Application of EAPR system on the removal of lead from bluegrass (Poa pratensis L.)

Separation and Purification Technology 102, 34-42 DOI: 10.1016/j.seppur.2012.09.025

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 2013, 93, 626-636.	8.2	166
2	Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX. , 2014, , .		6
3	Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration. Environmental Science and Pollution Research, 2014, 21, 4482-4491.	5.3	54
4	Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil. Chemosphere, 2014, 117, 617-624.	8.2	79
5	Coupled Electro-kinetic Remediation and Phytoremediation of Metal(loid) Contaminated Soils. Journal of Bioremediation & Biodegradation, 2015, 06, .	0.5	3
6	Removal of Lead and Copper from Contaminated Water Using EAPR System and Uptake by Water Lettuce (Pistia Stratiotes L.). Procedia Chemistry, 2015, 14, 381-386.	0.7	27
7	Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochimica Acta, 2015, 181, 179-191.	5.2	90
8	Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil – Potential of enhanced phytotechnologies. Chemical Engineering Journal, 2015, 262, 563-570.	12.7	31
9	Potential of Chitosan (Chemically Modified Chitin) for Extraction of Lead-Arsenate Contaminated Soils. Communications in Soil Science and Plant Analysis, 2016, 47, 1650-1663.	1.4	3
10	Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system. IOP Conference Series: Materials Science and Engineering, 2016, 107, 012015.	0.6	1
11	Remediation of lead (Pb) and copper (Cu) using water hyacinth [Eichornia crassipes (Mart.) Solms] with electro-assisted phytoremediation (EAPR). , 2016, , .		8
12	Electrokinetics Across Disciplines and Continents. , 2016, , .		19
13	Phytoremediation: A Multidimensional and Ecologically Viable Practice for the Cleanup of Environmental Contaminants. , 2017, , 1-46.		7
14	A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. Journal of Environmental Management, 2017, 204, 17-22.	7.8	26
15	Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR). AIP Conference Proceedings, 2017, , .	0.4	4
16	Effect of electrode configurations on phytoremediation efficiency and environmental risk. Plant and Soil, 2018, 424, 607-617.	3.7	5
17	Mechanisms and Influencing Factors of Electro-Kinetic Enhanced Phytoextraction for the Recovery of Metal-Polluted Soils. , 2018, 08, .		0
18	Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field. Ecotoxicology and Environmental Safety, 2018, 165, 404-410.	6.0	7

#	Article	IF	CITATIONS
19	The interactive effects between chelator and electric fields on the leaching risk of metals and the phytoremediation efficiency of Eucalyptus globulus. Journal of Cleaner Production, 2018, 202, 830-837.	9.3	38
20	Can electrochemistry enhance the removal of organic pollutants by phytoremediation?. Journal of Environmental Management, 2018, 225, 280-287.	7.8	29
21	Enhancement of EAPR System Using Aeration Process on the Removal of Heavy Metal (Cu and Fe) in the Wastewater and Up-Take by Vetiver Grass (<i>Vetiveira zizaniodes</i> L). Materials Science Forum, 2019, 948, 3-8.	0.3	3
22	Comparing storage battery and solar cell in assisting <i>Eucalyptus Globulus</i> to phytoremediate soil polluted by Cd, Pb, and Cu. International Journal of Phytoremediation, 2019, 21, 181-190.	3.1	2
23	Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere, 2019, 229, 418-425.	8.2	31
24	The effects of different electric fields and electrodes on Solanum nigrum L. Cd hyperaccumulation in soil. Chemosphere, 2020, 246, 125666.	8.2	23
25	Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study. Journal of Environmental Management, 2020, 255, 109806.	7.8	14
26	Double aeration system on the enhancement of EAPR for removal of lead (Pb) and uptake by Pakcoy (Brassica rapa subsp. Chinensis): An evaluation of using phytomorphology changed. AIP Conference Proceedings, 2020, , .	0.4	1
27	Enhancement Effect of Humic Acid on Removal of Lead from Soil by Electrokinetic Process. Analytical Sciences, 2020, 36, 627-630.	1.6	5
28	Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 2021, 265, 129071.	8.2	107
29	Effect of two-dimensional electric field on the growth and cadmium uptake of Sedum plumbizincicola. Separation and Purification Technology, 2021, 259, 118121.	7.9	4
30	Enhancement of EAPR Treatment Using Double Aeration System and Uptake by Pakcoy (<i>Brassica rapa) Tj ETQ</i>	q1_1_0.78	43]4 rgBT /0
31	Innovative assisted phytoremediation of multi-elements contaminated soil by ryegrass: an electro-bio-chemical approach. Journal of Soils and Sediments, 2021, 21, 2604-2618.	3.0	3
32	Enhancing Arsenic Phytoextraction of Dwarf Napier Grass (<i>Pennisetum purpureum</i> cv. Mott) from Gold Mine Tailings by Electrokinetics Remediation with Phosphate and EDTA. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	2.0	3
33	Electrokinetic-assisted Phytoremediation. , 2022, , 371-398.		2
34	An overview of in-situ remediation for nitrate in groundwater. Science of the Total Environment, 2022, 804, 149981.	8.0	31
35	The effects of different electrode materials on seed germination of Solanum nigrum L. and its Cd accumulation in soil. Journal of Environmental Sciences, 2022, 113, 291-299.	6.1	2
36	Electrokinetic Remediation of Soil Polluted with Inorganic Ionic Species. Environmental Pollution, 2021, , 133-166.	0.4	1

CITATION REPORT

CITATION REPORT

#	ARTICLE	IF	CITATIONS
37	Phytoremediation and the Electrokinetic Process: Potential Use for the Phytoremediation of Antimony and Arsenic. , 2015, , 199-209.		6
38	Phytoremediation Coupled to Electrochemical Process for Arsenic Removal from Soil. , 2016, , 313-329.		1
39	Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using <i>Pistia stratiotes</i> . International Journal of Phytoremediation, 2022, , 1-9.	3.1	1
40	Electrokinetic Remediation. Handbook of Environmental Chemistry, 2022, , 1.	0.4	0
41	Electro-enhanced phytoremediation system on the removal of trace metal concentration from contaminated water. Heliyon, 2022, 8, e11451.	3.2	0
42	Lead dissociation and redistribution properties of actual contaminated farmland soil after long-term EKAPR treatment. Environmental Geochemistry and Health, 0, , .	3.4	2
43	Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: Process design modifications with brief summaries of main output. South African Journal of Chemical Engineering, 2023, 44, 156-256.	2.4	2
44	Electrokinetic-Assisted Phytoremediation of Pb-Contaminated Soil: Influences of Periodic Polarity Reversal Direct Current Field. Sustainability, 2023, 15, 8439.	3.2	1
45	Aerated-EP system on the fast removal of lead (II) from contaminated water and up-take by Pistia stratiotes linn AIP Conference Proceedings, 2023, , .	0.4	0
46	Application of aquatic plants alone as well as in combination for phytoremediation of household and industrial wastewater. Journal of King Saud University - Science, 2023, 35, 102805.	3.5	0
47	Hybrid and enhanced electrokinetic system for soil remediation from heavy metals and organic matter. Journal of Environmental Sciences, 0, 147, 424-450.	6.1	0
48	Effects, physiological response and mechanism of plant under electric field application. Scientia Horticulturae, 2024, 329, 112992.	3.6	Ο