Evaluation of chlorophyll-a remote sensing algorithms

Remote Sensing of Environment 129, 75-89 DOI: 10.1016/j.rse.2012.11.001

Citation Report

#	Article	IF	CITATIONS
1	On the Accuracy of SeaWiFS Ocean Color Data Products on the West Florida Shelf. Journal of Coastal Research, 2013, 29, 1257.	0.1	26
2	Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA). International Journal of Remote Sensing, 2013, 34, 6467-6483.	1.3	15
3	Evaluation of Satellite Retrievals of Ocean Chlorophyll-a in the California Current. Remote Sensing, 2014, 6, 8524-8540.	1.8	41
4	Modelagem da qualidade das águas a partir de sensoriamento remoto hiperespectral. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 13-19.	0.4	8
5	An improved MODIS standard chlorophyll-a algorithm for Malacca Straits Water. IOP Conference Series: Earth and Environmental Science, 2014, 18, 012113.	0.2	3
6	Biophysical Applications of Satellite Remote Sensing. Springer Remote Sensing/photogrammetry, 2014, ,	0.4	16
7	Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries. Remote Sensing of Environment, 2014, 155, 289-302.	4.6	39
8	Atmospheric NO ₂ dynamics and impact on ocean color retrievals in urban nearshore regions. Journal of Geophysical Research: Oceans, 2014, 119, 3834-3854.	1.0	21
9	A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations. Remote Sensing of Environment, 2014, 154, 298-317.	4.6	110
10	Remote sensing of selected water-quality indicators with the hyperspectral imager for the coastal ocean (HICO) sensor. International Journal of Remote Sensing, 2014, 35, 2927-2962.	1.3	64
11	Assessment of NIR-red algorithms for observation of chlorophyll-a in highly turbid inland waters in China. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 29-39.	4.9	39
12	An inversion model based on salinity and remote sensing reflectance for estimating the phytoplankton absorption coefficient in the S aint L awrence E stuary. Journal of Geophysical Research: Oceans, 2015, 120, 6958-6970.	1.0	3
13	A SUGGESTION FOR COASTAL ENVIRONMENT MONITORING METHODS USING OCEAN COLOR REMOTE SENSING IN TOKYO BAY. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1735-I_1740.	0.0	0
14	A Weighted Algorithm Based on Normalized Mutual Information for Estimating the Chlorophyll-a Concentration in Inland Waters Using Geostationary Ocean Color Imager (GOCI) Data. Remote Sensing, 2015, 7, 11731-11752.	1.8	21
15	Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes. Science of the Total Environment, 2015, 530-531, 373-382.	3.9	20
16	Using Remote Sensing to Track Variation in Phosphorus and Its Interaction With Chlorophyll-a and Suspended Sediment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 4171-4180.	2.3	21
17	A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102, 28-37.	4.9	77
18	Influence of Particle Composition on Remote Sensing Reflectance and MERIS Maximum Chlorophyll Index Algorithm: Examples From Taihu Lake and Chaohu Lake. IEEE Geoscience and Remote Sensing Letters 2015 12 1170-1174	1.4	9

#	Article	IF	CITATIONS
19	Cross-Sensor Continuity of Satellite-Derived Water Clarity in the Gulf of Mexico: Insights Into Temporal Aliasing and Implications for Long-Term Water Clarity Assessment. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1761-1772.	2.7	45
20	Satellite observation of hourly dynamic characteristics of algae with Geostationary Ocean Color Imager (GOCI) data in Lake Taihu. Remote Sensing of Environment, 2015, 159, 278-287.	4.6	77
21	Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment. Journal of Marine Systems, 2015, 149, 50-59.	0.9	98
22	Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 2015, 167, 181-195.	4.6	191
23	Algorithms and Schemes for Chlorophyll <i>a</i> Estimation by Remote Sensing and Optical Classification for Turbid Lake Taihu, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 350-364.	2.3	41
24	Issues and Potential Improvement of Multiband Models for Remotely Estimating Chlorophyll-a in Complex Inland Waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 562-575.	2.3	11
25	Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS. Sensors, 2016, 16, 1749.	2.1	7
26	Study on Retrieval of Chlorophyll-a Concentration Based on Landsat OLI Imagery in the Haihe River, China. Sustainability, 2016, 8, 758.	1.6	19
27	A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 2016, 16, 1298.	2.1	581
28	Spaceborne and airborne sensors in water quality assessment. International Journal of Remote Sensing, 2016, 37, 3143-3180.	1.3	33
29	A novel MODIS algorithm to estimate chlorophyll a concentration in eutrophic turbid lakes. Ecological Indicators, 2016, 69, 138-151.	2.6	31
30	Developing statistical models for estimating <i>chlorophyll</i> - <i>a</i> and total suspended solid levels at an estuarine reservoir with nutrient inputs from satellite observations. Desalination and Water Treatment, 0, , 1-14.	1.0	0
31	The relative influence of local and regional environmental drivers of algal biomass (chlorophyll-a) varies by estuarine location. Estuarine, Coastal and Shelf Science, 2016, 178, 65-76.	0.9	14
32	Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121, 28-47.	4.9	58
33	Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region. Remote Sensing of Environment, 2016, 184, 482-495.	4.6	56
34	Comparing Four Dimension Reduction Algorithms to Classify Algae Concentration Levels in Water Samples Using Hyperspectral Imaging. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	4
35	Estimating total suspended matter using the particle backscattering coefficient: results from the Itumbiara hydroelectric reservoir (Goiás State, Brazil). Remote Sensing Letters, 2016, 7, 397-406.	0.6	12
36	Bio-optical water quality dynamics observed from MERIS in Pensacola Bay, Florida. Estuarine, Coastal and Shelf Science, 2016, 173, 26-38.	0.9	12

#	Article	IF	CITATIONS
37	Estimation of chlorophyll-a concentration of different seasons in outdoor ponds using hyperspectral imaging. Talanta, 2016, 147, 422-429.	2.9	20
38	Tampa Bay estuary: Monitoring long-term recovery through regional partnerships. Regional Studies in Marine Science, 2016, 4, 1-11.	0.4	26
39	Resiliency of the western Chesapeake Bay to total suspended solid concentrations following storms and accounting for land-cover. Estuarine, Coastal and Shelf Science, 2017, 191, 136-149.	0.9	3
40	Estimation of chlorophyll-a concentrations in diverse water bodies using ratio-based NIR/Red indices. Remote Sensing Applications: Society and Environment, 2017, 6, 52-58.	0.8	7
41	Which ocean colour algorithm for MERIS in North West European waters?. Remote Sensing of Environment, 2017, 189, 132-151.	4.6	34
42	Application of a generalized additive model (GAM) for estimating chlorophyll- <i>a</i> concentration from MODIS data in the Bohai and Yellow Seas, China. International Journal of Remote Sensing, 2017, 38, 639-661.	1.3	22
43	Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133, 46-60.	4.9	23
44	Spatial-temporal bio-optical classification of dynamic semi-estuarine waters in western North America. Estuarine, Coastal and Shelf Science, 2017, 199, 35-48.	0.9	19
45	In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties. Journal of Photochemistry and Photobiology B: Biology, 2017, 175, 235-243.	1.7	8
46	Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System. Remote Sensing, 2017, 9, 516.	1.8	43
47	Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Sensors, 2017, 17, 1746.	2.1	26
48	Shellfish Aquaculture from Space: Potential of Sentinel2 to Monitor Tide-Driven Changes in Turbidity, Chlorophyll Concentration and Oyster Physiological Response at the Scale of an Oyster Farm. Frontiers in Marine Science, 2017, 4, .	1.2	60
49	Multi-Algorithm Indices and Look-Up Table for Chlorophyll-a Retrieval in Highly Turbid Water Bodies Using Multispectral Data. Remote Sensing, 2017, 9, 556.	1.8	18
50	Evaluation of atmospheric correction and high-resolution processing on SeaDAS-derived chlorophyll- <i>a</i> : an example from mid-latitude mesotrophic waters. International Journal of Remote Sensing, 2018, 39, 2119-2138.	1.3	3
51	Functional regression on remote sensing data in oceanography. Environmental and Ecological Statistics, 2018, 25, 277-304.	1.9	6
52	Investigating Optical Properties of Red Tide in a Turbid Coastal Area Near Tongyeong, South Korea. , 2018, , .		0
53	Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Environmental Monitoring and Assessment, 2018, 190, 620.	1.3	25
54	Spatio-temporal variations of CDOM in shallow inland waters from a semi-analytical inversion of Landsat-8. Remote Sensing of Environment, 2018, 218, 189-200.	4.6	38

#	Article	IF	CITATIONS
55	Atmospheric Trace Gas (NO2 and O3) Variability in South Korean Coastal Waters, and Implications for Remote Sensing of Coastal Ocean Color Dynamics. Remote Sensing, 2018, 10, 1587.	1.8	29
56	Using CDOM optical properties for estimating DOC concentrations and pCO ₂ in the Lower Amazon River. Optics Express, 2018, 26, A657.	1.7	35
57	Optical Classification of the Coastal Waters of the Northern Indian Ocean. Frontiers in Marine Science, 0, 5, .	1.2	12
58	Chlorophyll-a Concentration Retrieval in the Optically Complex Waters of the St. Lawrence Estuary and Gulf Using Principal Component Analysis. Remote Sensing, 2018, 10, 265.	1.8	19
59	A Multivariate Analysis Framework to Detect Key Environmental Factors Affecting Spatiotemporal Variability of Chlorophyll-a in a Tropical Productive Estuarine-Lagoon System. Remote Sensing, 2018, 10, 853.	1.8	6
60	Inland Water Atmospheric Correction Based on Turbidity Classification Using OLCI and SLSTR Synergistic Observations. Remote Sensing, 2018, 10, 1002.	1.8	47
61	Evaluation of Unified Algorithms for Remote Sensing of Chlorophyll-a and Turbidity in Lake Shinji and Lake Nakaumi of Japan and the Vaal Dam Reservoir of South Africa under Eutrophic and Ultra-Turbid Conditions. Water (Switzerland), 2018, 10, 618.	1.2	19
62	An optimized Chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sensing of Environment, 2018, 215, 217-227.	4.6	84
63	Satellite Estimation of Chlorophyll-a Using Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor in Shallow Coastal Water Bodies: Validation and Improvement. Water (Switzerland), 2019, 11, 1621.	1.2	32
64	First Results of Phytoplankton Spatial Dynamics in Two NW-Mediterranean Bays from Chlorophyll-a Estimates Using Sentinel 2: Potential Implications for Aquaculture. Remote Sensing, 2019, 11, 1756.	1.8	22
65	Spatio-temporal variability of red-green chlorophyll-a index from MODIS data – Case study: Chabahar Bay, SE of Iran. Continental Shelf Research, 2019, 184, 1-9.	0.9	4
66	Market Demand Forecasting Model of Urban Underground Comprehensive Pipe Gallery PPP Project. , 2019, , .		Ο
67	Estimation of Chlorophyll-a Concentrations in a Highly Turbid Eutrophic Lake Using a Classification-Based MODIS Land-Band Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 3769-3783.	2.3	21
68	A Simple Red Tide Monitoring Method using Sentinel-2 Data for Sustainable Management of Brackish Lake Koyama-ike, Japan. Water (Switzerland), 2019, 11, 1044.	1.2	13
69	Quantifying Spatiotemporal Dynamics of the Column-Integrated Algal Biomass in Nonbloom Conditions Based on OLCI Data: A Case Study of Lake Dianchi, China. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7447-7459.	2.7	13
70	Remote Sensing Retrieval of Turbidity in Alpine Rivers based on high Spatial Resolution Satellites. Remote Sensing, 2019, 11, 3010.	1.8	6
71	An assessment of semi-analytical models based on the absorption coefficient in retrieving the chlorophyll-a concentration from a reservoir. Advances in Space Research, 2019, 63, 2175-2188.	1.2	8
72	Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sensing of Environment, 2019, 220, 110-123.	4.6	63

#	Article	IF	CITATIONS
73	Assessing the efficacy of Landsat-8 OLI imagery derived models for remotely estimating chlorophyll- <i>a</i> concentration in the Upper Ganga River, India. International Journal of Remote Sensing, 2020, 41, 2439-2456.	1.3	13
74	Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy. Water Research, 2020, 171, 115403.	5.3	54
75	A fuzzy function model for remote evaluation of chlorophyll-a concentration in the Northern of South China Sea-Hong Kong. E3S Web of Conferences, 2020, 158, 05001.	0.2	0
76	A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 2020, 585, 124826.	2.3	148
77	Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala. Frontiers in Environmental Science, 2020, 8, .	1,5	36
78	Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations. Remote Sensing of Environment, 2020, 241, 111735.	4.6	37
79	Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs). Marine Pollution Bulletin, 2020, 152, 110889.	2.3	45
80	Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sensing of Environment, 2020, 239, 111632.	4.6	54
81	An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sensing of Environment, 2020, 239, 111648.	4.6	72
82	Two-decade variations of fresh submarine groundwater discharge to Tolo Harbour and their ecological significance by coupled remote sensing and radon-222 model. Water Research, 2020, 178, 115866.	5.3	19
83	Application of Landsat 8 OLI for monitoring the coastal waters of the US Virgin Islands. International Journal of Remote Sensing, 2020, 41, 5743-5769.	1.3	6
84	A single semi-analytical algorithm to retrieve chlorophyll-a concentration in oligo-to-hypereutrophic waters of a tropical reservoir cascade. Ecological Indicators, 2021, 120, 106913.	2.6	19
85	Assessment of Algorithms for Estimating Chlorophyll-a Concentration in Inland Waters: A Round-Robin Scoring Method Based on the Optically Fuzzy Clustering. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	2.7	4
86	Steady increase in water clarity in Jiaozhou Bay in the Yellow Sea from 2000 to 2018: Observations from MODIS. Journal of Oceanology and Limnology, 2021, 39, 800-813.	0.6	9
87	Bio-optical studies on chlorophyll-a concentration in Hooghly River, India. Materials Today: Proceedings, 2021, 47, 488-492.	0.9	1
88	Evaluating Traditional Empirical Models and BPNN Models in Monitoring the Concentrations of Chlorophyll-A and Total Suspended Particulate of Eutrophic and Turbid Waters. Water (Switzerland), 2021, 13, 650.	1.2	14
89	Uma abordagem metodológica de Sensoriamento Remoto para o monitoramento da contaminação do rio Paraopeba pós-desastre de Brumadinho-MG. Ciência E Natura, 0, 43, e36.	0.0	0
90	A Novel Approach to Obtain Diurnal Variation of Bio-Optical Properties in Moving Water Parcel Using Integrated Drifting Buoy and GOCI Data: A Case Study in Yellow and East China Seas. Remote Sensing, 2021, 13, 2115.	1.8	2

#	Article	IF	CITATIONS
91	Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes. Remote Sensing, 2021, 13, 2381.	1.8	25
92	A critical and intensive review on assessment of water quality parameters through geospatial techniques. Environmental Science and Pollution Research, 2021, 28, 41612-41626.	2.7	10
93	A Machine Learning Approach to Estimate Surface Chlorophyll <i>a</i> Concentrations in Global Oceans From Satellite Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 4590-4607.	2.7	34
94	Comparison of In-Situ Chlorophyll-a Time Series and Sentinel-3 Ocean and Land Color Instrument Data in Slovenian National Waters (Gulf of Trieste, Adriatic Sea). Water (Switzerland), 2021, 13, 1903.	1.2	11
97	Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Science of the Total Environment, 2021, 778, 146271.	3.9	81
99	Spatiotemporal BME characterization and mapping of sea surface chlorophyll in Chesapeake Bay (USA) using auxiliary sea surface temperature data. Science of the Total Environment, 2021, 794, 148670.	3.9	16
100	Oceanic Chlorophyll-a Content. Springer Remote Sensing/photogrammetry, 2014, , 171-203.	0.4	6
101	Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sensing of Environment, 2020, 240, 111604.	4.6	247
102	Progressive scheme for blending empirical ocean color retrievals of absorption coefficient and chlorophyll concentration from open oceans to highly turbid waters. Applied Optics, 2019, 58, 3359.	0.9	9
103	Remote sensing retrieval for chlorophyll-a concentration in seasonal turbid case II water based on baseline correction of spectra. Hupo Kexue/Journal of Lake Sciences, 2014, 26, 897-906.	0.3	1
104	Monitoring Water Quality of Valle de Bravo Reservoir, Mexico, Using Entire Lifespan of MERIS Data and Machine Learning Approaches. Remote Sensing, 2020, 12, 1586.	1.8	30
105	OCEAN COLOR RETRIEVAL USING LANDSAT-8 IMAGERY IN COASTAL CASE 2 WATERS (CASE STUDY PERSIAN) Information Sciences - ISPRS Archives, 0, XLI-B8, 1161-1164.	Tj ETQq1 1 0.2	. 0.784314 rgB 0
106	Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries. Geoscientific Model Development, 2021, 14, 6833-6846.	1.3	2
107	Regulation of Algal Bloom Hotspots Under Mega Estuarine Constructions in the Changjiang River Estuary. Frontiers in Marine Science, 2022, 8, .	1.2	5
108	An empirical approach for deriving specific inland water quality parameters from high spatio-spectral resolution image. Wetlands Ecology and Management, 2022, 30, 405-422.	0.7	6
109	Validity evaluation of a machine-learning model for chlorophyll a retrieval using Sentinel-2 from inland and coastal waters. Ecological Indicators, 2022, 137, 108737.	2.6	22
110	Hybrid Semi-Analytical Algorithm for Estimating Chlorophyll-A Concentration in Lower Amazon Floodplain Waters. Frontiers in Remote Sensing, 2022, 3, .	1.3	4
115	Hyperspectral reconstruction method for optically complex inland waters based on bio-optical model and sparse representing. Remote Sensing of Environment, 2022, 276, 113045.	4.6	8

#	Article	IF	CITATIONS
116	Fluorescence Line Height Extraction Algorithm for the Geostationary Ocean Color Imager. Remote Sensing, 2022, 14, 2511.	1.8	3
117	Monitoring shallow coral reef exposure to environmental stressors using satellite earth observation: the reef environmental stress exposure toolbox (<scp>RESET</scp>). Remote Sensing in Ecology and Conservation, 0, , .	2.2	3
118	Investigating the sub-daily dynamics of cyanobacterial blooms by coupling high-frequency time-series remote sensing with hydro-ecological modelling. Journal of Environmental Management, 2022, 317, 115311.	3.8	4
119	Pre and Post Effects Assessment of Marine Ranch Construction in Chlorophyll-a Concentration Using MODIS Data and a Web-Based Tool. A Case Study in Zhelin Bay, China. Computational Water Energy and Environmental Engineering, 2022, 11, 85-92.	0.4	0
120	Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning. Science of the Total Environment, 2022, 844, 157191.	3.9	13
121	Assessing the Performance and Application of Operational Lagrangian Transport HAB Forecasting Systems. Frontiers in Marine Science, 0, 9, .	1.2	5
122	Mapping essential habitat of estuarine fishery species with a mechanistic SDM and Landsat data. Ecological Indicators, 2022, 142, 109196.	2.6	4
123	Statistical analysis for determination of homogeneous reflectance regions in a coastal lagoon using satellite imagery and bathymetry survey. Journal of Applied Remote Sensing, 2022, 16, .	0.6	1
124	Evaluating the Efficacy of Five Chlorophyll-a Algorithms in Chesapeake Bay (USA) for Operational Monitoring and Assessment. Journal of Marine Science and Engineering, 2022, 10, 1104.	1.2	4
125	Remote sensing modeling of environmental influences on lake fish resources by machine learning: A practice in the largest freshwater lake of China. Frontiers in Environmental Science, 0, 10, .	1.5	0
126	Ocean water quality monitoring using remote sensing techniques: A review. Marine Environmental Research, 2022, 180, 105701.	1.1	25
127	Phytoplankton biomass variation after cage aquaculture removal from the Daheiting Reservoir, China: observations from satellite data. Hydrobiologia, 2022, 849, 4759-4775.	1.0	5
128	Scheme to estimate water-leaving albedo from remotely sensed chlorophyll-a concentration. Optics Express, 2022, 30, 36176.	1.7	0
129	CHARACTERIZATION OF <i>CHATTONELLA</i> RED TIDE DISTRIBUTION IN THE YATSUSHIRO SEA USING MULTI-SATELLITE DATA. Journal of Japan Society of Civil Engineers Ser B3 (Ocean Engineering), 2022, 78, I_769-I_774.	0.0	0
130	Quality control based Chlorophyll-aÂestimation with two-band and three-band algorithms using Sentinel-2 MSI data in a complex inland lake, China. Geocarto International, 2024, 37, 18094-18115.	1.7	2
131	Retrieval of Chlorophyll-a Concentrations Using Sentinel-2 MSI Imagery in Lake Chagan Based on Assessments with Machine Learning Models. Remote Sensing, 2022, 14, 4924.	1.8	8
132	Using a Remote-Sensing-Based Piecewise Retrieval Algorithm to Map Chlorophyll-a Concentration in a Highland River System. Remote Sensing, 2022, 14, 6119.	1.8	0
133	Mapping the probability of freshwater algal blooms with various spectral indices and sources of training data. Journal of Applied Remote Sensing, 2022, 16, .	0.6	2

#	Article	IF	CITATIONS
134	Long-Term Dynamics of Chlorophyll-a Concentration and Its Response to Human and Natural Factors in Lake Taihu Based on MODIS Data. Sustainability, 2022, 14, 16874.	1.6	3
135	Development of chlorophyll-a concentration estimation algorithm for turbid productive inland waters in India. Geocarto International, 2023, 38, .	1.7	1
136	Validation of standard ocean-color chlorophyll-a products in turbid coastal waters: A case study on statistical evaluation and quality control tests in the Persian Gulf. Journal of Marine Systems, 2023, 240, 103875.	0.9	1
137	Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations. Science of the Total Environment, 2023, 873, 162168.	3.9	9
138	A Hybrid Chlorophyll a Estimation Method for Oligotrophic and Mesotrophic Reservoirs Based on Optical Water Classification. Remote Sensing, 2023, 15, 2209.	1.8	1