CITATION REPORT List of articles citing

Inch-Size Solution-Processed Single-Crystalline Films of High-Mobility Organic Semiconductors

DOI: 10.7567/apex.6.076503 Applied Physics Express, 2013, 6, 076503.

Source: https://exaly.com/paper-pdf/56010491/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
95	Strongly correlated alignment of fluorinated 5,11-bis(triethylgermylethynyl)anthradithiophene crystallites in solution-processed field-effect transistors. <i>ChemPhysChem</i> , 2014 , 15, 2913-6	3.2	16
94	High-performance organic transistors for printed circuits. 2014,		
93	High-Mobility Organic Transistors with Wet-Etch-Patterned Top Electrodes: A Novel Patterning Method for Fine-Pitch Integration of Organic Devices. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300124	4.6	38
92	Solution-processed single-crystalline organic transistors on patterned ultrathin gate insulators. <i>Organic Electronics</i> , 2014 , 15, 1184-1188	3.5	14
91	The Large-Area, Solution-Based Deposition of Single-Crystal Organic Semiconductors. <i>Israel Journal of Chemistry</i> , 2014 , 54, 496-512	3.4	22
90	Technology development for printed LSIs based on organic semiconductors. 2014,		
89	Highly oriented polymer semiconductor films compressed at the surface of ionic liquids for high-performance polymeric organic field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 6430-5	24	60
88	Morphology control strategies for solution-processed organic semiconductor thin films. <i>Energy and Environmental Science</i> , 2014 , 7, 2145-2159	35.4	426
87	Polymer blend effects on fundamental properties of mesogenic phthalocyanine films fabricated by heated spin-coating method. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 04DK08	1.4	1
86	Short-Channel Solution-Processed Organic Semiconductor Transistors and their Application in High-Speed Organic Complementary Circuits and Organic Rectifiers. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500178	6.4	23
85	Unidirectional coating technology for organic field-effect transistors: materials and methods. <i>Semiconductor Science and Technology</i> , 2015 , 30, 054001	1.8	30
84	Wafer-scale and environmentally-friendly deposition methodology for extremely uniform, high-performance transistor arrays with an ultra-low amount of polymer semiconductors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2817-2822	7.1	10
83	High performance printed organic transistors using a novel scanned thermal annealing technology. <i>Organic Electronics</i> , 2015 , 20, 150-157	3.5	10
82	Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy. <i>Applied Physics Letters</i> , 2015 , 106, 251604	3.4	16
81	Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals. <i>Science Bulletin</i> , 2015 , 60, 1122-1127	10.6	16
80	Directional solidification of C8-BTBT films induced by temperature gradients and its application for transistors. 2015 ,		1
79	All solution-processed organic single-crystal transistors with high mobility and low-voltage operation. <i>Organic Electronics</i> , 2015 , 22, 1-4	3.5	22

78	Synthesis and Properties of Ethene-Bridged Terthiophenes. <i>Organic Letters</i> , 2015 , 17, 4858-61	6.2	19
77	Alignment and Patterning of Ordered Small-Molecule Organic Semiconductor Micro-/Nanocrystals for Device Applications. <i>Advanced Materials</i> , 2016 , 28, 2475-503	24	108
76	Alignment and patterning of organic single crystals for field-effect transistors. <i>Chinese Chemical Letters</i> , 2016 , 27, 1421-1428	8.1	25
75	Stable growth of large-area single crystalline thin films from an organic semiconductor/polymer blend solution for high-mobility organic field-effect transistors. <i>Organic Electronics</i> , 2016 , 39, 127-132	3.5	25
74	Toward Precision Control of Nanofiber Orientation in Conjugated Polymer Thin Films: Impact on Charge Transport. <i>Chemistry of Materials</i> , 2016 , 28, 9099-9109	9.6	60
73	Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films. <i>Advanced Materials</i> , 2016 , 28, 8007-8013	24	86
72	Determination of crystal orientation in organic thin films using optical microscopy. <i>Organic Electronics</i> , 2016 , 37, 100-107	3.5	15
71	Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose. <i>Scientific Reports</i> , 2016 , 6, 28921	4.9	13
70	Suppressing molecular vibrations in organic semiconductors by inducing strain. <i>Nature Communications</i> , 2016 , 7, 11156	17.4	79
69	Operando Scanning Photoelectron Microscopy Analysis for Electronic Devices. <i>Hyomen Kagaku</i> , 2016 , 37, 25-30		
68	TIPS-pentacene:Polymer blend inverters with improved gain. 2016 ,		
67	Crystal structure analysis in solution-processed uniaxially oriented polycrystalline thin film of non-peripheral octahexyl phthalocyanine by grazing incidence wide-angle x-ray scattering techniques. <i>Applied Physics Letters</i> , 2016 , 109, 153302	3.4	13
66	Growth directions of C8-BTBT thin films during drop-casting. 2016 ,		3
65	Preparation of Single-Crystalline Heterojunctions for Organic Electronics. <i>Advanced Materials</i> , 2017 , 29, 1606101	24	65
64	Influence of orientation mismatch on charge transport across grain boundaries in tri-isopropylsilylethynyl (TIPS) pentacene thin films. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 1085	4 ³ 1086	52 ²¹
63	Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating. <i>ACS Applied Materials & Discounty of the Property of the Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating. ACS Applied Materials & Discounty Organic Semiconductors on Lyophobic Gate Insulator Surfaces on Lyophobic Gate Insulator Surfaces of Control of the Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces on Control of Co</i>	-62:45	7
62	Enhanced performance of field-effect transistors based on C60 single crystals with conjugated polyelectrolyte. <i>Science China Chemistry</i> , 2017 , 60, 490-496	7.9	6
61	Painting Integrated Complementary Logic Circuits for Single-Crystal Organic Transistors: A Demonstration of a Digital Wireless Communication Sensing Tag. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600456	6.4	42

60	Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers. <i>Applied Physics Letters</i> , 2017 , 110, 16330.	23.4	13
59	High-Yield, Highly Uniform Solution-Processed Organic Transistors Integrated into Flexible Organic Circuits. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600410	6.4	27
58	Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates. <i>Advanced Materials</i> , 2017 , 29, 1703864	24	59
57	Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. <i>Nature Physics</i> , 2017 , 13, 994-998	16.2	95
56	Growth Of Organic Semiconductor Thin Films with Multi-Micron Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. <i>ACS Applied Materials & Domain Size and Fabrication of Materials & Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. ACS Applied Materials & Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. <i>ACS Applied Materials & Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. ACS Applied Materials & Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. <i>ACS Applied Materials & Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. ACS Applied Materials & Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve. <i>ACS Applied Materials & Domain Size and Si</i></i></i></i>	3348	4
55	Semiconductive Single Molecular Bilayers Realized Using Geometrical Frustration. <i>Advanced Materials</i> , 2018 , 30, e1707256	24	60
54	Influence of the Surface Treatment on the Solution Coating of Single-Crystalline Organic Thin-Films. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800147	4.6	14
53	Growth from Solution, Structure, and Optical Properties of Single-Crystal para-Quaterphenyl Films. <i>Crystallography Reports</i> , 2018 , 63, 139-148	0.6	13
52	Wafer-scale, layer-controlled organic single crystals for high-speed circuit operation. <i>Science Advances</i> , 2018 , 4, eaao5758	14.3	175
51	Growth of alkyl-monosubstituted thiophene/phenylene co-oligomer crystals and their device application. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 04FL02	1.4	1
50	Zigzag-Elongated Fused Œlectronic Core: A Molecular Design Strategy to Maximize Charge-Carrier Mobility. <i>Advanced Science</i> , 2018 , 5, 1700317	13.6	31
49	Remarkably low flicker noise in solution-processed organic single crystal transistors. <i>Communications Physics</i> , 2018 , 1,	5.4	17
48	Solution-crystallized n-type organic thin-film transistors: An impact of branched alkyl chain on high electron mobility and thermal durability. <i>Organic Electronics</i> , 2018 , 62, 548-553	3.5	10
47	Effects of tunneling-based access resistance in layered single-crystalline organic transistors. Journal of Materials Research, 2018 , 33, 2350-2363	2.5	9
46	Influence of Solute Concentration on Meniscus-Guided Coating of Highly Crystalline Organic Thin Films. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900614	4.6	14
45	Field-Effect Transistors Based on 2D Organic Semiconductors Developed by a Hybrid Deposition Method. <i>Advanced Science</i> , 2019 , 6, 1900775	13.6	27
44	Highly-ordered Triptycene Modifier Layer Based on Blade Coating for Ultraflexible Organic Transistors. <i>Scientific Reports</i> , 2019 , 9, 9200	4.9	12
43	Scalable Fabrication of Organic Single-Crystalline Wafers for Reproducible TFT Arrays. <i>Scientific Reports</i> , 2019 , 9, 15897	4.9	25

(2020-2019)

42	Large-Size Single-Crystal Oligothiophene-Based Monolayers for Field-Effect Transistors. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> , 11, 6315-6324	9.5	16
41	High carrier density, electrostatic doping in organic single crystal semiconductors using electret polymers. <i>Applied Physics Express</i> , 2019 , 12, 071001	2.4	1
40	Uniaxial orientation of poly(3-hexylthiophene) thin films fabricated by the bar-coating method. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SBBG04	1.4	10
39	Wettability control with self-assembler patterning for printed electronics. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 041002	1.4	1
38	Solution-Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. <i>Advanced Functional Materials</i> , 2019 , 29, 1807661	15.6	87
37	The Motivation for and Challenges to Scaling Down Organic Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900029	6.4	14
36	Optically pumped lasing of cyano-substituted thiophene/phenylene co-oligomer microcrystals fabricated by the slide boat method. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SBBG05	1.4	
35	Correlation between the static and dynamic responses of organic single-crystal field-effect transistors. <i>Nature Communications</i> , 2020 , 11, 4839	17.4	13
34	Coherent Electron Transport in Air-Stable, Printed Single-Crystal Organic Semiconductor and Application to Megahertz Transistors. <i>Advanced Materials</i> , 2020 , 32, e2003245	24	10
33	Electroless-Plated Gold Contacts for High-Performance, Low Contact Resistance Organic Thin Film Transistors. <i>Advanced Functional Materials</i> , 2020 , 30, 2003977	15.6	7
32	Band-like transporting and thermally durable V-shaped organic semiconductors with a phenyl key block. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14172-14179	7.1	3
31	Retracted: Emerging 2D MXene/Organic Heterostructures for Future Nanodevices. <i>Advanced Functional Materials</i> , 2020 , 30, 2005238	15.6	16
30	Microspacing In-Air Sublimation Growth of Ultrathin Organic Single Crystals. <i>Chemistry of Materials</i> , 2020 , 32, 7618-7629	9.6	10
29	Robust, high-performance n-type organic semiconductors. <i>Science Advances</i> , 2020 , 6, eaaz0632	14.3	67
28	Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. <i>ACS Central Science</i> , 2020 , 6, 636-652	16.8	30
27	Scalable Ultrahigh-Speed Fabrication of Uniform Polycrystalline Thin Films for Organic Transistors. <i>ACS Applied Materials & ACS Applied & A</i>	9.5	9
26	Photoelectron spectroscopy on single crystals of organic semiconductors: experimental electronic band structure for optoelectronic properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9090-9132	7.1	24
25	Solution Processed Organic Transistors on Polymeric Gate Dielectric with Mobility Exceeding 15 cm2 V 1 s 1 . <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 2000156	2.5	4

24	Damage-free Metal Electrode Transfer to Monolayer Organic Single Crystalline Thin Films. <i>Scientific Reports</i> , 2020 , 10, 4702	4.9	6
23	High-mobility organic single-crystalline transistors with anisotropic transport based on high symmetrical 出版haped heteroarene derivatives. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11477-11484	7.1	3
22	High-performance, semiconducting membrane composed of ultrathin, single-crystal organic semiconductors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 80-85	11.5	14
21	Sub-molecular structural relaxation at a physisorbed interface with monolayer organic single-crystal semiconductors. <i>Communications Physics</i> , 2020 , 3,	5.4	8
20	Molecular Semiconductors for Logic Operations: Dead-End or Bright Future?. <i>Advanced Materials</i> , 2020 , 32, e1905909	24	75
19	High-Speed Organic Single-Crystal Transistor Responding to Very High Frequency Band. <i>Advanced Functional Materials</i> , 2020 , 30, 1909501	15.6	32
18	Bent-Shaped -Type Small-Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9083-9096	16.4	54
17	Nano-Ground Glass as a Superhydrophilic Template for Printing High-Performance Organic Single-Crystal Thin Films. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100033	4.6	1
16	Greater than 10 cm2[VIIIstil: A breakthrough of organic semiconductors for field-effect transistors. <i>Informal</i> DIMaterilly, 2021 , 3, 613-630	23.1	14
15	Two-dimensional hole gas in organic semiconductors. <i>Nature Materials</i> , 2021 , 20, 1401-1406	27	9
14	Surface Doping of Organic Single-Crystal Semiconductors to Produce Strain-Sensitive Conductive Nanosheets. <i>Advanced Science</i> , 2021 , 8, 2002065	13.6	4
13	Introductory Remarks-Background of Organic Electronics and Importance of Molecular Control Techniques. <i>Journal of the Institute of Electrical Engineers of Japan</i> , 2016 , 136, 72-73	Ο	
12	Solution-processed crystalline organic integrated circuits. <i>Matter</i> , 2021 , 4, 3415-3443	12.7	2
11	Tailoring the molecular weight of polymer additives for organic semiconductors. <i>Materials Advances</i> ,	3.3	4
10	Manipulate organic crystal morphology and charge transport. Organic Electronics, 2022, 106448	3.5	5
9	Scalable printing of two-dimensional single crystals of organic semiconductors towards high-end device applications. <i>Applied Physics Express</i> , 2022 , 15, 030101	2.4	3
8	Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. <i>Applied Physics Letters</i> , 2021 , 119, 210501	3.4	1
7	New Approaches to Produce Large-Area Single Crystal Thin Films. <i>Advanced Materials</i> , 2203373	24	1

CITATION REPORT

6	Improvement of contact resistance at carbon electrode/organic semiconductor interfaces through chemical doping. 2022 , 15, 101005	O
5	Electrostatically-sprayed carbon electrodes for high performance organic complementary circuits. 2022 , 12,	O
4	Recent advances in 2D organic[horganic heterostructures for electronics and optoelectronics.	O
3	High-speed hybrid complementary ring oscillators based on solution-processed organic and amorphous metal oxide semiconductors. 2023 , 4,	O
2	Water-Surface-Mediated Precise Patterning of Organic Single-Crystalline Films via Double-Blade Coating for High-Performance Organic Transistors. 2213788	O
1	Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. 2300151	О