Integration of orthoimagery and lidar data for object-barandom forests

International Journal of Remote Sensing 34, 5166-5186 DOI: 10.1080/01431161.2013.788261

Citation Report

#	Article	IF	CITATIONS
1	Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. Remote Sensing, 2014, 6, 1347-1366.	4.0	94
2	Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96, 67-75.	11.1	197
3	Discrimination of residential and industrial buildings using LiDAR data and an effective spatial-neighbor algorithm in a typical urban industrial park. European Journal of Remote Sensing, 2015, 48, 1-15.	3.5	7
4	A random forest based method for urban object classification using lidar data and aerial imagery. , 2015, , .		1
5	Optimal Combination of Classification Algorithms and Feature Ranking Methods for Object-Based Classification of Submeter Resolution Z/I-Imaging DMC Imagery. Remote Sensing, 2015, 7, 4651-4677.	4.0	36
6	Urban Land Use Classification Using LiDAR Geometric, Spatial Autocorrelation and Lacunarity Features Combined with Postclassification Processing Method. Canadian Journal of Remote Sensing, 2015, 41, 334-345.	2.4	2
7	High-resolution maps of forest-urban watersheds present an opportunity for ecologists and managers. Landscape Ecology, 2015, 30, 313-323.	4.2	3
8	Spatial application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 106-114.	2.8	60
9	The Influence of Land Cover, Vertical Structure, and Socioeconomic Factors on Outdoor Water Use in a Western US City. Water Resources Management, 2015, 29, 3877-3890.	3.9	23
10	Measuring the Effectiveness of Various Features for Thematic Information Extraction From Very High Resolution Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 4837-4851.	6.3	21
11	Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban Forestry and Urban Greening, 2016, 20, 160-171.	5.3	83
12	Land cover classification using random forest with genetic algorithm-based parameter optimization. Journal of Applied Remote Sensing, 2016, 10, 035021.	1.3	52
13	Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114, 24-31.	11.1	3,556
14	Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing. International Journal of Image and Data Fusion, 2017, 8, 1-31.	1.7	83
15	The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery. Geocarto International, 2017, 32, 71-86.	3.5	35
16	Integration of Ant Colony Optimization and Object-Based Analysis for LiDAR Data Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2055-2066.	4.9	29
17	Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover. Journal of Applied Remote Sensing, 2017, 11, 036004.	1.3	11
18	Evaluation of different metaheuristic optimization algorithms in feature selection and parameter determination in SVM classification. Arabian Journal of Geosciences, 2017, 10, 1.	1.3	9

#	Article	IF	CITATIONS
19	A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 277-293.	11.1	620
20	Automatic building extraction from LiDAR data fusion of point and grid-based features. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 294-307.	11.1	74
21	Ensemble classifiers in remote sensing: A review. , 2017, , .		26
22	Classification of ALS Point Cloud with Improved Point Cloud Segmentation and Random Forests. Remote Sensing, 2017, 9, 288.	4.0	64
23	High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão. Remote Sensing, 2017, 9, 1336.	4.0	24
24	Building Extraction Based on an Optimized Stacked Sparse Autoencoder of Structure and Training Samples Using LIDAR DSM and Optical Images. Sensors, 2017, 17, 1957.	3.8	14
25	Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data. Remote Sensing, 2017, 9, 1264.	4.0	20
26	Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote Sensing, 2017, 9, 557.	4.0	34
27	A framework for detecting conifer mortality across an ecoregion using high spatial resolution spaceborne imaging spectroscopy. Remote Sensing of Environment, 2018, 209, 195-210.	11.0	27
28	Challenges of urban green space management in the face of using inadequate data. Urban Forestry and Urban Greening, 2018, 31, 56-66.	5.3	129
29	Utilizing publicly available satellite data for urban research: Mapping built-up land cover and land use in Ho Chi Minh City, Vietnam. Development Engineering, 2018, 3, 83-99.	1.8	52
30	Cascaded Random Forest for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 1082-1094.	4.9	73
31	Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 43-50.	2.8	61
32	Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 2018, 205, 253-275.	11.0	146
33	Evaluation of Goddard's LiDAR, hyperspectral, and thermal data products for mapping urban land-cover types. GIScience and Remote Sensing, 2018, 55, 90-109.	5.9	21
34	Mapping Urban Land Cover of a Large Area Using Multiple Sensors Multiple Features. Remote Sensing, 2018, 10, 872.	4.0	20
35	Monitoring Quarry Area with Landsat Long Time-Series for Socioeconomic Study. Remote Sensing, 2018, 10, 517.	4.0	9
36	Spatial non-stationarity analysis to estimate dwelling units in Riyadh, Saudi Arabia. European Journal of Remote Sensing, 2018, 51, 558-571.	3.5	2

#	Article	IF	CITATIONS
37	Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes. Geocarto International, 2019, 34, 1144-1161.	3.5	5
38	Mapping annual land use changes in China's poverty-stricken areas from 2013 to 2018. Remote Sensing of Environment, 2019, 232, 111285.	11.0	48
39	Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sensing, 2019, 11, 1409.	4.0	49
40	Monitoring of Urbanization and Analysis of Environmental Impact in Stockholm with Sentinel-2A and SPOT-5 Multispectral Data. Remote Sensing, 2019, 11, 2408.	4.0	19
41	A fuzzy model integrating shoreline changes, NDVI and settlement influences for coastal zone human impact classification. Applied Geography, 2019, 113, 102093.	3.7	23
42	Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Advances in Space Research, 2019, 63, 2144-2154.	2.6	47
43	Integrated Airborne LiDAR Data and Imagery for Suburban Land Cover Classification Using Machine Learning Methods. Sensors, 2019, 19, 1996.	3.8	7
44	Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management, 2019, 445, 96-109.	3.2	14
45	A Comparative Land-Cover Classification Feature Study of Learning Algorithms: DBM, PCA, and RF Using Multispectral LiDAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 1314-1326.	4.9	28
46	Comparative Evaluation of Decision-Forest Algorithms in Object-Based Land Use and Land Cover Mapping. , 2019, , 499-517.		5
47	Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions. Remote Sensing, 2019, 11, 2647.	4.0	13
48	Random Forests machine learning applied to gas chromatography – Mass spectrometry derived average mass spectrum data sets for classification and characterisation of essential oils. Talanta, 2020, 208, 120471.	5.5	29
49	Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6308-6325.	4.9	401
50	Heartbeat Detection by Laser Doppler Vibrometry and Machine Learning. Sensors, 2020, 20, 5362.	3.8	15
51	Mapping the Distribution of Coffee Plantations from Multi-Resolution, Multi-Temporal, and Multi-Sensor Data Using a Random Forest Algorithm. Remote Sensing, 2020, 12, 3933.	4.0	20
52	Mapping plastic-mulched farmland by coupling optical and synthetic aperture radar remote sensing. International Journal of Remote Sensing, 2020, 41, 7757-7778.	2.9	13
53	Automatic Extraction of Grasses and Individual Trees in Urban Areas Based on Airborne Hyperspectral and LiDAR Data. Remote Sensing, 2020, 12, 2725.	4.0	20
54	Assessing the Fractional Abundance of Highly Mixed Salt-Marsh Vegetation Using Random Forest Soft Classification. Remote Sensing, 2020, 12, 3224.	4.0	6

#	Article	IF	Citations
55	Wheat Area Mapping in Afghanistan Based on Optical and SAR Time-Series Images in Google Earth Engine Cloud Environment. Frontiers in Environmental Science, 2020, 8, .	3.3	14
56	Mapping spatio-temporal dynamics of main water parameters and understanding their relationships with driving factors using GF-1 images in a clear reservoir. Environmental Science and Pollution Research, 2020, 27, 33929-33950.	5.3	16
57	Integration of TanDEM-X and SRTM DEMs and Spectral Imagery to Improve the Large-Scale Detection of Opencast Mining Areas. Remote Sensing, 2020, 12, 1451.	4.0	18
58	Hourly and Daily Urban Water Demand Predictions Using a Long Short-Term Memory Based Model. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	49
59	Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecology and Conservation, 2020, 22, e00971.	2.1	77
60	A voxel matching method for effective leaf area index estimation in temperate deciduous forests from leaf-on and leaf-off airborne LiDAR data. Remote Sensing of Environment, 2020, 240, 111696.	11.0	20
61	Modelling aboveground biomass in forest remnants of the Brazilian Atlantic Forest using remote sensing, environmental and terrain-related data. Geocarto International, 2021, 36, 281-298.	3.5	9
62	Crop yield prediction in cotton for regional level using random forest approach. Spatial Information Research, 2021, 29, 195-206.	2.2	47
63	Extracting urban impervious surfaces from Sentinel-2 and Landsat-8 satellite data for urban planning and environmental management. Environmental Science and Pollution Research, 2021, 28, 6572-6586.	5.3	23
64	Extraction of built-up area using multi-sensor data—A case study based on Google earth engine in Zhejiang Province, China. International Journal of Remote Sensing, 2021, 42, 389-404.	2.9	18
65	Forest Road Detection Using LiDAR Data and Hybrid Classification. Remote Sensing, 2021, 13, 393.	4.0	13
66	High-Precision Method for Estimating the Three-Dimensional Green Quantity of an Urban Forest. Journal of the Indian Society of Remote Sensing, 2021, 49, 1407-1417.	2.4	8
67	Automatic High-Accuracy Sea Ice Mapping in the Arctic Using MODIS Data. Remote Sensing, 2021, 13, 550.	4.0	5
68	Towards on-site automatic detection of noxious events in dairy cows. Applied Animal Behaviour Science, 2021, 236, 105260.	1.9	5
69	Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression. Remote Sensing of Environment, 2021, 255, 112294.	11.0	51
70	Eleven Years of Mangrove–Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating UAV and Satellite Imagery. Remote Sensing, 2021, 13, 1084.	4.0	14
71	Spatial-Temporal Distribution of the Freeze–Thaw Cycle of the Largest Lake (Qinghai Lake) in China Based on Machine Learning and MODIS from 2000 to 2020. Remote Sensing, 2021, 13, 1695.	4.0	5
72	Detection of adulterated sugar with plastic packaging based on spatially offset Raman imaging. Journal of the Science of Food and Agriculture, 2021, 101, 6281-6288.	3.5	5

#	Article	IF	CITATIONS
73	Potential of machine learning and WorldView-2 images for recognizing endangered and invasive species in the Atlantic Rainforest. Annals of Forest Science, 2021, 78, 1.	2.0	7
74	Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China. Remote Sensing, 2021, 13, 1902.	4.0	12
75	Mapping Panax Notoginseng Plantations by Using an Integrated Pixel- and Object-Based (IPOB) Approach and ZY-3 Imagery. Remote Sensing, 2021, 13, 2184.	4.0	2
76	Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sensing of Environment, 2021, 258, 112365.	11.0	27
77	Satellite-based observations of the green depressing cropping system in a farming-pastoral ecotone of northern China. International Journal of Applied Earth Observation and Geoinformation, 2021, 98, 102312.	2.8	7
78	Land degradation modeling of dust storm sources using MODIS and meteorological time series data. Journal of Arid Environments, 2021, 190, 104507.	2.4	13
79	Multilabel land cover aerial image classification using convolutional neural networks. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	8
80	The influence of window size on remote sensing-based prediction of forest structural variables. Ecological Processes, 2021, 10, .	3.9	4
81	Identification and mapping of Algerian island vegetation using high-resolution images (Pléiades and) Tj ETQq0	0 0.rgBT /	Ovgrlock 10
82	Prediction of fugitive landfill gas hotspots using a random forest algorithm and Sentinel-2 data. Sustainable Cities and Society, 2021, 73, 103097.	10.4	26
83	Integrating multiple semantics data to assess the dynamic change of urban green space in Beijing, China. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102479.	2.8	9
84	A study on the classification of vegetation point cloud based on random forest in the straw checkerboard barriers area. Journal of Intelligent and Fuzzy Systems, 2021, 41, 4337-4349.	1.4	3
85	Combining random forest and support vector machines for object-based rural-land-cover classification using high spatial resolution imagery. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	15
86	Airborne lidar data classification in complex urban area using random forest: a case study of Bergama, Turkey. International Journal of Engineering and Geosciences, 2019, 4, 45-51.	3.2	19
87	Optimal Temporal Window Selection for Winter Wheat and Rapeseed Mapping with Sentinel-2 Images: A Case Study of Zhongxiang in China. Remote Sensing, 2020, 12, 226.	4.0	33
88	UNVI-Based Time Series for Vegetation Discrimination Using Separability Analysis and Random Forest Classification. Remote Sensing, 2020, 12, 529.	4.0	8

89	Thematic mapping of urban areas from WorldView-2 satellite imagery using machine learning algorithms. Journal of Geodesy and Geoinformation, 2013, 2, 29-38.	0.2	7
----	--	-----	---

 90
 Kentsel alanların WorldView-2 uydu görüntülerinden makine öÄŸrenme algoritmaları kullanılarak

 90
 tematik haritalanması. Journal of Geodesy and Geoinformation, 2013, 2, 71-80.

#	Article	IF	CITATIONS
91	MAPPING URBAN TREE CANOPY COVER USING FUSED AIRBORNE LIDAR AND SATELLITE IMAGERY DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-7, 181-186.	0.0	3
92	Predicting Forest Stand Attributes Using the Integration of Airborne Laser Scanning and Worldview-3 Data in a Mixed Forest in Turkey. Advances in Space Research, 2021, , .	2.6	3
93	Effect of Using Different Amounts of Multi-Temporal Data on the Accuracy: A Case of Land Cover Mapping of Parts of Africa Using FengYun-3C Data. Remote Sensing, 2021, 13, 4461.	4.0	3
94	CMGFNet: A deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184, 96-115.	11.1	47
95	Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 2022, 14, 574.	4.0	68
96	Optimal Crossâ€Validation Strategies for Selection of Spatial Interpolation Models for the Canadian Forest Fire Weather Index System. Earth and Space Science, 0, , .	2.6	4
97	Data-Driven Selection of Land Product Validation Station Based on Machine Learning. Remote Sensing, 2022, 14, 813.	4.0	0
98	Cotton Classification Method at the County Scale Based on Multi-Features and Random Forest Feature Selection Algorithm and Classifier. Remote Sensing, 2022, 14, 829.	4.0	38
99	Analysis on Land-Use Change and Its Driving Mechanism in Xilingol, China, during 2000–2020 Using the Google Earth Engine. Remote Sensing, 2021, 13, 5134.	4.0	27
100	Applying Machine Learning and Time-Series Analysis on Sentinel-1A SAR/InSAR for Characterizing Arctic Tundra Hydro-Ecological Conditions. Remote Sensing, 2022, 14, 1123.	4.0	8
101	Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography. Remote Sensing of Environment, 2022, 275, 113017.	11.0	15
102	Predicting speech discrimination scores from pure-tone thresholds—A machine learning-based approach using data from 12,697 subjects. PLoS ONE, 2021, 16, e0261433.	2.5	4
103	Metalearning Approach Coupled with CMIP6 Multi-GCM for Future Monthly Streamflow Forecasting. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	1.9	10
104	Image Classification and Recognition Based on Deep Learning and Random Forest Algorithm. Wireless Communications and Mobile Computing, 2022, 2022, 1-9.	1.2	5
105	Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification of Semi-Arid Woody Cover Species. Remote Sensing, 2022, 14, 2896.	4.0	6
106	Tropical cyclone full track simulation in the western North Pacific based on random forests. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 228, 105119.	3.9	5
107	Greenhouses Detection in Guanzhong Plain, Shaanxi, China: Evaluation of Four Classification Methods in Google Earth Engine. Canadian Journal of Remote Sensing, 2022, 48, 747-763.	2.4	3
108	Mapping High-Resolution Global Impervious Surface Area: Status and Trends. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, , 1-21.	4.9	3

#	Article	IF	CITATIONS
109	Satellite Soil Moisture Data Reconstruction in the Temporal and Spatial Domains: Latent Error Assessments and Performances for Tracing Rainstorms and Droughts. Remote Sensing, 2022, 14, 4841.	4.0	2
110	Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm. Remote Sensing, 2022, 14, 4919.	4.0	1
111	Testing Sentinel-2 spectral configurations for estimating relevant crop biophysical and biochemical parameters forÂprecision agriculture using tree-based and kernel-based algorithms. Geocarto International, 2023, 38, 1-25.	3.5	1
112	Decision Tree and Random Forest Classification Algorithms for Mangrove Forest Mapping in Sembilang National Park, Indonesia. Remote Sensing, 2023, 15, 16.	4.0	10
113	Spatiotemporal variations and overflow risk analysis of the Salt Lake in the Hoh Xil Region using machine learning methods. Frontiers in Earth Science, 0, 10, .	1.8	0
114	A first Chinese building height estimate at 10Âm resolution (CNBH-10Âm) using multi-source earth observations and machine learning. Remote Sensing of Environment, 2023, 291, 113578.	11.0	25
115	Spatiotemporal modeling of PM10 via committee method with in-situ and large scale information: Coupling of machine learning and statistical methods. Urban Climate, 2023, 49, 101494.	5.7	2
116	Hyperparameter Optimization of Ensemble Models for Spam Email Detection. Applied Sciences (Switzerland), 2023, 13, 1971.	2.5	7
117	Classification of airborne LiDAR point cloud with different feature combinations. , 2023, , .		0
118	Remote sensing monitoring of maize and paddy rice planting area using GF-6 WFV red edge features. Computers and Electronics in Agriculture, 2023, 207, 107714.	7.7	5
119	Random forest classifications for landuse mapping to assess rapid flood damage using Sentinel-1 and Sentinel-2 data. Remote Sensing Applications: Society and Environment, 2023, 30, 100947.	1.5	3
120	Intelligent Analysis of Construction Costs of Shield Tunneling in Complex Geological Conditions by Machine Learning Method. Mathematics, 2023, 11, 1423.	2.2	2
121	Changes in Impervious Surfaces in Lhasa City, a Historical City on the Qinghai–Tibet Plateau. Sustainability, 2023, 15, 5510.	3.2	2
122	Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany. Remote Sensing, 2023, 15, 1818.	4.0	2
123	A deep convolutional neural network for burn progression mapping using Sentinel-1 SAR time-series. International Journal of Remote Sensing, 2023, 44, 2196-2215.	2.9	2
124	Approximation of aeration efficiency at sharp-crested weirs using metaheuristic regression approaches. Journal of Hydroinformatics, 2023, 25, 1084-1102.	2.4	1
126	The impact of climate change and wildfire on decadal alpine vegetation dynamics. Australian Journal of Botany, 2023, 71, 231-251.	0.6	3
127	Automatic High-Accuracy Sea Ice Monitoring in the Arctic Using MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-13.	6.3	0

0

#	Article	IF	CITATIONS
128	Land degradability mapping using remote sensing data and soil chemical properties. Remote Sensing Applications: Society and Environment, 2023, 32, 101027.	1.5	1
129	Machine Learning Algorithms with Hydro-Meteorological Data for Monthly Streamflow Forecasting of Kurau River, Malaysia. Lecture Notes in Civil Engineering, 2023, , 29-41.	0.4	0
130	Advantages of Using Transfer Learning Technology with a Quantative Measurement. Remote Sensing, 2023, 15, 4278.	4.0	0
131	Weed Detection in Rainfed Maize Crops Using UAV and PlanetScope Imagery. Sustainability, 2023, 15, 13416.	3.2	1
132	Study of the improvement of the multifractal spatial downscaling by the random forest regression model considering spatial heterogeneity. Journal of Applied Remote Sensing, 2023, 17, .	1.3	0
133	Decision Tree-Based Modeling of the Aeration Effectiveness of Circular Plunging Jets. ACS Omega, 2023, 8, 38950-38960.	3.5	0
134	Grand Libreville (Gabon) coastline machine learning and convolutional neural network detection and automatic extraction of the methods. , 2023, , .		0
135	Evaluating the Performance of Geographic Object-Based Image Analysis in Mapping Archaeological Landscapes Previously Occupied by Farming Communities: A Case of Shashi–Limpopo Confluence Area. Remote Sensing, 2023, 15, 5491.	4.0	0
136	Effects of different spectral processing methods on soil organic matter prediction based on VNIR-SWIR spectroscopy in karst areas, Southwest China. Journal of Soils and Sediments, 2024, 24, 914-927.	3.0	0
137	A fault detection strategy for an ePump during EOL tests based on a knowledge-based vibroacoustic tool and supervised machine learning classifiers. Meccanica, 2024, 59, 279-304.	2.0	0
138	Performance analysis and modelling of circular jets aeration in an open channel using soft computing techniques. Scientific Reports, 2024, 14, .	3.3	0
139	Modeling land use/land cover changes using quad hybrid machine learning model in Bangweulu wetland and surrounding areas, Zambia. Environmental Challenges, 2024, 14, 100866.	4.2	0

140 $\hat{a} \in \infty$ Detecting Email Spam with Precision: A Logistic Regression Approach $\hat{a} \in ..., 2023, ...$