Harvesting high altitude wind energy for power produce Magnus†effect

Applied Energy 101, 151-160 DOI: 10.1016/j.apenergy.2012.06.061

Citation Report

#	Article	IF	CITATIONS
1	Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe. Energy, 2013, 57, 24-29.	4.5	28
2	Rainwater- and air-driven 40 mm bladeless electromagnetic energy harvester. Applied Physics Letters, 2013, 103, 033904.	1.5	16
3	Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air. Energy, 2014, 74, 99-108.	4.5	70
4	Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment. Applied Energy, 2014, 131, 87-96.	5.1	24
5	Multi-mass dynamic model of a variable-length tether used in a high altitude wind energy system. Energy Conversion and Management, 2014, 87, 1141-1150.	4.4	25
6	Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 2015, 51, 1461-1476.	8.2	220
7	Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations. Applied Energy, 2015, 154, 921-933.	5.1	187
8	An arc-shaped piezoelectric generator for multi-directional wind energy harvesting. Sensors and Actuators A: Physical, 2015, 236, 173-179.	2.0	46
9	Operating cycle optimization for a Magnus effect-based airborne wind energy system. Energy Conversion and Management, 2015, 90, 154-165.	4.4	36
10	Estimation of wind power generation in dense urban area. Applied Energy, 2016, 171, 213-230.	5.1	114
11	Aerodynamic performance of a circulating airfoil section for Magnus systems via numerical simulation and flow visualization. Energy, 2016, 104, 1-15.	4.5	14
12	Advances in floating aerogenerators: Present status and future. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1555-1568.	1.1	10
13	CFD simulations and experimental measurements of flow past free-surface piercing, finite length cylinders with varying aspect ratios. Computers and Fluids, 2016, 136, 247-259.	1.3	20
14	Zero carbon energy system of South East Europe in 2050. Applied Energy, 2016, 184, 1517-1528.	5.1	156
15	Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions. ACS Nano, 2016, 10, 1780-1787.	7.3	268
16	A flow control technique for noise reduction of a rod-airfoil configuration. Journal of Fluids and Structures, 2017, 69, 293-307.	1.5	16
17	Design of an airborne vertical axis wind turbine for low electrical power demands. International Journal of Energy and Environmental Engineering, 2017, 8, 293-301.	1.3	14
18	A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland. Renewable and Sustainable Energy Reviews, 2017, 68, 899-911.	8.2	39

CITATION REPORT

#	Article	IF	CITATIONS
19	Modeling and control of a Magnus effect-based airborne wind energy system in crosswind maneuvers. IFAC-PapersOnLine, 2017, 50, 13878-13885.	0.5	10
20	Tradeoff Study of High Altitude Solar Reflector Concepts. , 2017, , .		2
21	Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum. E3S Web of Conferences, 2017, 19, 01003.	0.2	3
22	Modeling, parameterization and damping optimum-based control system design for an airborne wind energy ground station power plant. Energy Conversion and Management, 2018, 164, 262-276.	4.4	8
23	Comparative Analysis of Floating Aerogenerators. Springer Proceedings in Energy, 2018, , 9-18.	0.2	1
24	In-flight estimation of the aerodynamic characteristics of a Magnus effect-based airborne wind energy system. , 2018, , .		0
25	Wind characteristics and wind energy assessment in the Barents Sea based on ERA-Interim reanalysis. Oceanological and Hydrobiological Studies, 2018, 47, 415-428.	0.3	3
26	Aerodynamic analysis of an airborne wind turbine with three different aerofoil-based buoyant shells using steady RANS simulations. Energy Conversion and Management, 2018, 177, 233-248.	4.4	41
27	Energy harvesting from flow-induced vibration: a lumped parameter model. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2903-2913.	1.2	42
28	Bladeless wind power harvester and aeroelastic harvester. , 2019, , 339-372.		0
29	Application of magnus effect and lift blade in high altitude wind power. IOP Conference Series: Earth and Environmental Science, 2019, 295, 042015.	0.2	0
30	Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles. Energy, 2019, 169, 79-91.	4.5	24
31	Experimental investigation of current forces on floating cylinder during the sinking process. Ocean Engineering, 2019, 178, 134-144.	1.9	5
32	Numerical investigation of the unsteady aerodynamics of NACA 0012 with suction surface protrusion. Aircraft Engineering and Aerospace Technology, 2019, 92, 186-200.	0.7	2
33	Experimental study of the Magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197, 104065.	1.7	11
34	Aerodynamic Characteristics of a Rotating Cylinder in the Form of a Truncated Cone. Journal of Engineering Physics and Thermophysics, 2020, 93, 551-555.	0.2	3
35	Recent Advances in Selfâ€Powered Triboâ€∤Piezoelectric Energy Harvesters: Allâ€Inâ€One Package for Future Smart Technologies. Advanced Functional Materials, 2020, 30, 2004446.	7.8	133
36	High Altitude Airborne Wind Energy. , 2021, , .		5

#	Article	IF	CITATIONS
37	Airborne wind energy-driven hybrid system for simultaneous production of power, potable water, and liquid carbon dioxide. Energy Conversion and Management, 2021, 233, 113913.	4.4	1
38	Wind assisted propulsion system onboard ships: case study Flettner rotors. Ships and Offshore Structures, 2022, 17, 1616-1627.	0.9	13
39	Flight Dynamics, Control Law Design, and Flight Tests of Kite. , 2021, , .		2
40	An assisted propulsion device of vessel utilizing wind energy based on Magnus effect. Applied Ocean Research, 2021, 114, 102788.	1.8	7
42	High Altitude Wind Energy from a Hybrid Lighter-than-Air Platform Using the Magnus Effect. Green Energy and Technology, 2013, , 491-500.	0.4	9
43	Control of a Magnus Effect-Based Airborne Wind Energy System. Green Energy and Technology, 2018, , 277-301.	0.4	4
44	Optimization-Inspired Control Strategy for a Magnus Effect-Based Airborne Wind Energy System. Green Energy and Technology, 2018, , 303-333.	0.4	0
45	Power conversion performance of airborne wind turbine under unsteady loads. Renewable and Sustainable Energy Reviews, 2022, 153, 111798.	8.2	11
46	Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy, 2022, 92, 106685.	8.2	63
47	Cross Wind Flight Dynamics Modeling of Tethered Kite. , 2022, , .		3
48	An Array of Flag-Type Triboelectric Nanogenerators for Harvesting Wind Energy. Nanomaterials, 2022, 12, 721.	1.9	12
50	Review and validation of EnergyPLAN. Renewable and Sustainable Energy Reviews, 2022, 168, 112724.	8.2	38
51	Design and Model Identification of a Power Kite Wind Energy System. IOP Conference Series: Earth and Environmental Science, 2022, 1055, 012005.	0.2	0
52	Computational Simulation Methods for the Magnus Lift - Driven Wind Turbines. International Journal of Engineering and Advanced Technology, 2022, 11, 174-181.	0.2	0
53	Numerical Investigation of the Effect of the Spanwise Groove on the aerodynamic characteristic of a NACA 0012 Airfoil using ?- Re?t Transition Turbulence Model. , 2022, , .		0

CITATION REPORT