Effect of mixture proportions on the drying shrinkage a strength concrete containing class F fly ash

KSCE Journal of Civil Engineering 17, 1437-1445 DOI: 10.1007/s12205-013-0487-6

Citation Report

#	Article	IF	CITATIONS
1	Review on Current Research Status on Bottom Ash: An Indian Prospective. Journal of the Institution of Engineers (India): Series A, 2014, 95, 277-297.	1.2	26
2	Global Warming Implications of the Use of By-Products and Recycled Materials in Western Australia's Housing Sector. Materials, 2015, 8, 6909-6925.	2.9	24
4	Strength Development and Physical Properties of Cement Paste with Incorporated Ceramic Powder. Medziagotyra, 2016, 22, .	0.2	3
5	Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Construction and Building Materials, 2016, 123, 135-142.	7.2	109
6	Utilization of coal bottom ash to improve thermal insulation of construction material. Journal of Material Cycles and Waste Management, 2017, 19, 305-317.	3.0	50
7	Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Construction and Building Materials, 2017, 149, 406-415.	7.2	82
8	Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: Mechanical properties and leaching study. Journal of Cleaner Production, 2017, 162, 438-448.	9.3	134
9	Compressive Strength of Mortar Containing Ferronickel Slag as Replacement of Natural Sand. Procedia Engineering, 2017, 171, 689-694.	1.2	50
10	Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate. AIP Conference Proceedings, 2017, , .	0.4	5
11	The Possibility of Using Boiler Slag as Coarse Aggregate in High Strength Concrete. KSCE Journal of Civil Engineering, 2018, 22, 1816-1826.	1.9	4
12	Effect of fly ash on the service life, carbon footprint and embodied energy of high strength concrete in the marine environment. Energy and Buildings, 2018, 158, 1694-1702.	6.7	69
13	Coupled effect of superplasticizer dosage and fly ash content on strength and durability of concrete. Materials Today: Proceedings, 2018, 5, 24033-24042.	1.8	9
14	Time-varying relationship between pore structures and chloride diffusivity of concrete under the simulated tidal environment. European Journal of Environmental and Civil Engineering, 2022, 26, 501-518.	2.1	3
15	Drying Shrinkage of Concrete Containing Calcium Stearate, (Ca(C18H35O2)2), with Ordinary Portland Cement (OPC) as a Binder: Experimental and Modelling Studies. Molecules, 2020, 25, 4880.	3.8	8
16	Influence of Geogrid Reinforcement on the Drying Shrinkage of High-Strength Concrete Pavements. Journal of Transportation Engineering Part B: Pavements, 2020, 146, 04020032.	1.5	2
17	Characterization of paste microstructure for durability properties of concrete. Construction and Building Materials, 2020, 248, 118570.	7.2	11
18	Portland limestone cement for reduced shrinkage and enhanced durability of concrete. Magazine of Concrete Research, 2021, 73, 147-162.	2.0	6
19	The Effect of the Composition of a Concrete Mixture on Its Volume Changes. Materials, 2021, 14, 828.	2.9	1

#	Article	IF	CITATIONS
20	Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash. Environmental Science and Pollution Research, 2021, 28, 49074-49088.	5.3	43
21	Influences of Sodium Lignosulfonate and High-Volume Fly Ash on Setting Time and Hardened State Properties of Engineered Cementitious Composites. Materials, 2021, 14, 4779.	2.9	7
22	Experimental studies on utilization of Coarser Fly Ash in Concrete. IOP Conference Series: Materials Science and Engineering, 2021, 1170, 012006.	0.6	0
23	Effects of Cement Changes and Aggregate System on Mechanical Properties of Concrete. Journal of Infrastructure Systems, 2021, 27, .	1.8	0
24	Concrete with High Volume of Recycled Concrete Aggregates and Fly Ash: Shrinkage Behavior Modeling. ACI Materials Journal, 2019, 116, .	0.2	2
25	Microstructure and shrinkage behavior of high-performance concrete containing supplementary cementitious materials. Construction and Building Materials, 2021, 308, 125045.	7.2	11
26	Effects of additives on water permeability and chloride diffusivity of concrete under marine tidal environment. Construction and Building Materials, 2022, 320, 126217.	7.2	11
27	Coal fly ash. , 2022, , 1-29.		3
28	Influence of palm oil fuel ash in concrete and a systematic comparison with widely accepted fly ash and slag: A step towards sustainable reuse of agro-waste ashes. Cleaner Materials, 2022, 5, 100122.	5.1	7
29	Study on Modified Water Permeability Method for Fly Ash Concrete in Comparison with DIN 1048 (Part) Tj ETQq1	10.7843	14 rgBT /O∨ 1
30	Long-term mechanical properties and durability of high-strength concrete containing high-volume local fly ash as a partial cement substitution. Results in Engineering, 2023, 18, 101113.	5.1	8
31	Influence of Recycled Cement Paste Powder on Early-Age Plastic Shrinkage and Cracking of Cement-Based Materials. Sustainability, 2023, 15, 10661.	3.2	1
32	Performance evaluation of marble powder and fly ash concrete for non-structural applications. Journal of Building Engineering, 2024, 84, 108499.	3.4	1
33	Studying the strength and drying shrinkage of high strength mortar contaminated with different contents of sulfate. AIP Conference Proceedings, 2024, , .	0.4	0
34	Improvement of shrinkage resistance and mechanical property of cement-fly ash-slag ternary blends by shrinkage-reducing polycarboxylate superplasticizer. Journal of Cleaner Production, 2024, 447, 141493.	9.3	0