Hierarchically Structured Ni₃S<sub>2</sub High Performance Cathode Materials for Asymmetric S

ACS Applied Materials & Distribution (1997) Interfaces 5, 12168-12174

DOI: 10.1021/am404196s

Citation Report

#	Article	IF	CITATIONS
3	Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy, 2014, 7, 151-160.	8.2	245
4	Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16190-16198.	5.2	191
5	Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chemistry of Materials, 2014, 26, 3418-3426.	3.2	311
6	Facile synthesis of a reduced graphene oxide/cobalt sulfide hybrid and its electrochemical capacitance performance. RSC Advances, 2014, 4, 29216-29222.	1.7	37
7	High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. Journal of Power Sources, 2014, 272, 137-143.	4.0	142
8	Flexible Cellulose Paperâ€based Asymmetrical Thin Film Supercapacitors with Highâ€Performance for Electrochemical Energy Storage. Advanced Functional Materials, 2014, 24, 7093-7101.	7.8	38
9	Carbon coated nickel sulfide/reduced graphene oxide nanocomposites: facile synthesis and excellent supercapacitor performance. Electrochimica Acta, 2014, 146, 525-532.	2.6	50
10	A facile one-step route to RGO/Ni3S2 for high-performance supercapacitors. Electrochimica Acta, 2014, 144, 100-110.	2.6	76
11	High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. Journal of Power Sources, 2014, 270, 526-535.	4.0	113
12	Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells. Journal of Power Sources, 2014, 270, 499-505.	4.0	36
13	High electrochemical performance in asymmetric supercapacitors using MWCNT/nickel sulfide composite and graphene nanoplatelets as electrodes. Journal of Materials Chemistry A, 2014, 2, 16723-16730.	5.2	64
14	One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. ACS Nano, 2014, 8, 9531-9541.	7.3	687
15	Facile synthesis of Co ₃ O ₄ porous nanosheets/reduced graphene oxide composites and their excellent supercapacitor performance. RSC Advances, 2014, 4, 53180-53187.	1.7	68
16	3D Ni ₃ S ₂ nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. Journal of Materials Chemistry A, 2014, 2, 15111.	5.2	329
17	High-performance NiCo ₂ O ₄ @Ni ₃ S ₂ core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 17595-17601.	5.2	120
18	Graphene-templated growth of hollow Ni ₃ S ₂ nanoparticles with enhanced pseudocapacitive performance. Journal of Materials Chemistry A, 2014, 2, 19214-19220.	5 . 2	56
19	Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6, 9889-9924.	2.8	888
20	One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chemical Engineering Journal, 2014, 251, 116-122.	6.6	287

#	ARTICLE	IF	Citations
21	Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 137, 721-727.	2.6	20
22	Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta, 2014, 137, 26-33.	2.6	193
23	A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015, 44, 7484-7539.	18.7	2,723
24	Improved supercapacitive charge storage in electrospun niobium doped titania nanowires. RSC Advances, 2015, 5, 50087-50097.	1.7	18
25	Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. Journal of Materials Chemistry A, 2015, 3, 13874-13883.	5.2	436
26	Poly(3,4-ethylenedioxythiophene)/nickel disulfide microspheres hybrid in energy storage and conversion cells. RSC Advances, 2015, 5, 99164-99178.	1.7	10
27	Interconnected NiS nanosheets supported by nickel foam: Soaking fabrication and supercapacitors application. Journal of Electroanalytical Chemistry, 2015, 739, 156-163.	1.9	141
28	High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes. Scientific Reports, 2014, 4, 7274.	1.6	174
29	High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. Journal of Alloys and Compounds, 2015, 633, 22-30.	2.8	83
30	One-step synthesis of three-dimensional porous ionic liquid–carbon nanotube–graphene gel and MnO ₂ –graphene gel as freestanding electrodes for asymmetric supercapacitors. RSC Advances, 2015, 5, 10178-10186.	1.7	68
31	Facile synthesis of nickel–cobalt sulfide/reduced graphene oxide hybrid with enhanced capacitive performance. RSC Advances, 2015, 5, 58777-58783.	1.7	75
32	Faradic redox active material of $Cu < sub > 7 < / sub > S < sub > 4 < / sub > nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale, 2015, 7, 13610-13618.$	2.8	134
33	In suit growth of ultradispersed NiCo2S4 nanoparticles on graphene for asymmetric supercapacitors. Electrochimica Acta, 2015, 176, 44-50.	2.6	103
34	An assembled-nanosheets discus-like Ni(OH)2 hierarchical structure as a high performance electrode material for supercapacitors. RSC Advances, 2015, 5, 59659-59664.	1.7	6
35	The growth and assembly of the multidimensional hierarchical Ni ₃ S ₂ for aqueous asymmetric supercapacitors. CrystEngComm, 2015, 17, 4495-4501.	1.3	44
36	High-performance asymmetric full-cell supercapacitors based on CoNi2S4 nanoparticles and activated carbon. Journal of Solid State Electrochemistry, 2015, 19, 2177-2188.	1.2	25
37	\hat{l}_{\pm} -NiS grown on reduced graphene oxide and single-wall carbon nanotubes as electrode materials for high-power supercapacitors. RSC Advances, 2015, 5, 27940-27945.	1.7	24
38	Glucose-Assisted Synthesis of Nickel-Cobalt Sulfide/Carbon Nanotube Composites as Efficient Cathode Materials for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A1493-A1499.	1.3	42

3

#	Article	IF	Citations
39	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	5.8	1,101
40	High-performance asymmetric supercapacitor based on Co 9 S 8 /3D graphene composite and graphene hydrogel. Chemical Engineering Journal, 2015, 279, 241-249.	6.6	75
41	MnO ₂ Nanosheets Grown on Nitrogenâ€Doped Hollow Carbon Shells as a Highâ€Performance Electrode for Asymmetric Supercapacitors. Chemistry - A European Journal, 2015, 21, 7119-7126.	1.7	56
42	A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. Journal of Materials Chemistry A, 2015, 3, 13244-13253.	5.2	166
43	Facile synthesis of Ni _{0.85} Se on Ni foam for high-performance asymmetric capacitors. RSC Advances, 2015, 5, 81474-81481.	1.7	41
44	Electro-deposition of CoNi ₂ S ₄ flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. Journal of Materials Chemistry A, 2015, 3, 23035-23041.	5.2	93
45	Construction of hierarchical CoS nanowire@NiCo ₂ S ₄ nanosheet arrays via one-step ion exchange for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24033-24040.	5.2	119
46	One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	21
47	A nest-like Ni@Ni _{1.4} Co _{1.6} S ₂ electrode for flexible high-performance rolling supercapacitor device design. Journal of Materials Chemistry A, 2015, 3, 20973-20982.	5. 2	105
48	Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni ₃ S ₂ Nanosheets. ACS Applied Materials & Mat	4.0	173
49	Pulse-Reversal Deposition of Nickel Sulfide Thin Film as an Efficient Cathode Material for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A2762-A2769.	1.3	22
50	Hydrothermal Growth of Hierarchical Ni ₃ S ₂ and Co ₃ S ₄ on a Reduced Graphene Oxide Hydrogel@Ni Foam: A High-Energy-Density Aqueous Asymmetric Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1122-1131.	4.0	214
51	Electrochemical reduction approach-based 3D graphene/Ni(OH) 2 electrode for high-performance supercapacitors. Electrochimica Acta, 2015, 154, 9-16.	2.6	46
52	Porous NiCo2O4 nanosheets/reduced graphene oxide composite: Facile synthesis and excellent capacitive performance for supercapacitors. Journal of Colloid and Interface Science, 2015, 440, 211-218.	5.0	68
53	High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chemical Engineering Journal, 2015, 262, 980-988.	6.6	143
54	A Mini Review Over the Applications of Nano-Carbons and Their Composites in Supercapacitors. Recent Innovations in Chemical Engineering, 2016, 9, 4-19.	0.2	1
55	Direct Growth of 3 D Hierarchical Porous Ni ₃ S ₂ Nanostructures on Nickel Foam for Highâ€Performance Supercapacitors. ChemNanoMat, 2016, 2, 719-725.	1.5	20
56	Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1501333.	10.2	663

#	ARTICLE	IF	CITATIONS
57	High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries. Electrochimica Acta, 2016, 211, 761-767.	2.6	28
58	Synthesis of Capsule-like Porous Hollow Nanonickel Cobalt Sulfides via Cation Exchange Based on the Kirkendall Effect for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9721-9732.	4.0	134
59	Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni 3 S 2 nanorod array and pen ink electrodes. Journal of Power Sources, 2016, 324, 325-333.	4.0	148
60	Mesoporous Ni@C hybrids for a high energy aqueous asymmetric supercapacitor device. Journal of Materials Chemistry A, 2016, 4, 9670-9676.	5.2	29
61	Single-crystal \hat{l}^2 -NiS nanorod arrays with a hollow-structured Ni ₃ S ₂ framework for supercapacitor applications. Journal of Materials Chemistry A, 2016, 4, 7700-7709.	5.2	168
62	Hierarchical mesoporous carbon sphere@nickel cobalt sulfide core–shell structures and their electrochemical performance. Journal of Electroanalytical Chemistry, 2016, 771, 106-113.	1.9	40
63	An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid. Journal of Power Sources, 2016, 320, 28-36.	4.0	131
64	Solution Blown Silicon Carbide Porous Nanofiber Membrane as Electrode Materials for Supercapacitors. Electrochimica Acta, 2016, 207, 257-265.	2.6	39
65	One-pot synthesis of $\hat{l}\pm$ -MnS/nitrogen-doped reduced graphene oxide hybrid for high-performance asymmetric supercapacitors. Electrochimica Acta, 2016, 210, 557-566.	2.6	114
66	Excellent Electrochemical Performance Hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for Asymmetric Supercapacitors. Electrochimica Acta, 2016, 207, 87-96.	2.6	85
67	Template-Assisted Synthesis of Nickel Sulfide Nanowires: Tuning the Compositions for Supercapacitors with Improved Electrochemical Stability. ACS Applied Materials & Electrochemical Stability. ACS Applied Mater	4.0	78
68	A flexible and high-performance all-solid-state supercapacitor device based on Ni3S2 nanosheets coated ITO nanowire arrays on carbon fabrics. RSC Advances, 2016, 6, 75186-75193.	1.7	29
69	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5
70	Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Advances, 2016, 6, 76298-76306.	1.7	167
71	Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 14509-14538.	5.2	95
72	The synthesis and electrochemical performance of core-shell structured Ni-Al layered double hydroxide/carbon nanotubes composites. Electrochimica Acta, 2016, 222, 185-193.	2.6	45
73	Superior Cycle Stability Performance of Quasi-Cuboidal CoV ₂ O ₆ Microstructures as Electrode Material for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27291-27297.	4.0	79
74	Hierarchical polypyrrole/Ni ₃ S ₂ @MoS ₂ core–shell nanostructures on a nickel foam for high-performance supercapacitors. RSC Advances, 2016, 6, 68460-68467.	1.7	32

#	ARTICLE	IF	CITATIONS
7 5	Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Research, 2016, 9, 2747-2759.	5.8	77
76	A Ni _{1â^'x} Zn _x S/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2016, 4, 12929-12939.	5 . 2	52
77	Three-dimensional hierarchical NiCo hydroxide@Ni3S2 nanorod hybrid structure as high performance positive material for asymmetric supercapacitor. Electrochimica Acta, 2016, 222, 965-975.	2.6	32
78	Hierarchical ternary Ni–Co–Se nanowires for high-performance supercapacitor device design. Dalton Transactions, 2016, 45, 19458-19465.	1.6	112
79	3D reticulate Co _x Ni _{3â^'x} S ₂ nanostructure on nickel foam as a new type of electroactive material for high-performance supercapacitors. RSC Advances, 2016, 6, 106465-106472.	1.7	9
80	MOF-derived self-sacrificing route to hollow NiS ₂ /ZnS nanospheres for high performance supercapacitors. RSC Advances, 2016, 6, 103517-103522.	1.7	136
81	Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance. Scientific Reports, 2016, 6, 22699.	1.6	178
82	Novel Dual-lon Hybrid Supercapacitor Based on a NiCo ₂ O ₄ Nanowire Cathode and MoO ₂ –C Nanofilm Anode. ACS Applied Materials & Diterfaces, 2016, 8, 30232-30238.	4.0	90
83	Self-sacrifice Template Formation of Hollow Hetero-Ni7S6/Co3S4 Nanoboxes with Intriguing Pseudo-capacitance for High-performance Electrochemical Capacitors. Scientific Reports, 2016, 6, 20973.	1.6	89
84	Graphene-Coupled Flower-Like Ni3S2 for a Free-Standing 3D Aerogel with an Ultra-High Electrochemical Capacity. Electrochimica Acta, 2016, 191, 705-715.	2.6	80
85	Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochimica Acta, 2016, 190, 118-125.	2.6	133
86	Enhancement of photocatalytic hydrogen formation under visible illumination by integrating plasmonic Au nanoparticles with a strongly catalytic Ni ₃ S ₂ /carbon nanotube composite. Catalysis Science and Technology, 2016, 6, 4020-4026.	2.1	11
87	High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chemistry Frontiers, 2016, 3, 175-202.	3.0	283
88	A facile one-step route to synthesize the three-layer nanostructure of CuS/RGO/Ni ₃ 5 ₂ and its high electrochemical performance. RSC Advances, 2016, 6, 16963-16971.	1.7	20
89	Enhanced rate capability of nanostructured three-dimensional graphene/Ni 3 S 2 composite for supercapacitor electrode. Ceramics International, 2016, 42, 9858-9865.	2.3	40
90	In situ growth of NiCo ₂ S ₄ @Ni ₃ V ₂ O ₈ on Ni foam as a binder-free electrode for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5669-5677.	5.2	167
91	<i>In situ</i> synthesis of 3D CoS nanoflake/Ni(OH) ₂ nanosheet nanocomposite structure as a candidate supercapacitor electrode. Nanotechnology, 2016, 27, 145401.	1.3	36
92	A facile hydrothermal synthesis of a reduced graphene oxide modified cobalt disulfide composite electrode for high-performance supercapacitors. RSC Advances, 2016, 6, 7129-7138.	1.7	41

#	Article	IF	Citations
93	Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochimica Acta, 2016, 190, 566-573.	2.6	103
94	Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. Journal of Power Sources, 2016, 306, 526-534.	4.0	257
95	Mechanical alloying synthesis of Ni 3 S 2 nanoparticles as electrode material for pseudocapacitor with excellent performances. Journal of Alloys and Compounds, 2016, 656, 138-145.	2.8	56
96	One-step synthesis of Ni3S2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 7136-7142.	3.8	61
97	Hydrothermal assisted <i>in situ</i> growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Advances, 2017, 7, 5853-5862.	1.7	111
98	All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Advances, 2017, 7, 6648-6659.	1.7	184
99	Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. Journal of Materials Chemistry A, 2017, 5, 4543-4549.	5.2	105
100	MnS nanocomposites based on doped graphene: simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors. RSC Advances, 2017, 7, 2249-2257.	1.7	68
101	Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. Journal of Power Sources, 2017, 343, 373-382.	4.0	162
102	High performance asymmetric supercapacitors with ultrahigh energy density based on hierarchical carbon nanotubes@NiO core–shell nanosheets and defect-introduced graphene sheets with hole structure. RSC Advances, 2017, 7, 7843-7856.	1.7	68
103	Batteryâ€Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science, 2017, 4, 1600539.	5.6	1,223
104	Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes. Journal of Alloys and Compounds, 2017, 706, 41-47.	2.8	91
105	3D yolk–shell NiGa ₂ S ₄ microspheres confined with nanosheets for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 6292-6298.	5.2	52
106	Construction of high electrical conductive nickel phosphide alloys with controllable crystalline phase for advanced energy storage. Electrochimica Acta, 2017, 232, 387-395.	2.6	43
107	Prickly Ni3S2 nanowires modified CdS nanoparticles for highly enhanced visible-light photocatalytic H2 production. International Journal of Hydrogen Energy, 2017, 42, 6618-6626.	3.8	35
108	High energy density asymmetric supercapacitors based on MOF-derived nanoporous carbon/manganese dioxide hybrids. Chemical Engineering Journal, 2017, 322, 582-589.	6.6	80
109	Synthesis of CoS@rGO composites with excellent electrochemical performance for supercapacitors. Journal of Electroanalytical Chemistry, 2017, 794, 132-138.	1.9	40
110	Liquid phase synthesis of dendritic nickel carbide alloy with high conductivity for advanced energy storage. Journal of Energy Chemistry, 2017, 26, 750-756.	7.1	12

#	Article	IF	CITATIONS
111	Heteroelement Y-doped \hat{l}_{\pm} -Ni(OH) ₂ nanosheets with excellent pseudocapacitive performance. Journal of Materials Chemistry A, 2017, 5, 10039-10047.	5.2	80
112	Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chemical Engineering Journal, 2017, 323, 415-424.	6.6	72
113	Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22652-22664.	4.0	69
114	Nanostructured 3D zinc cobaltite/nitrogen-doped reduced graphene oxide composite electrode for supercapacitor applications. Journal of Industrial and Engineering Chemistry, 2017, 54, 205-217.	2.9	58
115	Oneâ€Step Solvothermal Synthesis of 3D Hierarchical Ni _{<i>x</i>} Co _{9â€<i>x</i>} S ₈ Structures for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 2250-2259.	1.7	4
116	Coreâ€shell NiCo ₂ S ₄ @MnMoO ₄ as an Advanced Electrode Material for Highâ€performance Electrochemical Energy Storage. ChemElectroChem, 2017, 4, 2634-2642.	1.7	15
117	Growth of highly mesoporous CuCo2O4 nanoflakes@Ni(OH)2 nanosheets as advanced electrodes for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2017, 722, 928-937.	2.8	27
118	Facile Synthesis of Holothurianâ€Like γâ€MnS/Carbon Nanotube Nanocomposites for Flexible Allâ€Solidâ€State Supercapacitors. ChemNanoMat, 2017, 3, 551-559.	1.5	17
119	Hierarchical Nickel Sulfide Coated Halloysite Nanotubes For Efficient Energy Storage. Electrochimica Acta, 2017, 245, 51-58.	2.6	16
120	Hydrothermal synthesis of the clustered network-like Ni 3 S 2 -Co 9 S 8 with enhanced electrochemical behavior for supercapacitor electrode. Journal of Physics and Chemistry of Solids, 2017, 110, 1-8.	1.9	23
121	Construct hierarchical electrode with Ni x Co 3-x S 4 nanosheet coated on NiCo 2 O 4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. Journal of Power Sources, 2017, 359, 262-269.	4.0	117
122	High-Performance Asymmetric Supercapacitor Designed with a Novel NiSe@MoSe ₂ Nanosheet Array and Nitrogen-Doped Carbon Nanosheet. ACS Sustainable Chemistry and Engineering, 2017, 5, 5951-5963.	3.2	197
123	Honeycomb-Like Interconnected Network of Nickel Phosphide Heteronanoparticles with Superior Electrochemical Performance for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21829-21838.	4.0	123
124	Acetate anion-intercalated nickel-cobalt layered double hydroxide nanosheets supported on Ni foam for high-performance supercapacitors with excellent long-term cycling stability. Electrochimica Acta, 2017, 236, 18-27.	2.6	132
125	Hybrid carbon dot/Ni 3 S 2 architecture supported on nickel foam for effective light collection and conversion. Chemical Engineering Journal, 2017, 321, 608-613.	6.6	20
126	Designed construction of hierarchical NiCo ₂ S ₄ @polypyrrole core–shell nanosheet arrays as electrode materials for high-performance hybrid supercapacitors. RSC Advances, 2017, 7, 18447-18455.	1.7	36
127	Enhanced Structural Stability of Nickel–Cobalt Hydroxide via Intrinsic Pillar Effect of Metaborate for High-Power and Long-Life Supercapacitor Electrodes. Nano Letters, 2017, 17, 429-436.	4.5	241
128	Hollow Hierarchical Carbon Spheres Decorated with Ultrathin Molybdenum Disulfide Nanosheets as Highâ€Capacity Electrode Materials for Asymmetric Supercapacitors. ChemElectroChem, 2017, 4, 620-627.	1.7	52

#	ARTICLE	IF	CITATIONS
129	Rational Design of Self-Supported Ni ₃ S ₂ Nanosheets Array for Advanced Asymmetric Supercapacitor with a Superior Energy Density. ACS Applied Materials & Density. ACS Applied Materials & Density. ACS Applied Materials & Density. Proceedings of the Communication	4.0	216
130	In situ synthesis of CoSx@carbon core-shell nanospheres decorated in carbon nanofibers for capacitor electrodes with superior rate and cycling performances. Carbon, 2017, 114, 187-197.	5 . 4	120
131	Porous nanosheet network architecture of CoP@Ni(OH)2 composites for high performance supercapacitors. Electrochimica Acta, 2017, 258, 266-273.	2.6	37
132	Membrane-assisted assembly strategy of flexible electrodes for multifunctional supercapacitors. Carbon, 2017, 125, 419-428.	5.4	15
133	V ₂ O ₅ embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23727-23736.	5.2	73
134	A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23349-23360.	5.2	41
135	Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. Journal of Materials Chemistry A, 2017, 5, 21049-21076.	5.2	58
136	Ultrahigh energy density and stable supercapacitor with 2D NiCoAl Layered double hydroxide. Electrochimica Acta, 2017, 253, 324-332.	2.6	51
137	Hollow cubic double layer structured Cu $<$ sub $>$ 7 $<$ /sub $>$ 8 $<$ sub $>$ 4 $<$ /sub $>$ /NiS nanocomposites for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 20729-20736.	5.2	37
138	High-performance asymmetric supercapacitor with ultrahigh energy density based on hierarchical graphene sheets@NiO core-shell nanosheets and 3D drilled graphene sheets hydrogel. Journal of Alloys and Compounds, 2017, 727, 1189-1202.	2.8	16
139	Facile synthesis of CoNi 2 S 4 /Co 9 S 8 composites as advanced electrode materials for supercapacitors. Applied Surface Science, 2017, 426, 1206-1212.	3.1	35
140	Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Applied Surface Science, 2017, 426, 148-159.	3.1	72
141	Hierarchical porous NiCo2S4-rGO composites for high-performance supercapacitors. Electrochimica Acta, 2017, 249, 1-8.	2.6	106
142	Efficient coupling of a hierarchical V ₂ hybrid nanoarray for pseudocapacitors and hydrogen production. Journal of Materials Chemistry A, 2017, 5, 17954-17962.	5.2	88
143	Carbon-incorporated Janus-type Ni ₂ P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19054-19061.	5.2	183
144	One-step synthesis of copper-cobalt carbonate hydroxide microsphere for electrochemical capacitors with superior stability. Journal of Electroanalytical Chemistry, 2017, 807, 10-18.	1.9	16
145	Facile Construction of 3D Reduced Graphene Oxide Wrapped Ni ₃ S ₂ Nanoparticles on Ni Foam for Highâ€Performance Asymmetric Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2017, 34, 1700196.	1.2	30
146	Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS2 nanosheets decorated Ni3S2 hybrid structure through annealing treatment. Applied Surface Science, 2017, 425, 879-888.	3.1	41

#	Article	IF	CITATIONS
147	ZIF-67 derived amorphous CoNi 2 S 4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2017, 327, 387-396.	6.6	196
148	The influence of acid etching on the electrochemical supercapacitive properties of Ni P coatings. Surface and Coatings Technology, 2017, 325, 360-369.	2.2	19
149	Rational Design of Threeâ€Dimensional Hierarchical Nanomaterials for Asymmetric Supercapacitors. ChemElectroChem, 2017, 4, 2428-2441.	1.7	31
150	Formation of Onion‣ike NiCo ₂ S ₄ Particles via Sequential lonâ€Exchange for Hybrid Supercapacitors. Advanced Materials, 2017, 29, 1605051.	11.1	539
151	A robust hierarchical microcapsule for efficient supercapacitors exhibiting an ultrahigh current density of 300 A g ^{â°'1} . Journal of Materials Chemistry A, 2018, 6, 5724-5732.	5.2	15
152	Facile Synthesis of A 3D Flowerâ€Like Mesoporous Ni@C Composite Material for Highâ€Energy Aqueous Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2018, 13, 1005-1011.	1.7	4
153	High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. Journal of Materials Research, 2018, 33, 1199-1210.	1.2	18
154	Temperature dependent substrate-free facile synthesis for hierarchical sunflower-like nickel–copper carbonate hydroxide with superior electrochemical performance for solid state asymmetric supercapacitor. Chemical Engineering Journal, 2018, 343, 44-53.	6.6	38
155	Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochimica Acta, 2018, 273, 216-228.	2.6	121
156	Morphology-controlled synthesis of nanosphere-like NiCo2S4 as cathode materials for high-rate asymmetric supercapacitors. Electrochimica Acta, 2018, 274, 208-216.	2.6	44
157	High-performance free-standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide. Journal of Power Sources, 2018, 379, 167-173.	4.0	59
158	A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Transactions, 2018, 47, 3496-3502.	1.6	188
159	Synergistically Active NiCo ₂ S ₄ Nanoparticles Coupled with Holey Defect Graphene Hydrogel for Highâ€Performance Solidâ€State Supercapacitors. Chemistry - A European Journal, 2018, 24, 3263-3270.	1.7	66
160	Hierarchically assembled 3D nanoflowers and 0D nanoparticles of nickel sulfides on reduced graphene oxide with excellent lithium storage performances. Applied Surface Science, 2018, 439, 386-393.	3.1	23
161	Flower-like Cu ₂ NiSnS ₄ microspheres for application as electrodes of asymmetric supercapacitors endowed with high energy density. CrystEngComm, 2018, 20, 1443-1454.	1.3	20
162	Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. Journal of Colloid and Interface Science, 2018, 518, 57-68.	5.0	284
163	Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arraysâ€'nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors. Journal of Electroanalytical Chemistry, 2018, 810, 78-85.	1.9	81
164	3D meso/macroporous Ni3S2@Ni composite electrode for high-performance supercapacitor. Electrochimica Acta, 2018, 275, 40-49.	2.6	57

#	Article	IF	CITATIONS
165	Chemical bath deposition synthesis of nickel cobalt oxides/sulï¬des for high-performance supercapacitors electrode materials. Journal of Alloys and Compounds, 2018, 755, 15-23.	2.8	26
166	Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochimica Acta, 2018, 271, 507-518.	2.6	42
167	Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors. Electrochimica Acta, 2018, 271, 498-506.	2.6	55
168	Carbon-based core–shell nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2018, 6, 7310-7337.	5.2	102
169	Hydrothermal Synthesis and Electrochemical Properties of CoS ₂ â€"Reduced Graphene Oxide Nanocomposite for Supercapacitor Application. International Journal of Nanoscience, 2018, 17, 1760020.	0.4	18
170	Novel 3D porous graphene/Ni3S2 nanostructures for high-performance supercapacitor electrodes. Journal of Alloys and Compounds, 2018, 731, 1063-1068.	2.8	37
171	Belt-like nickel hydroxide carbonate/reduced graphene oxide hybrids: Synthesis and performance as supercapacitor electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 748-756.	2.3	27
172	One-step facile synthesis of Ni ₂ P/C as cathode material for Ni/Zn aqueous secondary battery. Materials Research Express, 2018, 5, 015502.	0.8	16
173	Facile Synthesis of Agâ€Decorated Ni ₃ S ₂ Nanosheets with 3D Bush Structure Grown on rGO and Its Application as Positive Electrode Material in Asymmetric Supercapacitor. Advanced Materials Interfaces, 2018, 5, 1700985.	1.9	96
174	<i>In situ</i> grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale, 2018, 10, 20414-20425.	2.8	332
175	Mesoporous Nickel-Based Zeolite Capsule Complex with Fe ₃ O ₄ as Electrode for Advanced Supercapacitor. Journal of Nanomaterials, 2018, 2018, 1-13.	1.5	8
176	Self-Supported Ni0.85Se Nanosheets Array on Carbon Fiber Cloth for a High-Performance Asymmetric Supercapacitor. Journal of Electronic Materials, 2018, 47, 7002-7010.	1.0	21
177	Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. Journal of Power Sources, 2018, 402, 281-295.	4.0	160
178	Enzyme-catalysed room temperature and atmospheric pressure synthesis of metal carbonate hydroxides for energy storage. Nano Energy, 2018, 54, 200-208.	8.2	24
179	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
180	Millerite Core–Nitrogenâ€Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage. Small, 2018, 14, e1802933.	5.2	23
181	CoNi ₂ S ₄ Nanoparticle/Carbon Nanotube Sponge Cathode with Ultrahigh Capacitance for Highly Compressible Asymmetric Supercapacitor. Small, 2018, 14, e1800998.	5.2	87
182	Enhanced performance on capacity retention of hierarchical NiS hexagonal nanoplate for highly stable asymmetric supercapacitor. Electrochimica Acta, 2018, 283, 1053-1062.	2.6	42

#	Article	IF	CITATIONS
183	One-step mild synthesis of Mn-based spinel MnIICrIII2O4/MnIIMnIII2O4/C and Co-based spinel CoCr2O4/C nanoparticles as battery-type electrodes for high-performance supercapacitor application. Electrochimica Acta, 2018, 283, 197-211.	2.6	29
184	Solid-phase diffusion controlled growth of nickel silicide nanowires for supercapacitor electrode. Applied Surface Science, 2018, 456, 515-525.	3.1	16
185	Highly catalytic and reflective dual-phase nickel sulfide electrodes for solar energy conversion. Applied Surface Science, 2018, 457, 1151-1157.	3.1	21
186	CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications. Journal of Materials Science and Technology, 2018, 34, 2342-2349.	5.6	72
187	Determination of Neurotransmitter in Biological and Drug Samples Using Gold Nanorods Decorated <i>f-</i> MWCNTs Modified Electrode. Journal of the Electrochemical Society, 2018, 165, 8370-B377.	1.3	56
188	Nitrogenâ€Doped Porous Carbon Derived from Carbazoleâ€Substituted Tetraphenylethyleneâ€Based Hypercrosslinked Polymer for Highâ€Performance Supercapacitor. ChemistrySelect, 2018, 3, 8483-8490.	0.7	18
189	Honeycomb-like Ni3S2 nanosheet arrays for high-performance hybrid supercapacitors. Electrochimica Acta, 2018, 283, 737-743.	2.6	47
190	A self-healable asymmetric fibered-supercapacitor integrated in self-supported inorganic nanosheets array and conducting polymer electrodes. Chemical Engineering Journal, 2018, 352, 423-430.	6.6	23
191	Facile solvothermal designing of graphene/Ni3V2O8 nanocomposite as electrode for high performance symmetric supercapacitor. Journal of Alloys and Compounds, 2018, 768, 995-1005.	2.8	35
192	Synthesis and Electrochemical Performance of Molybdenum Disulfide-Reduced Graphene Oxide-Polyaniline Ternary Composites for Supercapacitors. Frontiers in Chemistry, 2018, 6, 218.	1.8	28
193	Fabrication of a 3D Hierarchical Sandwich Co ₉ S ₈ ∫ı±â€MnS@N–C@MoS ₂ Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors. Small, 2018, 14, e1800291.	5.2	154
194	One step synthesis of rGO-Ni3S2 nano-cubes composite for high-performance supercapacitor electrodes. International Journal of Hydrogen Energy, 2018, 43, 17780-17787.	3.8	51
195	Formation of honeycomb-like Mn-doping nickel hydroxide/Ni3S2 nanohybrid for efficient supercapacitive storage. Journal of Solid State Chemistry, 2018, 267, 53-62.	1.4	15
196	A simple, scalable approach for combining carbon dots with hexagonal nanoplates of nickel-based compounds for efficient photocatalytic reduction. Dalton Transactions, 2018, 47, 12694-12701.	1.6	3
197	Low temperature synthesis of sponge-like NiV2O6/C composite by calcining Ni-V-based coordination polymer for supercapacitor application. Journal of Electroanalytical Chemistry, 2018, 823, 80-91.	1.9	35
198	Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23063-23073.	4.0	199
199	Rational design of forest-like nickel sulfide hierarchical architectures with ultrahigh areal capacity as a binder-free cathode material for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 13178-13190.	5.2	82
200	Smart in situ construction of NiS/MoS2 composite nanosheets with ultrahigh specific capacity for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 811, 151915.	2.8	39

#	Article	IF	CITATIONS
201	Functional molecules regulated and intercalated nickel-cobalt LDH nano-sheets on carbon fiber cloths as an advanced free-standing electrode for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 321, 134708.	2.6	51
202	Facile Synthesis of Mn3O4-rGO Nanocomposite As an Efficient Electrode Material for Application in Supercapacitors. Journal of Electronic Materials, 2019, 48, 4977-4986.	1.0	27
203	Interfacial Engineering of Nickel Boride/Metaborate and Its Effect on High Energy Density Asymmetric Supercapacitors. ACS Nano, 2019, 13, 9376-9385.	7.3	129
204	Metalâ€Organic Frameworksâ€Derived NiS ₂ /CoS ₂ /Nâ€Doped Carbon Composites as Electrode Materials for Asymmetric Supercapacitor. ChemElectroChem, 2019, 6, 3764-3773.	1.7	35
205	Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy and Environmental Science, 2019, 12, 2924-2956.	15.6	176
206	Self-template synthesis of ZnS/Ni3S2 as advanced electrode material for hybrid supercapacitors. Electrochimica Acta, 2019, 328, 135065.	2.6	32
207	Self-coupled nickel sulfide @ nickel vanadium sulfide nanostructure as a novel high capacity electrode material for supercapattery. Applied Surface Science, 2019, 497, 143778.	3.1	59
208	An experimental and computational study of enhanced charge storage capacity of chemical vapor deposited Ni3S2-reduced graphene oxide hybrids. Applied Surface Science, 2019, 497, 143789.	3.1	10
209	Hierarchical NiCoO2@Ni3S2 core/shell nanoflakes arrays with superior capacitive performances for energy storage. Applied Surface Science, 2019, 495, 143557.	3.1	23
210	Gasified rice husk based RHAC/NiCo2S4 composite for high performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 811, 152073.	2.8	16
211	Polyethylene glycol-assisted growth of Ni3S4 closely packed nanosheets on Ni-foam for enhanced supercapacitor device. Journal of Solid State Electrochemistry, 2019, 23, 2937-2950.	1.2	9
212	Binary tungsten-molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor. Electrochimica Acta, 2019, 322, 134759.	2.6	27
213	Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 901-924.	5.2	178
214	Heterostructures of Ni–Co–Al layered double hydroxide assembled on V ₄ C ₃ MXene for high-energy hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 2291-2300.	5.2	154
215	Bioinspired pomegranate-like microflowers confining core-shell binary Ni _x S _y nanobeads for efficient supercapacitors exhibiting a durable lifespan exceeding 100 000 cycles. Journal of Materials Chemistry A, 2019, 7, 3432-3442.	5.2	19
216	Sonochemical synthesis of a 2D–2D MoSe ₂ /graphene nanohybrid electrode material for asymmetric supercapacitors. Sustainable Energy and Fuels, 2019, 3, 467-477.	2.5	110
217	NiS-MoS ₂ Hetero-nanosheet Arrays on Carbon Cloth for High-Performance Flexible Hybrid Energy Storage Devices. ACS Sustainable Chemistry and Engineering, 2019, 7, 11672-11681.	3.2	44
218	Metal–organic framework derived hierarchical Ni/Ni ₃ S ₂ decorated carbon nanofibers for high-performance supercapacitors. Materials Chemistry Frontiers, 2019, 3, 1653-1660.	3.2	39

#	ARTICLE	IF	CITATIONS
219	Preparing Ni3S2 composite with neural network-like structure for high-performance flexible asymmetric supercapacitors. Electrochimica Acta, 2019, 317, 322-332.	2.6	26
220	Three-Dimensional Co–S–P Nanoflowers as Highly Stable Electrode Materials for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11448-11454.	3.2	35
221	Functionalized Carbon Materials for Electronic Devices: A Review. Micromachines, 2019, 10, 234.	1.4	81
222	Rapid design of a core–shell-like metal hydroxide/oxide composite and activated carbon from biomass for high-performance supercapattery applications. Inorganic Chemistry Frontiers, 2019, 6, 1707-1720.	3.0	19
223	3D hybrids based on WS2/N, S co-doped reduced graphene oxide: Facile fabrication and superior performance in supercapacitors. Applied Surface Science, 2019, 480, 1126-1135.	3.1	39
224	Three-Dimensional Interconnected Binder-Free Mn–Ni–S Nanosheets for High Performance Asymmetric Supercapacitor Devices with Exceptional Cyclic Stability. ACS Applied Energy Materials, 2019, 2, 3717-3725.	2.5	88
225	MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chemical Engineering Journal, 2019, 371, 461-469.	6.6	239
226	Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019, 4, 840-858.	4.1	207
227	Triazine based polyimide framework derived N-doped porous carbons: a study of their capacitive behaviour in aqueous acidic electrolyte. Materials Chemistry Frontiers, 2019, 3, 680-689.	3.2	29
228	Nitrogen-doped graphene/multiphase nickel sulfides obtained by Ni-C3N3S3 (metallopolymer) assisted synthesis for high-performance hybrid supercapacitors. Electrochimica Acta, 2019, 301, 332-341.	2.6	22
229	Hierarchically Interconnected Ni ₃ S ₂ Nanofibers as Binder-Free Electrodes for High-Performance Sodium-Ion Energy-Storage Devices. ACS Applied Nano Materials, 2019, 2, 2634-2641.	2.4	39
230	High rate performance and stabilized cycle life of Co2+-doped nickel sulfide nanosheets synthesized by a scalable method of solid-state reaction. Chemical Engineering Journal, 2019, 366, 33-40.	6.6	19
231	Advanced aqueous energy storage devices based on flower-like nanosheets-assembled Ni0.85Se microspheres and porous Fe2O3 nanospheres. Electrochimica Acta, 2019, 302, 449-458.	2.6	16
232	Ag ₃ PO ₄ @Ni ₃ S ₂ core/shell nanorod arrays for visible light degradation of organic contaminants. Materials Research Express, 2019, 6, 065009.	0.8	1
233	Self-formed porous Ni(OH)2 on Ni3S2/Ni foam during electrochemical cycling for high performance supercapacitor with ultrahigh areal capacitance. Electrochimica Acta, 2019, 303, 148-156.	2.6	25
234	<i>In situ</i> self-assembly of Ni ₃ S ₂ /MnS/CuS/reduced graphene composite on nickel foam for high power supercapacitors. RSC Advances, 2019, 9, 31532-31542.	1.7	18
235	<i>In Situ</i> Growth of MOF-Derived NaCoPO ₄ @Carbon for Asymmetric Supercapacitive and Water Oxidation Electrocatalytic Performance. Nano, 2019, 14, 1950148.	0.5	7
236	Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Materials, 2019, 21, 22-40.	9.5	160

#	Article	IF	CITATIONS
237	A comparative study of one-dimensional and two-dimensional porous CoO nanomaterials for asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 781, 1006-1012.	2.8	28
238	One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Science China Materials, 2019, 62, 699-710.	3.5	60
239	One-step solvothermal synthesis and electrochemical properties of graphene-supported dendritic CoNi2S4 nanostructures. Journal of Materials Science: Materials in Electronics, 2019, 30, 108-119.	1.1	7
240	Design of the seamless integrated C@NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors. Chemical Engineering Journal, 2019, 362, 783-793.	6.6	52
241	Sulphur Source-Inspired Self-Grown 3D Ni _{<i>x</i>} S _{<i>y</i>} Nanostructures and Their Electrochemical Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4551-4559.	4.0	60
242	Enhancing the supercapacitive performance of Nickel based metal organic framework-carbon nanofibers composite by changing the ligands. Electrochimica Acta, 2019, 294, 345-356.	2.6	53
243	Investigation of electrochemical performances of ceramic oxide CaCu3Ti4O12 nanostructures. Journal of Solid State Chemistry, 2019, 269, 600-607.	1.4	21
244	A facile electrodeposition technique for synthesis of nickel sulfides/carbon nanotubes nanocomposites as high performance electrodes for supercapacitor. Materials Letters, 2019, 236, 468-471.	1.3	16
245	High flexibility and large energy density asymmetric fibered-supercapacitor based on unique NiCo2O4@MnO2 core-shell nanobrush arrays electrode. Electrochimica Acta, 2019, 295, 532-539.	2.6	20
246	Systematic design of hierarchical Ni3S2/MoO2 nanostructures grown on 3D conductive substrate for high-performance pseudocapacitors. Ceramics International, 2019, 45, 2670-2675.	2.3	11
247	One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Materials, 2020, 25, 636-643.	9.5	101
248	Graphene oxide-drove transformation of NiS/Ni3S4 microbars towards Ni3S4 polyhedrons for supercapacitor. Journal of Colloid and Interface Science, 2020, 559, 115-123.	5.0	67
249	Nanocrystalline Ni3S2 prepared by mechanochemistry and its behavior at high temperatures and high pressure. Journal of Magnetism and Magnetic Materials, 2020, 493, 165706.	1.0	5
250	Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chemical Engineering Journal, 2020, 379, 122305.	6.6	148
251	Fabrication of rod-like NiMoO4/CoMoO4 for application in asymmetric supercapacitors. Ionics, 2020, 26, 393-401.	1.2	16
252	Graphitic nanofibers decorated with Ni3S2 interlaced nanosheets as efficient binder-free cathodes for hybrid supercapacitors. Applied Surface Science, 2020, 505, 143828.	3.1	10
253	3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2020, 82, 309-316.	2.9	105
254	High-performance asymmetric supercapacitors using holey graphene electrodes and redox electrolytes. Carbon, 2020, 157, 298-307.	5.4	38

#	Article	IF	CITATIONS
255	NiS nanosheets with novel structure anchored on coal-based carbon fibers prepared by electrospinning for flexible supercapacitors. CrystEngComm, 2020, 22, 1625-1632.	1.3	33
256	Scalable syntheses of three-dimensional graphene nanoribbon aerogels from bacterial cellulose for supercapacitors. Nanotechnology, 2020, 31, 095403.	1.3	6
257	A Quasi-Solid-State Asymmetric Supercapacitor Device Based on Honeycomb-like Nickel–Copper–Carbonate–Hydroxide as a Positive and Iron Oxide as a Negative Electrode with Superior Electrochemical Performances. ACS Applied Electronic Materials, 2020, 2, 177-185.	2.0	34
258	3D nanoflower-like MoSe < sub > 2 < /sub > encapsulated with hierarchically anisotropic carbon architecture: a new and free-standing anode with ultra-high areal capacitance for asymmetric supercapacitors. Chemical Communications, 2020, 56, 340-343.	2.2	34
259	Conformal porous carbon coating on carbon fiber cloth/NiS ₂ composites by molecular layer deposition for durable supercapacitor electrodes. Journal of Materials Research, 2020, 35, 738-746.	1.2	9
260	Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Materials, 2020, 26, 1-22.	9.5	208
261	High-performance symmetric supercapacitor; nanoflower-like NiCo2O4//NiCo2O4 thin films synthesized by simple and highly stable chemical method. Journal of Molecular Liquids, 2020, 299, 112119.	2.3	43
262	OCoP-Doped nickel aluminum double hydroxide as superior electrode for boosting pseudocapacitive storage. Electrochimica Acta, 2020, 361, 137092.	2.6	2
263	Effect of different aqueous electrolytes on electrochemical performance of activated carbon anchored by multiwalled carbon nanotubes for supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.3	3
264	Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Physica B: Condensed Matter, 2020, 596, 412389.	1.3	47
265	<i>In situ</i> fabrication of a rose-shaped Co ₂ P ₂ O ₇ /C nanohybrid <i>via</i> a coordination polymer template for supercapacitor application. New Journal of Chemistry, 2020, 44, 12514-12521.	1.4	20
266	A Highâ€Performing Asymmetric Supercapacitor of Molybdenum Nitride and Vanadium Nitride Thin Films as Binderâ€Free Electrode Grown through Reactive Sputtering. Energy Technology, 2020, 8, 2000466.	1.8	33
267	Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors. Applied Surface Science, 2020, 533, 147521.	3.1	53
268	Self-assembled synthesis of waxberry-like open hollow NiCo2S4 with enhanced capacitance for high-performance hybrid asymmetric supercapacitors. Electrochimica Acta, 2020, 347, 136314.	2.6	38
269	Towards excellent electrical conductivity and high-rate capability: A degenerate superlattice Ni3(S)1.1(S2)0.9 micropyramids electrode. Journal of Alloys and Compounds, 2020, 845, 155590.	2.8	1
270	Nanoengineered Skeletonâ€surface of Nickel Foam with Additional Dual Functions of Rateâ€capability Promotion and Cyclingâ€life Stabilization for Nickel Sulfide Electrodes. ChemNanoMat, 2020, 6, 1365-1372.	1.5	1
271	NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today, 2020, 33, 100894.	6.2	152
272	Exploration of Advanced Electrode Materials for Approaching Highâ€Performance Nickelâ€Based Superbatteries. Small, 2020, 16, e2001340.	5.2	26

#	Article	IF	CITATIONS
273	Electrolyte materials for supercapacitors. , 2020, , 205-314.		6
274	NiF ₂ Nanorod Arrays for Supercapattery Applications. ACS Omega, 2020, 5, 9768-9774.	1.6	19
275	Nanowire-assembled Co3O4@NiS core–shell hierarchical with enhanced electrochemical performance for asymmetric supercapacitors. Nanotechnology, 2020, 31, 295403.	1.3	6
276	Supercapacitor Performance of Nickel-Cobalt Sulfide Nanotubes Decorated Using Ni Co-Layered Double Hydroxide Nanosheets Grown in Situ on Ni Foam. Nanomaterials, 2020, 10, 584.	1.9	20
277	Addressing the Achilles' heel of pseudocapacitive materials: Longâ€term stability. InformaÄnÃ-Materiály, 2020, 2, 807-842.	8.5	135
278	Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceramics International, 2020, 46, 14317-14345.	2.3	183
279	Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 845, 155701.	2.8	47
280	NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor. Journal of Materials Science, 2020, 55, 14431-14446.	1.7	56
281	Enhanced capacitive performances and excellent stability of cadmium-sulfide-concealed nickel sulfide (Ni3S2/CdS) for electrochemical capacitors. Journal of Alloys and Compounds, 2020, 826, 154211.	2.8	25
282	High energy density supercapacitors based on porous mSiO2@Ni3S2/NiS2 promoted with boron nitride and carbon. Chemical Engineering Journal, 2020, 390, 124561.	6.6	38
283	3D network of V2O5 for flexible symmetric supercapacitor. Electrochimica Acta, 2020, 337, 135701.	2.6	59
284	Synthesis of ultrafine CoNi2S4 nanowire on carbon cloth as an efficient positive electrode material for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2020, 823, 153885.	2.8	23
285	Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device. Carbon, 2020, 161, 299-308.	5.4	61
286	Cation-exchange-assisted formation of NiS/SnS ₂ porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices. Journal of Materials Chemistry A, 2020, 8, 3300-3310.	5.2	63
287	Construction of Hierarchical 2D PANI/Ni ₃ S ₂ Nanosheet Arrays on Ni Foam for Highâ€Performance Asymmetric Supercapacitors. Batteries and Supercaps, 2020, 3, 370-375.	2.4	29
288	Amorphous nickel sulfide nanoparticles anchored on N-doped graphene nanotubes with superior properties for high-performance supercapacitors and efficient oxygen evolution reaction. Nanoscale, 2020, 12, 4655-4666.	2.8	29
289	One-pot synthesis of Cu-doped Ni3S2 nano-sheet/rod nanoarray for high performance supercapacitors. Chemical Engineering Journal, 2020, 388, 124319.	6.6	68
290	The controlled fabrication of hierarchical CoS2@NiS2 core-shell nanocubes by utilizing prussian blue analogue for enhanced capacitive energy storage performance. Journal of Power Sources, 2020, 450, 227712.	4.0	59

#	Article	IF	CITATIONS
291	Facile Synthesis of NiMoO4 Nanorod Electrode for Aqueous Hybrid Supercapacitor with High Energy Density. Journal of Electronic Materials, 2020, 49, 4010-4017.	1.0	9
292	MWCNTs/NiS2 decorated Ni foam based electrode for high-performance supercapacitors. Electrochimica Acta, 2020, 345, 136196.	2.6	58
293	Ultra-thin NiS nanosheets as advanced electrode for high energy density supercapacitors. RSC Advances, 2020, 10, 8760-8765.	1.7	16
294	Room-temperature chemical synthesis of 3â€D dandelionâ€type nickel chloride (NiCl2@NiF) supercapattery nanostructured materials. Journal of Colloid and Interface Science, 2020, 578, 547-554.	5.0	13
295	Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chemical Engineering Journal, 2021, 409, 127237.	6.6	84
296	SnS2 nanodots decorated on RGO sheets with enhanced pseudocapacitive performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853, 156903.	2.8	34
297	Integration of supercapacitors and batteries towards highâ€performance hybrid energy storage devices. International Journal of Energy Research, 2021, 45, 1449-1479.	2.2	55
298	<scp>Metalâ€organic frameworkâ€derived carbonâ€cobalt</scp> oxysulfide nanocage heterostructure electrode for efficient hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 5988-6001.	2.2	7
299	Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications. Inorganic Chemistry Communication, 2021, 123, 108332.	1.8	39
300	Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: A superlative high energy supercapacitor device with excellent cycling performance. Electrochimica Acta, 2021, 365, 137367.	2.6	35
301	Superior Pseudocapacitive Storage of a Novel Ni3Si2/NiOOH/Graphene Nanostructure for an All-Solid-State Supercapacitor. Nano-Micro Letters, 2021, 13, 2.	14.4	38
302	Transition metal sulfides for supercapacitors. , 2021, , 407-445.		5
303	Recent Advances in Hybrid Supercapacitors. Environmental Chemistry for A Sustainable World, 2021, , 75-113.	0.3	0
304	Rational design of self-supported Ni ₃ S ₂ nanoparticles as a battery type electrode material for high-voltage (1.8 V) symmetric supercapacitor applications. CrystEngComm, 2021, 23, 2869-2879.	1.3	28
305	A novel zinc sulfide impregnated carbon composite derived from zeolitic imidazolate framework-8 for sodium-ion hybrid solid-state flexible capacitors. Nanoscale Advances, 2021, 3, 6164-6175.	2.2	14
306	NIR-Driven Intracellular Photocatalytic O $<$ sub $>$ 2 $<$ /sub $>$ Evolution on Z-Scheme Ni $<$ sub $>$ 3 $<$ /sub $>$ 5 $<$ sub $>$ 2 $<$ /sub $>$ 1.8 $<$ /sub $>$ 5@HA for Hypoxic Tumor Therapy. ACS Applied Materials & Diterraces, 2021, 13, 9604-9619.	4.0	50
307	Past, present and future of electrochemical capacitors: Technologies, performance and applications. Journal of Energy Storage, 2021, 35, 102310.	3.9	24
308	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66

#	Article	IF	CITATIONS
309	Self-supporting in situ growth Ni3S2/FL-Ti3C2 (MXene)/Ni composite as positive electrode for asymmetrical supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 9721-9729.	1.1	8
310	Ni (II) Coordination Supramolecular Grids for Aqueous Nickelâ€Zinc Battery Cathodes. Advanced Functional Materials, 2021, 31, 2100443.	7.8	30
311	One-Pot Synthesis of Glucose-Derived Carbon Coated Ni3S2 Nanowires as a Battery-Type Electrode for High Performance Supercapacitors. Nanomaterials, 2021, 11, 678.	1.9	10
312	Facile preparation of reduced graphene oxide, polypyrrole, carbon black, and polyvinyl alcohol nanocomposite by electrospinning: a low-cost and sustainable approach for supercapacitor application. lonics, 2021, 27, 2659-2672.	1.2	7
313	Simple and Cost-Effective Synthesis of Activated Carbon Anchored by Functionalized Multiwalled Carbon Nanotubes for High-Performance Supercapacitor Electrodes with High Energy Density and Power Density. Journal of Electronic Materials, 2021, 50, 2879-2889.	1.0	5
315	Construction of layered C@MnNiCo–OH/Ni3S2 core–shell heterostructure with enhanced electrochemical performance for asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 11145-11157.	1.1	5
316	Construction of NiCo-OH/Ni3S2 core-shell heterostructure wrapped in rGO nanosheets as efficient supercapacitor electrode enabling high stability up to 20,000 cycles. Journal of Electroanalytical Chemistry, 2021, 889, 115226.	1.9	12
317	Multicomponent architectured battery-type flexible yarns for high-performance wearable supercapatteries. Chemical Engineering Journal, 2021, 411, 128479.	6.6	25
319	Heazlewoodite, Ni3S2: An electroactive material for supercapacitor application. Ceramics International, 2021, 47, 16852-16860.	2.3	18
320	High-Mass-Loading Ni–Co–S Electrodes with Unfading Electrochemical Performance for Supercapacitors. ACS Applied Energy Materials, 2021, 4, 6531-6541.	2.5	32
321	Engineering NiCoP arrays by cross-linked nanowires and nanosheets as advanced materials for hybrid supercapacitors. Journal of Energy Storage, 2021, 38, 102503.	3.9	44
322	Simple and cost-effective synthesis of activated carbon@few layers of graphene composite electrode for supercapacitor applications. IOP Conference Series: Materials Science and Engineering, 2021, 1166, 012007.	0.3	1
323	Reviewâ€"Clay Mineral Materials for Electrochemical Capacitance Application. Journal of the Electrochemical Society, 2021, 168, 070558.	1.3	27
324	A hierarchical porous aerogel nanocomposite of graphene/NiCo2S4 as an active electrode material for supercapacitors. Journal of Science: Advanced Materials and Devices, 2021, 6, 569-577.	1.5	6
325	An atom-economy route for the fabrication of \hat{l}_{\pm} -MnS@C microball with ultrahigh supercapacitance: The significance of in-situ vulcanization. Journal of Colloid and Interface Science, 2021, 594, 186-194.	5.0	8
326	Oneâ€Pot Hydrothermalâ€Derived NiS ₂ –CoMo ₂ S ₄ with Vertically Aligned Nanorods as a Binderâ€Free Electrode for Coinâ€Cellâ€Type Hybrid Supercapacitor. Small Methods, 2021, 5, e2100335.	4.6	35
327	Facile Synthesis of Manganeseâ€Cobaltâ€Sulfur/Reduced Rraphene Oxide Composite as High Performing Faradaic Electrode. ChemistrySelect, 2021, 6, 7398-7407.	0.7	1
328	Recent progress of Ni3S2-based nanomaterials in different dimensions for pseudocapacitor application: synthesis, optimization, and challenge. lonics, 2021, 27, 4573-4618.	1.2	6

#	Article	IF	CITATIONS
329	WS ₂ /Carbon Composites and Nanoporous Carbon Structures Derived from Zeolitic Imidazole Framework for Asymmetrical Supercapacitors. Energy & Samp; Fuels, 2021, 35, 15133-15142.	2.5	23
330	Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries. Journal of Materials Science and Technology, 2021, 89, 199-208.	5.6	47
331	"Carbon quantum dots-glue―enabled high-capacitance and highly stable nickel sulphide nanosheet electrode for supercapacitors. Journal of Colloid and Interface Science, 2021, 601, 669-677.	5.0	37
332	Carbon decorated dendritic nickel sulfide coordinating with situ growth enabling hybrid supercapacitors with high specific energy and rate performance. Journal of Alloys and Compounds, 2021, 884, 161160.	2.8	5
333	Flexible Freeâ€Standing MoO ₃ /Ti ₃ C ₂ T <i>>_z</i> MXene Composite Films with High Gravimetric and Volumetric Capacities. Advanced Science, 2021, 8, 2003656.	5.6	59
334	Improved chemical precipitation prepared rapidly NiCo2S4 with high specific capacitance for supercapacitors. Nanotechnology, 2021, 32, 085604.	1.3	9
335	Biomass porous carbon-based composite for high performance supercapacitor. Materials Research Express, 2020, 7, 115601.	0.8	10
336	Electrolytes for Electrochemical Supercapacitors. , 0, , .		44
337	Synthesis of PdS _x -Mediated Polydymite Heteronanorods and Their Long-Range Activation for Enhanced Water Electroreduction. Research, 2019, 2019, 8078549.	2.8	9
338	Bioinspired tailoring of nanoarchitectured nickel sulfide@nickel permeated carbon composite as highly durable and redox chemistry enabled battery-type electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 25208-25219.	5.2	32
339	Highly stable 3D hierarchical manganese sulfide multi-layer nanoflakes with excellent electrochemical performances for supercapacitor electrodes. Journal of Alloys and Compounds, 2022, 894, 162390.	2.8	22
340	Microwave synthesis of binder-free melamine sponge-derived NiSe2 electrodes for asymmetric supercapacitor. Solid State Ionics, 2021, 372, 115787.	1.3	2
341	Amorphous Ni-Co-S nanocages assembled with nanosheet arrays as cathode for high-performance zinc ion battery. Chinese Chemical Letters, 2022, 33, 3272-3276.	4.8	10
342	Morphology controlled hierarchical NiS/carbon hexahedrons derived from nitrilotriacetic acid-assembly strategy for high-performance hybrid supercapacitors. Chemical Engineering Journal, 2022, 433, 133673.	6.6	76
343	Stable and enhanced electrochemical performance based on hierarchical core–shell structure of CoMn ₂ O ₄ @Ni ₃ S ₂ electrode for hybrid supercapacitor. Nanotechnology, 2022, 33, 095707.	1.3	9
344	Preparation of Electrode Materials Based on Carbon Cloth via Hydrothermal Method and Their Application in Supercapacitors. Materials, 2021, 14, 7148.	1.3	12
345	The application of transition metal sulfide Ni ₃ S ₄ /CNFs in rechargeable Ni–Zn batteries. New Journal of Chemistry, 2021, 45, 22491-22496.	1.4	6
346	Cation substituted Ni3S2 nanosheets wrapped Zn0.76Co0.24S nanowire arrays prepared with in-situ oxidative etching strategy for high performance solid-state asymmetric supercapacitors. Journal of Energy Storage, 2022, 46, 103870.	3.9	3

#	Article	IF	CITATIONS
347	Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Applied Materials Today, 2022, 26, 101297.	2.3	23
348	NiS/activated carbon composite derived from sodium lignosulfonate for long cycle-life asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 900, 163546.	2.8	19
349	Metal-organic frameworks derived low-crystalline NiCo2S4/Co3S4 nanocages with dual heterogeneous interfaces for high-performance supercapacitors. Chinese Chemical Letters, 2023, 34, 107137.	4.8	8
350	Facile In Situ Synthesis of Co(OH)2–Ni3S2 Nanowires on Ni Foam for Use in High-Energy-Density Supercapacitors. Nanomaterials, 2022, 12, 34.	1.9	5
351	Inner-OuterÂSynergistic Strategy: Embedding Nis Nanoflakes in Electrospun Carbon Fibers Encapsulated Nis Nanoparticles for Advanced Hybrid Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
352	Ultrathin nanosheet interconnected Ni _{<i>x</i>} S ₆ /Ni(OH) ₂ hybrid nanocages: successive self-sacrifice template fabrication and exceptional performance in supercapacitors. Journal of Materials Chemistry C, 2022, 10, 6263-6270.	2.7	9
353	Recent Developments on the Properties of Chalcogenide Thin Films. , 0, , .		4
354	Ultra-Fine Ruthenium Oxide Quantum Dots/Reduced Graphene Oxide Composite as Electrodes for High-Performance Supercapacitors. Nanomaterials, 2022, 12, 1210.	1.9	15
355	Laser-induced sulfurization of nickel-based metal-organic frameworks for highly stable phase-engineered energy materials. Chemical Engineering Journal, 2022, 437, 135237.	6.6	9
356	Electrochemical investigation of a novel quaternary composite based on dichalcogenides, reduced graphene oxide, and polyaniline as a high-performance electrode for hybrid supercapacitor applications. Journal of Alloys and Compounds, 2022, 909, 164854.	2.8	11
357	Three-Dimensional Porous Network Electrodes with Cu(OH) ₂ Nanosheet/Ni ₃ S ₂ Nanowire 2D/1D Heterostructures for Remarkably Cycle-Stable Supercapacitors. ACS Omega, 2021, 6, 34276-34285.	1.6	7
358	Synthesis of VS ₂ /NiS Nanocomposites by In Situ Growing NiS Clusters on VS ₂ Ultrathin Nanoplates for High Performance Supercapacitors. ChemElectroChem, 2022, 9, .	1.7	4
359	Highly stable, stretchable, and versatile electrodes by coupling of NiCoS nanosheets with metallic networks for flexible electronics. Nanoscale, 2022, 14, 8172-8182.	2.8	5
361	3D Self-Supported NiS ₂ /Ti ₃ C ₂ Tx-CC Composite Electrode for High-Performance Flexible Supercapacitors. Integrated Ferroelectrics, 2022, 226, 172-184.	0.3	0
362	Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. Chemical Engineering Journal, 2022, 446, 137262.	6.6	66
363	Sulfides and selenides as electrodes for supercapacitor. , 2022, , 733-757.		0
364	Free-standing 3D core-shell architecture of Ni3S2@NiCoP as an efficient cathode material for hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 625, 565-575.	5.0	19
365	Self-promoted Nickel-chalcogenide Nanostructures: A Novel Electrochemical Supercapacitor Device-design Strategy. Materials Research Bulletin, 2022, 156, 111975.	2.7	8

#	Article	IF	CITATIONS
366	Sono-chemical assisted synthesis of carbon nanotubes-nickel phosphate nanocomposites with excellent energy density and cyclic stability for supercapattery applications. Journal of Energy Storage, 2022, 54, 105231.	3.9	17
367	Control growth of high density and morphological uniformity of taper-free Ni3Si2 NWs for enhancement in supercapacitor. Electrochimica Acta, 2022, 431, 141076.	2.6	0
368	WS2-embedded MXene/GO hybrid nanosheets as electrodes for asymmetric supercapacitors and hydrogen evolution reactions. Chemical Engineering Journal, 2023, 452, 139523.	6.6	41
369	Design of metal phosphite decorated sponge materials for highâ€performance flexible batteryâ€type supercapacitors. International Journal of Energy Research, 0, , .	2.2	1
370	High-performance QuasiÂâ^'ÂSolidÂâ^'ÂState hybrid supercapacitor for SelfÂâ^'Âpowered strain sensor based on poly (3, 4Ââ^'Âpropylenedioxythiophene)/NiS2@Hollow carbon sphere composite and sulfonated cellulose hydrogel electrolyte. Applied Surface Science, 2023, 608, 154989.	3.1	11
371	Facile construction of flexible CC/NiS/a-NiS electrode with self-supporting structure by electroplating. Pigment and Resin Technology, 2022, ahead-of-print, .	0.5	1
372	Metal Sulfides and Phosphides for Supercapacitors. , 2022, , 1-32.		0
373	Foldable and wearable supercapacitors for powering healthcare monitoring applications with improved performance based on hierarchically co-assembled CoO/NiCo networks. Journal of Colloid and Interface Science, 2023, 634, 715-729.	5.0	18
374	Three-dimensional unified electrode design using CuO embedded MnO2 Nano-dandelions@Ni(OH)2 nanoflakes as electrode material for high-performance supercapacitors. Journal of Alloys and Compounds, 2023, 938, 168603.	2.8	3
375	Gamma Radiolysis-Synthesized Carbon Nanotube–Supported Palladium as Electrocatalyst for Oxygen Reduction Reaction. Electrocatalysis, 2023, 14, 418-428.	1.5	4
376	Novel photodynamic therapy using two-dimensional NiPS ₃ nanosheets that target hypoxic microenvironments for precise cancer treatment. Nanophotonics, 2022, .	2.9	0
377	Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering. Chinese Journal of Chemical Engineering, 2023, 59, 118-127.	1.7	1
378	Development of symmetric and asymmetric supercapacitors–a step towards efficient and practical energy storage. , 2023, , 405-456.		1
379	Electrolyte materials for supercapacitors. , 2023, , 227-254.		3
380	Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review. Results in Chemistry, 2023, 5, 100877.	0.9	11
381	MOF-derived spherical Ni S /carbon with B-doping enabling high supercapacitive performance. Journal of Materials Science and Technology, 2023, 153, 219-227.	5.6	3
382	Efficient reduction of Cr(VI) and elimination of total Cr with S-bridged Ni3S2/MoS2 nanowire electrode. Journal of Environmental Chemical Engineering, 2023, 11, 109647.	3.3	6
383	Tracking surface ionic movement of Ni3S2@CuS electrode materials with high electrochemical performance. Chemical Engineering Journal, 2023, 461, 141910.	6.6	13

#	Article	IF	CITATIONS
384	Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite. Batteries, 2023, 9, 162.	2.1	2
385	High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries, 2023, 9, 202.	2.1	34
408	Chalcogenides and their nanocomposites: fundamental, properties and applications., 2024,, 1-27.		0