functionalized polymer grafted magnetic nanoparticles by facile surface initiated polymerization for immobilization studies of Candida Antarctica lipase B. Reactive and Functional Polymers, 2020, 147, 104454.	2.0	10
930	Mesoporous Core–Shell Nanostructures Bridging Metal and Biocatalyst for Highly Efficient Cascade Reactions. ACS Catalysis, 2020, 10, 1375-1380.	5.5	51
931	Chitosan modified Fe ₃ O ₄ /graphene oxide nanocomposite as a support for high yield and stable immobilization of cellulase: its application in the saccharification of microcrystalline cellulose. Preparative Biochemistry and Biotechnology, 2020, 50, 460-467.	1.0	24
932	Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coordination Chemistry Reviews, 2020, 406, 213149.	9.5	298
933	Kinetic and thermodynamic properties of purified alkaline protease from <i>Bacillus pumilus</i> Y7 and nonâ€covalent immobilization to poly(vinylimidazole)/clay hydrogel. Engineering in Life Sciences, 2020, 20, 36-49.	2.0	26
934	Maximum Entropy Optimized Force Field for Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation, 2020, 16, 773-781.	2.3	64
935	Review transglutaminases: part Il—industrial applications in food, biotechnology, textiles and leather products. World Journal of Microbiology and Biotechnology, 2020, 36, 11.	1.7	38
936	Threeâ€Enzyme Phosphorylase Cascade Immobilized on Solid Support for Biocatalytic Synthesis of Celloâ^'oligosaccharides. ChemCatChem, 2020, 12, 1350-1358.	1.8	27
937	A novel catalytic material for hydrolyzing cow's milk allergenic proteins: Papain-Cu3(PO4)2·3H2O-magnetic nanoflowers. Food Chemistry, 2020, 311, 125911.	4.2	40
938	Cellulase Immobilization onto Magnetic Halloysite Nanotubes: Enhanced Enzyme Activity and Stability with High Cellulose Saccharification. ACS Sustainable Chemistry and Engineering, 2020, 8, 900-913.	3.2	67
939	Biocatalytic hydrogenations on carbon supports. Methods in Enzymology, 2020, 630, 303-325.	0.4	5
940	Resonance Raman scattering-infrared absorption dual-mode immunosensing for carcinoembryonic antigen based on ZnO@SiO2 nanocomposites. Biosensors and Bioelectronics, 2020, 150, 111870.	5.3	9
941	Multiwalled carbon nanotubes bound beta-galactosidase: It's activity, stability and reusability. Methods in Enzymology, 2020, 630, 365-405.	0.4	4
942	On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140333.	1.1	38
943	Parameters necessary to define an immobilized enzyme preparation. Process Biochemistry, 2020, 90, 66-80.	1.8	306
944	Use of glyoxyl-agarose immobilized ficin extract in milk coagulation: Unexpected importance of the ficin loading on the biocatalysts. International Journal of Biological Macromolecules, 2020, 144, 419-426.	3.6	29

#	Article	IF	CITATIONS
945	The response surface methodology for optimization of tyrosinase immobilization onto electrospun polycaprolactone–chitosan fibers for use in bisphenol A removal. International Journal of Biological Macromolecules, 2020, 165, 2049-2059.	3.6	26
946	Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. International Journal of Biological Macromolecules, 2020, 164, 4205-4217.	3.6	41
947	Immobilized Phospholipase A ₁ -Catalyzed Preparation of <scp>l</scp> -α-Glycerylphosphorylcholine from Phosphatidylcholine. Journal of Agricultural and Food Chemistry, 2020, 68, 12375-12383.	2.4	5
948	Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules, 2020, 165, 2143-2196.	3.6	160
949	Mechanically stable egg white protein based immobilization carrier for β-D-galactosidase: Thermodynamics and application in whey lactose hydrolysis. Reactive and Functional Polymers, 2020, 155, 104696.	2.0	10
950	Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p(HEMA) cryogels during synthesis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00534.	2.1	9
951	Enhancing chitosan hydrolysis aiming chitooligosaccharides production by using immobilized chitosanolytic enzymes. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101759.	1.5	8
952	Lipases of Endophytic Fungi Stemphylium lycopersici and Sordaria sp.: Application in the synthesis of solketal derived Monoacylglycerols. Enzyme and Microbial Technology, 2020, 142, 109664.	1.6	12
953	Selective oxidation of alkyl and aryl glyceryl monoethers catalysed by an engineered and immobilised glycerol dehydrogenase. Chemical Science, 2020, 11, 12009-12020.	3.7	9
954	Enzyme production of <scp>d</scp> -gluconic acid and glucose oxidase: successful tales of cascade reactions. Catalysis Science and Technology, 2020, 10, 5740-5771.	2.1	80
955	Carbon as a Simple Support for Redox Biocatalysis in Continuous Flow. Organic Process Research and Development, 2020, 24, 2281-2287.	1.3	12
956	Updates on inulinases: Structural aspects and biotechnological applications. International Journal of Biological Macromolecules, 2020, 164, 193-210.	3.6	31
957	Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis. Bioprocess and Biosystems Engineering, 2020, 43, 2209-2217.	1.7	11
958	Production of a cyanobacterium-based biodiesel by the heterogeneous biocatalyst of SBA-15@oleate@lipase. Fuel, 2020, 279, 118580.	3.4	7
959	Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. International Journal of Biological Macromolecules, 2020, 164, 1-12.	3.6	68
960	Synthesis and characterization of a magnetic hybrid catalyst containing lipase and palladium and its application on the dynamic kinetic resolution of amines. Molecular Catalysis, 2020, 493, 111106.	1.0	9
961	Synthesis of DHA/EPA Ethyl Esters via Lipase-Catalyzed Acidolysis Using Novozym® 435: A Kinetic Study. Catalysts, 2020, 10, 565.	1.6	11
962	MicroGelzymes: pH-Independent Immobilization of Cytochrome P450 BM3 in Microgels. Biomacromolecules, 2020, 21, 5128-5138.	2.6	25

#	Article	IF	CITATIONS
963	Preparation of Chitosan/Magnetic Porous Biochar as Support for Cellulase Immobilization by Using Glutaraldehyde. Polymers, 2020, 12, 2672.	2.0	31
964	Ultrasound-Assisted Interfacial Immobilization of Lipase on Hollow Mesoporous Silica Spheres in a Pickering Emulsion System: A Hyperactive and Sustainable Biocatalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 17280-17290.	3.2	34
965	Design of the Enzyme–Carrier Interface to Overcome the O ₂ and NADH Mass Transfer Limitations of an Immobilized Flavin Oxidase. ACS Applied Materials & Interfaces, 2020, 12, 56027-56038.	4.0	23
966	Developing an interesting electrochemical biosensing system from an enzyme inhibition study: Binding, inhibition and determination of catalase by ascorbate. Sensing and Bio-Sensing Research, 2020, 30, 100383.	2.2	1
967	Dual immobilization of α-amylase and horseradish peroxidase via electrospinning: A proof of concept study. International Journal of Biological Macromolecules, 2020, 163, 1353-1360.	3.6	17
968	Microfluidic bioreactors for enzymatic synthesis in packed-bed reactors—Multi-step reactions and upscaling. Journal of Biotechnology, 2020, 323, 24-32.	1.9	14
969	Immobilization of the Highly Active UDP-Glucose Pyrophosphorylase From Thermocrispum agreste Provides a Highly Efficient Biocatalyst for the Production of UDP-Glucose. Frontiers in Bioengineering and Biotechnology, 2020, 8, 740.	2.0	5
970	Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and Biosystems Engineering, 2020, 43, 2253-2268.	1.7	54
971	Tunable Polymeric Scaffolds for Enzyme Immobilization. Frontiers in Bioengineering and Biotechnology, 2020, 8, 830.	2.0	67
	0.0000		
972	Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505.	1 0.7843 2.1	14 rgBT / <mark>O</mark> v 1
972 973	 Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. 	1 0.7843 2.1 1.8	14 rgBT /Ov 1
972 973 974	 Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923. 	10.7843 2.1 1.8 3.6	14 rgBT /Ov 1 12 24
972 973 974 975	 Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207. 	10.7843 2.1 1.8 3.6 1.6	14 rgBT /Ov 12 24 28
972 973 974 975 976	 Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207. Co-immobilization of two-component hydroxylase monooxygenase by functionalized magnetic nanoparticles for preserving high catalytic activity and enhancing enzyme stabilty. International Journal of Biological Macromolecules, 2020, 164, 3163-3170. 	1.0.7843 2.1 1.8 3.6 1.6 3.6	14 rgBT /Ov 12 24 28 14
972 973 974 975 976	 Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207. Co-immobilization of two-component hydroxylase monooxygenase by functionalized magnetic nanoparticles for preserving high catalytic activity and enhancing enzyme stabilty. International Journal of Biological Macromolecules, 2020, 164, 3163-3170. Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts, 2020, 10, 891. 	1.0.7843 2.1 3.6 3.6 3.6 1.6	14 rgBT /Ov 12 24 28 14 35
972 973 974 975 976 977	 Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) TJ ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207. Co-immobilization of two-component hydroxylase monooxygenase by functionalized magnetic nanoparticles for preserving high catalytic activity and enhancing enzyme stability. International Journal of Biological Macromolecules, 2020, 164, 3163-3170. Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts, 2020, 10, 891. Immobilization of an amino acid racemase for application in crystallizationa⁶/₆based chiral resolutions of asparagine monohydrate. Engineering in Life Sciences, 2020, 20, 550-561. 	1.0.7843 1.8 3.6 1.6 1.6 2.0	14 rgBT /Ov 12 24 28 14 35 7
972 973 974 975 976 977 977	Highly efficient preparation of 1-lysophosphatidylcholine via high proportion of Novozym® 435 (lipase) Tj ETQq1 2020, 27, e00505. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochemistry, 2020, 98, 11-20. Nanostructured materials as a host matrix to develop robust peroxidases-based nanobiocatalytic systems. International Journal of Biological Macromolecules, 2020, 162, 1906-1923. Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts, 2020, 10, 1207. Co-immobilization of two-component hydroxylase monooxygenase by functionalized magnetic nanoparticles for preserving high catalytic activity and enhancing enzyme stability. International Journal of Biological Macromolecules, 2020, 164, 3163-3170. Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts, 2020, 10, 891. Immobilization of an amino acid racemase for application in crystallizationâc@ased chiral resolutions of asparagine monohydrate. Engineering in Life Sciences, 2020, 20, 550-561. Spatial Confinement of Enzyme and Nanozyme in Silica-Based Hollow Microreactors. ACS Applied Materials & amp; Interfaces, 2020, 12, 45476-45484.	1.0.7843 1.8 3.6 1.6 1.6 2.0 4.0	14 rgBT /Ov 12 24 28 14 35 7 14

#	Article	IF	CITATIONS
981	Composites of Crosslinked Aggregates of Eversa® Transform and Magnetic Nanoparticles. Performance in the Ethanolysis of Soybean Oil. Catalysts, 2020, 10, 817.	1.6	19
982	Laccase immobilization with metal-organic frameworks: Current status, remaining challenges and future perspectives. Critical Reviews in Environmental Science and Technology, 2022, 52, 1282-1324.	6.6	17
983	Proteasome Biology: Chemistry and Bioengineering Insights. Polymers, 2020, 12, 2909.	2.0	2
984	Metal–Enzyme Hybrid Microspheres Assembled via Mg ²⁺ -Allosteric Effector. Industrial & Engineering Chemistry Research, 2020, 59, 20278-20284.	1.8	1
985	Developing an immobilized low-cost biocatalyst for FAME synthesis. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101752.	1.5	13
986	Polyelectrolyte Multilayers Enhance the Dry Storage and pH Stability of Physically Entrapped Enzymes. ACS Applied Materials & Interfaces, 2020, 12, 22640-22649.	4.0	16
987	Facile fabrication of shell crosslinked microcapsule by visible light induced graft polymerization for enzyme encapsulation. Chemical Communications, 2020, 56, 6862-6865.	2.2	5
988	Efficient Multi-Enzymes Immobilized on Porous Microspheres for Producing Inositol From Starch. Frontiers in Bioengineering and Biotechnology, 2020, 8, 380.	2.0	21
989	Co-immobilization of an Enzyme System on a Metal-Organic Framework to Produce a More Effective Biocatalyst. Catalysts, 2020, 10, 499.	1.6	29
990	Elucidating the choice for a precise matrix for laccase immobilization: A review. Chemical Engineering Journal, 2020, 397, 125506.	6.6	108
991	Preparation of phosphatidylcholine containing capric acid at the sn-1 position via Novozym® 435-catalyzed acidolysis. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101626.	1.5	0
992	From Graphite to Laccase Biofunctionalized Few-Layer Graphene: A "One Pot―Approach Using a Chimeric Enzyme. International Journal of Molecular Sciences, 2020, 21, 3741.	1.8	6
993	Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. International Journal of Biological Macromolecules, 2020, 158, 318-326.	3.6	30
994	Janus nanoparticles with asymmetrically subcompartmentalized sensing and amplification modules toward fluorescence detection of microRNA. Sensors and Actuators B: Chemical, 2020, 320, 128438.	4.0	10
995	Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate. Carbohydrate Polymers, 2020, 245, 116549.	5.1	6
996	Screening of Lipase-Producing Bacteria and Optimization of Lipase-Mediated Biodiesel Production from Jatropha curcas Seed Oil Using Whole Cell Approach. Bioenergy Research, 2020, 13, 1280-1296.	2.2	10
997	Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules, 2020, 162, 394-404.	3.6	50
998	Green preparation of lipase@Ca3(PO4)2 hybrid nanoflowers using bone waste from food production for efficient synthesis of clindamycin palmitate. Journal of Industrial and Engineering Chemistry, 2020, 89, 383-391.	2.9	12

#	Article	IF	CITATIONS
999	Synthesis of Lactulose in Continuous Stirred Tank Reactor With Î ² -Galactosidase of Apergillus oryzae Immobilized in Monofunctional Glyoxyl Agarose Support. Frontiers in Bioengineering and Biotechnology, 2020, 8, 699.	2.0	11
1000	One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. Catalysts, 2020, 10, 605.	1.6	55
1001	Robust Magnetized Oil Palm Leaves Ash Nanosilica Composite as Lipase Support: Immobilization Protocol and Efficacy Study. Applied Biochemistry and Biotechnology, 2020, 192, 585-599.	1.4	6
1002	Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application. International Journal of Biological Macromolecules, 2020, 161, 573-586.	3.6	17
1003	Clickable artificial hemeâ€peroxidases for the development of functional nanomaterials. Biotechnology and Applied Biochemistry, 2020, 67, 549-562.	1.4	8
1004	Facile Construction of Synergistic β-Glucosidase and Cellulase Sequential Co-immobilization System for Enhanced Biomass Conversion. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1277-1285.	2.0	4
1005	Physiological and genomic perspective of halophiles among different salt concentrations. , 2020, , 137-151.		1
1006	Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chinese Journal of Chemical Engineering, 2020, 28, 2817-2831.	1.7	17
1007	A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. Energies, 2020, 13, 3013.	1.6	61
1008	A recent update on the use of microbial transglutaminase for the generation of biotherapeutics. World Journal of Microbiology and Biotechnology, 2020, 36, 53.	1.7	13
1009	Nanomaterials in Biofuels Research. Clean Energy Production Technologies, 2020, , .	0.3	9
1010	Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass. Clean Energy Production Technologies, 2020, , 213-250.	0.3	3
1011	Immobilized laccase on magnetic nanoparticles for enhanced lignin model compounds degradation. Chinese Journal of Chemical Engineering, 2020, 28, 2152-2159.	1.7	29
1012	Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 156.	2.0	30
1013	Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity. Catalysts, 2020, 10, 338.	1.6	50
1014	Coâ€immobilization and Colocalization of Multiâ€Enzyme Systems for the Cellâ€Free Biosynthesis of Aminoalcohols. ChemCatChem, 2020, 12, 3030-3041.	1.8	29
1015	Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From Pseudomonas fluorescens Immobilized on Octyl-Agarose Beads. Frontiers in Bioengineering and Biotechnology, 2020, 8, 36.	2.0	77
1016	Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: strategies to reuse the most stable lipase. World Journal of Microbiology and Biotechnology, 2020, 36, 45.	1.7	9

ш		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
1017	Bacillus niacini. Korean Journal of Chemical Engineering, 2020, 37, 1020-1028.	1.2	10
1018	Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Analytical Chemistry, 2020, 92, 10470-10477.	3.2	2
1019	Immobilized Biocatalysts of Eversa® Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production. Catalysts, 2020, 10, 738.	1.6	22
1020	Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Critical Reviews in Food Science and Nutrition, 2021, 61, 2659-2690.	5.4	30
1021	Enhancement of Adsorption of Magenta Dye by Immobilized Laccase on Functionalized Biosynthesized Activated Carbon Nanotubes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	18
1022	Catalytic performance of ceria fibers with phosphatase-like activity and their application as protein carriers. Advanced Powder Technology, 2020, 31, 2880-2889.	2.0	9
1023	Enzyme co-immobilization: Always the biocatalyst designers' choice…or not?. Biotechnology Advances, 2021, 51, 107584.	6.0	152
1024	Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. International Journal of Biological Macromolecules, 2020, 163, 402-413.	3.6	24
1025	Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions. International Journal of Biological Macromolecules, 2020, 163, 550-561.	3.6	51
1026	Pluronic-Based Nanocarrier Platform Encapsulating Two Enzymes for Cascade Reactions. ACS Applied Bio Materials, 2020, 3, 5126-5135.	2.3	10
1028	Covalent Immobilization of Candida rugosa Lipase on Epichlorohydrin-Coated Magnetite Nanoparticles: Enantioselective Hydrolysis Studies of Some Racemic Esters and HPLC Analysis. Applied Biochemistry and Biotechnology, 2020, 191, 1411-1431.	1.4	14
1029	Immobilisation of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochemistry, 2020, 95, 174-185.	1.8	53
1030	Core–Shell Spheroidal Hydrogels Produced via Charge-Driven Interfacial Complexation. ACS Applied Polymer Materials, 2020, 2, 1213-1221.	2.0	2
1031	Immobilization of urease in metal–organic frameworks via biomimetic mineralization and its application in urea degradation. Chinese Journal of Chemical Engineering, 2020, 28, 2173-2180.	1.7	13
1032	Toward Next-Generation Biohybrid Catalyst Design: Influence of Degree of Polymerization on Enzyme Activity. Bioconjugate Chemistry, 2020, 31, 939-947.	1.8	10
1033	Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production. Enzyme and Microbial Technology, 2020, 137, 109535.	1.6	34
1034	Immobilization and stabilization of d-hydantoinase from Vigna angularis and its use in the production of N-carbamoyl-d-phenylglycine. Improvement of the reaction yield by allowing chemical racemization of the substrate. Process Biochemistry, 2020, 95, 251-259.	1.8	4
1035	Reduction of nitroarenes by magnetically recoverable nitroreductase immobilized on Fe3O4 nanoparticles. Scientific Reports, 2020, 10, 2810.	1.6	10

#	Article	IF	CITATIONS
1036	Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis. Renewable Energy, 2020, 153, 1346-1354.	4.3	67
1037	Design and Preparation of Carbon Nitride-Based Amphiphilic Janus N-Doped Carbon/MoS ₂ Nanosheets for Interfacial Enzyme Nanoreactor. ACS Applied Materials & Interfaces, 2020, 12, 12227-12237.	4.0	33
1038	Enzyme Encapsulation in Glycerol–Silicone Membranes for Bioreactions and Biosensors. ACS Applied Polymer Materials, 2020, 2, 1203-1212.	2.0	10
1039	Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. Nano Today, 2020, 31, 100834.	6.2	81
1040	Biochemical and Structural Characterization of Cross-Linked Enzyme Aggregates (CLEAs) of Organic Solvent Tolerant Protease. Catalysts, 2020, 10, 55.	1.6	14
1041	Efficient and Stable Magnetic Chitosan-Lipase B from Candida Antarctica Bioconjugates in the Enzymatic Kinetic Resolution of Racemic Heteroarylethanols. Molecules, 2020, 25, 350.	1.7	20
1042	Immobilized lipase in bio-based metal-organic frameworks constructed by biomimetic mineralization: A sustainable biocatalyst for biodiesel synthesis. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110812.	2.5	67
1043	Frontiers in electrochemical enzyme based biosensors for food and drug analysis. TrAC - Trends in Analytical Chemistry, 2020, 124, 115809.	5.8	91
1044	Taguchi design-assisted immobilization of Candida rugosa lipase onto a ternary alginate/nanocellulose/montmorillonite composite: Physicochemical characterization, thermal stability and reusability studies. Enzyme and Microbial Technology, 2020, 136, 109506.	1.6	26
1045	Immobilised Enzymes for Sesquiterpene Synthesis in Batch and Flow Systems. ChemCatChem, 2020, 12, 2194-2197.	1.8	10
1046	Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohydrate Polymers, 2020, 234, 115914.	5.1	79
1047	On the taught new tricks of enzymes immobilization: An all-inclusive overview. Reactive and Functional Polymers, 2020, 152, 104613.	2.0	154
1048	Characterization and evaluation of immobilized enzymes for applications in flow reactors. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100349.	3.2	61
1049	Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts, 2020, 10, 466.	1.6	10
1050	Co-immobilization of \hat{l}^2 -fructofuranosidase and glucose oxidase improves the stability of Bi-enzymes and the production of lactosucrose. LWT - Food Science and Technology, 2020, 128, 109460.	2.5	25
1051	Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal–Organic Framework Composites for Large-Substrate Biocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 23119-23126.	4.0	45
1052	Lipid-based mesophases as matrices for nanoscale reactions. Nanoscale Horizons, 2020, 5, 914-927.	4.1	13
1053	Immobilization of lipases on lignocellulosic bamboo powder for biocatalytic transformations in batch and continuous flow. Catalysis Today, 2021, 381, 280-287.	2.2	12

#	Article	IF	CITATIONS
1054	Rapid, Heterogeneous Biocatalytic Hydrogenation and Deuteration in a Continuous Flow Reactor. ChemCatChem, 2020, 12, 3913-3918.	1.8	15
1055	Comparison of Enzymes Immobilised on Immobeads and Inclusion Bodies: A Case Study of a Trehalose Transferase. ChemCatChem, 2020, 12, 3249-3256.	1.8	7
1056	Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. Journal of Biotechnology, 2020, 316, 6-16.	1.9	18
1057	Rapidly and Precisely Cross-Linked Enzymes Using Bio-Orthogonal Chemistry from Cell Lysate for the Synthesis of (<i>S</i>)-1-(2,6-Dichloro-3-fluorophenyl) Ethanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6466-6478.	3.2	16
1058	Carbon nanotube/PTFE as a hybrid platform for lipase B from <i>Candida antarctica</i> in transformation of α-angelica lactone into alkyl levulinates. Catalysis Science and Technology, 2020, 10, 3255-3264.	2.1	12
1059	Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catalysis Today, 2021, 362, 130-140.	2.2	83
1060	Biotechnological relevance of the lipase A from Candida antarctica. Catalysis Today, 2021, 362, 141-154.	2.2	78
1061	Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase. Catalysis Today, 2021, 362, 122-129.	2.2	36
1062	Electrochemical properties of enzyme electrode covalently immobilized on a graphite oxide/cobalt hydroxide/chitosan composite mediator for biofuel cells. International Journal of Hydrogen Energy, 2021, 46, 3251-3258.	3.8	10
1063	Synthesis of substituted 2 <i>H</i> â€chromenes catalyzed by lipase immobilized on magnetic multiwalled carbon nanotubes. Biotechnology and Applied Biochemistry, 2021, 68, 411-416.	1.4	6
1064	Optimization of simultaneous saccharification and isomerization of dextrin to high fructose syrup using a mixture of immobilized amyloglucosidase and glucose isomerase. Catalysis Today, 2021, 362, 175-183.	2.2	16
1065	Enzymatic clarification of orange juice in continuous bed reactors: Fluidized-bed versus packed-bed reactor. Catalysis Today, 2021, 362, 184-191.	2.2	21
1066	One-pot biocatalytic conversion of lactose to gluconic acid and galacto-oligosaccharides using immobilized β-galactosidase and glucose oxidase. Catalysis Today, 2021, 366, 202-211.	2.2	16
1067	Immobilization studies of a pectinase produced by <i>Aspergillus terreus</i> . Biotechnology and Applied Biochemistry, 2021, 68, 197-208.	1.4	5
1068	Production of lactobionic acid using an immobilized cellobiose dehydrogenase/laccase system on magnetic chitosan spheres. Process Biochemistry, 2021, 100, 1-9.	1.8	20
1069	Chitosan-glutaraldehyde activated carrageenan-alginate beads for β-D-galactosidase covalent immobilisation. Biocatalysis and Biotransformation, 2021, 39, 138-151.	1.1	9
1070	Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate. Chemosphere, 2021, 267, 128921.	4.2	22
1071	Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactorâ€Dependent Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 5421-5428.	7.2	98

#	Article	IF	Citations
1072	Hierarchically Porous Biocatalytic MOF Microreactor as a Versatile Platform towards Enhanced Multienzyme and Cofactorâ€Đependent Biocatalysis. Angewandte Chemie, 2021, 133, 5481-5488.	1.6	27
1073	Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. Journal of Applied Electrochemistry, 2021, 51, 283-293.	1.5	23
1074	Large scale synthesis of self-assembled shuttlecock-shaped silica nanoparticles with minimized drag as advanced catalytic nanomotors. Chemical Engineering Journal, 2021, 417, 127971.	6.6	9
1075	Immobilization of polygalacturonase for the preparation of pectic oligosaccharides from mango peel wastes and assessment of their antibacterial activities. Food Bioscience, 2021, 39, 100837.	2.0	21
1076	Magnetic micro-macro biocatalysts applied to industrial bioprocesses. Bioresource Technology, 2021, 322, 124547.	4.8	42
1077	Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Research International, 2021, 140, 109979.	2.9	38
1078	Combination of Adsorption and Cellulose Derivative Membrane Coating for Efficient Immobilization of Laccase. Applied Biochemistry and Biotechnology, 2021, 193, 446-462.	1.4	8
1079	Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?. Renewable Energy, 2021, 164, 1566-1587.	4.3	88
1080	Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases—A review. International Journal of Biological Macromolecules, 2021, 166, 352-373.	3.6	52
1081	Preparation of Streptavidin-Coated Magnetic Nanoparticles for Specific Immobilization of Enzymes with High Activity and Enhanced Stability. Industrial & Engineering Chemistry Research, 2021, 60, 1542-1552.	1.8	14
1082	Biocatalysis in Continuous-Flow Microfluidic Reactors. Advances in Biochemical Engineering/Biotechnology, 2021, , 211-246.	0.6	10
1083	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	23.0	372
1084	Modification of Electrospun Regenerate Cellulose Nanofiber Membrane via Atom Transfer Radical Polymerization (ATRP) Approach as Advanced Carrier for Laccase Immobilization. Polymers, 2021, 13, 182.	2.0	9
1085	Early instability of MIL-125-NH ₂ in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45, 10277-10286.	1.4	5
1086	Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess and Biosystems Engineering, 2021, 44, 809-818.	1.7	10
1087	Multi-Enzyme Systems in Flow Chemistry. Processes, 2021, 9, 225.	1.3	22
1088	Solid-phase XRN1 reactions for RNA cleavage: application in single-molecule sequencing. Nucleic Acids Research, 2021, 49, e41-e41.	6.5	6
1089	Directed evolution and immobilization of new lipase Lip 906. E3S Web of Conferences, 2021, 233, 02030.	0.2	0

#	Article	IF	CITATIONS
1090	Effect of Hybrid Nanoparticle on DI Diesel Engine Performance, Combustion, and Emission Studies. Energy, Environment, and Sustainability, 2021, , 235-263.	0.6	6
1091	A novel process for the covalent immobilization of laccases on silica gel and its application for the elimination of pharmaceutical micropollutants. Environmental Science and Pollution Research, 2021, 28, 25579-25593.	2.7	20
1092	Lipases Immobilized onto Nanomaterials as Biocatalysts in Biodiesel Production: Scientific Context, Challenges, and Opportunities. Revista Virtual De Quimica, 2021, 13, 875-891.	0.1	29
1093	Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catalysis Science and Technology, 2021, 11, 5696-5711.	2.1	72
1094	Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS Applied Bio Materials, 2021, 4, 1077-1114.	2.3	55
1095	New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chemical Society Reviews, 2021, 50, 5850-5862.	18.7	168
1096	Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid. Biocatalysis and Biotransformation, 2021, 39, 221-231.	1.1	3
1097	Polymer supported cross-linked enzyme aggregates (CLEAs) of lipase B from <i>Candida antarctica</i> : An efficient and recyclable biocatalyst for reactions in both aqueous and organic media. Biocatalysis and Biotransformation, 2022, 40, 182-194.	1.1	5
1098	Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-Hydroxymethylfurfural. International Journal of Biological Macromolecules, 2021, 170, 583-592.	3.6	14
1099	Fragmented α-Amylase into Microporous Metal-Organic Frameworks as Bioreactors. Materials, 2021, 14, 870.	1.3	3
1100	Chemical and thermal stabilization of CotA laccase via a novel one-step expression and immobilization in muNS-Mi nanospheres. Scientific Reports, 2021, 11, 2802.	1.6	8
1101	Preparation of uniform polyurea microspheres at high yield by precipitation polymerization and their use for laccase immobilization. Polymer, 2021, 216, 123432.	1.8	13
1102	Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives. Catalysts, 2021, 11, 303.	1.6	4
1103	Constructing an Efficient Bacillus subtilis Spore Display by Using Cohesinâ^'Dockerin Interactions. Molecules, 2021, 26, 1186.	1.7	6
1104	Improvement of biodiesel production from palm oil by co-immobilization of Thermomyces lanuginosa lipase and Candida antarctica lipase B: Optimization using response surface methodology. International Journal of Biological Macromolecules, 2021, 170, 490-502.	3.6	46
1105	Highly efficient biosynthesis of phosphatidylserine by the surface adsorption-catalysis in purely aqueous media and mechanism study by biomolecular simulation. Molecular Catalysis, 2021, 502, 111397.	1.0	4
1106	Utilization of polyvinyl butyral-zirconium alkoxide hybrid hollow tube as an enzyme immobilization carrier. Journal of Materials Science, 2021, 56, 8668-8678.	1.7	3
1107	Cross-linked Enzyme Aggregates of Fibrinolytic Protease BC1 Immobilized on Magnetic Chitosan Nanoparticles (CLEAs-Fib-mChi): Synthesis, Purification, and Characterization. Applied Biochemistry and Biotechnology, 2021, 193, 2004-2027.	1.4	5

#	Article	IF	CITATIONS
1108	Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnology for Biofuels, 2021, 14, 67.	6.2	26
1109	Lipase from pseudomonas cepacia immobilized into ZIF-8 as bio-catalyst for enantioselective hydrolysis and transesterification. Process Biochemistry, 2021, 102, 132-140.	1.8	20
1110	Effect of amine length in the interference of the multipoint covalent immobilization of enzymes on glyoxyl agarose beads. Journal of Biotechnology, 2021, 329, 128-142.	1.9	20
1111	Electrochemical glucose biosensor based on an osmium redox polymer and glucose oxidase grafted to carbon nanotubes: A design-of-experiments optimisation of current density and stability. Electrochimica Acta, 2021, 371, 137845.	2.6	23
1112	Immobilization of Lepidium draba peroxidase on a novel Zn-MOF nanostructure. International Journal of Biological Macromolecules, 2021, 173, 366-378.	3.6	13
1113	Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain. Marine Drugs, 2021, 19, 197.	2.2	30
1114	Chitosan Activated with Genipin: A Nontoxic Natural Carrier for Tannase Immobilization and Its Application in Enhancing Biological Activities of Tea Extract. Marine Drugs, 2021, 19, 166.	2.2	11
1115	Glycosyltransferase Coâ€Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the <i>C</i> â€Glucoside Nothofagin with Efficient Reuse of Enzymes. Advanced Synthesis and Catalysis, 2021, 363, 2157-2169.	2.1	22
1116	Modulation of the Biocatalytic Properties of a Novel Lipase from Psychrophilic Serratia sp. (USBA-GBX-513) by Different Immobilization Strategies. Molecules, 2021, 26, 1574.	1.7	5
1117	Influence of water availability and temperature on estimates of microbial extracellular enzyme activity. PeerJ, 2021, 9, e10994.	0.9	12
1118	Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzyme and Microbial Technology, 2021, 144, 109739.	1.6	27
1119	PTFE-Carbon Nanotubes and Lipase B from Candida antarctica—Long-Lasting Marriage for Ultra-Fast and Fully Selective Synthesis of Levulinate Esters. Materials, 2021, 14, 1518.	1.3	9
1120	Green Production of Cladribine by Using Immobilized 2′-Deoxyribosyltransferase from Lactobacillus delbrueckii Stabilized through a Double Covalent/Entrapment Technology. Biomolecules, 2021, 11, 657.	1.8	6
1121	Immobilization of the Peroxygenase from Agrocybe aegerita. The Effect of the Immobilization pH on the Features of an Ionically Exchanged Dimeric Peroxygenase. Catalysts, 2021, 11, 560.	1.6	12
1122	Superporous neutral, anionic, and cationic cryogel reactors to improved enzymatic activity and stability of α-Glucosidase enzyme via entrapment method. Chemical Engineering Journal, 2021, 409, 128233.	6.6	14
1123	Improved Performance of D-Psicose 3-Epimerase by Immobilisation on Amino-Epoxide Support with Intense Multipoint Attachment. Foods, 2021, 10, 831.	1.9	6
1124	Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. Molecular Catalysis, 2021, 505, 111529.	1.0	7
1125	Green Process for the Enzymatic Synthesis of Aroma Compounds Mediated by Lipases Entrapped in Tailored Sol–Gel Matrices. ACS Sustainable Chemistry and Engineering, 2021, 9, 5461-5469.	3.2	10

#	Article	IF	CITATIONS
1126	Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomaterials Science and Engineering, 2021, 7, 2015-2042.	2.6	27
1127	The β-galactosidase immobilization protocol determines its performance as catalysts in the kinetically controlled synthesis of lactulose. International Journal of Biological Macromolecules, 2021, 176, 468-478.	3.6	18
1128	Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: Stability and catalysis of transesterification of soybean oil and phytosterol. Food Bioscience, 2021, 40, 100906.	2.0	18
1129	Biocatalysis with Baker's yeast: A green and sustainable approach for C–B bond cleavage of aryl/heteroarylboronic acids and boronate esters at room temperature. Sustainable Chemistry and Pharmacy, 2021, 19, 100363.	1.6	4
1130	Different strategies for the lipase immobilization on the chitosan based supports and their applications. International Journal of Biological Macromolecules, 2021, 179, 170-195.	3.6	76
1131	Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. Journal of Colloid and Interface Science, 2021, 590, 28-37.	5.0	19
1132	Enzymatic Cascade Reactions Mediated by Highly Efficient Biomimetic Quasi Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 22240-22253.	4.0	37
1133	Biodiesel production with enzymatic technology: progress and perspectives. Biofuels, Bioproducts and Biorefining, 2021, 15, 1526-1548.	1.9	22
1134	Lipase-Catalyzed Production of Sorbitol Laurate in a "2-in-1―Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules, 2021, 26, 2759.	1.7	14
1135	Nickel-Carnosine complex: A new carrier for enzymes immobilization by affinity adsorption. Chinese Journal of Chemical Engineering, 2021, 38, 237-246.	1.7	4
1136	Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Critical Reviews in Biotechnology, 2021, 41, 1257-1278.	5.1	7
1137	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
1138	1,3â€Dioleoylâ€2â€palmitoyl glycerol (OPO)—Enzymatic synthesis and use as an important supplement in infant formulas. Journal of Food Biochemistry, 2021, 45, e13799.	1.2	25
1139	<scp>Polydopamineâ€Encapsulated</scp> Dendritic Organosilica Nanoparticles as Amphiphilic Platforms for Highly Efficient Heterogeneous Catalysis in Water. Chinese Journal of Chemistry, 2021, 39, 1975-1982.	2.6	8
1140	Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research Biosensors and Bioelectronics, 2021, 181, 113054.	5.3	114
1141	Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy?. International Journal of Biological Macromolecules, 2021, 181, 1124-1170.	3.6	93
1142	New nanocomposite made of cashew apple bagasse lignin and <scp>Fe₃O₄</scp> for immobilizing of lipase B from <i>Candida antarctica</i> aiming at esterification. Journal of Chemical Technology and Biotechnology, 2021, 96, 2472-2487.	1.6	16
1143	Outperformance in Acrylation: Supported D-Clucose-Based Ionic Liquid Phase on MWCNTs for Immobilized Lipase B from Candida antarctica as Catalytic System. Materials, 2021, 14, 3090.	1.3	12

	Οιτατιο	n Report	
#	ARTICLE	IF	CITATIONS
1145	stability and activity. International Journal of Biological Macromolecules, 2021, 180, 161-176.	3.6	28
1146	Design of amino-functionalized hollow mesoporous silica cube for enzyme immobilization and its application in synthesis of phosphatidylserine. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111668.	2.5	12
1147	Bioinspired Selfâ€Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 2021, 31, 2104819.	7.8	21
1149	Engineering Cytochrome C with Quantum Dots and Ionic Liquids: A Win-Win Strategy for Protein Packaging against Multiple Stresses. ACS Sustainable Chemistry and Engineering, 2021, 9, 8327-8335.	3.2	11
1150	Fully Inkjet-Printed Biosensors Fabricated with a Highly Stable Ink Based on Carbon Nanotubes and Enzyme-Functionalized Nanoparticles. Nanomaterials, 2021, 11, 1645.	1.9	20
1151	Kappa-Carrageenan Crosslinked Magnetic Folic Acid-Conjugated Chitosan Nanocomposites for Arginase Encapsulation, Delivery and Cancer Therapy. Nano LIFE, 2021, 11, 2140005.	0.6	3
1152	Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces, 2021, , .	4.0	0
1153	Biodegradation pathway of penicillins by β-lactamase encapsulated in metal-organic frameworks. Journal of Hazardous Materials, 2021, 414, 125549.	6.5	24
1154	Enzyme-inorganic hybrid nanoflowers: Classification, synthesis, functionalization and potential applications. Chemical Engineering Journal, 2021, 415, 129075.	6.6	59
1155	Immobilizing Enzymes on Noble Metal Hydrogel Nanozymes with Synergistically Enhanced Peroxidase Activity for Ultrasensitive Immunoassays by Cascade Signal Amplification. ACS Applied Materials & Interfaces, 2021, 13, 33383-33391.	4.0	49
1156	A biotechnological tool for glycoprotein desialylation based on immobilized neuraminidase from Clostridium perfringens. Biochemistry and Biophysics Reports, 2021, 26, 100940.	0.7	2
1157	Chitosan–based nanofibers for enzyme immobilization. International Journal of Biological Macromolecules, 2021, 183, 1959-1970.	3.6	49
1158	Laboratory scale bioreactor studies on the production of l-asparaginase using Rhizopus microsporus IBBL-2 and Trichosporon asahii IBBLA1. Biocatalysis and Agricultural Biotechnology, 2021, 34, 102041.	1.5	4
1159	Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnology Advances, 2022, 54, 107798.	6.0	20
1160	Agarose vs. Methacrylate as Material Supports for Enzyme Immobilization and Continuous Processing. Catalysts, 2021, 11, 814.	1.6	20
1161	An Overview of Cytochrome P450 Immobilization Strategies for Drug Metabolism Studies, Biosensing, and Biocatalytic Applications: Challenges and Opportunities. ACS Catalysis, 2021, 11, 9418-9434.	5.5	22
1162	Synthesis and characterisation of lipase immobilised magnetic nanoparticles and its role as a catalyst in biodiesel production. Materials Today: Proceedings, 2023, 80, 2725-2730.	0.9	12
1163	β-galactosidase from Kluyveromyces lactis in genipin-activated chitosan: An investigation on immobilization, stability, and application in diluted UHT milk. Food Chemistry, 2021, 349, 129050. –	4.2	29

#	Article	IF	CITATIONS
1164	Biocatalyzed Synthesis of Flavor Esters and Polyesters: A Design of Experiments (DoE) Approach. International Journal of Molecular Sciences, 2021, 22, 8493.	1.8	7
1165	Fabrication of a Sensitive and Stable NiO Uric Acid Biosensor Using Ag Nanowires and Reduced Graphene Oxide. Energies, 2021, 14, 4696.	1.6	1
1166	Insights on the emerging biotechnology of histidine-rich peptides. Biotechnology Advances, 2022, 54, 107817.	6.0	35
1167	Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural <i>C</i> â€glycoside nothofagin. Biotechnology and Bioengineering, 2021, 118, 4402-4413.	1.7	20
1168	Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111774.	2.5	125
1169	A novel immobilized enzyme enhances the conversion of phosphatidylserine in two-phase system. Biochemical Engineering Journal, 2021, 172, 108035.	1.8	0
1170	Lipidomics study on the molecular changes of eicosapentaenoic and docosahexaenoic acyl structured glycerides during enzyme-catalysis and chemocatalysis. LWT - Food Science and Technology, 2021, 148, 111815.	2.5	2
1171	The Simple Method of Preparation of Highly Carboxylated Bacterial Cellulose with Ni- and Mg-Ferrite-Based Versatile Magnetic Carrier for Enzyme Immobilization. International Journal of Molecular Sciences, 2021, 22, 8563.	1.8	8
1172	The influence of oriented external electric field on lipase catalyzed triglyceride hydrolysis. Chemical Engineering and Processing: Process Intensification, 2021, 165, 108452.	1.8	3
1173	Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. International Journal of Biological Macromolecules, 2021, 184, 415-428.	3.6	47
1174	Enzyme-Encapsulated Zeolitic Imidazolate Frameworks Formed Inside the Single Glass Nanopore: Catalytic Performance and Sensing Application. Analytical Chemistry, 2021, 93, 12257-12264.	3.2	23
1175	Boosting the Productivity of H2-Driven Biocatalysis in a Commercial Hydrogenation Flow Reactor Using H2 From Water Electrolysis. Frontiers in Chemical Engineering, 2021, 3, .	1.3	7
1176	Nickel-copper oxide nanoflowers for highly efficient glucose electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 28527-28536.	3.8	25
1177	Carrageenan stabilized calcium pectinate beads and their utilization as immobilization matrices. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102078.	1.5	9
1178	Highly enhanced activity and stability via affinity induced immobilization β-glucosidase from Aspergillus niger onto amino-based silica for the biotransformation of ginsenoside Rb1. Journal of Chromatography A, 2021, 1653, 462388.	1.8	11
1179	Site directed confinement of laccases in a porous scaffold towards robustness and selectivity. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00645.	2.1	4
1180	Heminâ€Doped, Ionically Crosslinked Silicone Elastomers with Peroxidaseâ€Like Reactivity. Advanced Functional Materials, 2021, 31, 2105453.	7.8	8
1181	Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. Journal of Molecular Liquids, 2021, 338, 116602.	2.3	27

#	Article	IF	CITATIONS
1182	Encapsulation of <scp>CALB</scp> by nucleotide/metal ions coordination nanoparticles: highly selective catalysis of esterification while poor performance in glycerolysis reaction. Journal of the Science of Food and Agriculture, 2022, 102, 1812-1822.	1.7	7
1183	Multi-enzyme co-immobilized nano-assemblies: Bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges. International Journal of Biological Macromolecules, 2021, 186, 735-749.	3.6	61
1184	Immobilized Forms of the Ophiostoma piceae Lipase for Green Synthesis of Biodiesel. Comparison with Eversa Transform 2.0 and Cal A. Journal of Fungi (Basel, Switzerland), 2021, 7, 822.	1.5	7
1185	Hydrophobic poly(ionic liquid)s as "two-handed weapons― Maximizing lipase catalytic efficiency in transesterification of soybean oil toward biodiesel. Applied Catalysis A: General, 2021, 626, 118350.	2.2	18
1186	Surface-Modified Colloid CdTe/CdS Quantum Dots by a Biocompatible Thiazolidine Derivative as Promising Platform for Immobilization of Glucose Oxidase: Application to Fluorescence Sensing of Glucose. Journal of Fluorescence, 2021, 31, 1805-1813.	1.3	0
1187	Covalent Immobilization of Chondrostereum purpureum Endopolygalacturonase on Ferromagnetic Nanoparticles: Catalytic Properties and Biotechnological Application. Applied Biochemistry and Biotechnology, 2022, 194, 848-861.	1.4	4
1188	Cascade/Parallel Biocatalysis via Multi-enzyme Encapsulation on Metal–Organic Materials for Rapid and Sustainable Biomass Degradation. ACS Applied Materials & Interfaces, 2021, 13, 43085-43093.	4.0	9
1189	Immobilization of Sporothrix schenckii 1099-18 exo-polygalacturonase in magnetic mesoporous silica yolk-shell spheres: Highly reusable biocatalysts for apple juice clarification. Food Bioscience, 2021, 43, 101324.	2.0	9
1190	Morpho-structural properties of ZnSe, TiO2-ZnSe materials and enzymatic activity of their bioinorganic hybrids with lysozyme. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115350.	1.7	2
1191	Enhancing bio-catalytic performance of lipase immobilized on ionic liquids modified magnetic polydopamine. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111960.	2.5	21
1192	Expanding the bio-catalysis scope and applied perspectives of nanocarrier immobilized asparaginases. 3 Biotech, 2021, 11, 453.	1.1	3
1193	Employment of polysaccharides in enzyme immobilization. Reactive and Functional Polymers, 2021, 167, 105005.	2.0	35
1194	Immobilization of papain: A review. International Journal of Biological Macromolecules, 2021, 188, 94-113.	3.6	42
1195	Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnology Advances, 2021, 52, 107821.	6.0	280
1196	β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 2021, 191, 881-898.	3.6	39
1197	Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnology Advances, 2021, 51, 107738.	6.0	45
1198	In-Cell Crosslinked Enzymes: Improving Bacillus megaterium whole-cell biocatalyst stability for the decarboxylation of ferulic acid. Process Biochemistry, 2021, 110, 71-84.	1.8	4
1199	Microbial cellulases – An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. Bioresource Technology, <u>2021, 340, 125710.</u>	4.8	23

#	Article	IF	CITATIONS
1200	Smart chemistry of enzyme immobilization using various support matrices – A review. International Journal of Biological Macromolecules, 2021, 190, 396-408.	3.6	59
1201	A review: Evolution of enzymatic biofuel cells. Journal of Environmental Management, 2021, 298, 113483.	3.8	31
1202	Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. International Journal of Biological Macromolecules, 2021, 191, 79-91.	3.6	30
1203	Immobilized protease on magnetic particles for enzymatic protein hydrolysis of poultry by-products. LWT - Food Science and Technology, 2021, 152, 112327.	2.5	7
1204	Intensification of oxygen-dependent biotransformations catalyzed by immobilized enzymes. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100544.	3.2	10
1205	Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation. Biochemical Engineering Journal, 2021, 176, 108205.	1.8	33
1206	Microenvironmental effects can masquerade as substrate channelling in cascade biocatalysis. Current Opinion in Biotechnology, 2022, 73, 233-239.	3.3	23
1207	A novel sn-1,3 specific lipase from Janibacter sp. as catalysts for the high-yield synthesis of long-medium-long type structured triacylglycerols. Food Chemistry, 2022, 366, 130523.	4.2	3
1208	Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Advances, 2021, 11, 5529-5536.	1.7	21
1209	Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. International Journal of Molecular Sciences, 2021, 22, 990.	1.8	55
1210	An efficient and recyclable Pickering magnetic interface biocatalyst: application in biodiesel production. Green Chemistry, 2021, 23, 966-972.	4.6	29
1211	Immobilization of Enzymes as Cross-Linked Enzyme Aggregates: General Strategy to Obtain Robust Biocatalysts. Methods in Molecular Biology, 2020, 2100, 345-361.	0.4	13
1212	Myco-Nanotechnological Approach for Improved Degradation of Lignocellulosic Waste: Its Future Aspect. Fungal Biology, 2019, , 227-245.	0.3	3
1213	Exceptionally active and reusable nanobiocatalyst comprising lipase non-covalently immobilized on multi-wall carbon nanotubes for the synthesis of diester plasticizers. Applied Catalysis A: General, 2019, 574, 41-47.	2.2	28
1214	Entrapment of porous cross-linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1 into calcium alginate for maltooligosaccharides synthesis. International Journal of Biological Macromolecules, 2020, 150, 80-89.	3.6	23
1215	Catalase immobilized in polypeptide/silica nanocomposites via emulsion and biomineralization with improved activities. International Journal of Biological Macromolecules, 2020, 159, 931-940.	3.6	14
1216	Immobilization of esterase SulE in cross-linked gelatin/chitosan and its application in remediating soils polluted with tribenuron-methyl and metsulfuron-methyl. Process Biochemistry, 2020, 98, 217-223.	1.8	10
1217	Chemical Biotechnology of <i>In Vitro</i> Synthetic Biosystems for Biomanufacturing. RSC Green Chemistry, 2015, , 98-121.	0.0	1

#	Article	IF	CITATIONS
1218	Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology (United Kingdom), 2017, 163, 623-645.	0.7	99
1219	Immobilization of Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Microporous Silica Gel. PLoS ONE, 2013, 8, e80581.	1.1	25
1220	Production of <i>Garcinia gummi-gutta</i> Methyl Ester (GGME) as a Potential Alternative Feedstock for Existing Unmodified DI Diesel Engine: Combustion, Performance, and Emission Characteristics. Journal of Testing and Evaluation, 2018, 46, 2661-2678.	0.4	42
1221	Hydrolysis of casein and β-lactoglobulin by immobilized papain after pre-treatment with immobilized trypsin. Acta Alimentaria, 2015, 44, 570-577.	0.3	5
1222	Immobilization of Proteins in Poly-Styrene-Divinylbenzene Matrices: Functional Properties and Applications. Current Organic Chemistry, 2015, 19, 1707-1718.	0.9	62
1223	Immobilization of Cholesterol Oxidase: An Overview. Open Biotechnology Journal, 2018, 12, 176-188.	0.6	20
1224	Immobilization of Laccase on SiO2 Nanocarriers Improves Its Stability and Reusability. Journal of Microbiology and Biotechnology, 2014, 24, 639-647.	0.9	127
1225	Millet Cobs: A Source of Microbial Enzymes. Journal of Microbial & Biochemical Technology, 2018, 10, .	0.2	2
1227	Characteristics of Penicillin G Acylase Immobilized onto Iron Oxide Nanoparticles. British Biotechnology Journal, 2013, 3, 367-376.	0.4	5
1228	The challenges of using NAD ⁺ -dependent formate dehydrogenases for CO ₂ conversion. Critical Reviews in Biotechnology, 2022, 42, 953-972.	5.1	21
1229	Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts, 2021, 11, 1236.	1.6	3
1230	Highly selective and sensitive detection of cadmium ions by horseradish peroxidase enzyme inhibition using a colorimetric microplate reader and smartphone paper-based analytical device. Microchemical Journal, 2022, 172, 106940.	2.3	19
1231	Current perspective on production and applications of microbial cellulases: a review. Bioresources and Bioprocessing, 2021, 8, .	2.0	52
1232	Tailoring the hydrophobicity of wrinkled silica nanoparticles and of the adsorption medium as a strategy for immobilizing lipase: An efficient catalyst for biofuel production. Microporous and Mesoporous Materials, 2021, 328, 111504.	2.2	12
1233	Stabilization and operational selectivity alteration of Lipozyme 435 by its coating with polyethyleneimine: Comparison of the biocatalyst performance in the synthesis of xylose fatty esters. International Journal of Biological Macromolecules, 2021, 192, 665-674.	3.6	10
1234	From Chemical Biology to Its Technology and Engineering. RSC Green Chemistry, 2015, , 1-10.	0.0	Ο
1236	Performance of an immobilized recombinant leucine aminopeptidase after storage in ethanol–water solution. Biocatalysis and Biotransformation, 2017, 35, 397-406.	1.1	0
1237	Development of highly efficient filtering materials made of oxidized metals. Nippon Suisan Gakkaishi, 2018, 84, 280-287.	0.0	0

#	Article	IF	Citations
1238	Green Biotransformations under Flow Conditions. RSC Green Chemistry, 2019, , 50-85.	0.0	2
1239	Biomolecules Immobilized Nanomaterials and Their Biological Applications. , 2020, , 79-101.		0
1240	Characterization and expression of Cm-AAT1 gene encoding alcohol acyl-transferase in melon fruit (Cucumis melo L.) †Hikapel'. Biodiversitas, 2020, 21, .	0.2	1
1241	Enzyme activity and stability of lactase immobilized on two different supports: Calcium alginate and magnetic chitosan. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 413-417.	0.4	2
1243	The Carbonic Anhydrase Promoted Carbon Dioxide Capture. Environmental Chemistry for A Sustainable World, 2020, , 1-44.	0.3	2
1244	Yeast Surface Display for <i>In Vitro</i> Biosynthetic Pathway Reconstruction. ACS Synthetic Biology, 2021, 10, 2938-2946.	1.9	11
1245	Structurally Engineered Light-Responsive Nanozymes for Enhanced Substrate Specificity. Analytical Chemistry, 2021, 93, 15150-15158.	3.2	27
1246	Immobilization of Enzymes onto Silica-Based Nanomaterials for Bioprocess Applications. Gels Horizons: From Science To Smart Materials, 2021, , 399-434.	0.3	0
1247	Deep eutectic solvents – a new additive in the encapsulation of lipase B from <i>Candida antarctica</i> : biocatalytic applications. Reaction Chemistry and Engineering, 2022, 7, 442-449.	1.9	2
1248	Enzyme immobilization: what have we learned in the past five years?. Biofuels, Bioproducts and Biorefining, 2022, 16, 587-608.	1.9	25
1249	α-Glucosidase enzyme entrapped superporous poly(amphoteric) cryogel reactor with improved enzymatic activity and stability over wide pH ranges. Chemical Engineering Research and Design, 2022, 177, 670-681.	2.7	3
1250	Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts, 2021, 11, 1357.	1.6	10
1251	Developing novel bio-nano catalyst well clean up fluid to remove formation damage induced by polymeric water-based drilling fluids. Journal of Petroleum Science and Engineering, 2022, 210, 109809.	2.1	8
1252	Effects and interactions of metal oxides in microparticleâ€enhanced cultivation of filamentous microorganisms. Engineering in Life Sciences, 2022, 22, 725-743.	2.0	11
1253	Immobilization of GOx Enzyme on SiO ₂ -Coated Ni–Co Ferrite Nanocomposites as Magnetic Support and Their Antimicrobial and Photocatalytic Activities. ACS Omega, 2021, 6, 33554-33567.	1.6	11
1254	Sandwich-likely structured, magnetically-driven recovery, biomimetic composite penicillin G acylase-based biocatalyst with excellent operation stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128245.	2.3	2
1255	Immobilization-Stabilization of Î ² -Glucosidase for Implementation of Intensified Hydrolysis of Cellobiose in Continuous Flow Reactors. Catalysts, 2022, 12, 80.	1.6	10
1256	Immobilization of β-cyclodextrin glycosyltransferase on gelatin enhances β-cyclodextrin production. Process Biochemistry, 2022, 113, 216-223.	1.8	8

#	Article	IF	CITATIONS
1257	The combination of covalent and ionic exchange immobilizations enables the coimmobilization on vinyl sulfone activated supports and the reuse of the most stable immobilized enzyme. International Journal of Biological Macromolecules, 2022, 199, 51-60.	3.6	27
1258	Design of a sustainable process for enzymatic production of ethylene glycol diesters via hydroesterification of used soybean cooking oil. Journal of Environmental Chemical Engineering, 2022, 10, 107062.	3.3	25
1259	Distribution of Charged and Hydrophobic Amino Acids on the Surfaces of Two Types of Beta-Fructosidase from Thermotoga maritima . , 2020, 2, .		0
1260	Applicability of mesoporous silica type SBA-15 as feasible support for the immobilization of Yarrowia lipolytica lipase and Candida antarctica lipase B. Brazilian Journal of Chemical Engineering, 2022, 39, 1013-1021.	0.7	4
1261	Potential antioxidant activity of multienzymatically hydrolyzed corncob. Biologia (Poland), 2022, 77, 803-813.	0.8	3
1262	Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. Chemosensors, 2022, 10, 58.	1.8	19
1263	Kombination einer genetisch engineerten Oxidase mit wasserstoffbrückengebundenen organischen Gerüsten (HOFs) für hocheffiziente Biokomposite. Angewandte Chemie, 2022, 134, .	1.6	3
1264	Carbon nanotubes/nanorods in biocatalysis. , 2022, , 339-376.		0
1265	Site-specific immobilization of papain on DDI-modified polystyrene beads for the oligo(1³-ethyl-L-glutamate) synthesis. Applied Catalysis A: General, 2022, 630, 118472.	2.2	1
1266	Enzyme immobilization on magnetic nanoparticle supports for enhanced separation and recycling of catalysts. , 2022, , 301-321.		7
1267	Enzyme immobilized nanomaterials. , 2022, , 17-65.		0
1268	Horseradish Peroxidase-Functionalized Gold Nanoconjugates for Breast Cancer Treatment Based on Enzyme Prodrug Therapy. International Journal of Nanomedicine, 2022, Volume 17, 409-422.	3.3	5
1269	Cry3Aa*SpyCatcher Fusion Crystals Produced in Bacteria as Scaffolds for Multienzyme Coimmobilization. Bioconjugate Chemistry, 2022, 33, 386-396.	1.8	5
1270	Combining a Genetically Engineered Oxidase with Hydrogenâ€Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
1271	Mechanisms of interaction among enzymes and supports. , 2022, , 105-148.		3
1272	Thermoâ€responsive macroporous p(<scp>NIPAM</scp>) cryogel affords enhanced thermal stability and activity for É'â€glucosidase enzyme by entrapping in situ. Canadian Journal of Chemical Engineering, 2022, 100, 3575-3587.	0.9	3
1273	A Bibliometric Analysis and Review of Pullulan-Degrading Enzymes—Past and Current Trends. Catalysts, 2022, 12, 143.	1.6	11
1274	Ultrasound-Assisted Intensification of β-Glucosidase Enzyme Activity in Free and Immobilized Forms. Industrial & Engineering Chemistry Research, 2022, 61, 2023-2036.	1.8	5

#	Article	IF	CITATIONS
1275	Hydrogel–Metal–Organic-Framework Nanoparticle Composites for Immobilization of Active Biomacromolecules. ACS Applied Nano Materials, 2022, 5, 2222-2230.	2.4	5
1276	Stabilization of waterâ€inâ€oil emulsions using a wax ester synthesized by a new homemade heterogeneous biocatalyst. Journal of Chemical Technology and Biotechnology, 2022, 97, 1726-1735.	1.6	2
1277	Applications of immobilized lipases in enzymatic reactors: A review. Process Biochemistry, 2022, 114, 1-20.	1.8	71
1278	Efficient Immobilization of Enzymes on Amino Functionalized MIL-125-NH2 Metal Organic Framework. Biotechnology and Bioprocess Engineering, 2022, 27, 135-144.	1.4	29
1279	Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>® Transform 2.0) as heterogeneous catalyst. Biomass and Bioenergy, 2021, 155, 106302.	2.9	41
1280	Protein-based (bio)materials: a way toward high-performance graphene enzymatic biosensors. Journal of Materials Chemistry C, 2022, 10, 5466-5473.	2.7	5
1282	Synthesis of partial glycerides rich in Î \pm -linolenic acid efficiently from silkworm pupa oil with immobilized lipase MAS1-H108A. Food Science and Technology, 0, 42, .	0.8	1
1283	Preparation and characterization of stable core/shell Fe ₃ O ₄ @Au decorated with an amine group for immobilization of lipase by covalent attachment. RSC Advances, 2022, 12, 5971-5977.	1.7	2
1284	Whole cell enzyme catalyst production using waste substrate for application in production of biodiesel. , 2022, , 163-191.		0
1285	Production of Jet Biofuels by Catalytic Hydroprocessing of Esters and Fatty Acids: A Review. Catalysts, 2022, 12, 237.	1.6	23
1286	Progress on Optical Fiber Biochemical Sensors Based on Graphene. Micromachines, 2022, 13, 348.	1.4	13
1287	Characteristics of glucose oxidase immobilized on carbon-encapsulated iron nanoparticles decorated with polyethyleneimine. Polymer Bulletin, 0, , 1.	1.7	0
1288	Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes, 2022, 10, 494.	1.3	44
1289	Immobilization of Urokinase onto Magnetically Directed Micromotors. Applied Biochemistry and Biotechnology, 2022, 194, 3351-3364.	1.4	3
1290	Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen, 2022, 11, e202200017.	0.9	12
1291	Recent Advances in Enzyme Immobilization Utilizing Nanotechnology for Biocatalysis. Organic Process Research and Development, 2022, 26, 1857-1877.	1.3	30
1292	Application of undecanedicarboxylic acid to prepare cross-linked enzymes (CLEs) of Rhizomucor miehei lipase (RML); Selective enrichment of polyunsaturated fatty acids. Molecular Catalysis, 2022, 520, 112172.	1.0	8
1293	Inkjet Printing: A Viable Technology for Biosensor Fabrication. Chemosensors, 2022, 10, 103.	1.8	24
#	Article	IF	CITATIONS
------	--	------	-----------
1294	Protease immobilization on activated chitosan/cellulose acetate electrospun nanofibrous polymers: Biochemical characterization and efficient protein waste digestion. Biocatalysis and Biotransformation, 2023, 41, 279-298.	1.1	2
1295	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
1296	Effect of cultivation conditions on hemolysin production from clinical isolates of Serratia marcescens. Mustansiriyah Journal of Science, 2022, 33, 6-14.	0.2	1
1297	Immobilization of CMP‧ialic Acid Synthetase and α2,3‧ialyltransferase for Cascade Synthesis of 3′‧ialy βâ€Ĵâ€Galactoside with Enzyme Reuse. ChemCatChem, 2022, 14, .	1.8	8
1298	Selfâ€assembling protein scaffoldâ€mediated enzymes' immobilization enhances <i>in vitro</i> <scp>d</scp> â€tagatose production from lactose. , 2022, 1, 47-57.		4
1299	Multilevel Mesoscale Complexities in Mesoregimes: Challenges in Chemical and Biochemical Engineering, Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 431-455.	3.3	3
1300	Mechanoenzymology in the Kinetic Resolution of \hat{I}^2 -Blockers: Propranolol as a Case Study. ACS Organic & Inorganic Au, 0, , .	1.9	1
1301	Efficient immobilized phospholipase A1 on Moâ€basing nanomaterials for enzymatic degumming. Biotechnology Progress, 2022, 38, e3256.	1.3	2
1302	Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: Stability & kinetic studies. International Journal of Biological Macromolecules, 2022, 207, 205-221.	3.6	21
1303	Enzymatic catalysis as a tool in biofuels production in Brazil: Current status and perspectives. Energy for Sustainable Development, 2022, 68, 103-119.	2.0	32
1304	Electron transfer-driven single and multi-enzyme biofuel cells for self-powering and energy bioscience. Nano Energy, 2022, 96, 107074.	8.2	20
1305	Immobilization and characterization of latex cysteine peptidases on different supports and application for cow's milk protein hydrolysis. Process Biochemistry, 2022, 117, 180-190.	1.8	2
1306	Bioremoval of estrogens by laccase immobilized onto polyacrylonitrile/polyethersulfone material: Effect of inhibitors and mediators, process characterization and catalytic pathways determination. Journal of Hazardous Materials, 2022, 432, 128688.	6.5	16
1307	A membraneless starch/O2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase. Biosensors and Bioelectronics, 2022, 207, 114197.	5.3	6
1308	Removal of Persistent Sulfamethoxazole and Carbamazepine from Water by Horseradish Peroxidase Encapsulated into Poly(Vinyl Chloride) Electrospun Fibers. International Journal of Molecular Sciences, 2022, 23, 272.	1.8	12
1309	Self-Assembled Enzymatic Nanowires with a "Dry and Wet―Interface Improve the Catalytic Performance of Januvia Transaminase in Organic Solvents. ACS Catalysis, 2022, 12, 372-382.	5.5	3
1310	Strategies for tailoring pH performances of glycoside hydrolases. Critical Reviews in Biotechnology, 2023, 43, 121-141.	5.1	15
1311	Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Critical Reviews in Biotechnology, 2023, 43, 369-383.	5.1	16

#	Article	IF	CITATIONS
1312	Thermostabilizing ketoreductase ChKRED20 by consensus mutagenesis at dimeric interfaces. Enzyme and Microbial Technology, 2022, 158, 110052.	1.6	4
1320	Ligand fishing based on tubular microchannel modified with monoamine oxidase B for screening of the enzyme's inhibitors from <i>Crocus sativus</i> and <i>Edgeworthia gardneri</i> . Journal of Separation Science, 2022, 45, 2394-2405.	1.3	3
1321	Characterization of lipase from <i>Candida rugosa</i> entrapped in alginate beads to enhance its thermal stability and recyclability. New Journal of Chemistry, 2022, 46, 10037-10047.	1.4	8
1322	Enzymatic Synthesis of Fatty Acid Isoamyl Monoesters from Soybean Oil Deodorizer Distillate: A Renewable and Ecofriendly Base Stock for Lubricant Industries. Molecules, 2022, 27, 2692.	1.7	18
1323	Co-immobilization of Cellulase and β-Glucosidase into Mesoporous Silica Nanoparticles for the Hydrolysis of Cellulose Extracted from <i>Eriobotrya japonica</i> Leaves. Langmuir, 2022, 38, 5481-5493.	1.6	35
1324	A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. International Journal of Biological Macromolecules, 2022, 210, 682-702.	3.6	26
1325	Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. International Journal of Molecular Sciences, 2022, 23, 5304.	1.8	16
1326	Sortase-mediated immobilization of Candida antarctica lipase B (CalB) on graphene oxide; comparison with chemical approach. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00733.	2.1	4
1327	Immobilized glucosyltransferase and sucrose synthase on Fe3O4@Uio-66 in cascade catalysis for the one-pot conversion of rebaudioside D from rebaudioside A. Process Biochemistry, 2022, 118, 323-334.	1.8	3
1328	Covalently Immobilized 2â€Deoxyriboseâ€5â€phosphate Aldolase (DERA) for Biocatalysis in Flow: Utilization of the 3â€Hydroxyaldehyde Intermediate in Reaction Cascades. ChemCatChem, 2022, 14, .	1.8	5
1329	Multipoint Immobilization at the Inert Center of Urease on Homofunctional Diazo-Activated Silica Gel: A Way of Restoring Room-Temperature Catalytic Sustainability for Perennial Utilization. Langmuir, 2022, 38, 6826-6840.	1.6	2
1330	Enzyme co-localisation: Mechanisms and benefits. Current Research in Chemical Biology, 2022, , 100031.	1.4	8
1331	Stabilization of immobilized lipases by treatment with metallic phosphate salts. International Journal of Biological Macromolecules, 2022, 213, 43-54.	3.6	10
1332	Shortcut Model for Batch Preferential Crystallization Coupled with Racemization for Conglomerate-Forming Chiral Systems. Crystal Growth and Design, 0, , .	1.4	1
1333	Enzymatic synthesis of geranyl acetate in batch and fed-batch reactors and evaluation of its larvicidal activity against Rhipicephalus (Boophilus) microplus. Process Biochemistry, 2022, 120, 287-300.	1.8	7
1334	Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects – A review. International Journal of Biological Macromolecules, 2022, 215, 434-449.	3.6	45
1335	ls enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chemical Society Reviews, 2022, 51, 6251-6290.	18.7	183
1336	Investigation of Structural Features of Two Related Lipases and the Impact on Fatty Acid Specificity in Vegetable Fats. International Journal of Molecular Sciences, 2022, 23, 7072.	1.8	3

#	Article	IF	CITATIONS
1337	Cutinase ACut2 from Blastobotrysraffinosifermentans for the Selective Desymmetrization of the Symmetric Diester Diethyl Adipate to the Monoester Monoethyl Adipate. Microorganisms, 2022, 10, 1316.	1.6	1
1338	Coâ€immobilization of multiple enzymes on ferromagnetic nanoparticles for the depolymerization of xyloglucan. Biofuels, Bioproducts and Biorefining, 2022, 16, 1682-1695.	1.9	3
1339	Immobilized Lipase in Resolution of Ketoprofen Enantiomers: Examination of Biocatalysts Properties and Process Characterization. Pharmaceutics, 2022, 14, 1443.	2.0	4
1340	Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. Molecules, 2022, 27, 4486.	1.7	8
1341	Recent advancements in enzymeâ€incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnology and Bioengineering, 2022, 119, 2609-2638.	1.7	9
1342	Improvement of enzymatic activity and stability of lipase A from Candida antartica onto halloysite nanotubes with Taguchi method for optimized immobilization. Applied Clay Science, 2022, 228, 106634.	2.6	26
1343	Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnology Advances, 2022, 60, 108024.	6.0	18
1344	N-acylhomoserine lactonase-based hybrid nanoflowers: a novel and practical strategy to control plant bacterial diseases. Journal of Nanobiotechnology, 2022, 20, .	4.2	4
1345	Chemoenzymatic synthesis of both enantiomers of propafenone hydrochloride through lipase-catalyzed process. Molecular Catalysis, 2022, 529, 112540.	1.0	3
1346	Hydrophilic Nonwoven Nanofiber Membranes as Nanostructured Supports for Enzyme Immobilization. ACS Applied Polymer Materials, 2022, 4, 6054-6066.	2.0	5
1347	Immobilization and Stabilization of an Engineered Acyltransferase for the Continuous Biosynthesis of Simvastatin in Packed-Bed Reactors. ACS Sustainable Chemistry and Engineering, 2022, 10, 9899-9910.	3.2	7
1348	Amphiphilic Nanointerface: Inducing the Interfacial Activation for Lipase. ACS Applied Materials & Interfaces, 2022, 14, 39622-39636.	4.0	6
1349	αâ€Acetolactate decarboxylase immobilized in chitosan: A highly stable biocatalyst to prevent offâ€flavor in beer. Biotechnology Progress, 2022, 38, .	1.3	7
1350	Novel Immobilized Biocatalysts Based on Cysteine Proteases Bound to 2-(4-Acetamido-2-sulfanilamide) Chitosan and Research on Their Structural Features. Polymers, 2022, 14, 3223.	2.0	8
1351	Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS Central Science, 2022, 8, 1182-1195.	5.3	6
1352	Degradation of phenolic inhibitors by laccase immobilized on tannic acid/polyethylenimine modified magnetic nanoparticles. Results in Engineering, 2022, 15, 100585.	2.2	14
1353	Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen. Biotechnology Reports (Amsterdam, Netherlands), 2022, 35, e00759.	2.1	2
1354	Gum tragacanth for immobilization of Bacillus licheniformis protease: Optimization, thermodynamics and application. Reactive and Functional Polymers, 2022, 179, 105366.	2.0	6

#	Article	IF	CITATIONS
1355	Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112754.	2.5	29
1356	Nanomaterials as Redox Mediators in Laccase-Based Amperometric Biosensors for Catechol Assay. Biosensors, 2022, 12, 741.	2.3	7
1357	Co-immobilization and compartmentalization of cholesterol oxidase, glucose oxidase and horseradish peroxidase for improved thermal and H2O2 stability. Journal of Membrane Science, 2022, 662, 121007.	4.1	8
1358	Optimization of the immobilization of xylanase from Thermomyces lanuginosus to produce xylooligosaccharides in a batch type reactor. Molecular Catalysis, 2022, 531, 112647.	1.0	2
1359	Fabrication of chitosan-coated magnetite nanobiocatalyst with Bacillus atrophaeus Î ³ -glutamyl transpeptidase and its application to the synthesis of a bioactive peptide SCV-07. Process Biochemistry, 2022, 122, 238-249.	1.8	2
1360	Switch off/switch on of a cysteinyl protease as a way to preserve the active catalytic group by modification with a reversible covalent thiol modifier: Immobilization of ficin on vinyl-sulfone activated supports. International Journal of Biological Macromolecules, 2022, 220, 1155-1162.	3.6	3
1361	Co-Immobilization and Compartmentalization of Cholesterol Oxidase, Glucose Oxidase and Horseradish Peroxidase for Improved Thermal and H2o2 Stability. SSRN Electronic Journal, 0, , .	0.4	0
1362	Enzyme Immobilization and Its Application Strategies in Food Products. , 2022, , 411-438.		Ο
1363	An <i>in vitro</i> cascade with four enzymes for the production of <scp>d</scp> -3,4-dihydroxybutyric acid from <scp>d</scp> -xylose. Green Chemistry, 2022, 24, 7602-7611.	4.6	3
1364	Magnetic cross-linked enzyme aggregate based on ionic liquid modification as a novel immobilized biocatalyst for phytosterol esterification. Catalysis Science and Technology, 2022, 12, 6405-6415.	2.1	6
1365	Enzyme immobilization: polymer–solvent–enzyme compatibility. Molecular Systems Design and Engineering, 2022, 7, 1385-1414.	1.7	10
1366	Production of î±, î², and î³-Cyclodextrin Gluconotransferase (CGTase) and Their Applications in Food Industry. , 2022, , 107-138.		0
1367	Use of Calotropis procera cysteine peptidases (CpCPs) immobilized on glyoxyl-agarose for cheesemaking. Food Chemistry, 2023, 403, 134319.	4.2	0
1368	Plasmonics in Bioanalysis: SPR, SERS, and Nanozymes. , 2023, , 37-83.		1
1369	Immobilization of EreB on Acid-Modified Palygorskite for Highly Efficient Degradation of Erythromycin. International Journal of Environmental Research and Public Health, 2022, 19, 11064.	1.2	1
1370	Engineering of Covalent Organic Frameworkâ€Based Advanced Platforms for Enzyme Immobilization: Strategies, Research Progress, and Prospects. Advanced Materials Interfaces, 2022, 9, .	1.9	9
1371	Immobilization-stabilization of the dimeric D-amino acid oxidase from porcine kidney. Process Biochemistry, 2022, 122, 120-128.	1.8	3
1372	Structure and activity of native and thiolated α-chymotrypsin adsorbed onto gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112867.	2.5	2

#	Article	IF	CITATIONS
1374	Lipase loaded motion-based multisegmental nanowires for pollutant tributyrin degradation. International Journal of Environmental Science and Technology, 0, , .	1.8	0
1375	High-throughput iSpinach fluorescent aptamer-based real-time monitoring of in vitro transcription. Bioresources and Bioprocessing, 2022, 9, .	2.0	3
1376	The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases. International Journal of Biological Macromolecules, 2022, 222, 2452-2466.	3.6	5
1377	Tuning Immobilized Enzyme Features by Combining Solid-Phase Physicochemical Modification and Mineralization. International Journal of Molecular Sciences, 2022, 23, 12808.	1.8	4
1378	Acidic Shift of Optimum pH of Bovine Serum Amine Oxidase upon Immobilization onto Nanostructured Ferric Tannates. International Journal of Molecular Sciences, 2022, 23, 12172.	1.8	4
1379	Immobilization and Application of the Recombinant Xylanase GH10 of Malbranchea pulchella in the Production of Xylooligosaccharides from Hydrothermal Liquor of the Eucalyptus (Eucalyptus) Tj ETQq1 1 0.7843	141r. g BT /C)vælock 10
1380	Supported ionic liquid phase facilitated catalysis with lipase from Aspergillus oryzae for enhance enantiomeric resolution of racemic ibuprofen. Environmental Technology and Innovation, 2022, 28, 102936.	3.0	6
1381	Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging. Materials Today Bio, 2022, 17, 100455.	2.6	2
1382	Immobilization of lipase on silica nanoparticles by adsorption followed by glutaraldehyde cross-linking. Bioprocess and Biosystems Engineering, 2023, 46, 25-38.	1.7	7
1383	Immobilization of Penicillin G Acylase on Vinyl Sulfone-Agarose: An Unexpected Effect of the Ionic Strength on the Performance of the Immobilization Process. Molecules, 2022, 27, 7587.	1.7	4
1384	Magnetic Multi-Enzymatic System for Cladribine Manufacturing. International Journal of Molecular Sciences, 2022, 23, 13634.	1.8	4
1385	Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. International Journal of Molecular Sciences, 2022, 23, 14268.	1.8	5
1386	Enhanced production of cytidine 5â€2-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose. Chinese Journal of Chemical Engineering, 2023, 58, 40-52.	1.7	1
1387	Enzyme immobilization on nanomaterials and nanostructured supports. , 2023, , 231-247.		Ο
1388	The enzyme, the support, and the immobilization strategy: The key findings to a desirable biocatalyst. , 2023, , 1-16.		0
1389	Lipase AK from Pseudomonas fluorescens immobilized on metal organic frameworks for efficient biosynthesis of enantiopure (S)â ^{~°} Â1-(4-bromophenyl) ethanol. Process Biochemistry, 2023, 124, 132-139.	1.8	4
1390	Efficient and sustainable preparation of cinnamic acid flavor esters by immobilized lipase microarray. LWT - Food Science and Technology, 2023, 173, 114322.	2.5	4
1391	Construction of enzyme@glutathione hybrid metal-organic frameworks: glutathione-boosted microenvironment fine-tuning of biomimetic immobilization for improving catalytic performance. Materials Today Chemistry, 2023, 27, 101326.	1.7	8

#	Article	IF	CITATIONS
1392	Efficient synthesis of substituted pyrazoles Via [3+2] cycloaddition catalyzed by lipase in ionic liquid. Process Biochemistry, 2023, 124, 253-258.	1.8	2
1393	Immobilization of Thermomyces lanuginosus lipase on a new hydrophobic support (Streamline) Tj ETQq1 1 0.78 110166.	4314 rgBT 1.6	/Overlock 1(8
1394	Synthesis of organic-inorganic hybrid nanoflowers of lipases from Candida antarctica type B (CALB) and Thermomyces lanuginosus (TLL): Improvement of thermal stability and reusability. Enzyme and Microbial Technology, 2023, 163, 110167.	1.6	6
1395	Combined in silico investigation and in vitro characterization of the zearalenone detoxification potential of dye-decolorizing peroxidase from Bacillus subtilis 168. Food Control, 2023, 146, 109549.	2.8	5
1396	Fabrication of immobilized lipases for efficient preparation of 1,3-dioleoyl-2-palmitoylglycerol. Food Chemistry, 2023, 408, 135236.	4.2	3
1397	Mineralization of Lipase from Thermomyces lanuginosus Immobilized on Methacrylate Beads Bearing Octadecyl Groups to Improve Enzyme Features. Catalysts, 2022, 12, 1552.	1.6	2
1398	USE OF NATURAL WASTE CARRIER IN ENZYME IMMOBILIZATION: CATALASE IMMOBILIZATION ONTO EGGSHELL MEMBRANE. MuÄŸla Journal of Science and Technology, 2022, 8, 70-76.	0.1	1
1399	Enantioselective resolution of (R,S)-DMPM to prepare (R)-DMPM by an adsorbed-covalent crosslinked esterase PAE07 from Pseudochrobactrum asaccharolyticum WZZ003. Bioprocess and Biosystems Engineering, 0, , .	1.7	0
1400	Optimal spatial allocation of enzymes as an investment problem. Communications Physics, 2022, 5, .	2.0	2
1401	Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. Sensors, 2022, 22, 9358.	2.1	8
1402	Co-Enzymes with Dissimilar Stabilities: A Discussion of the Likely Biocatalyst Performance Problems and Some Potential Solutions. Catalysts, 2022, 12, 1570.	1.6	3
1403	Lipase-Entrapped Colloidosomes with Tunable Positioning at the Oil–Water Interface for Pickering Emulsion-Enhanced Biocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 54781-54789.	4.0	6
1404	Design of supported organocatalysts from a biomass-derived difuran compound and catalytic assessment for lactose hydrolysis. Green Chemistry, 0, , .	4.6	1
1405	Multienzyme Coimmobilization on Triheterofunctional Supports. Biomacromolecules, 2023, 24, 929-942.	2.6	7
1406	Unveiling the orientation and dynamics of enzymes in unstructured artificial compartments of metal–organic frameworks (MOFs). Nanoscale, 2023, 15, 2573-2577.	2.8	3
1407	Enzymatic Synthesis of Ascorbyl Palmitate in a Rotating Bed Reactor. Molecules, 2023, 28, 644.	1.7	6
1408	Boosting the stability of β-galactosidase immobilized onto soy-protein isolate-glutaraldehyde-functionalized carrageenan beads. 3 Biotech, 2023, 13, .	1.1	2
1409	Immobilization of L-ribose isomerase on the surface of activated mesoporous MCM41 and SBA15 for the synthesis of L-ribose. Journal of Biotechnology, 2023, 362, 45-53.	1.9	0

#	Article	IF	CITATIONS
1410	Immobilization of Bacillus amyloliquefaciens protease "Neutrase―as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions. International Journal of Biological Macromolecules, 2023, 230, 123140.	3.6	4
1411	Comparison of Four Immobilization Methods for Different Transaminases. Catalysts, 2023, 13, 300.	1.6	4
1413	Immobilization of Proteases on <scp>Nanoflower‣ike</scp> Metal Organic Framework. Chinese Journal of Chemistry, 2023, 41, 1504-1508.	2.6	0
1414	Horseradish Peroxidaseâ€Coupled Ag ₃ PO ₄ /BiVO ₄ Photoanode for Biophotoelectrocatalytic Degradation of Organic Contaminants. ChemSusChem, 2023, 16, .	3.6	1
1415	Mussel-Inspired Electro-oxidation-Modified Three-Dimensional Printed Carriers for a Versatile Enzyme Immobilization Approach. ACS Sustainable Chemistry and Engineering, 2023, 11, 1375-1385.	3.2	4
1416	Hollow Mesoporous Carbon-Based Enzyme Nanoreactor for the Confined and Interfacial Biocatalytic Synthesis of Phytosterol Esters. Journal of Agricultural and Food Chemistry, 2023, 71, 2014-2025.	2.4	5
1417	Technical–Economic Assessment—The Missing Piece for Increasing the Attractiveness of Applied Biocatalysis in Ester Syntheses?. Catalysts, 2023, 13, 223.	1.6	1
1418	Dihydroflavonol 4-reductase immobilized on Fe3O4-chitosan nanoparticles as a nano-biocatalyst for synthesis of anthocyanidins. Chemical Physics Letters, 2023, 815, 140353.	1.2	7
1419	Enzyme hybrid nanoflowers and enzyme@metal–organic frameworks composites: fascinating hybrid nanobiocatalysts. Critical Reviews in Biotechnology, 0, , 1-24.	5.1	4
1420	One-pot method of recyclable lipase-nanocatalyst based on chitosan magnetic nanomaterial for ethyl levulinate synthesis. Composites Science and Technology, 2023, 236, 110002.	3.8	4
1421	Solvent tolerant enzymes in extremophiles: Adaptations and applications. International Journal of Biological Macromolecules, 2023, 238, 124051.	3.6	8
1422	Enhancing long-term stability of bio-photoelectrochemical cell by defect engineering of a WO3- photoanode. Journal of Energy Chemistry, 2023, 80, 584-593.	7.1	6
1423	Immobilization of esterase from Bacillus subtilis on Halloysite nanotubes and applications on dibutyl phthalate degradation. Environmental Technology and Innovation, 2023, 30, 103113.	3.0	2
1424	Biological pretreatment for algal biomass feedstock for biofuel production. Journal of Environmental Chemical Engineering, 2023, 11, 109870.	3.3	19
1425	Performance of microenvironment-induced lipase immobilization on diversify surface of magnetic particle. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113286.	2.5	4
1426	A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. Chemosphere, 2023, 319, 138003.	4.2	6
1427	Enzyme Immobilization. Molecules, 2023, 28, 1373.	1.7	2
1428	Immobilization of recombinant l-asparaginase from Geobacillus kaustophilus on magnetic MWCNT-nickel composites. Process Biochemistry, 2023, 127, 10-20.	1.8	2

#	Article	IF	CITATIONS
1429	Self-sufficient biocatalysts constructed using chitin-based microspheres. Chemical Engineering Journal, 2023, 459, 141660.	6.6	5
1430	Immobilized lignin peroxidase on chitosan-modified halloysite nanotubes for degradation of polycyclic aromatic hydrocarbons in soil. International Journal of Environmental Science and Technology, 0, , .	1.8	1
1431	X-Ray Crystallography, Spectral Analysis, DFT Studies, and Molecular Docking of (C ₉ H) Tj ETQq0 0 <i>Staphylococcus aureus</i> (MRSA). Polycyclic Aromatic Compounds, 2024, 44, 178-200.	0 rgBT /Ov 1.4	verlock 10 Ti 9
1432	Enzyme-Linked Metal Organic Frameworks for Biocatalytic Degradation of Antibiotics. Catalysis Letters, 2024, 154, 81-93.	1.4	3
1433	Facile Preparation of Dopamine-Modified Magnetic Zinc Ferrite Immobilized Lipase for Highly Efficient Synthesis of OPO Functional Lipid. Journal of Renewable Materials, 2023, 11, 2301-2319.	1.1	0
1435	Progress on Lipase Immobilization Technology in Edible Oil and Fat Modifications. Food Reviews International, 2024, 40, 457-503.	4.3	4
1436	Halloysite nanotubes as nano-support matrix to tailor cellulase and acetylcholinesterase-based â€~nano-biocatalysts' for waste degradation and electrochemical sensing. Applied Clay Science, 2023, 234, 106852.	2.6	5
1437	Polyelectrolyte assembly with nanoparticle-immobilized enzymes. , 2023, , 61-87.		0
1438	Immobilization of Alpha Acetolactate Decarboxylase in Hybrid Gelatin/Alginate Support for Application to Reduce Diacetyl Off-Flavor in Beer. Catalysts, 2023, 13, 601.	1.6	1
1439	Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods, 2023, 12, 1336.	1.9	13
1440	Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Advances in Colloid and Interface Science, 2023, 315, 102889.	7.0	10
1441	Effective biodegradation of chlorophenols, sulfonamides, and their mixtures by bacterial laccase immobilized on chitin. Ecotoxicology and Environmental Safety, 2023, 256, 114856.	2.9	6
1442	Hemoglobin-inorganic hybrid nanoflowers: Synthesis and applications for carbene N–H insertion reaction. Biocatalysis and Biotransformation, 0, , 1-8.	1.1	1
1443	Construction of a biomimetic core-shell PDA@Lac bioreactor from intracellular laccase as a nano-confined biocatalyst for decolorization. Chemosphere, 2023, 330, 138654.	4.2	2
1444	Designing protein nano-construct in ionic liquid: a boost in efficacy of cytochrome <i>C</i> under stresses. Chemical Communications, 2023, 59, 5894-5897.	2.2	1
1458	Immobilization of proteases for biomedical and industrial applications. , 2023, , 403-425.		0
1485	Acid-resistant enzymes: the acquisition strategies and applications. Applied Microbiology and Biotechnology, 0, , .	1.7	0
1486	Immobilization of enzymes on nanomaterials. , 2023, , 419-450.		0

#	Article	IF	CITATIONS
1489	A review of lipase immobilization on hydrophobic supports incorporating systematic mapping principles. Reaction Chemistry and Engineering, 2023, 8, 2689-2702.	1.9	1
1494	Use of magnetic nanoparticles to build magnetic macroporous biocatalyst. , 2023, , 197-219.		0
1496	Mechanism of structural and functional coordination between enzymes and nonstructural cues. , 2023, , 57-86.		0
1502	Activity regulation and applications of metal–organic framework-based nanozymes. Rare Metals, 2024, 43, 900-914.	3.6	2
1514	Alternative protein encapsulation with MOFs: overcoming the elusive mineralization of HKUST-1 in water. Chemical Communications, 0, , .	2.2	0
1528	Protein-based bioactive coatings: from nanoarchitectonics to applications. Chemical Society Reviews, 2024, 53, 1514-1551.	18.7	1
1529	Pros and Cons in Various Immobilization Techniques and Carriers for Enzymes. Applied Biochemistry and Biotechnology, 0, , .	1.4	0
1536	Choice of Enzyme Immobilization Matrices Used in Biosensor for Healthcare Applications. , 2023, , 31-50.		0
1539	Functionalized magnetic nanosystems for immobilization of proteins and enzymes. , 2024, , 291-326.		0