Spatial and Temporal Distribution of Clouds Observed l Aqua Satellites

IEEE Transactions on Geoscience and Remote Sensing 51, 3826-3852 DOI: 10.1109/tgrs.2012.2227333

Citation Report

#	Article	IF	CITATIONS
1	Aqua's first 10 years: An overview. , 2012, , .		0
2	Summarizing the First Ten Years of NASA's Aqua Mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1179-1188.	4.9	25
3	The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 2013, 6, 2989-3034.	3.1	1,612
6	Multi-sensor cloud retrieval simulator and remote sensing from model parameters – Part 1: Synthetic sensor radiance formulation. Geoscientific Model Development, 2013, 6, 2049-2062.	3.6	14
7	Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmospheric Measurement Techniques, 2014, 7, 4353-4365.	3.1	185
8	A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data. Atmospheric Measurement Techniques, 2014, 7, 1777-1789.	3.1	31
9	Multiyear satellite and surface observations of cloud fraction over China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7655-7666.	3.3	23
10	Mapping of cloud thickness with MODIS and CloudSat data through multiple kernel learning. , 2014, , .		0
11	Comparison of FLAASH and 6S Code Atmospheric Correction on Snow Cover Detection in Akita Prefecture, Japan Using MODIS Imagery Data. Applied Mechanics and Materials, 0, 541-542, 1394-1397.	0.2	2
13	On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 142, 25-36.	2.3	44
14	A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties. Journal of Climate, 2014, 27, 7475-7492.	3.2	17
15	Integrating Cloud Processes in the Community Atmosphere Model, Version 5. Journal of Climate, 2014, 27, 6821-6856.	3.2	252
16	Rapid Spectral Cloud Screening Onboard Aircraft and Spacecraft. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 6779-6792.	6.3	31
17	Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the Aâ€ŧrain satellite constellation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,288.	3.3	49
18	Temporal variability of observed and simulated hyperspectral reflectance. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,262.	3.3	5
19	Pixelâ€scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,669.	3.3	21
21	Multimodel evaluation of cloud phase transition using satellite and reanalysis data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7871-7892.	3.3	100
22	Cloud regime evolution in the Indian monsoon intraseasonal oscillation: Connection to large-scale dynamical conditions and the atmospheric water budget. Geophysical Research Letters, 2015, 42, 9465-9472.	4.0	13

ATION RE

#	Article	IF	CITATIONS
23	Estimating errors in cloud amount and cloud optical thickness due to limited spatial sampling using a satellite imager as a proxy for nadirâ€view sensors. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6980-6991.	3.3	7
24	Application of a Monte Carlo solar radiative transfer modelin the McICA framework. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3130-3139.	2.7	4
25	Cloudâ€induced uncertainties in AIRS and ECMWF temperature and specific humidity. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1880-1901.	3.3	39
26	Deriving Snow Cover Metrics for Alaska from MODIS. Remote Sensing, 2015, 7, 12961-12985.	4.0	41
27	Estimates of global dew collection potential on artificial surfaces. Hydrology and Earth System Sciences, 2015, 19, 601-613.	4.9	40
28	Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds. Sensors, 2015, 15, 9942-9961.	3.8	9
29	An Intercomparison of the Spatiotemporal Variability of Satellite- and Ground-Based Cloud Datasets Using Spectral Analysis Techniques. Journal of Climate, 2015, 28, 5716-5736.	3.2	4
30	Estimation of Errors in Two-Stream Approximations of the Solar Radiative Transfer Equation for Cloudy-Sky Conditions. Journals of the Atmospheric Sciences, 2015, 72, 4053-4074.	1.7	25
31	Estimation of Daily Surface Shortwave Net Radiation From the Combined MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5519-5529.	6.3	42
32	The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations. Cryosphere, 2016, 10, 2217-2239.	3.9	56
33	Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC). Atmospheric Measurement Techniques, 2016, 9, 1785-1797.	3.1	16
34	Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas. Remote Sensing, 2016, 8, 219.	4.0	41
35	Shortwave Radiative Fluxes on Slopes. Journal of Applied Meteorology and Climatology, 2016, 55, 1513-1532.	1.5	6
36	Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5827-5845.	3.3	20
37	An overview of the CATS level 1 processing algorithms and data products. Geophysical Research Letters, 2016, 43, 4632-4639.	4.0	93
38	Characteristics of Thunderstorms That Produce Terrestrial Gamma Ray Flashes. Bulletin of the American Meteorological Society, 2016, 97, 639-653.	3.3	36
39	Did the widespread haze pollution over China increase during the last decade? A satellite view from space. Environmental Research Letters, 2016, 11, 054019.	5.2	49
40	Properties of marine stratocumulus obtained with partly cloudy pixel retrievals and found in the MODIS MOD06 cloud product. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6404-6424.	3.3	7

#	Article	IF	CITATIONS
41	A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Nearâ€global retrievals and evaluation against Aâ€Train products. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 3063-3081.	2.7	31
42	Responses of Tropical Ocean Clouds and Precipitation to the Large-Scale Circulation: Atmospheric-Water-Budget-Related Phase Space and Dynamical Regimes. Journal of Climate, 2016, 29, 7127-7143.	3.2	10
43	Extending "Deep Blue―aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4830-4854.	3.3	49
44	Simulating irradiance enhancement dependence on cloud optical depth and solar zenith angle. Solar Energy, 2016, 136, 675-681.	6.1	28
45	A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using groundâ€based GPS SuomiNet stations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8925-8948.	3.3	51
46	A satellite-based 13-year climatology of net cloud radiative forcing over the Indian monsoon region. Atmospheric Research, 2016, 182, 76-86.	4.1	31
47	Using satelliteâ€derived optical thickness to assess the influence of clouds on terrestrial carbon uptake. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1747-1761.	3.0	17
48	Validation of MODIS cloud mask and multilayer flag using CloudSatâ€CALIPSO cloud profiles and a crossâ€reference of their cloud classifications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,620.	3.3	52
49	Investigating the frequency and interannual variability in global above-cloud aerosol characteristics with CALIOP and OMI. Atmospheric Chemistry and Physics, 2016, 16, 47-69.	4.9	22
50	Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals. Atmospheric Chemistry and Physics, 2016, 16, 5075-5090.	4.9	73
51	Measurement Performance Assessment of Future Space-Borne Doppler Wind Lidar for Numerical Weather Prediction. Scientific Online Letters on the Atmosphere, 2016, 12, 55-59.	1.4	8
52	A parametrization of 3â€D subgridâ€scale clouds for conventional GCMs: Assessment using Aâ€Train satellite data and solar radiative transfer characteristics. Journal of Advances in Modeling Earth Systems, 2016, 8, 566-597.	3.8	11
53	Oceanic singleâ€layer warm clouds missed by the Cloud Profiling Radar as inferred from MODIS and CALIOP measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,947.	3.3	16
54	Comparison of differences between MODIS 250m and 1km cloud masks. Atmospheric Research, 2016, 181, 54-62.	4.1	0
55	A Revised Prognostic Cloud Fraction Scheme in a Global Forecasting System. Monthly Weather Review, 2016, 144, 1219-1229.	1.4	34
56	Realâ€īme Orbital Image Analysis Using Decision Forests, with a Deployment Onboard the IPEX Spacecraft. Journal of Field Robotics, 2016, 33, 187-204.	6.0	9
57	Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS. Remote Sensing of Environment, 2016, 175, 52-64.	11.0	67
58	Comparison of Valid Ocean Observations Between MODIS Terra and Aqua Over the Global Oceans. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 1575-1585.	6.3	42

#	Article	IF	CITATIONS
59	Liquid and ice water content in clouds and their variability with temperature in Africa based on ERA-Interim, JRA-55, MERRA and ISCCP. Meteorology and Atmospheric Physics, 2017, 129, 17-34.	2.0	4
60	A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124, 70-88.	11.1	80
61	Estimating Top-of-Atmosphere Daily Reflected Shortwave Radiation Flux Over Land From MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4022-4031.	6.3	15
62	Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point. Geophysical Research Letters, 2017, 44, 5197-5202.	4.0	46
63	A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Pixelâ€toâ€pixel comparisons. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4528-4549.	3.3	23
64	A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4550-4564.	3.3	33
65	The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 502-525.	6.3	489
66	Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria. Advances in Space Research, 2017, 59, 2611-2622.	2.6	13
67	On the response of MODIS cloud coverage to global mean surface air temperature. Journal of Geophysical Research D: Atmospheres, 2017, 122, 966-979.	3.3	18
68	Climatology and Interannual Variability of Cloudiness in the Atlantic Arctic from Surface Observations since the Late Nineteenth Century. Journal of Climate, 2017, 30, 2103-2120.	3.2	41
69	Cloud and Sunâ€glint statistics derived from GOES and MODIS observations over the Intraâ€Americas Sea for GEO APE mission planning. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1725-1745.	3.3	19
70	A Cloud masking algorithm for the XBAER aerosol retrieval using MERIS data. Remote Sensing of Environment, 2017, 197, 141-160.	11.0	42
71	Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Science Advances, 2017, 3, e1700584.	10.3	134
72	Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8079-8100.	3.3	9
73	New insights about cloud vertical structure from CloudSat and CALIPSO observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9280-9300.	3.3	47
74	Diurnal Cycle Variability of Surface Temperature Inferred From AIRS Data. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,928-10,938.	3.3	9
75	A MODIS-Derived Value-Added Climatology of Maritime Cloud Liquid Water Path That Conserves Solar Reflectance. Journal of Applied Meteorology and Climatology, 2017, 56, 1767-1781.	1.5	0
76	Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation. Advances in Space Research, 2017, 60, 2707-2722.	2.6	22

#	Article	IF	CITATIONS
77	Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements. Atmospheric Research, 2017, 183, 73-83.	4.1	29
78	Assessing the accuracy of MISR and MISRâ€simulated cloud top heights using CloudSat―and CALIPSOâ€retrieved hydrometeor profiles. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2878-2897.	3.3	5
79	Scaling properties of observed and simulated satellite visible radiances. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9413-9429.	3.3	14
80	New particle formation in the Svalbard region 2006–2015. Atmospheric Chemistry and Physics, 2017, 17, 6153-6175.	4.9	27
81	An improved hydrometeor detection method for millimeter-wavelength cloud radar. Atmospheric Chemistry and Physics, 2017, 17, 9035-9047.	4.9	16
82	Impact of Multiple Scattering on Longwave Radiative Transfer Involving Clouds. Journal of Advances in Modeling Earth Systems, 2017, 9, 3082-3098.	3.8	24
83	The Role of Emissivity in the Detection of Arctic Night Clouds. Remote Sensing, 2017, 9, 406.	4.0	9
84	Precipitation rate climatology related to different cloud types using satellite imagery over Iran. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	2
85	Numerical Study of Physical Processes Controlling Summer Precipitation over the Western Ghats Region. Journal of Climate, 2018, 31, 3099-3115.	3.2	26
86	Cloud Condensate and Radiative Feedbacks at Midlatitudes in an Aquaplanet. Geophysical Research Letters, 2018, 45, 3635-3643.	4.0	12
87	Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 2018, 215, 517-529.	11.0	153
88	Reconstruction of Landsat time series in the presence of irregular and sparse observations: Development and assessment in north-eastern Alberta, Canada. Remote Sensing of Environment, 2018, 204, 979-996.	11.0	22
89	On the intra-annual variation of cloudiness over the Mediterranean region. Atmospheric Research, 2018, 208, 246-256.	4.1	12
90	Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sensing of Environment, 2018, 205, 453-468.	11.0	37
91	Analysis of spatiotemporal variations of cloud fraction based on geographic characteristics over Iran. Theoretical and Applied Climatology, 2018, 134, 1429-1445.	2.8	6
92	Cosmic rays and climate. Advances in Space Research, 2018, 62, 2880-2891.	2.6	12
93	Multiple Factors Explaining the Deficiency of Cloud Profiling Radar on Detecting Oceanic Warm Clouds. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8135-8158.	3.3	7
94	Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products. Atmospheric Measurement Techniques, 2018, 11, 2701-2715.	3.1	85

#	Article	IF	CITATIONS
95	The Impact of Cloud Radiative Effects on the Tropical Tropopause Layer Temperatures. Atmosphere, 2018, 9, 377.	2.3	24
96	Improving Cloud Optical Property Retrievals for Partly Cloudy Pixels Using Coincident Higherâ€Resolution Single Band Measurements: A Feasibility Study Using ASTER Observations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,253-12,276.	3.3	7
97	Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmospheric Measurement Techniques, 2018, 11, 4073-4092.	3.1	81
98	Coupling of Precipitation and Cloud Structures in Oceanic Extratropical Cyclones to Large-Scale Moisture Flux Convergence. Journal of Climate, 2018, 31, 9565-9584.	3.2	5
99	Determination of the Total Ozone Content in Cloudy Conditions based on Data from the IKFS-2 Spectrometer onboard the Meteor-M no. 2 Satellite. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 1244-1248.	0.9	5
100	A Conditional Generative Adversarial Network to Fuse Sar And Multispectral Optical Data For Cloud Removal From Sentinel-2 Images. , 2018, , .		80
101	The Earth Observing System (EOS). , 2018, , 7-26.		13
102	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	4.9	64
103	Ice cloud microphysical trends observed by the Atmospheric Infrared Sounder. Atmospheric Chemistry and Physics, 2018, 18, 10715-10739.	4.9	12
104	Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions. Atmospheric Measurement Techniques, 2018, 11, 3145-3159.	3.1	94
105	Comparison of aerosol optical depth between observation and simulation from MIROC-SPRINTARS: Effects of temporal inhomogeneous sampling. Atmospheric Environment, 2018, 186, 56-73.	4.1	4
106	Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm. Atmospheric Measurement Techniques, 2018, 11, 529-550.	3.1	23
107	Comparison of two atmospheric correction approaches applied to MODIS measurements over North American waters. Remote Sensing of Environment, 2018, 216, 442-455.	11.0	21
108	Onboard Spectral and Spatial Cloud Detection for Hyperspectral Remote Sensing Images. Remote Sensing, 2018, 10, 152.	4.0	23
109	EPIC Spectral Observations of Variability in Earth's Global Reflectance. Remote Sensing, 2018, 10, 254.	4.0	17
110	Moist convection: a key to tropical wave–moisture interaction in Indian monsoon intraseasonal oscillation. Climate Dynamics, 2018, 51, 3673-3684.	3.8	5
111	Comparisons of cloud detection among four satellite sensors on severe haze days in eastern China. Atmospheric and Oceanic Science Letters, 2018, 11, 86-93.	1.3	14
112	The retrieval of ice cloud parameters from multi-spectral satellite observations of reflectance using a modified XBAER algorithm. Remote Sensing of Environment, 2018, 215, 128-144.	11.0	16

#	Article	IF	CITATIONS
113	The Role of Thermodynamic Phase Shifts in Cloud Optical Depth Variations With Temperature. Geophysical Research Letters, 2019, 46, 4502-4511.	4.0	23
114	Spatial and seasonal variability of clouds over the southwest Indian Ocean based on the DARDAR mask product. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3561-3576.	2.7	2
115	Technical Framework for Shallow-Water Bathymetry With High Reliability and No Missing Data Based on Time-Series Sentinel-2 Images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8745-8763.	6.3	20
116	MODIS Cloud Detection Evaluation Using CALIOP over Polluted Eastern China. Atmosphere, 2019, 10, 333.	2.3	7
117	Comparison of Cloud Properties from Himawari-8 and FengYun-4A Geostationary Satellite Radiometers with MODIS Cloud Retrievals. Remote Sensing, 2019, 11, 1703.	4.0	38
118	Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data. Atmospheric Measurement Techniques, 2019, 12, 3595-3627.	3.1	15
119	Weak average liquid-cloud-water response to anthropogenic aerosols. Nature, 2019, 572, 51-55.	27.8	111
120	Alternating Decision Trees for Cloud Masking in MODIS and VIIRS NASA Sea Surface Temperature Products. Journal of Atmospheric and Oceanic Technology, 2019, 36, 387-407.	1.3	28
121	CloudFCN: Accurate and Robust Cloud Detection for Satellite Imagery with Deep Learning. Remote Sensing, 2019, 11, 2312.	4.0	55
122	Cloud scattering impact on thermal radiative transfer and global longwave radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106669.	2.3	10
123	Cellular Statistical Models of Broken Cloud Fields. Part IV: Effects of Pixel Size on Idealized Satellite Observations. Journals of the Atmospheric Sciences, 2019, 76, 1329-1348.	1.7	2
124	Extending XBAER Algorithm to Aerosol and Cloud Condition. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8262-8275.	6.3	5
125	Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors. Atmospheric Chemistry and Physics, 2019, 19, 4933-4962.	4.9	34
126	An improved algorithm of cloud droplet size distribution from POLDER polarized measurements. Remote Sensing of Environment, 2019, 228, 61-74.	11.0	19
127	Accelerating radiative transfer calculations for highâ€resolution atmospheric models. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2046-2069.	2.7	5
128	The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bulletin of the American Meteorological Society, 2019, 100, 1775-1794.	3.3	199
129	Subgrid Precipitation Properties of Mesoscale Atmospheric Systems Represented by MODIS Cloud Regimes. Journal of Climate, 2019, 32, 1797-1812.	3.2	9
130	Cloud cover and delayed herbivory relative to timing of spring onset interact to dampen climate change impacts on net ecosystem exchange in a coastal Alaskan wetland. Environmental Research Letters, 2019, 14, 084030.	5.2	7

#	Article	IF	CITATIONS
131	Fifteenâ€year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. International Journal of Climatology, 2019, 39, 2612-2629.	3.5	59
132	Big-Sensor-Cloud Infrastructure: A Holistic Prototype for Provisioning Sensors-as-a-Service. IEEE Transactions on Cloud Computing, 2021, 9, 1323-1334.	4.4	5
133	An Assessment of the Impacts of Cloud Vertical Heterogeneity on Global Ice Cloud Data Records From Passive Satellite Retrievals. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1578-1595.	3.3	13
134	Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sensing of Environment, 2019, 224, 12-28.	11.0	140
135	Improving Satellite Global Chlorophyll <i>a</i> Data Products Through Algorithm Refinement and Data Recovery. Journal of Geophysical Research: Oceans, 2019, 124, 1524-1543.	2.6	58
136	Effect of Climate Change on Cloud Properties Over Arabian Sea and Central India. Pure and Applied Geophysics, 2019, 176, 2729-2738.	1.9	7
137	How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth. Atmospheric Chemistry and Physics, 2019, 19, 15023-15048.	4.9	32
138	Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sensing, 2019, 11, 2503.	4.0	9
139	ASTER Cloud Coverage Assessment and Mission Operations Analysis Using Terra/MODIS Cloud Mask Products. Remote Sensing, 2019, 11, 2798.	4.0	3
140	Interactive Effects of Climatic Factors on Seasonal Vegetation Dynamics in the Central Loess Plateau, China. Forests, 2019, 10, 1071.	2.1	13
141	Investigations of MODIS AOD and cloud properties with CERES sensor based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001–2016. Atmospheric Research, 2019, 215, 268-283.	4.1	26
142	Satellites See the World's Atmosphere. Meteorological Monographs, 2019, 59, 4.1-4.53.	5.0	36
143	Cloud Masking Technique for High-Resolution Satellite Data: An Artificial Neural Network Classifier Using Spectral & Textural Context. Journal of the Indian Society of Remote Sensing, 2019, 47, 661-670.	2.4	5
144	The Challenges of Interpreting Oil–Water Spatial and Spectral Contrasts for the Estimation of Oil Thickness: Examples From Satellite and Airborne Measurements of the Deepwater Horizon Oil Spill. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 2643-2658.	6.3	39
145	Improving ocean color data coverage through machine learning. Remote Sensing of Environment, 2019, 222, 286-302.	11.0	50
146	Satellite data cloud detection using deep learning supported by hyperspectral data. International Journal of Remote Sensing, 2020, 41, 1349-1371.	2.9	29
147	Spectral index-based dynamic threshold technique for detecting cloud contamination in ocean colour data. International Journal of Remote Sensing, 2020, 41, 1839-1866.	2.9	2
148	On the Interplay Between Ocean Color Data Quality and Data Quantity: Impacts of Quality Control Flags. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 745-749.	3.1	24

#	Article	IF	CITATIONS
149	RivWidthCloud: An Automated Google Earth Engine Algorithm for River Width Extraction From Remotely Sensed Imagery. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 217-221.	3.1	70
150	Statistical evaluation of satellite ocean color data retrievals. Remote Sensing of Environment, 2020, 237, 111601.	11.0	29
151	A New Satellite-Based Global Climatology of Dust Aerosol Optical Depth. Journal of Applied Meteorology and Climatology, 2020, 59, 83-102.	1.5	40
152	Assessing the effects of artificial light at night on biodiversity across latitude – Current knowledge gaps. Clobal Ecology and Biogeography, 2020, 29, 404-419.	5.8	24
153	The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Communications Earth & Environment, 2020, 1, .	6.8	140
154	Development and Application of HECORA Cloud Retrieval Algorithm Based On the O2-O2 477 nm Absorption Band. Remote Sensing, 2020, 12, 3039.	4.0	4
155	Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sensing of Environment, 2020, 250, 112045.	11.0	125
156	A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters. Remote Sensing of Environment, 2020, 248, 111972.	11.0	29
157	Cloud Detection for Satellite Imagery Using Attention-Based U-Net Convolutional Neural Network. Symmetry, 2020, 12, 1056.	2.2	45
158	Improved Representation of Clouds in the Atmospheric Component LMDZ6A of the IPSLâ€CM6A Earth System Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002046.	3.8	20
159	A Decadal Global Climatology of Ice Cloud Fraction with Their Microphysical and Optical Properties Inferred from the CALIPSO and Reanalysis Data. Remote Sensing, 2020, 12, 3795.	4.0	2
160	Water and ice cloud optical thickness changes and radiative effects in East Asia. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254, 107213.	2.3	10
161	Cloud Removal in Satellite Images Using Spatiotemporal Generative Networks. , 2020, , .		36
162	An Effective Cloud Detection Method for Gaofen-5 Images via Deep Learning. Remote Sensing, 2020, 12, 2106.	4.0	19
163	Assessment of the Representativeness of MODIS Aerosol Optical Depth Products at Different Temporal Scales Using Global AERONET Measurements. Remote Sensing, 2020, 12, 2330.	4.0	6
164	Information Content of Ice Cloud Properties from Multi-Spectral, -Angle and -Polarization Observations. Remote Sensing, 2020, 12, 2548.	4.0	3
165	The New Landsat Collection-2 Digital Elevation Model. Remote Sensing, 2020, 12, 3909.	4.0	10
166	Multisensor Thermal Infrared and Microwave Land Surface Temperature Algorithm Intercomparison. Remote Sensing, 2020, 12, 4164.	4.0	4

#	Article	IF	CITATIONS
167	RGB Image Prioritization Using Convolutional Neural Network on a Microprocessor for Nanosatellites. Remote Sensing, 2020, 12, 3941.	4.0	8
168	Missing Pixel Reconstruction on Landsat 8 Analysis Ready Data Land Surface Temperature Image Patches Using Source-Augmented Partial Convolution. Remote Sensing, 2020, 12, 3143.	4.0	2
169	Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sensing, 2020, 12, 3313.	4.0	20
170	Daytime Variability of Cloud Fraction From DSCOVR/EPIC Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031488.	3.3	9
171	Can atmospheric reanalyses (CRA and ERA5) represent cloud spatiotemporal characteristics?. Atmospheric Research, 2020, 244, 105091.	4.1	21
172	Assessment of the Number of Valid Observations and Diurnal Changes in Chl-a for GOCI: Highlights for Geostationary Ocean Color Missions. Sensors, 2020, 20, 3377.	3.8	2
173	The Component-Spectra-Parameterized Angular and Spectral Kernel-Driven Model: A Potential Solution for Global BRDF/Albedo Retrieval From Multisensor Satellite Data. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8674-8688.	6.3	4
174	The global impact of bacterial processes on carbon mass. Atmospheric Chemistry and Physics, 2020, 20, 1777-1794.	4.9	14
175	Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 333-346.	11.1	179
176	Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the South China Sea and West Philippine Sea. Remote Sensing, 2020, 12, 480.	4.0	22
177	Spatiotemporal distributions of cloud properties over China based on Himawari-8 advanced Himawari imager data. Atmospheric Research, 2020, 240, 104927.	4.1	47
178	Seasonal and annual segregation of liquid water and ice clouds in Iran and their relation to geographic components and precipitation. Theoretical and Applied Climatology, 2020, 140, 963-982.	2.8	1
179	Assessing the relationship between vegetation greenness and surface temperature through Granger causality and Impulse-Response coefficients: a case study in Mexico. International Journal of Remote Sensing, 2020, 41, 3761-3783.	2.9	10
180	Global Evaluation of the Suitability of MODIS-Terra Detected Cloud Cover as a Proxy for Landsat 7 Cloud Conditions. Remote Sensing, 2020, 12, 202.	4.0	5
181	A Review of Current and Potential Applications of Remote Sensing to Study the Water Status of Horticultural Crops. Agronomy, 2020, 10, 140.	3.0	37
182	Identifying Particle Growth Processes in Marine Low Clouds Using Spatial Variances of Imagerâ€Đerived Cloud Parameters. Geophysical Research Letters, 2020, 47, e2020GL087121.	4.0	2
183	Performance of COCTS in Global Ocean Color Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 1634-1644.	6.3	8
184	The two leading modes of winter clear-sky days over China and their formation mechanisms. Climate Dynamics, 2021, 56, 189-205.	3.8	5

#	Article	IF	CITATIONS
185	Multisensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 5866-5878.	6.3	58
186	Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery Via Filtered Jaccard Loss Function and Parametric Augmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4254-4266.	4.9	20
187	ClouDet: A Dilated Separable CNN-Based Cloud Detection Framework for Remote Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9743-9755.	4.9	6
188	Pragmatic Augmentation Algorithms for Deep Learning-Based Cloud and Cloud Shadow Detection in Remote Sensing Imagery. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	1
189	Deep Space Observations of Cloud Glints: Spectral and Seasonal Dependence. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	5
190	Urmia Lake dust storms occurrences: investigating the relationships with changes in water zone and land cover in the eastern part using remote sensing and GIS. Environmental Monitoring and Assessment, 2021, 193, 70.	2.7	8
191	Optical Remote Sensing of Oil Spills in the Ocean: What Is Really Possible?. Journal of Remote Sensing, 2021, 2021, .	6.7	41
192	Global Impact of Cloud Longwave Scattering in an Atmosphereâ€Only General Circulation Model Simulation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033968.	3.3	4
193	Reply to: Concerns about phytoplankton bloom trends in global lakes. Nature, 2021, 590, E48-E50.	27.8	0
194	Comprehensive analysis of cloudiness over Iran with CloudSat data. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	2
195	An Efficient and Accurate Algorithm for Computing Grid-Averaged Solar Fluxes for Horizontally Inhomogeneous Clouds. Journals of the Atmospheric Sciences, 2021, 78, 385-398.	1.7	0
196	Global Daytime Variability of Clouds From DSCOVR/EPIC Observations. Geophysical Research Letters, 2021, 48, e2020GL091511.	4.0	4
197	Concerns about phytoplankton bloom trends in global lakes. Nature, 2021, 590, E35-E47.	27.8	36
198	Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations. Remote Sensing, 2021, 13, 1151.	4.0	3
199	Generative Adversarial Learning in YUV Color Space for Thin Cloud Removal on Satellite Imagery. Remote Sensing, 2021, 13, 1079.	4.0	20
200	Spatio-Temporal Distribution of Deep Convection Observed along the Trans-Mexican Volcanic Belt. Remote Sensing, 2021, 13, 1215.	4.0	5
201	Representativity of cloudâ€profiling radar observations for data assimilation in numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1801-1822.	2.7	1
202	ARPEGE Cloud Cover Forecast Postprocessing with Convolutional Neural Network. Weather and Forecasting, 2021, 36, 567-586.	1.4	17

#	Article	IF	CITATIONS
203	Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sensing of Environment, 2021, 256, 112275.	11.0	41
204	KazRivDyn: Toolkit for Measuring the Dynamics of Kazakhstan Rivers with a Graphics Based on Google Earth Engine. , 2021, , .		1
205	Evaluation of Cloud Mask and Cloud Top Height from Fengyun-4A with MODIS Cloud Retrievals over the Tibetan Plateau. Remote Sensing, 2021, 13, 1418.	4.0	5
206	Cloudiness reduces the bleaching response of coral reefs exposed to heat stress. Global Change Biology, 2021, 27, 3474-3486.	9.5	18
207	Topâ€ofâ€Atmosphere Radiation Budget and Cloud Radiative Effects Over the Tibetan Plateau and Adjacent Monsoon Regions From CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034345.	3.3	13
208	The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study. Cryosphere, 2021, 15, 2757-2780.	3.9	6
209	The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation. Cryosphere, 2021, 15, 2781-2802.	3.9	7
210	Assessing the impact of illumination on UAV pushbroom hyperspectral imagery collected under various cloud cover conditions. Remote Sensing of Environment, 2021, 258, 112396.	11.0	39
211	Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. Astrobiology, 2021, 21, 1186-1205.	3.0	19
212	The Correlation of Temperature, Stratus Cloudiness, and Electric Field Strength in the Atmosphere. Doklady Earth Sciences, 2021, 499, 595-598.	0.7	1
213	Neural Network-Based Urban Change Monitoring with Deep-Temporal Multispectral and SAR Remote Sensing Data. Remote Sensing, 2021, 13, 3000.	4.0	6
214	Cloud-Top Height Comparison from Multi-Satellite Sensors and Ground-Based Cloud Radar over SACOL Site. Remote Sensing, 2021, 13, 2715.	4.0	6
215	Vertical structure of cloud radiative heating in the tropics: confronting the EC-Earth v3.3.1/3P model with satellite observations. Geoscientific Model Development, 2021, 14, 4087-4101.	3.6	2
216	Cloud Detection Using an Ensemble of Pixel-Based Machine Learning Models Incorporating Unsupervised Classification. Remote Sensing, 2021, 13, 3289.	4.0	5
217	Space-Time Machine Learning Models to Analyze COVID-19 Pandemic Lockdown Effects on Aerosol Optical Depth over Europe. Remote Sensing, 2021, 13, 3027.	4.0	10
218	Intra-seasonal contrasting trends in clouds due to warming induced circulation changes. Scientific Reports, 2021, 11, 16985.	3.3	6
219	An Observational Constraint on Aviationâ€Induced Cirrus From the COVIDâ€19â€Induced Flight Disruption. Geophysical Research Letters, 2021, 48, e2021GL095882.	4.0	8
220	A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sensing of Environment, 2021, 264, 112586.	11.0	89

#	Article	IF	Citations
221	Global clear sky near-surface imagery from multiple satellite daily imagery time series. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180, 238-254.	11.1	6
222	Key issues in detecting lacustrine cyanobacterial bloom using satellite remote sensing. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 647-652.	0.8	11
223	Framework to Create Cloud-Free Remote Sensing Data Using Passenger Aircraft as the Platform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6923-6936.	4.9	2
224	Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sensing of Environment, 2020, 246, 111890.	11.0	115
225	Evaluation of ceilometer attenuated backscattering coefficients for aerosol profile measurement. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	6
226	Optimal satellite orbit configuration for global ocean color product coverage. Optics Express, 2019, 27, A445.	3.4	17
227	Climatology of cloud overlap parameter. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 2017, 14, 216-225.	0.5	1
228	Earth as an Exoplanet. I. Time Variable Thermal Emission Using Spatially Resolved Moderate Imaging Spectroradiometer Data. Astronomical Journal, 2020, 160, 246.	4.7	8
229	Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds. Atmospheric Chemistry and Physics, 2020, 20, 11025-11043.	4.9	19
230	Differences in fine particle chemical composition on clear and cloudy days. Atmospheric Chemistry and Physics, 2020, 20, 11607-11624.	4.9	7
231	Cloud phase characteristics over Southeast Asia from A-Train satellite observations. Atmospheric Chemistry and Physics, 2020, 20, 8267-8291.	4.9	11
233	The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD). Earth System Science Data, 2019, 11, 1745-1764.	9.9	18
235	Cloudy Image Arithmetic: A Cloudy Scene Synthesis Paradigm With an Application to Deep-Learning-Based Thin Cloud Removal. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	6.3	6
236	Improved Image Aggregation for Large-Scale Cloud-Free Image Creation. , 2021, , .		0
237	Internal Learning for Sequence-to-Sequence Cloud Removal via Synthetic Aperture Radar Prior Information. , 2021, , .		7
238	A SAR-to-Optical Image Translation Method Based on PIX2PIX. , 2021, , .		9
239	Can Current Hyperspectral Infrared Sounders Capture the Small Scale Atmospheric Water Vapor Spatial Variations?. Geophysical Research Letters, 2021, 48, e2021GL095825.	4.0	5
240	Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask. Remote Sensing, 2021, 13, 3997.	4.0	2

#	Article	IF	CITATIONS
241	Temperatureâ€Independent Cloud Phase Retrieval From Shortwaveâ€Infrared Measurement of GCOMâ€C/SGLI With Comparison to CALIPSO. Earth and Space Science, 2021, 8, e2021EA001912.	2.6	5
242	Fusing Retrievals of High Resolution Aerosol Optical Depth from Landsat-8 and Sentinel-2 Observations over Urban Areas. Remote Sensing, 2021, 13, 4140.	4.0	6
243	Title is missing!. Journal of the Japan Society of Photogrammetry and Remote Sensing, 2013, 52, 234-238.	0.0	0
244	Improvements in the on-orbit calibration of the Terra MODIS short-wave infrared spectral bands. , 2018, , .		3
245	STATISTICAL STUDY OF MODIS ALGORITHMS IN ESTIMATING AEROSOL OPTICAL DEPTH OVER THE CZECH REPUBLIC. Civil Engineering Journal, 2019, 28, 523-531.	0.2	0
246	Global diffuse attenuation derived from vibrational Raman scattering detected in hyperspectral backscattered satellite spectra. Optics Express, 2019, 27, A829.	3.4	5
247	Comparing three satellite retrieval cloud fraction data over Tibet Plateau. , 2019, , .		0
248	Retrieval of Water Cloud Optical and Microphysical Properties from Combined Multiwavelength Lidar and Radar Data. Remote Sensing, 2021, 13, 4396.	4.0	2
249	Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers. Atmospheric Measurement Techniques, 2020, 13, 7047-7057.	3.1	1
250	An airborne study of the aerosol effect on the dispersion of cloud droplets in a drizzling marine stratocumulus cloud over eastern China. Atmospheric Research, 2022, 265, 105885.	4.1	5
251	Improvements of on-orbit characterization of Terra MODIS short-wave infrared spectral bands out-of-band responses. Journal of Applied Remote Sensing, 2020, 14, .	1.3	5
252	RODEO: An algorithm and Google Earth Engine application for river discharge retrieval from Landsat. Environmental Modelling and Software, 2022, 148, 105254.	4.5	15
253	Surface Warming Trend Analysis Based on MODIS/Terra Land Surface Temperature Product at Gongga Mountain in the Southeastern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034205.	3.3	14
254	Detecting the proposed CH4–CO2 biosignature pair with the <i>James Webb Space Telescope</i> : TRAPPIST-1e and the effect of cloud/haze. Monthly Notices of the Royal Astronomical Society, 2021, 510, 980-991.	4.4	16
255	Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images. Remote Sensing, 2021, 13, 4708.	4.0	16
256	Cloud Removal in Remote Sensing Images Using Generative Adversarial Networks and SAR-to-Optical Image Translation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	6.3	31
257	Mission Replanning for Multiple Agile Earth Observation Satellites Based on Cloud Coverage Forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 594-608.	4.9	11
258	Empirical algorithm for detecting coccolithophore blooms through satellite observation in the Barents Sea. Remote Sensing of Environment, 2022, 270, 112886.	11.0	5

#	Article	IF	CITATIONS
259	Generation, Application and Evaluation of GF-1 WFV Cloud Detection Method Based CDAG Algorithm. , 2020, , .		0
260	Relative Humidity: A Control Valve of the Steam Engine Climate. , 2021, 2, 140-182.		32
261	Variational Model for the Restoration of Clouds Corrupted Multispectral Satellite Optical Images. , 2021, , .		1
262	Multi-Case Analysis of Ice Particle Properties of Stratiform Clouds Using In Situ Aircraft Observations in Hebei, China. Atmosphere, 2022, 13, 200.	2.3	Ο
263	Cloud/shadow segmentation based on multi-level feature enhanced network for remote sensing imagery. International Journal of Remote Sensing, 2022, 43, 5940-5960.	2.9	41
264	The Intelligent Trajectory Optimization of Multistage Rocket with Gauss Pseudo-Spectral Method. Intelligent Automation and Soft Computing, 2022, 33, 291-303.	2.1	2
265	Efficient Production of Carbonyl Sulfide in the Lowâ€NO _x Oxidation of Dimethyl Sulfide. Geophysical Research Letters, 2022, 49, .	4.0	16
266	SEN12MS-CR-TS: A Remote-Sensing Data Set for Multimodal Multitemporal Cloud Removal. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	6.3	39
267	Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	6
268	Comparative Analysis of Several Typical Landsat 8 OLI Cloud Detection Methods. Remote Sensing, 2022, 14, 719.	4.0	Ο
269	Microbial ecology of the atmosphere. FEMS Microbiology Reviews, 2022, 46, .	8.6	44
270	A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1 and Sentinel-2 Analysis Ready Data. Remote Sensing, 2022, 14, 1120.	4.0	4
271	Regional characteristics and exploitation potential of atmospheric water resources in China. International Journal of Climatology, 2022, 42, 3225-3245.	3.5	3
272	The detectability of nightside city lights on exoplanets. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2652-2662.	4.4	6
273	An Overview of Aerosol Properties in Clear and Cloudy Sky Based on CALIPSO Observations. Earth and Space Science, 2022, 9, .	2.6	2
274	Diurnal variations of cloud optical properties during day-time over China based on Himawari-8 satellite retrievals. Atmospheric Environment, 2022, 277, 119065.	4.1	5
275	Remote sensing image gap filling based on spatial-spectral random forests. Science of Remote Sensing, 2022, 5, 100048.	4.8	11
276	Summer Statistical Models of Cloud Parameters over Western Siberia According to MODIS Data. Russian Meteorology and Hydrology, 2021, 46, 735-746.	1.3	4

#	ARTICLE	IF	CITATIONS
277	Using the Results of Cloud Classification Based on Satellite Data for Solving Climatological and Meteorological Problems. Russian Meteorology and Hydrology, 2021, 46, 839-848.	1.3	4
278	Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data. Atmospheric Measurement Techniques, 2021, 14, 7749-7773.	3.1	3
279	Estimation of the All-Wave All-Sky Land Surface Daily Net Radiation at Mid-Low Latitudes from MODIS Data Based on ERA5 Constraints. Remote Sensing, 2022, 14, 33.	4.0	6
280	A characterization of clouds over the Great Barrier Reef and the role of local forcing. International Journal of Climatology, 0, , .	3.5	0
281	Forecasting the regional fire radiative power for regularly ignited vegetation fires. Natural Hazards and Earth System Sciences, 2022, 22, 1335-1346.	3.6	0
285	Reduction of Spectral Radiance Reflectance During the Annular Solar Eclipse of 21 June 2020 Observed by EPIC. Frontiers in Remote Sensing, 2022, 3, .	3.5	1
286	Satellites Suggest Rising Tropical High Cloud Altitude: 2002–2021. Geophysical Research Letters, 2022, 49, .	4.0	3
287	Attention-based convolutional capsules for evapotranspiration estimation at scale. Environmental Modelling and Software, 2022, 152, 105366.	4.5	2
288	A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network. Earth System Science Data, 2022, 14, 2315-2341.	9.9	11
289	Exploring the Potential of Optical Polarization Remote Sensing for Oil Spill Detection: A Case Study of Deepwater Horizon. Remote Sensing, 2022, 14, 2398.	4.0	5
290	CloudRCNN: A Framework Based on Deep Neural Networks for Semantic Segmentation of Satellite Cloud Images. Applied Sciences (Switzerland), 2022, 12, 5370.	2.5	3
291	Sentinel-1 to NDVI for Agricultural Fields Using Hyperlocal Dynamic Machine Learning Approach. Remote Sensing, 2022, 14, 2600.	4.0	7
292	Influence of Aerosol Embedded in Shallow Cumulus Cloud Fields on the Surface Solar Irradiance. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	5
293	Monitoring Maize Growth and Calculating Plant Heights with Synthetic Aperture Radar (SAR) and Optical Satellite Images. Agriculture (Switzerland), 2022, 12, 800.	3.1	7
294	Mapping potential surface contributions to reflected solar radiation. Environmental Research Communications, 2022, 4, 065003.	2.3	3
295	EOS-ESTM: a flexible climate model for habitable exoplanets. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5105-5125.	4.4	4
296	Characterization of the on-orbit response versus scan angle for Terra MODIS SWIR bands in Collection 7. Journal of Applied Remote Sensing, 2022, 16, .	1.3	4
297	Performing tomographic reconstructions from a satellite looking toward Earth. Part 2: analysis of image quality. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 0, , .	1.5	1

#	Article	IF	CITATIONS
298	CloudSatNet-1: FPGA-Based Hardware-Accelerated Quantized CNN for Satellite On-Board Cloud Coverage Classification. Remote Sensing, 2022, 14, 3180.	4.0	7
299	Fast spatial-spectral random forests for thick cloud removal of hyperspectral images. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102916.	1.9	4
300	Retrieval of Daytime Surface Upward Longwave Radiation Under All-Sky Conditions With Remote Sensing and Meteorological Reanalysis Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	0
301	Warming Trend and Cloud Responses over the Indochina Peninsula during Monsoon Transition. Remote Sensing, 2022, 14, 4077.	4.0	0
302	Cloud removal for optical remote sensing imagery using the SPA-CycleGAN network. Journal of Applied Remote Sensing, 2022, 16, .	1.3	5
303	The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile. Earth System Science Data, 2022, 14, 3599-3613.	9.9	3
304	Effects of satellite temporal resolutions on the remote derivation of trends in phytoplankton blooms in inland waters. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 188-202.	11.1	12
305	Generating 5Âkm resolution 1981–2018 daily global land surface longwave radiation products from AVHRR shortwave and longwave observations using densely connected convolutional neural networks. Remote Sensing of Environment, 2022, 280, 113223.	11.0	4
306	On the capacity of Sentinel-1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sensing of Environment, 2022, 280, 113188.	11.0	17
307	A hybrid generative adversarial network for weakly-supervised cloud detection in multispectral images. Remote Sensing of Environment, 2022, 280, 113197.	11.0	15
308	GLF-CR: SAR-enhanced cloud removal with global–local fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 268-278.	11.1	24
309	Semi-supervised thin cloud removal with mutually beneficial guides. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 327-343.	11.1	1
310	Spatiotemporal satellite data imputation using sparse functional data analysis. Annals of Applied Statistics, 2022, 16, .	1.1	0
311	Supervised Change Detection Using Prechange Optical-SAR and Postchange SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 8170-8178.	4.9	12
312	Thin Cloud Removal Fusing Full Spectral and Spatial Features for Sentinel-2 Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 8759-8775.	4.9	5
313	Estimating NDVI from Sentinel-1 Sar Data Using Deep Learning. , 2022, , .		1
314	Multi-Sensor Time Series Cloud Removal Fusing Optical and SAR Satellite Information. , 2022, , .		0
315	Sentinel-1 Shadows Used to Quantify Canopy Loss from Selective Logging in Gabon. Remote Sensing, 2022, 14, 4233.	4.0	3

	CITATION R	EPORT	
#	Article	IF	CITATIONS
316	Cloud Removal in Satellite Imagery Using Adversarial Network and RGB-Optical Data Fusion. , 2022, , .		1
317	Changes in Aerosols, Meteorology, and Radiation in the Southeastern U.S. Warming Hole Region during 2000 to 2019. Journal of Climate, 2022, 35, 7725-7737.	3.2	1
318	Markovian statistical model of cloud optical thickness. Part I: Theory and examples. Journals of the Atmospheric Sciences, 2022, , .	1.7	0
319	The Earthâ€Observing Aqua Satellite Mission: 20ÂYears and Counting. Earth and Space Science, 2022, 9, .	2.6	4
320	Modeling cloud properties over the <scp>79 N</scp> Glacier (Nioghalvfjerdsfjorden, <scp>NE</scp>) Tj ETG Society, 2022, 148, 3566-3590.	Qq0 0 0 rg 2.7	BT /Overlock 1
321	The dominant role of aerosol-cloud interactions in aerosol-boundary layer feedback: Case studies in three megacities in China. Frontiers in Environmental Science, 0, 10, .	3.3	4
322	Cloud Screening Method in Complex Background Areas Containing Snow and Ice Based on Landsat 9 Images. International Journal of Environmental Research and Public Health, 2022, 19, 13267.	2.6	0
323	Algorithm theoretical basis for ozone and sulfur dioxide retrievals from DSCOVR EPIC. Atmospheric Measurement Techniques, 2022, 15, 5877-5915.	3.1	1
324	Using Convolutional Neural Networks for Cloud Detection on VENμS Images over Multiple Land-Cover Types. Remote Sensing, 2022, 14, 5210.	4.0	3
325	Robust extension of the simple sea-surface irradiance model to handle cloudy conditions for the global ocean using satellite remote sensing data. Advances in Space Research, 2023, 71, 1486-1509.	2.6	2
326	Impact of Cloud Process in the Mixing State and Microphysical Properties of Soot Particles: Implications in Light Absorption Enhancement. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
327	Gap-filling of ocean color over the tropical Indian Ocean using Monte-Carlo method. Scientific Reports, 2022, 12, .	3.3	3
328	Remote Sensing of Surface Melt on Antarctica: Opportunities and Challenges. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2462-2480.	4.9	4
329	Development of a Deep Learning-Based Atmospheric Correction Algorithm for Oligotrophic Oceans. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-19.	6.3	3
330	Cloud detection using sentinel 2 imageries: a comparison of XGBoost, RF, SVM, and CNN algorithms. Geocarto International, 2023, 38, 1-32.	3.5	12
331	Estimation of fine spatial resolution all-sky surface net shortwave radiation over mountainous terrain from Landsat 8 and Sentinel-2 data. Remote Sensing of Environment, 2023, 285, 113364.	11.0	7
332	Estimates of broadband upwelling irradiance from GOES-16 ABI. Remote Sensing of Environment, 2023, 285, 113376.	11.0	1
333	Current status of aerosol-cloud interactions and their impact over the Northern Indian Ocean: A comprehensive review. Atmospheric Research, 2023, 283, 106555.	4.1	2

#	Article	IF	CITATIONS
334	Explaining the Effects of Clouds on Remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 9976-9986.	4.9	7
335	Deep Residual Network with Multi-Image Attention for Imputing Under Clouds in Satellite Imagery. , 2022, , .		5
336	CloudNet: A Deep Learning Approach for Mitigating Occlusions in Landsat-8 Imagery using Data Coalescence. , 2022, , .		1
337	Aerosol effects on clouds are concealed by natural cloud heterogeneity and satellite retrieval errors. Nature Communications, 2022, 13, .	12.8	6
338	From a Love of Nature to a World of Earth Observations. Perspectives of Earth and Space Scientists, 2022, 3, .	0.3	1
339	Estimating All-Weather Surface Longwave Radiation from Satellite Passive Microwave Data. Remote Sensing, 2022, 14, 5960.	4.0	1
340	A CO ₂ -independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications. Atmospheric Measurement Techniques, 2022, 15, 6653-6668.	3.1	3
341	South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season. Atmospheric Chemistry and Physics, 2022, 22, 15021-15033.	4.9	5
342	Cloudformer: A Cloud-Removal Network Combining Self-Attention Mechanism and Convolution. Remote Sensing, 2022, 14, 6132.	4.0	3
343	An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds. Atmospheric Chemistry and Physics, 2022, 22, 15867-15886.	4.9	3
344	Satellite Image Compression Guided by Regions of Interest. Sensors, 2023, 23, 730.	3.8	4
345	An Assessment of the Influences of Clouds on the Solar Photovoltaic Potential over China. Remote Sensing, 2023, 15, 258.	4.0	1
346	Filling Then Spatio-Temporal Fusion for All-Sky MODIS Land Surface Temperature Generation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 1350-1364.	4.9	5
347	Thick Cloud Removal Under Land Cover Changes Using Multisource Satellite Imagery and a Spatiotemporal Attention Network. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-18.	6.3	2
348	A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat. Aerospace, 2023, 10, 78.	2.2	1
349	Improved cloudy-sky snow albedo estimates using passive microwave and VIIRS data. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196, 340-355.	11.1	2
350	STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data. Remote Sensing, 2023, 15, 88.	4.0	8
351	Wavelet Integrated Convolutional Neural Network for Thin Cloud Removal in Remote Sensing Images. Remote Sensing, 2023, 15, 781.	4.0	4

#	Article	IF	CITATIONS
352	Venus, the Planet: Introduction to the Evolution of Earth's Sister Planet. Space Science Reviews, 2023, 219, .	8.1	8
353	Earth as an Exoplanet. II. Earth's Time-variable Thermal Emission and Its Atmospheric Seasonality of Bioindicators. Astrophysical Journal, 2023, 946, 82.	4.5	2
354	Cross-resolution national-scale land-cover mapping based on noisy label learning: A case study of China. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103265.	1.9	6
355	Climatology, trend of aerosol-cloud parameters and their correlation over the Northern Indian Ocean. Geoscience Frontiers, 2023, 14, 101563.	8.4	4
357	Remote sensing crop group-specific indicators to support regional yield forecasting in Europe. Computers and Electronics in Agriculture, 2023, 205, 107633.	7.7	5
358	Upscaling of longwave downward radiation from instantaneous to any temporal scale: Algorithms, validation, and comparison. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103196.	1.9	0
359	Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data. Earth System Science Data, 2023, 15, 869-895.	9.9	9
360	The CHROMA cloud-top pressure retrieval algorithm for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. Atmospheric Measurement Techniques, 2023, 16, 969-996.	3.1	1
361	Short-Term Variability of the Single-Layer Cloud-Field Structure over Western Siberia from MODIS and VIIRS Satellite Data. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 1619-1626.	0.9	0
362	SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models. Geoscientific Model Development, 2023, 16, 1511-1536.	3.6	5
363	WCDL: A Weighted Cloud Dictionary Learning Method for Fusing Cloud-Contaminated Optical and SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2931-2941.	4.9	2
364	Convolutional Neural Network-Driven Improvements in Global Cloud Detection for Landsat 8 and Transfer Learning on Sentinel-2 Imagery. Remote Sensing, 2023, 15, 1706.	4.0	4
365	A Novel Spectral Indices-Driven Spectral-Spatial-Context Attention Network for Automatic Cloud Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3092-3103.	4.9	4
366	Feature-aware aggregation network for remote sensing image cloud detection. International Journal of Remote Sensing, 2023, 44, 1872-1899.	2.9	3
367	å•è§è‡³å¤µ«å¹ä¸€ä½"åŒ−ä°æŽ¢æµ‹å‰å¦ç³»ç»Ÿè®¾è®¡. Guangxue Xuebao/Acta Optica Sinica, 2023, 4	3,062200	8. 0
368	A Globally Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2023, 91, 171-188.	1.1	4
369	Denoising Diffusion Probabilistic Feature-Based Network for Cloud Removal in Sentinel-2 Imagery. Remote Sensing, 2023, 15, 2217.	4.0	2
370	A curvature-driven cloud removal method for remote sensing images. Geo-Spatial Information Science, 0, , 1-22.	5.3	3

C		~ ~ ~	Dee	~ ~ ~
CH.	AH	ON.	Rep	υκι

#	Article	IF	CITATIONS
371	Cloud detection of multi-type satellite images based on spectral assimilation and deep learning. International Journal of Remote Sensing, 2023, 44, 3106-3121.	2.9	0
372	Updated observations of clouds by MODIS for global model assessment. Earth System Science Data, 2023, 15, 2483-2497.	9.9	3
373	Remote Sensing Cloud Removal using a Combination of Spatial Attention and Edge Detection. , 2023, , .		0
374	Recent progress in cloud physics and associated radiative effects in China from 2016 to 2022. Atmospheric Research, 2023, 293, 106899.	4.1	6
375	Extending global river gauge records using satellite observations. Environmental Research Letters, 2023, 18, 064027.	5.2	4
376	A Radiative-convective Model for Terrestrial Planets with Self-consistent Patchy CloudsÂ. Planetary Science Journal, 2023, 4, 94.	3.6	4
377	Cloud Removal in Remote Sensing Using Sequential-Based Diffusion Models. Remote Sensing, 2023, 15, 2861.	4.0	1
378	Effect of scattering angle on DSCOVR/EPIC observations. Frontiers in Remote Sensing, 0, 4, .	3.5	0
379	Leveraging Physical Rules for Weakly Supervised Cloud Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-18.	6.3	0
380	Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios. Atmospheric Chemistry and Physics, 2023, 23, 8169-8186.	4.9	1
381	UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series. , 2023, , .		4
382	Variability of Parameters of Single-Layer Cloud Fields over Western Siberia in Summer for the Period from 2001 to 2019 According to MODIS Data. Atmospheric and Oceanic Optics, 2023, 36, 329-336.	1.3	0
383	SatelliteCloudGenerator: Controllable Cloud and Shadow Synthesis for Multi-Spectral Optical Satellite Images. Remote Sensing, 2023, 15, 4138.	4.0	0
384	Harmonization-guided deep residual network for imputing under clouds with multi-sensor satellite imagery. , 2023, , .		0
385	Monitoring selective logging intensities in central Africa with sentinel-1: A canopy disturbance experiment. Remote Sensing of Environment, 2023, 298, 113828.	11.0	1
386	A novel cloud detection method based on segmentation prior and multiple features for Sentinel-2 images. International Journal of Remote Sensing, 2023, 44, 5101-5120.	2.9	2
387	Edge-SAR-Assisted Multimodal Fusion for Enhanced Cloud Removal. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	3.1	0
388	Cloud Imputation forÂMulti-sensor Remote Sensing Imagery withÂStyle Transfer. Lecture Notes in Computer Science, 2023, , 37-53.	1.3	0

#	Article	IF	CITATIONS
389	Assessment of the Radiometric Calibration Consistency of Reflective Solar Bands between Terra and Aqua MODIS in Upcoming Collection-7 L1B. Remote Sensing, 2023, 15, 4730.	4.0	0
390	Temporal Upsampling of NDVI Time Series by RNN-Based Fusion of Sparse Optical and Dense SAR-Derived NDVI Data. , 2023, , .		0
391	Improving blank ocean satellite data through machine learning: Case study and application in the Bohai Sea, China. Marine Geology, 2023, , 107173.	2.1	1
392	Multi-Modal Multi-Task Learning for Semantic Segmentation of Land Cover Under Cloudy Conditions. , 2023, , .		0
393	A Harmful Algal Bloom Detection Model Combining Moderate Resolution Imaging Spectroradiometer Multi-Factor and Meteorological Heterogeneous Data. Sustainability, 2023, 15, 15386.	3.2	1
394	Improving Cloud Detection in WFV Images Onboard Chinese GF-1/6 Satellite. Remote Sensing, 2023, 15, 5229.	4.0	0
395	GLTF-Net: Deep-Learning Network for Thick Cloud Removal of Remote Sensing Images via Global–Local Temporality and Features. Remote Sensing, 2023, 15, 5145.	4.0	2
396	Blind single-image-based thin cloud removal using a cloud perception integrated fast Fourier convolutional network. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 206, 63-86.	11.1	1
397	Cloud characteristics over the <scp>Yunnan–Guizhou</scp> plateau as observed by <scp>MODIS</scp> and <scp>Himawariâ€8</scp> . International Journal of Climatology, 2023, 43, 8072-8085.	3.5	0
398	Spatiotemporal imagery selection for full coverage image generation over a large area with HFA-Net based quality grading. Geo-Spatial Information Science, 0, , 1-18.	5.3	1
399	Transformer Meets GAN: Cloud-Free Multispectral Image Reconstruction via Multisensor Data Fusion in Satellite Images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-13.	6.3	0
400	Advancing SAR monitoring of urban impervious surface with a new polarimetric scattering mixture analysis approach. International Journal of Applied Earth Observation and Geoinformation, 2023, 124, 103541.	1.9	Ο
401	Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1. Geoscientific Model Development, 2023, 16, 6553-6591.	3.6	1
402	U-TILISE: A Sequence-to-Sequence Model for Cloud Removal in Optical Satellite Time Series. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-16.	6.3	2
403	Empirical Function Method: A Precise Approach for Filling Data Gaps in Satellite Sea Surface Temperature Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1-14.	6.3	0
404	Space Microdatacenters. , 2023, , .		0
405	Multi-Modal and Multi-Resolution Data Fusion for High-Resolution Cloud Removal: A Novel Baseline and Benchmark. IEEE Transactions on Geoscience and Remote Sensing, 2023, , 1-1.	6.3	0
406	Diurnal time representation of MODIS, VIIRS, MISR, and AHI over Asia and Oceania. Remote Sensing of Environment, 2023, 299, 113878.	11.0	Ο

#	Article	IF	CITATIONS
407	MSDF-Net: A Multi-Scale Deep Fusion Network with Dilated Convolutions for Cloud Removal from Sentinel-2 Imagery. , 2023, , .		0
410	The apparent effect of orbital drift on time series of MODIS MOD10A1 albedo on the Greenland ice sheet. Science of Remote Sensing, 2024, 9, 100116.	4.8	0
411	Mechanism analysis of vegetation phenology in an urban agglomeration in an arid zone driven by seasonal land surface temperatures. Urban Climate, 2024, 53, 101795.	5.7	2
412	Feature enhancement network for cloud removal in optical images by fusing with SAR images. International Journal of Remote Sensing, 2024, 45, 51-67.	2.9	0
413	An Effectiveness Study of Multi-Model Result Fusion in Satellite Image Semantic Segmentation Tasks. , 2023, , .		0
414	Assessing FY-3D MERSI-II Observations for Vegetation Dynamics Monitoring: A Performance Test of Land Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1-20.	6.3	0
415	Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region. Remote Sensing, 2024, 16, 188.	4.0	0
416	Satellite Image Dehazing Based on Dual Frequency Pass Networks. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 1-5.	3.1	0
417	Quantifying Cloud-Free Observations from Landsat Missions: Implications for Water Environment Analysis. Journal of Remote Sensing, 2024, 4, .	6.7	0
418	Satellite Clearâ€6ky Observations Overestimate Surface Urban Heat Islands in Humid Cities. Geophysical Research Letters, 2024, 51, .	4.0	0
419	From Satellites to Fields: Machine Learning Applications for Prediction of Corn Production Using NDVI, Precipitation and Land Surface Temperature for Large Producer Countries. , 2023, , .		0
420	A practical two-step framework for all-sky land surface temperature estimation. Remote Sensing of Environment, 2024, 303, 113991.	11.0	0
421	Assessing cumulative uncertainties of remote sensing time series and telemetry data in animal-environment studies. Landscape Ecology, 2024, 39, .	4.2	0
422	Missing information reconstruction integrating isophote constraint and color-structure control for remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 208, 261-278.	11.1	0
423	Dehazing Network: Asymmetric Unet Based on Physical Model. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1-12.	6.3	0
424	"Seeing―Beneath the Clouds—Machine‣earningâ€Based Reconstruction of North African Dust Plumes. AGU Advances, 2024, 5, .	5.4	0
425	Accounting for 3D radiative effects in MODIS aerosol retrievals near clouds using CALIPSO observations. Frontiers in Remote Sensing, 0, 4, .	3.5	0
426	The utility of simulated ocean chlorophyll observations: a case study with the Chlorophyll Observation Simulator Package (version 1) in CESMv2.2. Geoscientific Model Development, 2024, 17, 975-995.	3.6	0

#	Article	IF	CITATIONS
427	DiffCR: A Fast Conditional Diffusion Framework for Cloud Removal From Optical Satellite Images. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1-14.	6.3	0
428	How well do Earth system models reproduce the observed aerosol response to rapid emission reductions? A COVID-19 case study. Atmospheric Chemistry and Physics, 2024, 24, 2077-2097.	4.9	0
429	Modeling study of the effects of entrainment-mixing on fog simulation in the chemistry–weather coupling model GRAPES_Meso5.1/CUACE CW. Environmental Science Atmospheres, 2024, 4, 387-407.	2.4	0
430	Detectability of Surface Biosignatures for Directly Imaged Rocky Exoplanets. Astrobiology, 2024, 24, 283-299.	3.0	0
431	Earth as an Exoplanet. III. Using Empirical Thermal Emission Spectra as an Input for Atmospheric Retrieval of an Earth-twin Exoplanet. Astrophysical Journal, 2024, 963, 24.	4.5	0
432	A comprehensive semigray climate model. Planetary and Space Science, 2024, 243, 105866.	1.7	0
433	Global characteristics of cloud macro-physical properties from active satellite remote sensing. Atmospheric Research, 2024, 302, 107316.	4.1	0
434	ANALYSIS OF APPROACHES TO CLOUD REMOVAL ON REMOTE SENSING IMAGES. Problemi Stvorennâ, Viprobuvannâ, Zastosuvannâ Ta EkspluatacìÃ⁻ Skladnih ìnformacìjnih Sistem, 2023, , 90-103.	0.2	0
435	Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic. Atmospheric Chemistry and Physics, 2024, 24, 2913-2935.	4.9	0
436	Spatial comparison of inland water observations from CYGNSS, MODIS, Landsat, and commercial satellite imagery. Geoscience Letters, 2024, 11, .	3.3	0
437	A flexible multi-temporal orthoimage mosaicking method based on dynamic variable patches. Information Fusion, 2024, 108, 102350.	19.1	0
439	Model-based evaluation of cloud geometry and droplet size retrievals from two-dimensional polarized measurements of specMACS. Atmospheric Measurement Techniques, 2024, 17, 1703-1719.	3.1	0
440	Unsupervised remote sensing image thin cloud removal method based on contrastive learning. IET Image Processing, 0, , .	2.5	0
441	Bridging the divide between inland water quantity and quality with satellite remote sensing: An interdisciplinary review. Wiley Interdisciplinary Reviews: Water, 0, , .	6.5	Ο