CITATION REPORT List of articles citing

Gut microbiomes of Malawian twin pairs discordant for kwashiorkor

DOI: 10.1126/science.1229000 Science, 2013, 339, 548-54.

Source: https://exaly.com/paper-pdf/56072648/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
935	Intestinal permeability defects: is it time to treat?. 2013 , 11, 1075-83		205
934	Omics approaches to study host-microbiota interactions. 2013 , 16, 270-7		22
933	Functional profiling of the gut microbiome in disease-associated inflammation. 2013 , 5, 65		39
932	The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. 2013 , 133, 2714-2721		28
931	The Microbiome as a Therapeutic Target for Metabolic Diseases. 2013 , 74, 376-384		
930	Bridging immunity and lipid metabolism by gut microbiota. 2013 , 132, 253-62; quiz 263		48
929	Inflammasome-microbiota interplay in host physiologies. 2013 , 14, 491-7		34
928	Kwashiorkor and the gut microbiota. 2013 , 368, 1746-7		16
927	Salmonella pathogenicity and host adaptation in chicken-associated serovars. 2013 , 77, 582-607		161
926	The human microbiome and probiotics: implications for pediatrics. 2013, 63 Suppl 2, 42-52		24
925	Response to the commentaries on the paper: Propionibacterium acnes strain populations in the human skin microbiome associated with acne. 2013 , 133, 2295-7		9
924	One world, one health. Humans, animals and the environment are inextricably linkeda fact that needs to be remembered and exploited in our modern approach to health. 2013 , 14, 497-501		27
923	The microbiome and cancer. 2013 , 13, 800-12		936
922	Metagenome and metabolism: the tissue microbiota hypothesis. 2013 , 15 Suppl 3, 61-70		77
921	Clinical consequences of diet-induced dysbiosis. 2013 , 63 Suppl 2, 28-40		81
920	Genomics, the origins of agriculture, and our changing microbe-scape: time to revisit some old tales and tell some new ones. 2013 , 152 Suppl 57, 135-52		33
919	ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. 2013 , 15, 866-73		135

(2013-2013)

918	Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. 2013, 14, 559-70	365
917	Role of the gut microbiota in human nutrition and metabolism. 2013 , 28 Suppl 4, 9-17	240
916	Predictors of oedema among children hospitalized with severe acute malnutrition in Jimma University Hospital, Ethiopia: a cross sectional study. 2013 , 13, 204	8
915	Related actions of probiotics and antibiotics on gut microbiota and weight modification. 2013 , 13, 889-99	128
914	Alterations in the gut microbiota associated with HIV-1 infection. 2013 , 14, 329-39	284
913	Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. 2013 , 3, e87	42
912	Advancing our understanding of the human microbiome using QIIME. 2013, 531, 371-444	373
911	The gut microbiome modulates colon tumorigenesis. 2013 , 4, e00692-13	437
910	Fighting undernutrition: don't forget the bugs. 2013 , 13, 239-40	6
909	Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. 2013 , 2, 55-63	40
908	Resident commensals shaping immunity. 2013 , 25, 450-5	42
907	Muscle wasting: the gut microbiota as a new therapeutic target?. 2013 , 45, 2186-90	103
906	Immunology. Welcome to the microgenderome. <i>Science</i> , 2013 , 339, 1044-5	71
905	The microbiota and human health: beyond exploration. 2013 , 43, 657-9	4
904	Compression-based distance (CBD): a simple, rapid, and accurate method for microbiota composition comparison. 2013 , 14, 136	4
903	Malnutrition and microbiotaa new relationship?. 2013 , 10, 261-2	13
902	Meat-metabolizing bacteria in atherosclerosis. 2013 , 19, 533-4	36
901	A gut-heart connection in cardiometabolic regulation. 2013 , 19, 534-6	17

900	Compartmentalized and systemic control of tissue immunity by commensals. 2013, 14, 646-53	236
899	Commensal bacteria at the interface of host metabolism and the immune system. 2013 , 14, 676-84	565
898	The role of the environment in the development of pediatric inflammatory bowel disease. 2013, 15, 326	53
897	Hot Topics in Metabolomics: Foodland Nutrition. 2013,	1
896	Nutrition: When guests turn hostile. 2013 , 494, 437-8	3
895	Vitamin-mediated regulation of intestinal immunity. 2013 , 4, 189	38
894	The role of probiotics and prebiotics in inducing gut immunity. 2013 , 4, 445	146
893	Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. 2013 , 11, e1001637	184
892	The gut-liver axis. 2013 , 16, 576-81	42
891	Cashabudasha and the human sub-missabiata 2012 10 452 00	
091	Carbohydrates and the human gut microbiota. 2013 , 16, 453-60	102
890	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. 2013 , 4, 494-504	30
	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron	
890	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. 2013 , 4, 494-504	
890 889	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. 2013 , 4, 494-504 Current world literature. Assessment of nutritional status and analytical methods. 2013 , 16, 601-10 Molecular signatures for the dynamic process of establishing intestinal host-microbial homeostasis:	30
890 889 888	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. 2013 , 4, 494-504 Current world literature. Assessment of nutritional status and analytical methods. 2013 , 16, 601-10 Molecular signatures for the dynamic process of establishing intestinal host-microbial homeostasis: potential for disease diagnostics?. 2013 , 29, 621-7	30
890 889 888 887	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. 2013, 4, 494-504 Current world literature. Assessment of nutritional status and analytical methods. 2013, 16, 601-10 Molecular signatures for the dynamic process of establishing intestinal host-microbial homeostasis: potential for disease diagnostics?. 2013, 29, 621-7 Nutrition, microbiomes, and intestinal inflammation. 2013, 29, 603-7	30 8 24
890 889 888 887 886	Unintended consequences of Helicobacter pylori infection in children in developing countries: iron deficiency, diarrhea, and growth retardation. 2013, 4, 494-504 Current world literature. Assessment of nutritional status and analytical methods. 2013, 16, 601-10 Molecular signatures for the dynamic process of establishing intestinal host-microbial homeostasis: potential for disease diagnostics?. 2013, 29, 621-7 Nutrition, microbiomes, and intestinal inflammation. 2013, 29, 603-7 Microbes and the malnourished child. 2013, 5, 180fs11	30 8 24 3

882	Microbiology. Undernutritionlooking within for answers. <i>Science</i> , 2013 , 339, 530-2	33.3	3
881	Contextualising complementary feeding in a broader framework for stunting prevention. 2013 , 9 Suppl 2, 27-45		281
880	Literature Search and Review. 2013 , 11, 217-226		
879	NOD2 prevents emergence of disease-predisposing microbiota. 2013 , 4, 353-6		7
878	Role of childhood infection in the sequelae of H. pylori disease. 2013 , 4, 426-38		17
877	[Dysbiosis, a new medical concept]. 2013 , 29, 586-9		O
876	Influence of diet and nutrition. 2013 , 90-105		1
875	Microbes in malnutrition. 2013 , 494, 8-8		
874	Effect of Kampo medicine "Dai-kenchu-to" on microbiome in the intestine of the rats with fast stress. 2013 , 60, 221-7		18
873	Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. 2013 , 8, e66019		447
872	A NOVEL ARCHITECTURE OF MAXIMUM POWER POINT TRACKING FOR ULTRA-LOW-POWER BASED HYBRID ENERGY HARVESTER IN UBIQUITOUS DEVICES: A REVIEW. 2013 , 10, 1240-1251		4
871	The immune system in children with malnutritiona systematic review. 2014 , 9, e105017		274
870	Gut microbiomes of Indian children of varying nutritional status. 2014 , 9, e95547		106
869	Bacterial microbiome of lungs in COPD. 2014 , 9, 229-38		63
868	Multilevel Research Strategies and Biological Systems. 2014 , 81, 811-828		47
86 7	Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. 2014 , 9, 36		184
866	Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?. 2014 , 5, 74-82		36
865	Microbiota meet big data. 2014 , 10, 605		6

864	Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. 2014 , 8, 2193-206	140
863	Biological diversity and public health. 2014 , 35, 153-67	35
862	Compositional dynamics of the human intestinal microbiota with aging: implications for health. 2014 , 18, 773-86	52
861	The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials. 2014 , 348, g2267	95
860	Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. 2014 , 5, 298	98
859	The microbiome and probiotics in childhood. 2014 , 32, 23-7	2
858	The intestinal microbiome in early life: health and disease. 2014 , 5, 427	472
857	Applications of Next-Generation Sequencing Technologies to the Study of the Human Microbiome. 2014 , 75-106	
856	Dissecting the evolutionary stealth of our flora against antibiotics. 2014 , 108, 121-2	1
855	Early childhood diarrhoeal diseases and cognition: are we missing the rest of the iceberg?. 2014 , 34, 295-307	25
854	Nutrimetabonomics: nutritional applications of metabolic profiling. 2014 , 97, 41-7	13
853	Should we be treating the bugs instead of cytokines and T cells?. 2014 , 32, 403-9	9
852	The undernourished neonatal mouse metabolome reveals evidence of liver and biliary dysfunction, inflammation, and oxidative stress. 2014 , 144, 273-81	26
851	Understanding the apothecaries within: the necessity of a systematic approach for defining the chemical output of the human microbiome. 2014 , 7, 74-81	12
850	Effectiveness of milk whey protein-based ready-to-use therapeutic food in treatment of severe acute malnutrition in Malawian under-5 children: a randomised, double-blind, controlled non-inferiority clinical trial. 2014 , 10, 436-51	32
849	An introduction to the analysis of shotgun metagenomic data. 2014 , 5, 209	308
848	Effects of iron supplementation on dominant bacterial groups in the gut, faecal SCFA and gut inflammation: a randomised, placebo-controlled intervention trial in South African children. 2014 , 112, 547-56	66

846	Temporal variability is a personalized feature of the human microbiome. 2014 , 15, 531	255
845	The stunting syndrome in developing countries. 2014 , 34, 250-65	391
844	Effect of diet on the intestinal microbiota and its activity. 2014 , 30, 189-95	58
843	Nutritional modulation of the metabonome: applications of metabolic phenotyping in translational nutritional research. 2014 , 30, 196-207	18
842	Irritable bowel syndrome, inflammatory bowel disease and the microbiome. 2014 , 21, 15-21	44
841	The microbiota and helminths: sharing the same niche in the human host. 2014 , 141, 1255-71	68
840	Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. 2014 , 6, 220ra11	255
839	Diversity and composition of the adult fecal microbiome associated with history of cesarean birth or appendectomy: Analysis of the American Gut Project. 2014 , 1, 167-172	55
838	Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. 2014 , 111, 2135-45	42
837	The role of environmental factors in modulating immune responses in early life. 2014 , 5, 434	95
836	Abnormal weight gain and gut microbiota modifications are side effects of long-term doxycycline and hydroxychloroquine treatment. 2014 , 58, 3342-7	65
835	The dynamic microbiome. 2014 , 588, 4131-9	115
834	Interactions in the microbiome: communities of organisms and communities of genes. 2014 , 38, 90-118	135
833	Cell therapies and regenerative medicine. 2014 , 8, 158-65	
832	Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. 2014 , 181, 94-106	34
831	Evolution of Staphylococcus aureus and MRSA during outbreaks. 2014 , 21, 548-53	29
830	Lactic Acid Bacteria. 2014 ,	15
829	Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. 2014 , 4, e109	69

828	Gut microbiota dictates the metabolic response of Drosophila to diet. 2014 , 217, 1894-901	193
827	Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. 2014 , 182, 70-82	8
826	Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. 2014 , 39, 201-9	41
825	Association between upper digestive tract microbiota and cancer-predisposing states in the esophagus and stomach. 2014 , 23, 735-41	94
824	Antibiotics help control rotavirus infections and enhance antirotaviral immunity: are you serious?. 2014 , 210, 167-70	3
823	Relating the metatranscriptome and metagenome of the human gut. 2014 , 111, E2329-38	410
822	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. 2014 , 73, 441-51	28
821	Emerging roles of the microbiome in cancer. 2014 , 35, 249-55	156
820	A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. 2014 , 506, 498-502	319
819	Symbiosis as a general principle in eukaryotic evolution. 2014 , 6,	80
818	From stool transplants to next-generation microbiota therapeutics. 2014 , 146, 1573-1582	129
817	Specialized metabolites from the microbiome in health and disease. 2014 , 20, 719-730	337
816	Determining microbial products and identifying molecular targets in the human microbiome. 2014 , 20, 731-741	68
815	Diet alters probiotic Lactobacillus persistence and function in the intestine. 2014 , 16, 2915-26	45
814	Opinion: Conservation and stewardship of the human microbiome. 2014 , 111, 14312-3	16
813	Technology and techniques for microbial ecology via DNA sequencing. 2014 , 11 Suppl 1, S16-20	6
812	Assessment of environmental enteropathy in the MAL-ED cohort study: theoretical and analytic framework. 2014 , 59 Suppl 4, S239-47	114
811	An evolving perspective about the origins of childhood undernutrition and nutritional interventions that includes the gut microbiome. 2014 , 1332, 22-38	38

(2014-2014)

810	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. 2014 ,	5
809	Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. 2014 , 20, 761-768	43
808	Finding the missing links among metabolites, microbes, and the host. 2014 , 40, 824-32	198
807	Influence of the microbiota on vaccine effectiveness. 2014 , 35, 526-37	102
806	African fermented foods and probiotics. 2014 , 190, 84-96	140
805	Conducting a microbiome study. 2014 , 158, 250-262	428
804	Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. 2014 , 36, 940-9	241
803	Exploring gut microbes in human health and disease: Pushing the envelope. 2014 , 1, 132-139	110
802	Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. 2014 , 2, 20	176
801	Artificial sweeteners induce glucose intolerance by altering the gut microbiota. 2014 , 514, 181-6	1088
801	Artificial sweeteners induce glucose intolerance by altering the gut microbiota. 2014 , 514, 181-6 Advancing the microbiome research community. 2014 , 159, 227-30	1088 50
800	Advancing the microbiome research community. 2014 , 159, 227-30	50
800 799	Advancing the microbiome research community. 2014 , 159, 227-30 Does the microbiome play a causal role in spondyloarthritis?. 2014 , 33, 763-7	50
800 799 798	Advancing the microbiome research community. 2014 , 159, 227-30 Does the microbiome play a causal role in spondyloarthritis?. 2014 , 33, 763-7 Are stool samples suitable for studying the link between gut microbiota and obesity?. 2014 , 29, 307-9 Harnessing microbiome and probiotic research in sub-Saharan Africa: recommendations from an	50 24 46
800 799 798 797	Advancing the microbiome research community. 2014, 159, 227-30 Does the microbiome play a causal role in spondyloarthritis?. 2014, 33, 763-7 Are stool samples suitable for studying the link between gut microbiota and obesity?. 2014, 29, 307-9 Harnessing microbiome and probiotic research in sub-Saharan Africa: recommendations from an African workshop. 2014, 2, 12 Understanding and modulating mammalian-microbial communication for improved human health.	50 24 46 15
800 799 798 797 796	Advancing the microbiome research community. 2014, 159, 227-30 Does the microbiome play a causal role in spondyloarthritis?. 2014, 33, 763-7 Are stool samples suitable for studying the link between gut microbiota and obesity?. 2014, 29, 307-9 Harnessing microbiome and probiotic research in sub-Saharan Africa: recommendations from an African workshop. 2014, 2, 12 Understanding and modulating mammalian-microbial communication for improved human health. 2014, 54, 559-80 Identification of important regressor groups, subgroups and individuals via regularization methods:	50 24 46 15 28

792	The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). 2014 , 155, 652-64	66
791	Persistent gut microbiota immaturity in malnourished Bangladeshi children. 2014 , 510, 417-21	703
790	Population health: immaturity in the gut microbial community. 2014 , 510, 344-5	7
789	Advances in individualized and regenerative medicine. 2014 , 59, 7-12	6
788	Mining the human gut microbiota for effector strains that shape the immune system. 2014 , 40, 815-23	82
787	Shrinkage of the human core microbiome and a proposal for launching microbiome biobanks. 2014 , 9, 639-56	11
786	The "metabolic winter" hypothesis: a cause of the current epidemics of obesity and cardiometabolic disease. 2014 , 12, 355-61	15
785	Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. 2014 , 38, 1115-9	119
7 ⁸ 4	Peanut fractions boost the growth of Lactobacillus casei that alters the interactions between Campylobacter jejuni and host epithelial cells. 2014 , 62, 1141-1146	15
783	[The Cutting-edge of Medicine; Human gut microbiome and its implication in endocrinology and metabolism]. 2014 , 103, 2813-9	
782	References. 222-260	
781	Deciphering the tEe- ⁻ tEe between the microbiota and the immune system. 2014 , 124, 4197-203	79
780	Unrest at home: diarrheal disease and microbiota disturbance. 2014 , 15, 120	4
779	The role of the gut microbiome in the pathogenesis and treatment of obesity. 2014 , 3, 44-57	32
778	Exploring the origins of asthma: Lessons from twin studies. 2014 , 1,	10
777	The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. 2014 , 124, 1174-82	531
776	Community-based management of acute malnutrition in Bangladesh: feasibility and constraints. 2014 , 35, 277-85	8

(2015-2015)

774	Stunting Persists despite Optimal Feeding: Are Toilets Part of the Solution?. 2015 , 81, 99-110	10
773	The gut microbiota modulates host amino acid and glutathione metabolism in mice. 2015 , 11, 834	199
772	Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. 2015 , 5, 16116	276
771	Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. 2015 , 16, 520	27
770	The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children. 2015 , 3, 37	42
769	Antibiotics, microbiota and health: are there dangers hiding in plain sight?. 2015 , 28, 455-6	3
768	Linear growth faltering in infants is associated with Acidaminococcus sp. and community-level changes in the gut microbiota. 2015 , 3, 24	77
767	Context and the human microbiome. 2015 , 3, 52	58
766	The contribution of twin studies to the understanding of the aetiology of asthma and atopic diseases. 2015 , 2, 27803	9
765	The functional impact of the intestinal microbiome on mucosal immunity and systemic autoimmunity. 2015 , 27, 381-7	48
764	The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. 2015 , 42, 1211-21	73
763	Distinctive Intestinal Lactobacillus Communities in 6-Month-Old Infants From Rural Malawi and Southwestern Finland. 2015 , 61, 641-8	12
762	The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment: Relationship to Depression, Anxiety, and Eating Disorder Psychopathology. 2015 , 77, 969-81	166
761	Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. 2015 , 26, 26555	13
760	Malnutrition: Causes and Strategies. 2015 , 06,	5
759	A Molecular Perspective of Microbial Pathogenicity. 2015 , 1-10.e2	2
75 ⁸	Re-evaluating the environment in developmental evolution. 2015 , 3,	18
757	Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant. 2015 , 6, 654	22

756	Microbiomes: unifying animal and plant systems through the lens of community ecology theory. 2015 , 6, 869	88
755	Longitudinal Microbiome Data Analysis. 2015 , 97-111	4
754	Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. 2015 , 7, 62	75
753	Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR. 2015 , 10, e0117427	19
752	Antioxidant and Anti-Inflammatory Activities of Kenyan Leafy Green Vegetables, Wild Fruits, and Medicinal Plants with Potential Relevance for Kwashiorkor. 2015 , 2015, 807158	8
751	Human Microbiome Engineering: The Future and Beyond. 2015 , 9, DE01-4	13
750	Human microbiota-associated swine: current progress and future opportunities. 2015 , 56, 63-73	79
749	Composition and function of the undernourished neonatal mouse intestinal microbiome. 2015 , 26, 1050-7	46
748	Intestinal microbiota-related effects on graft-versus-host disease. 2015 , 101, 428-37	42
747	Microbiota at Multiple Body Sites during Pregnancy in a Rural Tanzanian Population and Effects of Moringa-Supplemented Probiotic Yogurt. 2015 , 81, 4965-75	57
746	Dietary aflatoxin-induced stunting in a novel rat model: evidence for toxin-induced liver injury and hepatic growth hormone resistance. 2015 , 78, 120-7	20
745	Malnutrition, Immunodeficiency, and Mucosal Infection. 2015 , 1461-1479	1
744	The microbiome and autoimmune disease: Report from a Noel R. Rose Colloquium. 2015, 159, 183-8	14
743	Gut microbial succession follows acute secretory diarrhea in humans. 2015 , 6, e00381-15	104
742	The newest "omics"metagenomics and metabolomicsenter the battle against the neglected tropical diseases. 2015 , 9, e0003382	32
741	Latest approaches for the treatment of obesity. 2015 , 10, 825-39	38
74º	Fecal Bacterial Composition of the Endangered Yangtze Finless Porpoises Living Under Captive and Semi-natural Conditions. 2016 , 72, 306-14	14
739	Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. 2015 , 112, 14105-12	98

(2015-2015)

738	Draft Genome Sequence of the Lactobacillus agilis Strain Marseille. 2015 , 3,	3
737	Giving microbes their dueanimal life in a microbially dominant world. 2015 , 218, 1968-73	34
736	Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition. 2015 , 36, S72-5	7
735	Environmental enteric dysfunction: an overview. 2015 , 36, S76-87	130
734	Microbiota and the human nature: know thyself. 2015 , 17, 10-5	10
733	Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila. 2015 , 10, 865-872	110
732	Impact of commensal microbiota on the host pathophysiology: focusing on immunity and inflammation. 2015 , 37, 1-3	10
731	Distributed Computing and Internet Technology. 2015,	2
730	The expanding role of co-trimoxazole in developing countries. 2015 , 15, 327-39	63
729	A man with unsuspected marine eosinophilic gastritis. 2015 , 15, 248	11
728	Growth promotion and gut microbiota: insights from antibiotic use. 2015 , 17, 2216-27	37
727	Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. 2015 , 6, 33-47	177
726	Inner workings: Malnutrition, gutted. 2015 , 112, 641-2	1
725	Human metabolic, mineral, and microbiota fluctuations across daily nutritional intake visualized by a data-driven approach. 2015 , 14, 1526-34	26
724	How informative is the mouse for human gut microbiota research?. 2015 , 8, 1-16	691
723	Management of severe acute malnutrition in low-income and middle-income countries. 2015 , 100, 283-7	48
722	Identifying strains that contribute to complex diseases through the study of microbial inheritance. 2015 , 112, 633-40	48
721	Food, immunity, and the microbiome. 2015 , 148, 1107-19	193

720	The intestinal microbiota: its role in health and disease. 2015 , 174, 151-67	102
719	Screening for colorectal cancer in African Americans: determinants and rationale for an earlier age to commence screening. 2015 , 60, 711-21	65
718	The skin microbiome: Associations between altered microbial communities and disease. 2015 , 56, 268-74	63
717	Dietary effects on human gut microbiome diversity. 2015 , 113 Suppl, S1-5	256
716	Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. 2015 , 50, 992-8	80
715	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. 2015 , 22, 320-31	275
714	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. 2015 , 22, 228-38	489
713	Microbiology and ecology are vitally important to premedical curricula. 2015 , 2015, 179-92	4
712	The mucosa-associated microbiota of PSC patients is characterized by low diversity and low abundance of uncultured Clostridiales II. 2015 , 9, 342-8	84
711	Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. 2015 , 13, 390-401	133
710	The bilateral responsiveness between intestinal microbes and IgA. 2015 , 36, 460-70	92
709	Foodomics for personalized nutrition: how far are we?. 2015 , 4, 129-135	10
708	Proteobacteria: microbial signature of dysbiosis in gut microbiota. 2015 , 33, 496-503	1268
707	Engineering the gut microbiota to treat hyperammonemia. 2015 , 125, 2841-50	110
706	Gut microbiome, gut function, and probiotics: Implications for health. 2015 , 34, 93-107	19
705	Dynamic efficiency of the human intestinal microbiota. 2015 , 41, 165-71	28
704	The Birth of the Holobiont: Multi-species Birthing Through Mutual Scaffolding and Niche Construction. 2015 , 8, 191-210	50
703	The significance and scope of evolutionary developmental biology: a vision for the 21st century. 2015 , 17, 198-219	73

(2015-2015)

702	Type 2 diabetes and gut microbiome: at the intersection of known and unknown. 2015 , 6, 85-92	68
701	Comparison of the gut microbiota of people in France and Saudi Arabia. 2015 , 5, e153	57
700	An integrative view of microbiome-host interactions in inflammatory bowel diseases. 2015 , 17, 577-91	178
699	Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. 2015 , 7, 276ra24	213
698	Cultivating healthy growth and nutrition through the gut microbiota. 2015, 161, 36-48	104
697	Towards a more comprehensive concept for prebiotics. 2015 , 12, 303-10	490
696	Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. 2015 , 21, 139-53	79
695	Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. 2015 , 145, 1123S-1130S	32
694	Impact of diet on the human intestinal microbiota. 2015 , 2, 71-77	25
693	Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). 2015 , 145, 1039S-1108S	134
692	Early infancy microbial and metabolic alterations affect risk of childhood asthma. 2015 , 7, 307ra152	893
691	Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut. 2015 , 6, e00687-	1 <i>5</i> 67
690	Structure and Inhibition of Microbiome EGlucuronidases Essential to the Alleviation of Cancer Drug Toxicity. 2015 , 22, 1238-49	141
689	Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. 2015 , 21, 1360-6	34
688	Role of intestinal microbiota in transplantation outcomes. 2015 , 28, 155-61	38
687	Helminths and the microbiota: parts of the hygiene hypothesis. 2015 , 37, 314-23	40
686	Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. 2015 , 112, E4825-34	103
685	Fecal Microbial Community Structure Is Stable over Time and Related to Variation in Macronutrient and Micronutrient Intakes in Lactating Women. 2015 , 145, 2379-88	46

684	Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. 2015 , 18, 296-306	123
683	Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. 2015 , 112, 11941-6	189
682	Assessing the Intestinal Microbiota in the SHINE Trial. 2015 , 61 Suppl 7, S738-44	8
681	The interplay between the intestinal microbiota and the immune system. 2015 , 39, 9-19	47
68o	Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. 2015 , 34, 341-9	75
679	Gut microbiota of the very-low-birth-weight infant. 2015 , 77, 205-13	53
678	Childhood malnutrition and the intestinal microbiome. 2015 , 77, 256-62	85
677	Phylogenetics and the human microbiome. 2015 , 64, e26-41	24
676	Breast milk, microbiota, and intestinal immune homeostasis. 2015 , 77, 220-8	170
675	Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis. 2015 , 12, 14-25	61
674	Kwashiorkor: an unexpected complication to anorexia nervosa. 2016 , 2016,	2
673	An Exposome Perspective on Environmental Enteric Dysfunction. 2016 , 124, 1121-6	14
672	Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. 2016 , 4,	70
671	Perspectives on Microbiome Manipulation in People of Developing Countries. 2016 , 31-43	
670	Microbial Changes during Pregnancy, Birth, and Infancy. 2016 , 7, 1031	257
669	Epigenetic Regulation of Enteric Neurotransmission by Gut Bacteria. 2015 , 9, 503	18
668	New Insights in Anorexia Nervosa. 2016 , 10, 256	73
667	Intestinal Bacterial Colonization in the First 2 Weeks of Life of Nigerian Neonates Using Standard Culture Methods. 2016 , 4, 139	5

(2016-2016)

666	Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. 2016 , 11, e0154632	86
665	Nutritional Enteric Failure: Neglected Tropical Diseases and Childhood Stunting. 2016 , 10, e0004523	8
664	Longitudinal Analysis of the Intestinal Microbiota in Persistently Stunted Young Children in South India. 2016 , 11, e0155405	53
663	Airway Microbiota and the Implications of Dysbiosis in Asthma. 2016 , 16, 52	32
662	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. 2016 , 99, 588-99	20
661	Gut microbiota in Malawian infants in a nutritional supplementation trial. 2016 , 21, 283-90	16
660	Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. 2016 , 65, 1198-1208	78
659	Datafying microbes: Malnutrition at the intersection of genomics and global health. 2016 , 11, 334-351	11
658	Nutrition and the microbiome. 2016 , 1372, 3-8	3
657	Diet-microbiota interactions as moderators of human metabolism. 2016 , 535, 56-64	1086
6 ₅₇	Diet-microbiota interactions as moderators of human metabolism. 2016 , 535, 56-64 The microbiome in early life: implications for health outcomes. 2016 , 22, 713-22	1086 548
656	The microbiome in early life: implications for health outcomes. 2016 , 22, 713-22	548
656 655	The microbiome in early life: implications for health outcomes. 2016 , 22, 713-22 Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. 2016 , 138, Urinary N-methylnicotinamide and Eminoisobutyric acid predict catch-up growth in	548 108
656 655 654	The microbiome in early life: implications for health outcomes. 2016, 22, 713-22 Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. 2016, 138, Urinary N-methylnicotinamide and Eminoisobutyric acid predict catch-up growth in undernourished Brazilian children. 2016, 6, 19780 Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and	548 108 41
656 655 654 653	The microbiome in early life: implications for health outcomes. 2016, 22, 713-22 Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. 2016, 138, Urinary N-methylnicotinamide and Elaminoisobutyric acid predict catch-up growth in undernourished Brazilian children. 2016, 6, 19780 Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. 2016, 8, 134	548 108 41
656 655 654 653	The microbiome in early life: implications for health outcomes. 2016, 22, 713-22 Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. 2016, 138, Urinary N-methylnicotinamide and Eminoisobutyric acid predict catch-up growth in undernourished Brazilian children. 2016, 6, 19780 Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. 2016, 8, 134 References. 482-601 Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the Gut	548 108 41 103

648	Immune Dysfunction as a Cause and Consequence of Malnutrition. 2016 , 37, 386-398	230
647	The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. 2016 , 9, 271-81	58
646	Gut microbiota: How to build healthy growth-promoting gut communities. 2016 , 13, 379-80	3
645	Microbiome: Eating for trillions. 2016 , 532, 316-7	4
644	The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. 2016 , 8, 39	482
643	From Sample to Multi-Omics Conclusions in under 48 Hours. 2016 , 1,	45
642	Microbiome sequencing: challenges and opportunities for molecular medicine. 2016 , 16, 795-805	25
641	Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. 2016 , 74, 374-86	49
640	Microbiome therapeutics - Advances and challenges. 2016 , 105, 44-54	140
639	Microbial-Derived Metabolites Reflect an Altered Intestinal Microbiota during Catch-Up Growth in Undernourished Neonatal Mice. 2016 , 146, 940-8	13
638	Adipositas, Typ-2-Diabetes und das Mikrobiom, unser zweites Genom. 2016 , 11, 102-112	1
637	Effect of long-term antibiotic use on weight in adolescents with acne. 2016 , 71, 1098-105	3
636	Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice. 2016 , 84, 2022-2030	19
635	Droplet digital PCR quantifies host inflammatory transcripts in feces reliably and reproducibly. 2016 , 303, 43-9	15
634	Village sanitation and child health: Effects and external validity in a randomized field experiment in rural India. 2016 , 48, 135-48	62
633	The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts. 2016 , 82, 6603-6610	65
632	Protein- and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. 2016 , 104, 1253-1262	59
631	Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. 2016 , 1, 3-11	81

630	Computational operon prediction in whole-genomes and metagenomes. 2017 , 16, 181-193	9
629	Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy. 2017 , 32, 2072-2079	28
628	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. 2016 , 324, 67-124	9
627	Signals from the gut microbiota to distant organs in physiology and disease. 2016 , 22, 1079-1089	622
626	Reading the Underlying Information From Massive Metagenomic Sequencing Data. 2016 , 1-15	7
625	An overview of major metagenomic studies on human microbiomes in health and disease. 2016 , 4, 192-206	8
624	Captivity humanizes the primate microbiome. 2016 , 113, 10376-81	251
623	Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. 2016 , 8, 366ra164	31
622	Malnutrition Is Associated with Protection from Rotavirus Diarrhea: Evidence from a Longitudinal Birth Cohort Study in Bangladesh. 2016 , 54, 2568-74	23
621	The Microbiome: a Revolution in Treatment for Rheumatic Diseases?. 2016 , 18, 62	32
620	Nutrition meets the microbiome: micronutrients and the microbiota. 2016 , 1372, 53-64	123
619	Intestinal microbiota could transfer host Gut characteristics from pigs to mice. 2016 , 16, 238	32
618	Modifying Our Microbial Environment. 2016 , 373-395	
617	Gut Microbiota in Obesity and Undernutrition. 2016 , 7, 1080-1089	56
616	Increased Gut Redox and Depletion of Anaerobic and Methanogenic Prokaryotes in Severe Acute Malnutrition. 2016 , 6, 26051	108
615	Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. 2016 , 6, 26752	150
614	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. 2016 , 8, 343ra81	514
613	Faecal microbiota transplantation is promising but not a panacea. 2016 , 1, 16015	20

612	Chronic Health Consequences of Acute Enteric Infections in the Developing World. 2016, 3, 4-11	21
611	High fat diet drives obesity regardless the composition of gut microbiota in mice. 2016 , 6, 32484	72
610	An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. 2016 , 6, 26775	101
609	Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. 2016 , 6, 31786	58
608	Variable responses of human microbiomes to dietary supplementation with resistant starch. 2016 , 4, 33	181
607	The Microbiome of the Built Environment and Human Behavior: Implications for Emotional Health and Well-Being in Postmodern Western Societies. 2016 , 131, 289-323	40
606	Environmental Enteric Dysfunction Is Associated With Poor Linear Growth and Can Be Identified by Host Fecal mRNAs. 2016 , 63, 453-459	18
605	Accounting for reciprocal host-microbiome interactions in experimental science. 2016 , 534, 191-9	153
604	The Bacterial Microbiome and Virome Milestones of Infant Development. 2016 , 24, 801-810	76
603	Environmental Enteric Dysfunction in Children. 2016 , 63, 6-14	67
602	Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. <i>Science</i> , 2016 , 352, 1533	131
601	Environmental Enteric Dysfunction Includes a Broad Spectrum of Inflammatory Responses and Epithelial Repair Processes. 2016 , 2, 158-174.e1	39
600	Cooperative Microbial Tolerance Behaviors in Host-Microbiota Mutualism. 2016 , 165, 1323-1331	61
599	Complementary school garden, nutrition, water, sanitation and hygiene interventions to improve children's nutrition and health status in Burkina Faso and Nepal: a study protocol. 2016 , 16, 244	11
598	Emerging evidence of the role of gut microbiota in the development of allergic diseases. 2016 , 16, 390-5	53
597	Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. 2016 , 38, 455-64	46
596	Altered intestinal microbiota as a major driving force in alcoholic steatohepatitis. 2016, 65, 728-9	10
595	Microbiota and lifestyle interactions through the lifespan. 2016 , 57, 265-272	16

594	Investigating a holobiont: Microbiota perturbations and transkingdom networks. 2016 , 7, 126-35	26
593	Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. 2016 , 24, 402-413	259
592	Perinatal nutrition: How to take care of the gut microbiota?. 2016 , 6, 3-16	12
591	Antibiotic Exposure During the First 6 Months of Life and Weight Gain During Childhood. 2016 , 315, 1258-65	67
590	Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. <i>Science</i> , 2016 , 351,	406
589	Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science, 2016 , 351, 854-7	305
588	Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. 2016 , 30, 161-72	20
587	Role of Clinicogenomics in Infectious Disease Diagnostics and Public Health Microbiology. 2016 , 54, 1686-169	3 ₂₂
586	The interplay between the microbiome and the adaptive immune response in cancer development. 2016 , 9, 594-605	39
585	Nonalcoholic Components of Wine and Atherosclerotic Cardiovascular Disease. 2016 , 83-99	
584	Probiotics in early life: a preventative and treatment approach. 2016 , 7, 1752-68	29
583	Systems Immunology. 2016 , 3-44	
582	Milk with and without lactoferrin can influence intestinal damage in a pig model of malnutrition. 2016 , 7, 665-78	23
581	The Gut Microbiome and Cirrhosis: Basic Aspects. 2016 , 139-168	1
580	Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. 2016 , 82, 671-9	81
579	Portal Hypertension VI. 2016 ,	8
578	Role of lipids in the metabolism and activation of immune cells. 2016 , 34, 1-7	111
577	The microbiome, HLA, and the pathogenesis of uveitis. 2016 , 60, 1-6	25

576	Antibiotic use and childhood body mass index trajectory. 2016 , 40, 615-21	50
575	Samples and techniques highlighting the links between obesity and microbiota. 2017 , 106, 119-126	13
574	Gut microbiota and malnutrition. 2017 , 106, 127-138	109
573	Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. 2017 , 61, 1500902	129
572	Gut microbiome in chronic kidney disease: challenges and opportunities. 2017, 179, 24-37	127
571	Eat Well, or Get Roommates Who Do. 2017 , 21, 123-125	2
57°	Basic Definitions and Concepts: Organization of the Gut Microbiome. 2017 , 46, 1-8	12
569	sp. nov., isolated from the gut microbiota of a healthy infant. 2017 , 16, 13-24	3
568	Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa. 2017 , 26, 1031-1041	53
567	Growth faltering, child rearing and social determinants of health in Aboriginal community children. 2017 , 53, 5-7	1
566	The Spectrum of Malnutrition. 2017 , 91-117	3
565	Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. 2017 , 19, 1490-1501	129
564	Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs. 2017 , 2,	25
563	Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. 2017 , 25, 522-534	77
562	The Role of the Immune System in Metabolic Health and Disease. 2017 , 25, 506-521	134
561	Statoviruses, A novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. 2017 , 504, 36-44	11
560	Fecal microbiota transplantation in metabolic syndrome: History, present and future. 2017 , 8, 253-267	144
559	Prevalence and risk factors of undernutrition among schoolchildren in the Plateau Central and Centre-Ouest regions of Burkina Faso. 2017 , 6, 17	16

(2017-2017)

558	in obese adolescents. 2017 , 19, 1536-1551	33
557	Environmental Enteric Dysfunction Is Associated With Altered Bile Acid Metabolism. 2017 , 64, 536-540	15
556	The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. 2017 , 12, 215-226	17
555	What is broad-range 16S rDNA PCR?. 2017 , 102, 261-264	22
554	Biomarkers to Stratify Risk Groups among Children with Malnutrition in Resource-Limited Settings and to Monitor Response to Intervention. 2017 , 88, 111-117	5
553	Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. 2017, 95, 1-8	159
552	Metabolic derangements identified through untargeted metabolomics in a cross-sectional study of Nigerian children with severe acute malnutrition. 2017 , 13, 1	14
551	Increased Urinary Trimethylamine N-Oxide Following Cryptosporidium Infection and Protein Malnutrition Independent of Microbiome Effects. 2017 , 216, 64-71	10
550	Brain Autoimmunity and Intestinal Microbiota: 100 Trillion Game Changers. 2017, 38, 483-497	59
549	Lipid-based Nutrient Supplements Do Not Affect Gut Bifidobacterium Microbiota in Malawian Infants: A Randomized Trial. 2017 , 64, 610-615	6
548	Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. 2017, 85,	54
547	The sialate -acetylesterase EstA from gut species enables sialidase-mediated cross-species foraging of 9acetylated sialoglycans. 2017 , 292, 11861-11872	41
546	Chronic consequences on human health induced by microbial pathogens: Growth faltering among children in developing countries. 2017 , 35, 6807-6812	25
545	Microbial Tuning of the Mammalian Immune System. 2017 , 23, 379-380	4
544	Neurodevelopment, Nutrition, and Inflammation: The Evolving Global Child Health Landscape. 2017 , 139, S12-S22	24
543	Reproductive Microbiomes: A New Thread in the Microbial Network. 2017 , 24, 1482-1492	33
542	The Microbiome and Human Biology. 2017 , 18, 65-86	181
54 ¹	Health and Disease Imprinted in the Time Variability of the Human Microbiome. 2017 , 2,	30

540	Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. 2017 , 147, 727-745	179
539	Immunopathology in Toxicology and Drug Development. 2017,	O
538	Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet?. 2017 , 14, 315-320	71
537	Impact of maternal antibodies and infant gut microbiota on the immunogenicity of rotavirus vaccines in African, Indian and European infants: protocol for a prospective cohort study. 2017 , 7, e016577	16
536	The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health. 2017 , 39, 1094-1119	9
535	Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host. 2017 , 8, 98-112	30
534	Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. 2017, 44, 63-68	65
533	NMR window of molecular complexity showing homeostasis in superorganisms. 2017 , 142, 4161-4172	15
532	Antibiotics and specialized metabolites from the human microbiota. 2017 , 34, 1302-1331	45
531	Cardiometabolic Risk in Marasmus and Kwashiorkor Survivors. 2017 , 1-23	O
530	Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. 2017 , 17, 94	29 0
529	Severe childhood malnutrition. 2017 , 3, 17067	124
528	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. 2017 , 189, 30-50	19
527	Hunger and microbiology: is a low gastric acid-induced bacterial overgrowth in the small intestine a contributor to malnutrition in developing countries?. 2017 , 10, 1025-1030	16
526	Intervention of probiotic L. reuteri fermented milk as an adjuvant to combat protein energy malnourishment induced gut disturbances in albino mice. 2017 , 36, 467-479	7
525	Clinical impact of pre-transplant gut microbial diversity on outcomes of allogeneic hematopoietic stem cell transplantation. 2017 , 96, 1517-1523	31
524	The human microbiome. 2017 , 62, 414-420	95
523	Impact of Childhood Malnutrition on Host Defense and Infection. 2017 , 30, 919-971	114

(2017-2017)

Millennium Development Goal shortfalls in Zimbabwe: Analysing the impact of access to water and sanitation on early childhood morbidity. **2017**, 34, 802-824

521	Our Gut Microbiome: The Evolving Inner Self. 2017 , 171, 1481-1493	294
520	Gut microbiome, metabolome, and allergic diseases. 2017 , 66, 523-528	50
519	Hypothesis Testing and Statistical Analysis of Microbiome. 2017 , 4, 138-148	86
518	Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance. 2017 , 20, 136-148	57
517	Host Genetics and Gut Microbiome: Challenges and Perspectives. 2017 , 38, 633-647	149
516	The Gut Microbiome as Possible Key to Understanding and Improving Rotavirus Vaccine Performance in High-Disease Burden Settings. 2017 , 215, 8-10	10
515	Weight gain by gut microbiota manipulation in productive animals. 2017 , 106, 162-170	87
514	Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh. 2017 , 19, 237-250	58
513	An introduction to microbiome analysis for human biology applications. 2017 , 29, e22931	16
512	Defining malnutrition: A plea to rethink. 2017 , 36, 896-901	53
511	High-resolution characterization of the human microbiome. 2017 , 179, 7-23	36
510	Health and Hunger: Disease, Energy Needs, and the Indian Calorie Consumption Puzzle. 2017 , 127, 2378-2409	21
509	Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. 2017 , 81, 411-423	293
508	HuMiChip2 for strain level identification and functional profiling of human microbiomes. 2017 , 101, 423-435	6
507	Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. 2016 , 2, 16215	168
506	Diet and Kwashiorkor in the Democratic Republic of Congo. 2017 , 1-19	
505	Genome-nutrition divergence: evolving understanding of the malnutrition spectrum. 2017 , 75, 934-950	2

Consumer Importance on Sustainable Water Sanitation & Hygiene Facilities Provided in Rural 504 District Peshawar, Pakistan. 2017, 5, 316 Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by 503 64 Medicinal Plant and Food Ingredients. 2017, 8, 387 Are the Gut Bacteria Telling Us to Eat or Not to Eat? Reviewing the Role of Gut Microbiota in the 502 34 Etiology, Disease Progression and Treatment of Eating Disorders. 2017, 9, Temporal Stability and the Effect of Transgenerational Transfer on Fecal Microbiota Structure in a 501 36 Long Distance Migratory Bird. 2017, 8, 50 Gut Bacteria Missing in Severe Acute Malnutrition, Can We Identify Potential Probiotics by 500 69 Culturomics?. 2017, 8, 899 Human Gut Microbiota: Toward an Ecology of Disease. 2017, 8, 1265 499 74 The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income 498 14 Countries. 2017, 14, Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection 497 49 with Giardia lamblia and enteroaggregative Escherichia coli. 2017, 13, e1006471 Commensal bacteria and essential amino acids control food choice behavior and reproduction. 164 496 2017, 15, e2000862 Viral communities of the human gut: metagenomic analysis of composition and dynamics. 2017, 8, 12 67 495 The Influence of Microbiota on Mechanisms of Bariatric Surgery. 2017, 267-281 494 1 Chemical composition and ruminal degradation kinetics of white oat (Avena sativa L.) IPR 126. 2017 493 , 18, 50-61 Extracts from relieve inflammatory bowel disease by regulating immunity and gut microbiota. 2017 38 492 , 8, 85838-85857 Healthy gut microbiota can resolve undernutrition. 2017, 6, 141-143 491 2 Diarrhea after bariatric procedures: Diagnosis and therapy. 2017, 23, 4689-4700 490 31 489 Severe acute malnutrition. **2018**, 21, 195-199 Deciphering Human Gut Microbiota-Nutrient Interactions: A Role for Biochemistry. 2018, 57, 2567-2577 488 12 Quantification of Human Microbiome Stability Over 6 Months: Implications for Epidemiologic 12 Studies. 2018, 187, 1282-1290

486	Gut microbiota: puppeteer of the host juvenile growth. 2018 , 21, 179-183	7
485	IgA Function in Relation to the Intestinal Microbiota. 2018 , 36, 359-381	131
484	Linking the Gut Microbiota to Bone Health in Anorexia Nervosa. 2018 , 16, 65-75	21
483	Diet and microbiota linked in health and disease. 2018 , 9, 688-704	96
482	Enterotypes in the landscape of gut microbial community composition. 2018 , 3, 8-16	387
481	Causes of impaired oral vaccine efficacy in developing countries. 2018 , 13, 97-118	92
480	Maternal metabolic, immune, and microbial systems in late pregnancy vary with malnutrition in mice. 2018 , 98, 579-592	16
479	Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. 2018 , 42, 273-292	64
478	Taxa-function robustness in microbial communities. 2018 , 6, 45	30
477	Alterations in Enteric Virome Are Associated With Colorectal Cancer and Survival Outcomes. 2018 , 155, 529-541.e5	132
476	The impact of malnutrition on childhood infections. 2018 , 31, 231-236	65
475	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. 2017 , 5,	23
474	Malnutrition in HIV-Infected Children Is an Indicator of Severe Disease with an Impaired Response to Antiretroviral Therapy. 2018 , 34, 46-55	22
473	Premastication and length for age among children under 24 months in Laos. 2018 , 14,	2
472	Male-specific Association Between Fat-Free Mass Index and Fecal Microbiota in 2- to 3-Year-Old Australian Children. 2018 , 66, 147-151	9
471	Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. 2018 , 102, 433-442	140
470	NMR Analysis of Molecular Complexity. 2018 , 461-489	1
469	Gut Microbiota and Host Juvenile Growth. 2018 , 102, 387-405	20

468	The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome". 2018 , 15, 126-134	39
467	Knomics-Biota - a system for exploratory analysis of human gut microbiota data. 2018 , 11, 25	18
466	Effect of Commonly Used Pediatric Antibiotics on Gut Microbial Diversity in Preschool Children in Burkina Faso: A Randomized Clinical Trial. 2018 , 5, ofy289	25
465	Arm im Darm. 2018 , 37, 73-80	1
464	Arm im Darm. 2018 , 37, 73-80	
463	Interactions between human microbiome, diet, enteric viruses and immune system: Novel insights from gnotobiotic pig research. 2018 , 28, 95-103	6
462	Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor. 2018 ,	
461	Comparative Analysis of the Microbial Profiles in Supragingival Plaque Samples Obtained From Twins With Discordant Caries Phenotypes and Their Mothers. 2018 , 8, 361	9
460	Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection. 2018 , 120, 1131-1148	5
459	A multicenter, randomized controlled comparison of three renutrition strategies for the management of moderate acute malnutrition among children aged from 6 to 24 months (the MALINEA project). 2018 , 19, 666	3
458	Design and application of a novel two-amplicon approach for defining eukaryotic microbiota. 2018 , 6, 228	8
457	Evaluating the profound effect of gut microbiome on host appetite in pigs. 2018 , 18, 215	28
456	Gut microbial features can predict host phenotype response to protein deficiency. 2018, 6, e13932	6
455	Altered Gut Microbiota and Compositional Changes in and in Mexican Undernourished and Obese Children. 2018 , 9, 2494	64
454	Comprehensive simulation of metagenomic sequencing data with non-uniform sampling distribution. 2018 , 6, 175-185	2
453	New Insights into the Pathogenesis and Treatment of Malnutrition. 2018 , 47, 813-827	7
452	Thinking differently about ILCs-Not just tissue resident and not just the same as CD4 T-cell effectors. 2018 , 286, 160-171	15
451	Introductory Overview of Statistical Analysis of Microbiome Data. 2018 , 43-75	5

Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. 2018, 175, 947-961.e17 267 450 Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. 119 449 2018, 24, 653-664.e6 448 Social and population health science approaches to understand the human microbiome. 2018, 2, 808-815 25 Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific 52 metabolic traits. 2018, 9, 3771 Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant 446 21 fecal microbiota transplanted gnotobiotic pig model. 2018, 36, 6270-6281 Antibodies Set Boundaries Limiting Microbial Metabolite Penetration and the Resultant 445 70 Mammalian Host Response. 2018, 49, 545-559.e5 Continuous Antibiotic Prophylaxis in Pediatric Urology. 2018, 45, 525-538 444 4 Diet, Microbiota and Gut-Lung Connection. 2018, 9, 2147 148 443 Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional 442 Disorders?. 2018, 131-148 Publisher Correction: The gut-liver axis and the intersection with the microbiome. 2018, 15, 785 441 21 Gut Microbiota and Human Health: Insights From Ecological Restoration. 2018, 93, 73-90 8 440 The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. 2018, 173, 1728-1741.e13 439 339 The emerging connections between IGF1, the intestinal microbiome, strains and bone growth. 2018 438 14 , 61, T103-T113 Hematopoiesis and the bacterial microbiome. 2018, 132, 559-564 437 29 50 Years Ago in The Journal of Pediatrics: Do We Know How to Treat Kwashiorkor?. 2018, 196, 167 436 Let food be thy medicine and medicine be thy food: A bibliometric analysis of the most cited papers 38 435 focusing on nutraceuticals and functional foods. 2018, 269, 455-465 Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. 2018, 4, 247-259 434 51 Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: 433 34 Lessons from genome-scale metabolic modeling. 2018, 49, 128-142

432	Remnant Small Bowel Length in Pediatric Short Bowel Syndrome and the Correlation with Intestinal Dysbiosis and Linear Growth. 2018 , 227, 439-449	18
431	The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. 2018 , 10,	48
430	Associations Between Nutrition, Gut Microbiome, and Health in A Novel Nonhuman Primate Model. 2018 , 8, 11159	37
429	Heterogeneity of Microbiota Dysbiosis in Chronic Rhinosinusitis: Potential Clinical Implications and Microbial Community Mechanisms Contributing to Sinonasal Inflammation. 2018 , 8, 168	12
428	Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor: A Model for Better Understanding Childhood Undernutrition. 2018 , 5, 18	5
427	CoreProbe: A Novel Algorithm for Estimating Relative Abundance Based on Metagenomic Reads. 2018 , 9,	O
426	Exploring the relationship between environmental enteric dysfunction and oral vaccine responses. 2018 , 13, 1055-1070	32
425	Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. 2018 , 9, 2802	160
424	Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. 2018 , 18, 93	26
423	Is the Impact of Starvation on the Gut Microbiota Specific or Unspecific to Anorexia Nervosa? A Narrative Review Based on a Systematic Literature Search. 2018 , 16, 1131-1149	32
422	Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. 2018 , 9, 843	68
421	Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. 2018 , 6, 55	170
420	The gut-liver axis and the intersection with the microbiome. 2018 , 15, 397-411	465
419	Development of the Pediatric Gut Microbiome: Impact on Health and Disease. 2018 , 356, 413-423	45
418	Is maternal microbial metabolism an early-life determinant of health?. 2018, 47, 239-243	7
417	Lost in Aggregation: The Geographic Distribution of Kwashiorkor in Eastern Democratic Republic of the Congo. 2018 , 39, 512-520	2
416	Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. 2018 , 9, 18224-18238	50
415	Identifying the etiology and pathophysiology underlying stunting and environmental enteropathy: study protocol of the AFRIBIOTA project. 2018 , 18, 236	17

414	Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. 2018 , 9, 2013	183
413	Does Malnutrition Have a Genetic Component?. 2018 , 19, 247-262	8
412	Accessing Bioactive Natural Products from the Human Microbiome. 2018 , 23, 725-736	61
411	Characterizing the metabolic phenotype of intestinal villus blunting in Zambian children with severe acute malnutrition and persistent diarrhea. 2018 , 13, e0192092	20
410	Role of nutrition, infection, and the microbiota in the efficacy of oral vaccines. 2018 , 132, 1169-1177	14
409	Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. 2019 , 59, 3102-3116	47
408	Probiotic and synbiotic therapy in the critically ill: State of the art. 2019 , 59, 29-36	24
407	Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. 2019 , 29, 249-253	41
406	Fecal Microbiotas of Indonesian and New Zealand Children Differ in Complexity and Bifidobacterial Taxa during the First Year of Life. 2019 , 85,	14
405	Moving Microbiome Science from the Bench to the Bedside: a Physician-Scientist Perspective. 2019 , 4,	1
404	Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. 2019 , 10, S17-S30	104
403	Gut Microbiomes and Their Impact on Human Health. 2019 , 355-385	
402	Flammer Syndrome, Disordered Eating and Microbiome: Interrelations, Complexity of Risks and Individual Outcomes. 2019 , 317-330	
401	Marine Metagenomics. 2019 ,	1
400	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. 2019 , 37, 852-857	4050
399	Diet and Nutrition in IBD-Progress and Gaps. 2019 , 11,	1
398	New Aquaculture Technology Based on Host-Symbiotic Co-metabolism. 2019 , 189-228	
397	Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. 2019 , 11,	29

396	Animal Models of Undernutrition and Enteropathy as Tools for Assessment of Nutritional Intervention. 2019 , 11,	12
395	The Microbiota and Malnutrition: Impact of Nutritional Status During Early Life. 2019 , 39, 267-290	10
394	Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. 2019, 51, 7-20.e6	32
393	The association of gut microbiota characteristics in Malawian infants with growth and inflammation. 2019 , 9, 12893	10
392	Regional Diversity of the Gastrointestinal Microbiome. 2019 , 26, 314-324	111
391	A Global Strategy for Building Clinical Capacity and Advancing Research in the Context of Malnutrition and Cancer in Children within Low- and Middle-Income Countries. 2019 , 2019, 149-151	8
390	Sample Preservation and Storage Significantly Impact Taxonomic and Functional Profiles in Metaproteomics Studies of the Human Gut Microbiome. 2019 , 7,	17
389	Current Understanding of Innate Immune Cell Dysfunction in Childhood Undernutrition. 2019 , 10, 1728	12
388	Prenatal and postnatal contributions of the maternal microbiome on offspring programming. 2019 , 55, 100797	41
387	Impact of antimicrobial therapy on the gut microbiome. 2019 , 74, i6-i15	96
386	Contextual risk factors impacting the colonization and development of the intestinal microbiota: Implications for children in low- and middle-income countries. 2019 , 61, 714-728	3
385	The Impact of Starvation on the Microbiome and Gut-Brain Interaction in Anorexia Nervosa. 2019 , 10, 41	19
384	Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. 2019 , 7, 692-707	13
383	Nutritional influence on bone: role of gut microbiota. 2019 , 31, 743-751	27
382	Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. 2019 , 10, 1341	35
381	Salivary Microbial Dysbiosis is Associated with Systemic Inflammatory Markers and Predicted Oral Metabolites in Non-Small Cell Lung Cancer Patients. 2019 , 10, 1651-1662	25
380	Soya, maize and sorghum ready-to-use therapeutic foods are more effective in correcting anaemia and iron deficiency than the standard ready-to-use therapeutic food: randomized controlled trial. 2019 , 19, 806	12
379	Gut Microbiota Alteration is Characterized by a Proteobacteria and Fusobacteria Bloom in Kwashiorkor and a Bacteroidetes Paucity in Marasmus. 2019 , 9, 9084	24

(2019-2019)

378	Surveying Gut Microbiome Research in Africans: Toward Improved Diversity and Representation. 2019 , 27, 824-835	30
377	Meta-Omics- and Metabolic Modeling-Assisted Deciphering of Human Microbiota Metabolism. 2019 , 14, e1800445	6
376	The genital tract and rectal microbiomes: their role in HIV susceptibility and prevention in women. 2019 , 22, e25300	21
375	Intestinal microbiota and Anorexia Nervosa. 2019 , 28, 11-21	14
374	Comprehensive comparison of multiple quantitative near-infrared spectroscopy models for Aspergillus flavus contamination detection in peanut. 2019 , 99, 5671-5679	13
373	Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. 2019 , 25, 803-814.e5	165
372	Probiotic mechanisms of action. 2019 , 135, 58-65	36
371	Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure. 2019 , 9, 8167	38
370	Feeding protease preparation combined with adequate protein diet to rats increases levels of cecum gut-protective amino acids, partially linked to and. 2019 , 83, 1901-1911	5
369	Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks. 2019 , 8,	33
368	Microbial evolutionary medicine: from theory to clinical practice. 2019 , 19, e273-e283	6
367	Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. 2019 , 234, 17023-17049	60
366	Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. 2019 , 81, e22970	14
365	Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation. 2019 , 13, 492-503	1
364	Health Outcomes, Pathogenesis and Epidemiology of Severe Acute Malnutrition (HOPE-SAM): rationale and methods of a longitudinal observational study. 2019 , 9, e023077	14
363	Phagocytosis of Gut Bacteria by. 2019 , 9, 34	26
362	GG can protect malnourished children. 2019 , 10, 237-244	7
361	Intestinal Microbiota-Associated Metabolites: Crucial Factors in the Effectiveness of Herbal Medicines and Diet Therapies. 2019 , 10, 1343	13

360	Edematous severe acute malnutrition is characterized by hypomethylation of DNA. 2019, 10, 5791	14
359	Intestinal sp. Imbalance Associated With the Occurrence of Childhood Undernutrition in China. 2019 , 10, 2635	4
358	Microbiota and Body Composition During the Period of Complementary Feeding. 2019, 69, 726-732	4
357	Undernutrition, Host Immunity and Vulnerability to Infection Among Young Children. 2019 , 38, e175-e177	13
356	A Prospective Study on Child Morbidity and Gut Microbiota in Rural Malawi. 2019, 69, 431-437	5
355	The Microbiome and Eating Disorders. 2019 , 42, 93-103	43
354	Nutritional Influences on Bone Health. 2019,	
353	Developments on the Applications and the Suitability of Functional Fermented Sour Sobya as a Viable Source of Novel Probiotics in the Managements of Gastrointestinal Disorders and Blood Lipid Profiles. 2019 , 579-602	O
352	The Human Microbiota and Asthma. 2019 , 57, 350-363	39
351	Microbiome and Inflammation in Eating Disorders. 2019 , 87-92	1
350	Murine Methyl Donor Deficiency Impairs Early Growth in Association with Dysmorphic Small Intestinal Crypts and Reduced Gut Microbial Community Diversity. 2019 , 3,	4
349	The Human Microbiome and Child Growth - First 1000 Days and Beyond. 2019 , 27, 131-147	238
348	Enlisting commensal microbes to resist antibiotic-resistant pathogens. 2019 , 216, 10-19	30
347	Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: An explicative factor of functional intestinal disorders?. 2019 , 38, 2304-2310	32
346	Diet, Microbiota, and Bone Health. 2019 , 143-168	1
345	Molecular Techniques for the Study of Microbial Diversity with Special Emphasis on Drug Resistant Microbes. 2019 , 499-518	1
344	You are what you eat: diet, health and the gut microbiota. 2019 , 16, 35-56	492
343	Hypoalbuminemia: Pathogenesis and Clinical Significance. 2019 , 43, 181-193	223

(2020-2019)

Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids. 2019 , 38, 615-630	37
Metabolic phenotyping of malnutrition during the first 1000 days of life. 2019 , 58, 909-930	22
In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. 2020 , 12, 517-534	5
Exposure to open defecation can account for the Indian enigma of child height. 2020 , 146, 102277	21
Obesity Is Associated with Decreased Risk of Clostridium difficile Infection in Hospitalized Patients with Pouchitis. 2020 , 65, 1423-1428	3
The double burden of malnutrition: aetiological pathways and consequences for health. 2020 , 395, 75-88	193
Understanding immune-microbiota interactions in the intestine. 2020 , 159, 4-14	36
Annual Research Review: Critical windows - the microbiota-gut-brain axis in neurocognitive development. 2020 , 61, 353-371	46
Dietary protein insufficiency: an important consideration in fatty liver disease?. 2020 , 123, 601-609	15
Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. 2020 , 12,	5
Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. 2020 , 53, 264-276	24
Gut Microbial Regulation of Autism Spectrum Disorder Symptoms. 2020 , 31, 809-811	O
Understanding the impact of antibiotic perturbation on the human microbiome. 2020 , 12, 82	48
Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. 2020 , 5,	9
[Gut microbiome and anorexia nervosa: The relationship between microbiome and gut-brain interaction in the context of anorexia nervosa]. 2020 , 91, 1115-1121	1
Rational Design of Gram-Specific Antimicrobial Imidazolium Tetramers To Combat MRSA. 2020 , 6, 5563-5570	1
The microbiome: An emerging key player in aging and longevity. 2020 , 4, 103-116	31
ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. 2020 , 62, 101123	70
	Chain fatty acids. 2019, 38, 615-630 Metabolic phenotyping of malnutrition during the first 1000@ays of life. 2019, 58, 909-930 In Vivo implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. 2020, 12, 517-534 Exposure to open defecation can account for the Indian enigma of child height. 2020, 146, 102277 Obesity is Associated with Decreased Risk of Clostridium difficile Infection in Hospitalized Patients with Pouchitis. 2020, 65, 1423-1428 The double burden of malnutrition: aetiological pathways and consequences for health. 2020, 395, 75-88 Understanding immune-microbiota interactions in the intestine. 2020, 159, 4-14 Annual Research Review: Critical windows - the microbiota-gut-brain axis in neurocognitive development. 2020, 61, 353-371 Dietary protein insufficiency: an important consideration in fatty liver disease?. 2020, 123, 601-609 Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. 2020, 12. Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. 2020, 53, 264-276 Gut Microbial Regulation of Autism Spectrum Disorder Symptoms. 2020, 31, 809-811 Understanding the impact of antibiotic perturbation on the human microbiome. 2020, 12, 82 Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. 2020, 5. Gut microbiome and anorexia nervosa: The relationship between microbiome and gut-brain interaction in the context of anorexia nervosa; 2020, 91, 1115-1121 Rational Design of Gram-Specific Antimicrobial Imidazolium Tetramers To Combat MRSA. 2020, 6, 5563-5570 The microbiome: An emerging key player in aging and longevity. 2020, 4, 103-116

324	Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress. 2020 , 23, 101232	13
323	Does entry to center-based childcare affect gut microbial colonization in young infants?. 2020 , 10, 10235	4
322	Food Insecurity, Malnutrition, and the Microbiome. 2020 , 9, 356-360	5
321	Pathogenicity and virulence regulation of at the interface of host-gut microbiome interactions. 2020 , 11, 1582-1599	3
320	Microbiota on biotics: probiotics, prebiotics, and synbiotics to optimize growth and metabolism. 2020 , 319, G382-G390	12
319	The Effects of Urbanization on the Infant Gut Microbiota and Health Outcomes. 2020 , 8, 408	3
318	Dietary Adaptation of Microbiota in Drosophila Requires NF- B -Dependent Control of the Translational Regulator 4E-BP. 2020 , 31, 107736	7
317	FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteins[In mice with castor oil-induced diarrhea. 2020 , 15, e0236511	3
316	Free-Flow Isoelectric Focusing for Comprehensive Separation and Analysis of Human Salivary Microbiome for Lung Cancer. 2020 , 92, 12017-12025	7
315	The Microbiome Revolution Turns to Cholesterol. 2020 , 28, 154-156	1
314	Evasion of MAIT cell recognition by the African Typhimurium ST313 pathovar that causes invasive disease. 2020 , 117, 20717-20728	9
313	Gut Feelings: How Microbiota Might Impact the Development and Course of Anorexia Nervosa. 2020 , 12,	5
312	The influences of low protein diet on the intestinal microbiota of mice. 2020 , 10, 17077	6
311	Rolle des Mikrobioms und der Darm-Gehirn-Interaktion bei Anorexia nervosa. 2020 , 39, 67-73	
310	Cervicovaginal Microbiome Composition Is Associated with Metabolic Profiles in Healthy Pregnancy. 2020 , 11,	12
309	Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. 2020 , 14, 44	18
308	Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. 2020 , 12,	7
307	The Gut Microbiome in Neurodegenerative Disorders. 2020,	

(2020-2020)

306	host behaviour. 2020 , 11, 4236	25
305	Enterotypes of the Gut Microbial Community and Their Response to Plant Secondary Compounds in Plateau Pikas. 2020 , 8,	4
304	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. 2020 , 52, 1383-1396	36
303	Prediction of mortality in severe acute malnutrition in hospitalized children by faecal volatile organic compound analysis: proof of concept. 2020 , 10, 18785	O
302	The Microbiota and Gut-Related Disorders: Insights from Animal Models. 2020, 9,	9
301	Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. 2020 , 20, 330	7
300	Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. 2020 , 8,	11
299	The impact of maternal and early life malnutrition on health: a diet-microbe perspective. 2020 , 18, 135	10
298	Short Bowel Syndrome in an Infant. 2020 , 21, e370-e382	2
297	A prebiotic-enhanced lipid-based nutrient supplement (LNSp) increases Bifidobacterium relative abundance and enhances short-chain fatty acid production in simulated colonic microbiota from undernourished infants. 2020 , 96,	2
296	Fat-Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Low-Protein Diet. 2020 , 64, e1900835	7
295	The infant microbiome and implications for central nervous system development. 2020 , 171, 1-13	2
294	Rosystem Darm. 2020 , 50, 200-207	
293	Comparison of Meconium Microbiome in Dizygotic and Monozygotic Twins Born by Caesarean Section (CS). 2020 , 11, 1139	6
292	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. 2020 , 8,	27
291	Antibiotics-Induced Dysbiosis of Intestinal Microbiota Aggravates Atopic Dermatitis in Mice by Altered Short-Chain Fatty Acids. 2020 , 12, 137-148	22
290	Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. 2020 , 17, e1003051	82
289	The microbiome and host behaviour. 2020 , 98-121	1

288	Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth. 2020 , 18, e3000681	27
287	Probiotic from human breast milk, Lactobacillus fermentum, promotes growth in animal model of chronic malnutrition. 2020 , 88, 374-381	4
286	The influence of nutrition on clinical outcomes in children with cancer. 2020 , 67 Suppl 3, e28117	13
285	mSphere of Influence: Microbiome-Associated Phenotypes Are Modifiable. 2020 , 5,	
284	Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline?. 2020 , 12,	14
283	Environmental exposures and child and maternal gut microbiota in rural Malawi. 2020 , 34, 161-170	6
282	Gut Microbiota of Wild and Captive Alpine Musk Deer (). 2019 , 10, 3156	14
281	The relationship between the host genome, microbiome, and host phenotype. 2020 , 22, 1170-1173	4
280	Metabolome and microbiome alterations related to short-term feeding of a micronutrient-fortified, high-quality legume protein-based food product to stunted school age children: A randomized controlled pilot trial. 2020 , 39, 3251-3261	4
279	Diet and the Human Gut Microbiome: An International Review. 2020 , 65, 723-740	90
279 278	Diet and the Human Gut Microbiome: An International Review. 2020 , 65, 723-740 Developing infant gut microflora and complementary nutrition. 2020 , 50, 384-396	90
278	Developing infant gut microflora and complementary nutrition. 2020 , 50, 384-396 Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human	2
278 277	Developing infant gut microflora and complementary nutrition. 2020 , 50, 384-396 Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. 2020 , 180, 221-232	171
278 277 276	Developing infant gut microflora and complementary nutrition. 2020 , 50, 384-396 Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. 2020 , 180, 221-232 The Value of Twins for Health and Medical Research: A Third of a Century of Progress. 2020 , 23, 8-15	2 171 7
278 277 276 275	Developing infant gut microflora and complementary nutrition. 2020, 50, 384-396 Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. 2020, 180, 221-232 The Value of Twins for Health and Medical Research: A Third of a Century of Progress. 2020, 23, 8-15 The Gut Microbiome in Child Malnutrition. 2020, 93, 133-144 Restitution of gut microbiota in Ugandan children administered with probiotics (GG and subsp.	2 171 7
278 277 276 275	Developing infant gut microflora and complementary nutrition. 2020, 50, 384-396 Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. 2020, 180, 221-232 The Value of Twins for Health and Medical Research: A Third of a Century of Progress. 2020, 23, 8-15 The Gut Microbiome in Child Malnutrition. 2020, 93, 133-144 Restitution of gut microbiota in Ugandan children administered with probiotics (GG and subsp. BB-12) during treatment for severe acute malnutrition. 2020, 11, 855-867	2 171 7 3

270	Immune predictors of oral poliovirus vaccine immunogenicity among infants in South India. 2020 , 5, 27	2
269	Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growths. 2020 , 6, eaay5969	7
268	Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. 2021 , 61, 1415-1428	11
267	A novel deep learning method for predictive modeling of microbiome data. 2021 , 22,	4
266	Anorexia nervosa and gut microbiota: A systematic review and quantitative synthesis of pooled microbiological data. 2021 , 106, 110114	16
265	The Oral Host-Microbial Interactome: An Ecological Chronometer of Health?. 2021 , 29, 551-561	16
264	A systematic review on the role of microbiota in the pathogenesis and treatment of eating disorders. 2020 , 64, e2	13
263	Gut microbiota in human metabolic health and disease. 2021 , 19, 55-71	487
262	Robust and Powerful Differential Composition Tests for Clustered Microbiome Data. 2021 , 13, 200-216	4
261	Gut Microbiota and Short-Chain Fatty Acid Profile between Normal and Moderate Malnutrition Children in Yogyakarta, Indonesia. 2021 , 9,	5
260	The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science 2021 , 11, 30426-30447	3
259	Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. 2021 , 13, 1941711	12
258	The Interface of and the Gut Microbiome. 2021 , 13, 1937015	7
257	Early Life Microbiotalmpact of Delivery Mode and Infant Feeding. 2021, 25-25	1
256	Human milk oligosaccharides, infant growth, and adiposity over the first 4 months of lactation. 2021 , 90, 684-693	8
255	The Gut Microbiome in Anorexia Nervosa: Friend or Foe?. 2020 , 11, 611677	4
254	RATIO OF MAIN PHYLOTYPES OF GUT MICROBIOTA IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE DEPENDING ON THE BODY MASS INDEX. 2021 , 74, 523-528	1
253	Microbiota control of maternal behavior regulates early postnatal growth of offspring. 2021, 7,	3

252	Animal development in the microbial world: Re-thinking the conceptual framework. 2021, 141, 399-427	7
251	The gut/liver axis, inflammation, and the pathogenesis of metabolic syndrome. 2021 , 93-107	
250	Genetic Variation in Holobionts. 2021 , 275-315	
249	Difference between kwashiorkor and marasmus: Comparative meta-analysis of pathogenic characteristics and implications for treatment. 2021 , 150, 104702	6
248	The Gut Microbiota, Nutrition, and Long-Term Disease Risk: A Mother and Child Perspective. 2021,	O
247	MetaPro: A scalable and reproducible data processing and analysis pipeline for metatranscriptomic investigation of microbial communities.	1
246	The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. 2021, 1-26	3
245	A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae.	
244	Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. 2021 , 12, 1239-1285	29
243	'Statistical Irreproducibility' Does Not Improve with Larger Sample Size: How to Quantify and Address Disease Data Multimodality in Human and Animal Research. 2021 , 11,	1
242	Escherichia coli Nissle 1917 Enhances Innate and Adaptive Immune Responses in a Ciprofloxacin-Treated Defined-Microbiota Piglet Model of Human Rotavirus Infection. 2021 , 6,	6
241	Delivery mode and altered infant growth at 1 year of life in India. 2021,	O
240	Extracellular vesicles isolated from milk can improve gut barrier dysfunction induced by malnutrition. 2021 , 11, 7635	8
239	Early life host regulation of the mammalian enteric microbiota composition. 2021 , 311, 151498	
238	Severe Protein-Calorie Malnutrition-Associated Hepatic Steatosis in a Woman Who Had Roux-en-Y Gastric Bypass for Morbid Obesity Thirteen Years Ago. 2021 , 14, 129-137	3
237	Microbial Nourishment for Undernutrition. 2021 , 384, 1566-1567	3
236	Emerging Roles of Gut Virome in Pediatric Diseases. 2021 , 22,	8
235	Identification of aflatoxin B1 in peanut using near-infrared spectroscopy combined with naive Bayes classifier. 2021 , 54, 340-351	1

(2021-2021)

234	Modifying gut integrity and microbiome in children with severe acute malnutrition using legume-based feeds (MIMBLE): A pilot trial. 2021 , 2, 100280	1
233	Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. 2021 , 29, 765-776.e3	55
232	Host-microbial interactions in the metabolism of different dietary fats. 2021, 33, 857-872	3
231	Effects of probiotics and synbiotics on diarrhea in undernourished children: Systematic review with meta-analysis. 2021 , 40, 3158-3169	11
230	Albumin-dependent and independent mechanisms in the syndrome of kwashiorkor.	1
229	Maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe. 2021 , 68, 103421	7
228	Angiotensin-converting enzyme 2: a key enzyme in key organs. 2022 , 23, 1-11	1
227	The human gut microbiome and health inequities. 2021 , 118,	13
226	A Listeria monocytogenes clone in human breast milk associated with severe acute malnutrition in West Africa: A multicentric case-controlled study. 2021 , 15, e0009555	0
225	Metabolomic changes in severe acute malnutrition suggest hepatic oxidative stress: a secondary analysis. 2021 , 91, 44-56	O
224	Micronutrient supplements with iron promote disruptive protozoan and fungal communities in the developing infant gut.	
223	Dietary Selection Pressures and Their Impact on the Gut Microbiome. 2021 , 13, 7-18	5
222	Nutritional Interventions and the Gut Microbiome in Children. 2021 , 41, 479-510	5
221	Tributyltin exposure leads to increased adiposity and reduced abundance of leptogenic bacteria in the zebrafish intestine.	O
220	Implementation challenges from a prospective, interventional biopsy-based study of Environmental Enteropathy in rural Pakistan. 10, 549	
219	Malnutrition and Gut Microbiota in Children. 2021 , 13,	9
218	Microbiomes and Childhood Malnutrition: What Is the Evidence?. 2021 , 1-13	О
217	Archive for Research in Child Health (ARCH) and Baby Gut: Study Protocol for a Remote, Prospective, Longitudinal Pregnancy and Birth Cohort to Address Microbiota Development and Child Health. 2021 , 4,	2

216	Giardia duodenalis: Biology and Pathogenesis. 2021 , e0002419	13
215	The oral microbiome: Role of key organisms and complex networks in oral health and disease. 2021 , 87, 107-131	41
214	Effects of obesity and weight-loss surgery shift the microbiome and impact alloimmune responses. 2021 , 26, 603-608	
213	Microbiota-Immune Interactions Regulate Metabolic Disease. 2021 , 207, 1719-1724	1
212	Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. 2021 , 12, 735562	О
211	Malnutrition and the microbiome as modifiers of early neurodevelopment. 2021, 44, 753-764	1
210	Microbiota-Brain-Gut Axis and Neurodegenerative Disorders. 2022,	
209	Study design, rationale and methods of the Revitalising Informal Settlements and their Environments (RISE) study: a cluster randomised controlled trial to evaluate environmental and human health impacts of a water-sensitive intervention in informal settlements in Indonesia and	12
208	The gut microbiome in neurodegenerative disorders. 2021 , 101-121	
207	When a pandemic and an epidemic collide: COVID-19, gut microbiota, and the double burden of malnutrition. 2021 , 19, 31	9
206	Microbiome as an Immunological Modifier. 2020 , 2055, 595-638	8
205	Early Gut Microbiome: A Good Start in Nutrition and Growth May Have Lifelong Lasting Consequences. 2019 , 239-258	2
204	Nutrition and Diarrheal Disease and Enteric Pathogens. 2021 , 219-241	3
203	Determinants of Peak Bone Mass Acquisition. 2020 , 115-137	2
202	Lactic Acid Bacteria and the Human Gastrointestinal Tract. 2014 , 375-441	1
201	Role of Biotechnology in the Exploration of Soil and Plant Microbiomes. 2020 , 335-355	4
200	Prebiotics, Probiotics, and Synbiotics. 2015 , 19-25.e1	2
199	Resistance and tolerance defenses in cancer: Lessons from infectious diseases. 2017 , 32, 54-61	5

198	Rural and Urban Residence During Early Life is Associated with Risk of Inflammatory Bowel Disease: A Population-Based Inception and Birth Cohort Study. 2017 , 112, 1412-1422	57
197	CHAPTER 17:Polysaccharides as Major Carbon Sources in Environmental Biodiversity. 369-395	2
196	The role of nutrition in pediatric oncology. 2020 , 20, 109-116	9
195	The importance of the microbiome in pediatrics and pediatric infectious diseases. 2018 , 30, 117-124	16
194	Parasitic Infection by Pseudocapillaria tomentosa is Associated with a Longitudinal Restructuring of the Zebrafish Gut Microbiome.	3
193	Longitudinal differential abundance analysis of microbial marker-gene surveys using smoothing splines.	12
192	MicrobiomeBost systems interactions: Protective effects of propionate upon the bloodBrain barrier.	2
191	Patterns of Analytical Irreproducibility[in Multimodal Diseases.	3
190	Metabolic cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional stress.	3
189	The gut microbiome facilitates ecological adaptation in an invasive vertebrate.	3
188	Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut.	4
187	Adaptive strategies of the candidate probioticE. coliNissle in the mammalian gut.	1
186	Bacteriophages dynamically modulate the gut microbiota and metabolome.	5
185	Commensal bacteria differentially shape the nutritional requirements ofDrosophiladuring juvenile growth.	1
184	Aberrant newborn T cell and microbiota developmental trajectories predict respiratory compromise during infancy.	1
183	Metabolic cross-feeding allows a gut microbial community to overcome detrimental diets and alter host behaviour.	2
182	Interactions between gut microbiota and skeletal muscle. 2020 , 13, 1178638820980490	4
181	Impact of InfectionNutrient Interactions in Infants, Children, and Adolescents. 2014, 333-356	1

180	odifying ntestinal Integrity and icro iome in Severe Malnutrition with gume-Based Feeds (MIMBLE 2.0): protocol for a phase II refined feed and intervention trial. 2018 , 3, 95	2
179	How the microbiome challenges our concept of self. 2018 , 16, e2005358	65
178	Gut Microbiota in Children Hospitalized with Oedematous and Non-Oedematous Severe Acute Malnutrition in Uganda. 2016 , 10, e0004369	35
177	A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. 2014 , 9, e84689	225
176	Eukaryote culturomics of the gut reveals new species. 2014 , 9, e106994	50
175	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. 2015 , 10, e0131009	77
174	Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. 2016 , 11, e0152126	111
173	Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease. 2016 , 11, e0152764	1
172	Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition. 2016, 11, e0155143	12
171	Expanding the UniFrac Toolbox. 2016 , 11, e0161196	36
171 170	Expanding the UniFrac Toolbox. 2016 , 11, e0161196 Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. 2016 , 11, e0161627	36 18
170	Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. 2016 , 11, e0161627	18
170 169	Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. 2016 , 11, e0161627 Management of Severe and Moderate Acute Malnutrition in Children. 2016 , 205-223	18
170 169 168	Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. 2016 , 11, e0161627 Management of Severe and Moderate Acute Malnutrition in Children. 2016 , 205-223 Harnessing the microbiota to treat neurological diseases?. 2019 , 21, 159-165 Effect of Antibiotics on Short-Term Growth among Children in Burkina Faso: A Randomized Trial.	18 13 3
170 169 168	Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. 2016, 11, e0161627 Management of Severe and Moderate Acute Malnutrition in Children. 2016, 205-223 Harnessing the microbiota to treat neurological diseases?. 2019, 21, 159-165 Effect of Antibiotics on Short-Term Growth among Children in Burkina Faso: A Randomized Trial. 2018, 99, 789-796 Stunting Is Preceded by Intestinal Mucosal Damage and Microbiome Changes and Is Associated	18 13 3
170 169 168 167	Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins. 2016, 11, e0161627 Management of Severe and Moderate Acute Malnutrition in Children. 2016, 205-223 Harnessing the microbiota to treat neurological diseases?. 2019, 21, 159-165 Effect of Antibiotics on Short-Term Growth among Children in Burkina Faso: A Randomized Trial. 2018, 99, 789-796 Stunting Is Preceded by Intestinal Mucosal Damage and Microbiome Changes and Is Associated with Systemic Inflammation in a Cohort of Peruvian Infants. 2019, 101, 1009-1017 Evidence of Microbiome-Drug Interaction between the Antimalarial Lumefantrine and Gut	18 13 3 9 8

(2017-2017)

162	Developmental and behavioural problems in children with severe acute malnutrition in Malawi: A crossBectional study. 2017 , 7,	19
161	Probiotics in personal care products. 2015 , 3, 5	8
160	Cryptococcal antigenemia among HIV seropositive patients accessing care in antiretroviral therapy (ART) clinics in Calabar, South Southern Nigeria. 2015 , 3, 7	1
159	Diets with and without edible cricket support a similar level of diversity in the gut microbiome of dogs. 2019 , 7, e7661	13
158	Rural children remain more at risk of acute malnutrition following exit from community based management of acute malnutrition program in South Gondar Zone, Amhara Region, Ethiopia: a comparative cross-sectional study. 2020 , 8, e8419	4
157	Access to sanitary toilets and health outcomes: A panel data analysis using two-way fixed effects model. 2021 , 18, 8815-8830	O
156	[The Gut Microbiome and Its Clinical Implications in Anorexia Nervosa]. 2021,	0
155	Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity. 2021 , 1	1
154	Malnutrition in children mars gut microbiome.	
153	Gut Microbiome in the NutritionInfection Interaction: A Focus on Malnourished Children. 2014 , 247-256	
152	HostEnicrobe interactions in the gut: lessons learned from models of inflammatory bowel diseases. 2014 , 1, 61-76	
151	Childhood Threats to Adult Cognition in Sub-Saharan Africa: Malaria, Anemia, Stunting, Enteric Enteropathy, and the Microbiome of Malnutrition. 2015, 75-87	1
150	Antimicrobial susceptibility of commensal Escherichia coli from faeces of apparently healthy white fulani cattle (Bos indicus). 2015 , 3, 6	
149	Hack Trait Deadistics of Makes are as is Data for Topology Board Visualization 2015 124 140	2
.,	Host Trait Prediction of Metagenomic Data for Topology-Based Visualization. 2015 , 134-149	2
148	Handing on Health to the Next Generation. 2016 , 213-264	-
		-
148	Handing on Health to the Next Generation. 2016 , 213-264	

144	Compositional shifts in the root microbiota track the life-cycle of field-grown rice plants.	
143	Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response.	
142	Gut Microbiota and Human Health with Special Reference to Autoimmunity. 2018, 8, 32-38	
141	CHAPTER 7:NMR in Environmental and Nutritional Research. 2018, 168-182	
140	Gut microbial features can predict host phenotype response to protein deficiency.	
139	Cardiometabolic Risk in Marasmus and Kwashiorkor Survivors. 2019 , 1199-1220	Ο
138	Diet and Kwashiorkor in the Democratic Republic of Congo. 2019 , 2245-2262	
137	A Dysbiotic Gut Microbiome Suppresses Antibody Mediated-Protection AgainstVibrio cholerae.	
136	The Gut Microbiota composition of Feral and Tamworth Pigs determined using High-Throughput Culturomics and Metagenomics Reveals Compositional Variations When Compared to the Commercial Breeds.	Ο
135	African Salmonella Typhimurium sequence type 313 lineage 2 evades MAIT cell recognition by overexpressing RibB.	
134	Cervicovaginal microbiome composition drives metabolic profiles in healthy pregnancy.	2
133	Microbiota control of maternal behavior regulates early postnatal growth of offspring.	
132	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. 2020 , 125-137	
131	Gut Bacterial Diversity and Growth among Preschool Children in Burkina Faso. 2020 , 103, 2568-2573	
130	Bacterial Infections and Nutrition: A Primer. 2021 , 113-131	4
129	Infrequent small bowel intestinal bacterial overgrowth in malnourished Zambian children. 2020 , 35, 29	1
128	The Microbiome in Liver Diseases. 2020 , 205-210	
127	The microbiome in preterm infants and implications in health. 2020 , 67-93	

126	Gut Microbiome Profiling of a Rural and Urban South African Cohort Reveals Biomarkers of a Population in Lifestyle Transition.	2
125	Interactions between fecal gut microbiome, enteric pathogens, and energy regulating hormones among acutely malnourished rural Gambian children. 2021 , 73, 103644	1
124	Prophylactic Treatment of Undernourished Mice with Cotrimoxazole Induces a Different Profile of Dysbiosis with Functional Metabolic Alterations.	
123	Groundnut (Peanut) (Arachis hypogaea). 2021 , 93-122	4
122	The Gut Microbiota: A Promising Target in the Relation between Complementary Feeding and Child Undernutrition. 2021 , 12, 969-979	3
121	Malnutrition induces gut atrophy and increases hepatic fat infiltration: studies in a pig model of childhood malnutrition. 2013 , 5, 543-54	19
120	Importance of Nutrients and Nutrient Metabolism on Human Health. 2018, 91, 95-103	19
119	[Research advances in the relationship between childhood malnutrition and gut microbiota]. 2016 , 18, 1188-1193	0
118	The microbiome: an emerging key player in aging and longevity. 2020 , 4, 103-116	15
117	Seasonal diets supersede host species in shaping the distal gut microbiota of Yaks and Tibetan sheep. 2021 , 11, 22626	O
116	Participatory Microbiome Research With Hmong and Karen Communities: Lessons Learned.	
115	Implementation challenges from a prospective, interventional biopsy-based study of Environmental Enteropathy in rural Pakistan. 10, 549	O
114	Micronutrient supplements can promote disruptive protozoan and fungal communities in the developing infant gut. 2021 , 12, 6729	3
113	The effects of probiotics administration on the gut microbiome in adolescents with anorexia nervosa-A study protocol for a longitudinal, double-blind, randomized, placebo-controlled trial. 2021 ,	2
112	Synchronizing Our Clocks as We Age: The Influence of the Brain-Gut-Immune Axis on the Sleep-Wake Cycle Across the Lifespan. 2021 ,	2
111	The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. 2021 , 45, 275-291	
110	A dysbiotic gut microbiome suppresses antibody mediated-protection against. 2021 , 24, 103443	
109	Environmentality in biomedicine: microbiome research and the perspectival body 2021 , 91, 148-158	1

108	Conducting Clinical Trials in Twin Populations: A Review of Design, Analysis, Recruitment and Ethical Issues for Twin-Only Trials 2022 , 1-6	0
107	The Mediating Role of the Gut Microbiota in the Physical Growth of Children 2022, 12,	2
106	Staying strong during hibernation Science, 2022, 375, 376-377	33-3
105	Rapid prototyping of metabolites detection by bacterial biosensors in human fecal samples.	O
104	Postbiotics as Potential Promising Tools for SARS-COV-2 Disease Adjuvant Therapy 2022,	1
103	Associations between Gut Microbiota and Intestinal Inflammation, Permeability and Damage in Young Malawian Children 2022 , 68,	Ο
102	One-carbon metabolism in children with marasmus and kwashiorkor 2022 , 75, 103791	1
101	Body mass index and risk of clostridioides difficile infection: a systematic review and meta-analysis 2022 , 1	1
100	Biology of human milk oligosaccharides: from Basic Science to Clinical Evidence 2022,	4
99	Antibiotic Disruption of the Gut Microbiota Enhances the Murine Hepatic Dysfunction Associated With a High-Salt Diet 2022 , 13, 829686	Ο
98	Is RED-S in athletes just another face of malnutrition?. 2022 , 48, 298-307	О
97	Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research 2021 , 9, 241	1
96	Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications. 2021 , 22,	2
95	The Gut Microbiota and Host Metabolism. 2022 , 141-175	O
94	Microbiome in Pulmonary Tuberculosis. 2022 , 167-205	
93	Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State 2022 , 13, 844335	O
92	NAFLD and the Gut-Liver Axis: Exploring an Undernutrition Perspective 2022,	3
91	Starvation causes changes in the intestinal transcriptome and microbiome that are reversed upon refeeding 2022 , 23, 225	Ο

(2020-2022)

90	Gut microbes and muscle function: can probiotics make our muscles stronger?. 2022,	4
89	Gut Microbiota Modulation of Moderate Undernutrition in Infants through Gummy Dad-13 Consumption: A Randomized Double-Blind Controlled Trial 2022 , 14,	O
88	A mouse model of occult intestinal colonization demonstrating antibiotic-induced outgrowth of carbapenem-resistant Enterobacteriaceae 2022 , 10, 43	0
87	Aberrant newborn Titell and microbiota developmental trajectories predict respiratory compromise during infancy 2022 , 25, 104007	o
86	Correlation between intestinal flora disruption and protein-energy wasting in patients with end-stage renal disease 2022 , 23, 130	2
85	Observation of the cervical microbiome in the progression of cervical intraepithelial neoplasia 2022 , 22, 362	2
84	Probiotics, Prebiotics, and Synbiotics for Patients on Dialysis: A Systematic Review and Meta-analysis of Randomized Controlled Trials 2022 ,	O
83	Data_Sheet_1.ZIP. 2018 ,	
82	Data_Sheet_1.PDF. 2018 ,	
81	Data_Sheet_2.PDF. 2018 ,	
80	lmage_1.TIF. 2018 ,	
79	Image_2.TIF. 2018 ,	
78	Image_3.TIF. 2018 ,	
77	Image_4.TIF. 2018 ,	
76	Image_5.TIF. 2018 ,	
75	Table_1.pdf. 2018 ,	
74	Data_Sheet_1.docx. 2020 ,	
73	Data_Sheet_2.docx. 2020 ,	

54	Table_4.XLSX. 2019 ,	
53	Table_5.XLSX. 2019 ,	
52	Table_6.XLSX. 2019 ,	
51	Table_7.XLSX. 2019 ,	
50	The gut microbiome and early-life growth in a population with high prevalence of stunting.	
49	Repurposing Microbes for Therapeutic Applications in Humans. 2022 , 93-119	
48	Mapping the T cell repertoire to a complex gut bacterial community.	1
47	Anorexia nervosa leine metabolisch-psychiatrische Erkrankung?. 2022 , 41, 320-325	
46	Gut microbiome development and childhood undernutrition 2022, 30, 617-626	1
45	Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art 2022 , 14,	O
44	Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig Studies 2022 , 13, 826268	1
43	Pathologic Inflammation in Malnutrition Is Driven by Proinflammatory Intestinal Microbiota, Large Intestine Barrier Dysfunction, and Translocation of Bacterial Lipopolysaccharide. 2022 , 13,	O
42	Integrated Omics Analysis Reveals Alterations in the Intestinal Microbiota and Metabolites of Piglets After Starvation. 13,	
41	Gut microbial characteristics in poor appetite and undernutrition: a cohort of older adults and microbiota transfer in germ-free mice.	O
40	The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice.	О
39	The impact of mass drug administration of antibiotics on the gut microbiota of target populations. 2022 , 11,	1
38	The triple interactions between gut microbiota, mycobiota and host immunity. 1-21	О
37	Microbiota in Anorexia Nervosa iPotential for Treatment. 1-51	1

36	Effects of SoyWhey Protein Nutritional Supplementation on Hematopoiesis and Immune Reconstitution in an Allogeneic Transplanted Mice. 2022 , 14, 3014	
35	Prophylactic Treatment of Undernourished Mice with Cotrimoxazole Induces a Different Profile of Dysbiosis with Functional Metabolic Alterations. 2022 , 11, 2278	
34	Association between intestinal bacterial carriage, biomarkers of environmental enteric dysfunction, and stunting in rural Malawian children. 6, 78	
33	Commentary: Mechanisms of kwashiorkor-associated immune suppression: Insights from human, mouse, and pig studies. 13,	
32	The Yucatan minipig model: A new preclinical model of malnutrition induced by a low-calorie/low-protein diet. 2022 ,	
31	A rapid and standardized workflow for functional assessment of bacterial biosensors in fecal samples. 10,	
30	Human gut microbiota in health and disease: Unveiling the relationship. 13,	3
29	Gut microbiome dysbiosis in malnutrition. 2022,	1
28	Das Darm-Mikrobiom bei Anorexia nervosa. 2022 , 261-266	0
27	Transient Colonising Microbes Promote Gut Dysbiosis and Disease Pathology.	O
26	Advanced drug delivery systems targeting kwashiorkor involving a disturbance in protein metabolism. 2022 , 77-84	O
25	Draft genomes and descriptions of Urmitella timonensis gen. nov., sp. nov. and Marasmitruncus massiliensis gen. nov., sp. nov., isolated from severely malnourished African children using culturomics.	O
24	Untargeted metabolite profiling of Enterococcus villorum SB2, isolated from the vagina of pregnant women, by HR-LCMS. 2022 , 38,	0
23	Intestinal microbial diversity in female rhesus (Macaca mulatta) at different physiological periods. 13,	O
22	Stunted children display ectopic small intestinal colonization by oral bacteria, which cause lipid malabsorption in experimental models. 2022 , 119,	0
21	Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. 9,	2
20	Measuring food insecurity: An introduction to tools for human biologists and ecologists.	O
19	Impacts of Dietary Protein and Niacin Deficiency on Reproduction Performance, Body Growth, and Gut Microbiota of Female Hamsters (Tscherskia triton) and Their Offspring.	1

18	Gut Microbiome among Children with Uncomplicated Severe Acute Malnutrition in a Randomized Controlled Trial of Azithromycin versus Amoxicillin. 2022 ,	0
17	The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction. 2022 , 13,	Ο
16	Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. 2022 , 13,	О
15	Brain and gut microbiota disorders in the psychopathology of anorexia nervosa. 2022 , 13, 516-526	O
14	Microbiome in Lean Individuals: Phenotype-Specific Risks and Outcomes. 2023, 87-99	O
13	A novel gnotobiotic experimental system for Atlantic salmon (Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. 12,	O
12	Microbiota-gut-adipose axis: butyrate-mediated the improvement effect on inflammatory response and fatty acid oxidation dysregulation attenuates obesity in sleep-restricted mice. 2023 , 105125	О
11	Effects of probiotic and synbiotic supplementation on ponderal and linear growth in severely malnourished young infants in a randomized clinical trial. 2023 , 13,	O
10	The gut microbiome and early-life growth in a population with high prevalence of stunting. 2023 , 14,	0
9	The emerging role of nutritional support in the supportive care of pediatric patients undergoing hematopoietic stem cell transplantation. 10,	Ο
8	Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. 2023 , 379, 826-833	1
7	FRale Mikrobiotatransplantationen im Zusammenhang mit (kinder- und jugend-)psychiatrischen Erkrankungen.	O
6	The impact of prenatal dog keeping on infant gut microbiota development.	O
5	A systematic review of associations between gut microbiota composition and growth failure in preterm neonates. 2023 , 15,	O
4	Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. 2023 , 15,	0
3	Faecal markers of intestinal inflammation in slum infants following yogurt intervention: A pilot randomized controlled trial in Bangladesh. 2,	O
2	Understanding of the efficacy of gut microbiota-directed foods on human health. 2023, 136, 92-99	0
1	The gut microbiota contributes to the pathogenesis of anorexia nervosa in humans and mice.	Ο