Vertical Transmission of Key West Dengue-1 Virus by & <I>Aedes albopictus</I> (Diptera: Culicidae

Journal of Medical Entomology 50, 1291-1297 DOI: 10.1603/me13047

Citation Report

#	Article	IF	CITATIONS
1	Susceptibility of Florida <i>Aedes aegypti</i> and <i>Aedes albopictus</i> to dengue viruses from Puerto Rico. Journal of Vector Ecology, 2014, 39, 406-413.	1.0	25
2	Oral susceptibility of <i>Aedes aegypti</i> (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses. Tropical Medicine and International Health, 2014, 19, 1355-1359.	2.3	16
3	Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasites and Vectors, 2014, 7, 320.	2.5	65
4	Assessment of vertical dengue virus transmission in Aedes aegypti and serotype prevalence in Bantul, Indonesia. Asian Pacific Journal of Tropical Disease, 2014, 4, S563-S568.	0.5	4
5	Dengue viruses in <i>Aedes albopictus</i> Skuse from a pineapple plantation in Costa Rica. Journal of Vector Ecology, 2015, 40, 184-186.	1.0	20
6	Mitochondrial Cytochrome Oxidase I Gene Sequence Analysis of <i>Aedes Albopictus</i> in Malaysia. Journal of the American Mosquito Control Association, 2015, 31, 305-312.	0.7	11
7	Dengue is still an imported disease in China: A case study in Guangzhou. Infection, Genetics and Evolution, 2015, 32, 178-190.	2.3	82
8	Detection of insemination status in live Aedes aegypti females. Journal of Insect Physiology, 2015, 75, 1-4.	2.0	10
9	Wolbachia-Mediated Antiviral Protection in Drosophila Larvae and Adults following Oral Infection. Applied and Environmental Microbiology, 2015, 81, 8215-8223.	3.1	23
10	Sterol Carrier Protein 2, a Critical Host Factor for Dengue Virus Infection, Alters the Cholesterol Distribution in Mosquito Aag2 Cells. Journal of Medical Entomology, 2015, 52, 1124-1134.	1.8	21
11	Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies. PLoS Neglected Tropical Diseases, 2016, 10, e0004943.	3.0	29
12	Development and utility of an in vitro, fluorescence-based assay for the discovery of novel compounds against dengue 2 viral protease. Tropical Medicine and Health, 2016, 44, 22.	2.8	3
13	Detection of Persistent Chikungunya Virus RNA but not Infectious Virus in Experimental Vertical Transmission in Aedes aegypti from Malaysia. American Journal of Tropical Medicine and Hygiene, 2016, 94, 182-186.	1.4	10
14	How Important is Vertical Transmission of Dengue Viruses by Mosquitoes (Diptera: Culicidae)?. Journal of Medical Entomology, 2016, 53, 1-19.	1.8	73
15	Larval Temperature–Food Effects on Adult Mosquito Infection and Vertical Transmission of Dengue-1 Virus. Journal of Medical Entomology, 2016, 53, 91-98.	1.8	52
16	Effects of Blood Coagulate Removal Method on <i>Aedes albopictus</i> (Diptera: Culicidae) Life Table Characteristics and Vector Competence for Dengue Virus. Journal of Medical Entomology, 2016, 53, 39-47.	1.8	3
17	Why is Aedes aegypti Linnaeus so Successful as a Species?. Neotropical Entomology, 2017, 46, 243-255.	1.2	64
18	Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasites and Vectors, 2017, 10, 310,	2.5	123

CITATION REPORT

#	Article	IF	CITATIONS
19	Transovarial transmission of DENV in Aedes aegypti in the Amazon basin: a local model of xenomonitoring. Parasites and Vectors, 2017, 10, 249.	2.5	38
20	The impact of Wolbachia infection on the rate of vertical transmission of dengue virus in Brazilian Aedes aegypti. Parasites and Vectors, 2017, 10, 296.	2.5	11
21	Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Neglected Tropical Diseases, 2017, 11, e0005255.	3.0	54
22	New mathematical model of vertical transmission and cure of vector-borne diseases and its numerical simulation. Advances in Difference Equations, 2018, 2018, .	3.5	13
23	Maternal and paternal nutrition in a mosquito influences offspring life histories but not infection with an arbovirus. Ecosphere, 2018, 9, e02469.	2.2	19
24	Parental and offspring larval diets interact to influence life-history traits and infection with dengue virus in <i>Aedes aegypti</i> . Royal Society Open Science, 2018, 5, 180539.	2.4	22
25	Assessing health burden risk and control effect on dengue fever infection in the southern region of Taiwan. Infection and Drug Resistance, 2018, Volume 11, 1423-1435.	2.7	4
26	Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006754.	3.0	38
27	Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180290.	1.6	23
28	Establishment of Aedes albopictus (Diptera: Culicidae) in the Florida Keys, 2001–2017. Journal of Medical Entomology, 2018, 55, 1607-1612.	1.8	5
29	Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Neglected Tropical Diseases, 2018, 12, e0006670.	3.0	23
30	Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China. Bulletin of Mathematical Biology, 2018, 80, 2633-2651.	1.9	19
31	Screening of Transovarial Dengue Virus (DENV) Transmission in Field-Collected Aedes albopictus from Dengue Active Transmission Areas in Shah Alam, Selangor, Malaysia. , 2018, , 327-332.		0
32	The changing epidemiological pattern of Dengue in Swat, Khyber Pakhtunkhwa. PLoS ONE, 2018, 13, e0195706.	2.5	17
33	Vertical Transmission of Zika Virus (Flaviviridae, Flavivirus) in Amazonian Aedes aegypti (Diptera:) Tj ETQq0 0 0 r 2019, 56, 1739-1744.	gBT /Over 1.8	lock 10 Tf 50 17
34	Experimental Vertical Transmission of Chikungunya Virus by Brazilian and Florida Aedes Albopictus Populations. Viruses, 2019, 11, 353.	3.3	20
35	A predominant dengue virus-1 endemic strain and the vector competence of Aedes albopictus from Guangzhou City, China. Acta Tropica, 2019, 199, 104975.	2.0	4
36	Aedes aegypti vector competence studies: A review. Infection, Genetics and Evolution, 2019, 67, 191-209.	2.3	251

CITATION REPORT

#	Article	IF	CITATIONS
37	Sex before or after blood feeding: Mating activities of Aedes aegypti males under conditions of different densities and female blood feeding opportunities. Journal of Asia-Pacific Entomology, 2019, 22, 274-280.	0.9	9
38	Effect of Oral Infection of Mayaro Virus on Fitness Correlates and Expression of Immune Related Genes in Aedes aegypti. Viruses, 2020, 12, 719.	3.3	9
39	Experimental study of dengue virus infection in Aedes aegypti and Aedes albopictus: A comparative analysis on susceptibility, virus transmission and reproductive success. Journal of Invertebrate Pathology, 2020, 175, 107445.	3.2	6
40	Under-the-Radar Dengue Virus Infections in Natural Populations of Aedes aegypti Mosquitoes. MSphere, 2020, 5, .	2.9	19
41	Silent circulation of dengue virus in Aedes albopictus (Diptera: Culicidae) resulting from natural vertical transmission. Scientific Reports, 2020, 10, 3855.	3.3	19
42	Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS ONE, 2020, 15, e0220753.	2.5	48
43	Induced Hatching of Quiescent <i>Aedes aegypti</i> (Diptera: Culicidae) Eggs by Labile Glutathione-Stabilizable Compounds From Yeast Extract. Journal of Medical Entomology, 2021, 58, 956-960.	1.8	1
44	Dynamics of a dengue fever model with vertical transmission and time periodic in spatially heterogeneous environments. Mathematical Methods in the Applied Sciences, 2021, 44, 11350-11375.	2.3	4
45	A dengue epidemic model highlighting vertical–sexual transmission and impulsive control strategies. Applied Mathematical Modelling, 2021, 95, 279-296.	4.2	5
46	A Framework for Weather-Driven Dengue Virus Transmission Dynamics in Different Brazilian Regions. International Journal of Environmental Research and Public Health, 2021, 18, 9493.	2.6	3
48	Dengue Serotypes Circulating in Aedes aegypti and Humans in a Poor or Peripheral Neighborhood at Reynosa, Mexico. Southwestern Entomologist, 2021, 45, .	0.2	2
49	Vertical transmission of zika virus in Aedes albopictus. PLoS Neglected Tropical Diseases, 2020, 14, e0008776.	3.0	20
50	A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan. PLoS ONE, 2016, 11, e0147416.	2.5	32
51	Dengue Virus Infection in Aedes albopictus during the 2014 Autochthonous Dengue Outbreak in Tokyo Metropolis, Japan. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1460-1468.	1.4	39
54	Susceptibility to Insecticides and Natural Infection in Aedes aegypti: An Initiative to Improve the Mosquito Control Actions in BoyacÃ _i , Colombia. Annals of Global Health, 2020, 86, 94.	2.0	2
55	Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses, 2021, 13, 2232.	3.3	8
56	Effects of Sterile Males and Fertility of Infected Mosquitoes on Mosquito-Borne Disease Dynamics. Bulletin of Mathematical Biology, 2022, 84, 31.	1.9	1
57	Circulating dengue virus serotypes and vertical transmission in Aedes larvae during outbreak and inter-outbreak seasons in a high dengue risk area of Sri Lanka. Parasites and Vectors, 2021, 14, 614.	2.5	9

CHAIN			
Article	IF	CITATIONS	
Dynamics of a reaction–diffusion dengue fever model with incubation periods and vertical transmission in heterogeneous environments. Journal of Applied Mathematics and Computing, 2022, 68, 3673-3703.	2.5	2	
Study of Dengue Virus Transovarial Transmission in Aedes spp. in Ternate City Using Streptavidin-Biotin-Peroxidase Complex Immunohistochemistry. Infectious Disease Reports, 2022, 14, 765-771.	3.1	4	
Molecular surveillance of dengue virus in field-collected Aedes mosquitoes from Bhopal, central India: evidence of circulation of a new lineage of serotype 2. Frontiers in Microbiology, 0, 14, .	3.5	0	

#

58

60