A Survey on Human Activity Recognition using Wearab

IEEE Communications Surveys and Tutorials 15, 1192-1209

DOI: 10.1109/surv.2012.110112.00192

Citation Report

#	Article	IF	CITATIONS
1	Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges. Sensors, 2013, 13, 17472-17500.	2.1	338
2	A Loosely Coupled and Distributed Bayesian Framework for Multi-context Recognition in Dynamic Ubiquitous Environments. , 2013, , .		8
3	A Framework for Automatic Text Generation of Trends in Physiological Time Series Data. , 2013, , .		14
4	Computational State Space Models for Activity and Intention Recognition. A Feasibility Study. PLoS ONE, 2014, 9, e109381.	1.1	56
5	Long-Term Activity Recognition from Wristwatch Accelerometer Data. Sensors, 2014, 14, 22500-22524.	2.1	59
6	Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications. Scientific World Journal, The, 2014, 2014, 1-16.	0.8	3
7	uKeMa: An Ultra-Lightweight Key Management and Authentication Scheme for Wearable Ad Hoc Networks Based on Body Language. Applied Mechanics and Materials, 2014, 596, 986-989.	0.2	0
8	Evaluation of Prompted Annotation of Activity Data Recorded from a Smart Phone. Sensors, 2014, 14, 15861-15879.	2.1	41
9	Recognizing human activities based on head movement trajectories. , 2014, , .		3
10	Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition. Sensors, 2014, 14, 9995-10023.	2.1	126
11	Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors. Sensors, 2014, 14, 19806-19842.	2.1	248
12	Wearable technology as a booster of clinical care. Proceedings of SPIE, 2014, , .	0.8	8
13	Objective Self. IEEE MultiMedia, 2014, 21, 100-110.	1.5	15
14	Human fall detection with smartphones. , 2014, , .		14
15	Human activity recognition: A review. , 2014, , .		84
16	Automated mobile systems for multidimensional well-being sensing and feedback. , 2014, , .		1
17	RecoFit. , 2014, , .		137
18	Activity Estimation Using Regression Technique. , 2014, , .		O

#	Article	IF	Citations
19	Using portable device sensors to recognize height changing modes of motion., 2014,,.		9
20	Context-aware energy-efficient wireless sensor architecture for body activity recognition. , 2014, , .		2
21	Uncertainty Reasoning Based Formal Framework for Big Video Data Understanding. , 2014, , .		4
22	Foot-mounted inertial measurement unit for activity classification. , 2014, 2014, 6294-7.		5
23	A public domain dataset for ADL recognition using wrist-placed accelerometers. , 2014, , .		29
24	Skeleton-based viewpoint invariant transformation for motion analysis. Journal of Electronic lmaging, 2014, 23, 043021.	0.5	4
25	Energy-efficient architecture for wearable sensor networks. , 2014, , .		3
26	An Effective Way to Improve Actigraphic Algorithm by Using Tri-axial Accelerometer in Sleep Detection. , 2014, , .		1
27	Activity Recognition on Smartphones via Sensor-Fusion and KDA-Based SVMs. International Journal of Distributed Sensor Networks, 2014, 10, 503291.	1.3	107
28	Developing a wearable wrist glove for fieldwork support: A user activity-driven approach. , 2014, , .		2
29	Human activity recognition in big data smart home context. , 2014, , .		6
30	A novel recognition system for human activity based on wavelet packet and support vector machine optimized by improved adaptive genetic algorithm. Physical Communication, 2014, 13, 211-220.	1.2	9
31	SIMPLE-Useâ€"Sensor Set for Wearable Movement and Interaction Research. IEEE Sensors Journal, 2014, 14, 1207-1215.	2.4	16
32	Context-Aware Media Recommendations. , 2014, , .		4
33	A novel feature extraction technique for human activity recognition. , 2014, , .		7
34	An low-power microcontroller with accuracy-controlled signal-to-event converter for rare-event human activity-sensing applications. , $2014, \ldots$		1
35	Monitoring physical activity and energy expenditure with smartphones. , 2014, , .		24
36	Robust motion mode recognition for portable navigation independent on device usage. , 2014, , .		8

#	Article	IF	CITATIONS
37	A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Communications Surveys and Tutorials, 2014, 16, 1635-1657.	24.8	577
38	Subject-independent human activity recognition using Smartphone accelerometer with cloud support. International Journal of Ad Hoc and Ubiquitous Computing, 2015, 20, 172.	0.3	14
39	I did not smoke 100 cigarettes today!. , 2015, , .		14
40	Organizing and retrieving episodic memories from first person view. , 2015, , .		6
41	Design of a memory-card based low-cost GPS data-logger for livestock monitoring. , 2015, , .		2
42	Multi-modal sensing for human activity recognition. , 2015, , .		3
43	Fine manipulative action recognition through sensor fusion. , 2015, , .		6
44	Context-Aware Biomedical Smart Systems. , 2015, , 153-166.		O
45	Unsupervised Human Activity Segmentation Applying Smartphone Sensor for Healthcare., 2015, , .		5
46	An event-based data fusion algorithm for smart cities. , 2015, , .		5
47	Mobile Devices as an Infrastructure: A Survey of Opportunistic Sensing Technology. Journal of Information Processing, 2015, 23, 94-104.	0.3	18
48	Optimal Recognition Method of Human Activities Using Artificial Neural Networks. Measurement Science Review, 2015, 15, 323-327.	0.6	10
49	Body posture recognition and turning recording system for the care of bed bound patients. Technology and Health Care, 2015, 24, S307-S312.	0.5	13
50	Internet of Things for wildlife monitoring. , 2015, , .		11
51	Context-related data processing in artificial neural networks for higher reliability of telerehabilitation systems. , 2015, , .		11
52	Fitness activity classification by using multiclass support vector machines on head-worn sensors. , 2015, 2015, 502-5.		14
53	The Hidden Markov Model and its application to Human Activity Recognition. , 2015, , .		5
54	Online Motion Mode Recognition for Portable Navigation Using Low-Cost Sensors. Navigation, Journal of the Institute of Navigation, 2015, 62, 273-290.	1.7	21

#	Article	IF	Citations
55	A Multidimensional Continuous Contextual Lighting Control System Using Google Glass., 2015,,.		8
57	Inferring Human Activity in Mobile Devices by Computing Multiple Contexts. Sensors, 2015, 15, 21219-21238.	2.1	14
58	Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches. Sensors, 2015, 15, 22616-22645.	2.1	52
59	Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body. PLoS ONE, 2015, 10, e0130851.	1.1	80
60	A Low-Power Microcontroller with Accuracy-Controlled Event-Driven Signal Processing Unit for Rare-Event Activity-Sensing IoT Devices. Journal of Sensors, 2015, 2015, 1-10.	0.6	16
61	Human Activity Recognition Based on the Hierarchical Feature Selection and Classification Framework. Journal of Electrical and Computer Engineering, 2015, 2015, 1-9.	0.6	35
62	Wearable Inertial Sensor for Jump Performance Analysis. , 2015, , .		13
63	Automatic derivation of context descriptions. , 2015, , .		1
64	On the use of local motion information for human action recognition via feature selection. , 2015, , .		6
65	Behavior Recognition and Analysis in Smart Environments for Context-Aware Applications. , 2015, , .		8
66	Driver-Activity Recognition in the Context of Conditionally Autonomous Driving. , 2015, , .		75
67	Activity Recognition Using Wrist-Worn Sensors for Human Performance Evaluation. , 2015, , .		17
68	Exploring Accuracy-Cost Tradeoff in In-Home Living Activity Recognition Based on Power Consumptions and User Positions. , 2015, , .		11
69	Modelling daily actions through hand-based spatio-temporal features. , 2015, , .		3
70	Using mini minimum jerk model for human activity classification in home-based monitoring. , 2015, , .		4
71	Avoiding Bias in Classification Accuracy - A Case Study for Activity Recognition. , 2015, , .		8
72	Evaluation of techniques for signature classification from accelerometer and gyroscope data. , 2015, ,		3
73	Multi-thread based middleware for sensor network virtualization. , 2015, , .		3

#	Article	IF	Citations
74	Latent Hierarchical Model for Activity Recognition. IEEE Transactions on Robotics, 2015, 31, 1472-1482.	7.3	2
75	A low-power opportunistic communication protocol for wearable applications. , 2015, , .		0
76	Recognition of reading activity from the saccadic samples of electrooculography data. , 2015, , .		12
77	Wireless system for elderly persons mobility and behaviour investigation. , 2015, , .		1
78	Event-Driven Gait Recognition Method Based on Dynamic Temporal Segmentation. , $2015, \ldots$		0
79	A typology of wearable activity recognition and interaction. , 2015, , .		3
80	Accelerometer-based human activity classification using Water Wave Optimization approach. , 2015, , .		10
81	Source separation for target enhancement of food intake acoustics from noisy recordings. , 2015, , .		6
82	Activity-aaService: Cloud-assisted, BSN-based system for physical activity monitoring. , 2015, , .		7
83	Improved activity recognition by using enriched acceleration data. , 2015, , .		20
84	Activity recognition on handheld devices for pedestrian indoor navigation., 2015,,.		5
85	Trends in Mobile Cyber-Physical Systems for health Just-in time interventions. , 2015, , .		12
86	A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer., 2015,,.		215
87	One Step Forward, Two Steps Back: The Key to Wearables in the Field is the App. , 2015, , .		2
88	Ambulatory physical activity representation and classification using spectral distances approach. , 2015, , .		2
89	Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMedical Engineering OnLine, 2015, 14, S6.	1.3	187
90	Recognizing new activities with limited training data. , 2015, , .		39
91	Clustering Approach to the Problem of Human Activity Recognition using Motion Data. , 2015, , .		9

#	Article	IF	CITATIONS
92	Context Aware Power Management Enhanced by Radio Wake Up in Body Area Networks., 2015,,.		2
93	Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices. , 2015, , .		36
94	Monitoring Elder's Living Activity Using Ambient and Body Sensor Network in Smart Home. , 2015, , .		15
95	Comparative Analysis of Artificial Hydrocarbon Networks and Data-Driven Approaches for Human Activity Recognition. Lecture Notes in Computer Science, 2015, , 150-161.	1.0	4
96	Basketball Activity Recognition using Wearable Inertial Measurement Units., 2015,,.		48
97	Multiple model recognition for near-realistic exergaming. , 2015, , .		1
98	The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey. IEEE Transactions on Emerging Topics in Computing, 2015, 3, 585-598.	3.2	392
99	Detecting self-harming activities with wearable devices. , 2015, , .		8
100	PEMAR: A pervasive middleware for activity recognition with smart phones., 2015,,.		10
101	The Elderly's Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development. Sensors, 2015, 15, 11312-11362.	2.1	216
102	A method for recognizing living activities in homes using positioning sensor and power meters. , 2015, , .		26
103	Geometric Compression of Orientation Signals for Fast Gesture Analysis. , 2015, , .		1
104	Marginal filtering in large state spaces. International Journal of Approximate Reasoning, 2015, 61, 16-32.	1.9	13
105	A review on radio based activity recognition. Digital Communications and Networks, 2015, 1, 20-29.	2.7	83
106	A Survey of Online Activity Recognition Using Mobile Phones. Sensors, 2015, 15, 2059-2085.	2.1	391
107	Data sensing and analysis: Challenges for wearables. , 2015, , .		59
108	Toward an Automatic Road Accessibility Information Collecting and Sharing Based on Human Behavior Sensing Technologies of Wheelchair Users. Procedia Computer Science, 2015, 63, 74-81.	1.2	19
109	Energy-Harvesting Wearables for Activity-Aware Services. IEEE Internet Computing, 2015, 19, 8-16.	3.2	51

#	Article	IF	Citations
110	HandButton: Gesture recognition of transceiver-free object by using wireless networks. , 2015, , .		2
111	Wearable Inertial Sensors: Applications, Challenges, and Public Test Benches. IEEE Robotics and Automation Magazine, 2015, 22, 116-124.	2.2	29
112	Wearable Sensing Framework for Human Activity Monitoring. , 2015, , .		29
113	Data-Driven Activity Prediction. , 2015, , .		42
114	Pattern Recognition in Embedded Systems: An Overview. Lecture Notes in Computer Science, 2015, , 3-10.	1.0	1
115	Sensor-based human activity recognition system with a multilayered model using time series shapelets. Knowledge-Based Systems, 2015, 90, 138-152.	4.0	86
116	Life-logs Aggregation for Quality of Life Monitoring. , 2015, , .		6
117	A wearable real-time activity tracker. Biomedical Engineering Letters, 2015, 5, 147-157.	2.1	6
118	MuSA: Wearable Multi Sensor Assistant for Human Activity Recognition and Indoor Localization. Biosystems and Biorobotics, 2015, , 81-92.	0.2	13
119	Activity Discovery and Detection of Behavioral Deviations of an Inhabitant From Binary Sensors. IEEE Transactions on Automation Science and Engineering, 2015, 12, 1211-1224.	3.4	43
120	An adaptive time window method for human activity recognition. , 2015, , .		15
121	Multi-sensor Self-Quantification of Presentations. , 2015, , .		24
122	Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, 2015, 15, 1321-1330.	2.4	1,066
123	When sensing goes pervasive. Pervasive and Mobile Computing, 2015, 17, 175-183.	2.1	24
124	Fuzzy human motion analysis: A review. Pattern Recognition, 2015, 48, 1773-1796.	5.1	74
125	Micromagnetometer Calibration for Accurate Orientation Estimation. IEEE Transactions on Biomedical Engineering, 2015, 62, 553-560.	2.5	28
126	Context-aware media recommendations for smart devices. Journal of Ambient Intelligence and Humanized Computing, 2015, 6, 13-36.	3.3	24
127	PACP: A Position-Independent Activity Recognition Method Using Smartphone Sensors. Information (Switzerland), 2016, 7, 72.	1.7	41

#	Article	IF	CITATIONS
128	Smartphone User Identity Verification Using Gait Characteristics. Symmetry, 2016, 8, 100.	1.1	60
129	Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones. Sensors, 2016, 16, 1314.	2.1	5
130	Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data. Sensors, 2016, 16, 1464.	2.1	20
131	A Robust and Device-Free System for the Recognition and Classification of Elderly Activities. Sensors, 2016, 16, 2043.	2.1	25
132	Identification of Partitions in a Homogeneous Activity Group Using Mobile Devices. Mobile Information Systems, 2016, 2016, 1-14.	0.4	7
133	Human Activity Recognition in AAL Environments Using Random Projections. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-17.	0.7	63
134	Evaluation of a Home Biomonitoring Autonomous Mobile Robot. Computational Intelligence and Neuroscience, 2016, 2016, 1-8.	1.1	4
135	Survey of Promising Technologies for 5G Networks. Mobile Information Systems, 2016, 2016, 1-25.	0.4	47
136	Activity-Aware Energy-Efficient Automation of Smart Buildings. Energies, 2016, 9, 624.	1.6	26
137	The Performance Analysis of Smartphone-Based Pedestrian Dead Reckoning and Wireless Locating Technology for Indoor Navigation Application. Inventions, 2016, 1, 25.	1.3	3
138	Effectiveness of a Batteryless and Wireless Wearable Sensor System for Identifying Bed and Chair Exits in Healthy Older People. Sensors, 2016, 16, 546.	2.1	24
139	Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial. Sensors, 2016, 16, 790.	2.1	45
140	Investigating the Impact of Possession-Way of a Smartphone on Action Recognition. Sensors, 2016, 16, 812.	2.1	2
141	Activity Recognition Using Community Data to Complement Small Amounts of Labeled Instances. Sensors, 2016, 16, 877.	2.1	16
142	Physical Behavior in Older Persons during Daily Life: Insights from Instrumented Shoes. Sensors, 2016, 16, 1225.	2.1	42
143	Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets. Sensors, 2016, 16, 1341.	2.1	60
144	Ontology-Based High-Level Context Inference for Human Behavior Identification. Sensors, 2016, 16, 1617.	2.1	22
145	Ensemble of One-Class Classifiers for Personal Risk Detection Based on Wearable Sensor Data. Sensors, 2016, 16, 1619.	2.1	12

#	Article	IF	Citations
146	A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks. Sensors, 2016, 16, 1715.	2.1	31
147	Wearable Sensor-Based Human Activity Recognition Method with Multi-Features Extracted from Hilbert-Huang Transform. Sensors, 2016, 16, 2048.	2.1	39
148	Toward robust activity recognition: Hierarchical classifier based on Gaussian Process. Intelligent Data Analysis, 2016, 20, 701-717.	0.4	5
149	Vehicle Maneuver Detection with Accelerometer-Based Classification. Sensors, 2016, 16, 1618.	2.1	23
150	A Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks. Sensors, 2016, 16, 1033.	2.1	46
151	WristEye: Wrist-Wearable Devices and a System for Supporting Elderly Computer Learners. IEEE Access, 2016, 4, 1454-1463.	2.6	12
152	Empathy and Modern Technology: A Neuroergonomics Perspective. Human Factors and Ergonomics in Manufacturing, 2016, 26, 266-284.	1.4	4
153	Comparison of wrapper and filter feature selection algorithms on human activity recognition. , 2016, , .		42
154	Detecting unseen anomalies in weight training exercises. , 2016, , .		22
155	Diverse data mapping for sleep status estimation: From intelligent band to passive infrared motion sensors. , 2016, , .		2
156	Implementation and evaluation of daycare report generation system based on BLE tag., 2016,,.		0
157	Low-cost and Device-free Activity Recognition System with Energy Harvesting PIR and Door Sensors. , 2016, , .		13
158	How to record the amount of exercise automatically? A general real-time recognition and counting approach for repetitive activities. , 2016 , , .		2
159	Classification of squat quality with inertial measurement units in the single leg squat mobility test., 2016, 2016, 6273-6276.		16
160	Mobile-phone based immobility tracking system for elderly care. , 2016, , .		10
161	A Wearable Device for Continuous Cardiorespiratory System Monitoring., 2016,,.		5
162	An incremental learning mechanism for human activity recognition. , 2016, , .		8
163	ConTrack: A Scalable Method for Tracking Multiple Concepts in Large Scale Multidimensional Data. , 2016, , .		1

#	Article	IF	Citations
164	We hear your activities through Wi-Fi signals. , 2016, , .		11
165	Temporal Learning Using Echo State Network for Human Activity Recognition. , 2016, , .		4
166	Combining Human Action Sensing of Wheelchair Users and Machine Learning for Autonomous Accessibility Data Collection. IEICE Transactions on Information and Systems, 2016, E99.D, 1153-1161.	0.4	12
167	Testing and analysis of the proposed data driven method on the opportunity human activity dataset. , 2016, , .		1
168	Human periodic activity recognition based on functional features. , 2016, , .		4
169	Effects of matrix completion on the classification of undersampled human activity data streams. , 2016, , .		2
170	A Multi-featured Approach for Wearable Sensor-Based Human Activity Recognition. , 2016, , .		21
171	Low-Cost Sensor System Design for In-Home Physical Activity Tracking. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4, 1-6.	2.2	7
172	Human activity recognition using multisensor data fusion based on Reservoir Computing. Journal of Ambient Intelligence and Smart Environments, 2016, 8, 87-107.	0.8	112
173	Estimation of sleep status based on wearable free device for elderly care. , 2016, , .		5
174	Senstick: a rapid prototyping platform for sensorizing things. , 2016, , .		1
175	Action classification from motion capture data using topological data analysis. , 2016, , .		9
176	A review of sensor selection, sensor devices and sensor deployment for wearable sensor-based human activity recognition systems. , 2016, , .		16
177	Human activity recognition with inertial sensors using a deep learning approach. , 2016, , .		74
178	Detecting change in depressive symptoms from daily wellbeing questions, personality, and activity. , 2016, , .		14
179	Novel Efficient and Privacy-Preserving Protocols for Sensor-Based Human Activity Recognition. , 2016, , .		7
180	Activity Recognition in a Home Setting Using Off the Shelf Smart Watch Technology. , 2016, , .		6
181	Improved Track Path Method in Real Time by Using Gps and Accelerometer. , 2016, , .		1

#	Article	IF	CITATIONS
182	An Event-Based Approach for Discovering Activities of Daily Living by Hidden Markov Models., 2016,,.		10
183	Activity Recognition Based on the Dynamic Coordinate Transformation of Inertial Sensor Data. , 2016, ,		1
184	Deep Learning for RFID-Based Activity Recognition. , 2016, 2016, 164-175.		99
185	Smartphone-based Human Fall Detection System. IEEE Latin America Transactions, 2016, 14, 1011-1017.	1.2	12
186	Unobtrusive human localization and activity recognition for supporting independent living of the elderly. , 2016, , .		12
187	From smart to deep: Robust activity recognition on smartwatches using deep learning. , 2016, , .		108
188	Mobile big data analytics using deep learning and apache spark. IEEE Network, 2016, 30, 22-29.	4.9	209
189	Investigating Inter-Subject and Inter-Activity Variations in Activity Recognition Using Wearable Motion Sensors. Computer Journal, 2016, 59, 1345-1362.	1.5	17
190	Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825.	4.0	165
191	A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone. IEEE Sensors Journal, 2016, 16, 4566-4578.	2.4	245
192	Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 5.	2.4	75
193	Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems With Applications, 2016, 59, 235-244.	4.4	850
194	Detecting food intake acoustic events in noisy recordings using template matching., 2016,,.		14
195	I am a Smartwatch and I can Track my User's Arm. , 2016, , .		124
196	Human Activity Recognition by Means of Online Semi-supervised Learning. , 2016, , .		11
197	Feasibility and accuracy of hotword detection using vibration energy harvester. , 2016, , .		8
198	Deep learning for human activity recognition: A resource efficient implementation on low-power devices. , 2016, , .		145
199	Towards Self-Improving Activity Recognition Systems Based on Probabilistic, Generative Models. , 2016, , .		11

#	Article	IF	CITATIONS
200	Introduction to the Model of the Active Assistance System for Elder and Disabled People. Communications in Computer and Information Science, 2016, , 392-403.	0.4	6
201	Activity Recognition for Diabetic Patients Using a Smartphone. Journal of Medical Systems, 2016, 40, 256.	2.2	28
202	Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis. Journal of Biomedical Informatics, 2016, 63, 249-258.	2.5	10
203	Toward a characterization of human activities using smart devices: A micro/macro approach., 2016,,.		2
204	Segmentation by Data Point Classification Applied to Forearm Surface EMG. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 153-165.	0.2	2
205	User Activities Outliers Detection; Integration of Statistical and Computational Intelligence Techniques. Computational Intelligence, 2016, 32, 49-71.	2.1	21
206	Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton. Gait and Posture, 2016, 50, 53-59.	0.6	14
207	Determining Behavioural Trends in an Ambient Intelligence Environment. , 2016, , .		4
208	Activity recognition based on micro-Doppler signature with in-home Wi-Fi. , 2016, , .		31
209	Enabling process mining on sensor data from smart products. , 2016, , .		30
210	Two-Layer Hidden Markov Model for Human Activity Recognition in Home Environments. International Journal of Distributed Sensor Networks, 2016, 12, 4560365.	1.3	43
211	Tensor Manifold Discriminant Projections for Acceleration-Based Human Activity Recognition. IEEE Transactions on Multimedia, 2016, 18, 1977-1987.	5.2	24
212	A Hardware-Assisted Energy-Efficient Processing Model for Activity Recognition Using Wearables. ACM Transactions on Design Automation of Electronic Systems, 2016, 21, 1-27.	1.9	15
213	Optimization of the data rate of an OOK CMOS medical transmitter based on LC oscillators. , 2016, , .		3
214	Mining intricate temporal rules for recognizing complex activities of daily living under uncertainty. Pattern Recognition, 2016, 60, 1015-1028.	5.1	18
215	Research on a novel strategy for automatic activity recognition using wearable device. , 2016, , .		4
216	Image specific target detection and localization based on locally adaptive regression kernels algorithm. , $2016, \ldots$		3
217	Ultra-Low Power Context Recognition Fusing Sensor Data from an Energy-Neutral Smart Watch. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 331-343.	0.2	3

#	ARTICLE	IF	CITATIONS
218	A two-layer and multi-strategy framework for human activity recognition using smartphone. , 2016, , .		10
219	Discovery and recognition of unknown activities. , 2016, , .		8
220	Motion Primitive Forests for Human Activity Recognition Using Wearable Sensors. Lecture Notes in Computer Science, 2016, , 340-353.	1.0	2
221	PHYS.IO: Wearable hand tracking device. , 2016, , .		3
222	Using respiratory signals for the recognition of human activities. , 2016, 2016, 173-176.		11
223	On-Chip Activity Recognition in a Smart Home. , 2016, , .		4
224	Self-tracking Reloaded: Applying Process Mining to Personalized Health Care from Labeled Sensor Data. Lecture Notes in Computer Science, 2016, , 160-180.	1.0	21
225	Towards recognising collaborative activities using multiple on-body sensors. , 2016, , .		10
226	Hierarchical activity clustering analysis for robust graphical structure recovery., 2016,,.		1
227	An efficient human action recognition approach using FCM and random forest. , 2016, , .		0
228	Robust multi-dimensional motion features for first-person vision activity recognition. Computer Vision and Image Understanding, 2016, 149, 229-248.	3.0	32
229	Personalized Active Learning for Activity Classification Using Wireless Wearable Sensors. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 865-876.	7.3	19
230	A Benchmark Dataset for Human Activity Recognition and Ambient Assisted Living. Advances in Intelligent Systems and Computing, 2016, , 1-9.	0.5	6
231	Activity Recognition Using Multiple Inertial Measurement Units. Irbm, 2016, 37, 180-186.	3.7	6
232	Layered hidden Markov models to recognize activity with built-in sensors on Android smartphone. Pattern Analysis and Applications, 2016, 19, 1181-1193.	3.1	12
233	Modelling and Simulation of Alzheimer's Disease Scenarios. Procedia Computer Science, 2016, 83, 353-360.	1.2	4
234	Energy Considerations for Continuous Group Activity Recognition Using Mobile Devices: The Case of Group Sense. , $2016, , .$		6
235	Human Activity Recognition Using Smartphone Sensors. Advances in Intelligent Systems and Computing, 2016, , 41-47.	0.5	4

#	ARTICLE	IF	Citations
236	On-body localization of wearable devices: An investigation of position-aware activity recognition. , 2016, , .		154
237	IRIS: Tapping wearable sensing to capture in-store retail insights on shoppers. , 2016, , .		20
238	Improving posture classification accuracy for depth sensor-based human activity monitoring in smart environments. Computer Vision and Image Understanding, 2016, 148, 97-110.	3.0	58
239	Toward Personalized Activity Recognition Systems With a Semipopulation Approach. IEEE Transactions on Human-Machine Systems, 2016, 46, 101-112.	2.5	76
240	Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors. Information Sciences, 2016, 340-341, 41-57.	4.0	65
241	A Big Bang–Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World Ambient-Assisted Living. IEEE Transactions on Fuzzy Systems, 2016, 24, 1307-1319.	6.5	23
242	User-optimized activity recognition for exergaming. Pervasive and Mobile Computing, 2016, 26, 3-16.	2.1	9
243	An Information-Theoretic Approach to Individual Sequential Data Sanitization. , 2016, , .		9
244	Movement Primitive Segmentation for Human Motion Modeling: A Framework for Analysis. IEEE Transactions on Human-Machine Systems, 2016, 46, 325-339.	2.5	70
245	From action to activity: Sensor-based activity recognition. Neurocomputing, 2016, 181, 108-115.	3.5	445
246	Human Activity Recognition by Combining a Small Number of Classifiers. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1342-1351.	3.9	31
247	Activity and Anomaly Detection in Smart Home: A Survey. Smart Sensors, Measurement and Instrumentation, 2016, , 191-220.	0.4	80
248	Motion Mode Recognition for Indoor Pedestrian Navigation Using Portable Devices. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 208-221.	2.4	60
249	A survey of depth and inertial sensor fusion for human action recognition. Multimedia Tools and Applications, 2017, 76, 4405-4425.	2.6	261
250	Classification of physical activities using wearable sensors. Intelligent Automation and Soft Computing, 2017, 23, 21-30.	1.6	9
251	SOS: Real-time and accurate physical assault detection using smartphone. Peer-to-Peer Networking and Applications, 2017, 10, 395-410.	2.6	8
252	Mobile activity recognition and fall detection system for elderly people using Ameva algorithm. Pervasive and Mobile Computing, 2017, 34, 3-13.	2.1	77
253	Combining discriminative spatiotemporal features for daily life activity recognition using wearable motion sensing suit. Pattern Analysis and Applications, 2017, 20, 1179-1194.	3.1	18

#	Article	IF	CITATIONS
254	Generalizing DTW to the multi-dimensional case requires an adaptive approach. Data Mining and Knowledge Discovery, $2017, 31, 1-31$.	2.4	181
255	Low-Complexity Framework for Movement Classification Using Body-Worn Sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 1537-1548.	2.1	7
256	Advanced classification of ambulatory activities using spectral density distances and heart rate. Biomedical Signal Processing and Control, 2017, 34, 9-15.	3.5	5
257	Unobtrusive and Wearable Systems for Automatic Dietary Monitoring. IEEE Transactions on Biomedical Engineering, 2017, 64, 2075-2089.	2.5	52
258	A novel orientation- and location-independent activity recognition method. Personal and Ubiquitous Computing, 2017, 21, 427-441.	1.9	24
259	Position-aware activity recognition with wearable devices. Pervasive and Mobile Computing, 2017, 38, 281-295.	2.1	103
260	Fall detection system for the elderly. , 2017, , .		25
261	Towards complex activity recognition using a Bayesian network-based probabilistic generative framework. Pattern Recognition, 2017, 68, 295-309.	5.1	39
262	Wearable Medical Sensor-Based System Design: A Survey. IEEE Transactions on Multi-Scale Computing Systems, 2017, 3, 124-138.	2.5	104
263	Multi-resident activity tracking and recognition in smart environments. Journal of Ambient Intelligence and Humanized Computing, 2017, 8, 513-529.	3.3	41
264	Recyclable Nonfunctionalized Paperâ€Based Ultralowâ€Cost Wearable Health Monitoring System. Advanced Materials Technologies, 2017, 2, 1600228.	3.0	63
265	Indoor corner recognition from crowdsourced trajectories using smartphone sensors. Expert Systems With Applications, 2017, 82, 266-277.	4.4	15
266	A hierarchical model for recognizing alarming states in a batteryless sensor alarm intervention for preventing falls in older people. Pervasive and Mobile Computing, 2017, 40, 1-16.	2.1	10
267	Evolving the Ecosystem of Personal Behavioral Data. Human-Computer Interaction, 2017, 32, 447-510.	3.1	17
268	Recognizing human concurrent activities using wearable sensors: a statistical modeling approach based on parallel HMM. Sensor Review, 2017, 37, 330-337.	1.0	6
269	Self-awareness in remote health monitoring systems using wearable electronics. , 2017, , .		43
270	ALPAS: Analog-PIR-Sensor-Based Activity Recognition System in Smarthome. , 2017, , .		13
271	Daily living activity recognition with ECHONET Lite appliances and motion sensors. , 2017, , .		14

#	Article	IF	Citations
272	Online personalization of cross-subjects based activity recognition models on wearable devices. , 2017, , .		36
273	Physical activity recognition by smartphones, a survey. Biocybernetics and Biomedical Engineering, 2017, 37, 388-400.	3.3	96
274	Enabling Far-Edge Analytics: Performance Profiling of Frequent Pattern Mining Algorithms. IEEE Access, 2017, 5, 8236-8249.	2.6	14
275	A Survey on Approaches of Motion Mode Recognition Using Sensors. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 1662-1686.	4.7	54
276	Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosensors and Bioelectronics, 2017, 90, 298-307.	5.3	228
277	Automatic detection of suckling events in lamb through accelerometer data classification. Computers and Electronics in Agriculture, 2017, 138, 137-147.	3.7	17
278	Key Factors for Innovative Developments on Health Sensor-Based System. Lecture Notes in Computer Science, 2017, , 665-675.	1.0	3
279	Multiple joint-variable domains recognition of human motion. , 2017, , .		29
280	User profiling and behavioral adaptation for HRI: A survey. Pattern Recognition Letters, 2017, 99, 3-12.	2.6	129
281	Smart-shoe self-powered by walking. , 2017, , .		5
281	Smart-shoe self-powered by walking. , 2017, , . The influence of feature selection methods on exercise classification with inertial measurement units. , 2017, , .		6
	The influence of feature selection methods on exercise classification with inertial measurement	4.0	
282	The influence of feature selection methods on exercise classification with inertial measurement units., 2017,,. A smartphone-based activity-aware system for music streaming recommendation. Knowledge-Based	4.0	6
282	The influence of feature selection methods on exercise classification with inertial measurement units., 2017,,. A smartphone-based activity-aware system for music streaming recommendation. Knowledge-Based Systems, 2017, 131, 70-82. Log-Sum Distance Measures and Its Application to Human-Activity Monitoring and Recognition Using		6 25
282 283 285	The influence of feature selection methods on exercise classification with inertial measurement units., 2017,,. A smartphone-based activity-aware system for music streaming recommendation. Knowledge-Based Systems, 2017, 131, 70-82. Log-Sum Distance Measures and Its Application to Human-Activity Monitoring and Recognition Using Data From Motion Sensors. IEEE Sensors Journal, 2017, 17, 4520-4533.		6 25 29
282 283 285 286	The influence of feature selection methods on exercise classification with inertial measurement units., 2017,,. A smartphone-based activity-aware system for music streaming recommendation. Knowledge-Based Systems, 2017, 131, 70-82. Log-Sum Distance Measures and Its Application to Human-Activity Monitoring and Recognition Using Data From Motion Sensors. IEEE Sensors Journal, 2017, 17, 4520-4533. Wearable sensor-based activity recognition for housekeeping task., 2017,,. A COMPARISON BETWEEN THE NON-PARAMETRIC AND FUZZY LOGIC-BASED CLASSIFICATIONS IN RECOGNITION OF HUMAN DAILY ACTIVITIES. Biomedical Engineering - Applications, Basis and	2.4	6 25 29
282 283 285 286 287	The influence of feature selection methods on exercise classification with inertial measurement units., 2017,, A smartphone-based activity-aware system for music streaming recommendation. Knowledge-Based Systems, 2017, 131, 70-82. Log-Sum Distance Measures and Its Application to Human-Activity Monitoring and Recognition Using Data From Motion Sensors. IEEE Sensors Journal, 2017, 17, 4520-4533. Wearable sensor-based activity recognition for housekeeping task., 2017,, A COMPARISON BETWEEN THE NON-PARAMETRIC AND FUZZY LOGIC-BASED CLASSIFICATIONS IN RECOGNITION OF HUMAN DAILY ACTIVITIES. Biomedical Engineering - Applications, Basis and Communications, 2017, 29, 1750003. Improving Activity Recognition Accuracy in Ambient-Assisted Living Systems by Automated Feature	0.3	6 25 29 15

#	Article	IF	CITATIONS
291	Inertial Sensor Based Modelling of Human Activity Classes: Feature Extraction and Multi-sensor Data Fusion Using Machine Learning Algorithms. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 306-314.	0.2	14
292	A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 56-64.	3.9	337
293	A Survey of Selected Indoor Positioning Methods for Smartphones. IEEE Communications Surveys and Tutorials, 2017, 19, 1347-1370.	24.8	382
294	Fast Adaptation of Activity Sensing Policies in Mobile Devices. IEEE Transactions on Vehicular Technology, 2017, 66, 5995-6008.	3.9	3
295	Characterizing user mobility using mobile sensing systems. International Journal of Distributed Sensor Networks, 2017, 13, 155014771772631.	1.3	13
296	Daily Human Activities Recognition Using Heterogeneous Sensors from Smartphones. Procedia Computer Science, 2017, 111, 323-328.	1.2	19
297	Active and adaptive ensemble learning for online activity recognition from data streams. Knowledge-Based Systems, 2017, 138, 69-78.	4.0	50
300	Big Data for Context Aware Computing – Perspectives and Challenges. Big Data Research, 2017, 10, 33-43.	2.6	38
301	Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models. International Journal of Distributed Sensor Networks, 2017, 13, 155014771668368.	1.3	74
302	Cloud-based recognition of complex activities for ambient assisted living in smart homes with non-invasive sensors. , 2017 , , .		2
303	Tweet Can Be Fit. ACM Transactions on Information Systems, 2017, 35, 1-34.	3.8	19
304	Energy-conscious fuzzy rule-based classifiers for battery operated embedded devices. , 2017, , .		2
305	loT system for Human Activity Recognition using BioHarness 3 and Smartphone., 2017,,.		20
306	Recognizing physical contexts of mobile video learners via smartphone sensors. Knowledge-Based Systems, 2017, 136, 75-84.	4.0	4
307	Top-k Pattern Matching Using an Information-Theoretic Criterion over Probabilistic Data Streams. Lecture Notes in Computer Science, 2017, , 511-526.	1.0	2
308	Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2744-2757.	4.0	39
309	Efficient and privacy-aware multi-party classification protocol for human activity recognition. Journal of Network and Computer Applications, 2017, 98, 84-96.	5.8	8
310	Learning Deep and Shallow Features for Human Activity Recognition. Lecture Notes in Computer Science, 2017, , 469-482.	1.0	25

#	Article	IF	CITATIONS
311	Hierarchical modeling for first-person vision activity recognition. Neurocomputing, 2017, 267, 362-377.	3.5	12
312	Posture Recognition Using the Interdistances Between Wearable Devices. , 2017, 1, 1-4.		17
313	Automatically Classifying User Engagement for Dynamic Multi-party Human–Robot Interaction. International Journal of Social Robotics, 2017, 9, 659-674.	3.1	45
314	Unsupervised understanding of location and illumination changes in egocentric videos. Pervasive and Mobile Computing, 2017, 40, 414-429.	2.1	4
315	Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural Networks. Procedia Computer Science, 2017, 110, 86-93.	1.2	126
316	Data driven multi-agent m-health system to characterize the daily activities of elderly people. , 2017, , .		6
317	Learning multi-level features for sensor-based human action recognition. Pervasive and Mobile Computing, 2017, 40, 324-338.	2.1	26
318	Feature Selection for Activity Recognition from Smartphone Accelerometer Data. Intelligent Automation and Soft Computing, 0, , 1-9.	1.6	19
319	Daily activity recognition with inertial ring and bracelet: An unsupervised approach., 2017,,.		12
320	A neural network based omni light sensor. , 2017, , .		1
321	Big Healthcare Data Analytics: Challenges and Applications. Scalable Computing and Communications, 2017, , 11-41.	0.5	43
322	Agentâ€oriented activity recognition in the event calculus: An application for diabetic patients. Computational Intelligence, 2017, 33, 899-925.	2.1	7
323	Daily wrist activity classification using a smart band. Physiological Measurement, 2017, 38, L10-L16.	1.2	14
324	A Survey of Wearable Devices and Challenges. IEEE Communications Surveys and Tutorials, 2017, 19, 2573-2620.	24.8	479
325	Toward an Unsupervised Approach for Daily Gesture Recognition in Assisted Living Applications. IEEE Sensors Journal, 2017, 17, 8395-8403.	2.4	20
326	Deep Neural Network based Human Activity Recognition for the Order Picking Process., 2017,,.		55
327	Multicriteria Design of Cost-Conscious Fuzzy Rule-Based Classifiers. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2017, 25, 141-159.	0.9	1
328	A noncontact-sensor surveillance system towards assisting independent living for older people. , 2017, , .		3

#	Article	IF	Citations
329	Automatic Detection of Visual Search for the Elderly using Eye and Head Tracking Data. KI - Kunstliche Intelligenz, 2017, 31, 339-348.	2.2	8
330	Collegial activity learning between heterogeneous sensors. Knowledge and Information Systems, 2017, 53, 337-364.	2.1	31
331	Feature selection for physical activity recognition using genetic algorithms. , 2017, , .		10
332	UDAT: User Discrimination Using Activity-Time Information. , 2017, , .		1
333	A ROBUST AUTOMATIC GAIT MONITORING APPROACH USING A SINGLE IMU FOR HOME-BASED APPLICATIONS. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750077.	0.3	11
334	A study on motion mode identification for cyborg roaches. , 2017, , .		13
335	WearIA: Wearable device implicit authentication based on activity information. , 2017, , .		19
336	Analyzing students' attention in class using wearable devices. , 2017, , .		20
337	Device independent activity monitoring using smart handhelds. , 2017, , .		6
338	Human activity recognition for emergency first responders via body-worn inertial sensors. , 2017, , .		21
339	Detecting spontaneous collaboration in dynamic group activities from noisy individual activity data., 2017, , .		1
340	Recognition of tennis actions using a depth camera. , 2017, , .		2
341	Sensing Activities and Locations of Senior Citizens toward Automatic Daycare Report Generation. , 2017, , .		13
342	An online feature selection architecture for Human Activity Recognition. , 2017, , .		8
343	Recognizing Human Activity in Free-Living Using Multiple Body-Worn Accelerometers. IEEE Sensors Journal, 2017, 17, 5290-5297.	2.4	60
344	Improved Stampede Prediction Model on Context-Awareness Framework Using Machine Learning Techniques. Advances in Intelligent Systems and Computing, 2017, , 39-51.	0.5	1
345	Indoor Device-Free Activity Recognition Based on Radio Signal. IEEE Transactions on Vehicular Technology, 2017, 66, 5316-5329.	3.9	35
346	A Survey on Activity Detection and Classification Using Wearable Sensors. IEEE Sensors Journal, 2017, 17, 386-403.	2.4	313

#	Article	IF	CITATIONS
347	Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality, 2017, 21, 91-107.	4.1	110
348	Robust human activity recognition from depth video using spatiotemporal multi-fused features. Pattern Recognition, 2017, 61, 295-308.	5.1	274
349	Online personal risk detection based on behavioural and physiological patterns. Information Sciences, 2017, 384, 281-297.	4.0	16
350	A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive and Mobile Computing, 2017, 37, 23-44.	2.1	94
351	Cloud-based Activity-aaService cyber–physical framework for human activity monitoring in mobility. Future Generation Computer Systems, 2017, 75, 158-171.	4.9	99
352	Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer. Pervasive and Mobile Computing, 2017, 38, 41-59.	2.1	104
353	Multiple density maps information fusion for effectively assessing intensity pattern of lifelogging physical activity. Neurocomputing, 2017, 220, 199-209.	3.5	41
354	Forecasting occurrences of activities. Pervasive and Mobile Computing, 2017, 38, 77-91.	2.1	33
355	Classification of Human Activities Using Variation in Impedance of Single On-Body Antenna. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 541-544.	2.4	19
356	Review of fall detection techniques: A data availability perspective. Medical Engineering and Physics, 2017, 39, 12-22.	0.8	161
357	Applying machine learning to head gesture recognition using wearables. , 2017, , .		6
358	Classification and analysis of human activities. , 2017, , .		6
359	Smartwatch Based Activity Recognition Using Active Learning. , 2017, , .		47
360	Recognition rate difference between real-time and offline human activity recognition. , 2017, , .		6
361	Personalized travel mode detection with smartphone sensors. , 2017, , .		4
362	A software architecture for generic human activity recognition from smartphone sensor data. , 2017, , .		7
363	Feature selection based on Choquet integral for human activity recognition., 2017,,.		3
364	Predicting activity occurrence time in smart homes with evolving fuzzy models. , 2017, , .		2

#	ARTICLE	IF	CITATIONS
365	User adaptation of convolutional neural network for human activity recognition., 2017,,.		30
366	User behavior driven MAC scheduling for body sensor networks. , 2017, , .		3
367	Automated Assessment of Dynamic Knee Valgus and Risk of Knee Injury During the Single Leg Squat. IEEE Journal of Translational Engineering in Health and Medicine, 2017, 5, 1-13.	2.2	39
368	LSTM-RNNs combined with scene information for human activity recognition., 2017,,.		16
369	Prediction of learning space occupation through WLAN access point data using Kalman filter and gradient boosting regression. , 2017, , .		0
370	Thyme: Improving Smartphone Prompt Timing Through Activity Awareness., 2017, , .		5
371	Exercise motion classification from large-scale wearable sensor data using convolutional neural networks. , $2017, \ldots$		41
372	Activity recognition using inertial sensors and a 2-D convolutional neural network. , 2017, , .		11
373	Next Generation Cooperative Wearables: Generalized Activity Assessment Computed Fully Distributed Within a Wireless Body Area Network. IEEE Access, 2017, 5, 16793-16807.	2.6	31
374	Concepts and developments of an wearable system - an IoT approach. , 2017, , .		5
375	Smart phone based phubbing walking detection and safety warning., 2017,,.		1
376	A Sensor Fusion Based Pan-Tilt Platform for Activity Tracking and Fall Detection. , 2017, , .		1
377	Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data. , 2017, , .		14
378	A real-time human motion recognition system using topic model and SVM. , 2017, , .		1
379	Assessing impacts of data volume and data set balance in using deep learning approach to human activity recognition. , 2017 , , .		14
380	Classification of human activity based on smartphone inertial sensor using support vector machine., 2017,,.		27
381	Multivariate Hidden Markov Models for Personal Smartphone Sensor Data: Time Series Analysis. , 2017,		1
382	Online data segmentation based on clustering algorithm and autoregressive model for human actions recognition., 2017,,.		1

#	Article	IF	CITATIONS
383	Human Activity Recognition for Physical Rehabilitation Using Wearable Sensors Fusion and Artificial Neural Networks. , 0, , .		13
384	Training a classifier for activity recognition using body motion simulation. , 2017, , .		0
385	PAMS: A new position-aware multi-sensor dataset for human activity recognition using smartphones. , 2017, , .		13
386	Automatic classification of physical exercises from wearable sensors using small dataset from non-laboratory settings. , 2017, , .		3
387	A combined Adaptive Neuro-Fuzzy and Bayesian strategy for recognition and prediction of gait events using wearable sensors., 2017,,.		6
388	An ensemble approach to activity recognition based on binary sensor readings. , 2017, , .		3
389	FallFree: Multiple Fall Scenario Dataset of Cane Users for Monitoring Applications Using Kinect. , 2017,		10
390	Real-time fall risk assessment system based on acceleration data. , 2017, , .		2
391	Effect of dynamic feature for human activity recognition using smartphone sensors., 2017,,.		21
392	Recurrent convolutional networks based intention recognition for human-robot collaboration tasks. , 2017, , .		6
393	Prediction of gait events in walking activities with a Bayesian perception system., 2017, 2017, 13-18.		3
394	Architecture for responsive emergency communications networks. , 2017, , .		37
395	Recognising Activities at Home. , 2017, , .		4
396	CNN based approach for activity recognition using a wrist-worn accelerometer., 2017, 2017, 2438-2441.		85
397	Recognition of human activity based on probabilistic finite-state automata., 2017,,.		3
398	An investigation of recurrent neural network for daily activity recognition using multi-modal signals., 2017,,.		5
399	Physical activity recognizer based on multimodal sensors in smartphone for ubiquitous-lifecare services. , 2017, , .		1
400	Open smart glasses development platform for AAL applications. , 2017, , .		3

#	ARTICLE	IF	Citations
401	Evaluation of supervised classification algorithms for human activity recognition with inertial sensors. , 2017, , .		21
402	Resource consumption analysis of online activity recognition on mobile phones and smartwatches. , $2017, \dots$		7
403	Energy-efficient activity recognition via multiple time-scale analysis. , 2017, , .		2
404	Sensor and feature selection for an emergency first responders activity recognition system. , 2017, , .		7
405	Evacuation Evaluation Using Machine Learning and Wearable Sensors., 2017,,.		0
406	A highly efficient human activity classification method using mobile data from wearable sensors. International Journal of Sensor Networks, 2017, 25, 86.	0.2	4
407	Smartphone Location-Independent Physical Activity Recognition Based on Transportation Natural Vibration Analysis. Sensors, 2017, 17, 931.	2.1	19
408	Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors. Sensors, 2017, 17, 1838.	2.1	51
409	A Novel Energy-Efficient Approach for Human Activity Recognition. Sensors, 2017, 17, 2064.	2.1	28
410	Activity-Aware Physiological Response Prediction Using Wearable Sensors. Inventions, 2017, 2, 32.	1.3	5
411	Wearable-Based Human Activity Recognition Using an IoT Approach. Journal of Sensor and Actuator Networks, 2017, 6, 28.	2.3	61
412	A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity Recognition. Sensors, 2017, 17, 66.	2.1	34
413	Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition. Sensors, 2017, 17, 319.	2.1	17
414	A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition. Sensors, 2017, 17, 529.	2.1	157
415	Localization and Tracking of Implantable Biomedical Sensors. Sensors, 2017, 17, 583.	2.1	37
416	Activity Recognition and Semantic Description for Indoor Mobile Localization. Sensors, 2017, 17, 649.	2.1	27
417	Activity Learning as a Foundation for Security Monitoring in Smart Homes. Sensors, 2017, 17, 737.	2.1	38
418	Unsupervised Machine Learning for Developing Personalised Behaviour Models Using Activity Data. Sensors, 2017, 17, 1034.	2.1	30

#	ARTICLE	IF	CITATIONS
419	Location-Enhanced Activity Recognition in Indoor Environments Using Off the Shelf Smart Watch Technology and BLE Beacons. Sensors, 2017, 17, 1230.	2.1	29
420	Classification of K-Pop Dance Movements Based on Skeleton Information Obtained by a Kinect Sensor. Sensors, 2017, 17, 1261.	2.1	28
421	Wearable Sensor Data Classification for Human Activity Recognition Based on an Iterative Learning Framework. Sensors, 2017, 17, 1287.	2.1	27
422	Emotional Self-Regulation of Individuals with Autism Spectrum Disorders: Smartwatches for Monitoring and Interaction. Sensors, 2017, 17, 1359.	2.1	78
423	The Role of Heart-Rate Variability Parameters in Activity Recognition and Energy-Expenditure Estimation Using Wearable Sensors. Sensors, 2017, 17, 1698.	2.1	29
424	Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions. Sensors, 2017, 17, 2509.	2.1	107
425	Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities. Sensors, 2017, 17, 2877.	2.1	13
426	A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors, 2017, 17, 341.	2.1	231
427	Real-Time Recognition of Calling Pattern and Behaviour of Mobile Phone Users through Anomaly Detection and Dynamically-Evolving Clustering. Applied Sciences (Switzerland), 2017, 7, 798.	1.3	11
428	Medical activity monitoring for elderly people using wearable wrist device. , 2017, , .		0
429	SenStick: Comprehensive Sensing Platform with an Ultra Tiny All-In-One Sensor Board for IoT Research. Journal of Sensors, 2017, 2017, 1-16.	0.6	33
430	Human activity recognition based on random forests. , 2017, , .		38
431	Detecting Steps Walking at very Low Speeds Combining Outlier Detection, Transition Matrices and Autoencoders from Acceleration Patterns. Sensors, 2017, 17, 2274.	2.1	4
432	Audio-based event recognition system for smart homes. , 2017, , .		8
433	Feature Encodings and Poolings for Action and Event Recognition: A Comprehensive Survey. Information (Switzerland), 2017, 8, 134.	1.7	2
434	A battery-less and wireless wearable sensor system for identifying bed and chair exits in a pilot trial in hospitalized older people. PLoS ONE, 2017, 12, e0185670.	1.1	30
435	Unsupervised motion artifact detection in wrist-measured electrodermal activity data., 2017,,.		24
436	On the Generality of Codebook Approach for Sensor-Based Human Activity Recognition. Electronics (Switzerland), 2017, 6, 44.	1.8	20

#	Article	IF	CITATIONS
437	Using Sensors to Study Home Activities. Journal of Sensor and Actuator Networks, 2017, 6, 32.	2.3	12
438	Capturing Daily Student Life by Recognizing Complex Activities Using Smartphones., 2017,,.		4
439	A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks. Sensors, 2017, 17, 2688.	2.1	5
440	A Case Study on Iteratively Assessing and Enhancing Wearable User Interface Prototypes. Symmetry, 2017, 9, 114.	1.1	10
441	iPig., 2017,,.		7
442	CapSense., 2017, , .		20
443	High-level activity recognition based on analysis of spatio-temporal contexts. , 2017, , .		0
444	Human Action Recognition with RGB-D Sensors. , 2017, , .		4
445	SADHealth: A Personal Mobile Sensing System for Seasonal Health Monitoring. IEEE Systems Journal, 2018, 12, 30-40.	2.9	11
446	Flexible feature-space-construction architecture and its VLSI implementation for multi-scale object detection. Japanese Journal of Applied Physics, 2018, 57, 04FF04.	0.8	1
447	Continuous authentication of smartphone users based on activity pattern recognition using passive mobile sensing. Journal of Network and Computer Applications, 2018, 109, 24-35.	5.8	98
448	Electronic Assessment of Physical Decline in Geriatric Cancer Patients. Current Oncology Reports, 2018, 20, 26.	1.8	7
449	Multi-modal activity recognition from egocentric vision, semantic enrichment and lifelogging applications for the care of dementia. Journal of Visual Communication and Image Representation, 2018, 51, 169-190.	1.7	30
450	Smartphone Sensing Meets Transport Data: A Collaborative Framework for Transportation Service Analytics. IEEE Transactions on Mobile Computing, 2018, 17, 945-960.	3.9	17
451	KiNEEt: application for learning and rehabilitation in special educational needs. Multimedia Tools and Applications, 2018, 77, 24013-24039.	2.6	22
452	Complex activity recognition system based on cascade classifiers and wearable device data. , 2018, , .		8
453	DrinkWatch., 2018,,.		19
454	Recent trends in machine learning for human activity recognitionâ€"A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1254.	4.6	186

#	Article	IF	Citations
455	Robust Activity Recognition for Aging Society. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1754-1764.	3.9	44
456	An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network. Technology and Health Care, 2018, 26, 379-385.	0.5	22
458	Development of Home Intelligent Fall Detection IoT System Based on Feedback Optical Flow Convolutional Neural Network. IEEE Access, 2018, 6, 6048-6057.	2.6	55
459	Resource-Efficient Object-Recognition Coprocessor With Parallel Processing of Multiple Scan Windows in 65-nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 431-444.	2.1	3
460	Twoâ€person activity recognition using skeleton data. IET Computer Vision, 2018, 12, 27-35.	1.3	29
461	Sensory-Glove-Based Open Surgery Skill Evaluation. IEEE Transactions on Human-Machine Systems, 2018, 48, 213-218.	2.5	30
462	Energy expenditure estimation using visual and inertial sensors. IET Computer Vision, 2018, 12, 36-47.	1.3	10
463	A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition. Engineering Applications of Artificial Intelligence, 2018, 70, 109-122.	4.3	32
464	A novel random forests based class incremental learning method for activity recognition. Pattern Recognition, 2018, 78, 277-290.	5.1	85
465	Aerobic Exercise Recognition Through Sparse Representation Over Learned Dictionary by Using Wearable Inertial Sensors. Journal of Medical and Biological Engineering, 2018, 38, 544-555.	1.0	4
466	Smart Home Environment for Mild Cognitive Impairment Population: Solutions to Improve Care and Quality of Life. IEEE Consumer Electronics Magazine, 2018, 7, 68-76.	2.3	31
467	Detection of bimanual gestures everywhere: Why it matters, what we need and what is missing. Robotics and Autonomous Systems, 2018, 99, 30-49.	3.0	2
468	Segmentation and recognition of human motion sequences using wearable inertial sensors. Multimedia Tools and Applications, 2018, 77, 21201-21220.	2.6	19
469	No Need to Laugh Out Loud. ACM Transactions on Computer-Human Interaction, 2017, 24, 1-29.	4.6	14
470	A general framework for sensor-based human activity recognition. Computers in Biology and Medicine, 2018, 95, 248-260.	3.9	47
471	Real-time activity recognition for energy efficiency in buildings. Applied Energy, 2018, 211, 146-160.	5.1	74
472	Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly. Machine Vision and Applications, 2018, 29, 765-788.	1.7	11
473	Comparison Analysis of Radio_Based and Sensor_Based Wearable Human Activity Recognition Systems. Wireless Personal Communications, 2018, 101, 775-797.	1.8	6

#	Article	IF	CITATIONS
474	Locomotion Activity Recognition Using Stacked Denoising Autoencoders. IEEE Internet of Things Journal, 2018, 5, 2085-2093.	5.5	78
475	Deep learning fusion conceptual frameworks for complex human activity recognition using mobile and wearable sensors. , $2018, , .$		14
476	Explicative human activity recognition using adaptive association rule-based classification. , $2018, , .$		14
477	Infrared–ultrasonic sensor fusion for support vector machine–based fall detection. Journal of Intelligent Material Systems and Structures, 2018, 29, 2027-2039.	1.4	39
478	Non-Contact Human Motion Recognition Based on UWB Radar. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 306-315.	2.7	41
479	Autonomous Training of Activity Recognition Algorithms in Mobile Sensors: A Transfer Learning Approach in Context-Invariant Views. IEEE Transactions on Mobile Computing, 2018, 17, 1764-1777.	3.9	34
480	Dealing With Information Overload in Multifaceted Personal Informatics Systems. Human-Computer Interaction, 2018, 33, 1-48.	3.1	21
481	GCHAR: An efficient Group-based Contextâ€"aware human activity recognition on smartphone. Journal of Parallel and Distributed Computing, 2018, 118, 67-80.	2.7	116
482	Efficiency investigation of artificial neural networks in human activity recognition. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 1049-1060.	3.3	35
483	Combining emerging patterns with random forest for complex activity recognition in smart homes. Applied Intelligence, 2018, 48, 315-330.	3.3	42
484	Multi-view stacking for activity recognition with sound and accelerometer data. Information Fusion, 2018, 40, 45-56.	11.7	83
485	Assessment of Homomorphic Analysis for Human Activity Recognition From Acceleration Signals. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1001-1010.	3.9	29
486	Activity Recognition in Sensor Data Streams for Active and Assisted Living Environments. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 2933-2945.	5.6	22
487	HARKE: Human Activity Recognition from Kinetic Energy Harvesting Data in Wearable Devices. IEEE Transactions on Mobile Computing, 2018, 17, 1353-1368.	3.9	111
488	Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders. Signal Processing, 2018, 144, 180-191.	2.1	60
489	A Fitting Approach to Construct and Measurement Alignment. Organizational Research Methods, 2018, 21, 592-632.	5.6	50
490	Codebook-based electrooculography data analysis towards cognitive activity recognition. Computers in Biology and Medicine, 2018, 95, 277-287.	3.9	9
491	Depth-Sensor Applications for the Elderly: A Viable Option to Promote a Better Quality of Life. IEEE Consumer Electronics Magazine, 2018, 7, 47-56.	2.3	7

#	Article	IF	CITATIONS
492	PinMe: Tracking a Smartphone User around the World. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4, 420-435.	2.5	25
493	Human Activity Classification in Smartphones Using Accelerometer and Gyroscope Sensors. IEEE Sensors Journal, 2018, 18, 1169-1177.	2.4	133
494	Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey. IEEE Internet of Things Journal, 2018, 5, 1-27.	5 . 5	299
495	Delivering home healthcare through a Cloud-based Smart Home Environment (CoSHE). Future Generation Computer Systems, 2018, 81, 129-140.	4.9	109
496	Feature reduction for classification of daily activities through kinematic data from smartphones. Smart Health, 2018, 5-6, 40-50.	2.0	1
497	I sense overeating: Motif-based machine learning framework to detect overeating using wrist-worn sensing. Information Fusion, 2018, 41, 37-47.	11.7	34
498	Exploring Autonomic Sensors Processing in the Internet of Things. , 2018, , .		1
499	Human Activity Classification in Smartphones using Shape Descriptors., 2018,,.		0
500	Challenges in Data Acquisition Systems: Lessons Learned from Fall Detection to Nanosensors*. , 2018, , .		2
501	Stacked Generalization with Wrapper-Based Feature Selection for Human Activity Recognition. , 2018, ,		6
502	Toward community-based wheelchair evaluation with machine learning methods. Journal of Rehabilitation and Assistive Technologies Engineering, 2018, 5, 205566831880840.	0.6	2
503	Activity Recognition Using One-Versus-All Strategy with Relief-F and Self-Adaptive Algorithm. , 2018, , .		3
504	Gait Related Activity Based Person Authentication with Smartphone Sensors., 2018,,.		7
505	Automatic Labeling For Personalized IoT Wearable Monitoring. , 2018, , .		1
506	IMU-Based Robust Human Activity Recognition using Feature Analysis, Extraction, and Reduction. , 2018, , .		16
507	TASC: An Augmented Classification Method for Impersonal HAR. Mobile Information Systems, 2018, 2018, 1-10.	0.4	8
508	A Machine Vision Approach to Human Activity Recognition using Photoplethysmograph Sensor Data. , 2018, , .		16
509	Novel Approaches to Activity Recognition Based on Vector Autoregression and Wavelet Transforms. , 2018, , .		7

#	ARTICLE	IF	CITATIONS
510	Towards Smart Educational Recommendations with Reinforcement Learning in Classroom. , 2018, , .		29
511	HaaS(Human Activity Analytics as a Service) Using Sensor Data of Smart Devices. , 2018, , .		5
512	Human Activity and Posture Classification Using Wearable Accelerometer Data. , 2018, , .		5
513	Multidimensional Particle Swarm Optimization Based Long Short-Term Memory Method for Human Activity Recognition., 2018, , .		1
514	Real-Time Onboard Human Motion Recognition Based on Inertial Measurement Units., 2018,,.		6
515	A Single Accelerometer-based Robust Human Activity Recognition via Wavelet Features and Ensemble Feature Selection. , 2018, , .		6
516	WiAnti: an Anti-Interference Activity Recognition System Based on WiFi CSI., 2018,,.		10
517	Trend on Sedentary Behaviour Monitoring Research Purposes: A Review. , 2018, , .		O
518	CRNet: Corner Recognition from Trajectories Based on Convolutional and Recurrent Neural Networks. , 2018, , .		2
520	Towards Clustering of Mobile and Smartwatch Accelerometer Data for Physical Activity Recognition. Informatics, 2018, 5, 29.	2.4	32
521	FeSNOC: A Novel Feature Selection Algorithm Based on Niche Overlapping Coefficient., 2018,,.		1
522	Energy-based decision engine for household human activity recognition. , 2018, , .		3
523	Human activity recognition from inertial sensor time-series using batch normalized deep LSTM recurrent networks., 2018, 2018, 1-4.		63
524	Investigating Adoption Factors of Wearable Technology in Health and Fitness. , 2018, , .		12
525	Machine Learning Based Transportation Modes Recognition Using Mobile Communication Quality. , 2018, , .		4
526	Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring. Sensors, 2018, 18, 3822.	2.1	42
527	Towards Group-Activities Based Community Detection. , 2018, , .		1
528	Combining Low and Mid-Level Gaze Features for Desktop Activity Recognition., 2018, 2, 1-27.		19

#	Article	IF	Citations
529	Closing the Gaps in Inertial Motion Tracking. , 2018, , .		77
530	Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos. ETRI Journal, 2018, 40, 499-510.	1.2	9
531	Activity Recognition by Classification with Time Stabilization for the SHL Recognition Challenge. , 2018, , .		2
532	Human Activity Recognition on Mobile Devices Using Artificial Hydrocarbon Networks. Lecture Notes in Computer Science, 2018, , 17-29.	1.0	0
533	Human Motion Recognition Using E-textile Sensor and Adaptive Neuro-Fuzzy Inference System. Fibers and Polymers, 2018, 19, 2657-2666.	1.1	17
534	Towards Systematic Benchmarking of Activity Recognition Algorithms. , 2018, , .		0
535	IoT-Enabled Group Activity Recognition Services Using a Modeling Language Approach. , 2018, , .		1
536	A Hybrid Model on Child Security and Activities Monitoring System Using IoT. , 2018, , .		5
537	Sensor Selection for Classification of Physical Activity in Long-Term Wearable Devices. , 2018, , .		4
538	An Improved Human Activity Recognition by Using Genetic Algorithm to Optimize Feature Vector., 2018,		7
539	Multiscale DCNN Ensemble Applied to Human Activity Recognition Based on Wearable Sensors. , 2018, , .		4
540	Performance Evaluation of Advanced Classification Models on Spatial Location Based Shimmer2 Sensor Data Sets. , 2018, , .		O
541	Movement and Gesture Recognition Using Deep Learning and Wearable-sensor Technology. , 2018, , .		15
542	Indoor Micro-Activity Recognition Method Using Ubiquitous WiFi Devices. , 2018, , .		1
543	Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors. Sensors, 2018, 18, 4132.	2.1	30
544	Custom Dual Transportation Mode Detection By Smartphone Devices Exploiting Sensor Diversity. , 2018, , .		36
545	Human motion recognition using SWCNT textile sensor and fuzzy inference system based smart wearable. Sensors and Actuators A: Physical, 2018, 283, 263-272.	2.0	14
546	Data Fusion in Ubiquitous Sports Training: Methodology and Application. Wireless Communications and Mobile Computing, 2018, 2018, 1-14.	0.8	8

#	Article	IF	Citations
547	Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk. Sensors, 2018, 18, 3219.	2.1	57
548	Applications of human action analysis and recognition on wireless network infrastructures: State of the art and real world challenges. , 2018 , , .		3
549	An Architecture Utilizing Human Emotions and Activities Recognition for Remote Monitoring. , 2018, , .		0
550	Activity Recognition using Head Worn Inertial Sensors. , 2018, , .		11
551	Impact of Sampling Rate on Wearable-Based Fall Detection Systems Based on Machine Learning Models. IEEE Sensors Journal, 2018, 18, 9882-9890.	2.4	54
552	Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms. Sensors, 2018, 18, 3109.	2.1	38
553	Enhancing Activity Recognition of Self-Localized Robot Through Depth Camera and Wearable Sensors. IEEE Sensors Journal, 2018, 18, 9324-9331.	2.4	16
554	Combining off-the-shelf Image Classifiers with Transfer Learning for Activity Recognition. , 2018, , .		O
555	Transition-Aware Housekeeping Task Monitoring Using Single Wrist-Worn Sensor. IEEE Sensors Journal, 2018, 18, 8950-8962.	2.4	9
556	Development of wearable equipment and piezoelectric vibration energy harvest devices. IOP Conference Series: Materials Science and Engineering, 2018, 397, 012080.	0.3	0
557	A probabilistic data-driven method for human activity recognition. Journal of Ambient Intelligence and Smart Environments, 2018, 10, 393-408.	0.8	4
558	GRC-Sensing: An Architecture to Measure Acoustic Pollution Based on Crowdsensing. Sensors, 2018, 18, 2596.	2.1	14
559	Towards Human Activity Recognition: A Hierarchical Feature Selection Framework. Sensors, 2018, 18, 3629.	2.1	32
560	Context-Adaptive Privacy Mechanisms. , 2018, , 337-372.		7
561	Self-Adaptive Multi-Sensor Activity Recognition Systems Based on Gaussian Mixture Models. Informatics, 2018, 5, 38.	2.4	7
562	Human Activity Recognition on Smartphones using Symbolic Data Representation. , $2018, \ldots$		0
563	Sensory GANs: An Effective Generative Adversarial Framework for Sensor-based Human Activity Recognition. , $2018, \ldots$		36
564	The case for ambient sensing for human activity detection. , 2018, , .		5

#	Article	IF	CITATIONS
565	Research on Human Activity Identification Based on Image Processing and Artificial Intelligence. International Journal of Engineering and Technology(UAE), 2018, 7, 174.	0.2	4
566	Automatic Task Analysis: Toward Wearable Behaviometrics. IEEE Systems, Man, and Cybernetics Magazine, 2018, 4, 15-20.	1.2	8
567	A More Efficient Transportable and Scalable System for Real-Time Activities and Exercises Recognition. Sensors, 2018, 18, 268.	2.1	20
568	Attributes' Importance for Zero-Shot Pose-Classification Based on Wearable Sensors. Sensors, 2018, 18, 2485.	2.1	15
569	Recognition and prediction of manipulation actions using Enriched Semantic Event Chains. Robotics and Autonomous Systems, 2018, 110, 173-188.	3.0	14
570	Real-Time Human Physical Activity Recognition with Low Latency Prediction Feedback Using Raw IMU Data., 2018, 2018, 239-242.		13
571	A Novel Method for Automatic Detection and Classification of Movement Patterns in Short Duration Playing Activities. IEEE Access, 2018, 6, 53409-53425.	2.6	4
572	Deep Transfer Learning for Cross-domain Activity Recognition. , 2018, , .		91
573	Beacon-Based Time-Spatial Recognition toward Automatic Daily Care Reporting for Nursing Homes. Journal of Sensors, 2018, 2018, 1-15.	0.6	11
574	Smart Care Beds for Elderly Patients with Impaired Mobility. Wireless Communications and Mobile Computing, 2018, 2018, 1-12.	0.8	23
575	Visual features for ego-centric activity recognition. , 2018, , .		8
576	Radar Data Cube Analysis for Fall Detection. , 2018, , .		38
577	Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors. Informatics, 2018, 5, 26.	2.4	113
578	Proposing Logical Table Constructs for Enhanced Machine Learning Process. IEEE Access, 2018, 6, 47751-47769.	2.6	5
579	A Non-Stationary Channel Model for the Development of Non-Wearable Radio Fall Detection Systems. IEEE Transactions on Wireless Communications, 2018, 17, 7718-7730.	6.1	18
580	WBAN Path Loss Based Approach For Human Activity Recognition With Machine Learning Techniques., 2018,,.		12
581	Hips Do Lie! A Position-Aware Mobile Fall Detection System. , 2018, , .		24
582	Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle. Electronics (Switzerland), 2018, 7, 117.	1.8	22

#	Article	IF	CITATIONS
583	Recognizing multi-resident activities in non-intrusive sensor-based smart homes by formal concept analysis. Neurocomputing, 2018, 318, 75-89.	3.5	22
584	Authentication Protocol for Wearable Devices Using Mobile Authentication Proxy., 2018,,.		4
585	Combining wearable physiological and inertial sensors with indoor user localization network to enhance activity recognition. Journal of Ambient Intelligence and Smart Environments, 2018, 10, 345-357.	0.8	10
586	Stratified Transfer Learning for Cross-domain Activity Recognition. , 2018, , .		136
587	A Machine Learning Approach for Identifying Soccer Moves Using an Accelerometer Sensor. , 2018, , .		1
588	Human Activity Recognition with Wearable Biomedical Sensors in Cyber Physical Systems. , 2018, , .		3
589	Activity Classification Feasibility Using Wearables: Considerations for Hip Fracture. Journal of Sensor and Actuator Networks, 2018, 7, 54.	2.3	8
590	Increasing user confidence in intelligent environments. Journal of Reliable Intelligent Environments, 2018, 4, 71-73.	3.8	1
591	Recognition of human fall events based on single tri-axial gyroscope., 2018,,.		11
592	A robust convolutional neural network for online smartphone-based human activity recognition. Journal of Intelligent and Fuzzy Systems, 2018, 35, 1609-1620.	0.8	24
593	A Clustering <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>K</mml:mi></mml:mrow></mml:math> -Anonymity Privacy-Preserving Method for Wearable IoT Devices. Security and Communication Networks, 2018, 2018, 1-8.	1.0	26
594	Towards an App Based on FIWARE Architecture and Data Mining with Imperfect Data. Communications in Computer and Information Science, 2018, , 75-87.	0.4	0
595	Towards a well-planned, activity-based work environment: Automated recognition of office activities using accelerometers. Building and Environment, 2018, 144, 86-93.	3.0	21
596	Security Monitoring in a Low Cost Smart Home for the Elderly. Lecture Notes in Computer Science, 2018, , 262-273.	1.0	2
597	Understanding Fine Motor Patterns in Children with Autism Using a Haptic-Gripper Virtual Reality System. Lecture Notes in Computer Science, 2018, , 650-659.	1.0	1
598	Proposing Enhanced Feature Engineering and a Selection Model for Machine Learning Processes. Applied Sciences (Switzerland), 2018, 8, 646.	1.3	28
599	Transfer Learning for Improved Audio-Based Human Activity Recognition. Biosensors, 2018, 8, 60.	2.3	10
600	A Noble Feature Selection Method for Human Activity Recognition using Linearly Dependent Concept (LDC). , 2018, , .		2

#	Article	IF	CITATIONS
601	SATURN., 2018, 2, 1-28.		52
602	An Ensemble of Condition Based Classifiers for Device Independent Detailed Human Activity Recognition Using Smartphones â€. Information (Switzerland), 2018, 9, 94.	1.7	30
603	Detecting Transitions in Manual Tasks from Wearables: An Unsupervised Labeling Approach. Informatics, 2018, 5, 16.	2.4	1
604	Recognition of Physical Activities from a Single Arm-Worn Accelerometer: A Multiway Approach. Informatics, 2018, 5, 20.	2.4	4
605	Flexible Piezoelectric Sensor-Based Gait Recognition. Sensors, 2018, 18, 468.	2.1	36
606	Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. Sensors, 2018, 18, 679.	2.1	196
607	A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band. Sensors, 2018, 18, 2034.	2.1	11
608	Exploration of Human Activities Using Message Streaming Brokers and Automated Logical Reasoning for Ambient-Assisted Services. IEEE Access, 2018, 6, 27127-27155.	2.6	11
609	Recognition of action dynamics in fencing using multimodal cues. Image and Vision Computing, 2018, 75, 1-10.	2.7	15
610	Extending the battery lifetime of wearable sensors with embedded machine learning. , 2018, , .		46
611	SmokeSense: Online Activity Recognition Framework on Smartwatches. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 106-124.	0.2	13
612	Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition. Pattern Recognition, 2018, 81, 545-561.	5.1	61
613	Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone. Sensors, 2018, 18, 2203.	2.1	43
614	Activity Classification in Independent Living Environment with JINS MEME Eyewear. , 2018, , .		3
615	Continuous Arm Gesture Recognition Based on Natural Features and Logistic Regression. IEEE Sensors Journal, 2018, 18, 8143-8153.	2.4	14
616	AutoPlay: a smart toys-kit for an objective analysis of children ludic behavior and development. , 2018,		4
617	Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0. Sensors, 2018, 18, 2146.	2.1	89
618	Activity Recognition Invariant to Wearable Sensor Unit Orientation Using Differential Rotational Transformations Represented by Quaternions. Sensors, 2018, 18, 2725.	2.1	18

#	Article	IF	CITATIONS
619	UnTran: Recognizing Unseen Activities with Unlabeled Data Using Transfer Learning., 2018,,.		9
620	Log-Likelihood Clustering-Enabled Passive RF Sensing for Residential Activity Recognition. IEEE Sensors Journal, 2018, 18, 5413-5421.	2.4	14
621	Automatic Identification of Use of Public Transportation from Mobile Sensor Data. , 2018, , .		3
622	Human Activity Recognition for Healthcare using Smartphones. , 2018, , .		54
623	Continuous Patient Monitoring With a Patient Centric Agent: A Block Architecture. IEEE Access, 2018, 6, 32700-32726.	2.6	200
624	SensePods: A ZigBee-Based Tangible Smart Home Interface. IEEE Transactions on Consumer Electronics, 2018, 64, 145-152.	3.0	23
625	Below the Surface., 2018,,.		26
626	A novel chaotic map based compressive classification scheme for human activity recognition using a tri-axial accelerometer. Multimedia Tools and Applications, 2018, 77, 31261-31280.	2.6	24
627	A survey of group activity recognition in smart building. , 2018, , .		5
628	A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and Measurement Using Wearable Sensors. IEEE Internet of Things Journal, 2019, 6, 1384-1393.	5 . 5	70
629	HuMAn: Complex Activity Recognition with Multi-Modal Multi-Positional Body Sensing. IEEE Transactions on Mobile Computing, 2019, 18, 857-870.	3.9	71
631	Iterative Design of Visual Analytics for a Clinician-in-the-Loop Smart Home. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1742-1748.	3.9	19
632	Nonparametric Activity Recognition System in Smart Homes Based on Heterogeneous Sensor Data. IEEE Transactions on Automation Science and Engineering, 2019, 16, 678-690.	3.4	5
633	Time-Frequency Characteristics of In-Home Radio Channels Influenced by Activities of the Home Occupant. Sensors, 2019, 19, 3557.	2.1	3
634	Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition. Sensors, 2019, 19, 3468.	2.1	16
635	A concise review on sensor signal acquisition and transformation applied to human activity recognition and human–robot interaction. International Journal of Distributed Sensor Networks, 2019, 15, 155014771985398.	1.3	7
636	Smartwatch Application for Horse Gaits Activity Recognition. , 2019, , .		4
637	A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data. IEEE Access, 2019, 7, 99152-99160.	2.6	99

#	Article	IF	Citations
638	OSense., 2019,,.		1
639	Who Takes What: Using RGB-D Camera and Inertial Sensor for Unmanned Monitor. , 2019, , .		1
640	Semi-Automated Data Labeling for Activity Recognition in Pervasive Healthcare. Sensors, 2019, 19, 3035.	2.1	12
641	Immersive Community Analytics for Wearable Enhanced Learning. Lecture Notes in Computer Science, 2019, , 162-174.	1.0	3
642	Collaborative HRI and Machine Learning for Constructing Personalised Physical Exercise Databases. Lecture Notes in Computer Science, 2019, , 209-220.	1.0	0
643	Effect of Data Representation Method for Effective Mining of Time Series Data. , 2019, , .		0
644	A New Deep Hierarchical Neural Network Applied in Human Activity Recognition (HAR) Using Wearable Sensors. Lecture Notes in Computer Science, 2019, , 90-102.	1.0	0
645	Feasibility analysis of unsupervised industrial activity recognition based on a frequent micro action., 2019,,.		7
646	Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview. Sensors, 2019, 19, 3213.	2.1	145
647	A Survey on Human Behavior Recognition Using Smartphone-Based Ultrasonic Signal. IEEE Access, 2019, 7, 100581-100604.	2.6	10
648	Automatic Detection of Urban Features from Wheelchair Users' Movements. , 2019, , .		7
649	Human Activity Recognition for Production and Logistics—A Systematic Literature Review. Information (Switzerland), 2019, 10, 245.	1.7	37
650	Classifying Diverse Physical Activities Using "Smart Garments― Sensors, 2019, 19, 3133.	2.1	22
651	Advanced Machine Learning for Gesture Learning and Recognition Based on Intelligent Big Data of Heterogeneous Sensors. Symmetry, 2019, 11, 929.	1.1	3
652	Channel State Information from Pure Communication to Sense and Track Human Motion: A Survey. Sensors, 2019, 19, 3329.	2.1	41
653	Granger-causality: An efficient single user movement recognition using a smartphone accelerometer sensor. Pattern Recognition Letters, 2019, 125, 576-583.	2.6	13
654	Comparison of lower limb segment forces during running on artificial turf and natural grass. Journal of Rehabilitation and Assistive Technologies Engineering, 2019, 6, 205566831983570.	0.6	3
655	Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey. IEEE Access, 2019, 7, 90316-90356.	2.6	125

#	Article	IF	Citations
656	Designing Wearable Systems for Sports: A Review of Trends and Opportunities in Human–Computer Interaction. IEEE Transactions on Human-Machine Systems, 2019, 49, 314-325.	2.5	82
657	A Novel Human Activity Recognition and Prediction in Smart Home Based on Interaction. Sensors, 2019, 19, 4474.	2.1	60
658	Practical fall detection based on IoT technologies: A survey. Internet of Things (Netherlands), 2019, 8, 100124.	4.9	33
659	Forecasting of foreign trips by transactional data: a comparative study. Procedia Computer Science, 2019, 156, 225-234.	1.2	4
660	A Survey on Human Activity Recognition Using Accelerometer Sensor. , 2019, , .		7
661	Implementation of a batch normalized deep LSTM recurrent network on a smartphone for human activity recognition. , $2019, , .$		3
662	An MDDâ€based method for building contextâ€aware applications with high reusability. Journal of Software: Evolution and Process, 2019, 31, e2200.	1.2	3
663	PerRNN: Personalized Recurrent Neural Networks for Acceleration-Based Human Activity Recognition. , 2019, , .		9
664	Identification of Bicycling Periods Using the MicroPEM Personal Exposure Monitor. Sensors, 2019, 19, 4613.	2.1	11
665	ActiPPG: Using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health, 2019, 14, 100082.	2.0	44
666	Attention-based LSTM Network for Wearable Human Activity Recognition. , 2019, , .		6
667	Challenges for data collecting of teacher and student' behavior in different types of class using video and wearable device. , 2019, , .		3
668	HDL: Hierarchical Deep Learning Model based Human Activity Recognition using Smartphone Sensors. , 2019, , .		12
669	Target-Specific Action Classification for Automated Assessment of Human Motor Behavior from Video. Sensors, 2019, 19, 4266.	2.1	4
670	An Industrial IoT Solution for Evaluating Workers' Performance Via Activity Recognition. , 2019, , .		18
671	Across-Sensor Feature Learning for Energy-Efficient Activity Recognition on Mobile Devices. , 2019, , .		5
672	A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset. Computers in Biology and Medicine, 2019, 115, 103520.	3.9	77

#	ARTICLE	IF	CITATIONS
674	WaistonBelt X:A Belt-Type Wearable Device with Sensing and Intervention Toward Health Behavior Change. Sensors, 2019, 19, 4600.	2.1	14
675	Environmental Monitoring Based on Fog Computing Paradigm and Internet of Things. IEEE Access, 2019, 7, 127154-127165.	2.6	12
676	SolarGest., 2019,,.		45
677	Personalized Posture and Fall Classification with Shallow Gated Recurrent Units., 2019, , .		2
678	Activity recognition in manufacturing: The roles of motion capture and sEMG+inertial wearables in detecting fine vs. gross motion. , 2019 , , .		21
679	A multisource fusion framework driven by user-defined knowledge for egocentric activity recognition. Eurasip Journal on Advances in Signal Processing, 2019, 2019, 14.	1.0	10
680	Enabling Identity-Aware Tracking via Fusion of Visual and Inertial Features. , 2019, , .		10
681	Issues of Human Activity Recognition in Healthcare. , 2019, , .		9
682	Automated Product Localization Through Mobile Data Analysis., 2019, , .		1
683	REAP., 2019,,.		5
684	On the Homogenization of Heterogeneous Inertial-Based Databases for Human Activity Recognition. , 2019, , .		7
685	SARM: Salah Activities Recognition Model Based on Smartphone. Electronics (Switzerland), 2019, 8, 881.	1.8	18
686	Multi-Sensor Fusion for Activity Recognitionâ€"A Survey. Sensors, 2019, 19, 3808.	2.1	57
687	A Comparative Research on Human Activity Recognition Using Deep Learning. , 2019, , .		10
688	Designing Classifier For Human Activity Recognition Using Artificial Neural Network., 2019,,.		4
689	Activity Recognition for IoT Devices Using Fuzzy Spatio-Temporal Features as Environmental Sensor Fusion. Sensors, 2019, 19, 3512.	2.1	30
690	Towards a reference model for sensor-supported learning systems. Journal of King Saud University - Computer and Information Sciences, 2021, 33, 1145-1157.	2.7	4
691	Distribution-Based Semi-Supervised Learning for Activity Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 7699-7706.	3.6	5

#	Article	IF	CITATIONS
692	Activity recognition in manual manufacturing: Detecting screwing processes from sensor data. Procedia CIRP, 2019, 81, 1177-1182.	1.0	10
693	Deep Learning-based Human Motion Prediction considering Context Awareness for Human-Robot Collaboration in Manufacturing. Procedia CIRP, 2019, 83, 272-278.	1.0	63
694	Transfer learning across human activities using a cascade neural network architecture. , 2019, , .		13
695	Dynamic Human Behavior Pattern Detection and Classification. , 2019, , .		4
696	Integrating Activity Recognition and Nursing Care Records. , 2019, 3, 1-24.		29
697	EPARS., 2019,,.		5
698	WiDetect., 2019, 3, 1-24.		45
699	Towards skill recognition using eye-hand coordination in industrial production. , 2019, , .		3
700	WiCAR., 2019,,.		31
701	Enhancing activity recognition using CPD-based activity segmentation. Pervasive and Mobile Computing, 2019, 53, 75-89.	2.1	48
702	Activity-Aware Wearable System for Power-Efficient Prediction of Physiological Responses. Sensors, 2019, 19, 441.	2.1	20
703	Parallel feature selection for distributed-memory clusters. Information Sciences, 2019, 496, 399-409.	4.0	9
704	Enhanced Approach Using Reduced SBTFD Features and Modified Individual Behavior Estimation for Crowd Condition Prediction. Entropy, 2019, 21, 487.	1.1	4
705	A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones. Sensors, 2019, 19, 2307.	2.1	27
706	A Survey on CSI-Based Human Behavior Recognition in Through-the-Wall Scenario. IEEE Access, 2019, 7, 78772-78793.	2.6	35
707	Device-free human micro-activity recognition method using WiFi signals. Geo-Spatial Information Science, 2019, 22, 128-137.	2.4	41
708	Real-time Arm Skeleton Tracking and Gesture Inference Tolerant to Missing Wearable Sensors. , 2019, , .		38
709	Modified deep residual network architecture deployed on serverless framework of IoT platform based on human activity recognition application. Future Generation Computer Systems, 2019, 101, 14-28.	4.9	43

#	Article	IF	CITATIONS
710	A Flexible Approach for Human Activity Recognition Based on Broad Learning System., 2019, , .		4
711	Positioning Methods and the Use of Location and Activity Data in Forests. Forests, 2019, 10, 458.	0.9	28
712	Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs. IEEE Access, 2019, 7, 74422-74436.	2.6	48
713	Combining Data from Fitness Trackers with Meteorological Sensor Measurements for Enhanced Monitoring of Sports Performance. Lecture Notes in Computer Science, 2019, , 692-705.	1.0	3
714	Fuzzy Join as a Preparation Step for the Analysis of Training Data. Communications in Computer and Information Science, 2019, , 263-273.	0.4	1
715	Human Activity Recognition Based on Convolutional Neural Network. IFMBE Proceedings, 2019, , 247-252.	0.2	2
716	Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano, 2019, 13, 7166-7174.	7.3	181
717	Virtual Sensors for Optimal Integration of Human Activity Data. Sensors, 2019, 19, 2017.	2.1	9
718	Human Activity Identification Using Novel Feature Extraction and Ensemble-Based Learning for Accuracy. Advances in Intelligent Systems and Computing, 2019, , 343-352.	0.5	0
719	Human activity recognition method based on molecular attributes. International Journal of Distributed Sensor Networks, 2019, 15, 155014771984272.	1.3	5
720	A framework for group activity detection and recognition using smartphone sensors and beacons. Building and Environment, 2019, 158, 205-216.	3.0	27
721	Comparative analysis of multilayer backpropagation and multi-channel deep convolutional neural network for human activity recognition. AIP Conference Proceedings, 2019, , .	0.3	2
722	Robust Human Activity Recognition Using Multimodal Feature-Level Fusion. IEEE Access, 2019, 7, 60736-60751.	2.6	102
723	User Behavior Driven MAC Scheduling for Body Sensor Networks: A Cross-Layer Approach. IEEE Sensors Journal, 2019, 19, 7755-7765.	2.4	9
724	Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?. BioMedical Engineering OnLine, 2019, 18, 53.	1.3	6
725	A light weight smartphone based human activity recognition system with high accuracy. Journal of Network and Computer Applications, 2019, 141, 59-72.	5.8	35
726	The Hybrid Body and Sonic-Cyborg Performance in Why Should Our Bodies End at the Skin?. , 2019, , .		2
727	Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition. Sensors, 2019, 19, 1556.	2.1	46

#	ARTICLE	IF	CITATIONS
728	A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems With Applications, 2019, 137, 167-190.	4.4	228
729	Recognition of human activity based on sparse data collected from smartphone sensors*., 2019, , .		2
730	Continuous Human Motion Recognition With a Dynamic Range-Doppler Trajectory Method Based on FMCW Radar. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 6821-6831.	2.7	110
731	Human Activity Recognition Systems: State of Art. , 2019, , .		2
732	Wearable Sensors and Equipment in VR Games: A Review. Lecture Notes in Computer Science, 2019, , 3-12.	1.0	11
733	Human Activity Recognition and Prediction Based on Wi-Fi Channel State Information and Machine Learning. , 2019, , .		5
734	Automated sensing of daily activity: A new lens into development. Developmental Psychobiology, 2019, 61, 444-464.	0.9	50
735	UltraSense: A non-intrusive approach for human activity identification using heterogeneous ultrasonic sensor grid for smart home environment. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 15809-15830.	3.3	11
736	Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification. IEEE Access, 2019, 7, 26696-26706.	2.6	64
737	A Semi-Automatic Annotation Approach for Human Activity Recognition. Sensors, 2019, 19, 501.	2.1	28
738	Segmentation and Recognition of Basic and Transitional Activities for Continuous Physical Human Activity. IEEE Access, 2019, 7, 42565-42576.	2.6	49
739	Estimating Spatiotemporal Information from Behavioral Sensing Data of Wheelchair Users by Machine Learning Technologies. Information (Switzerland), 2019, 10, 114.	1.7	5
740	Static and Dynamic Activity Detection with Ambient Sensors in Smart Spaces. Sensors, 2019, 19, 804.	2.1	24
741	A Fog-Based Application for Human Activity Recognition Using Personal Smart Devices. ACM Transactions on Internet Technology, 2019, 19, 1-20.	3.0	33
742	Wearable Devices for Human Activity Recognition and User Detection. , 2019, , .		5
743	Improving multimodal action representation with joint motion history context. Journal of Visual Communication and Image Representation, 2019, 61, 198-208.	1.7	11
744	Review on Wearables to Monitor Foot Temperature in Diabetic Patients. Sensors, 2019, 19, 776.	2.1	27
745	Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network. Sensors, 2019, 19, 621.	2.1	53

#	Article	IF	Citations
747	A Hierarchical Deep Fusion Framework for Egocentric Activity Recognition Using a Wearable Hybrid Sensor System. Sensors, 2019, 19, 546.	2.1	12
748	A wearable IoT aldehyde sensor for pediatric asthma research and management. Sensors and Actuators B: Chemical, 2019, 287, 584-594.	4.0	33
749	Computational model for the recognition of lower limb movement using wearable gyroscope sensor. International Journal of Sensor Networks, 2019, 30, 35.	0.2	22
750	Gradient Boosted Decision Tree based Classification for Recognizing Human Behavior. , 2019, , .		4
751	Device-Free Localization for Human Activity Monitoring. , 2019, , .		5
752	Enacting Sonic-Cyborg Performance through the Hybrid Body in <i>Teka-Mori</i> and <i>Why Should Our Bodies End at the Skin?</i> Leonardo Music Journal, 2019, 29, 83-87.	0.1	0
753	A Concise Temporal Data Representation Model for Prediction in Biomedical Wearable Devices. IEEE Internet of Things Journal, 2019, 6, 1438-1445.	5 . 5	4
7 54	Balancing Timing and Accuracy Requirements in Human Activity Recognition Mobile Applications. Proceedings (mdpi), 2019, 31, 15.	0.2	1
755	Improving Positioning Accuracy in Ambient Assisted Living Environments. A Multi-Sensor Approach. , 2019, , .		0
756	Activity Prediction using LSTM in Smart Home. , 2019, , .		2
757	Uncertainty-Aware Audiovisual Activity Recognition Using Deep Bayesian Variational Inference. , 2019, , .		39
758	FiPR: A Fine-grained Human Posture Recognition. , 2019, , .		0
759	We arable activity recognition for robust human-robot teaming in safety-critical environments via hybrid neural networks. , 2019, , .		9
760	Voice based Home Behavior Self-Management System for The Elderly. , 2019, , .		0
761	Minimal Sensor Setup in Lower Limb Exoskeletons for Motion Classification based on Multi-Modal Sensor Data., 2019, , .		5
762	Unique Digitized Activity Signature for Human Authentication. , 2019, , .		0
763	Adar: Adversarial Activity Recognition in Wearables. , 2019, , .		5
764	Sensor-Based Human Activity Mining Using Dirichlet Process Mixtures of Directional Statistical Models., 2019,,.		0

#	Article	IF	CITATIONS
765	Activity Learning for Intelligent Buildings. , 2019, , .		2
766	Performance Analysis of Supervised Machine Learning Algorithms to Recognize Human Activity in Ambient Assisted Living Environment. , 2019, , .		13
767	Efficient Smartphone-Based Human Activity Recognition Using Convolutional Neural Network. , 2019, , .		10
768	MeltdownCrisis: Dataset of Autistic Children During Meltdown Crisis. , 2019, , .		4
769	Performance Evaluation of Area-Based Segmentation Technique on Ambient Sensor Data for Smart Home Assisted Living. Procedia Computer Science, 2019, 165, 314-321.	1.2	2
770	Elderly Fall Risk Prediction with Plantar Center of Force Using ConvLSTM Algorithm. , 2019, , .		3
771	Feature Reorganization Based Human Activity Recognition in IoT-Enabled Applications. , 2019, , .		1
772	Effect of Data Representation for Time Series Classificationâ€"A Comparative Study and a New Proposal. Machine Learning and Knowledge Extraction, 2019, 1, 1100-1120.	3.2	14
773	Action Recognition in Manufacturing Assembly using Multimodal Sensor Fusion. Procedia Manufacturing, 2019, 39, 158-167.	1.9	36
774	Physical Workout Classification Using Wrist Accelerometer Data by Deep Convolutional Neural Networks. IEEE Access, 2019, 7, 182406-182414.	2.6	2
775	Dilated Temporal Convolutional Neural Network Architecture with Independent Component Layer for Human Activity Recognition. , 2019, , .		2
776	Activity Recognition from Sensor Fusion on Fireman's Helmet. , 2019, , .		1
777	Tennis stroke detection using inertial data of a smartwatch. , 2019, , .		2
778	Accurate and Fast Classification of Foot Gestures for Virtual Locomotion. , 2019, , .		14
779	Web-based Elderly Monitoring System with GIS. , 2019, , .		0
780	A CNN Based Automated Activity and Food Recognition Using Wearable Sensor for Preventive Healthcare. Electronics (Switzerland), 2019, 8, 1425.	1.8	22
781	An Approach for Designing Low Cost Deep Neural Network based Biometric Authentication Model for Smartphone User. , 2019, , .		6
782	Behavioural Smoking Identification via Hand-Movement Dynamics. , 2019, , .		2

#	Article	IF	CITATIONS
783	Unsafe Action Recognition of Miners Based on Video Description., 2019,,.		1
784	LabelMerger: Learning Activities in Uncontrolled Environments. , 2019, , .		1
785	E-Health Approaches for Developing Countries. , 2019, , .		1
786	A Survey on Predicting Resident Intentions Using Contextual Modalities in Smart Home. International Journal of Advanced Pervasive and Ubiquitous Computing, 2019, 11, 44-59.	0.4	2
787	FPGA Implementation of Real-Time Soldier Activity Detection based on Neural Network Classifier in Smart Military Suit. , 2019 , , .		0
788	Smart Phone Based Human Activity Recognition. , 2019, , .		5
789	The Machine Learning Models for Activity Recognition Applications with Wearable Sensors. , 2019, , .		1
790	Indoor nonâ€rhythmic human motion classification using a frequencyâ€modulated continuousâ€wave radar. Journal of Engineering, 2019, 2019, 6928-6930.	0.6	1
791	Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices., 2019, 2019, 2492-2495.		3
792	Feature Space Exploration for Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons. , 2019, , .		2
793	Evaluation of Transfer Learning for Human Activity Recognition Among Different Datasets. , 2019, , .		3
794	Challenges in Sensor-based Human Activity Recognition and a Comparative Analysis of Benchmark Datasets: A Review. , 2019, , .		28
795	Sport-Related Human Activity Detection and Recognition Using a Smartwatch. Sensors, 2019, 19, 5001.	2.1	43
796	Detection of Tennis Activities with Wearable Sensors. Sensors, 2019, 19, 5004.	2.1	22
797	Swimming style recognition and lap counting using a smartwatch and deep learning. , 2019, , .		12
798	Rethinking IoT Network Reliability in the Era of Machine Learning. , 2019, , .		4
799	Recognition of Gait Activities Using Acceleration Data from A Smartphone and A Wearable Device. Proceedings (mdpi), 2019, 31, .	0.2	5
800	WiFi CSI-Based Human Activity Recognition Using Deep Recurrent Neural Network. IEEE Access, 2019, 7, 174257-174269.	2.6	51

#	Article	IF	Citations
801	Activity Recognition from Mobile Phone using Deep CNN., 2019,,.		9
802	A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors. Sensors, 2019, 19, 5026.	2.1	73
803	Characterizing Word Embeddings for Zero-Shot Sensor-Based Human Activity Recognition. Sensors, 2019, 19, 5043.	2.1	15
804	Unsupervised pregnancy and physical activity detection in mammals using circadian rhythms. , 2019, , .		O
805	Human action recognition based on low- and high-level data from wearable inertial sensors. International Journal of Distributed Sensor Networks, 2019, 15, 155014771989453.	1.3	8
806	A Weighted Late Fusion Framework for Recognizing Human Activity from Wearable Sensors. , 2019, , .		8
807	Hybrid data-driven and context-aware activity recognition with mobile devices., 2019,,.		1
808	Step by Step Towards Effective Human Activity Recognition: A Balance between Energy Consumption and Latency in Health and Wellbeing Applications. Sensors, 2019, 19, 5206.	2.1	7
809	Understanding Compatibility-based Classifier Personalization in Activity Recognition. , 2019, , .		3
810	Development of Highly Accurate IoT-Ready Quaternion-based 3D Gradiometer based on COTS IMUs. , 2019, , .		0
811	Automatic Clinical Procedure Detection for Emergency Services. , 2019, 2019, 337-340.		6
812	Classifier Personalization for Activity Recognition Using Wrist Accelerometers. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1585-1594.	3.9	31
813	Estimation of pedestrian crowds' properties using commercial tablets and smartphones. Transportmetrica B, 2019, 7, 865-896.	1.4	9
814	WiFi CSI Based Passive Human Activity Recognition Using Attention Based BLSTM. IEEE Transactions on Mobile Computing, 2019, 18, 2714-2724.	3.9	230
815	Wearable Motion-Based Heart Rate at Rest: A Workplace Evaluation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1920-1927.	3.9	18
816	A Domains Oriented Framework of Recent Machine Learning Applications in Mobile Mental Health. Lecture Notes in Information Systems and Organisation, 2019, , 163-172.	0.4	0
817	Human Work and Status Evaluation Based on Wearable Sensors in Human Factors and Ergonomics: A Review. IEEE Transactions on Human-Machine Systems, 2019, 49, 72-84.	2.5	34
818	Human Activity Recognition Based on Single Sensor Square HV Acceleration Images and Convolutional Neural Networks. IEEE Sensors Journal, 2019, 19, 1487-1498.	2.4	38

#	Article	IF	CITATIONS
819	InnoHAR: A Deep Neural Network for Complex Human Activity Recognition. IEEE Access, 2019, 7, 9893-9902.	2.6	214
820	A Multisensor Multiclassifier Hierarchical Fusion Model Based on Entropy Weight for Human Activity Recognition Using Wearable Inertial Sensors. IEEE Transactions on Human-Machine Systems, 2019, 49, 105-111.	2.5	46
821	Activity recognition from visual lifelogs: State of the art and future challenges. , 2019, , 121-134.		5
822	Unsupervised human activity analysis for intelligent mobile robots. Artificial Intelligence, 2019, 270, 67-92.	3.9	21
823	A Hierarchical Approach for Associating Body-Worn Sensors to Video Regions in Crowded Mingling Scenarios. IEEE Transactions on Multimedia, 2019, 21, 1867-1879.	5.2	3
824	Big data aggregation in the case of heterogeneity: a feasibility study for digital health. International Journal of Machine Learning and Cybernetics, 2019, 10, 2643-2655.	2.3	1
825	GroupSense. Transactions on Embedded Computing Systems, 2019, 17, 1-26.	2.1	3
826	A Highly Accurate Transportation Mode Recognition Using Mobile Communication Quality. IEICE Transactions on Communications, 2019, E102.B, 741-750.	0.4	1
827	Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Sensors, 2019, 19, 253.	2.1	17
828	An overview of human activity recognition based on smartphone. Sensor Review, 2019, 39, 288-306.	1.0	36
829	A Deep Learning-Based Compression Algorithm for 9-DOF Inertial Measurement Unit Signals Along With an Error Compensating Mechanism. IEEE Sensors Journal, 2019, 19, 632-640.	2.4	13
830	Wi-Fi Tracking Threatens Users' Privacy in Fingerprinting Techniques. , 2019, , 21-43.		0
831	The human behaviour indicator: A measure of behavioural evolution. Expert Systems With Applications, 2019, 118, 493-505.	4.4	12
832	Weakly Supervised Human Activity Recognition From Wearable Sensors by Recurrent Attention Learning. IEEE Sensors Journal, 2019, 19, 2287-2297.	2.4	37
834	Efficiency investigation from shallow to deep neural network techniques in human activity recognition. Cognitive Systems Research, 2019, 54, 37-49.	1.9	24
835	Exploiting Emerging Sensing Technologies Toward Structure in Data for Enhancing Perception in Human-Centric Applications. IEEE Internet of Things Journal, 2019, 6, 3411-3422.	5.5	5
836	Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection. Information Fusion, 2019, 49, 46-56.	11.7	192
837	A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. Journal of Parallel and Distributed Computing, 2019, 123, 46-53.	2.7	127

#	Article	IF	Citations
838	Activity Recognition for Cognitive Assistance Using Body Sensors Data and Deep Convolutional Neural Network. IEEE Sensors Journal, 2019, 19, 8413-8419.	2.4	77
839	Sparse representation based classification scheme for human activity recognition using smartphones. Multimedia Tools and Applications, 2019, 78, 11027-11045.	2.6	16
840	Toward the gestural interface: comparative analysis between touch user interfaces versus gesture-based user interfaces on mobile devices. Universal Access in the Information Society, 2019, 18, 107-126.	2.1	8
841	Efficient health-related abnormal behavior detection with visual and inertial sensor integration. Pattern Analysis and Applications, 2019, 22, 601-614.	3.1	12
842	Extreme Learning Machine-Based Deep Model for Human Activity Recognition With Wearable Sensors. Computing in Science and Engineering, 2019, 21, 16-25.	1.2	11
843	Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 2019, 119, 3-11.	2.6	1,227
844	Measurement of physiological responses to acute stress in multiple occupations: A systematic review and implications for front line healthcare providers. Translational Behavioral Medicine, 2019, 9, 158-166.	1.2	10
845	Comparison of offline and real-time human activity recognition results using machine learning techniques. Neural Computing and Applications, 2020, 32, 15673-15686.	3.2	37
846	Toward Hand-Dominated Activity Recognition Systems With Wristband-Interaction Behavior Analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2501-2511.	5.9	18
847	Human activity recognition via optical flow: decomposing activities into basic actions. Neural Computing and Applications, 2020, 32, 16387-16400.	3.2	29
848	Using Latent Knowledge to Improve Real-Time Activity Recognition for Smart IoT. IEEE Transactions on Knowledge and Data Engineering, 2020, 32, 574-587.	4.0	17
849	Learning Compact Features for Human Activity Recognition Via Probabilistic First-Take-All. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 126-139.	9.7	37
850	Posture transition analysis with barometers: contribution to accelerometer-based algorithms. Neural Computing and Applications, 2020, 32, 335-349.	3.2	5
851	A Study on Hyperparameter Configuration for Human Activity Recognition. Advances in Intelligent Systems and Computing, 2020, , 47-56.	0.5	3
852	Evaluation of artificial intelligence techniques for the classification of different activities of daily living and falls. Neural Computing and Applications, 2020, 32, 747-758.	3.2	19
853	Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review. Artificial Intelligence Review, 2020, 53, 1975-2021.	9.7	56
854	A Survey on Human Activity Recognition Based on Temporal Signals of Portable Inertial Sensors. Advances in Intelligent Systems and Computing, 2020, , 734-745.	0.5	10
855	Smartphone Sensor-Based Human Activity Recognition Using Feature Fusion and Maximum Full <i>a Posteriori</i> i>. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3992-4001.	2.4	63

#	Article	IF	CITATIONS
856	Multi-stage adaptive regression for online activity recognition. Pattern Recognition, 2020, 98, 107053.	5.1	6
857	Kirigamiâ€Inspired Stretchable Conjugated Electronics. Advanced Electronic Materials, 2020, 6, 1900929.	2.6	18
858	A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Information Fusion, 2020, 55, 105-115.	11.7	131
859	A Computing Framework to Check Real-Time Requirements in Ambient Intelligent Systems. Advances in Intelligent Systems and Computing, 2020, , 19-26.	0.5	1
860	Artificially Intelligent Assistant for Basketball Coaching. Lecture Notes in Networks and Systems, 2020, , 417-427.	0.5	0
861	Wireless Sensing for Human Activity: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 1629-1645.	24.8	166
862	Phascope: Fine-Grained, Fast, Flexible Motion Profiling based on Phase Offset in Acoustic OFDM Signal. Mobile Networks and Applications, 2020, 25, 537-550.	2.2	0
863	Use of Wearable Sensor Technology in Gait, Balance, and Range of Motion Analysis. Applied Sciences (Switzerland), 2020, 10, 234.	1.3	75
864	Embedded Intelligence in the Internet-of-Things. IEEE Design and Test, 2020, 37, 7-27.	1.1	11
865	A Localized Learning Approach Applied to Human Activity Recognition. IEEE Intelligent Systems, 2021, 36, 58-71.	4.0	6
866	Personalizing Activity Recognition Models Through Quantifying Different Types of Uncertainty Using Wearable Sensors. IEEE Transactions on Biomedical Engineering, 2020, 67, 2530-2541.	2.5	35
867	Visually Guided Acquisition of Contact Dynamics and Case Study in Data-Driven Haptic Texture Modeling. IEEE Transactions on Haptics, 2020, 13, 611-627.	1.8	10
868	Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science and Engineering Reports, 2020, 140, 100523.	14.8	215
869	Online active learning for human activity recognition from sensory data streams. Neurocomputing, 2020, 390, 341-358.	3 . 5	20
870	Multivariate Analysis of Joint Motion Data by Kinect: Application to Parkinson's Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 181-190.	2.7	10
871	Hierarchical syntactic models for human activity recognition through mobility traces. Personal and Ubiquitous Computing, 2020, 24, 451-464.	1.9	7
872	Physical Workload Tracking Using Human Activity Recognition with Wearable Devices. Sensors, 2020, 20, 39.	2.1	35
873	Classification of Human Activities Based on Radar Signals using 1D-CNN and LSTM., 2020,,.		13

#	Article	IF	CITATIONS
874	Synthetic Sensor Data for Human Activity Recognition. , 2020, , .		14
875	A New Method of Human Gesture Recognition Using Wi-Fi Signals Based on XGBoost., 2020,,.		8
876	Context-Aware Cyber-Physical Assistance Systems in Industrial Systems: A Human Activity Recognition Approach. , 2020, , .		5
877	Fuzzy Protoform for Hyperactive Behaviour Detection Based on Commercial Devices. International Journal of Environmental Research and Public Health, 2020, 17, 6752.	1.2	9
878	Low Frequency Vibration Visual Monitoring System Based on Multi-Modal 3DCNN-ConvLSTM. Sensors, 2020, 20, 5872.	2.1	3
879	"Emotions are the Great Captains of Our Lives†Measuring Moods Through the Power of Physiological and Environmental Sensing. IEEE Transactions on Affective Computing, 2022, 13, 1378-1389.	5.7	2
880	Visualization of Important Human Motion Feature Using Convolutional Neural Network. , 2020, , .		1
881	Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand. Sensors, 2020, 20, 6559.	2.1	10
882	A WiFi-Based Smart Home Fall Detection System Using Recurrent Neural Network. IEEE Transactions on Consumer Electronics, 2020, 66, 308-317.	3.0	49
883	A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems. Sensors, 2020, 20, 6670.	2.1	62
884	Feature Selections Using Minimal Redundancy Maximal Relevance Algorithm for Human Activity Recognition in Smart Home Environments. Journal of Healthcare Engineering, 2020, 2020, 1-13.	1.1	8
885	Life Automation: A Blessing of IoT. , 2020, , .		O
886	A Comprehensive Study on Machine Learning Algorithms for Wireless Sensor Network Security. , 2020, , .		2
887	Wearable-sensors Based Activity Recognition for Smart Human Healthcare Using Internet of Things. , 2020, , .		10
888	Fall detection smart-shoe enabled with wireless IoT device. Circuit World, 2021, 47, 325-334.	0.7	3
889	Human activity recognition using deep electroencephalography learning. Biomedical Signal Processing and Control, 2020, 62, 102094.	3.5	23
890	Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 2020, 108, 107561.	5.1	243
891	Measuring the Utilization of Public Open Spaces by Deep Learning: a Benchmark Study at the Detroit Riverfront. , 2020, , .		4

#	Article	IF	Citations
892	Towards Breathing as a Sensing Modality in Depth-Based Activity Recognition. Sensors, 2020, 20, 3884.	2.1	9
893	Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition Using Deep Convolutional Neural Networks. Sensors, 2020, 20, 3803.	2.1	6
894	Activity recognition using wearable sensors for tracking the elderly. User Modeling and User-Adapted Interaction, 2020, 30, 567-605.	2.9	30
895	Joint Learning of Temporal Models to Handle Imbalanced Data for Human Activity Recognition. Applied Sciences (Switzerland), 2020, 10, 5293.	1.3	27
896	Unauthorized Location Inference Using Smart Device Pressure Sensor. , 2020, , .		0
897	Decisional Support System with Artificial Intelligence oriented on Health Prediction using a Wearable Device and Big Data. , 2020, , .		12
898	LabelSens: enabling real-time sensor data labelling at the point of collection using an artificial intelligence-based approach. Personal and Ubiquitous Computing, 2020, 24, 709-722.	1.9	10
899	A Partially Binarized Hybrid Neural Network System for Low-Power and Resource Constrained Human Activity Recognition. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3893-3904.	3.5	16
900	Low Power Tiny Binary Neural Network with improved accuracy in Human Recognition Systems. , 2020, , .		11
901	Reconfigurable Cyber-Physical System for Lifestyle Video-Monitoring via Deep Learning. , 2020, , .		3
902	Human activity and transportation mode recognition using smartphone sensors. , 2020, , .		1
903	Towards Energy Efficiency in the Internet of Wearable Things: A Systematic Review. IEEE Access, 2020, 8, 175412-175435.	2.6	52
904	Enabling context aware data analysis for long-duration repetitive stooped work through human activity recognition in sheep shearing., 2020, 2020, 87-90.		2
905	Sensor2Vec: an Embedding Learning for Heterogeneous Sensors for Activity Classification., 2020,,.		2
906	Smartphone Based Human Activity Recognition with Feature Selection and Dense Neural Network., 2020, 2020, 5888-5891.		28
907	SmartWatch as a Kinaesthetic System for Shoulder Function Assessment. , 2020, , .		1
908	Unobtrusive and Non-Invasive Human Activity Recognition using Kinect Sensor., 2020,,.		2
909	ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Activity Recognition. IEEE Access, 2020, 8, 146876-146886.	2.6	10

#	Article	IF	CITATIONS
910	Indirect Recognition of Predefined Human Activities. Sensors, 2020, 20, 4829.	2.1	8
911	Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification. Sensors, 2020, 20, 4271.	2.1	37
912	Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques. Security and Communication Networks, 2020, 2020, 1-12.	1.0	58
913	A Stacked Human Activity Recognition Model Based on Parallel Recurrent Network and Time Series Evidence Theory. Sensors, 2020, 20, 4016.	2.1	4
914	Badminton Activity Recognition Using Accelerometer Data. Sensors, 2020, 20, 4685.	2.1	29
915	Towards Anti-interference WiFi-based Activity Recognition System Using Interference-Independent Phase Component. , 2020, , .		12
916	Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Advanced Functional Materials, 2020, 30, 2005703.	7.8	85
917	Al Approaches towards Prechtl's Assessment of General Movements: A Systematic Literature Review. Sensors, 2020, 20, 5321.	2.1	33
918	Human activity recognition based on LPA. Multimedia Tools and Applications, 2020, 79, 31069-31086.	2.6	10
919	Recognition and Repetition Counting for Local Muscular Endurance Exercises in Exercise-Based Rehabilitation: A Comparative Study Using Artificial Intelligence Models. Sensors, 2020, 20, 4791.	2.1	12
920	Recent Progress in Sensing and Computing Techniques for Human Activity Recognition and Motion Analysis. Electronics (Switzerland), 2020, 9, 1357.	1.8	28
921	A Survey Investigating the Combination and Number of IMUs on the Human Body Used for Detecting Activities and Human Tracking. , 2020, , .		5
922	A Real-time Human Activity Recognition Approach with Generalization Performance., 2020,,.		2
923	A Novel Fitness Tracker Using Edge Machine Learning. , 2020, , .		11
924	Context-Aware Data Association for Multi-Inhabitant Sensor-Based Activity Recognition. , 2020, , .		5
925	An End-to-End Deep Learning Framework for Recognizing Human-to-Human Interactions Using Wi-Fi Signals. IEEE Access, 2020, 8, 197695-197710.	2.6	33
926	Human Activity Recognition Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey. IEEE Access, 2020, 8, 210816-210836.	2.6	182
927	Personalizing Activity Recognition With a Clustering Based Semi-Population Approach. IEEE Access, 2020, 8, 207794-207804.	2.6	9

#	Article	IF	CITATIONS
928	Sensor-Based Human Activity Recognition Using Deep Stacked Multilayered Perceptron Model. IEEE Access, 2020, 8, 218898-218910.	2.6	41
929	Real-Time Physical Activity Recognition on Smart Mobile Devices Using Convolutional Neural Networks. Applied Sciences (Switzerland), 2020, 10, 8482.	1.3	28
930	kNN Prototyping Schemes for Embedded Human Activity Recognition with Online Learning. Computers, 2020, 9, 96.	2.1	19
931	On the Challenges and Potential of Using Barometric Sensors to Track Human Activity. Sensors, 2020, 20, 6786.	2.1	20
932	Deep Learning with network of Wearable sensors for preventing the Risk of Falls for Older People. IOP Conference Series: Materials Science and Engineering, 2020, 928, 032050.	0.3	7
933	loT based Child Safety Management using Raspberry Pi and RFID Technology. IOP Conference Series: Materials Science and Engineering, 2020, 981, 042079.	0.3	2
934	A Review on Scaling Mobile Sensing Platforms for Human Activity Recognition: Challenges and Recommendations for Future Research. IoT, 2020, 1, 451-473.	2.3	9
935	A Novel Motion Intention Recognition Approach for Soft Exoskeleton via IMU. Electronics (Switzerland), 2020, 9, 2176.	1.8	35
936	An Approach towards Position-Independent Human Activity Recognition Model based on Wearable Accelerometer Sensor. Procedia Computer Science, 2020, 177, 196-203.	1.2	8
937	Research on the influence mechanism of users' quantified-self immersive experience: on the convergence of mobile intelligence and wearable computing. Personal and Ubiquitous Computing, 2023, 27, 1111-1122.	1.9	6
938	AnAbEL: towards empowering people living with dementia in ambient assisted living. Universal Access in the Information Society, 2022, 21, 457-476.	2.1	8
939	Random Forest for Human Daily Activity Recognition. Journal of Physics: Conference Series, 2020, 1655, 012087.	0.3	11
940	ExerTrackâ€"Towards Smart Surfaces to Track Exercises. Technologies, 2020, 8, 17.	3.0	8
941	Multimodal Sensor Data Integration for Indoor Positioning in Ambient-Assisted Living Environments. Mobile Information Systems, 2020, 2020, 1-16.	0.4	5
942	Comparative Analysis of Artificial Hydrocarbon Networks versus Convolutional Neural Networks in Human Activity Recognition. , 2020, , .		2
943	Analyzing Deep Learning for Time-Series Data Through Adversarial Lens in Mobile and IoT Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 3190-3201.	1.9	6
944	Enhance Safety and Security System for Children in School Campus by using Wearable Sensors. , 2020, , .		3
945	Sensing Technology for Human Activity Recognition: A Comprehensive Survey. IEEE Access, 2020, 8, 83791-83820.	2.6	81

#	Article	IF	CITATIONS
946	Integrated data and knowledge driven methodology for human activity recognition. Information Sciences, 2020, 536, 409-430.	4.0	12
947	SensCapsNet: Deep Neural Network for Non-Obtrusive Sensing Based Human Activity Recognition. IEEE Access, 2020, 8, 86934-86946.	2.6	36
948	Design and Validation of a Minimal Complexity Algorithm for Stair Step Counting. Computers, 2020, 9, 31.	2.1	3
949	Development of a Chinese Chess Robotic System for the Elderly Using Convolutional Neural Networks. Sustainability, 2020, 12, 3980.	1.6	8
950	Activity Recognition in the City using Embedded Systems and Anonymous Sensors. Procedia Computer Science, 2020, 170, 67-74.	1,2	2
951	Utilization of Postural Transitions in Sensor-based Human Activity Recognition. , 2020, , .		6
952	Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios. Electronics (Switzerland), 2020, 9, 728.	1.8	25
953	An Automated Daily Sports Activities and Gender Recognition Method Based on Novel Multikernel Local Diamond Pattern Using Sensor Signals. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9441-9448.	2.4	38
954	Machine Learning Based Activity Recognition To Identify Wasteful Activities In Production. Procedia Manufacturing, 2020, 45, 171-176.	1.9	9
955	Tiny Eats: Eating Detection on a Microcontroller. , 2020, , .		12
956	Towards Anti-Interference Human Activity Recognition Based on WiFi Subcarrier Correlation Selection. IEEE Transactions on Vehicular Technology, 2020, 69, 6739-6754.	3.9	13
957	Nonparametric user activity modelling and prediction. User Modeling and User-Adapted Interaction, 2020, 30, 803-831.	2.9	4
958	The Layer-Wise Training Convolutional Neural Networks Using Local Loss for Sensor-Based Human Activity Recognition. IEEE Sensors Journal, 2020, 20, 7265-7274.	2.4	98
959	A novel feature selection method based on comparison of correlations for human activity recognition problems. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 5961-5975.	3.3	5
960	Smartphone based human activity monitoring and recognition using ML and DL: a comprehensive survey. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 5433-5444.	3.3	37
961	Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks. Nature Communications, 2020, $11,1551$.	5. 8	68
962	Wearable Antennas for Cross-Body Communication and Human Activity Recognition. IEEE Access, 2020, 8, 58575-58584.	2.6	24
963	Development of a Human Activity Recognition System for Ballet Tasks. Sports Medicine - Open, 2020, 6, 10.	1.3	33

#	Article	IF	CITATIONS
964	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:		8
965	A study of deep neural networks for human activity recognition. Computational Intelligence, 2020, 36, 1113-1139.	2.1	37
966	Deep-Learning-Enhanced Human Activity Recognition for Internet of Healthcare Things. IEEE Internet of Things Journal, 2020, 7, 6429-6438.	5.5	276
967	A review and categorization of techniques on device-free human activity recognition. Journal of Network and Computer Applications, 2020, 167, 102738.	5.8	89
968	In-Ear Accelerometer-Based Sensor for Gait Classification. IEEE Sensors Journal, 2020, 20, 12895-12902.	2.4	22
969	Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition. Sensors, 2020, 20, 3463.	2.1	13
970	Comparative Study of Time Series-based Human Activity Recognition using Convolutional Neural Networks. , 2020, , .		6
971	Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning. Sensors, 2020, 20, 3777.	2.1	12
972	Activities of Daily Living Monitoring via a Wearable Camera: Toward Real-World Applications. IEEE Access, 2020, 8, 77344-77363.	2.6	6
973	Human Activity and Gesture Recognition: A Review. , 2020, , .		8
974	Efficacy of Imbalanced Data Handling Methods on Deep Learning for Smart Homes Environments. SN Computer Science, 2020, 1, 1.	2.3	20
975	Real-Time Human Activity Recognition System Based on Capsule and LoRa. IEEE Sensors Journal, 2020, , 1-1.	2.4	14
976	Learning personalized ADL recognition models from few raw data. Artificial Intelligence in Medicine, 2020, 107, 101916.	3.8	5
977	Engineered nanomaterials in the sports industry. , 2020, , 309-320.		8
978	Anomaly Detection in Activities of Daily Living with Linear Drift. Cognitive Computation, 2020, 12, 1233-1251.	3.6	3
979	A framework for the recognition of horse gaits through wearable devices. Pervasive and Mobile Computing, 2020, 67, 101213.	2.1	10
980	Determining the Key Factors of Wearable Devices Consumers' Adoption Behavior Based on an MADM Model for Product Improvement. IEEE Transactions on Engineering Management, 2022, 69, 4036-4051.	2.4	10
981	Literature Review on Transfer Learning for Human Activity Recognition Using Mobile and Wearable Devices with Environmental Technology. SN Computer Science, 2020, $1,1.$	2.3	31

#	Article	IF	CITATIONS
982	A Hybrid CNN–LSTM Network for the Classification of Human Activities Based on Micro-Doppler Radar. IEEE Access, 2020, 8, 24713-24720.	2.6	92
983	High-Precision Adaptive Slope Compensation Circuit for DC-DC Converter in Wearable Devices. IEEE Access, 2020, 8, 34104-34112.	2.6	2
984	Human Action Recognition Using Deep Learning Methods on Limited Sensory Data. IEEE Sensors Journal, 2020, 20, 3101-3112.	2.4	63
985	Fusing wearable and remote sensing data streams by fast incremental learning with swarm decision table for human activity recognition. Information Fusion, 2020, 60, 41-64.	11.7	35
986	Feature Selection Using Genetic Algorithms for the Generation of a Recognition and Classification of Children Activities Model Using Environmental Sound. Mobile Information Systems, 2020, 2020, 1-12.	0.4	18
987	On the Personalization of Classification Models for Human Activity Recognition. IEEE Access, 2020, 8, 32066-32079.	2.6	86
988	Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition. Sensors, 2020, 20, 1208.	2.1	6
989	Advanced Sensing and Human Activity Recognition in Early Intervention and Rehabilitation of Elderly People. Journal of Population Ageing, 2020, 13, 139-165.	0.8	54
990	Audio content analysis for unobtrusive event detection in smart homes. Engineering Applications of Artificial Intelligence, 2020, 89, 103226.	4.3	28
991	SmartWheels: Detecting urban features for wheelchair users' navigation. Pervasive and Mobile Computing, 2020, 62, 101115.	2.1	16
992	Easing Power Consumption of Wearable Activity Monitoring with Change Point Detection. Sensors, 2020, 20, 310.	2.1	27
993	C2FHAR: Coarse-to-Fine Human Activity Recognition With Behavioral Context Modeling Using Smart Inertial Sensors. IEEE Access, 2020, 8, 7731-7747.	2.6	18
994	Torsion Sensing on a Cylinder Using a Flexible Piezoelectric Wrist Band. IEEE/ASME Transactions on Mechatronics, 2020, 25, 460-467.	3.7	10
995	Joint Pedestrian Motion State and Device Pose Classification. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5862-5874.	2.4	6
996	A Multilayer Interval Type-2 Fuzzy Extreme Learning Machine for the recognition of walking activities and gait events using wearable sensors. Neurocomputing, 2020, 389, 42-55.	3.5	27
997	Lower-Limb Rehabilitation at Home. International Journal of Interdisciplinary Telecommunications and Networking, 2020, 12, 15-27.	0.2	0
998	An RSS-Based Classification of User Equipment Usage in Indoor Millimeter Wave Wireless Networks Using Machine Learning. IEEE Access, 2020, 8, 14928-14943.	2.6	14
999	Classifying Daily and Sports Activities Invariantly to the Positioning of Wearable Motion Sensor Units. IEEE Internet of Things Journal, 2020, 7, 4801-4815.	5. 5	30

#	Article	IF	Citations
1000	Computer Vision Intelligent Approaches to Extract Human Pose and Its Activity from Image Sequences. Electronics (Switzerland), 2020, 9, 159.	1.8	5
1001	Earthquake Detection in a Static and Dynamic Environment Using Supervised Machine Learning and a Novel Feature Extraction Method. Sensors, 2020, 20, 800.	2.1	32
1002	Topic modelling for routine discovery from egocentric photo-streams. Pattern Recognition, 2020, 104, 107330.	5.1	8
1003	CAVIAR: Context-driven Active and Incremental Activity Recognition. Knowledge-Based Systems, 2020, 196, 105816.	4.0	28
1004	Automated Methods for Activity Recognition of Construction Workers and Equipment: State-of-the-Art Review. Journal of Construction Engineering and Management - ASCE, 2020, 146, .	2.0	110
1005	Addressing Behavioural Technologies Through the Human Factor: A Review. IEEE Access, 2020, 8, 52306-52322.	2.6	17
1006	W-Trans: A Weighted Transition Matrix Learning Algorithm for the Sensor-Based Human Activity Recognition. IEEE Access, 2020, 8, 72870-72880.	2.6	3
1007	A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors. Sensors, 2020, 20, 2200.	2.1	90
1008	A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory. Sensors, 2020, 20, 1856.	2.1	21
1009	An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition. Sensors, 2020, 20, 2189.	2.1	3
1010	A Hybrid Network Based on Dense Connection and Weighted Feature Aggregation for Human Activity Recognition. IEEE Access, 2020, 8, 68320-68332.	2.6	16
1011	Classification with imperfect training labels. Biometrika, 2020, 107, 311-330.	1.3	15
1012	Compound Emotion Recognition of Autistic Children During Meltdown Crisis Based on Deep Spatio-Temporal Analysis of Facial Geometric Features. IEEE Access, 2020, 8, 69311-69326.	2.6	27
1013	Wearable Computing With Distributed Deep Learning Hierarchy: A Study of Fall Detection. IEEE Sensors Journal, 2020, 20, 9408-9416.	2.4	24
1014	Unsupervised domain adaptation for activity recognition across heterogeneous datasets. Pervasive and Mobile Computing, 2020, 64, 101147.	2.1	14
1015	Deep Learning Approaches for Detecting Freezing of Gait in Parkinson's Disease Patients through On-Body Acceleration Sensors. Sensors, 2020, 20, 1895.	2.1	62
1016	Novel Graphene Planar Architecture with Ultrahigh Stretchability and Sensitivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18913-18923.	4.0	12
1017	Using off-the-shelf data-human interface platforms: traps and tricks. Multimedia Tools and Applications, 2021, 80, 12907-12929.	2.6	O

#	Article	IF	CITATIONS
1018	Novel tent pooling based human activity recognition approach. Multimedia Tools and Applications, 2021, 80, 4639-4653.	2.6	1
1019	Impact of Wearable Measurement Properties and Data Quality on ADLs Classification Accuracy. IEEE Sensors Journal, 2021, 21, 14221-14231.	2.4	24
1020	Adaptive Segmentation and Sequence Learning of human activities from skeleton data. Expert Systems With Applications, 2021, 164, 113836.	4.4	5
1021	A hierarchical parallel fusion framework for egocentric ADL recognition based on discernment frame partitioning and belief coarsening. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 1693-1715.	3.3	0
1022	Upper body activity classification using an inertial measurement unit in court and field-based sports: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2021, 235, 83-95.	0.4	13
1023	Vision and Inertial Sensing Fusion for Human Action Recognition: A Review. IEEE Sensors Journal, 2021, 21, 2454-2467.	2.4	41
1024	Cross-subject transfer learning in human activity recognition systems using generative adversarial networks. Neurocomputing, 2021, 426, 26-34.	3.5	61
1025	Automated cognitive health assessment in smart homes using machine learning. Sustainable Cities and Society, 2021, 65, 102572.	5.1	113
1027	A spatiotemporal multi-feature extraction framework with space and channel based squeeze-and-excitation blocks for human activity recognition. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 7983-7995.	3.3	6
1028	Recognition of human activities for wellness management using a smartphone and a smartwatch: A boosting approach. Decision Support Systems, 2021, 140, 113426.	3. 5	33
1029	Radar Range-Breathing Separation for the Automatic Detection of Humans in Cluttered Environments. IEEE Sensors Journal, 2021, 21, 14043-14050.	2.4	30
1030	Sensor fusion based manipulative action recognition. Autonomous Robots, 2021, 45, 1-13.	3.2	6
1031	HierHAR: Sensor-Based Data-Driven Hierarchical Human Activity Recognition. IEEE Sensors Journal, 2021, 21, 3353-3365.	2.4	16
1032	Physical Human–Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators. IEEE Transactions on Cybernetics, 2021, 51, 1888-1901.	6.2	50
1034	Mood classification through physiological parameters. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 4471-4484.	3.3	10
1035	Personalized Models in Human Activity Recognition using Deep Learning. , 2021, , .		9
1036	A Deep Learning Model for Exercise-Based Rehabilitation Using Multi-channel Time-Series Data from a Single Wearable Sensor. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 104-115.	0.2	1
1037	Generalized and Efficient Skill Assessment from IMU Data with Applications in Gymnastics and Medical Training. ACM Transactions on Computing for Healthcare, 2021, 2, 1-21.	3.3	4

#	Article	IF	CITATIONS
1038	Monitoring Real-Time Personal Locomotion Behaviors Over Smart Indoor-Outdoor Environments Via Body-Worn Sensors. IEEE Access, 2021, 9, 70556-70570.	2.6	48
1040	Visual Human–Computer Interactions for Intelligent Vehicles and Intelligent Transportation Systems: The State of the Art and Future Directions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 253-265.	5.9	46
1041	Visual Methods for Sign Language Recognition: A Modality-Based Review. Smart Sensors, Measurement and Instrumentation, 2021, , 147-204.	0.4	1
1042	Synergy of Intelligent Algorithms for Efficient Child-Robot Interaction in Special Education: A Feasibility Study. Advances in Intelligent Systems and Computing, 2021, , 98-105.	0.5	1
1043	Deep Learning Algorithms for Human Activity Recognition: A Comparative Analysis. Algorithms for Intelligent Systems, 2021, , 391-402.	0.5	1
1044	Octave Mix: Data Augmentation Using Frequency Decomposition for Activity Recognition. IEEE Access, 2021, 9, 53679-53686.	2.6	2
1045	Preventing Sensitive Information Leakage From Mobile Sensor Signals via Integrative Transformation. IEEE Transactions on Mobile Computing, 2022, 21, 4517-4528.	3.9	3
1046	Device-Free Human Activity Recognition Based on GMM-HMM Using Channel State Information. IEEE Access, 2021, 9, 76592-76601.	2.6	17
1047	HHAR-net: Hierarchical Human Activity Recognition using Neural Networks. Lecture Notes in Computer Science, 2021, , 48-58.	1.0	8
1048	Analysis of Human Activity Recognition using Deep Learning. , 2021, , .		6
1049	Prediction of Ocean Wave Height Suitable for Ship Autopilot. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 25557-25566.	4.7	28
1050	A Dataset of Human Motion and Muscular Activities in Manual Material Handling Tasks for Biomechanical and Ergonomic Analyses. IEEE Sensors Journal, 2021, 21, 24731-24739.	2.4	6
1051	Biometric User Identification Based on Human Activity Recognition Using Wearable Sensors: An Experiment Using Deep Learning Models. Electronics (Switzerland), 2021, 10, 308.	1.8	114
1052	Detecting Interaction Activities While Walking Using Smartphone Sensors. Lecture Notes in Networks and Systems, 2021, , 382-393.	0.5	0
1053	Feature learning using convolutional denoising autoencoder for activity recognition. Neural Computing and Applications, 2021, 33, 10909.	3.2	8
1054	Wheelchair Behavior Recognition for Visualizing Sidewalk Accessibility by Deep Neural Networks. Communications in Computer and Information Science, 2021, , 16-29.	0.4	1
1055	The effect of hyperparameter search on artificial neural network in human activity recognition. Open Computer Science, 2021, 11, 411-422.	1.3	4
1056	Human Activity Recognition Using Positioning Sensor and Deep Learning Technique. Lecture Notes in Electrical Engineering, 2021, , 473-489.	0.3	4

#	Article	IF	CITATIONS
1057	Baseline Model Training in Sensor-Based Human Activity Recognition: An Incremental Learning Approach. IEEE Access, 2021, 9, 70261-70272.	2.6	5
1058	Shallow Convolutional Neural Networks for Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	45
1059	Improving the activity recognition using GMAF and transfer learning in post-stroke rehabilitation assessment. , 2021, , .		7
1060	Human Activity Recognition Using Deep Learning-Based Approach. Lecture Notes in Networks and Systems, 2021, , 813-830.	0.5	0
1061	The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3834-3843.	3.9	23
1062	Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning. Sensors, 2021, 21, 885.	2.1	41
1063	High Precision Human Detection and Tracking Using Millimeter-Wave Radars. IEEE Aerospace and Electronic Systems Magazine, 2021, 36, 22-32.	2.3	42
1064	Feature Space Reduction for Human Activity Recognition based on Multi-channel Biosignals. , 2021, , .		11
1065	Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People. Sensors, 2021, 21, 799.	2.1	18
1066	A Novel Sensor-Based Human Activity Recognition Method Based on Hybrid Feature Selection and Combinational Optimization. IEEE Access, 2021, 9, 107235-107249.	2.6	5
1067	Facial Emotion Recognition Model. Lecture Notes in Mechanical Engineering, 2021, , 751-761.	0.3	1
1068	Deep Learning for Detecting Human Activities From Piezoelectric-Based Kinetic Energy Signals. IEEE Internet of Things Journal, 2022, 9, 7545-7558.	5.5	6
1070	Acceleration Feature Extraction of Human Body Based on Wearable Devices. Energies, 2021, 14, 924.	1.6	4
1071	Sensor-Based Transportation Mode Recognition Using Variational Autoencoder. Journal of Big Data Analytics in Transportation, 2021, 3, 15-26.	1.4	5
1072	S-THAD: a framework for sensor-based temporal human activity detection from continuous data streams. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 1037-1051.	3.3	1
1074	Intelligent Brushing Monitoring Using a Smart Toothbrush with Recurrent Probabilistic Neural Network. Sensors, 2021, 21, 1238.	2.1	6
1075	YOU BETTA WERK: Using Wearable Technology Performance Driven Inclusive Transdisciplinary Collaboration to Facilitate Authentic Learning. , 2021, , .		7
1076	Enhancing COVID-19 tracking apps with human activity recognition using a deep convolutional neural network and HAR-images. Neural Computing and Applications, 2023, 35, 13861-13877.	3.2	17

#	Article	IF	Citations
1077	Smartphone Sensor-Based Human Activity Recognition Robust to Different Sampling Rates. IEEE Sensors Journal, 2021, 21, 6930-6941.	2.4	18
1078	Explainable Activity Recognition over Interpretable Models. , 2021, , .		2
1079	Daily Routine Recognition for Hearing Aid Personalization. SN Computer Science, 2021, 2, 1.	2.3	2
1080	Hybrid Distance-Based Framework for Classification of Embedded Firearm Recoil Data., 2021, , .		1
1081	Weakly-supervised sensor-based activity segmentation and recognition via learning from distributions. Artificial Intelligence, 2021, 292, 103429.	3.9	8
1082	SelfHAR., 2021, 5, 1-30.		47
1083	Translating Videos into Synthetic Training Data for Wearable Sensor-Based Activity Recognition Systems Using Residual Deep Convolutional Networks. Applied Sciences (Switzerland), 2021, 11, 3094.	1.3	9
1084	A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data. Sensors, 2021, 21, 2368.	2.1	16
1085	Context-aware and dynamically adaptable activity recognition with smart watches: A case study on smoking. Computers and Electrical Engineering, 2021, 90, 106949.	3.0	12
1086	Comparison of Feature Selection and Classification for Human Activity and Fall Recognition using Smartphone Sensors. , 2021, , .		2
1087	Statistical and Machine Learning Models for Classification of Human Wear and Delivery Days in Accelerometry Data. Sensors, 2021, 21, 2726.	2.1	2
1089	Study on Human Activity Recognition Using Semi-Supervised Active Transfer Learning. Sensors, 2021, 21, 2760.	2.1	18
1090	Semi-supervised subject recognition in low-modal sensor data. Ad Hoc Networks, 2021, 115, 102472.	3.4	0
1091	An approach to detect human body movement using different channel models and machine learning techniques. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 3973-3987.	3.3	1
1092	Relay-based Communications in WBANs. ACM Computing Surveys, 2022, 54, 1-34.	16.1	9
1093	Deep ConvLSTM Network with Dataset Resampling for Upper Body Activity Recognition Using Minimal Number of IMU Sensors. Applied Sciences (Switzerland), 2021, 11, 3543.	1.3	9
1095	WiLay: A Two-Layer Human Localization and Activity Recognition System Using WiFi., 2021, , .		1
1096	New Sensor Data Structuring for Deeper Feature Extraction in Human Activity Recognition. Sensors, 2021, 21, 2814.	2.1	27

#	Article	IF	CITATIONS
1097	A Survey on Human Activity Recognition using Sensors and Deep Learning Methods., 2021,,.		28
1098	A survey of cyber-physical system implementations of real-time personalized interventions. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 2325-2342.	3.3	6
1099	Classification of Fall Detection System for Elderly: Systematic Review. Turkish Journal of Computer and Mathematics Education, 2021, 12, 1769-1780.	0.4	1
1100	Future Trend in Wearable Electronics in the Textile Industry. Applied Sciences (Switzerland), 2021, 11, 3914.	1.3	49
1101	Wi-Fi-Based Location-Independent Human Activity Recognition via Meta Learning. Sensors, 2021, 21, 2654.	2.1	22
1102	Input Impedance Analysis of Wearable Antenna and Experimental Study with Real Human Subjects: Differences between Individual Users. Electronics (Switzerland), 2021, 10, 1152.	1.8	1
1103	Classification of Human Activities using data captured through a smartphone using deep learning techniques., 2021,,.		3
1104	Continual Activity Recognition with Generative Adversarial Networks. ACM Transactions on Internet of Things, 2021, 2, 1-25.	3.4	9
1105	Implementation of Machine Learning Algorithms For Human Activity Recognition., 2021,,.		8
1106	Deep Learning for Sensor-based Human Activity Recognition. ACM Computing Surveys, 2022, 54, 1-40.	16.1	141
1107	Go Gig or Go Home: Enabling Social Sensing to Share Personal Data with Intimate Partner for the Health and Wellbeing of Long-Hour workers. , 2021, , .		10
1108	Development and validation of smartwatch-based activity recognition models for rigging crew workers on cable logging operations. PLoS ONE, 2021, 16, e0250624.	1.1	10
1109	The Design Space of Wearables for Sports and Fitness Practices. , 2021, , .		14
1110	Group Activity Recognition in Visual Data: A Retrospective Analysis of Recent Advancements. , 2021, , .		2
1111	Task offloading in edge computing for machine learning-based smart healthcare. Computer Networks, 2021, 191, 108019.	3.2	41
1112	A Wi-Fi-based Approach for Recognizing Human-Human Interactions. , 2021, , .		4
1113	Recognizing Seatbelt-Fastening Behavior with Wearable Technology and Machine Learning. , 2021, , .		1
1114	Activity, Plan, and Goal Recognition: A Review. Frontiers in Robotics and Al, 2021, 8, 643010.	2.0	17

#	Article	IF	CITATIONS
1115	Feature fusion using deep learning for smartphone based human activity recognition. International Journal of Information Technology (Singapore), 2021, 13, 1615-1624.	1.8	17
1116	Research on HAR-Based Floor Positioning. ISPRS International Journal of Geo-Information, 2021, 10, 437.	1.4	1
1117	ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors. Automation in Construction, 2021, 126, 103653.	4.8	57
1118	An ensemble of autonomous auto-encoders for human activity recognition. Neurocomputing, 2021, 439, 271-280.	3.5	45
1119	Feature Selection in Mobile Activity Recognition: A Comparative Study., 2021,,.		1
1120	Hybrid domain adaptation for sensor-based human activity recognition in a heterogeneous setup with feature commonalities. Pattern Analysis and Applications, 2021, 24, 1501-1511.	3.1	4
1121	Deep ensemble learning approach for lower extremity activities recognition using wearable sensors. Expert Systems, 2022, 39, e12743.	2.9	56
1122	Assessment of Machine Learning Models for Classification of Movement Patterns During a Weight-Shifting Exergame. IEEE Transactions on Human-Machine Systems, 2021, 51, 242-252.	2.5	2
1123	A new approach for physical human activity recognition based on co-occurrence matrices. Journal of Supercomputing, 2022, 78, 1048-1070.	2.4	5
1124	Low cost EPTS (Electronic Performance & EPTS) (EPTS) (EP		0
1125	MARS: Mixed Virtual and Real Wearable Sensors for Human Activity Recognition With Multidomain Deep Learning Model. IEEE Internet of Things Journal, 2021, 8, 9383-9396.	5.5	19
1126	A Motion Capture System for Hand Movement Recognition. Lecture Notes in Networks and Systems, 2022, , 114-121.	0.5	2
1127	Hierarchical evolutionary classification framework for human action recognition using sparse dictionary optimization. Swarm and Evolutionary Computation, 2021, 63, 100873.	4.5	6
1128	An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones. Sensors, 2021, 21, 3845.	2.1	33
1129	Privacy preserving getup detection., 2021,,.		1
1130	Survey on Human Activity Recognition using Smartphone. AL-Rafidain Journal of Computer Sciences and Mathematics, 2021, 15, 55-67.	0.3	5
1131	Human Activity Recognition Using Parallel Cartesian Genetic Programming., 2021,,.		0
1132	Wearable Body Sensor Networks: State-of-the-Art and Research Directions. IEEE Sensors Journal, 2021, 21, 12511-12522.	2.4	38

#	Article	IF	Citations
1133	Exploring the Spatiotemporal Patterns of Residents' Daily Activities Using Text-Based Social Media Data: A Case Study of Beijing, China. ISPRS International Journal of Geo-Information, 2021, 10, 389.	1.4	13
1135	BLE-based approach for detecting daily routine changes. , 2021, , .		2
1136	Human activity recognition based on smartphone and wearable sensors using multiscale DCNN ensemble. Neurocomputing, 2021, 444, 226-243.	3.5	45
1137	Smartphone Location Recognition with Unknown Modes in Deep Feature Space. Sensors, 2021, 21, 4807.	2.1	1
1138	A smart learning ecosystem design for delivering Data-driven Thinking in STEM education. Smart Learning Environments, 2021, 8, .	4.3	11
1139	Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers. Sensors, 2021, 21, 4713.	2.1	5
1140	A sequence models-based real-time multi-person action recognition method with monocular vision. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 1877-1887.	3.3	2
1141	A Survey on Wearable Technology: History, State-of-the-Art and CurrentÂChallenges. Computer Networks, 2021, 193, 108074.	3.2	211
1142	Crowdsourcing-based indoor mapping using smartphones: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177, 131-146.	4.9	33
1143	Deep Convolutional Neural Network with RNNs for Complex Activity Recognition Using Wrist-Worn Wearable Sensor Data. Electronics (Switzerland), 2021, 10, 1685.	1.8	62
1144	The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review. Disability and Rehabilitation, 2022, 44, 6119-6138.	0.9	23
1145	A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions. Knowledge-Based Systems, 2021, 223, 106970.	4.0	112
1146	Device-free Location-independent Human Activity Recognition via Few-shot Learning. , 2021, , .		4
1147	A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods. Arabian Journal for Science and Engineering, 2022, 47, 1507-1521.	1.7	15
1148	Trends in human activity recognition using smartphones. Journal of Reliable Intelligent Environments, 2021, 7, 189-213.	3.8	46
1149	Daily Human Activity Recognition Using Non-Intrusive Sensors. Sensors, 2021, 21, 5270.	2.1	15
1150	Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques. Computers in Biology and Medicine, 2021, 135, 104638.	3.9	17
1151	A smartphone sensors-based personalized human activity recognition system for sustainable smart cities. Sustainable Cities and Society, 2021, 71, 102970.	5.1	56

#	Article	IF	CITATIONS
1152	Web-based objects detection to discover key objects in human activities. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 3041-3056.	3.3	2
1153	Heart Rate Monitoring System Using Feature Extraction in Electrocardiogram Signal by Convolutional Neural Network. , 2021, , .		0
1154	Time-Series Deep-Learning Classifier for Human Activity Recognition Based On Smartphone Built-in Sensors. Journal of Physics: Conference Series, 2021, 1973, 012127.	0.3	5
1155	Generative Adversarial Network for Radar-Based Human Activities Classification with Low Training Data Support., 2021,,.		0
1156	Putting human behavior predictability in context. EPJ Data Science, 2021, 10, .	1.5	12
1157	Physique-Based Human Activity Recognition Using Ensemble Learning and Smartphone Sensors. IEEE Sensors Journal, 2021, 21, 16852-16860.	2.4	19
1158	Review of Wearable Devices and Data Collection Considerations for Connected Health. Sensors, 2021, 21, 5589.	2.1	124
1159	A Novel Hybrid Gradient-Based Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors. Entropy, 2021, 23, 1065.	1.1	41
1160	N-Gram Based Transport Mode Detection Models for Energy Constrained Devices., 2021,,.		0
1161	Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method. Sensors, 2021, 21, 6434.	2.1	17
1162	Analysis of Feature Importances for Automatic Generation of Care Records., 2021,,.		0
1163	Training and Validating a Machine Learning Model for the Sensor-Based Monitoring of Lying Behavior in Dairy Cows on Pasture and in the Barn. Animals, 2021, 11, 2660.	1.0	14
1164	Anticipatory Detection of Compulsive Body-focused Repetitive Behaviors with Wearables., 2021,,.		1
1165	machine and deep learning approaches for human activity recognition. International Journal of Intelligent Computing and Information Sciences, 2021, .	0.3	3
1166	Subject variability in sensor-based activity recognition. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 3261-3274.	3.3	4
1167	A Comparative Study of Time Frequency Representation Techniques for Freeze of Gait Detection and Prediction. Sensors, 2021, 21, 6446.	2.1	10
1168	Trends in human activity recognition with focus on machine learning and power requirements. Machine Learning With Applications, 2021, 5, 100072.	3.0	30
1169	Isolating Specific vs. Non-Specific Binding Responses in Conducting Polymer Biosensors for Bio-Fingerprinting. Sensors, 2021, 21, 6335.	2.1	2

#	Article	IF	CITATIONS
1170	Detecting basic human activities and postural transition using robust machine learning techniques by applying dimensionality reduction methods. Waves in Random and Complex Media, 0, , 1-26.	1.6	3
1171	A Deep Learning-Based Framework for Human Activity Recognition in Smart Homes. Mobile Information Systems, 2021, 2021, 1-11.	0.4	11
1172	State-of-the-art survey on activity recognition and classification using smartphones and wearable sensors. Multimedia Tools and Applications, 2022, 81, 1077-1108.	2.6	7
1173	1D Convolution approach to human activity recognition using sensor data and comparison with machine learning algorithms. International Journal of Cognitive Computing in Engineering, 2021, 2, 130-143.	5.5	13
1174	Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film. Nano Convergence, 2021, 8, 25.	6.3	15
1175	Attention induced multi-head convolutional neural network for human activity recognition. Applied Soft Computing Journal, 2021, 110, 107671.	4.1	74
1176	Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world. Applied Ergonomics, 2021, 96, 103414.	1.7	19
1177	A survey on deep learning for challenged networks: Applications and trends. Journal of Network and Computer Applications, 2021, 194, 103213.	5.8	28
1178	A wearable-based posture recognition system with Al-assisted approach for healthcare IoT. Future Generation Computer Systems, 2022, 127, 286-296.	4.9	19
1179	Fusion of Multimodal Sensor Data forÂEffective Human Action Recognition inÂthe Service of Medical Platforms. Lecture Notes in Computer Science, 2021, , 367-378.	1.0	3
1180	Semantics-Aware Adaptive Knowledge Distillation for Sensor-to-Vision Action Recognition. IEEE Transactions on Image Processing, 2021, 30, 5573-5588.	6.0	48
1181	WiMonitor: Continuous Long-Term Human Vitality Monitoring Using Commodity Wi-Fi Devices. Sensors, 2021, 21, 751.	2.1	11
1182	Binarized neural network for edge intelligence of sensor-based human activity recognition. IEEE Transactions on Mobile Computing, 2021, , 1-1.	3.9	14
1183	A Survey on Machine Learning-Based Performance Improvement of Wireless Networks: PHY, MAC and Network Layer. Electronics (Switzerland), 2021, 10, 318.	1.8	39
1184	Fine-scale foraging effort and efficiency of Macaroni penguins is influenced by prey type, patch density and temporal dynamics. Marine Biology, 2021, 168, 1.	0.7	10
1185	Semantic Web and IoT. Studies in Computational Intelligence, 2021, , 3-33.	0.7	1
1186	ViPSN-Pluck: A Transient-Motion-Powered Motion Detector. IEEE Internet of Things Journal, 2022, 9, 3372-3382.	5.5	16
1187	Predicting State Transition in Freezing of Gait via Acceleration Measurements for Controlled Cueing in Parkinson's Disease. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-16.	2.4	8

#	Article	IF	CITATIONS
1188	Detecting Falls-from-Height with Wearable Sensors and Reducing Consequences of Occupational Fall Accidents Leveraging IoT. , 2019 , , $207-214$.		10
1189	Personalised Human Activity Recognition Using Matching Networks. Lecture Notes in Computer Science, 2018, , 339-353.	1.0	7
1190	A Taxonomy for Combining Activity Recognition and Process Discovery in Industrial Environments. Lecture Notes in Computer Science, 2018, , 84-93.	1.0	18
1191	MEASURed: Evaluating Sensor-Based Activity Recognition Scenarios by Simulating Accelerometer Measures from Motion Capture. Springer Series in Adaptive Environments, 2019, , 135-149.	0.3	1
1192	Clustering Time-Series Data Generated by Smart Devices for Human Activity Recognition. Advances in Intelligent Systems and Computing, 2020, , 708-716.	0.5	4
1193	Vision and Crowdsensing Technology for an Optimal Response in Physical-Security. Lecture Notes in Computer Science, 2019, , 15-26.	1.0	2
1194	Fog-Enabled Smart Home and User Behavior Recognition. , 2020, , 185-210.		2
1195	Improving the Collection and Understanding the Quality of Datasets for the Aim of Human Activity Recognition. Computer Communications and Networks, 2020, , 147-165.	0.8	5
1196	Energy Efficient Smartphone-Based Users Activity Classification. Lecture Notes in Computer Science, 2019, , 208-219.	1.0	1
1197	Review of Machine Learning and Deep Learning Based Recommender Systems for Health Informatics. Studies in Big Data, 2020, , 101-126.	0.8	13
1198	Group Walking Recognition Based on Smartphone Sensors. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 91-102.	0.2	2
1199	Single Activity Recognition System: A Review. , 2020, , 257-271.		2
1200	Application of Convolutional Neural Networks for Fall Detection Using Multiple Cameras. Studies in Systems, Decision and Control, 2020, , 97-120.	0.8	6
1201	An Improved Ensemble Machine Learning Algorithm for Wearable Sensor Data Based Human Activity Recognition. Springer Series in Reliability Engineering, 2020, , 207-228.	0.3	4
1202	A Context-Aware Framework for Media Recommendation on Smartphones. Lecture Notes in Electrical Engineering, 2014, , 87-108.	0.3	3
1203	Using Fuzzy Logic to Enhance Classification of Human Motion Primitives. Communications in Computer and Information Science, 2014, , 596-605.	0.4	10
1204	Activity Recognition for an Agent-Oriented Personal Health System. Lecture Notes in Computer Science, 2014, , 254-269.	1.0	5
1205	Detecting Walking in Synchrony Through Smartphone Accelerometer and Wi-Fi Traces. Lecture Notes in Computer Science, 2014, , 33-46.	1.0	3

#	Article	IF	Citations
1206	aHead: Considering the Head Position in a Multi-sensory Setup of Wearables to Recognize Everyday Activities with Intelligent Sensor Fusions. Lecture Notes in Computer Science, 2015, , 741-752.	1.0	11
1207	Smart Environments and Context-Awareness for Lifestyle Management in a Healthy Active Ageing Framework. Lecture Notes in Computer Science, 2015, , 54-66.	1.0	9
1208	Gamification of Exercise and Fitness using Wearable Activity Trackers. Advances in Intelligent Systems and Computing, 2016, , 233-240.	0.5	24
1209	Kinect and Episodic Reasoning for Human Action Recognition. Advances in Intelligent Systems and Computing, 2016, , 147-154.	0.5	2
1210	Walking Aid Identification Using Wearables. Lecture Notes in Computer Science, 2016, , 335-341.	1.0	1
1211	SELFBACK—Activity Recognition for Self-management of Low Back Pain. , 2016, , 281-294.		8
1212	User Indoor Localisation System Enhances Activity Recognition: A Proof of Concept. Lecture Notes in Electrical Engineering, 2017, , 251-268.	0.3	2
1213	kNN Sampling for Personalised Human Activity Recognition. Lecture Notes in Computer Science, 2017, , 330-344.	1.0	29
1214	Automatic Annotation of Daily Activity from Smartphone-Based Multisensory Streams. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, , 328-342.	0.2	16
1215	Human Activity Recognition Using A Single Optical Heart Rate Monitoring Wristband Equipped with Triaxial Accelerometer. IFMBE Proceedings, 2018, , 587-590.	0.2	7
1216	Human–human interaction recognition based on ultra-wideband radar. Signal, Image and Video Processing, 2020, 14, 1181-1188.	1.7	2
1217	Vision-based human action recognition: An overview and real world challenges. Forensic Science International: Digital Investigation, 2020, 32, 200901.	1.2	74
1218	A Lightweight Deep Learning Model for Human Activity Recognition on Edge Devices. Procedia Computer Science, 2020, 167, 2364-2373.	1.2	85
1219	Measuring body movement: Current and future directions in proxemics and kinesics, 2016, , 551-587.		11
1220	Wearable sensors for gesture analysis in smart healthcare applications. , 2017, , 79-102.		3
1221	Human Moving Behavior Recognition Based on the D-S Evidence Theory and SVM utilizing Smartphone. , 2020, , .		3
1222	An online learning based approach for CEP rule generation. , 2016, , .		1
1223	Online Recognition of Driver-Activity Based on Visual Scanpath Classification. IEEE Intelligent Transportation Systems Magazine, 2017, 9, 23-36.	2.6	33

#	Article	IF	CITATIONS
1224	Gait Recovery System for Parkinson's Disease using Machine Learning on Embedded Platforms. , 2020, , .		8
1225	Indoor Corner Detection and Matching from Crowdsourced Movement Trajectories. , 2017, , .		4
1226	Autonomous computational intelligence-based behaviour recognition in security and surveillance. , 2018, , .		4
1227	Improving Search Engines via Large-Scale Physiological Sensing. , 2017, , .		5
1228	A Multi-sensor Framework for Personal Presentation Analytics. ACM Transactions on Multimedia Computing, Communications and Applications, 2019, 15, 1-21.	3.0	6
1229	Electrooculography dataset for reading detection in the wild. , 2019, , .		5
1230	Capacitor-based Activity Sensing for Kinetic-powered Wearable IoTs. ACM Transactions on Internet of Things, 2020, 1, 1-26.	3.4	14
1231	Reflexive Interaction., 2019, , .		11
1232	Quantifying the Relationships between Everyday Objects and Emotional States through Deep Learning Based Image Analysis Using Smartphones., 2020, 4, 1-21.		13
1233	Evaluation of federated learning aggregation algorithms. , 2020, , .		20
1234	Nurse care activity recognition based on convolution neural network for accelerometer data. , 2020, , .		2
1235	Complex nurse care activity recognition using statistical features. , 2020, , .		8
1236	Non-Contact In-Home Activity Recognition System Utilizing Doppler Sensors. , 2021, , .		6
1237	MM-Fit. , 2020, 4, 1-22.		35
1238	Acoustic Sensor Based Recognition of Human Activity in Everyday Life for Smart Home Services. International Journal of Distributed Sensor Networks, 2015, 11, 679123.	1.3	32
1239	Sports Motion Recognition Using MCMR Features Based on Interclass Symbolic Distance. International Journal of Distributed Sensor Networks, 2016, 12, 7483536.	1.3	12
1240	Localizing Tortoise Nests by Neural Networks. PLoS ONE, 2016, 11, e0151168.	1.1	4
1241	SARF: Smart Activity Recognition Framework in Ambient Assisted Living. , 0, , .		20

#	Article	IF	CITATIONS
1242	Automatic Human Daily Activity Segmentation Applying Smart Sensing Technology. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 1624-1640.	0.4	5
1243	Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study. Journal of Medical Internet Research, 2018, 20, e10194.	2.1	13
1244	Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data. JMIR MHealth and UHealth, 2019, 7, e11201.	1.8	28
1245	Inferring Physical Function From Wearable Activity Monitors: Analysis of Free-Living Activity Data From Patients With Knee Osteoarthritis. JMIR MHealth and UHealth, 2018, 6, e11315.	1.8	13
1246	Effects of a Personalized Fitness Recommender System Using Gamification and Continuous Player Modeling: System Design and Long-Term Validation Study. JMIR Serious Games, 2020, 8, e19968.	1.7	26
1247	Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation. JMIR MHealth and UHealth, 2017, 5, e115.	1.8	17
1248	Well-Being Tracking via Smartphone-Measured Activity and Sleep: Cohort Study. JMIR MHealth and UHealth, 2017, 5, e137.	1.8	41
1249	Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models. JMIR Rehabilitation and Assistive Technologies, 2017, 4, e8.	1.1	7
1250	A Novel Distribution-Embedded Neural Network for Sensor-Based Activity Recognition. , 2019, , .		25
1251	State-Space based Linear Modeling for Human Activity Recognition in Smart Space. Intelligent Automation and Soft Computing, 0, , 1-9.	1.6	6
1252	Self-Management of Low Back Pain Using Neural Network. Computers, Materials and Continua, 2020, 66, 885-901.	1.5	7
1253	Reducing Operational Time Complexity of k-NN Algorithms Using Clustering in Wrist-Activity Recognition. Intelligent Automation and Soft Computing, 2020, 26, 679-691.	1.6	7
1254	Accessible Routes Integrating Data from Multiple Sources. ISPRS International Journal of Geo-Information, 2021, 10, 7.	1.4	7
1255	Weakly Supervised Learning for Evaluating Road Surface Condition from Wheelchair Driving Data. Information (Switzerland), 2020, 11 , 2 .	1.7	8
1256	Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments. Sensors, 2020, 20, 216.	2.1	51
1257	Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running. Sensors, 2021, 21, 194.	2.1	9
1258	Encoding Human Motion for Automated Activity Recognition in Surveillance Applications. , 2018, , 2042-2064.		5
1259	Food Watch: Detecting and Characterizing Eating Episodes through Feeding Gestures., 2017,,.		10

#	Article	IF	Citations
1260	Physical Activity Intensity Monitoring of Hospital Workers using a Wearable Sensor., 2018,,.		4
1261	Using Cloud-assisted Body Area Networks to Track People Physical Activity in Mobility. , 2015, , .		14
1262	A Large-Scale Study in Predictability of Daily Activities and Places. , 2016, , .		13
1263	Cardiac and Respiratory Parameter Estimation Using Head-mounted Motion-sensitive Sensors. EAI Endorsed Transactions on Pervasive Health and Technology, 2015, 1, e2.	0.7	16
1264	A Novel Approach for Activity Recognition with Down-Sampling 1D Local Binary Pattern Features. Advances in Electrical and Computer Engineering, 2019, 19, 35-44.	0.5	24
1265	Insights on Research-based Approaches in Human Activity Recognition System. Communications on Applied Electronics, 2018, 7, 23-31.	0.4	3
1266	Statistical Analysis of Window Sizes and Sampling Rates in Human Activity Recognition. , 2017, , .		16
1267	Smart Lifelogging: Recognizing Human Activities using PHASOR. , 2017, , .		3
1268	Towards a Digital Personal Trainer for Health Clubs - Sport Exercise Recognition Using Personalized Models and Deep Learning. , 2018, , .		4
1269	Physical Activity Recognition by Utilising Smartphone Sensor Signals., 2019, , .		4
1270	H2HI-Net: A Dual-Branch Network for Recognizing Human-to-Human Interactions From Channel-State Information. IEEE Internet of Things Journal, 2022, 9, 10010-10021.	5 . 5	3
1271	WiHGR: A Robust WiFi-Based Human Gesture Recognition System via Sparse Recovery and Modified Attention-Based BGRU. IEEE Internet of Things Journal, 2022, 9, 10272-10282.	5 . 5	12
1272	HiHAR: A Hierarchical Hybrid Deep Learning Architecture for Wearable Sensor-Based Human Activity Recognition. IEEE Access, 2021, 9, 145271-145281.	2.6	19
1273	Human Activity Recognition Based on Acceleration Data From Smartphones Using HMMs. IEEE Access, 2021, 9, 139336-139351.	2.6	9
1274	Maximum Doppler Frequency Detection Based on Likelihood Estimation With Theoretical Thresholds. IEICE Transactions on Communications, 2022, E105.B, 657-664.	0.4	3
1275	Jointly Prediction of Activities, Locations, and Starting Times for Isolated Elderly People. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 2288-2295.	3.9	3
1276	Social Navigation for Mobile Robots in the Emergency Department. , 2021, , .		8
1277	Advancements in Healthcare: Multi-Agent Based Intelligent Sensor Approach. Smart Innovation, Systems and Technologies, 2022, , 171-184.	0.5	1

#	Article	IF	CITATIONS
1278	A Systematic Survey on Human Behavior Recognition Methods. SN Computer Science, 2022, 3, 1.	2.3	1
1279	A survey on the use of machine learning methods in context-aware middlewares for human activity recognition. Artificial Intelligence Review, 2022, 55, 3369-3400.	9.7	11
1280	Modelling Human Activity using Smartphone Data. Open Biomedical Engineering Journal, 2021, 15, 58-70.	0.7	1
1281	FLIRT: A feature generation toolkit for wearable data. Computer Methods and Programs in Biomedicine, 2021, 212, 106461.	2.6	21
1282	Recent Advances in Wearable Sensing Technologies. Sensors, 2021, 21, 6828.	2.1	41
1283	A Survey of Vision-Based Transfer Learning in Human Activity Recognition. Electronics (Switzerland), 2021, 10, 2412.	1.8	6
1284	Investigating the Usability of a Head-Mounted Display Augmented Reality Device in Elementary School Children. Sensors, 2021, 21, 6623.	2.1	8
1285	Wearable Interactions for Users with Motor Impairments: Systematic Review, Inventory, and Research Implications., 2021,,.		17
1286	Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals. Sensors, 2021, 21, 6997.	2.1	15
1287	Physical Activity Identification using Supervised Machine Learning and based on Pulse Rate. International Journal of Advanced Computer Science and Applications, 2013, 4, .	0.5	4
1288	Human Activities Their Classification, Recognition and Ensemble of Classifiers. International Journal of Computer Applications, 2013, 76, 6-11.	0.2	3
1289	Towards Big Data for Activity Recognition: A Novel Database Fusion Strategy. , 2014, , .		4
1290	Human Activity Recognition in WSN: A Comparative Study. International Journal of Networked and Distributed Computing, 2014, 2, 221.	1.3	3
1291	ActMiner: Discovering Location-Specific Activities from Community-Authored Reviews. Lecture Notes in Computer Science, 2014, , 332-344.	1.0	0
1292	FORMAL LOGICAL TRANSFORMATION OF HIERARCHICAL HUMAN ACTIVITY FOR REASONING BASED RECOGNITION. , 2014, , .		2
1293	Context-aware Application User Experience Manipulation. International Journal of Computer Applications, 2014, 104, 18-25.	0.2	0
1294	Defining a Roadmap Towards Comparative Research in Online Activity Recognition on Mobile Phones., 2015,,.		2
1295	Checking Models for Activity Recognition. , 2015, , .		2

#	Article	IF	CITATIONS
1296	Analysis of Motion Patterns for Recognition of Human Activities. , 2015, , .		2
1297	A Spatiotemporal Approach for Social Situation Recognition. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2015, , 309-316.	0.2	2
1298	Critical Behavior Monitoring for Children with Special Needs in Preventing Physical Injury Using Kinect. Advances in Medical Technologies and Clinical Practice Book Series, 2015, , 211-249.	0.3	0
1299	System do monitorowania ruchu i zachowaÅ,, osób starszych. , 2015, 1, 21-26.	0.0	0
1300	Activity Recognition for Healthcare Based on Slow Intelligence Systems. , 2016, , .		2
1301	Zone-Based Living Activity Recognition Scheme Using Markov Logic Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 109-117.	0.2	0
1302	Complex human action recognition on daily living environments using wearable inertial sensors. , 2016, , .		2
1305	A context-aware model for human activity prediction and risk inference in actions. Journal of Applied Computing Research, 2016, 5, .	0.4	0
1306	Estimating Human Activities from Smartwatches with Feedforward Neural Networks. Advances in Intelligent Systems and Computing, 2017, , 51-57.	0.5	0
1307	Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates. Transactions of the Korean Institute of Electrical Engineers, 2016, 65, 1731-1737.	0.1	0
1308	Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model. Journal of Korean Institute of Intelligent Systems, 2016, 26, 471-476.	0.0	0
1309	Unsupervised and Supervised Activity Analysis of Drone Sensor Data. Communications in Computer and Information Science, 2017, , 3-11.	0.4	1
1310	Wearable Computing Support for Objective Assessment of Function in Older Adults. Lecture Notes in Computer Science, 2017, , 212-222.	1.0	0
1312	Encoding Human Motion for Automated Activity Recognition in Surveillance Applications. Advances in Multimedia and Interactive Technologies Book Series, 2017, , 170-192.	0.1	0
1313	Active Sensing in Human Activity Recognition. Lecture Notes in Computer Science, 2017, , 157-166.	1.0	0
1315	Klasyfikacja akcji n $ ilde{A}^3$ g w szermierce z u $ ilde{A}^1\!\!/\!4$ yciem akcelerometru. Elektronika, 2017, 1, 10-14.	0.0	0
1316	A Study on the Motion Recognition of Basketball Players Based on Unit Gesture Decomposition. Advances in Intelligent Systems and Computing, 2018, , 254-265.	0.5	0
1317	Human Motion Monitoring Platform Based on Positional Relationship and Inertial Features. Advances in Intelligent Systems and Computing, 2018, , 373-379.	0.5	0

#	Article	IF	CITATIONS
1318	$\label{thm:condition} Human-Machine-Environment\ Data\ Preparation\ Using\ Cooperative\ Manufacturing\ Process\ Triggers.$ SSRN\ Electronic\ Journal,\ 0,\ ,\ .	0.4	1
1319	Autoregressive Modeling of Wrist Attitude for Feature Enrichment in Human Activity Recognition. , 0,		0
1320	Genetic-Algorithm-Based Feature-Selection Technique for Fall Detection Using Multi-placement Wearable Sensors. Internet of Things, 2019, , 319-332.	1.3	2
1321	Are You in Pain? Predicting Pain and Stiffness from Wearable Sensor Activity Data. Lecture Notes in Computer Science, 2019, , 183-197.	1.0	3
1322	Human Body Posture Recognition Using Wearable Devices. Lecture Notes in Computer Science, 2019, , 326-337.	1.0	1
1323	A Personal Activity Recognition System Based on Smart Devices. Communications in Computer and Information Science, 2019, , 487-499.	0.4	0
1324	Wearables Security and Privacy. Studies in Systems, Decision and Control, 2019, , 351-380.	0.8	2
1327	Enabling the Discovery of Manual Processes Using a Multi-modal Activity Recognition Approach. Lecture Notes in Business Information Processing, 2019, , 130-141.	0.8	10
1328	The Smart Insole: A Pilot Study of Fall Detection. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 37-49.	0.2	6
1329	Towards a Robotic Personal Trainer for the Elderly. Lecture Notes in Computer Science, 2019, , 238-246.	1.0	1
1330	Effects of Activity Recognition Window Size and Time Stabilization in the SHL Recognition Challenge. Springer Series in Adaptive Environments, 2019, , 213-231.	0.3	0
1331	CAPAS: A Context-Aware System Architecture for Physical Activities Monitoring. Lecture Notes in Computer Science, 2019, , 636-647.	1.0	0
1333	Improving Child Health through Technology-Supported Active Transport. , 2019, , .		0
1334	CartRight: Maintaining Good Posture in the Presence of Adaptive Haptics. , 2019, , .		0
1335	Action Recognition from Egocentric Videos Using Random Walks. Advances in Intelligent Systems and Computing, 2020, , 389-402.	0.5	1
1336	Empowering Qualitative Research Methods in Education with Artificial Intelligence. Advances in Intelligent Systems and Computing, 2020, , 1-21.	0.5	7
1337	To the Roots of the Sense of Self: Proposals for a Study on the Emergence of Body Awareness in Early Infancy Through a Deep Learning Method. Smart Innovation, Systems and Technologies, 2020, , 415-429.	0.5	1
1338	Designing Videogames to Crowdsource Accelerometer Data Annotation for Activity Recognition Research., 2019, 2019, 135-147.		4

#	Article	IF	CITATIONS
1339	A Computer Vision Framework for Human User Sensing in Public Open Spaces., 2019,,.		1
1340	Motion Monitoring for Limb Exercise. , 2019, , .		0
1341	Labeling of Activity Recognition Datasets: Detection of Misbehaving Users. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 320-331.	0.2	1
1342	An Embedded ANN Raspberry PI for Inertial Sensor Based Human Activity Recognition. Lecture Notes in Computer Science, 2020, , 375-385.	1.0	6
1343	Feature Engineering Workflow for Activity Recognition fromÂSynchronized Inertial MeasurementÂUnits. Communications in Computer and Information Science, 2020, , 223-231.	0.4	3
1344	Real-Time Human Activity Recognition Using Textile-Based Sensors. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 168-183.	0.2	2
1346	Challenges in measuring partner dancing skills via wearable accelerometers. , 2020, , .		1
1347	Wearable inertial sensors to recognize basic human motion: What technology for what activity?. , 2020, , .		0
1348	A Comparative Analysis of Different Approaches for Recognizing Human Activity. International Journal for Research in Applied Science and Engineering Technology, 2020, 8, 1902-1907.	0.1	0
1349	A Data Privacy-preserving Method for Students' Physical Health Monitoring by Using Smart Wearable Devices. , 2020, , .		3
1350	Activity Prediction for Elderly Using Radio-Frequency Identification Sensors. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 137-151.	0.5	0
1351	Human Activity Recognition Using Wearable Sensors. Advances in Intelligent Systems and Computing, 2021, , 527-538.	0.5	4
1352	The relationship between body posture, gait biomechanics and the use of sensory insoles: a review. Research, Society and Development, 2020, 9, e263996793.	0.0	1
1353	A Hybrid Deep Learning Framework using CNN and GRU-based RNN for Recognition of Pairwise Similar Activities. , 2020, , .		4
1354	Mutual Information based Feature Selection for Nurse Care Activity Recognition. , 2020, , .		2
1355	Convolutional Neural Network for Human Activity Recognition and Identification. , 2020, , .		5
1356	FaceMask: a Smart Personal Protective Equipment for Compliance Assessment of Best Practices to Control Pandemic., 2021,,.		4
1358	Review on Biomedical Sensors, Technologies and Algorithms for Diagnosis of Sleep Disordered Breathing: Comprehensive Survey. IEEE Reviews in Biomedical Engineering, 2022, 15, 4-22.	13.1	20

#	Article	IF	CITATIONS
1359	Investigation of Different Time-Series Segmented Windows from Inertial Sensor for Field Hockey Activity Recognition. Lecture Notes in Bioengineering, 2020, , 299-310.	0.3	0
1360	Impact of Memory Control on Batch Learning in Human Activity Recognition Scenario in Comparison to Data Stream Learning. Lecture Notes in Computer Science, 2020, , 145-157.	1.0	0
1361	Improved Human Activity Recognition Model based on Sequence Mixup., 2020,,.		0
1362	Conditional restricted Boltzmann machine as a generative model for bodyâ€worn sensor signals. IET Signal Processing, 2020, 14, 725-736.	0.9	2
1363	BlinKey., 2020, 4, 1-29.		14
1364	Comparative Analysis of Different Approaches to Human Activity Recognition Based on Accelerometer Signals. Studies in Big Data, 2021, , 303-322.	0.8	3
1365	Evaluation of Random Forest for Complex Human Activity Recognition Using Wearable Sensors. , 2020, , .		5
1366	Accelerometer based classification of elbow flexion and extension exercises. , 2020, , .		1
1367	Dimensionality Reduction for Human Activity Recognition Using Google Colab. Information (Switzerland), 2021, 12, 6.	1.7	8
1368	A Phase-wise Analysis of Machine Learning based Human Activity Recognition using Inertial Sensors. , 2020, , .		1
1369	Experimental Analysis of Artificial Neural Networks Performance for Accessing Physical Activity Recognition in Daily Life. , 2020, , .		2
1370	A Multimodal Human Sensing System for Assisted Living. EAI Endorsed Transactions on Pervasive Health and Technology, 2020, 6, 167285.	0.7	1
1371	Multilabel Classification of Nursing Activities in a Realistic Scenario. Smart Innovation, Systems and Technologies, 2021, , 269-288.	0.5	0
1372	Adaptive Multi-state Pipe Framework Based on Set Pair Analysis. International Journal of Machine Learning and Computing, 2020, 10, 759-764.	0.8	0
1373	Fog Transport Mode Detection. , 2020, , .		2
1374	Publicly Accessible Wearable Motion Databases for Human Gait Studies. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1718-1722.	0.2	1
1375	Recognizing Physical Activity of hospitalized Older People from Wearable Sensors Data using IoT. International Journal of Organizational and Collective Intelligence, 2022, 12, 0-0.	0.3	0
1376	A Survey on Deep Learning for Human Activity Recognition. ACM Computing Surveys, 2022, 54, 1-34.	16.1	73

#	Article	IF	CITATIONS
1377	IoT-Based Activity Recognition for Process Assistance in Human-Robot Disaster Response. Lecture Notes in Business Information Processing, 2020, , 71-87.	0.8	0
1379	Pedestrian Activity Recognition Using 2-D Pose Estimation for Autonomous Vehicles. Lecture Notes in Networks and Systems, 2020, , 499-506.	0.5	0
1380	In-Bed Human Pose Classification Using Sparse Inertial Signals. Lecture Notes in Computer Science, 2020, , 331-344.	1.0	1
1381	Difficulty Classification of Mountainbike Downhill Trails Utilizing Deep Neural Networks. Communications in Computer and Information Science, 2020, , 270-280.	0.4	O
1382	Open Source Implementation for Fall Classification and Fall Detection Systems. Studies in Systems, Decision and Control, 2020, , 3-29.	0.8	0
1383	Unobtrusive Activity Recognition and Position Estimation for Work Surfaces Using RF-Radar Sensing. ACM Transactions on Interactive Intelligent Systems, 2020, 10, 1-28.	2.6	5
1384	Human Action Recognition in Unconstrained Videos Using Deep Learning Techniques. Advances in Intelligent Systems and Computing, 2020, , 737-744.	0.5	0
1385	Behavioural Pattern Discovery from Collections of Egocentric Photo-Streams. Lecture Notes in Computer Science, 2020, , 469-484.	1.0	0
1386	Using an Indoor Localization System for Activity Recognition. EAI/Springer Innovations in Communication and Computing, 2020, , 233-243.	0.9	1
1387	An Online Unsupervised Dynamic Window Method to Track Repeating Patterns From Sensor Data. IEEE Transactions on Cybernetics, 2022, 52, 5148-5160.	6.2	4
1388	Powering Healthcare IoT Sensors-Based Triboelectric Nanogenerator. Advances in Computer and Electrical Engineering Book Series, 2020, , 29-51.	0.2	2
1389	Performance Comparisson Human Activity Recognition Using Simple Linear Method. Kinetik, 0, , 1-10.	0.1	2
1390	Human Activity Recognition based on LSTM Neural Network Optimized by PSO Algorithm., 2021,,.		4
1391	Exploring Relationships between Cerebral and Peripheral Biosignals with Neural Networks., 2021,,.		0
1392	E-textiles prototypes and applications on wearable devices. Journal of Textile Engineering & Fashion Technology, 2021, 7, 169-171.	0.1	0
1393	Live Spoofing Detection for Automatic Human Activity Recognition Applications. Sensors, 2021, 21, 7339.	2.1	9
1394	Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal. Physical and Engineering Sciences in Medicine, 2021, 44, 1297-1309.	1.3	14
1395	Highly-accurate binary tiny neural network for low-power human activity recognition. Microprocessors and Microsystems, 2021, 87, 104371.	1.8	4

#	Article	IF	CITATIONS
1396	Beyond wellness monitoring: Continuous multiparameter remote automated monitoring of patients. Canadian Journal of Cardiology, 2021, , .	0.8	2
1397	Collaborative activity recognition with heterogeneous activity sets and privacy preferences. Journal of Ambient Intelligence and Smart Environments, 2021, 13, 433-452.	0.8	1
1398	Fitbit for Chickens?., 2020,,.		12
1399	Human activity recognition based on triaxial accelerometer using multi-feature weighted ensemble. , 2020, , .		1
1400	Critical Behavior Monitoring for Children with Special Needs in Preventing Physical Injury Using Kinect., 0,, 2059-2099.		0
1401	İnsan Hareketlerinin Tanınması için Parçacık Sürü Optimizasyonu Tabanlı Topluluk Sınıfland. Yöntemi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 0, , 381-390.	ırıcı 0.2	1
1402	A Survey on Energy Expenditure Estimation Using Wearable Devices. ACM Computing Surveys, 2021, 53, 1-35.	16.1	182
1403	Al at the Disco. , 2020, , .		1
1404	Recognition of Human Activities via Wearable Sensors. , 2020, , .		1
1405	Health Trend Monitoring by Embedded Sensor Systems for Health. IFMBE Proceedings, 2021, , 607-612.	0.2	O
1407	Privacy-Preserving Cross-Environment Human Activity Recognition. IEEE Transactions on Cybernetics, 2023, 53, 1765-1775.	6.2	13
1408	Federated personalized random forest for human activity recognition. Mathematical Biosciences and Engineering, 2021, 19, 953-971.	1.0	8
1409	Application of artificial intelligence in wearable devices: Opportunities and challenges. Computer Methods and Programs in Biomedicine, 2022, 213, 106541.	2.6	100
1410	Designing ECG monitoring healthcare system with federated transfer learning and explainable AI. Knowledge-Based Systems, 2022, 236, 107763.	4.0	71
1411	Dynamic time warping approach for optimized locomotor impairment detection using biomedical signal processing. Biomedical Signal Processing and Control, 2022, 72, 103321.	3.5	14
1412	A Residual Network with Focal Loss to Handle Class-imbalance Problem on Nurse Care Activity Recognition., 2021,,.		0
1413	Opportunities and Applications of 5G Network Technology. , 2021, , .		0
1414	PERSIST Sensing Network: A Multimodal Sensing Network Architecture For Collection of Patient-Generated Health Data In The Clinical Workflow., 2021,,.		1

#	Article	IF	CITATIONS
1415	HARTH: A Human Activity Recognition Dataset for Machine Learning. Sensors, 2021, 21, 7853.	2.1	25
1416	High accuracy human activity recognition using machine learning and wearable devices' raw signals. Journal of Information and Telecommunication, 2022, 6, 237-253.	2.2	5
1417	Static and Dynamic Human Activity Detection Using Multi CNN-ELM Approach. Lecture Notes in Electrical Engineering, 2022, , 207-218.	0.3	3
1418	Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy. Sensors, 2021, 21, 7743.	2.1	5
1419	Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model. Sensors, 2021, 21, 7628.	2.1	25
1420	A Novel Elderly Tracking System Using Machine Learning to Classify Signals from Mobile and Wearable Sensors. International Journal of Environmental Research and Public Health, 2021, 18, 12652.	1.2	10
1421	Body Temperature Monitoring for Regular COVID-19 Prevention Based on Human Daily Activity Recognition. Sensors, 2021, 21, 7540.	2.1	19
1422	Detecting clinical practice guideline-recommended wheelchair propulsion patterns with wearable devices following a wheelchair propulsion intervention. Assistive Technology, 2021, , .	1.2	1
1423	Obtaining Labels for In-the-Wild Studies: Using Visual Cues and Recall. IEEE Pervasive Computing, 2021, , 1-10.	1.1	0
1424	FedHAR: Semi-Supervised Online Learning for Personalized Federated Human Activity Recognition. IEEE Transactions on Mobile Computing, 2023, 22, 3318-3332.	3.9	22
1425	A Wearable Sensor Network With Embedded Machine Learning for Real-Time Motion Analysis and Complex Posture Detection. IEEE Sensors Journal, 2022, 22, 7868-7876.	2.4	9
1426	Radar-Based Human Activity Recognition Using Hyperdimensional Computing. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1605-1619.	2.9	11
1427	Deep Convolutional Networks With Tunable Speed–Accuracy Tradeoff for Human Activity Recognition Using Wearables. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	11
1428	PhaseAnti: An Anti-Interference WiFi-Based Activity Recognition System Using Interference-Independent Phase Component. IEEE Transactions on Mobile Computing, 2023, 22, 2938-2954.	3.9	3
1429	Activity Monitoring Through Wireless Sensor Networks Embedded Into Smart Sport Equipments: The Nordic Walking Training Utility. IEEE Sensors Journal, 2022, 22, 2744-2757.	2.4	2
1430	Worker safety in agriculture 4.0: A new approach for mapping operator's vibration risk through Machine Learning activity recognition. Computers and Electronics in Agriculture, 2022, 193, 106637.	3.7	12
1431	Intelligent System for Human Context Recognition. , 2020, , .		1
1432	Carry Out Computer Tasks with Gesture using Image Pre-Processing and TensorFlow Framework. International Journal of Engineering Research & Technology, 2020, V9, .	0.2	0

#	Article	IF	CITATIONS
1433	Time Series Feature Extraction For Head Gesture Recognition: Considerations Toward HCl Applications. , 2020, , .		4
1434	Deep Learning with Attention Mechanism for Predicting Driver Intention at Intersection. , 2020, , .		7
1435	Human Behavior Recognition Based on WiFi Channel State Information. , 2020, , .		4
1436	Systematic Evaluation of Deep Learning Models for Human Activity Recognition Using Accelerometer. , 2020, , .		0
1437	Human Activity Recognition using Reduced Kernel Extreme Learning Machine for Body Weight Management. , 2020, , .		0
1438	HUMAN ACTIVITY RECOGNITION BASED ON SMARTPHONE SENSOR DATA USING CNN. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-4/W3-2020, 263-265.	0.2	2
1439	Machine Learning for Activity Recognition in Smart Buildings: A Survey., 2021,, 199-228.		1
1440	A GAN-Based Data Augmentation Approach for Sensor-Based Human Activity Recognition. International Journal of Computer and Communication Engineering, 2021, 10, 75-84.	0.2	4
1441	CSI-IANet: An Inception Attention Network for Human-Human Interaction Recognition Based on CSI Signal. IEEE Access, 2021, 9, 166624-166638.	2.6	8
1442	A Reactive Architectural Proposal for Fog/Edge Computing in the Internet of Things Paradigm with Application in Deep Learning. Springer Optimization and Its Applications, 2022, , 155-175.	0.6	0
1443	Stacked LSTM-Based Dynamic Hand Gesture Recognition with Six-Axis Motion Sensors. , 2021, , .		1
1444	Searching Efficient Models for Human Activity Recognition. , 2021, , .		0
1445	Variational Learning of the Mixture of Shifted-Scaled Dirichlet Distributions via Entropy Splitting. , 2021, , .		0
1446	Improving Activity Recognition while Reducing Misclassification of Unknown Activities. , 2021, , .		2
1447	Multi-domain Feature Extraction for Human Activity Recognition Using Wearable Sensors., 2021,,.		1
1448	Deep Convolution Neural Network Based CSI Signal Classifier to Recognize Human-Human Interactions. , 2021, , .		0
1449	Design and optimization of a TensorFlow Lite deep learning neural network for human activity recognition on a smartphone., 2021, 2021, 7028-7031.		6
1450	Affinity Propagation Clustering for Older Adults Daily Routine Estimation., 2021,,.		5

#	Article	IF	CITATIONS
1451	Wi-Adaptor: Fine-grained Domain Adaptation in WiFi-based Activity Recognition. , 2021, , .		5
1452	Real-time motion onset recognition for robot-assisted gait rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 11.	2.4	3
1453	Human activity recognition in artificial intelligence framework: a narrative review. Artificial Intelligence Review, 2022, 55, 4755-4808.	9.7	102
1454	Enhanced Annotation Framework for Activity Recognition Through Change Point Detection., 2022, , .		2
1455	A wearable-HAR oriented sensory data generation method based on spatio-temporal reinforced conditional GANs. Neurocomputing, 2022, 493, 548-567.	3.5	5
1456	AHAR: Adaptive CNN for Energy-Efficient Human Activity Recognition in Low-Power Edge Devices. IEEE Internet of Things Journal, 2022, 9, 13041-13051.	5.5	44
1457	A Segmentation Scheme for Knowledge Discovery in Human Activity Spotting. IEEE Transactions on Cybernetics, 2022, 52, 5668-5681.	6.2	2
1458	ConvAE-LSTM: Convolutional Autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition. IEEE Access, 2022, 10, 4137-4156.	2.6	28
1459	Federated Learning for Data Mining in Healthcare. EAI/Springer Innovations in Communication and Computing, 2022, , 243-258.	0.9	4
1460	A Novel Deep Learning Bi-GRU-I Model for Real-Time Human Activity Recognition Using Inertial Sensors. IEEE Sensors Journal, 2022, 22, 6164-6174.	2.4	37
1461	Human activity recognition: suitability of a neuromorphic approach for on-edge AloT applications. Neuromorphic Computing and Engineering, 2022, 2, 014006.	2.8	8
1462	Deep learning and model personalization in sensor-based human activity recognition. Journal of Reliable Intelligent Environments, 2023, 9, 27-39.	3.8	22
1463	Data Fusion for Human Activity Recognition Based on RF Sensing and IMU Sensor. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 3-14.	0.2	0
1465	Intelligence at the IoT Edge: Activity Recognition with Low-Power Microcontrollers and Convolutional Neural Networks. , 2022, , .		7
1466	Real-Time Human Activity Recognition Using Conditionally Parametrized Convolutions on Mobile and Wearable Devices. IEEE Sensors Journal, 2022, 22, 5889-5901.	2.4	39
1467	Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition. Sensors, 2022, 22, 1373.	2.1	9
1468	Proposing a Fuzzy Softâ€maxâ€based classifier in a hybrid deep learning architecture for human activity recognition. IET Biometrics, 2022, 11, 171-186.	1.6	5
1469	An Overview of Human Activity Recognition Using Wearable Sensors: Healthcare and Artificial Intelligence. Lecture Notes in Computer Science, 2022, , 1-14.	1.0	15

#	Article	IF	CITATIONS
1470	Recent Advances in Pedestrian Navigation Activity Recognition: A Review. IEEE Sensors Journal, 2022, 22, 7499-7518.	2.4	14
1471	Deformable Convolutional Networks for Multimodal Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	2.4	14
1472	A Framework for the Identification of Human Vertical Displacement Activity Based on Multi-Sensor Data. IEEE Sensors Journal, 2022, 22, 8011-8029.	2.4	3
1473	RNN-based deep learning for physical activity recognition using smartwatch sensors: A case study of simple and complex activity recognition. Mathematical Biosciences and Engineering, 2022, 19, 5671-5698.	1.0	38
1474	Classification of Daily Lifestyle Based on Body Activities Obtained from Wearable Devices. Lecture Notes in Electrical Engineering, 2022, , 249-259.	0.3	0
1476	<i>BAAS</i> : Backscatter as a Sensor for Ultra-Low-Power Context Recognition. Journal of Information Processing, 2022, 30, 130-139.	0.3	0
1477	Human Activity Recognition with IMU and Vital Signs Feature Fusion. Lecture Notes in Computer Science, 2022, , 287-298.	1.0	0
1478	DIAT-RadHARNet: A Lightweight DCNN for Radar Based Classification of Human Suspicious Activities. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	30
1479	Artificial Intelligence-Based Real-Time Signal Sample and Analysis of Multiperson Dragon Boat Race in Complex Networks. Complexity, 2022, 2022, 1-8.	0.9	0
1480	Towards understanding on the development of wearable fall detection: an experimental approach. Health and Technology, 2022, 12, 345-358.	2.1	1
1481	Investigating the Impact of Information Sharing in Human Activity Recognition. Sensors, 2022, 22, 2280.	2.1	1
1482	Exploring Artificial Neural Networks Efficiency in Tiny Wearable Devices for Human Activity Recognition. Sensors, 2022, 22, 2637.	2.1	15
1483	DeXAR. , 2022, 6, 1-30.		11
1484	A survey on local transport mode detection on the edge of the network. Applied Intelligence, 2022, 52, 16021-16050.	3.3	1
1485	Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring. Computer Methods and Programs in Biomedicine, 2022, 219, 106753.	2.6	4
1486	Novel Device Used to Monitor Hand Tremors during Nocturnal Hypoglycemic Events. Inventions, 2022, 7, 32.	1.3	O
1487	Motion Estimation and Hand Gesture Recognition-Based Human–UAV Interaction Approach in Real Time. Sensors, 2022, 22, 2513.	2.1	25
1488	Seeing Through the Walls with Wireless Technology: A Review. International Journal of Sensors, Wireless Communications and Control, 2022, 12, .	0.5	O

#	Article	IF	CITATIONS
1489	A Novel Text Mining Approach for Mental Health Prediction Using Bi-LSTM and BERT Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-18.	1.1	40
1490	How Validation Methodology Influences Human Activity Recognition Mobile Systems. Sensors, 2022, 22, 2360.	2.1	16
1491	Wearable acceleration-based action recognition for long-term and continuous activity analysis in construction site. Journal of Building Engineering, 2022, 52, 104448.	1.6	6
1492	MICAR: multi-inhabitant context-aware activity recognition in home environments. Distributed and Parallel Databases, 2023, 41, 571-602.	1.0	3
1493	A novel smartphone-based activity recognition modeling method for tracked equipment in forest operations. PLoS ONE, 2022, 17, e0266568.	1.1	3
1494	An FCN-LSTM model for neurological status detection from non-invasive multivariate sensor data. Neural Computing and Applications, 2024, 36, 77-93.	3.2	2
1495	Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 2022, 145, 105458.	3.9	155
1496	Human activity recognition using wearable sensors by heterogeneous convolutional neural networks. Expert Systems With Applications, 2022, 198, 116764.	4.4	45
1497	Human Activity Recognition Based on Wavelet-CNN Architecture. , 2021, , .		0
1498	Human Context Recognition: A Controllable GAN Approach. , 2021, , .		1
1499	Long Short Term Memory Networks for Stroke Activity Recognition base on Smartphone. , 2021, , .		1
1500	A Framework for Constructing and Augmenting Knowledge Graphs using Virtual Space: Towards Analysis of Daily Activities. , 2021, , .		6
1501	Data Augmentation in Mobility Rehab Exercises of PD Patients. , 2021, , .		4
1502	Dependency-Based Classification With Multimodal Data Using Regular Vine Copulas. , 2021, , .		0
1503	Dance Tempo Estimation Using a Single Leg-Attached 3D Accelerometer. Sensors, 2021, 21, 8066.	2.1	2
1504	IMU2Doppler. , 2021, 5, 1-20.		11
1505	Recognizing Full-Body Exercise Execution Errors Using the Teslasuit. Sensors, 2021, 21, 8389.	2.1	6
1506	Sensor-Based Human Activity Recognition for Elderly In-patients with a Luong Self-Attention Network. , 2021, , .		1

#	Article	IF	CITATIONS
1507	A Mini-Survey and Feasibility Study of Deep-Learning-Based Human Activity Recognition from Slight Feature Signals Obtained Using Privacy-Aware Environmental Sensors. Applied Sciences (Switzerland), 2021, 11, 11807.	1.3	3
1508	GAN for Generating User-Specific Human Activity Data From An Incomplete Training Corpus. , 2021, , .		2
1509	User Mobility Estimation Through Maximum Doppler Frequency Detection. , 2021, , .		0
1510	Stack LSTM-Based User Identification Using Smart Shoes with Accelerometer Data. Sensors, 2021, 21, 8129.	2.1	5
1511	Using Inertial Sensors to Determine Head Motionâ€"A Review. Journal of Imaging, 2021, 7, 265.	1.7	11
1512	Open Set Mixed-Reality Human Activity Recognition. , 2021, , .		2
1513	The Effect of Introducing Visual Feedback on Sports Training. Studia Universitatis BabeÅŸ-Bolyai: Educatio Artis Gymnasticae, 2021, 66, 53-64.	0.0	1
1514	Stride segmentation of inertial sensor data using statistical methods for different walking activities. Robotica, 2022, 40, 2567-2580.	1.3	35
1516	Detecting and Correcting IMU Movements During Joint Angle Estimation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	2.4	6
1518	Internet of Things (IoT) Based Activity Recognition Strategies in Smart Homes: A Review. IEEE Sensors Journal, 2022, 22, 8327-8336.	2.4	26
1519	Review of applications and user perceptions of smart home technology for health and environmental monitoring. Journal of Computational Design and Engineering, 2022, 9, 857-889.	1.5	7
1520	Reconciling of the distances in physical space and latent feature space for complex activity modeling. , 2022, , .		0
1521	Investigating classification performance of hybrid deep learning and machine learning architectures on activity recognition. Computational Intelligence, 0, , .	2.1	0
1522	Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.1	2
1525	Mathematical Criteria for a Priori Performance Estimation of Activities of Daily Living Recognition. Sensors, 2022, 22, 2439.	2.1	2
1526	Recognizing Solo Jazz Dance Moves Using a Single Leg-Attached Inertial Wearable Device. Sensors, 2022, 22, 2446.	2.1	2
1528	ResNet-SE: Channel Attention-Based Deep Residual Network for Complex Activity Recognition Using Wrist-Worn Wearable Sensors. IEEE Access, 2022, 10, 51142-51154.	2.6	44
1529	Ensembled Transfer Learning Based Multichannel Attention Networks for Human Activity Recognition in Still Images. IEEE Access, 2022, 10, 47051-47062.	2.6	9

#	Article	IF	CITATIONS
1531	Interactive and Interpretable Online Human Activity Recognition., 2022,,.		17
1532	Adversarial Deep Feature Extraction Network for User Independent Human Activity Recognition. , 2022,		5
1533	Generalized Few-Shot Learning For Wearable Sensor-based Human Activity Recognition., 2022,,.		0
1534	A Novel Martingale Based Model Using a Smartphone to Detect Gait Bout in Human Activity Recognition. Journal of Sensors, 2022, 2022, 1-24.	0.6	1
1535	MyMove: Facilitating Older Adults to Collect In-Situ Activity Labels on a Smartwatch with Speech. , 2022, , .		7
1536	Feasibility of DRNN for Identifying Built Environment Barriers to Walkability Using Wearable Sensor Data from Pedestrians' Gait. Applied Sciences (Switzerland), 2022, 12, 4384.	1.3	3
1537	Nearest Subspace Search in The Signed Cumulative Distribution Transform Space For 1d Signal Classification. , 2022, , .		0
1539	Hierarchical Deep Learning Model with Inertial and Physiological Sensors Fusion for Wearable-Based Human Activity Recognition. , 2022, , .		2
1540	An Activity Recognition Framework for Continuous Monitoring of Non-Steady-State Locomotion of Individuals with Parkinson's Disease. Applied Sciences (Switzerland), 2022, 12, 4682.	1.3	6
1541	Deep learning and RGB-D based human action, humanâ€"human and humanâ€"object interaction recognition: A survey. Journal of Visual Communication and Image Representation, 2022, 86, 103531.	1.7	15
1542	Combined deep centralized coordinate learning and hybrid loss for human activity recognition. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	1
1543	A Hybrid Deep Residual Network for Efficient Transitional Activity Recognition Based on Wearable Sensors. Applied Sciences (Switzerland), 2022, 12, 4988.	1.3	34
1544	Hybrid Optimized GRU-ECNN Models for Gait Recognition with Wearable IOT Devices. Computational Intelligence and Neuroscience, 2022, 2022, 1-18.	1.1	4
1545	An Approach for Recognizing Two-Human Interactions Using Channel State Information. , 2022, , .		1
1547	A Hybrid Deep Learning Model for Human Activity Recognition Using Wearable Sensors. Algorithms for Intelligent Systems, 2022, , 207-222.	0.5	1
1548	Complexity science for urban solutions. , 2022, , 39-58.		2
1549	Sport-Related Activity Recognition from Wearable Sensors Using Bidirectional GRU Network. Intelligent Automation and Soft Computing, 2022, 34, 1907-1925.	1.6	32
1550	MMNet: A Model-based Multimodal Network for Human Action Recognition in RGB-D Videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1-1.	9.7	5

#	Article	IF	CITATIONS
1551	Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-16.	2.2	64
1552	Robust Human Activity Recognition Using Generative Adversarial Imputation Networks. , 2022, , .		3
1553	A Framework for Fusing Video and Wearable Sensing Data by Deep Learning. , 2022, , .		1
1554	Stochastic recognition of human daily activities via hybrid descriptors and random forest using wearable sensors. Array, 2022, 15, 100190.	2.5	3
1555	A Survey of Machine Learning and Meta-heuristics Approaches for Sensor-based Human Activity Recognition Systems. Journal of Ambient Intelligence and Humanized Computing, 2024, 15, 29-56.	3.3	10
1556	Multicnn-Filterlstm: Resource-Efficient Sensor-Based Human Activity Recognition in lot Applications. SSRN Electronic Journal, 0, , .	0.4	0
1557	Assessing Impact of Sensors and Feature Selection in Smart-Insole-Based Human Activity Recognition. Methods and Protocols, 2022, 5, 45.	0.9	11
1558	Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer. Sensors, 2022, 22, 3932.	2.1	18
1559	Human Activity Classification Using Basic Machine Learning Models. , 2021, , .		2
1560	Automated Human Activity Recognition by Colliding Bodies Optimization (CBO) -based Optimal Feature Selection with RNN., 2021, , .		2
1563	Through-Wall Human Motion Recognition Using Random Code Radar Sensor With Multi-Domain Feature Fusion. IEEE Sensors Journal, 2022, 22, 15123-15132.	2.4	2
1564	Exploiting Feature Selection in Human Activity Recognition: Methodological Insights and Empirical Results Using Mobile Sensor Data. IEEE Access, 2022, 10, 64043-64058.	2.6	2
1565	A TinyML Approach to Human Activity Recognition. Journal of Physics: Conference Series, 2022, 2273, 012025.	0.3	3
1566	Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition. Sensors, 2022, 22, 4755.	2.1	7
1567	Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview. Biomedical Engineering Letters, 2022, 12, 343-358.	2.1	15
1568	Semi-supervised and personalized federated activity recognition based on active learning and label propagation. Personal and Ubiquitous Computing, 2022, 26, 1281-1298.	1.9	13
1569	Human activity recognition in IoHT applications using Arithmetic Optimization Algorithm and deep learning. Measurement: Journal of the International Measurement Confederation, 2022, 199, 111445.	2.5	45
1571	Understanding and Improving Channel Attention for Human Activity Recognition by Temporal-Aware and Modality-Aware Embedding. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	4

#	Article	IF	CITATIONS
1574	Human Activity Recognition Based on Hybrid Learning Algorithm for Wearable Sensor Data. SSRN Electronic Journal, $0, \dots$	0.4	0
1575	Personalized Activity Recognition with Deep Triplet Embeddings. Sensors, 2022, 22, 5222.	2.1	9
1576	Smart insoles review (2008-2021): Applications, potentials, and future. Smart Health, 2022, 25, 100301.	2.0	15
1577	A new approach for physical human activity recognition from sensor signals based on motif patterns and long-short term memory. Biomedical Signal Processing and Control, 2022, 78, 103963.	3.5	6
1578	Recognizing Complex Activities by a Probabilistic Interval-Based Model. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30, .	3.6	147
1579	Instilling Social to Physical: Co-Regularized Heterogeneous Transfer Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30, .	3.6	35
1580	Toward privacy-aware federated analytics of cohorts for smart mobility. Frontiers in Computer Science, 0, 4, .	1.7	2
1581	Federated Markov Logic Network for indoor activity recognition in Internet of Things. Knowledge-Based Systems, 2022, 253, 109553.	4.0	4
1582	Multi-Scale Evaluation of Sleep Quality Based on Motion Signal from Unobtrusive Device. Sensors, 2022, 22, 5295.	2.1	3
1583	A survey on unsupervised learning for wearable sensor-based activity recognition. Applied Soft Computing Journal, 2022, 127, 109363.	4.1	31
1584	Cross-Domain Unseen Activity Recognition Using Transfer Learning. , 2022, , .		1
1585	Multimodal Physiological Signals and Machine Learning for Stress Detection by Wearable Devices. , 2022, , .		14
1586	A freely available system for human activity recognition based on a low-cost body area network. , 2022, , .		4
1587	A Correlation-based Real-time Segmentation Scheme for Multi-user Collaborative Activities. , 2022, , .		1
1588	Pressure Image Recognition of Lying Positions Based on Multi-feature value Regularized Extreme Learning Algorithm. Applied Mathematics and Nonlinear Sciences, 2023, 8, 559-572.	0.9	3
1589	Human activity recognition using grammar-based genetic programming. , 2022, , .		0
1591	A review of machine learning-based human activity recognition for diverse applications. Neural Computing and Applications, 2022, 34, 18289-18324.	3.2	27
1592	Domain Generalization for Activity Recognition via Adaptive Feature Fusion. ACM Transactions on Intelligent Systems and Technology, 2023, 14, 1-21.	2.9	8

#	Article	IF	CITATIONS
1593	Deep Transfer Learning Using Class Augmentation for Sensor-Based Human Activity Recognition. , 2022, 6, 1-4.		1
1594	Two-stream transformer network for sensor-based human activity recognition. Neurocomputing, 2022, 512, 253-268.	3.5	13
1595	Feature Fusion-Based Deep Learning Network to Recognize Table Tennis Actions. Computers, Materials and Continua, 2023, 74, 83-99.	1.5	1
1596	Integration of deep adaptation transfer learning and online sequential extreme learning machine for cross-person and cross-position activity recognition. Expert Systems With Applications, 2023, 212, 118807.	4.4	6
1597	Latent Independent Excitation for Generalizable Sensor-based Cross-Person Activity Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 11921-11929.	3.6	17
1598	Task Recognition in Human-Robot Collaboration for Consumer Electronics Disassembly. SSRN Electronic Journal, 0, , .	0.4	0
1599	Feature Identification Framework for Back Injury Risk in Repetitive Work With Application in Sheep Shearing. IEEE Transactions on Biomedical Engineering, 2023, 70, 616-627.	2.5	2
1600	Wearable UWB Technology for Daily Physical Activity Tracking, Detection, and Classification. IEEE Sensors Journal, 2022, 22, 20684-20694.	2.4	5
1601	System Identification Methods forÂlndustrial Control Systems. Smart Sensors, Measurement and Instrumentation, 2022, , 25-50.	0.4	0
1602	Human activity recognition using smartphone sensors for basic life support. AIP Conference Proceedings, 2022, , .	0.3	0
1603	Human Motion Recognition With Spatial-Temporal-ConvLSTM Network Using Dynamic Range-Doppler Frames Based on Portable FMCW Radar. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 5029-5038.	2.9	9
1604	Human Activity Recognition Using Self-Powered Sensors Based on Multilayer Bidirectional Long Short-Term Memory Networks. IEEE Sensors Journal, 2023, 23, 20633-20641.	2.4	7
1605	An Overview of Wearable Biosensor Systems for Real-Time Substance Use Detection. IEEE Internet of Things Journal, 2022, 9, 23405-23415.	5.5	7
1606	Human Activity Recognition Using Ambient Sensor Data. IFAC-PapersOnLine, 2022, 55, 97-102.	0.5	2
1607	Activity-Based Person Identification Using Multimodal Wearable Sensor Data. IEEE Internet of Things Journal, 2023, 10, 1711-1723.	5.5	6
1608	An Expeditious kNN Algorithm for Massive IoT Data Classification. , 2022, , .		0
1609	Deep Hybrid Learning for Anomaly Detection in Behavioral Monitoring. , 2022, , .		1
1610	Activity recognition via correlation coefficients based graph with nodes updated by multi-aggregator approach. Biomedical Signal Processing and Control, 2023, 79, 104255.	3.5	3

#	Article	IF	CITATIONS
1611	Recognition of Human Activity from ECG and IMU Signals Using Deep Learning Networks. , 2022, , .		2
1612	A Smart Wearable Device for Abnormal Event Handling of Multiple Machines in Modern Factories. , 2022, , .		0
1613	Recognizing Motion Onset During Robot-assisted Body-weight Unloading is Challenging but Seems Feasible. , 2022, , .		0
1614	Classifying interactions of parents and children with Down syndrome in educational environments using deep learning. , 2022, , .		1
1615	Oversampling technique-based data augmentation and 1D-CNN and bidirectional GRU ensemble model for human activity recognition. Journal of Mechanics in Medicine and Biology, $0, , .$	0.3	1
1616	Sensor-based Human Activity Recognition Using Graph LSTM and Multi-task Classification Model. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18, 1-19.	3.0	7
1617	Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques. International Journal of Environmental Research and Public Health, 2022, 19, 12272.	1.2	2
1618	Measurement-Driven Synthesis of Female Digital Mannequin Using Convex Sub-Volumes. Applied Sciences (Switzerland), 2022, 12, 9742.	1.3	0
1619	HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models. Computational Intelligence and Neuroscience, 2022, 2022, 1-21.	1.1	14
1620	MultiCNN-FilterLSTM: Resource-efficient sensor-based human activity recognition in IoT applications. Future Generation Computer Systems, 2023, 139, 196-209.	4.9	21
1621	A Radar-Based Human Activity Recognition Using a Novel 3-D Point Cloud Classifier. IEEE Sensors Journal, 2022, 22, 18218-18227.	2.4	6
1622	Artificial neural networks for human activity recognition using sensor based dataset. Multimedia Tools and Applications, 2023, 82, 14815-14835.	2.6	4
1623	A Novel CNN, Bidirectional Long-Short Term Memory, and Gated Recurrent Unit-Based Hybrid Approach for Human Activity Recognition. International Journal of Software Science and Computational Intelligence, 2022, 14, 1-19.	1.8	0
1624	A knowledge-driven activity recognition framework for learning unknown activities. Procedia Computer Science, 2022, 207, 1871-1880.	1.2	2
1625	sEMG Sensor-Based Human Lower Limb Activity Recognition Using Machine Learning Algorithms. , 2022,		1
1626	Classification of Physical Exercise Activity from ECG, PPG and IMU Sensors using Deep Residual Network. , 2022, , .		1
1627	Emergency Clinical Procedure Detection via Wearable Sensors. Proceedings of the Human Factors and Ergonomics Society, 2022, 66, 2239-2243.	0.2	3
1628	Human-centered knowledge graph-based design concept for collaborative manufacturing. , 2022, , .		3

#	Article	IF	Citations
1629	A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors. Sensors, 2022, 22, 7446.	2.1	4
1630	Biosensors toward behavior detection in diagnosis of alzheimer's disease. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
1631	LifeSnaps, a 4-month multi-modal dataset capturing unobtrusive snapshots of our lives in the wild. Scientific Data, 2022, 9, .	2.4	3
1632	Assessing the added value of context during stress detection from wearable data. BMC Medical Informatics and Decision Making, 2022, 22, .	1.5	O
1633	Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson's disease: Protocol of the mixed method, cyclic ActiveAgeing study. PLoS ONE, 2022, 17, e0275747.	1.1	8
1634	Significant Features for Human Activity Recognition Using Tri-Axial Accelerometers. Sensors, 2022, 22, 7482.	2.1	6
1635	Particle Swarm Optimization of Convolutional Neural Networks for Human Activity Prediction., 0,,.		0
1636	Human activity recognition based on hybrid learning algorithm for wearable sensor data. Measurement: Sensors, 2022, 24, 100512.	1.3	1
1637	Deep learning for Flight Maneuver Recognition: A survey. Electronic Research Archive, 2023, 31, 75-102.	0.4	5
1638	CSI-DeepNet: A Lightweight Deep Convolutional Neural Network Based Hand Gesture Recognition System Using Wi-Fi CSI Signal. IEEE Access, 2022, 10, 114787-114801.	2.6	2
1639	Sensor Data Augmentation by Resampling in Contrastive Learning for Human Activity Recognition. IEEE Sensors Journal, 2022, 22, 22994-23008.	2.4	17
1640	Human Activity Recognition using Smartphone Dataset: A Review. , 2022, , .		1
1641	Continual learning with attentive recurrent neural networks for temporal data classification. Neural Networks, 2023, 158, 171-187.	3.3	7
1642	Challenges and Opportunities for the Recognition of Human Activity in Supervised Flats. Lecture Notes in Networks and Systems, 2023, , 729-734.	0.5	0
1643	CÄ,TRE UN MODEL BAZAT PE SENZORI ÃŽN ANALIZA ÃŽNVÄ,ÈšÄ,RII. , 2022, , .		0
1644	Context-Aware Human Activity Recognition (CA-HAR) Using Smartphone Built-In Sensors. Lecture Notes in Computer Science, 2022, , 108-121.	1.0	0
1645	Human Stress Recognition by Correlating Vision and EEG Data. Computer Systems Science and Engineering, 2023, 45, 2417-2433.	1.9	0
1646	Radar Point Clouds Processing for Human Activity Classification Using Convolutional Multilinear Subspace Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	5

#	Article	IF	CITATIONS
1647	Optimal Ensemble Scheme for Human Activity Recognition and Floor Detection Based on AutoML and Weighted Soft Voting Using Smartphone Sensors. IEEE Sensors Journal, 2023, 23, 2878-2890.	2.4	5
1648	A Deep Learning-based Model for Human Activity Recognition using Biosensors embedded into a Smart Knee Bandage. Procedia Computer Science, 2022, 214, 621-627.	1.2	10
1649	Video-based Pose-Estimation Data as Source for Transfer Learning in Human Activity Recognition. , 2022, , .		0
1650	Research on abnormal behavior recognition of the elderly based on spatial-temporal feature fusion. , 2022, , .		0
1651	Reliable Machine Learning for Wearable Activity Monitoring. , 2022, , .		3
1652	Power Saving Techniques for Wearable Devices in Medical Applications. , 2022, , .		1
1653	Designing a Multiple-User Wearable Edge Al system towards Human Activity Recognition., 2022,,.		0
1654	Hybrid Deep Learning Approaches for sEMG Signal-Based Lower Limb Activity Recognition. Mathematical Problems in Engineering, 2022, 2022, 1-12.	0.6	6
1655	Low-Cost Portable System for Measurement and Representation of 3D Kinematic Parameters in Sport Monitoring: Discus Throwing as a Case Study. Sensors, 2022, 22, 9408.	2.1	0
1656	A lightweight deep learning with feature weighting for activity recognition. Computational Intelligence, 2023, 39, 315-343.	2.1	1
1658	A Bibliometric Analysis of Wearable Device Research Trends 2001–2022—A Study on the Reversal of Number of Publications and Research Trends in China and the USA. International Journal of Environmental Research and Public Health, 2022, 19, 16427.	1.2	7
1659	An incorporation of deep temporal convolutional networks with hidden markov models post-processing for sensor-based human activity recognition. , 2022, , .		0
1660	Federated Learning via Augmented Knowledge Distillation for Heterogenous Deep Human Activity Recognition Systems. Sensors, 2023, 23, 6.	2.1	2
1661	Classifying tasks performed by electrical line workers using a wrist-worn sensor: A data analytic approach. PLoS ONE, 2022, 17, e0261765.	1.1	2
1663	Selected Aspects ofÂlnteractive Feature Extraction. Lecture Notes in Computer Science, 2022, , 121-287.	1.0	3
1664	K-mer-Based Human Gesture Recognition (KHGR) Using Curved Piezoelectric Sensor. Electronics (Switzerland), 2023, 12, 210.	1.8	3
1665	A systematic review of intelligent tutoring systems based on Gross body movement detected using computer vision. Computers and Education Artificial Intelligence, 2023, 4, 100125.	6.9	5
1666	A Petri Net Architecture for Real-Time Human Activity Recognition in Work Systems. Procedia Computer Science, 2023, 217, 1188-1199.	1.2	1

#	Article	IF	CITATIONS
1667	Sparsity-Based Human Activity Recognition With PointNet Using a Portable FMCW Radar. IEEE Internet of Things Journal, 2023, 10, 10024-10037.	5.5	8
1668	Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition. Sensors, 2023, 23, 683.	2.1	3
1669	SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence. IEEE Internet of Things Journal, 2023, , 1-1.	5. 5	2
1670	Smartphone sensorsâ€based human activity recognition using feature selection and deep decision fusion. IET Cyber-Physical Systems: Theory and Applications, 2023, 8, 76-90.	1.9	6
1671	New machine learning approaches for real-life human activity recognition using smartphone sensor-based data. Knowledge-Based Systems, 2023, 262, 110260.	4.0	11
1672	Digital Phenotyping of Mental Health using multimodal sensing of multiple situations of interest: A Systematic Literature Review. Journal of Biomedical Informatics, 2023, 138, 104278.	2.5	11
1673	Cross-Person Activity Recognition Method Using Snapshot Ensemble Learning. , 2022, , .		1
1674	PrISM-Tracker. , 2022, 6, 1-27.		1
1675	We arable-Gait-Analysis-Based Activity Recognition: A Review. International Journal on Smart Sensing and Intelligent Systems, 2022, 15 , .	0.4	3
1676	An Efficient Kernel KNN classifier for Activity Recognition on Smartphone. , 2022, , .		0
1677	RepHAR: Decoupling Networks With Accuracy-Speed Tradeoff for Sensor-Based Human Activity Recognition. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	2.4	4
1678	Energy Savings in Buildings Based on Image Depth Sensors for Human Activity Recognition. Energies, 2023, 16, 1078.	1.6	9
1679	Time-Based and Path-Based Analysis of Upper-Limb Movements during Activities of Daily Living. Sensors, 2023, 23, 1289.	2.1	2
1680	Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data. Sensors, 2023, 23, 1275.	2.1	9
1681	A Survey on Yogic Posture Recognition. IEEE Access, 2023, 11, 11183-11223.	2.6	6
1682	Enabling Heterogeneous Domain Adaptation in Multi-inhabitants Smart Home Activity Learning. , 2022, , .		0
1683	The Effects of Data Augmentation Methods on the Performance of Human Activity Recognition. , 2022, , .		3
1684	An Efficient Diverse-Branch Convolution Scheme for Sensor-Based Human Activity Recognition. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-13.	2.4	0

#	Article	IF	Citations
1685	An Intelligent Monitoring Approach Based on WiFi Sensing for Smart Hospital. Lecture Notes in Networks and Systems, 2023, , 212-223.	0.5	3
1686	Transfer Learning for Human Activity Recognition Using Representational Analysis of Neural Networks. ACM Transactions on Computing for Healthcare, 2023, 4, 1-21.	3.3	10
1687	Smart Suspenders With Sensors and Machine Learning for Human Activity Monitoring. IEEE Sensors Journal, 2023, 23, 10159-10167.	2.4	1
1688	SECURE IOT-BASED PHYSICAL TRAINING NETWORK – A REVIEW. Towards Excellence, 0, , 475-486.	0.0	0
1689	Single Accelerometer to Recognize Human Activities Using Neural Networks. Journal of Biomechanical Engineering, 2023, 145, .	0.6	0
1690	Intercorporeal Biofeedback for Movement Learning. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-40.	4.6	3
1691	User and Period Independent Transportation Mode Detection for Wheelchair Users. IEEE Access, 2023, 11, 10801-10812.	2.6	3
1692	Quality prediction of tractor rotary tillage based on BiConvLSTM with self-attention. Computers and Electronics in Agriculture, 2023, 206, 107643.	3.7	2
1693	Movement Optimization for a Cyborg Cockroach in a Bounded Space Incorporating Machine Learning. Cyborg and Bionic Systems, 2023, 4, .	3.7	9
1694	Inertial Sensor Location for Ground Reaction Force and Gait Event Detection Using Reservoir Computing in Gait. International Journal of Environmental Research and Public Health, 2023, 20, 3120.	1.2	2
1695	DCNN Based Human Activity Recognition Using Micro-Doppler Signatures. , 2022, , .		4
1696	Human Action Recognition: A Taxonomy-Based Survey, Updates, and Opportunities. Sensors, 2023, 23, 2182.	2.1	20
1697	Subject-adaptive Loose-fitting Smart Garment Platform for Human Activity Recognition. ACM Transactions on Sensor Networks, 2023, 19, 1-23.	2.3	1
1698	Deep Multimodal Habit Tracking System: A User-adaptive Approach for Low-power Embedded Systems. Journal of Signal Processing Systems, 0, , .	1.4	0
1699	Applying Process Mining to Sensor Data in Smart Environment: A Comparative Study. Lecture Notes in Networks and Systems, 2023, , 511-522.	0.5	1
1700	Understanding Residents' Behavior for Smart City Management by Sequential and Periodic Pattern Mining. IEEE Transactions on Computational Social Systems, 2024, 11, 1260-1276.	3.2	1
1701	Temporal Convolutional Network-Based Time-Series Segmentation. , 2023, , .		1
1702	Efficient Fog-to-Cloud Internet-of-Medical-Things System. , 2023, , 223-243.		1

#	Article	IF	CITATIONS
1703	DeepHAR: a deep feed-forward neural network algorithm for smart insole-based human activity recognition. Neural Computing and Applications, 2023, 35, 13547-13563.	3.2	5
1704	WiFi Fingerprint-Based Multi-user Localization for Smart Home by WiFi Sensing. , 2022, , .		0
1705	A machine learning approach for detecting fatigue during repetitive physical tasks. Personal and Ubiquitous Computing, 2023, 27, 2103-2120.	1.9	1
1706	THPoseLite, a Lightweight Neural Network for Detecting Pose in Thermal Images. IEEE Internet of Things Journal, 2023, , 1-1.	5 . 5	0
1707	Human Activity Recognition in Smart Cities from Smart Watch Data using LSTM Recurrent Neural Networks. , 2023, , .		1
1708	Recognition of Suspicious Human Activity in Video Surveillance: A Review. Engineering, Technology & Applied Science Research, 2023, 13, 10529-10534.	0.8	2
1709	A Multidimensional Parallel Convolutional Connected Network Based on Multisource and Multimodal Sensor Data for Human Activity Recognition. IEEE Internet of Things Journal, 2023, 10, 14873-14885.	5 . 5	2
1710	Computer-assisted approaches for measuring, segmenting, and analyzing functional upper extremity movement: a narrative review of the current state, limitations, and future directions. Frontiers in Rehabilitation Sciences, 0, 4, .	0.5	1
1711	Wearable Sensors to Evaluate Autonomic Response to Olfactory Stimulation: The Influence of Short, Intensive Sensory Training. Biosensors, 2023, 13, 478.	2.3	4
1712	ALAE-TAE-CutMix+: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors., 2023,,.		0
1713	Semisupervised Generative Adversarial Networks With Temporal Convolutions for Human Activity Recognition. IEEE Sensors Journal, 2023, 23, 12355-12369.	2.4	2
1714	Computer Vision based Activity Recognition: Studying and Chit chatting. , 2023, , .		0
1715	IoT-Based Human Activity Recognition for Smart Living. EAI/Springer Innovations in Communication and Computing, 2023, , 91-119.	0.9	1
1719	Transportation Mode Recognition based on Cellular Network Data. , 2023, , .		1
1722	CASD-OA: Context-Aware Stress Detection for Older Adults with Machine Learning and Cortisol Biomarker., 2023,,.		0
1725	Inertial Navigation on Extremely Resource-Constrained Platforms: Methods, Opportunities and Challenges. , 2023, , .		0
1726	A Lightweight Neuromorphic CNN for Human Activity Recognition on Edge Device. , 2023, , .		0
1727	Secure IoT-Based Physical Training Network. Advances in Healthcare Information Systems and Administration Book Series, 2023, , 146-156.	0.2	0

#	Article	IF	CITATIONS
1730	Modern Approaches for the Human Activity Detection and Recognition Using Various Image Processing Methods: A Review. Lecture Notes in Electrical Engineering, 2023, , 1-8.	0.3	0
1736	Classification of Machine Learning and Power Requirements for HAI (Human Activity Identification)., 2023,,.		0
1739	LoomoRescue: An Affordable Rescue Robot forÂEvacuation Situations. Lecture Notes in Computer Science, 2023, , 53-73.	1.0	0
1751	Activity Recognition., 2023,, 659-680.		0
1752	On-Sensor Online Learning and Classification Under 8 KB Memory. , 2023, , .		1
1754	Information We Can Extract About a User from â€~One Minute Mobile Application Usage'. , 2023, , .		1
1760	Human Activity Recognition (HAR) Using Deep Learning: Review, Methodologies, Progress and Future Research Directions. Archives of Computational Methods in Engineering, 2024, 31, 179-219.	6.0	3
1761	An Online Recognition Method of Badminton Stroke Based on Inertial Sensor., 2023,,.		0
1762	Conditional Human Activity Signal Generation and Generative Classification with a GPT-2 Model. , 2023, , .		0
1763	Fruit Picker Activity Recognition with Wearable Sensors and Machine Learning. , 2023, , .		1
1767	The Significance of IoT and Deep Learning in Activity Recognition. Studies in Computational Intelligence, 2023, , 311-329.	0.7	2
1777	A BSN-Enabled Collaborative Edge-Cloud Architecture for Multi-User Activity Recognition. , 2023, , .		0
1780	Robust Machine Learning for Low-Power Wearable Devices: Challenges and Opportunities. , 2024, , 45-71.		0
1782	Investigating the Effect of Orientation Variability in Deep Learning-based Human Activity Recognition. , 2023, , .		0
1784	Human Motion Recognition Method Using Millimeter-wave Radar Based on 3DTSNet., 2023,,.		0
1788	Radar feature analysis of human activity classification. , 2023, , .		0
1789	Short: Precision Polysubstance Use Episode Detection in Wearable Biosensor Data Streams., 2023,,.		0
1794	Application of Supervised Learning Techniques for Sports and Daily Activities Identification Using Accelerometer Data., 2023, , .		0

#	Article	IF	CITATIONS
1797	Prediction of human activity recognition using logistic regression algorithm in comparison with grid search algorithm accuracy. AIP Conference Proceedings, 2023, , .	0.3	0
1798	DCT-Based Feature Extraction for Human Activity Recognition Using WiFi Channel State Information Data., 2023,,.		0
1799	A metaplastic neural network technique for human activity recognition for Alzheimer's patients. , 2023, , .		0
1802	Analysis andÂlmpact ofÂTraining Set Size inÂCross-Subject Human Activity Recognition. Lecture Notes in Computer Science, 2024, , 391-405.	1.0	0
1804	Towards Globalised Models for Exercise Classification using Inertial Measurement Units., 2023,,.		1
1805	Geometric Gait Clustering for Unobtrusive Analysis. , 2023, , .		0
1806	IMU-based Human Activity Recognition using Machine Learning and Deep Learning models., 2023,,.		0
1807	MUP: Multi-granularity Unified Perception for Panoramic Activity Recognition., 2023,,.		0
1808	Women Safety Precaution. , 2023, , .		0
1809	Activity State Tracking Under Non-Restricted Ambulatory Condition. , 2023, , .		0
1811	Power Optimized Smartwatch-Earbuds Multimodal System for Monitoring Activities of Daily Living. , 2023, , .		0
1812	MM-HAR: Multi-Modal Human Activity Recognition Using Consumer Smartwatch and Earbuds. , 2023, , .		1
1816	Human Activity Segmentation Challenge @ ECML/PKDD'23. Lecture Notes in Computer Science, 2023, , 3-13.	1.0	1
1817	Embedded Real-Time Human Activity Recognition on an ESP32-S3 Microcontroller Using Ambient Audio Data., 2023,,.		0
1821	Introduction toÂtheÂlndustrial Application ofÂSemantic Technologies. Springer Series in Advanced Manufacturing, 2024, , 23-65.	0.2	0
1822	Knowledge Graph-Based Framework to Support the Human-Centric Approach. Springer Series in Advanced Manufacturing, 2024, , 127-156.	0.2	0
1823	Multi-Dataset Human Activity Recognition: Leveraging Fusion for Enhanced Performance., 2023,,.		0
1826	Activity Identification and Recognition in Real-Time Video Data Using Deep Learning Techniques. Algorithms for Intelligent Systems, 2024, , 403-414.	0.5	0

#	Article	IF	CITATIONS
1828	Analysing the Contributing Factors to Activity Recognition with Loose Clothing. , 0, , .		0
1829	Combining Decision Tree and Convolutional Neural Network for Energy Efficient On-Device Activity Recognition. , 2023, , .		O
1830	HAC-POCD: Hardware-Aware Compressed Activity Monitoring and Fall Detector Edge POC Devices., 2023,,.		0
1836	Representative UPDRS Features ofÂSingle Wearable Sensor forÂSeverity Classification ofÂParkinson's Disease. Communications in Computer and Information Science, 2024, , 124-136.	0.4	0
1837	Assessing Human Activity Recognition Performances of Different Machine Learning Algorithms Using Sensor Data. , 2023, , .		0
1839	Movement Pattern Recognition inÂBoxing Using Raw Inertial Measurements. Communications in Computer and Information Science, 2024, , 19-34.	0.4	0
1842	Improved Feature Extraction for Time Series Data Using Sliding Window: A Case Study of Carnatic Tala. , 2023, , .		0
1843	Performances of Human Activity Recognition Classification Using LSTM and 1D-2D CNN., 2023,,.		0