Facile Synthetic Method for Pristine Graphene Quantum Quantum Dots: Origin of Blue and Green Luminescence

Advanced Materials 25, 3657-3662

DOI: 10.1002/adma.201300233

Citation Report

#	Article	IF	CITATIONS
1	Multicolour light emission from chlorine-doped graphene quantum dots. Journal of Materials Chemistry C, 2013, 1, 7308.	2.7	157
2	Coal as an abundant source of graphene quantum dots. Nature Communications, 2013, 4, 2943.	5.8	686
3	Mechanism of Photoluminescence from Chemically Derived Graphene Oxide: Role of Chemical Reduction. Advanced Optical Materials, 2013, 1, 926-932.	3.6	160
4	Recent advances in graphene quantum dots for sensing. Materials Today, 2013, 16, 433-442.	8.3	659
5	Facile synthesis and photoluminescence mechanism of graphene quantum dots. Journal of Applied Physics, 2014, 116, 244306.	1.1	34
6	Vacancy filling effect of graphene on photoluminescence behavior of ZnO/graphene nanocomposite. Physica Status Solidi - Rapid Research Letters, 2014, 8, 836-840.	1.2	9
7	Amplified Spontaneous Green Emission and Lasing Emission From Carbon Nanoparticles. Advanced Functional Materials, 2014, 24, 2689-2695.	7.8	206
8	Fluorescence Lifetime Analysis of Graphene Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 30282-30290.	1.5	31
9	Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples. Talanta, 2014, 125, 341-346.	2.9	40
10	Graphene Quantum Dots. Particle and Particle Systems Characterization, 2014, 31, 415-428.	1.2	787
11	Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale, 2014, 6, 4676.	2.8	360
12	Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe ³⁺ Sensing. Advanced Functional Materials, 2014, 24, 3021-3026.	7.8	446
13	Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale, 2014, 6, 3384.	2.8	237
14	Mass Production of Graphene Quantum Dots by Oneâ€Pot Synthesis Directly from Graphite in High Yield. Small, 2014, 10, 866-870.	5.2	111
15	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ ⁻ induced red-shift emission. Carbon, 2014, 70, 279-286.	5.4	240
16	Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano, 2014, 8, 2541-2547.	7. 3	701
17	Size-Controllable and Low-Cost Fabrication of Graphene Quantum Dots Using Thermal Plasma Jet. ACS Nano, 2014, 8, 4190-4196.	7.3	92
18	Enhanced visible photoluminescence emission from multiple face-contact-junction ZnO nanorods coated with graphene oxide sheets. Journal of Applied Physics, 2014, 115, 214304.	1.1	18

#	Article	IF	CITATIONS
19	Ultrafast electron transfer in the nanocomposite of the graphene oxide–Au nanocluster with graphene oxide as a donor. Journal of Materials Chemistry C, 2014, 2, 3826-3834.	2.7	82
20	Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014, 6, 11988-11994.	2.8	406
21	Ultra-bright alkylated graphene quantum dots. Nanoscale, 2014, 6, 12635-12643.	2.8	24
22	Facile synthesis of analogous graphene quantum dots with sp ² hybridized carbon atom dominant structures and their photovoltaic application. Nanoscale, 2014, 6, 13043-13052.	2.8	80
23	Chemically Tailoring Coal to Fluorescent Carbon Dots with Tuned Size and Their Capacity for Cu(II) Detection. Small, 2014, 10, 4926-4933.	5.2	186
24	Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon, 2014, 78, 480-489.	5.4	210
25	One pot synthesis of graphene quantum disks derived from single-layered exfoliated graphene sheets and their application in bioimaging. RSC Advances, 2014, 4, 25916.	1.7	7
26	Drastic Change in Photoluminescence Properties of Graphene Quantum Dots by Chromatographic Separation. Advanced Optical Materials, 2014, 2, 983-989.	3.6	73
27	Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. Journal of Materials Chemistry A, 2014, 2, 8660.	5.2	405
28	Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chemistry, 2014, 16, 2566-2570.	4.6	116
29	Highly Efficient Lightâ€Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials, 2014, 2, 1016-1023.	3.6	229
30	Photophysical Properties and Singlet Oxygen Generation Efficiencies of Waterâ€Soluble Fullerene Nanoparticles. Photochemistry and Photobiology, 2014, 90, 997-1003.	1.3	29
31	Charge storage and memory effect in graphene quantum dots – PEG600 hybrid nanocomposite. Organic Electronics, 2014, 15, 216-225.	1.4	25
32	Electroluminescence from Graphene Quantum Dots Prepared by Amidative Cutting of Tattered Graphite. Nano Letters, 2014, 14, 1306-1311.	4.5	260
33	An overview of recent advances in quantum dots for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2014, 124, 118-131.	2.5	108
34	Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon, 2014, 77, 462-472.	5.4	124
35	Graphene Quantum Dots as Fluorescence Probes for Turn-off Sensing of Melamine in the Presence of Hg ²⁺ . ACS Applied Materials & Interfaces, 2014, 6, 2858-2864.	4.0	122
36	Shaping graphene oxide by electrochemistry: From foams to self-assembled molecular materials. Carbon, 2014, 77, 405-415.	5.4	29

#	Article	IF	Citations
37	Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots. Scientific Reports, 2015, 5, 14163.	1.6	48
38	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	7.8	1,072
39	Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. Small, 2015, 11, 6491-6499.	5.2	148
40	Rupturing C60Molecules into Graphene-Oxide-like Quantum Dots: Structure, Photoluminescence, and Catalytic Application. Small, 2015, 11, 5296-5304.	5.2	39
41	Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study. PLoS ONE, 2015, 10, e0144906.	1.1	133
42	Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, 3, 5976-5984.	2.7	599
43	Gram-Scale Synthesis of Graphene Quantum Dots from Single Carbon Atoms Growth via Energetic Material Deflagration. Chemistry of Materials, 2015, 27, 4319-4327.	3.2	54
44	Electrochemical tuning of optical properties of graphitic quantum dots. Journal of Luminescence, 2015, 166, 322-327.	1.5	5
45	Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chemical Science, 2015, 6, 4846-4850.	3.7	101
46	Multiple doping of graphene oxide foams and quantum dots: new switchable systems for oxygen reduction and water remediation. Journal of Materials Chemistry A, 2015, 3, 14334-14347.	5.2	57
47	Green luminescence of quasi-molecular level in graphene quantum dots fabricated by microwave bottom-up strategy. , $2015, , .$		0
48	Graphene, graphene quantum dots and their applications in optoelectronics. Current Opinion in Colloid and Interface Science, 2015, 20, 439-453.	3.4	73
49	Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science and Applications, 2015, 4, e364-e364.	7.7	366
50	Optical and Electrochemical Applications of Silicon–Carbon Dots/Silicon Dioxide Nanocomposites. ACS Nano, 2015, 9, 312-319.	7.3	60
51	Fluorescence Origin of Nanodiamonds. Journal of Physical Chemistry C, 2015, 119, 2239-2248.	1.5	79
52	Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. Journal of Materials Chemistry C, 2015, 3, 1157-1165.	2.7	172
53	Graphene and carbon quantum dots electrochemistry. Electrochemistry Communications, 2015, 52, 75-79.	2.3	103
54	Modulation of electrochemical property of carbon nanodot by post-chemical reductions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 15-21.	2.3	4

#	Article	IF	CITATIONS
55	Versatile photoluminescence from graphene and its derivatives. Carbon, 2015, 88, 86-112.	5.4	76
56	Self-assembly of fluorescent carbon dots in a N,N-dimethylmethanamide solution via Schiff base reaction. Nanoscale, 2015, 7, 4372-4376.	2.8	12
57	Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Advances, 2015, 5, 19773-19789.	1.7	203
58	One-step fabrication of nitrogen-doped fluorescent nanoparticles from non-conjugated natural products and their temperature-sensing and bioimaging applications. Sensing and Bio-Sensing Research, 2015, 3, 18-23.	2.2	7
59	The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and) Tj ETQq0 0	0 rg.BT /O	verlock_10 Tf 5
60	Improvement of solution based conjugate polymer organic light emitting diode by ZnO–graphene quantum dots. Journal of Materials Science: Materials in Electronics, 2015, 26, 3344-3351.	1.1	28
61	Selenium Doped Graphene Quantum Dots as an Ultrasensitive Redox Fluorescent Switch. Chemistry of Materials, 2015, 27, 2004-2011.	3.2	190
62	Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale, 2015, 7, 5633-5637.	2.8	85
63	An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots. Nanoscale, 2015, 7, 5969-5973.	2.8	73
64	Enhancement of light emission in GaAs epilayers with graphene quantum dots. RSC Advances, 2015, 5, 60908-60913.	1.7	9
65	Graphene quantum dots in analytical science. TrAC - Trends in Analytical Chemistry, 2015, 72, 93-113.	5.8	183
66	Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes. Scientific Reports, 2015, 5, 11032.	1.6	54
67	Bane to boon: tailored defect induced bright red luminescence from cuprous iodide nanophosphors for on-demand rare-earth-free energy-saving lighting applications. Journal of Materials Chemistry C, 2015, 3, 6786-6795.	2.7	23
68	Detection of \hat{l}_{\pm} -fetoprotein with an ultrasensitive electrochemiluminescence paper device based on green-luminescent nitrogen-doped graphene quantum dots. Sensors and Actuators B: Chemical, 2015, 221, 799-806.	4.0	57
69	Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. Journal of Materials Chemistry B, 2015, 3, 6989-7005.	2.9	198
70	Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions. RSC Advances, 2015, 5, 57425-57432.	1.7	32
71	Natural carbon-based dots from humic substances. Scientific Reports, 2015, 5, 10037.	1.6	61
72	Towards efficient photoinduced charge separation in carbon nanodots and TiO ₂ composites in the visible region. Physical Chemistry Chemical Physics, 2015, 17, 7966-7971.	1.3	32

#	Article	IF	CITATIONS
73	Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Research Letters, 2015, 10, 55.	3.1	140
74	Tailoring the edges of graphene quantum dots to establish localized π–π interactions with aromatic molecules. RSC Advances, 2015, 5, 41248-41254.	1.7	19
75	Investigating the surface state of graphene quantum dots. Nanoscale, 2015, 7, 7927-7933.	2.8	196
76	Triphenylphosphine modified graphene quantum dots: spectral modulation for full spectrum of visible light with high quantum yield. RSC Advances, 2015, 5, 33347-33350.	1.7	30
77	Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today, 2015, 18, 447-458.	8.3	416
78	Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chemistry, 2015, 17, 3791-3797.	4.6	337
79	Is the Chain of Oxidation and Reduction Process Reversible in Luminescent Graphene Quantum Dots?. Small, 2015, 11, 3773-3781.	5.2	49
80	Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. Journal of Materials Chemistry C, 2015, 3, 4553-4562.	2.7	39
81	Primary hepatocyte imaging by multiphoton luminescent graphene quantum dots. Chemical Communications, 2015, 51, 8041-8043.	2.2	30
82	Simultaneous enhancement of Raman scattering and fluorescence emission on graphene quantum dot-spiky magnetoplasmonic supra-particle composite films. RSC Advances, 2015, 5, 81753-81758.	1.7	8
83	Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction. ACS Nano, 2015, 9, 12480-12487.	7.3	251
84	Graphene Quantum Rings Doped PEDOT:PSS Based Composite Layer for Efficient Performance of Optoelectronic Devices. Journal of Physical Chemistry C, 2015, 119, 19619-19627.	1.5	22
85	Highly dispersible disk-like graphene nanoflakes. Nanoscale, 2015, 7, 15059-15064.	2.8	8
86	Effect of nitrogen doping on the structural and the optical variations of graphene quantum dots by using hydrazine treatment. Journal of the Korean Physical Society, 2015, 67, 746-751.	0.3	9
87	Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots. Journal of Physical Chemistry A, 2015, 119, 11783-11790.	1.1	38
88	Synthesis of Nitrogen-Doped Graphene Quantum Dots at Low Temperature for Electrochemical Sensing Trinitrotoluene. Analytical Chemistry, 2015, 87, 11803-11811.	3.2	89
89	Recent Advances in Graphene Quantum Dots for Fluorescence Bioimaging from Cells through Tissues to Animals. Particle and Particle Systems Characterization, 2015, 32, 515-523.	1.2	103
90	Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Particle and Particle Systems Characterization, 2015, 32, 434-440.	1,2	182

#	Article	IF	CITATIONS
91	Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale, 2015, 7, 2708-2715.	2.8	63
92	Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon, 2015, 82, 304-313.	5.4	183
93	Transgenerational safety of nitrogen-doped graphene quantum dots and the underlying cellular mechanism in Caenorhabditis elegans. Toxicology Research, 2015, 4, 270-280.	0.9	54
94	Conducting carbon quantum dots – a nascent nanomaterial. Journal of Materials Chemistry A, 2015, 3, 1580-1586.	5.2	40
95	Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon, 2015, 81, 514-524.	5.4	93
96	Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon, 2015, 81, 367-375.	5.4	55
97	Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots. Nanomaterials, 2016, 6, 198.	1.9	45
98	Graphene Quantum Dots: Syntheses, Properties, and Biological Applications., 2016,, 171-192.		17
99	Synthesis of Blue-, Green-, Yellow-, and Red-Emitting Graphene-Quantum-Dot-Based Nanomaterials with Excitation-Independent Emission. Particle and Particle Systems Characterization, 2016, 33, 132-139.	1.2	53
100	A timesaving, low-cost, high-yield method for the synthesis of ultrasmall uniform graphene oxide nanosheets and their application in surfactants. Nanotechnology, 2016, 27, 055601.	1.3	16
101	Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews, 2016, 116, 10731-10819.	23.0	469
102	A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth Constituent and In-vivo Bioimaging of C. elegans. Journal of Fluorescence, 2016, 26, 1541-1548.	1.3	19
103	Mesoporous Silica as Nanoreactors to Prepare Gdâ€Encapsulated Carbon Dots of Controllable Sizes and Magnetic Properties. Advanced Functional Materials, 2016, 26, 3973-3982.	7.8	58
104	Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots. Applied Physics Letters, 2016, 108, .	1.5	8
105	Ultrafast Method for Selective Design of Graphene Quantum Dots with Highly Efficient Blue Emission. Scientific Reports, 2016, 6, 38423.	1.6	45
106	Bottomâ€Up Fabrication of Singleâ€Layered Nitrogenâ€Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane. Chemistry - A European Journal, 2016, 22, 272-278.	1.7	60
107	Single layer nano graphene platelets derived from graphite nanofibres. Nanoscale, 2016, 8, 8810-8818.	2.8	19
108	Graphene oxide derived graphene quantum dots with different photoluminescence properties and peroxidase-like catalytic activity. RSC Advances, 2016, 6, 50609-50617.	1.7	70

#	Article	IF	Citations
109	Graphene Quantum Dots for Theranostics and Bioimaging. Pharmaceutical Research, 2016, 33, 2337-2357.	1.7	118
110	Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence. Journal of Physical Chemistry Letters, 2016, 7, 2087-2092.	2.1	143
111	Facile hydrothermal method to prepare graphene quantum dots from graphene oxide with different photoluminescences. RSC Advances, 2016, 6, 40422-40426.	1.7	32
112	Graphene quantum dots as smart probes for biosensing. Analytical Methods, 2016, 8, 4001-4016.	1.3	116
113	Graphene quantum dots from fishbone carbon nanofibers. RSC Advances, 2016, 6, 48504-48514.	1.7	18
114	Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano, 2016, 10, 8690-8699.	7.3	188
115	Zero-Dimensional and Highly Oxygenated Graphene Oxide for Multifunctional Poly(lactic acid) Bionanocomposites. ACS Sustainable Chemistry and Engineering, 2016, 4, 5618-5631.	3.2	50
116	The toxicity of graphene quantum dots. RSC Advances, 2016, 6, 89867-89878.	1.7	124
117	Modulating the Photocatalytic Activity of Graphene Quantum Dots via Atomic Tailoring for Highly Enhanced Photocatalysis under Visible Light. Advanced Functional Materials, 2016, 26, 8211-8219.	7.8	106
118	Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Advances, 2016, 6, 97990-97994.	1.7	49
119	Solvothermal method to prepare graphene quantum dots by hydrogen peroxide. Optical Materials, 2016, 60, 204-208.	1.7	80
120	Green synthetic strategy of BCNO nanostructure and phosphor-based light – Emitting diodes. Journal of Luminescence, 2016, 179, 501-510.	1.5	13
121	Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation. Physical Chemistry Chemical Physics, 2016, 18, 22599-22605.	1.3	47
122	Graphene Quantum Sheets with Multiband Emission: Unravelling the Molecular Origin of Graphene Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 21678-21684.	1.5	31
123	Graphene Oxide: A One- versus Two-Component Material. Journal of the American Chemical Society, 2016, 138, 11445-11448.	6.6	66
124	Chemically clean single-step oxido-reductive synthesis of green luminescent graphene quantum dots as impending electrocatalyst. Carbon, 2016, 109, 517-528.	5.4	25
125	Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon, 2016, 109, 373-383.	5.4	96
126	Tunable three-dimensional graphene assembly architectures through controlled diffusion of aqueous solution from a micro-droplet. NPG Asia Materials, 2016, 8, e329-e329.	3.8	8

#	Article	IF	CITATIONS
127	Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines. Toxicology, 2016, 374, 10-17.	2.0	54
128	Photo-induced Doping in GaN Epilayers with Graphene Quantum Dots. Scientific Reports, 2016, 6, 23260.	1.6	12
129	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	7.3	51
130	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
131	Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25454-25460.	4.0	75
132	Direct Observation, Molecular Structure, and Location of Oxidation Debris on Graphene Oxide Nanosheets. Environmental Science & Environmental Science	4.6	64
133	Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure. Journal of Physical Chemistry Letters, 2016, 7, 2888-2892.	2.1	25
134	Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Scientific Reports, 2016, 6, 21042.	1.6	230
135	High Color-Purity Green, Orange, and Red Light-Emitting Diodes Based on Chemically Functionalized Graphene Quantum Dots. Scientific Reports, 2016, 6, 24205.	1.6	72
136	High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel. Nano, 2016, 11, 1650138.	0.5	1
137	Chemical Nature of Redox-Controlled Photoluminescence of Graphene Quantum Dots by Post-Synthesis Treatment. Journal of Physical Chemistry C, 2016, 120, 26004-26011.	1.5	32
138	One-Pot Synthesis of Hydrophilic and Hydrophobic N-Doped Graphene Quantum Dots via Exfoliating and Disintegrating Graphite Flakes. Scientific Reports, 2016, 6, 30426.	1.6	68
139	Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. Journal of Materials Chemistry C, 2016, 4, 10852-10865.	2.7	157
140	Intrinsic Photoluminescence Emission from Subdomained Graphene Quantum Dots. Advanced Materials, 2016, 28, 5255-5261.	11.1	124
141	Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots. Chemistry - A European Journal, 2016, 22, 8198-8206.	1.7	59
142	Recent advances in experimental basic research on graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 023001.	0.7	6
143	Quantum-confined bandgap narrowing of TiO ₂ nanoparticles by graphene quantum dots for visible-light-driven applications. Chemical Communications, 2016, 52, 9208-9211.	2.2	64
144	Novel thermal quenching characteristics of luminescent carbon nanodots via tailoring the surface chemical groups. Carbon, 2016, 104, 226-232.	5.4	28

#	Article	IF	CITATIONS
145	Photoluminescent Properties of Carbon Nanodots. Carbon Nanostructures, 2016, , 239-256.	0.1	2
146	Facile growth of well-dispersed and ultra-small MoS ₂ nanodots in ordered mesoporous silica nanoparticles. Chemical Communications, 2016, 52, 10217-10220.	2.2	17
147	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
148	Graphene quantum dots decorated with Fe ₃ O ₄ nanoparticles/functionalized multiwalled carbon nanotubes as a new sensing platform for electrochemical determination of <scp>I</scp> -DOPA in agricultural products. Analytical Methods, 2016, 8, 5861-5868.	1.3	27
149	Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy and Environmental Science, 2016, 9, 1270-1281.	15.6	122
150	Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Physical Chemistry Chemical Physics, 2016, 18, 4800-4806.	1.3	49
151	One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon, 2016, 100, 201-207.	5.4	47
152	The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale, 2016, 8, 7449-7458.	2.8	125
153	Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale, 2016, 8, 8863-8877.	2.8	54
154	Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing. ACS Applied Materials & Interfaces, 2016, 8, 28372-28382.	4.0	44
155	Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale, 2016, 8, 7794-7807.	2.8	393
156	Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen. Applied Surface Science, 2016, 375, 110-117.	3.1	244
157	Atomic Oxygen Tailored Graphene Oxide Nanosheets Emissions for Multicolor Cellular Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7390-7395.	4.0	49
158	Polarization induced dynamic photoluminescence in carbon quantum dot-based ionic fluid. Journal of Materials Chemistry A, 2016, 4, 2246-2251.	5.2	18
159	Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application. ACS Applied Materials & Company (1988) (198	4.0	95
160	Graphene oxide-based nanomaterials for efficient photoenergy conversion. Journal of Materials Chemistry A, 2016, 4, 2014-2048.	5.2	7 3
161	Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1434-1439.	4.0	236
162	Recent advances in carbon-based dots for electroanalysis. Analyst, The, 2016, 141, 2619-2628.	1.7	29

#	Article	IF	CITATIONS
163	Preparation of graphene oxide-wrapped carbon sphere@silver spheres for high performance chlorinated phenols sensor. Journal of Hazardous Materials, 2016, 302, 188-197.	6.5	47
164	Size controllable preparation of graphitic quantum dots and their photoluminescence behavior. Materials Letters, 2016, 162, 56-59.	1.3	3
165	Easy synthesis of highly fluorescent carbon dots from albumin and their photoluminescent mechanism and biological imaging applications. Materials Science and Engineering C, 2016, 58, 730-736.	3.8	82
166	2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosensors and Bioelectronics, 2017, 89, 8-27.	5.3	31
167	Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosensors and Bioelectronics, 2017, 89, 123-135.	5.3	148
168	Heteroatom Nitrogen- and Boron-Doping as a Facile Strategy to Improve Photocatalytic Activity of Standalone Reduced Graphene Oxide in Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4558-4569.	4.0	128
169	Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Mikrochimica Acta, 2017, 184, 871-878.	2.5	47
170	Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor. Analytical Biochemistry, 2017, 521, 31-39.	1.1	76
171	Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano, 2017, 11, 3207-3212.	7.3	11
172	Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu 2-x Se core–shell nanowire arrays fabricated by ion-replacement method. Applied Catalysis B: Environmental, 2017, 209, 110-117.	10.8	98
173	The necessity of structural irregularities for the chemical applications of graphene. Materials Today Chemistry, 2017, 4, 1-16.	1.7	95
174	Uptake dynamics of graphene quantum dots into primary human blood cells following in vitro exposure. RSC Advances, 2017, 7, 12208-12216.	1.7	27
175	Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosensors and Bioelectronics, 2017, 94, 271-277.	5.3	94
176	External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Progress in Materials Science, 2017, 87, 140-220.	16.0	275
177	Unique properties of graphene quantum dots and their applications in photonic/electronic devices. Journal Physics D: Applied Physics, 2017, 50, 103002.	1.3	77
178	Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells. Nano Energy, 2017, 34, 36-46.	8.2	45
179	Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer. Scientific Reports, 2017, 7, 46422.	1.6	43
180	Morphology Tunable Hybrid Carbon Nanosheets with Solvatochromism. Advanced Materials, 2017, 29, 1701075.	11.1	42

#	Article	IF	CITATIONS
181	Coffee-Ground-Derived Quantum Dots for Aqueous Processable Nanoporous Graphene Membranes. ACS Sustainable Chemistry and Engineering, 2017, 5, 5360-5367.	3.2	63
182	Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass. Journal of Materials Chemistry B, 2017, 5, 4679-4689.	2.9	71
183	Directional electron transfer mechanisms with graphene quantum dots as the electron donor for photodecomposition of perfluorooctane sulfonate. Chemical Engineering Journal, 2017, 323, 406-414.	6.6	37
184	Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor. ACS Applied Materials & Diterfaces, 2017, 9, 16375-16380.	4.0	25
185	Controllable ionic liquid-assisted electrochemical exfoliation of carbon fibers for the green and large-scale preparation of functionalized graphene quantum dots endowed with multicolor emission and size tunability. Journal of Materials Chemistry C, 2017, 5, 6092-6100.	2.7	30
186	Enhanced photocatalytic activities of low-bandgap TiO2-reduced graphene oxide nanocomposites. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	22
187	Polymorphic Architectures of Graphene Quantum Dots. Advanced Materials, 2017, 29, 1701845.	11.1	13
188	Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: An experimental evidence of localized sp2 carbon subdomain. Carbon, 2017, 118, 524-530.	5.4	29
189	Photoluminescence from amino functionalized graphene quantum dots prepared by electrochemical exfoliation method in the presence of ammonium ions. RSC Advances, 2017, 7, 18340-18346.	1.7	28
190	Rapid exfoliation of layered covalent triazine-based frameworks into N-doped quantum dots for the selective detection of Hg ²⁺ ions. Journal of Materials Chemistry A, 2017, 5, 9272-9278.	5.2	76
191	Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications. Electrochimica Acta, 2017, 236, 239-251.	2.6	62
192	Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chemical Engineering Journal, 2017, 320, 570-575.	6.6	123
193	Graphene quantum dots: effect of size, composition and curvature on their assembly. RSC Advances, 2017, 7, 17704-17710.	1.7	49
194	A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chemistry, 2017, 19, 900-904.	4.6	87
195	Modifying optical properties of reduced/graphene oxide with controlled ozone and thermal treatment in aqueous suspensions. Nanotechnology, 2017, 28, 065705.	1.3	19
196	Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations. Physical Chemistry Chemical Physics, 2017, 19, 6338-6344.	1.3	9
197	Highly improved performance in Zr _{0.5} Hf _{0.5} O ₂ films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory. Journal of Materials Chemistry C, 2017, 5, 11046-11052.	2.7	66
198	Formation of Layer-Structured Black Phosphorus Nanocrystals during High-Speed Rotation of Two-Dimensional Amorphous Ultrathin Films. Crystal Growth and Design, 2017, 17, 5608-5613.	1.4	0

#	Article	IF	CITATIONS
199	Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diamond and Related Materials, 2017, 79, 112-118.	1.8	58
200	White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon, 2017, 124, 479-485.	5.4	36
201	Topâ€Down Synthesis of Hollow Graphene Nanostructures for Use in Resistive Switching Memory Devices. Advanced Electronic Materials, 2017, 3, 1700264.	2.6	7
202	Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon, 2017, 124, 429-472.	5.4	253
203	New Insight into the Concept of Carbonization Degree in Synthesis of Carbon Dots to Achieve Facile Smartphone Based Sensing Platform. Scientific Reports, 2017, 7, 11013.	1.6	58
204	A facile and high-efficient approach to yellow emissive graphene quantum dots from graphene oxide. Carbon, 2017, 124, 342-347.	5.4	44
205	Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dots. Nanoscale, 2017, 9, 18635-18643.	2.8	19
206	Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	3.6	360
207	Electrochemical Polymerization of Functionalized Graphene Quantum Dots. Chemistry of Materials, 2017, 29, 6611-6615.	3.2	32
208	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64
209	Beyond a Carrier: Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery, Release, and Response. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27396-27401.	4.0	96
210	A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale, 2017, 9, 13042-13051.	2.8	251
211	Effects of Substituents on the Electrocatalytic Activity of Cobalt Phthalocyanines when Conjugated to Graphene Quantum Dots. Electroanalysis, 2017, 29, 2470-2482.	1.5	25
212	Synthesis of N-doped graphene quantum dots by pulsed laser ablation with diethylenetriamine (DETA) and their photoluminescence. Physical Chemistry Chemical Physics, 2017, 19, 22395-22400.	1.3	62
213	Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega, 2017, 2, 8343-8353.	1.6	213
214	Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal lons and Bioimaging. ACS Omega, 2017, 2, 8051-8061.	1.6	75
215	A facile and universal strategy for preparation of long wavelength emission carbon dots. Dalton Transactions, 2017, 46, 16905-16910.	1.6	20
216	Platinum nanoparticles encapsulated in nitrogen-doped graphene quantum dots: Enhanced electrocatalytic reduction of oxygen by nitrogen dopants. International Journal of Hydrogen Energy, 2017, 42, 29192-29200.	3.8	18

#	Article	IF	CITATIONS
217	Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging. ACS Applied Materials & Interfaces, 2017, 9, 24846-24856.	4.0	151
218	Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe3+ ions in water samples. Talanta, 2017, 164, 100-109.	2.9	83
219	Metalâ€Free Dual Modal Contrast Agents Based on Fluorographene Quantum Dots. Particle and Particle Systems Characterization, 2017, 34, 1600221.	1.2	25
220	Nanofabrication of Graphene Quantum Dots with High Toxicity Against Malaria Mosquitoes, Plasmodium falciparum and MCF-7 Cancer Cells: Impact on Predation of Non-target Tadpoles, Odonate Nymphs and Mosquito Fishes. Journal of Cluster Science, 2017, 28, 393-411.	1.7	31
221	Langmuir-Blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure. Applied Surface Science, 2017, 392, 1036-1042.	3.1	7
222	Dynamic energy transfer in non-covalently functionalized reduced graphene oxide/silver nanoparticle hybrid (NF-RGO/Ag) with NF-RGO as the donor material. Journal of Materials Science: Materials in Electronics, 2017, 28, 2651-2659.	1.1	6
223	Facile synthesis of amine-functionalized graphene quantum dots with highly pH-sensitive photoluminescence. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 704-709.	1.0	28
224	Electrical and optical properties of reduced graphene oxide thin film deposited onto polyethylene terephthalate by spin coating technique. Applied Optics, 2017, 56, 7774.	0.9	14
225	Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development. Nanomaterials, 2017, 7, 301.	1.9	79
226	A Supramolecular Polymer Network of Graphene Quantum Dots. Angewandte Chemie, 2018, 130, 5054-5058.	1.6	23
227	A Supramolecular Polymer Network of Graphene Quantum Dots. Angewandte Chemie - International Edition, 2018, 57, 4960-4964.	7.2	50
228	Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018, 47, 3059-3099.	18.7	153
229	Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates. Nanotechnology, 2018, 29, 215711.	1.3	4
230	Controlled synthesis of lithium doped tin dioxide nanoparticles by a polymeric precursor method and analysis of the resulting defect structure. Journal of Materials Chemistry A, 2018, 6, 6299-6308.	5.2	20
231	Highly stable copper/carbon dot nanofluid. Journal of Thermal Analysis and Calorimetry, 2018, 133, 951-960.	2.0	14
232	Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sensors and Actuators B: Chemical, 2018, 268, 61-69.	4.0	55
233	Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. Journal of Materials Chemistry B, 2018, 6, 3219-3234.	2.9	155
234	Graphene Quantum Dots Electrochemistry and Development of Ultrasensitive Enzymatic Glucose Sensor. MRS Advances, 2018, 3, 831-847.	0.5	9

#	Article	IF	CITATIONS
235	Breakdown of Kasha's Rule in a Ubiquitous, Naturally Occurring, Wide Bandgap Aluminosilicate (Feldspar). Scientific Reports, 2018, 8, 810.	1.6	12
236	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	11.1	349
237	Effects of Câ€Related Dangling Bonds and Functional Groups on the Fluorescent and Electrochemiluminescent Properties of Carbonâ€Based Dots. Chemistry - A European Journal, 2018, 24, 4250-4254.	1.7	20
238	Chemical modification of group IV graphene analogs. Science and Technology of Advanced Materials, 2018, 19, 76-100.	2.8	33
239	Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New Journal of Chemistry, 2018, 42, 4603-4611.	1.4	58
240	Simultaneous drug delivery and cellular imaging using graphene oxide. Biomaterials Science, 2018, 6, 813-819.	2.6	59
241	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie - International Edition, 2018, 57, 1893-1897.	7.2	86
242	Evaluation of physico-mechanical properties in NHDF and HeLa cell with treatment of graphene quantum dots using atomic force microscopy. Applied Surface Science, 2018, 437, 357-365.	3.1	3
243	Mechanofluorochromic Carbon Nanodots: Controllable Pressureâ€Triggered Blue―and Redâ€Shifted Photoluminescence. Angewandte Chemie, 2018, 130, 1911-1915.	1.6	4
244	Engineering nanoscale p–n junction <i>via</i> the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3181-3194.	5.2	143
245	Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catalysis Today, 2018, 315, 171-183.	2.2	135
246	A Graphene Oxide Quantum Dots Embedded Charge Trapping Memory With Enhanced Memory Window and Data Retention. IEEE Journal of the Electron Devices Society, 2018, 6, 464-467.	1.2	16
247	Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics. RSC Advances, 2018, 8, 11446-11454.	1.7	84
248	Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 2018, 8, 96-109.	1.7	522
249	Solvatochromism in highly luminescent environmental friendly carbon quantum dots for sensing applications: Conversion of bio-waste into bio-asset. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 498-512.	2.0	75
250	Engineering carbon quantum dots for photomediated theranostics. Nano Research, 2018, 11, 1-41.	5.8	216
251	Graphene quantum dots produced by exfoliation of intercalated graphite nanoparticles and their application for temperature sensors. Applied Surface Science, 2018, 427, 1152-1157.	3.1	31
252	Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. Chemical Record, 2018, 18, 491-505.	2.9	119

#	ARTICLE	IF	CITATIONS
253	Yellowish and blue luminescent graphene oxide quantum dots prepared <i>via</i> a microwave-assisted hydrothermal route using H ₂ O ₂ and KMnO ₄ as oxidizing agents. New Journal of Chemistry, 2018, 42, 3999-4007.	1.4	55
254	A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents. Chemistry - A European Journal, 2018, 24, 2257-2263.	1.7	14
255	A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging. Nanoscale, 2018, 10, 1532-1539.	2.8	27
256	Recent progress in two-dimensional inorganic quantum dots. Chemical Society Reviews, 2018, 47, 586-625.	18.7	230
257	Water Soluble Fluorescent Graphene Nanodots. ChemNanoMat, 2018, 4, 1177-1188.	1.5	5
258	Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of <i>Pseudomonas aeruginosa</i> in Food Samples. Journal of Agricultural and Food Chemistry, 2018, 66, 10898-10905.	2.4	80
259	N-Functionalized Graphene Quantum Dots with Ultrahigh Quantum Yield and Large Stokes Shift: Efficient Downconverters for CIGS Solar Cells. ACS Photonics, 2018, 5, 4637-4643.	3.2	37
260	Using Distributed Energy States of Graphene Quantum Dots for an Efficient Hole-Injection Media in an Organic Electroluminescent Device. IEEE Electron Device Letters, 2018, 39, 1912-1915.	2.2	3
261	Grapheneâ€Enhanced Nanomaterials for Wall Painting Protection. Advanced Functional Materials, 2018, 28, 1803872.	7.8	31
262	Graphene Quantum Dots: Synthesis and Applications. Methods in Enzymology, 2018, 609, 335-354.	0.4	41
263	Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. Journal of Industrial and Engineering Chemistry, 2018, 66, 387-395.	2.9	50
264	Tailoring Blue-Green Double Emissions in Carbon Quantum Dots via Co-Doping Engineering by Competition Mechanism between Chlorine-Related States and Conjugated π-Domains. Nanomaterials, 2018, 8, 635.	1.9	16
265	Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials <i>via</i> Nanoconfinement. ACS Nano, 2018, 12, 9266-9278.	7.3	157
266	Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon, 2018, 140, 508-520.	5.4	68
267	Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chemistry, 2018, 20, 4438-4442.	4.6	212
268	Generation of Vanadium Oxide Quantum Dots with Distinct Fluorescence and Antibacterial Activity via a Roomâ€Temperature Agitation Strategy. ChemNanoMat, 2018, 4, 1048-1053.	1.5	20
269	Construction OD/2D heterojunction by highly dispersed Ni2P QDs loaded on the ultrathin g-C3N4 surface towards superhigh photocatalytic and photoelectric performance. Applied Catalysis B: Environmental, 2018, 237, 919-926.	10.8	105
270	Singlet Oxygen Generating Properties of Different Sizes of Charged Graphene Quantum Dot Nanoconjugates with a Positively Charged Phthalocyanine. Journal of Fluorescence, 2018, 28, 827-838.	1.3	11

#	Article	IF	CITATIONS
271	Optical study on single-layer photoluminescent graphene oxide nanosheets through a simple and green hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 595-601.	2.0	17
272	Graphite nanoparticle as nanoquencher for $17\hat{l}^2$ -estradiol detection using shortened aptamer sequence. Analyst, The, 2018, 143, 4163-4170.	1.7	20
273	Preparation of graphene quantum dots through liquid phase exfoliation method. Journal of Luminescence, 2018, 204, 203-208.	1.5	20
274	Multilevel Data Encryption Using Thermalâ€Treatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Advanced Science, 2018, 5, 1800795.	5.6	173
275	Coal derived carbon nanomaterials – Recent advances in synthesis and applications. Applied Materials Today, 2018, 12, 342-358.	2.3	101
276	Defect States Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. ACS Applied Materials & Control Effective Band Gap and Control Effet Band Gap and Control Effet Band Gap and Control Effet	4.0	24
277	Improved charge trapping properties by embedded graphene oxide quantum-dots for flash memory application. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	5
278	On-chip analysis of carbon dots effect on yeast replicative lifespan. Analytica Chimica Acta, 2018, 1033, 119-127.	2.6	34
279	In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence. Carbon, 2018, 136, 359-368.	5.4	78
280	Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 37, 1-22.	5 . 6	147
281	Graphene Oxide Quantum Dots Based Memristors with Progressive Conduction Tuning for Artificial Synaptic Learning. Advanced Functional Materials, 2018, 28, 1803728.	7.8	218
282	Atomic layer oxidation on graphene sheets for tuning their oxidation levels, electrical conductivities, and band gaps. Nanoscale, 2018, 10, 15521-15528.	2.8	14
283	Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe3+ Ions. Nanomaterials, 2018, 8, 233.	1.9	82
284	Effects of Oxidation State on Charge Carrier Lifetimes in B,N Codoped Graphene Oxide Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 18818-18828.	1.5	9
285	Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices. Journal of Industrial and Engineering Chemistry, 2018, 68, 129-139.	2.9	6
286	Exploring the excellent photophysical and electrochemical properties of graphene quantum dots for complementary sensing of uranium. Sensors and Actuators B: Chemical, 2018, 272, 559-573.	4.0	29
287	Tuning the Bandgap of Photo-Sensitive Polydopamine/Ag ₃ PO ₄ /Graphene Oxide Coating for Rapid, Noninvasive Disinfection of Implants. ACS Central Science, 2018, 4, 724-738.	5.3	227
288	Bright, stable, and tunable solid-state luminescence of carbon nanodot organogels. Physical Chemistry Chemical Physics, 2018, 20, 18089-18096.	1.3	16

#	Article	IF	CITATIONS
289	A solvent-free gaseous detonation approach for converting benzoic acid into graphene quantum dots within milliseconds. Diamond and Related Materials, 2018, 87, 233-241.	1.8	9
290	One-Pot Facile Synthesis of Graphene Quantum Dots from Rice Husks for Fe ³⁺ Sensing. Industrial & Description of the Rice Husks for Fe ³⁺ Sensing.	1.8	73
291	Amphiphilic Graphene Quantum Dots as Self†Targeted Fluorescence Probes for Cell Nucleus Imaging. Advanced Biology, 2018, 2, 1700191.	3.0	47
292	All-carbon flexible supercapacitors based on electrophoretic deposition of graphene quantum dots on carbon cloth. Journal of Power Sources, 2019, 438, 227009.	4.0	52
293	Intrinsic Emission from Nanographenes. Chemistry - an Asian Journal, 2019, 14, 3213-3220.	1.7	10
294	Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots. Nanoscale, 2019, 11, 16553-16561.	2.8	57
295	Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Applied Materials & Discrete Sensing. ACS Applied Materials & Discrete Sensing. Interfaces, 2019, 11, 35319-35326.	4.0	87
296	Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. Green Chemistry, 2019, 21, 4887-4918.	4.6	37
297	Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Materials Chemistry and Physics, 2019, 237, 121860.	2.0	79
298	Synthesis of graphene quantum dot-stabilized gold nanoparticles and their application. RSC Advances, 2019, 9, 21215-21219.	1.7	27
299	Large magnetization modulation in ZnO-based memory devices with embedded graphene quantum dots. Physical Chemistry Chemical Physics, 2019, 21, 16047-16054.	1.3	5
300	Synthesis of graphene quantum dots stabilized bimetallic AgRh nanoparticles and their applications. Inorganica Chimica Acta, 2019, 496, 119031.	1.2	9
301	Emission-wavelength-dependent photoluminescence decay lifetime of N-functionalized graphene quantum dot downconverters: Impact on conversion efficiency of Cu(In, Ga)Se2 solar cells. Scientific Reports, 2019, 9, 10803.	1.6	18
302	Preparation of graphene oxide quantum dots from waste toner, and their application to a fluorometric DNA hybridization assay. Mikrochimica Acta, 2019, 186, 483.	2.5	20
303	Efficient green emission from edge states in graphene perforated by nitrogen plasma treatment. 2D Materials, 2019, 6, 045021.	2.0	6
304	Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications. Beilstein Journal of Nanotechnology, 2019, 10, 2004-2013.	1.5	14
305	Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050.	5.2	70
306	Quenchingâ€Resistant Polymer Carbon Dot Preserving Emission Color Consistency in Solidâ€State. Advanced Optical Materials, 2019, 7, 1900932.	3.6	41

#	Article	IF	CITATIONS
307	One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: investigation of photoluminescence properties. Materials Research Express, 2019, 6, 105615.	0.8	10
308	Functional akund fibres by loading of carbon dots through an in-situ method. Applied Surface Science, 2019, 495, 143574.	3.1	1
309	Size Separation of Graphene Oxide Using Alternating Current Electric Field. Chemistry Letters, 2019, 48, 630-633.	0.7	2
310	A supramolecular hydrogel with monitorable macro/microscopic shape memory performance. Chemical Communications, 2019, 55, 11856-11859.	2.2	14
311	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 11631-11717.	23.0	207
312	Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Applied Materials Today, 2019, 16, 90-101.	2.3	86
313	Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Advanced Science, 2019, 6, 1900855.	5.6	70
314	Fluorescent carbon dots functionalization. Advances in Colloid and Interface Science, 2019, 270, 165-190.	7.0	181
315	Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC - Trends in Analytical Chemistry, 2019, 118, 315-337.	5.8	127
316	Origins of Efficient Multiemission Luminescence in Carbon Dots. Chemistry of Materials, 2019, 31, 4732-4742.	3.2	113
317	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
318	Cadmium-free quantum dot-based theranostics. TrAC - Trends in Analytical Chemistry, 2019, 118, 386-400.	5.8	37
319	Coal-Derived Graphene Quantum Dots Produced by Ultrasonic Physical Tailoring and Their Capacity for Cu(II) Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 9793-9799.	3.2	73
320	Quantum Confinement Effect in the Absorption Spectra of Graphene Quantum Dots. MRS Advances, 2019, 4, 205-210.	0.5	3
321	Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Advances, 2019, 9, 13658-13663.	1.7	30
322	Improved Resistive Memory Based on ZnO–Graphene Hybrids through Redox Process of Graphene Quantum Dots. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900153.	1.2	9
323	Graphene quantum dots with nitrogen and oxygen derived from simultaneous reaction of solvent as exfoliant and dopant. Chemical Engineering Journal, 2019, 372, 624-630.	6.6	15
324	Carbon dots as carriers for the development of controlled drug and gene delivery systems. , 2019, , 295-317.		13

#	Article	IF	CITATIONS
325	N-doped carbon dots under Xenon lamp irradiation: Fluorescence red-shift and its potential mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 91-97.	2.0	7
326	Graphene Quantum Dots in Electrochemical Sensors/Biosensors. Current Analytical Chemistry, 2019, 15, 103-123.	0.6	87
327	Linear control of the oxidation level on graphene oxide sheets using the cyclic atomic layer reduction technique. Nanoscale, 2019, 11, 7833-7838.	2.8	11
328	Preparation and characterization of blue-emitting carbon quantum dots and their silicone rubber composites. Materials Research Express, 2019, 6, 045310.	0.8	5
329	Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Scientific Reports, 2019, 9, 4101.	1.6	57
330	Microwave growth and tunable photoluminescence of nitrogen-doped graphene and carbon nitride quantum dots. Journal of Materials Chemistry C, 2019, 7, 5468-5476.	2.7	75
331	Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Mikrochimica Acta, 2019, 186, 278.	2.5	28
332	A green approach to prepare hierarchical porous carbon nanofibers from coal for high-performance supercapacitors. RSC Advances, 2019, 9, 6184-6192.	1.7	22
333	Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catalysis Science and Technology, 2019, 9, 5882-5905.	2.1	70
334	A target analyte induced fluorescence band shift of piperazine modified carbon quantum dots: a specific visual detection method for oxytetracycline. Chemical Communications, 2019, 55, 12364-12367.	2.2	28
335	lodine doped composite with biomass carbon dots and reduced graphene oxide: a versatile bifunctional electrode for energy storage and oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 22650-22662.	5.2	33
336	A protocol for size separation of nanographenes. RSC Advances, 2019, 9, 33843-33846.	1.7	26
337	Simple preparation of graphene quantum dots with controllable surface states from graphite. RSC Advances, 2019, 9, 38447-38453.	1.7	24
338	Semiempirical study on the absorption spectra of the coronene-like molecular models of graphene quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 1-5.	2.0	21
339	Direct white emissive Cl-doped graphene quantum dots-based flexible film as a single luminophore for remote tunable UV-WLEDs. Chemical Engineering Journal, 2019, 361, 773-782.	6.6	48
340	Doping effect and fluorescence quenching mechanism of N-doped graphene quantum dots in the detection of dopamine. Talanta, 2019, 196, 563-571.	2.9	93
341	N- and O-Doped Carbon Dots for Rapid and High-Throughput Dual Detection of Trace Amounts of Iron in Water and Organic Phases. Journal of Fluorescence, 2019, 29, 137-144.	1.3	7
342	Separation of Spectroscopically Uniform Nanographenes. Chemistry - an Asian Journal, 2019, 14, 1786-1791.	1.7	10

#	Article	IF	CITATIONS
343	Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019, 6, 434-469.	6.4	310
344	Recent Advances in Flexible Inorganic Light Emitting Diodes: From Materials Design to Integrated Optoelectronic Platforms. Advanced Optical Materials, 2019, 7, 1800936.	3.6	75
345	Improving Zr0.5Hf0.5O2-based charge-trapped performance by graphene oxide quantum dots. Functional Materials Letters, 2019, 12, 1850093.	0.7	3
346	Multifunctional graphene and carbon nanotube films for planar heterojunction solar cells. Progress in Energy and Combustion Science, 2019, 70, 1-21.	15.8	30
347	Synthesis of carbon dots with a tunable photoluminescence and their applications for the detection of acetone and hydrogen peroxide. Chinese Chemical Letters, 2020, 31, 487-493.	4.8	25
348	Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea. Journal of Luminescence, 2020, 217, 116774.	1.5	72
349	Nitrogenâ€Functionalized Graphene Quantum Dots: A Versatile Platform for Integrated Optoelectronic Devices. Chemical Record, 2020, 20, 429-439.	2.9	11
350	Carbon quantum dot-incorporated nickel oxide for planar p-i-n type perovskite solar cells with enhanced efficiency and stability. Journal of Alloys and Compounds, 2020, 818, 152887.	2.8	30
351	Carbon nanodots from natural (re)sources: a new perspective on analytical chemistry., 2020,, 3-28.		3
352	A wide range photoluminescence intensity-based temperature sensor developed with BN quantum dots and the photoluminescence mechanism. Sensors and Actuators B: Chemical, 2020, 304, 127353.	4.0	16
353	Inorganic 2D Luminescent Materials: Structure, Luminescence Modulation, and Applications. Advanced Optical Materials, 2020, 8, 1900978.	3.6	37
354	Defect State Assisted Z-scheme Charge Recombination in Bi ₂ O ₂ Conposites For Photocatalytic Oxidation of NO. ACS Applied Nano Materials, 2020, 3, 772-781.	2.4	36
355	Amino-functionalization on graphene oxide sheets using an atomic layer amidation technique. Journal of Materials Chemistry C, 2020, 8, 700-705.	2.7	5
356	Phototherapy with layered materials derived quantum dots. Nanoscale, 2020, 12, 43-57.	2.8	54
357	Mechanisms behind excitation- and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale, 2020, 12, 591-601.	2.8	120
358	Nitrogen and copper (II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging. Talanta, 2020, 210, 120649.	2.9	56
359	Coal derived graphene as an efficient supercapacitor electrode material. Chemical Physics, 2020, 530, 110607.	0.9	16
360	Novel carbon-based separation membranes composed of integrated zero- and one-dimensional nanomaterials. Journal of Materials Chemistry A, 2020, 8, 1084-1090.	5.2	20

#	ARTICLE	IF	Citations
361	Pulsed laser ablation based synthetic route for nitrogen-doped graphene quantum dots using graphite flakes. Applied Surface Science, 2020, 506, 144998.	3.1	58
362	Surface structure and fluorescence characteristics of concentrated carbon point. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124201.	2.3	4
363	Carbon Dots Derived from Facile Tailoring of Shaerhu Lignite as a Novel Fluorescence Sensor with Highâ€Selectivity and Sensitivity for Cu 2+ Detection. ChemistrySelect, 2020, 5, 12125-12130.	0.7	5
364	Ultraviolet/blue light emitting high-quality graphene quantum dots and their biocompatibility. Carbon, 2020, 170, 213-219.	5.4	24
365	Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diamond and Related Materials, 2020, 110, 108101.	1.8	26
366	Infrared-assisted synthesis of highly amidized graphene quantum dots as metal-free electrochemical catalysts. Electrochimica Acta, 2020, 360, 137009.	2.6	14
367	Carbon Quantum Dot-Modified and Chloride-Doped Ordered Macroporous Graphitic Carbon Nitride Composites for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 12188-12197.	2.4	25
368	Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation. Analytical Chemistry, 2020, 92, 12880-12890.	3.2	11
369	Fundamental Understanding of the Formation Mechanism for Graphene Quantum Dots Fabricated by Pulsed Laser Fragmentation in Liquid: Experimental and Theoretical Insight. Small, 2020, 16, 2003538.	5.2	13
370	Cytotoxicity and Bioimaging Study for NHDF and HeLa Cell Lines by Using Graphene Quantum Pins. Nanomaterials, 2020, 10, 2550.	1.9	4
371	A facile synthesis of two ionized fluorescent carbon dots and selective detection toward Fe ²⁺ and Cu ²⁺ . Nanoscale Advances, 2020, 2, 2943-2949.	2.2	1
372	Effects of Size and Localized States in Charge Carrier Dynamics and Performance of Solution-Processed Graphene Quantum Dots/Silicon Heterojunction Near-UV Photodetectors. Journal of Physical Chemistry C, 2020, 124, 12161-12167.	1.5	20
373	Nanobiosensing with graphene and carbon quantum dots: Recent advances. Materials Today, 2020, 39, 23-46.	8.3	66
374	Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF. Advanced Materials, 2020, 32, e2000936.	11.1	86
375	Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Advances, 2020, 10, 23861-23898.	1.7	194
376	Photocatalytic properties of grapheneâ€supported titania clusters from densityâ€functional theory. Journal of Computational Chemistry, 2020, 41, 1921-1930.	1.5	10
377	Luminescent Quantum Dots from Nonluminescent 2D Pyrediyne for Bioimaging Applications. Advanced Materials Interfaces, 2020, 7, 1902209.	1.9	4
378	Recent Advances on Graphene Quantum Dots for Bioimaging Applications. Frontiers in Chemistry, 2020, 8, 424.	1.8	146

#	Article	IF	CITATIONS
379	Exploration of the potential efficacy of natural resource-derived blue-emitting graphene quantum dots in cancer therapeutic applications. New Journal of Chemistry, 2020, 44, 5366-5376.	1.4	23
380	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
381	Graphene-based nanomaterials for healthcare applications. , 2020, , 45-81.		10
382	Crystalline Semiconductor Boron Quantum Dots. ACS Applied Materials & 2020, 12, 17669-17675.	4.0	45
383	Transmission Electron Microscopyâ€Based Statistical Analysis of Commercially Available Graphene Oxide Quantum Dots. Crystal Research and Technology, 2020, 55, 1900231.	0.6	8
384	Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale, 2020, 12, 6852-6860.	2.8	50
385	Blue Graphene Quantum Dots with High Color Purity by Controlling Subdomain Formation for Light-Emitting Devices. ACS Applied Nano Materials, 2020, 3, 6469-6477.	2.4	17
386	Hydrophilic P(Am-CD-AMPS) microgel for visual detection and removal metal ions in aqueous solution. Applied Surface Science, 2020, 512, 145668.	3.1	14
387	Graphene Quantum Dots with High Yield and High Quality Synthesized from Low Cost Precursor of Aphanitic Graphite. Nanomaterials, 2020, 10, 375.	1.9	40
388	Facile and Efficient Fabrication of Bandgap Tunable Carbon Quantum Dots Derived From Anthracite and Their Photoluminescence Properties. Frontiers in Chemistry, 2020, 8, 123.	1.8	34
389	Antimicrobial activity of graphene oxide quantum dots: impacts of chemical reduction. Nanoscale Advances, 2020, 2, 1074-1083.	2.2	17
390	Graphene oxide quantum dot exposure induces abnormalities in locomotor activities and mechanisms in zebrafish (<scp><i>Danio rerio</i></scp>). Journal of Applied Toxicology, 2020, 40, 794-803.	1.4	15
391	One-Step Synthesis of Diamine-Functionalized Graphene Quantum Dots from Graphene Oxide and Their Chelating and Antioxidant Activities. Nanomaterials, 2020, 10, 104.	1.9	39
392	Graphene-based quantum dot emitters for light-emitting diodes. , 2020, , 117-150.		4
393	Graphene quantum dot electrochemiluminescence increase by bio-generated H ₂ O ₂ and its application in direct biosensing. Royal Society Open Science, 2020, 7, 191404.	1.1	10
394	Unraveling Origins of EPR Spectrum in Graphene Oxide Quantum Dots. Nanomaterials, 2020, 10, 798.	1.9	13
395	A strategy for preparing non-fluorescent graphene oxide quantum dots as fluorescence quenchers in quantitative real-time PCR. RSC Advances, 2020, 10, 14944-14952.	1.7	8
396	Luminescence and energy storage characteristics of coke-based graphite oxide. Materials Chemistry and Physics, 2021, 257, 123854.	2.0	8

#	Article	IF	CITATIONS
397	A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. Chinese Journal of Polymer Science (English Edition), 2021, 39, 267-308.	2.0	29
398	Magneto-optical properties of bilayer phosphorene quantum dots. Physical Chemistry Chemical Physics, 2021, 23, 17645-17655.	1.3	3
400	Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing. NPG Asia Materials, 2021, 13, .	3.8	23
401	Catalytic graphitization: A bottom-up approach to graphene and quantum dots derived therefrom – A review. Materials Today: Proceedings, 2021, 46, 3069-3074.	0.9	4
402	Does black phosphorus hold potential to overcome graphene oxide? A comparative review of their promising application for cancer therapy. Nanoscale Advances, 2021, 3, 4029-4036.	2.2	6
403	Glycerol in energy transportation: a state-of-the-art review. Green Chemistry, 2021, 23, 7865-7889.	4.6	29
404	Quantum dots: Synthesis and characterizations. , 2021, , 1-35.		2
405	Coal based carbon dots: Recent advances in synthesis, properties, and applications. Nano Select, 2021, 2, 1589-1604.	1.9	24
406	Converting raw coal powder into polycrystalline nano-graphite by metal-assisted microwave treatment. Nano Structures Nano Objects, 2021, 25, 100660.	1.9	3
407	Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Communications Biology, 2021, 4, 214.	2.0	44
408	How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56, 333-356.	0.7	15
409	Efficient Amyloid Fibrillation Inhibition and Remodeling of Preformed Fibrils of Bovine Insulin by Propolis Polyphenols-Based Nanosheets. ACS Applied Bio Materials, 2021, 4, 3547-3560.	2.3	17
410	Passivation of ZnSe nanoparticles in sandwiched CdSe/ZnSe/ZnO nanotube array photoanode to substantially enhance solar photoelectrochemical water splitting for hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126206.	2.3	14
411	UV-irradiated hydrothermal synthesis of reduced graphene quantum dots for electrochemical applications. Diamond and Related Materials, 2021, 114, 108289.	1.8	13
412	Photocatalytic Cellulose Reforming for H ₂ and Formate Production by Using Graphene Oxide-Dot Catalysts. ACS Catalysis, 2021, 11, 4955-4967.	5.5	55
413	"On-off-on―fluorescence switch of graphene quantum dots: A cationic control strategy. Applied Surface Science, 2021, 546, 149110.	3.1	13
414	Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence. Nano Research, 2022, 15, 838-844.	5.8	6
415	Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose. Nanotechnology, 2021, 32, 295504.	1.3	3

#	Article	IF	Citations
416	Fluorescence Probe Based on Graphene Quantum Dots for Selective, Sensitive and Visualized Detection of Formaldehyde in Food. Sustainability, 2021, 13, 5273.	1.6	7
417	Effect of Solvent on Fluorescence Emission from Polyethylene Glycol-Coated Graphene Quantum Dots under Blue Light Illumination. Nanomaterials, 2021, 11, 1383.	1.9	12
418	Nanocomposite as Visible Sensing Platform for Hg²â². IEEE Sensors Journal, 2021, 21, 10595-10602.	2.4	0
419	Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. , 2021, 3, 889-911.		116
420	Fluorescent nitrogen-doped carbon nanodots synthesized through a hydrothermal method with different isomers. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 302-302.	2.7	13
421	Spider Silk Inspired Robust and Photoluminescent Soybeanâ€Proteinâ€Based Materials. Macromolecular Materials and Engineering, 2021, 306, 2100155.	1.7	2
422	Quenchingâ€Resistant Solidâ€State Photoluminescence of Graphene Quantum Dots: Reduction of Ï€â^Ï€ Stacking by Surface Functionalization with POSS, PEG, and HDA. Advanced Functional Materials, 2021, 31, 2102741.	7.8	45
423	Oxygen migration induced effective magnetic and resistive switching boosted by graphene quantum dots. Journal of Alloys and Compounds, 2021, 863, 158339.	2.8	14
424	Single atomically anchored iron on graphene quantum dots for a highly efficient oxygen evolution reaction. Materials Today Energy, 2021, 20, 100693.	2.5	18
425	Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers, 2021, 13, 3194.	1.7	39
426	Electrospun polyacrylonitrile nanofibers as graphene oxide quantum dot precursors with improved photoluminescent properties. Materials Science in Semiconductor Processing, 2021, 127, 105729.	1.9	9
427	Luminescent monodispersed carbon quantum dots by a microwave solvothermal method toward bioimaging applications. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 415, 113310.	2.0	10
428	Optical nanomaterials with focus on rare earth doped oxide: A Review. Materials Today Communications, 2021, 27, 102277.	0.9	56
429	Carbon quantum dots for optical sensor applications: A review. Optics and Laser Technology, 2021, 139, 106928.	2.2	78
430	Graphene Quantum Dots-Ornamented Waterborne Epoxy-Based Fluorescent Adhesive via Reversible Addition–Fragmentation Chain Transfer-Mediated Miniemulsion Polymerization: A Potential Material for Art Conservation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36307-36319.	4.0	15
431	Effects of pyridine-like and pyrrolic-like nitrogen on the photoluminescence blue-shift of nitrogen-doped graphene oxide quantum dots. Journal of Luminescence, 2021, 235, 117983.	1.5	5
432	Use of UV-Vis Spectrophotometry for Characterization of Carbon Nanostructures: a Review. Theoretical and Experimental Chemistry, 2021, 57, 191-198.	0.2	20
433	Exciton dynamics in monolayer graphene grown on a Cu(111) surface. Npj 2D Materials and Applications, 2021, 5, .	3.9	0

#	Article	IF	CITATIONS
434	Optical and electronic properties of TiO2/GOQDs composites: A combined experimental and first-principles calculations study. Computational Materials Science, 2021, 195, 110503.	1.4	11
435	Selenium-Sulfur-Doped Carbon Dots with Thioredoxin Reductase Activity. CCS Chemistry, 2022, 4, 2239-2248.	4.6	14
436	Surface charge-dependent osteogenic behaviors of edge-functionalized graphene quantum dots. Chemical Engineering Journal, 2021, 417, 128125.	6.6	25
437	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	5.2	93
438	Carbon dots: An innovative luminescent nanomaterial. Aggregate, 2022, 3, e108.	5.2	31
439	Mussel-inspired facile fabrication of dense hexagonal boron nitride nanosheet-based coatings for anticorrosion and antifriction applications. Materials Today Nano, 2021, 15, 100129.	2.3	14
440	Toward highly efficient luminescence in graphene quantum dots for optoelectronic applications. Chemical Physics Reviews, 2021, 2, .	2.6	27
441	Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. Electrochem, 2021, 2, 490-519.	1.7	24
442	Exploring the Emission Pathways in Nitrogen-Doped Graphene Quantum Dots for Bioimaging. Journal of Physical Chemistry C, 2021, 125, 21044-21054.	1.5	18
443	Synthesis of carbon dots with high photocatalytic reactivity by tailoring heteroatom doping. Journal of Colloid and Interface Science, 2022, 605, 330-341.	5.0	30
444	Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews, 2021, 10, 605-635.	2.6	28
445	Carbogenic π-conjugated domains as the origin of afterglow emissions in carbon dot-based organic composite films. Materials Chemistry Frontiers, 2021, 5, 4272-4279.	3.2	13
446	Excitation dependence and independence of photoluminescence in carbon dots and graphene quantum dots: insights into the mechanism of emission. Nanoscale, 2021, 13, 16662-16671.	2.8	36
447	Chitosan/P3HT biohybrid films as polymer matrices for the inâ€situ synthesis of CdSe quantum dots. Experimental and theoretical studies. Journal of Applied Polymer Science, 2020, 137, 49075.	1.3	2
448	Metal and Carbon Quantum Dot Photocatalysts for Water Purification. Environmental Chemistry for A Sustainable World, 2021, , 81-118.	0.3	3
449	Synthesis of Quantum Dots., 2020,, 13-29.		1
450	One-step synthesis of sulfur-incorporated graphene quantum dots using pulsed laser ablation for enhancing optical properties. Optics Express, 2020, 28, 21659.	1.7	36
451	Enhancement of Thermoelectric Properties of Layered Chalcogenide Materials. Reviews on Advanced Materials Science, 2020, 59, 371-378.	1.4	26

#	Article	IF	Citations
452	Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide. Applied Science and Convergence Technology, 2015, 24, 111-116.	0.3	5
453	Color-tunable fluorescent nitrogen-doped graphene quantum dots derived from pineapple leaf fiber biomass to detect Hg2+. Chinese Journal of Analytical Chemistry, 2022, 50, 69-76.	0.9	12
454	L-cysteine functionalized graphene quantum dots for sub-ppb detection of As (III). Nanotechnology, 2021, 33, .	1.3	1
455	The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon, 2022, 186, 91-127.	5 . 4	163
457	Transforming Carbon Black into Graphene Oxide Quantum Dots by Pulsed Laser Ablation in Ethanol. Journal of Korean Institute of Metals and Materials, 2020, 58, 808-814.	0.4	3
458	Structure elucidation of multicolor emissive graphene quantum dots towards cell guidance. Materials Chemistry Frontiers, 2022, 6, 145-154.	3.2	9
459	A review on sustainable production of graphene and related life cycle assessment. 2D Materials, 2022, 9, 012002.	2.0	21
460	Lignin-based fluorescence-switchable graphene quantum dots for Fe3+ and ascorbic acid detection. International Journal of Biological Macromolecules, 2022, 194, 254-263.	3.6	19
461	Graphene Acid: a Versatile 2D Platform for Catalysis. Israel Journal of Chemistry, 0, , .	1.0	3
462	Modification strategies of membranes with enhanced Anti-biofouling properties for wastewater Treatment: A review. Bioresource Technology, 2022, 345, 126501.	4.8	22
463	Applications of metal–organic framework–graphene composite materials in electrochemical energy storage. FlatChem, 2022, 32, 100332.	2.8	34
464	Amino-functionalized nitrogen-doped graphene quantum dots and silver-graphene based nanocomposites: Ultrafast charge transfer and a proof-of-concept study for bioimaging applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113741.	2.0	10
465	Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. International Journal of Molecular Sciences, 2022, 23, 1456.	1.8	41
466	Synthetic chiral molecular nanographenes: the key figure of the racemization barrier. Chemical Communications, 2022, 58, 2634-2645.	2.2	45
467	Recycling Synthetic Route to Full-Color Fluorescent Carbon Nanodots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1624-1632.	3.2	13
468	A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 2022, 12, 4714-4759.	1.7	62
469	Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers, 2022, 14, 617.	2.0	61
470	Ultrasonicated graphene quantum dots dispersoid zinc ammonium phosphate hybrid electrode for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 7079-7098.	1.1	10

#	Article	IF	CITATIONS
471	New Highly Stable Ionic Compounds Composed of Multivalent Graphene Quantum Dot Anions and Alkali Metal Cations. Batteries and Supercaps, 2022, 5, .	2.4	2
472	Graphene-Based Nanomaterials for Biomedical Imaging. Advances in Experimental Medicine and Biology, 2022, 1351, 125-148.	0.8	7
473	Pomegranate seed polyphenol-based nanosheets as an efficient inhibitor of amyloid fibril assembly and cytotoxicity of HEWL. RSC Advances, 2022, 12, 8719-8730.	1.7	3
474	Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	3
475	Structural defects in graphene quantum dots: A review. International Journal of Quantum Chemistry, 2022, 122, .	1.0	17
476	Two-Dimensional Self-Assembly of Boric Acid-Functionalized Graphene Quantum Dots: Tunable and Superior Optical Properties for Efficient Eco-Friendly Luminescent Solar Concentrators. ACS Nano, 2022, 16, 3994-4003.	7.3	38
477	Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Separation and Purification Technology, 2022, 293, 121035.	3.9	12
478	The high-yield cutting conversion of porous graphene into graphene oxide quantum dots for boosting capacitive energy storage behavior. Diamond and Related Materials, 2022, 125, 108979.	1.8	1
479	Lateral size homogeneous and doping degree controllable potassium-doped graphene quantum dots by mechanochemical reaction. Chemical Engineering Journal, 2022, 440, 135800.	6.6	4
480	Laser Direct Writing of Graphene Quantum Dots inside a Transparent Polymer. Nano Letters, 2022, 22, 775-782.	4.5	18
481	Radical-Mediated C–C Coupling of Alcohols Induced by Plasmonic Hot Carriers. Journal of Physical Chemistry Letters, 2022, 13, 3740-3747.	2.1	3
482	Broad Spectral Response Z-Scheme Three-Dimensional Ordered Macroporous Carbon Quantum Dots/TiO ₂ /g-C ₃ N ₄ Composite for Boosting Photocatalysis. Langmuir, 2022, 38, 4839-4847.	1.6	12
483	Two-Dimensional Quantum Dot-Based Electrochemical Biosensors. Biosensors, 2022, 12, 254.	2.3	11
484	Functional carbon dots from a mild oxidation of coal liquefaction residue. Fuel, 2022, 322, 124216.	3.4	16
486	A Novel Carbon Quantum Dots and its Applications in Drug Delivery System – A Review. Pharmacophore. Pharmacophore, 2022, 13, 62-71.	0.2	2
487	$\label{thm:continuous} TiO < sub>2 < / sub> \ Nanoparticles \ Co-Sensitized \ with \ Graphene \ Quantum \ Dots \ and \ Pyrocatechol \ Violet \ for \ Photoelectrochemical \ Detection \ of \ Cr(VI). \ Journal \ of \ the \ Electrochemical \ Society, 0, , .$	1.3	4
488	PLGA-graphene quantum dot nanocomposites targeted against $\hat{l}\pm\nu\hat{l}^23$ integrin receptor for sorafenib delivery in angiogenesis. , 2022, 137, 212851.		6
489	Graphene Quantum Dotâ€Doped PEDOT for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. ChemElectroChem, 2022, 9, .	1.7	5

#	Article	IF	CITATIONS
490	Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect, 2022, 7, .	0.7	5
491	Violet Phosphorus Quantum Dots as Distinguishable Environmental Biosensors. Advanced Materials Interfaces, 2022, 9, .	1.9	11
492	Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116734.	5.8	15
493	Electron–hole interaction in cylindrical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144, 115366.	1.3	0
494	Revisit the adsorption of aromatic compounds on graphene oxide: Roles of oxidized debris. Chemical Engineering Journal, 2022, 450, 137996.	6.6	5
495	The valorisation of grass waste for the green synthesis of graphene quantum dots for nonlinear optical applications. Optical Materials, 2022, 132, 112853.	1.7	14
496	Carbon dots-based electrochemical sensors. , 2023, , 109-136.		3
497	Nanoarchitectonics of neomycin-derived fluorescent carbon dots for selective detection of Fe ³⁺ ions. Analytical Methods, 2022, 14, 3289-3298.	1.3	11
498	Quantum Dots: Applications in Environmental Remediation. , 2022, , 1-22.		0
499	Quantum effect and Mo–N surface bonding states of α-MoC _{1â^'<i>x</i>} modified carbon nitride for boosting photocatalytic performance. Catalysis Science and Technology, 2022, 12, 6384-6397.	2.1	35
500	Supramolecular Assembly of Edge Functionalized Topâ€Down Chiral Graphene Quantum Dots. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
501	Supramolecular Assembly of Edge Functionalized Topâ€Down Chiral Graphene Quantum Dots. Angewandte Chemie, 0, , .	1.6	0
502	Mechanical and antibacterial properties of resin co-filled with mesoporous silica and graphene quantum dots. Carbon Letters, 0, , .	3.3	0
503	Two-Dimensional Quantum Dots: From Photoluminescence to Biomedical Applications. Solids, 2022, 3, 578-602.	1.1	3
504	Photoluminescence Mechanism of Carbon Dots: Triggering Multiple Color Emissions through Controlling the Degree of Protonation. Molecules, 2022, 27, 6517.	1.7	4
505	Reduced Graphene Oxide Quantum Dot Light Emitting Diodes Fabricated Using an Ultraviolet Light Emitting Diode Photolithography Technique. ACS Applied Materials & Samp; Interfaces, 2022, 14, 48976-48985.	4.0	6
506	Quantum Dots for Pathogenic Bacterial Monitoring and Combating. Advanced Optical Materials, 2023, 11, .	3.6	1
507	Review on thin-film nanocomposite membranes with various quantum dots for water treatments. Journal of Industrial and Engineering Chemistry, 2023, 118, 19-32.	2.9	12

#	ARTICLE	IF	CITATIONS
508	Recent advances in the graphene quantum dot-based biological and environmental sensors. Sensors and Actuators Reports, 2022, 4, 100130.	2.3	3
509	Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications. RSC Advances, 2022, 13, 701-719.	1.7	9
510	Synthesis Processes, Photoluminescence Mechanism, and the Toxicity of Amorphous or Polymeric Carbon Dots. Accounts of Chemical Research, 2022, 55, 3312-3321.	7.6	19
511	B-GQDs@GSH as a Highly Selective and Sensitive Fluorescent Probe for the Detection of Fe3+ in Water Samples and Intracellular. Journal of Analysis and Testing, 2023, 7, 147-156.	2.5	2
512	Tuning of Photoluminescence of Graphene Oxide Based Nanomaterials in the UVâ€Visible Region: Formation of Aggregates by Hâ€Bonding through Water Molecules. ChemistrySelect, 2022, 7, .	0.7	0
513	Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today, 2023, 50, 101837.	6.2	26
514	Microwave synthesis of boron- and nitrogen-codoped graphene quantum dots and their detection to pesticides and metal ions. Chemosphere, 2023, 318, 137926.	4.2	14
515	Functionalization of graphene oxide quantum dots for anticancer drug delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104199.	1.4	3
516	Graphene quantum dots for optical application., 2023,, 211-225.		1
517	Ionic liquid capped white luminescent carbon dots: application in sensing and bioimaging. Materials Today Chemistry, 2023, 29, 101437.	1.7	3
518	Preparation and tribological behavior of a self-assemble copper base carbon quantum dot films. Wear, 2023, 524-525, 204673.	1.5	1
519	Role of functionalization in the fluorescence quantum yield of graphene quantum dots. Applied Physics Letters, 2023, 122, .	1.5	2
520	Easy-to-perform organic-solvent-free synthesis of carbon dots with strong green photoluminescence. Chinese Chemical Letters, 2024, 35, 108481.	4.8	2
521	Preparation of carbon dots from carbonized corncobs by electrochemical oxidation and their application in Na-batteries. New Carbon Materials, 2023, 38, 347-355.	2.9	2
524	Quantum Dots: Applications in Environmental Remediation., 2023,, 1245-1266.		0
537	Introduction to Photoluminescent Carbon Dots. , 2023, , 1-26.		0