The nuclear receptor Rev-erb \hat{I} ± controls circadian there

Nature 503, 410-413 DOI: 10.1038/nature12642

Citation Report

#	Article	IF	CITATIONS
1	Warm Water Bath Stimulates Phase-Shifts of the Peripheral Circadian Clocks in PER2::LUCIFERASE Mouse. PLoS ONE, 2014, 9, e100272.	1.1	21
2	Regulation of metabolism by long, non-coding RNAs. Frontiers in Genetics, 2014, 5, 57.	1.1	160
3	ThermoMouse: An In Vivo Model to Identify Modulators of UCP1 Expression in Brown Adipose Tissue. Cell Reports, 2014, 9, 1584-1593.	2.9	94
4	<scp>S</scp> hining the <scp>L</scp> ight on <scp>S</scp> unshine: a systematic review of the influence of sun exposure on type 2 diabetes mellitusâ€related outcomes. Clinical Endocrinology, 2014, 81, 799-811.	1.2	21
5	Weight cycling promotes fat gain and altered clock gene expression in adipose tissue in C57BL/6J mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E210-E224.	1.8	35
6	Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nature Communications, 2014, 5, 5759.	5.8	98
7	Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics. Journal of Genetics and Genomics, 2014, 41, 231-250.	1.7	103
8	Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 2014, 159, 514-529.	13.5	984
9	Nuclear receptor Rev-erbα: up, down, and all around. Trends in Endocrinology and Metabolism, 2014, 25, 586-592.	3.1	133
11	Behavioral Changes and Dopaminergic Dysregulation in Mice Lacking the Nuclear Receptor Rev-erbα. Molecular Endocrinology, 2014, 28, 490-498.	3.7	64
12	Circadian control of tissue homeostasis and adult stem cells. Current Opinion in Cell Biology, 2014, 31, 8-15.	2.6	40
13	Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nature Medicine, 2014, 20, 911-918.	15.2	217
14	Circadian regulation of metabolism. Journal of Endocrinology, 2014, 222, R75-R96.	1.2	172
15	Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. Journal of Lipid Research, 2014, 55, 605-624.	2.0	68
16	Fetal programming of adipose tissue function: an evolutionary perspective. Mammalian Genome, 2014, 25, 413-423.	1.0	11
17	Nutrients, Clock Genes, and Chrononutrition. Current Nutrition Reports, 2014, 3, 204-212.	2.1	133
18	Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiology International, 2014, 31, 917-925.	0.9	67
19	Nuclear receptors rock around the clock. EMBO Reports, 2014, 15, 518-528.	2.0	88

#	ARTICLE	IF	CITATIONS
20	Revâ€erbα and the circadian transcriptional regulation of metabolism. Diabetes, Obesity and Metabolism, 2015, 17, 12-16.	2.2	26
21	Role of the clock gene <i>Revâ€erbα</i> in metabolism and in the endocrine pancreas. Diabetes, Obesity and Metabolism, 2015, 17, 106-114.	2.2	21
22	Novel Function of Rev-erbÎ \pm in Promoting Brown Adipogenesis. Scientific Reports, 2015, 5, 11239.	1.6	43
23	Molecular mechanisms of transcriptional control by Revâ€erbα: An energetic foundation for reconciling structure and binding with biological function. Protein Science, 2015, 24, 1129-1146.	3.1	11
24	Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer. Frontiers in Endocrinology, 2015, 6, 115.	1.5	4
25	Neuronal Control of Adaptive Thermogenesis. Frontiers in Endocrinology, 2015, 6, 149.	1.5	35
26	Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science, 2015, 348, 1488-1492.	6.0	268
27	The adipocyte clock controls brown adipogenesis via TGF-β/BMP signaling pathway. Journal of Cell Science, 2015, 128, 1835-47.	1.2	63
28	The cost of circadian desynchrony: Evidence, insights and open questions. BioEssays, 2015, 37, 777-788.	1.2	104
29	Role of the Suprachiasmatic and Arcuate Nuclei in Diurnal Temperature Regulation in the Rat. Journal of Neuroscience, 2015, 35, 15419-15429.	1.7	49
30	Circadian timing of metabolism in animal models and humans. Journal of Internal Medicine, 2015, 277, 513-527.	2.7	200
31	Relevance of Circadian Rhythm in Cancer. Energy Balance and Cancer, 2015, , 1-19.	0.2	2
32	Removal of Rev-erbα inhibition contributes to the prostaglandin G/H synthase 2 expression in rat endometrial stromal cells. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E650-E661.	1.8	20
33	Circadian Clock Proteins in Mood Regulation. Frontiers in Psychiatry, 2014, 5, 195.	1.3	5
34	Disrupted light–dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity inÂmice. Biochemical and Biophysical Research Communications, 2015, 458, 256-261.	1.0	9
35	Circadian Metabolism in the Light of Evolution. Endocrine Reviews, 2015, 36, 289-304.	8.9	131
36	Clocking in: chronobiology in rheumatoid arthritis. Nature Reviews Rheumatology, 2015, 11, 349-356.	3.5	91
37	Adipose Clocks. Journal of Biological Rhythms, 2015, 30, 364-373.	1.4	20

#	Article	IF	CITATIONS
38	Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 2015, 21, 692-705.	7.2	70
39	Integration of the nuclear receptor REV-ERBα linked with circadian oscillators in the expressions of <i>Alas1, Ppargc1a</i> , and <i>ll6</i> genes in rat granulosa cells. Chronobiology International, 2015, 32, 739-749.	0.9	13
40	Dissecting the Rev-erbα Cistrome and the Mechanisms Controlling Circadian Transcription in Liver. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 233-238.	2.0	18
41	Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nature Communications, 2015, 6, 8951.	5.8	59
42	Circadian regulation of metabolic homeostasis: causes and consequences. Nature and Science of Sleep, 2016, 8, 163.	1.4	56
43	Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity. BioMed Research International, 2016, 2016, 1-14.	0.9	4
44	Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue inId2Null Mice. Journal of Diabetes Research, 2016, 2016, 1-11.	1.0	4
45	Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. ELife, 2016, 5, .	2.8	22
46	Differentially expressed genes associated with adaptation to different thermal environments in three sympatric Cuban <i>Anolis</i> lizards. Molecular Ecology, 2016, 25, 2273-2285.	2.0	36
47	Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm. Free Radical Biology and Medicine, 2016, 100, 73-80.	1.3	43
48	The nuclear receptor REV-ERB <i>α</i> represses the transcription of <i>growth/differentiation factor 10</i> and <i>15</i> genes in rat endometrium stromal cells. Physiological Reports, 2016, 4, e12663.	0.7	18
49	The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metabolism, 2016, 23, 610-621.	7.2	380
51	The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbα and indirectly via Cebpb/(C/ebpβ) in zebrafish. Autophagy, 2016, 12, 1292-1309.	4.3	77
52	Genetic backgrounds determine brown remodeling of white fat in rodents. Molecular Metabolism, 2016, 5, 948-958.	3.0	25
53	Mitochondrial H 2 O 2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm. Free Radical Biology and Medicine, 2016, 99, 120.	1.3	18
54	<i>Drosophila</i> DH31 Neuropeptide and PDF Receptor Regulate Night-Onset Temperature Preference. Journal of Neuroscience, 2016, 36, 11739-11754.	1.7	48
55	Circadian physiology of metabolism. Science, 2016, 354, 1008-1015.	6.0	710
56	Circadian Transcription from Beta Cell Function to Diabetes Pathophysiology. Journal of Biological Rhythms, 2016, 31, 323-336.	1.4	48

# 57	ARTICLE Circadian Clock Genes and Mood Disorders. , 2016, , 319-334.	IF	CITATIONS
58	Distinct functions of PPAR ^{î3} isoforms in regulating adipocyte plasticity. Biochemical and Biophysical Research Communications, 2016, 481, 132-138.	1.0	37
59	Rev-erbÎ \pm in the brain is essential for circadian food entrainment. Scientific Reports, 2016, 6, 29386.	1.6	46
60	Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocrine Reviews, 2016, 37, 584-608.	8.9	423
61	The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling. Journal of Biological Chemistry, 2016, 291, 10867-10875.	1.6	29
62	Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1520-H1532.	1.5	28
63	Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews Molecular Cell Biology, 2016, 17, 480-495.	16.1	243
64	Heat Shock Factor. , 2016, , .		14
65	Molecular clock integration of brown adipose tissue formation and function. Adipocyte, 2016, 5, 243-250.	1.3	19
66	The circadian gene Rev-erbα improves cellular bioenergetics and provides preconditioning for protection against oxidative stress. Free Radical Biology and Medicine, 2016, 93, 177-189.	1.3	41
67	The Circadian Clock in the Ventromedial Hypothalamus Controls Cyclic Energy Expenditure. Cell Metabolism, 2016, 23, 467-478.	7.2	96
68	Brown Adipose Tissue Exhibits a Glucose-Responsive Thermogenic Biorhythm in Humans. Cell Metabolism, 2016, 23, 602-609.	7.2	149
69	Protoporphyrin IX: the Good, the Bad, and the Ugly. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 267-275.	1.3	155
70	Heat Shock Factors Modulate Circadian Rhythms. , 2016, , 197-209.		3
71	Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain. Molecular Metabolism, 2017, 6, 73-85.	3.0	35
72	On the Origin and Implications of Circadian Timekeeping: An Evolutionary Perspective. , 2017, , 81-129.		8
73	Circadian Regulation of Metabolism in Health and Diseases. , 2017, , 443-458.		1
74	Multiple Functions and Regulation of Mammalian Peroxiredoxins. Annual Review of Biochemistry, 2017, 86, 749-775.	5.0	214

#	Article	IF	CITATIONS
75	The circadian clock, metabolism and obesity. Obesity Reviews, 2017, 18, 25-33.	3.1	59
76	Angiogenesis: General Concepts. , 2017, , 1-26.		0
77	Metabolic regulation and the anti-obesity perspectives of human brown fat. Redox Biology, 2017, 12, 770-775.	3.9	62
78	Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nature Communications, 2017, 8, 15259.	5.8	157
79	Ketogenic diet induces expression of the muscle circadian gene Slc25a25 via neural pathway that might be involved in muscle thermogenesis. Scientific Reports, 2017, 7, 2885.	1.6	16
80	Change of serum mitochondrial uncoupling protein 1 (UCP1) levels and daily rhythm of rectal and cutaneous temperatures in <i>Equus caballus</i> and <i>Capra hyrcus</i> . Biological Rhythm Research, 2017, 48, 931-938.	0.4	7
81	Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature, 2017, 546, 544-548.	13.7	149
82	Keeping fat on time: Circadian control of adipose tissue. Experimental Cell Research, 2017, 360, 31-34.	1.2	5
83	Circadian Rhythms in Adipose Tissue Physiology. , 2017, 7, 383-427.		44
84	Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2415-2427.	1.9	30
85	Signatures of selection in mammalian clock genes with coding trinucleotide repeats: Implications for studying the genomics of highâ€pace adaptation. Ecology and Evolution, 2017, 7, 7254-7276.	0.8	7
86	Therapeutic Effects of Ashwagandha in Brain Aging and Clock Dysfunction. , 2017, , 437-456.		3
87	Brown and Beige Adipose Tissues in Health and Disease. , 2017, 7, 1281-1306.		127
88	Circadian control of metabolism and pathological consequences of clock perturbations. Biochimie, 2017, 143, 42-50.	1.3	26
89	The suprachiasmatic nucleus drives day–night variations in postprandial triglyceride uptake into skeletal muscle and brown adipose tissue. Experimental Physiology, 2017, 102, 1584-1595.	0.9	11
90	Impairment of body mass reduction-associated activation of brown/beige adipose tissue in patients with type 2 diabetes mellitus. International Journal of Obesity, 2017, 41, 1662-1668.	1.6	13
91	TRPV1 participates in the activation of clock molecular machinery in the brown adipose tissue in response to light-dark cycle. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 324-335.	1.9	19
92	Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass. Scientific Reports, 2017, 7, 14383.	1.6	39

#	Article	IF	Citations
93	Body Temperature Measurements for Metabolic Phenotyping in Mice. Frontiers in Physiology, 2017, 8, 520.	1.3	92
94	Circadian rhythms and clocks in adipose tissues: current insights. ChronoPhysiology and Therapy, 0, Volume 7, 7-17.	0.5	8
95	Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide. Scientific Reports, 2018, 8, 4142.	1.6	28
96	The nuclear retinoid-related orphan receptor RORα controls circadian thermogenic programming in white fat depots. Physiological Reports, 2018, 6, e13678.	0.7	15
97	Rhythms of metabolism in adipose tissue and mitochondria. Neurobiology of Sleep and Circadian Rhythms, 2018, 4, 57-63.	1.4	18
98	Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes and Development, 2018, 32, 140-155.	2.7	44
99	Circadian clocks: from stem cells to tissue homeostasis and regeneration. EMBO Reports, 2018, 19, 18-28.	2.0	89
100	Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology, 2018, 154, 1449-1464.e20.	0.6	144
101	Environmental regulation of metabolism through the circadian clock. Current Opinion in Toxicology, 2018, 8, 93-101.	2.6	3
102	A Diurnal Rhythm in Brown Adipose Tissue Causes Rapid Clearance and Combustion of Plasma Lipids at Wakening. Cell Reports, 2018, 22, 3521-3533.	2.9	68
103	The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects. Endocrine Reviews, 2018, 39, 261-273.	8.9	102
104	The dark side of browning. Protein and Cell, 2018, 9, 152-163.	4.8	32
105	Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs. Antioxidants and Redox Signaling, 2018, 29, 1841-1857.	2.5	23
106	Circadian Regulation by REV-ERBα Mediates Hippocampal E-LTP in a Time-dependent Manner. Experimental Neurobiology, 2018, 27, 344-349.	0.7	10
107	Effects of Indoor Thermal Environment on Human Food Intake, Productivity, and Comfort: Pilot, Randomized, Crossover Trial. Obesity, 2018, 26, 1826-1833.	1.5	11
108	Atlas of Circadian Metabolism Reveals System-wide Coordination and Communication between Clocks. Cell, 2018, 174, 1571-1585.e11.	13.5	258
109	<scp>CPEB</scp> 2â€dependent translation of long 3′― <scp>UTR</scp> Ucp1 <scp>mRNA</scp> promotes thermogenesis in brown adipose tissue. EMBO Journal, 2018, 37, .	3.5	22
110	βâ€Adrenergic receptors control brown adipose UCPâ€1 tone and cold response without affecting its circadian rhythmicity. FASEB Journal, 2018, 32, 5640-5646.	0.2	27

#	Article	IF	CITATIONS
111	Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold. Frontiers in Endocrinology, 2018, 9, 199.	1.5	10
112	Defective daily temperature regulation in a mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2019, 311, 305-312.	2.0	5
113	Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue ¹⁸ F-FDG Uptake in Young Sedentary Adults. Journal of Biological Rhythms, 2019, 34, 533-550.	1.4	11
114	Evaluating evolutionary history and adaptive differentiation to identify conservation units of Canada lynx (Lynx canadensis). Global Ecology and Conservation, 2019, 20, e00708.	1.0	1
115	The effects of desynchronosis on the gut microbiota composition and physiological parameters of rats. BMC Microbiology, 2019, 19, 160.	1.3	15
116	The E3 Ligases Spsb1 and Spsb4 Regulate RevErbα Degradation and Circadian Period. Journal of Biological Rhythms, 2019, 34, 610-621.	1.4	7
117	Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine. Cell Metabolism, 2019, 30, 963-975.e7.	7.2	109
118	SIRT7 couples light-driven body temperature cues to hepatic circadian phase coherence and gluconeogenesis. Nature Metabolism, 2019, 1, 1141-1156.	5.1	26
119	Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18691-18699.	3.3	45
120	Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes and Development, 2019, 33, 1136-1158.	2.7	39
121	SR9009 has REV-ERB–independent effects on cell proliferation and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12147-12152.	3.3	108
122	The circadian clock control of adipose tissue physiology and metabolism. Autonomic Neuroscience: Basic and Clinical, 2019, 219, 66-70.	1.4	21
123	Clocking In, Working Out: Circadian Regulation of Exercise Physiology. Trends in Endocrinology and Metabolism, 2019, 30, 347-356.	3.1	33
124	Drosophila Temperature Preference Rhythms: An Innovative Model to Understand Body Temperature Rhythms. International Journal of Molecular Sciences, 2019, 20, 1988.	1.8	16
125	Intramuscular adipocytes: a buried adipose tissue depot deserving more exploration. Journal of Lipid Research, 2019, 60, 753-754.	2.0	4
126	Dietary fatty acid quality affects systemic parameters and promotes prostatitis and pre-neoplastic lesions. Scientific Reports, 2019, 9, 19233.	1.6	9
127	PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature, 2019, 576, 138-142.	13.7	96
128	Circadian blueprint of metabolic pathways in the brain. Nature Reviews Neuroscience, 2019, 20, 71-82.	4.9	70

#	Article	IF	Citations
129	Interplay between diet, exercise and the molecular circadian clock in orchestrating metabolic adaptations of adipose tissue. Journal of Physiology, 2019, 597, 1439-1450.	1.3	27
130	Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocrine Reviews, 2020, 41, 53-65.	8.9	109
131	Optogeneticâ€induced sympathetic neuromodulation of brown adipose tissue thermogenesis. FASEB Journal, 2020, 34, 2765-2773.	0.2	15
132	Spatial and environmental influences on selection in a clock gene coding trinucleotide repeat in Canada lynx(Lynx canadensis). Molecular Ecology, 2020, 29, 4637-4652.	2.0	0
133	Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases. Antioxidants, 2020, 9, 968.	2.2	20
134	Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proceedings of the United States of America, 2020, 117, 25869-25879.	3.3	34
135	The effects of season change and fasting on Brown adipose tissue FDG-PET in mice. Biochemical and Biophysical Research Communications, 2020, 529, 398-403.	1.0	4
136	Climate factors and gestational diabetes mellitus risk – a systematic review. Environmental Health, 2020, 19, 112.	1.7	30
137	Diurnal, metabolic and thermogenic alterations in a murine model of accelerated aging. Chronobiology International, 2020, 37, 1119-1139.	0.9	7
138	Differential effects of REV-ERBα/β agonism on cardiac gene expression, metabolism, and contractile function in a mouse model of circadian disruption. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1487-H1508.	1.5	29
139	Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocrine Reviews, 2020, 41, 707-732.	8.9	66
140	Impaired function of the suprachiasmatic nucleus rescues the loss of body temperature homeostasis caused by time-restricted feeding. Science Bulletin, 2020, 65, 1268-1280.	4.3	13
141	Rev-erbαÂheterozygosity produces a dose-dependent phenotypic advantage in mice. PLoS ONE, 2020, 15, e0227720.	1.1	5
142	RNA delivery by extracellular vesicles in mammalian cells and its applications. Nature Reviews Molecular Cell Biology, 2020, 21, 585-606.	16.1	1,010
143	Circadian rhythmicity of body temperature and metabolism. Temperature, 2020, 7, 321-362.	1.7	58
144	Isoform-selective regulation of mammalian cryptochromes. Nature Chemical Biology, 2020, 16, 676-685.	3.9	61
145	Ambient fine particulate matter exposure perturbed circadian rhythm and oscillations of lipid metabolism in adipose tissues. Chemosphere, 2020, 251, 126392.	4.2	20
146	Circadian Rhythm of Lipid Metabolism in Health and Disease. Small Methods, 2020, 4, 1900601.	4.6	9

		CITATION REPORT		
#	Article		IF	CITATIONS
147	Circadian Clocks Make Metabolism Run. Journal of Molecular Biology, 2020, 432, 3680-3699	·.	2.0	45
148	Influence of light and temperature cycles on the expression of circadian clock genes in the m Mytilus edulis. Marine Environmental Research, 2020, 159, 104960.	ussel	1.1	15
149	Circadian regulation of mitochondrial uncoupling and lifespan. Nature Communications, 202 1927.	0, 11,	5.8	53
150	Adipose Stromal Cell Expansion and Exhaustion: Mechanisms and Consequences. Cells, 2020), 9, 863.	1.8	26
151	Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics, 2020,	10, 4168-4182.	4.6	73
152	Brown Adipose Tissue: A Metabolic Regulator in a Hypothalamic Cross Talk?. Annual Review o Physiology, 2021, 83, 279-301.	pf	5.6	16
153	Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice. Journal of Clinical Investigation, 2021, 131, .		3.9	23
154	Artificial hibernation/life-protective state induced by thiazoline-related innate fear odors. Communications Biology, 2021, 4, 101.		2.0	17
155	Contributions of White and Brown Adipose Tissues to the Circadian Regulation of Energy Me Endocrinology, 2021, 162, .	rtabolism.	1.4	21
156	Helicobacter pylori–Induced Rev-erbα Fosters Gastric Bacteria Colonization by Impairing H and Adaptive Defense. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 3	ost Innate 95-425.	2.3	8
157	Circadian Rhythms of the Hypothalamus: From Function to Physiology. Clocks & Sleep, 2021	, 3, 189-226.	0.9	38
158	The circadian clock and metabolic homeostasis: entangled networks. Cellular and Molecular Sciences, 2021, 78, 4563-4587.	Life	2.4	40
159	Clock gene per 2 daily rhythm: Correlation with the serum level of uncoupling protein 1 (UCF goat and horse. Journal of Thermal Biology, 2021, 97, 102891.	'1) in	1.1	3
160	Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Internatic Journal of Molecular Sciences, 2021, 22, 5906.	nal	1.8	14
161	Thermographic imaging of mouse across circadian time reveals body surface temperature ele associated with non-locomotor body movements. PLoS ONE, 2021, 16, e0252447.	vation	1.1	2
162	A physiological glucocorticoid rhythm is an important regulator of brown adipose tissue func Molecular Metabolism, 2021, 47, 101179.	tion.	3.0	12
163	Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a m lung cancer–associated cachexia. Science Advances, 2021, 7, .	odel of	4.7	17
164	Brown adipocyte-specific knockout of Bmal1 causes mild but significant thermogenesis impa mice. Molecular Metabolism, 2021, 49, 101202.	irment in	3.0	17

#	Article	IF	CITATIONS
165	Circadian rhythms in the tissue-specificity from metabolism to immunity: insights from omics studies. Molecular Aspects of Medicine, 2021, 80, 100984.	2.7	12
166	Interconnections between circadian clocks and metabolism. Journal of Clinical Investigation, 2021, 131,	3.9	63
167	Circadian control of brown adipose tissue. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158961.	1.2	6
168	Adipocyte NR1D1 dictates adipose tissue expansion during obesity. ELife, 2021, 10, .	2.8	24
169	Diurnal variations of brown fat thermogenesis and fat oxidation in humans. International Journal of Obesity, 2021, 45, 2499-2505.	1.6	15
170	The miR-182-5p/FGF21/acetylcholine axis mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. JCI Insight, 2021, 6, .	2.3	19
171	Diurnal variations of cold-induced thermogenesis in young, healthy adults: A randomized crossover trial. Clinical Nutrition, 2021, 40, 5311-5321.	2.3	5
172	You are when you eat: on circadian timing and energy balance. Journal of Clinical Investigation, 2021, 131, .	3.9	0
173	Rev-erbs: Integrating Metabolism Around the Clock. Research and Perspectives in Endocrine Interactions, 2016, , 63-70.	0.2	10
174	$\hat{I}^{3}\hat{I}^{\prime}$ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature, 2020, 578, 610-614.	13.7	117
177	Targeting PPARÎ ³ in the epigenome rescues genetic metabolic defects in mice. Journal of Clinical Investigation, 2017, 127, 1451-1462.	3.9	47
178	Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts. PLoS ONE, 2017, 12, e0170904.	1.1	71
179	The role of PDF neurons in setting the preferred temperature before dawn in Drosophila. ELife, 2017, 6,	2.8	34
180	Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men. Cell Reports Medicine, 2021, 2, 100408.	3.3	17
181	Excessive fat expenditure in cachexia is associated with dysregulated circadian rhythm: a review. Nutrition and Metabolism, 2021, 18, 89.	1.3	4
182	Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Molecular Neurobiology, 2022, 59, 326-353.	1.9	13
189	Chronodisruption, Metabolic Homeostasis, and the Regulation of Inflammation in Adipose Tissues.	0.2	19
	Yale Journal of Biology and Medicine, 2019, 92, 317-325.	0.2	

#	Article	IF	CITATIONS
191	Kisspeptin impacts on circadian and ultradian rhythms of core body temperature: Evidence in kisspeptin receptor knockout and kisspeptin knockdown mice. Molecular and Cellular Endocrinology, 2022, 542, 111530.	1.6	2
192	Circadian Control of Mitochondria in Reactive Oxygen Species Homeostasis. Antioxidants and Redox Signaling, 2022, 37, 647-663.	2.5	27
193	Circadian rhythms and physiological processes. , 2021, , .		0
194	Diet-Induced Thermogenesis: Principles and Pitfalls. Methods in Molecular Biology, 2022, 2448, 177-202.	0.4	8
195	The shades of grey in adipose tissue reprogramming. Bioscience Reports, 2022, 42, .	1.1	5
196	Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Molecular Metabolism, 2022, 60, 101497.	3.0	8
199	Chronic Cold Exposure Leads to Daytime Preference in the Circadian Expression of Hepatic Metabolic Genes. Frontiers in Physiology, 2022, 13, .	1.3	1
200	p53 Regulates a miRNA-Fructose Transporter Axis in Brown Adipose Tissue Under Fasting. Frontiers in Genetics, 0, 13, .	1.1	2
202	Pu-erh tea increases the metabolite Cinnabarinic acid to improve circadian rhythm disorder-induced obesity. Food Chemistry, 2022, 394, 133500.	4.2	17
203	Lipolysis regulates major transcriptional programs in brown adipocytes. Nature Communications, 2022, 13, .	5.8	16
204	Circadian regulation of digestive and metabolic tissues. American Journal of Physiology - Cell Physiology, 2022, 323, C306-C321.	2.1	7
205	In silico integrative analysis of multi-omics reveals regulatory layers for diurnal gene expression in mouse liver. Frontiers in Endocrinology, 0, 13, .	1.5	1
206	Sustained effect of habitual feeding time on daily rhythm of core body temperature in mice. Frontiers in Nutrition, 0, 9, .	1.6	0
207	Blocking circadian clock factor Rev-erbα inhibits growth plate chondrogenesis via up-regulating MAPK-ERK1/2 pathway. Cell Cycle, 0, , 1-12.	1.3	Ο
208	Balanced control of thermogenesis by nuclear receptor corepressors in brown adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
209	Time-restricted feeding mitigates obesity through adipocyte thermogenesis. Science, 2022, 378, 276-284.	6.0	53
210	Brain-to-BAT - and Back?: Crosstalk between the Central Nervous System and Thermogenic Adipose Tissue in Development and Therapy of Obesity. Brain Sciences, 2022, 12, 1646.	1.1	3
211	Brain nuclear receptors and cardiovascular function. Cell and Bioscience, 2023, 13, .	2.1	2

#ARTICLEIFCITATIONS212Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis. Cell, 2023, 13.513.519213SON-light activation of glucose regulation. Cell, 2023, 186, 238-240.13.50214Astrocytic circadian clock control of energy expenditure by transcriptional stress responses in the2.51

CITATION REPORT