CITATION REPORT List of articles citing

DOI: 10.1021/es3052069

Environmental Science & Samp; Technology, 2013, 47, 5031-41.

Source: https://exaly.com/paper-pdf/56033386/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
44	Reaction Library to Predict Direct Photochemical Transformation Products of Environmental Organic Contaminants in Sunlit Aquatic Systems.		
43	Product-to-parent reversion of trenbolone: unrecognized risks for endocrine disruption. <i>Science</i> , 2013 , 342, 347-51	33.3	62
42	Bioavailability and fate of sediment-associated trenbolone and estradiol in aquatic systems. <i>Science of the Total Environment</i> , 2014 , 496, 576-584	10.2	17
41	Sorption and mineral-promoted transformation of synthetic hormone growth promoters in soil systems. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 12277-86	5.7	12
40	Surface and subsurface attenuation of trenbolone acetate metabolites and manure-derived constituents in irrigation runoff on agro-ecosystems. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 2507-16	4.3	11
39	Trenbolone acetate metabolites promote ovarian growth and development in adult Japanese medaka (Oryzias latipes). <i>General and Comparative Endocrinology</i> , 2014 , 202, 1-7	3	12
38	Trenbolone acetate metabolite transport in rangelands and irrigated pasture: observations and conceptual approaches for agro-ecosystems. <i>Environmental Science & Environmental Science & Environmenta</i>	·76 ^{0.3}	14
37	Mass balance approaches to characterizing the leaching potential of trenbolone acetate metabolites in agro-ecosystems. <i>Environmental Science & Environmental </i>	10.3	16
36	Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 697-720	4.3	122
35	Transformation of acesulfame in water under natural sunlight: joint effect of photolysis and biodegradation. <i>Water Research</i> , 2014 , 64, 113-122	12.5	58
34	Environmental designer drugs: when transformation may not eliminate risk. <i>Environmental Science & Environmental & Environment</i>	10.3	67
33	Rates and product identification for trenbolone acetate metabolite biotransformation under aerobic conditions. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1472-84	3.8	10
32	Coupled reversion and stream-hyporheic exchange processes increase environmental persistence of trenbolone metabolites. <i>Nature Communications</i> , 2015 , 6, 7067	17.4	11
31	Transformation kinetics of trenbolone acetate metabolites and estrogens in urine and feces of implanted steers. <i>Chemosphere</i> , 2015 , 138, 901-7	8.4	8
30	Sex in troubled waters: Widespread agricultural contaminant disrupts reproductive behaviour in fish. <i>Hormones and Behavior</i> , 2015 , 70, 85-91	3.7	39
29	Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 7480-8	10.3	16
28	Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu. <i>Science of the Total Environment</i> , 2016 , 557-558, 68-79	10.2	44

27	Reversible Photohydration of Trenbolone Acetate Metabolites: Mechanistic Understanding of Product-to-Parent Reversion through Complementary Experimental and Theoretical Approaches. <i>Environmental Science & Environmental Sc</i>	10.3	11
26	The agricultural contaminant 17Erenbolone disrupts male-male competition in the guppy (Poecilia reticulata). <i>Chemosphere</i> , 2017 , 187, 286-293	8.4	21
25	Environmental photochemistry of dienogest: phototransformation to estrogenic products and increased environmental persistence via reversible photohydration. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1414-1426	4.3	10
24	An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish. <i>Environmental Pollution</i> , 2018 , 237, 103-110	9.3	22
23	A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17 Erenbolone. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2064-2078	3.8	22
22	A review on structural elucidation of metabolites of environmental steroid hormones via liquid chromatographyhass spectrometry. <i>TrAC - Trends in Analytical Chemistry</i> , 2018 , 109, 142-153	14.6	5
21	Field-realistic exposure to the androgenic endocrine disruptor 17th renbolone alters ecologically important behaviours in female fish across multiple contexts. <i>Environmental Pollution</i> , 2018 , 243, 900-9	19:3	24
20	Detection and quantification of metastable photoproducts of trenbolone and altrenogest using liquid chromatography-tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2019 , 1603, 150-159	4.5	6
19	Sorption and transport of trenbolone and altrenogest photoproducts in soil-water systems. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1650-1663	4.3	3
18	Context-specific behavioural changes induced by exposure to an androgenic endocrine disruptor. <i>Science of the Total Environment</i> , 2019 , 664, 177-187	10.2	10
17	Fish on steroids: Temperature-dependent effects of 17Etrenbolone on predator escape, boldness, and exploratory behaviors. <i>Environmental Pollution</i> , 2019 , 245, 243-252	9.3	26
16	Disruption of male mating strategies in a chemically compromised environment. <i>Science of the Total Environment</i> , 2020 , 703, 134991	10.2	5
15	Photolysis of Trenbolone Acetate Metabolites in the Presence of Nucleophiles: Evidence for Metastable Photoaddition Products and Reversible Associations with Dissolved Organic Matter. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1
14	Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. <i>Environmental Science & Endocrine & Environmental & En</i>	349:13	8 6 0
13	Veterinary growth promoters in cattle feedlot runoff: estrogenic activity and potential effects on the rat male reproductive system. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 13939-13948	5.1	O
12	Nontargeted detection of designer androgens: Underestimated role of in vitro bioassays. <i>Drug Testing and Analysis</i> , 2021 , 13, 894-902	3.5	2
11	Environmental endocrinology of vertebrates. 2021 , 527-568		
10	Exposure to an Androgenic Agricultural Pollutant Does Not Alter Metabolic Rate, Behaviour, or Morphology of Tadpoles. <i>SSRN Electronic Journal</i> ,	1	

9	Exposure to an androgenic agricultural pollutant does not alter metabolic rate, behaviour, or morphology of tadpoles <i>Environmental Pollution</i> , 2022 , 118870	9.3	О
8	Annihilation luminescent Eu-MOF as a near-infrared electrochemiluminescence probe for trace detection of trenbolone. <i>Chemical Engineering Journal</i> , 2022 , 434, 134691	14.7	3
7	Abiotic transformation of synthetic progestins in representative soil mineral suspensions. <i>Journal of Environmental Sciences</i> , 2022 ,	6.4	0
6	Environmental fate and toxicity of androgens: A critical review. <i>Environmental Research</i> , 2022 , 113849	7.9	O
5	Effects of the agricultural pollutant 17threnbolone on morphology and behaviour of tadpoles (Limnodynastes tasmaniensis). 2022 , 251, 106289		O
4	A Portable Microfluidic-Based Electrochemiluminescence Sensor for Trace Detection of Trenbolone in Natural Water. 2022 , 94, 12531-12537		O
3	Zinc-Based Metal Organic Framework with MLCT Properties as an Efficient Electrochemiluminescence Probe for Trace Detection of Trenbolone.		О
2	Sensitive and Specific Detection of Estrogens Featuring Doped Silicon Nanowire Arrays. 2022 , 7, 47341	-47348	3 0
1	Abiotic transformation of kresoxim-methyl in aquatic environments: Structure elucidation of transformation products by LC-HRMS and toxicity assessment. 2023 , 233, 119723		О