Posttranscriptional Control of T Cell Effector Function

Cell 153, 1239-1251 DOI: 10.1016/j.cell.2013.05.016

Citation Report

#	ARTICLE	IF	CITATIONS
1	Sweet Nothings: Sensing of Sugar Metabolites Controls T Cell Function. Cell Metabolism, 2013, 18, 7-8.	7.2	5
2	Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nature Immunology, 2013, 14, 1064-1072.	7.0	436
3	Lineage relationship of effector and memory T cells. Current Opinion in Immunology, 2013, 25, 556-563.	2.4	173
4	Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science, 2013, 342, 1242454.	6.0	1,070
5	The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nature Immunology, 2013, 14, 1155-1165.	7.0	337
6	What is the point of Warburg?. Nature Reviews Immunology, 2013, 13, 472-473.	10.6	5
7	Fueling Function Over Expansion in T Cells. Science, 2013, 341, 37-38.	6.0	4
8	How Metabolism Generates Signals during Innate Immunity and Inflammation. Journal of Biological Chemistry, 2013, 288, 22893-22898.	1.6	188
9	Modulation of T Cell Metabolism and Function through Calcium Signaling. Frontiers in Immunology, 2013, 4, 324.	2.2	83
10	Metabolic changes in cardiomyocytes during sepsis. Critical Care, 2013, 17, .	2.5	5
11	Protein Phosphatase 2A Enables Expression of Interleukin 17 (IL-17) through Chromatin Remodeling. Journal of Biological Chemistry, 2013, 288, 26775-26784.	1.6	77
12	TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Frontiers in Immunology, 2013, 4, 363.	2.2	70
13	The m <scp>TOR</scp> pathway and integrating immune regulation. Immunology, 2013, 140, 391-398.	2.0	88
15	CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14336-14341.	3.3	428
16	Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. Journal of Clinical Investigation, 2013, 123, 4479-4488.	3.9	719
17	Tripartite Motif-Containing Protein 30 Modulates TCR-Activated Proliferation and Effector Functions in CD4+ T Cells. PLoS ONE, 2014, 9, e95805.	1.1	17
18	The short and sweet of T-cell therapy. Oncolmmunology, 2014, 3, e27573.	2.1	6
19	c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nature Immunology, 2014, 15, 884-893.	7.0	85

\mathbf{r}
~

#	Article	IF	CITATIONS
20	Post-Transcriptional Regulation of Interferons and Their Signaling Pathways. Journal of Interferon and Cytokine Research, 2014, 34, 318-329.	0.5	58
21	Inflammation: Gone with Translation. PLoS Genetics, 2014, 10, e1004442.	1.5	1
22	IRF4 links antigen affinity to CD8 ⁺ Tâ€ɛell metabolism. Immunology and Cell Biology, 2014, 92, 6-7.	1.0	6
23	When Erythropoietin Meddles in Immune Affairs. Journal of the American Society of Nephrology: JASN, 2014, 25, 1887-1889.	3.0	5
24	Gene Targeting RhoA Reveals Its Essential Role in Coordinating Mitochondrial Function and Thymocyte Development. Journal of Immunology, 2014, 193, 5973-5982.	0.4	37
25	Dual Proteolytic Pathways Govern Glycolysis and Immune Competence. Cell, 2014, 159, 1578-1590.	13.5	54
26	Brief Report: Alternative Activation of Laser aptured Murine Hemophagocytes. Arthritis and Rheumatology, 2014, 66, 1666-1671.	2.9	17
27	Analysis and Interpretation of Microplate-Based Oxygen Consumption and pH Data. Methods in Enzymology, 2014, 547, 309-354.	0.4	351
28	The Transcription Factor FoxO1 Sustains Expression of the Inhibitory Receptor PD-1 and Survival of Antiviral CD8+ T Cells during Chronic Infection. Immunity, 2014, 41, 802-814.	6.6	294
30	Metabolic Reprogramming towards Aerobic Glycolysis Correlates with Greater Proliferative Ability and Resistance to Metabolic Inhibition in CD8 versus CD4 T Cells. PLoS ONE, 2014, 9, e104104.	1.1	122
31	HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology, 2014, 11, 98.	0.9	85
32	Biochemical Signaling of PD-1 on T Cells and Its Functional Implications. Cancer Journal (Sudbury,) Tj ETQq1 I	l 0.784314 rgf 1.0	3T ₁ 46 146
33	Promoting Thiol Expression Increases the Durability of Antitumor T-cell Functions. Cancer Research, 2014, 74, 6036-6047.	0.4	34
35	Mammalian Target of Rapamycin Complex 1 Orchestrates Invariant NKT Cell Differentiation and Effector Function. Journal of Immunology, 2014, 193, 1759-1765.	0.4	62
36	Nutrient Sensing via mTOR in T Cells Maintains a Tolerogenic Microenvironment. Frontiers in Immunology, 2014, 5, 409.	2.2	63
37	The Many Unknowns Concerning the Bioenergetics of Exhaustion and Senescence during Chronic Viral Infection. Frontiers in Immunology, 2014, 5, 468.	2.2	17
38	Targeting T Cell Immunometabolism for Cancer Immunotherapy; Understanding the Impact of the Tumor Microenvironment. Frontiers in Oncology, 2014, 4, 107.	1.3	62
39	Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncology, The, 2014, 15, 69-77.	5.1	518

#	Article	IF	CITATIONS
40	The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends in Parasitology, 2014, 30, 170-175.	1.5	51
41	Is Cancer a Metabolic Disease?. American Journal of Pathology, 2014, 184, 4-17.	1.9	192
42	TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKÉ› supports the anabolic demands of dendritic cell activation. Nature Immunology, 2014, 15, 323-332.	7.0	861
43	Inferring alterations in cellâ€toâ€cell communication in HER2+ breast cancer using secretome profiling of three cell models. Biotechnology and Bioengineering, 2014, 111, 1853-1863.	1.7	23
44	Translating Glycolytic Metabolism to Innate Immunity in Dendritic Cells. Cell Metabolism, 2014, 19, 737-739.	7.2	24
45	Metabolic Regulation of Immune Responses. Annual Review of Immunology, 2014, 32, 609-634.	9.5	666
46	Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nature Immunology, 2014, 15, 484-491.	7.0	165
47	Translational control of immune responses: from transcripts to translatomes. Nature Immunology, 2014, 15, 503-511.	7.0	193
48	"ln vitro―3D models of tumor-immune system interaction. Advanced Drug Delivery Reviews, 2014, 79-80, 145-154.	6.6	78
49	Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2509-2519.	1.1	30
50	Glyceraldehyde-3-phosphate Dehydrogenase Is Activated by Lysine 254 Acetylation in Response to Glucose Signal. Journal of Biological Chemistry, 2014, 289, 3775-3785.	1.6	79
51	mTORC1-Dependent Metabolic Reprogramming Is a Prerequisite for NK Cell Effector Function. Journal of Immunology, 2014, 193, 4477-4484.	0.4	355
52	Molecular regulation of effector and memory T cell differentiation. Nature Immunology, 2014, 15, 1104-1115.	7.0	462
53	Prolonged Triglyceride Storage in Macrophages: pHoTrumps pO2and TLR4. Journal of Immunology, 2014, 193, 1392-1397.	0.4	10
54	Nicotinamide phosphoribosyltransferase (NAMPT) activity is essential for survival of resting lymphocytes. Immunology and Cell Biology, 2014, 92, 191-199.	1.0	18
55	The multifaceted and controversial immunometabolic actions of adiponectin. Trends in Endocrinology and Metabolism, 2014, 25, 444-451.	3.1	50
56	Metabolic control of cell death. Science, 2014, 345, 1250256.	6.0	527
57	Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1329-1335.	1.2	94

#	Article	IF	CITATIONS
58	Futility Sustains Memory T Cells. Immunity, 2014, 41, 1-3.	6.6	22
59	The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nature Immunology, 2014, 15, 965-972.	7.0	243
60	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	6.6	650
61	Mechanistic Target of Rapamycin Inhibition Extends Cellular Lifespan in Dendritic Cells by Preserving Mitochondrial Function. Journal of Immunology, 2014, 193, 2821-2830.	0.4	116
62	Bcl-6 directly represses the gene program of the glycolysis pathway. Nature Immunology, 2014, 15, 957-964.	7.0	168
63	Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochemical Pharmacology, 2014, 92, 12-21.	2.0	44
64	TCR-triggered extracellular superoxide production is not required for T-cell activation. Cell Communication and Signaling, 2014, 12, 50.	2.7	19
65	Reducing CD73 Expression by IL1β-Programmed Th17 Cells Improves Immunotherapeutic Control of Tumors. Cancer Research, 2014, 74, 6048-6059.	0.4	49
66	The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nature Immunology, 2014, 15, 749-757.	7.0	484
67	The Glucose Transporter Glut1 Is Selectively Essential for CD4ÂT Cell Activation and Effector Function. Cell Metabolism, 2014, 20, 61-72.	7.2	876
68	Immune Memory–Boosting Dose of Rapamycin Impairs Macrophage Vesicle Acidification and Curtails Glycolysis in Effector CD8 Cells, Impairing Defense against Acute Infections. Journal of Immunology, 2014, 193, 757-763.	0.4	29
69	Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nature Reviews Immunology, 2014, 14, 435-446.	10.6	323
70	mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345, 1250684.	6.0	1,517
71	Bcl-6 gets T cells off the sugar. Nature Immunology, 2014, 15, 904-905.	7.0	5
72	Cellular metabolism modulation in T lymphocyte immunity. Immunology, 2014, , n/a-n/a.	2.0	11
73	Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells. Journal of Immunology, 2014, 192, 3626-3636.	0.4	425
74	De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nature Medicine, 2014, 20, 1327-1333.	15.2	694
75	Metabolism of stromal and immune cells in health and disease. Nature, 2014, 511, 167-176.	13.7	377

	CITATION	Report	
#	Article	IF	Citations
76	Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses?. Environmental and Experimental Botany, 2014, 108, 4-13.	2.0	143
77	Rational development of radiopharmaceuticals for HIV-1. Nuclear Medicine and Biology, 2014, 41, 299-308.	0.3	3
78	Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis. Cell Reports, 2014, 7, 705-714.	2.9	85
79	Identification of Transcriptional and Metabolic Programs Related to Mammalian Cell Size. Current Biology, 2014, 24, 598-608.	1.8	108
80	Inflammatory T Cell Responses Rely on Amino Acid Transporter ASCT2 Facilitation of Glutamine Uptake and mTORC1 Kinase Activation. Immunity, 2014, 40, 692-705.	6.6	645
81	Regulator of Fatty Acid Metabolism, Acetyl Coenzyme A Carboxylase 1, Controls T Cell Immunity. Journal of Immunology, 2014, 192, 3190-3199.	0.4	152
82	Metabolism of Human Diseases. , 2014, , .		4
83	Molecular characterization of HCMVâ€specific immune responses: Parallels between CD8 ⁺ TÂcells, CD4 ⁺ TÂcells, and NK cells. European Journal of Immunology, 2015, 45, 2433-2445.	1.6	51
84	Starved human T lymphocytes keep fighting. European Journal of Immunology, 2015, 45, 2480-2483.	1.6	6
85	Metabolic regulation of natural killer cells. Biochemical Society Transactions, 2015, 43, 758-762.	1.6	29
86	Inhibition of the lymphocyte metabolic switch by the oxidative burst of human neutrophils. Clinical Science, 2015, 129, 489-504.	1.8	20
87	Metabolic dysfunction in lymphocytes promotes postoperative morbidity. Clinical Science, 2015, 129, 423-437.	1.8	28
88	High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood, 2015, 126, 185-194.	0.6	28
89	The rate of glycolysisÂquantitatively mediates specific histone acetylation sites. Cancer & Metabolism, 2015, 3, 10.	2.4	121
90	Metabolic plasticity of human T cells: Preserved cytokine production under glucose deprivation or mitochondrial restriction, but 2â€deoxyâ€glucose affects effector functions. European Journal of Immunology, 2015, 45, 2504-2516.	1.6	75
91	Oligomeric Procyanidins Interfere with Glycolysis of Activated T Cells. A Novel Mechanism for Inhibition of T Cell Function. Molecules, 2015, 20, 19014-19026.	1.7	5
92	Aerobic Glycolysis: Beyond Proliferation. Frontiers in Immunology, 2015, 6, 227.	2.2	92
93	Targeting CD8 T-Cell Metabolism in Transplantation. Frontiers in Immunology, 2015, 6, 547.	2.2	26

#	Article	IF	CITATIONS
94	Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biology, 2015, 13, e1002202.	2.6	489
95	Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function. ELife, 2015, 4, .	2.8	70
96	Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. Journal of Clinical Investigation, 2015, 125, 194-207.	3.9	562
97	T lymphocyte regulation by mevalonate metabolism. Science Signaling, 2015, 8, re4.	1.6	68
98	Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nature Medicine, 2015, 21, 638-646.	15.2	374
99	Metabolomics specificity of tuberculosis plasma revealed by 1H NMR spectroscopy. Tuberculosis, 2015, 95, 294-302.	0.8	25
100	Environmental and Metabolic Sensors That Control T Cell Biology. Frontiers in Immunology, 2015, 6, 99.	2.2	45
101	Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14105-14112.	3.3	114
103	The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 2015, 6, 10127.	5.8	385
104	Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Molecular Immunology, 2015, 68, 492-496.	1.0	65
105	Regulation of Endothelial Cell Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 13-15.	1.1	20
106	Sugar, fat, and protein: new insights into what T cells crave. Current Opinion in Immunology, 2015, 33, 49-54.	2.4	19
107	A Novel Model for IFN-γ–Mediated Autoinflammatory Syndromes. Journal of Immunology, 2015, 194, 2358-2368.	0.4	64
108	Novel therapies for memory cells in autoimmune diseases. Clinical and Experimental Immunology, 2015, 180, 353-360.	1.1	22
109	The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses InÂVivo. Immunity, 2015, 42, 41-54.	6.6	505
111	Cellular Energy Metabolism in T-Lymphocytes. International Reviews of Immunology, 2015, 34, 34-49.	1.5	21
112	Targeting T cell metabolism for therapy. Trends in Immunology, 2015, 36, 71-80.	2.9	204
113	Activation-Specific Metabolic Requirements for NK Cell IFN-Î ³ Production. Journal of Immunology, 2015, 194, 1954-1962.	0.4	227

#	Article	IF	CITATIONS
114	Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology, 2015, 33, 155-160.	9.4	1,068
115	Immune Response Regulation in the Tumor Microenvironment by Hypoxia. Seminars in Oncology, 2015, 42, 378-386.	0.8	121
116	A Dimer Interface Mutation in Glyceraldehyde-3-Phosphate Dehydrogenase Regulates Its Binding to AU-rich RNA. Journal of Biological Chemistry, 2015, 290, 1770-1785.	1.6	47
117	Mitochondria: A target for bacteria. Biochemical Pharmacology, 2015, 94, 173-185.	2.0	74
118	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29.	1.6	118
119	PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications, 2015, 6, 6692.	5.8	834
120	Au-ACRAMTU-PEt3 Alters Redox Balance To Inhibit T Cell Proliferation and Function. Journal of Immunology, 2015, 195, 1984-1994.	0.4	5
121	Complement Regulates Nutrient Influx and Metabolic Reprogramming during Th1 Cell Responses. Immunity, 2015, 42, 1033-1047.	6.6	190
122	Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nature Communications, 2015, 6, 6750.	5.8	138
123	Synthetic biology in cell-based cancer immunotherapy. Trends in Biotechnology, 2015, 33, 449-461.	4.9	61
124	Glucose Metabolism Regulates T Cell Activation, Differentiation, and Functions. Frontiers in Immunology, 2015, 6, 1.	2.2	611
125	High glucose-induced human cellular immune response is governed by miR-2909 RNomics. Blood Cells, Molecules, and Diseases, 2015, 54, 342-347.	0.6	8
126	T cell metabolic fitness in antitumor immunity. Trends in Immunology, 2015, 36, 257-264.	2.9	237
127	Infection homeostasis: implications for therapeutic and immune programming of metabolism in controlling infection. Medical Microbiology and Immunology, 2015, 204, 395-407.	2.6	17
128	Pyruvate Dehydrogenase Kinase 1 Participates in Macrophage Polarization via Regulating Glucose Metabolism. Journal of Immunology, 2015, 194, 6082-6089.	0.4	251
129	Mitochondria in the Regulation of Innate and Adaptive Immunity. Immunity, 2015, 42, 406-417.	6.6	693
130	Stomatin-Like Protein 2 Is Required for <i>In Vivo</i> Mitochondrial Respiratory Chain Supercomplex Formation and Optimal Cell Function. Molecular and Cellular Biology, 2015, 35, 1838-1847.	1.1	67
131	Essential role of mitochondrial energy metabolism in Foxp3 ⁺ Tâ€regulatory cell function and allograft survival. FASEB Journal, 2015, 29, 2315-2326.	0.2	213

#	Article	IF	CITATIONS
132	T-cell energy metabolism as a controller of cell fate in transplantation. Current Opinion in Organ Transplantation, 2015, 20, 21-28.	0.8	22
133	Therapeutic Regulatory T Cells Subvert Effector T Cell Function in Inflamed Islets To Halt Autoimmune Diabetes. Journal of Immunology, 2015, 194, 3147-3155.	0.4	25
134	Aerobic glycolysis tunes <scp>YAP</scp> / <scp>TAZ</scp> transcriptional activity. EMBO Journal, 2015, 34, 1349-1370.	3.5	306
135	Global transcriptional characterization of CD8+ T cell memory. Seminars in Immunology, 2015, 27, 4-9.	2.7	12
137	Innate and Adaptive Immune Regulation During Chronic Viral Infections. Annual Review of Virology, 2015, 2, 573-597.	3.0	110
138	Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Molecular Immunology, 2015, 68, 564-574.	1.0	16
139	Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nature Immunology, 2015, 16, 1174-1184.	7.0	296
140	Current topics in HIV-1 pathogenesis: The emergence of deregulated immuno-metabolism in HIV-infected subjects. Cytokine and Growth Factor Reviews, 2015, 26, 603-613.	3.2	44
141	Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins. Trends in Endocrinology and Metabolism, 2015, 26, 746-757.	3.1	219
142	siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells. MBio, 2015, 6, e00462.	1.8	38
143	T cell metabolism drives immunity. Journal of Experimental Medicine, 2015, 212, 1345-1360.	4.2	937
144	Synchronizing transcriptional control of T cell metabolism and function. Nature Reviews Immunology, 2015, 15, 574-584.	10.6	111
145	Hypoxia-inducible factors regulate T cell metabolism and function. Molecular Immunology, 2015, 68, 527-535.	1.0	66
146	Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses. Cell Metabolism, 2015, 22, 485-498.	7.2	239
147	Effector T cell differentiation: are master regulators of effector T cells still the masters?. Current Opinion in Immunology, 2015, 37, 6-10.	2.4	63
148	T cell metabolic reprogramming and plasticity. Molecular Immunology, 2015, 68, 507-512.	1.0	54
149	Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162, 1217-1228.	13.5	1,044
150	Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 2015, 162, 1229-1241.	13.5	2,158

	CITATION	REPORT	
#	Article	IF	CITATIONS
151	Glucose, glycolysis and lymphocyte responses. Molecular Immunology, 2015, 68, 513-519.	1.0	141
152	Nutrient Competition: A New Axis of Tumor Immunosuppression. Cell, 2015, 162, 1206-1208.	13.5	102
153	Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity, 2015, 43, 435-449.	6.6	480
154	Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Molecular Immunology, 2015, 68, 575-584.	1.0	23
155	Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types. Biochimie, 2015, 118, 185-194.	1.3	15
156	Arsenic toxi-RNomics has the ability to tailor the host immune response. Experimental and Molecular Pathology, 2015, 99, 360-364.	0.9	6
157	Innovative Medicine. , 2015, , .		17
158	The Monocarboxylate Transporter 4 Is Required for Glycolytic Reprogramming and Inflammatory Response in Macrophages. Journal of Biological Chemistry, 2015, 290, 46-55.	1.6	146
159	Metabolic pathway compartmentalization: an underappreciated opportunity?. Current Opinion in Biotechnology, 2015, 34, 73-81.	3.3	66
160	GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-κB-dependent induction of HIF-1α. Leukemia, 2015, 29, 1163-1176.	3.3	55
161	<scp>l</scp> -Arginine Depletion Blunts Antitumor T-cell Responses by Inducing Myeloid-Derived Suppressor Cells. Cancer Research, 2015, 75, 275-283.	0.4	209
162	Metabolic Mysteries of the Inflammatory Response: T Cell Polarization and Plasticity. International Reviews of Immunology, 2015, 34, 3-18.	1.5	21
163	How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions?. Oncogene, 2015, 34, 3751-3759.	2.6	161
164	mTOR Modulates Lymphocyte Differentiation through T-bet and Eomesodermin in Response to Invasive Pulmonary Aspergillosis in Rats. Chinese Medical Journal, 2016, 129, 1704-1710.	0.9	12
165	PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells. Mediators of Inflammation, 2016, 2016, 1-10.	1.4	16
166	A Mitochondrial Perspective of Chronic Obstructive Pulmonary Disease Pathogenesis. Tuberculosis and Respiratory Diseases, 2016, 79, 207.	0.7	41
167	Metabolic Regulation of Natural Killer Cell IFN-Î ³ Production. Critical Reviews in Immunology, 2016, 36, 131-147.	1.0	101
168	Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity. Vaccines, 2016, 4, 46.	2.1	87

	CITATION	LEPORT	
#	Article	IF	CITATIONS
169	T Cells and Cancer: How Metabolism Shapes Immunity. Frontiers in Immunology, 2016, 7, 20.	2.2	77
170	Starved and Asphyxiated: How Can CD8+ T Cells within a Tumor Microenvironment Prevent Tumor Progression. Frontiers in Immunology, 2016, 7, 32.	2.2	85
171	The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Frontiers in Immunology, 2016, 7, 550.	2.2	409
172	Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection. Frontiers in Microbiology, 2016, 7, 2111.	1.5	149
173	Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget, 2016, 7, 23282-23299.	0.8	81
174	5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation. Oncotarget, 2016, 7, 19312-19326.	0.8	13
175	Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. Journal of Clinical Investigation, 2016, 126, 2678-2688.	3.9	90
176	AATF Genome: Evolution of Allorecognition. Cellular & Molecular Medicine: Open Access, 2016, 02, .	0.4	3
177	Could Lactate Become a Biomarker of Hypoxia and a Target of Resuscitation in Sepsis?. Critical Care Medicine, 2016, 44, e178.	0.4	3
178	The authors reply. Critical Care Medicine, 2016, 44, e178-e179.	0.4	0
179	A guide to immunometabolism for immunologists. Nature Reviews Immunology, 2016, 16, 553-565.	10.6	2,100
180	Citrobacter rodentium NleB Protein Inhibits Tumor Necrosis Factor (TNF) Receptor-associated Factor 3 (TRAF3) Ubiquitination to Reduce Host Type I Interferon Production. Journal of Biological Chemistry, 2016, 291, 18232-18238.	1.6	15
181	Hypoxia and classical activation limits Mycobacterium tuberculosis survival by Akt-dependent glycolytic shift in macrophages. Cell Death Discovery, 2016, 2, 16022.	2.0	32
182	Filling the Tank: Keeping Antitumor T Cells Metabolically Fit for the Long Haul. Cancer Immunology Research, 2016, 4, 1001-1006.	1.6	22
183	Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Science China Life Sciences, 2016, 59, 1290-1296.	2.3	55
184	Energy metabolism of T-lymphocytes and its biological significance. Science Bulletin, 2016, 61, 1270-1280.	4.3	2
185	Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal. Cell Reports, 2016, 17, 3142-3152.	2.9	90
186	Transcriptome signature for dampened Th2 dominance in acellular pertussis vaccine-induced CD4+ T cell responses through TLR4 ligation. Scientific Reports, 2016, 6, 25064.	1.6	18

#	Article	IF	CITATIONS
187	TLR-Mediated Innate Production of IFN-Î ³ by CD8+ T Cells Is Independent of Glycolysis. Journal of Immunology, 2016, 196, 3695-3705.	0.4	61
188	Roles of myeloperoxidase and GAPDH in interferon-gamma production of GM-CSF-dependent macrophages. Heliyon, 2016, 2, e00080.	1.4	7
189	Fine-Tuning of CD8 + T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity, 2016, 44, 1299-1311.	6.6	61
190	Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity, 2016, 44, 955-972.	6.6	462
191	Mitochondria and Antiviral Immunity. , 2016, , 187-212.		3
192	Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity, 2016, 44, 1312-1324.	6.6	257
193	Upregulated Glucose Metabolism Correlates Inversely with CD8+ T-cell Infiltration and Survival in Squamous Cell Carcinoma. Cancer Research, 2016, 76, 4136-4148.	0.4	83
194	Immunometabolism of regulatory T cells. Nature Immunology, 2016, 17, 618-625.	7.0	259
195	Brain aerobic glycolysis and motor adaptation learning. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3782-91.	3.3	62
196	Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nature Reviews Rheumatology, 2016, 12, 269-281.	3.5	128
197	Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment. Future Medicinal Chemistry, 2016, 8, 713-725.	1.1	28
198	Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nature Immunology, 2016, 17, 704-711.	7.0	199
199	Characterization of Diabetogenic CD8+ T Cells. Journal of Biological Chemistry, 2016, 291, 11230-11240.	1.6	25
200	Biphasic CD8 ⁺ T-Cell Defense in Simian Immunodeficiency Virus Control by Acute-Phase Passive Neutralizing Antibody Immunization. Journal of Virology, 2016, 90, 6276-6290.	1.5	23
202	IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell and Bioscience, 2016, 6, 30.	2.1	32
203	Hypoxia and antitumor CD8 ⁺ T cells: An incompatible alliance?. Oncolmmunology, 2016, 5, e1232236.	2.1	61
204	Nutrient sensing, signal transduction and immune responses. Seminars in Immunology, 2016, 28, 396-407.	2.7	50
205	Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science, 2016, 354, 481-484.	6.0	563

	CHANON R	LFORT	
#	Article	IF	CITATIONS
206	Immunometabolic circuits in trained immunity. Seminars in Immunology, 2016, 28, 425-430.	2.7	159
207	Nutrients and the microenvironment to feed a T cell army. Seminars in Immunology, 2016, 28, 505-513.	2.7	57
208	Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nature Immunology, 2016, 17, 1459-1466.	7.0	402
209	Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8 + T Cell Exhaustion. Immunity, 2016, 45, 358-373.	6.6	560
210	Metabolism of murine T _H 17 cells: Impact on cell fate and function. European Journal of Immunology, 2016, 46, 807-816.	1.6	22
211	Toll like receptor mediated immune stimulation can be visualized in vivo by [18 F]FDG-PET. Nuclear Medicine and Biology, 2016, 43, 651-660.	0.3	12
212	Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche. Cell, 2016, 166, 1117-1131.e14.	13.5	203
213	Clinical significance of T cell metabolic reprogramming in cancer. Clinical and Translational Medicine, 2016, 5, 29.	1.7	69
214	Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia. Journal of Immunology, 2016, 197, 2532-2540.	0.4	110
215	Metabolic pathways in T cell activation and lineage differentiation. Seminars in Immunology, 2016, 28, 514-524.	2.7	361
216	VHL Brings Warburg into the Memory Spotlight. Immunity, 2016, 45, 953-955.	6.6	3
217	LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metabolism, 2016, 24, 657-671.	7.2	1,126
218	Tracing insights into human metabolism using chemical engineering approaches. Current Opinion in Chemical Engineering, 2016, 14, 72-81.	3.8	11
219	Dances with cytokines, featuring TFH cells, IL-21, IL-4 and B cells. Nature Immunology, 2016, 17, 1135-1136.	7.0	55
220	A novel "complement–metabolism–inflammasome axis―as a key regulator of immune cell effector function. European Journal of Immunology, 2016, 46, 1563-1573.	1.6	107
221	Lack of <i>p53</i> Augments Antitumor Functions in Cytolytic T Cells. Cancer Research, 2016, 76, 5229-5240.	0.4	34
222	Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. Journal of Experimental Medicine, 2016, 213, 1409-1418.	4.2	137
223	HIF-1α Is an Essential Mediator of IFN-γ–Dependent Immunity to <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2016, 197, 1287-1297.	0.4	198

#	Article	IF	CITATIONS
224	Manipulating Memory CD8 T Cell Numbers by Timed Enhancement of IL-2 Signals. Journal of Immunology, 2016, 197, 1754-1761.	0.4	12
225	Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8ÂT Cells in the Same Host. Cell Reports, 2016, 16, 1243-1252.	2.9	176
226	L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell, 2016, 167, 829-842.e13.	13.5	1,077
227	Resident memory T cells are a Notch above the rest. Nature Immunology, 2016, 17, 1337-1338.	7.0	8
228	Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Seminars in Immunology, 2016, 28, 450-468.	2.7	53
229	S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature, 2016, 540, 236-241.	13.7	306
230	The "ins and outs―of complementâ€driven immune responses. Immunological Reviews, 2016, 274, 16-32.	2.8	99
231	Warburg meets epigenetics. Science, 2016, 354, 419-420.	6.0	10
232	Functional and Genomic Architecture of Borrelia burgdorferi -Induced Cytokine Responses in Humans. Cell Host and Microbe, 2016, 20, 822-833.	5.1	44
233	Metabolic Control of Cellular Differentiation. Developmental Cell, 2016, 39, 286-287.	3.1	4
234	Metabolic Signaling Drives IFN-Î ³ . Cell Metabolism, 2016, 24, 651-652.	7.2	24
235	Constitutive Glycolytic Metabolism Supports CD8+ T Cell Effector Memory Differentiation during Viral Infection. Immunity, 2016, 45, 1024-1037.	6.6	167
236	Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis. Experimental Cell Research, 2016, 349, 273-281.	1.2	22
237	Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. Cancer Immunology Research, 2016, 4, 895-902.	1.6	134
238	Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Scientific Reports, 2016, 6, 24129.	1.6	82
239	Translating nutritional immunology into drug development for inflammatory bowel disease. Current Opinion in Gastroenterology, 2016, 32, 443-449.	1.0	4
240	Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell, 2016, 166, 63-76.	13.5	1,025
241	Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Review of Clinical Immunology, 2016, 12, 1239-1249.	1.3	19

Ŧ	Article	IF	CITATIONS
242	InterFeriNg with AcetÎ ³ lation: Stress-Levels of Acetate Improve Memory T Cell Function. Immunity, 2016, 44, 1243-1245.	6.6	0
243	Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. , 2016, 4, 4.		105
244	The expanding universe of ribonucleoproteins: of novel RNA-binding proteins and unconventional interactions. Pflugers Archiv European Journal of Physiology, 2016, 468, 1029-1040.	1.3	80
245	AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage–Th17 Axis. Journal of Immunology, 2016, 197, 747-760.	0.4	25
246	Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer. Current Protocols in Immunology, 2016, 113, 3.16B.1-3.16B.14.	3.6	123
247	Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immunity, 2016, 44, 88-102.	6.6	69
248	CD46 Activation Regulates miR-150–Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells. Journal of Immunology, 2016, 196, 1636-1645.	0.4	48
249	Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Research, 2016, 76, 1381-1390.	0.4	451
250	The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nature Reviews Immunology, 2016, 16, 102-111.	10.6	440
251	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42.	7.0	4
251 252	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10.	7.0	4 332
251 252 253	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76.	7.0 1.6 7.2	4 332 291
251252253254	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114.	7.0 1.6 7.2 0.4	4 332 291 72
251 252 253 254 255	Clycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 2016, 6, 31-41.	7.0 1.6 7.2 0.4 2.7	4 332 291 72 96
 251 252 253 254 255 256 	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 2016, 6, 31-41. The sweet side of <scp>RNA</scp> regulation: glyceraldehydeâ€3â€phosphate dehydrogenase as a noncanonical <scp>RNA</scp> regulation: Wiley Interdisciplinary Reviews RNA, 2016, 7, 53-70.	7.0 1.6 7.2 0.4 2.7 3.2	 4 332 291 72 96 39
251 252 253 254 255 256 257	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 2016, 6, 31-41. The sweet side of <scp>RNA</scp> regulation: glyceraldehydeâ€3â€phosphate dehydrogenase as a noncanonical <scp>RNA</scp> a€binding protein. Wiley Interdisciplinary Reviews RNA, 2016, 7, 53-70. Emerging concepts of T cell metabolism as a target of immunotherapy. Nature Immunology, 2016, 17, 364-368.	7.0 1.6 7.2 0.4 2.7 3.2 7.0	4 332 291 72 96 39 289
251 252 253 254 255 256 257 258	Glycolysis and EZH2 boost T cell weaponry against tumors. Nature Immunology, 2016, 17, 41-42. Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis. EBioMedicine, 2016, 6, 31-41. The sweet side of <scp>RNA</scp> regulation: glyceraldehydeâ€ââ€phosphate dehydrogenase as a noncanonical <scp>RNA</scp> â€binding protein. Wiley Interdisciplinary Reviews RNA, 2016, 7, 53-70. Emerging concepts of T cell metabolism as a target of immunotherapy. Nature Immunology, 2016, 17, 364-368. GAPDH Binding to TNF-α mRNA Contributes to Posttranscriptional Repression in Monocytes: A Novel Mechanism of Communication between Inflammation and Metabolism. Journal of Immunology, 2016, 17, 196, 2541-2551.	7.0 1.6 7.2 0.4 2.7 3.2 7.0 0.4	 4 332 291 72 96 39 289 108

#	Article	IF	CITATIONS
260	Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nature Reviews Immunology, 2016, 16, 149-163.	10.6	409
261	IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. International Immunology, 2016, 28, 293-305.	1.8	17
262	Metabolic tug-of-war in tumors results in diminished T cell antitumor immunity. Oncolmmunology, 2016, 5, e1119355.	2.1	2
263	Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Letters, 2016, 381, 259-268.	3.2	30
264	Posttranscriptional and Translational Control of Gene Regulation in CD4+ T Cell Subsets. Journal of Immunology, 2016, 196, 533-540.	0.4	22
265	The Warburg Effect: How Does it Benefit Cancer Cells?. Trends in Biochemical Sciences, 2016, 41, 211-218.	3.7	3,019
266	Asparagine deprivation mediated by <i>Salmonella</i> asparaginase causes suppression of activation-induced T cell metabolic reprogramming. Journal of Leukocyte Biology, 2016, 99, 387-398.	1.5	39
267	Control of YAP/TAZ Activity by Metabolic and Nutrient-Sensing Pathways. Trends in Cell Biology, 2016, 26, 289-299.	3.6	140
268	Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. Journal of Immunology, 2016, 196, 80-90.	0.4	132
269	Costimulation Endows Immunotherapeutic CD8 T Cells with IL-36 Responsiveness during Aerobic Glycolysis. Journal of Immunology, 2016, 196, 124-134.	0.4	43
270	Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nature Immunology, 2016, 17, 95-103.	7.0	310
271	Functional coordination and HuR-mediated regulation of mRNA stability during T cell activation. Nucleic Acids Research, 2016, 44, 426-436.	6.5	26
272	Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Seminars in Immunopathology, 2016, 38, 139-152.	2.8	69
273	RhoA orchestrates glycolysis for T H 2 cell differentiation and allergic airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 137, 231-245.e4.	1.5	69
274	Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metabolism, 2017, 25, 345-357.	7.2	429
275	Short day length enhances physiological resilience of the immune system against 2-deoxy-d-glucose-induced metabolic stress in a tropical seasonal breeder Funambulus pennanti. Hormones and Behavior, 2017, 89, 157-166.	1.0	2
276	Intrinsic Resistance of Solid Tumors to Immune Checkpoint Blockade Therapy. Cancer Research, 2017, 77, 817-822.	0.4	132
277	Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 349-362.	0.9	14

#	Article	IF	CITATIONS
278	SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity, 2017, 46, 51-64.	6.6	122
279	The Insulin Receptor Plays a Critical Role in T Cell Function and Adaptive Immunity. Journal of Immunology, 2017, 198, 1910-1920.	0.4	89
280	Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes and Diseases, 2017, 4, 25-27.	1.5	160
281	Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks and Bioenergetics Pathways Underlying T Cell Activation. Immunity, 2017, 46, 488-503.	6.6	265
282	Inhibiting Oxidative Phosphorylation In Vivo Restrains Th17 Effector Responses and Ameliorates Murine Colitis. Journal of Immunology, 2017, 198, 2735-2746.	0.4	56
283	Cancer metabolism in space and time: Beyond the Warburg effect. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 556-572.	0.5	147
284	Coâ€inhibitory blockade while preserving tolerance: checkpoint inhibitors for glioblastoma. Immunological Reviews, 2017, 276, 9-25.	2.8	13
285	Macromolecular Protein Complexes. Sub-Cellular Biochemistry, 2017, , .	1.0	5
286	Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 2017, 43, 74-89.	4.3	414
287	Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching. Development (Cambridge), 2017, 144, 63-73.	1.2	70
288	Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metabolism, 2017, 25, 1282-1293.e7.	7.2	741
289	Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses. Cell Reports, 2017, 19, 643-654.	2.9	30
290	Eat, breathe, ROS: controlling stem cell fate through metabolism. Expert Review of Cardiovascular Therapy, 2017, 15, 345-356.	0.6	5
291	Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism. Cytokine and Growth Factor Reviews, 2017, 35, 15-25.	3.2	33
292	Metabolic reprograming of anti-tumor immunity. Current Opinion in Immunology, 2017, 46, 14-22.	2.4	85
293	Mitochondria are the powerhouses of immunity. Nature Immunology, 2017, 18, 488-498.	7.0	704
294	Glutathione Primes T Cell Metabolism for Inflammation. Immunity, 2017, 46, 675-689.	6.6	318
295	Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death and Disease, 2017, 8, e2779-e2779.	2.7	114

#	Article	IF	CITATIONS
296	Cutting Edge: Defective Aerobic Glycolysis Defines the Distinct Effector Function in Antigen-Activated CD8+ Recent Thymic Emigrants. Journal of Immunology, 2017, 198, 4575-4580.	0.4	17
297	Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity, 2017, 46, 703-713.	6.6	107
298	Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 2017, 46, 714-729.	6.6	234
299	Lineage-Specific Metabolic Properties and Vulnerabilities of T Cells in the Demyelinating Central Nervous System. Journal of Immunology, 2017, 198, 4607-4617.	0.4	19
300	Vitamin D endocrinology on the cross-road between immunity and metabolism. Molecular and Cellular Endocrinology, 2017, 453, 52-67.	1.6	82
301	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
302	The role of AMPK in T cell metabolism and function. Current Opinion in Immunology, 2017, 46, 45-52.	2.4	103
303	Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine and Growth Factor Reviews, 2017, 35, 7-14.	3.2	101
304	AMP kinase promotes Bcl6 expression in both mouse and human T cells. Molecular Immunology, 2017, 81, 67-75.	1.0	15
305	Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology, 2017, 152, 175-184.	2.0	82
306	Hif-1α Knockdown Reduces Glycolytic Metabolism and Induces Cell Death of Human Synovial Fibroblasts Under Normoxic Conditions. Scientific Reports, 2017, 7, 3644.	1.6	53
307	Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease. Current Opinion in Immunology, 2017, 46, 82-88.	2.4	88
308	From mechanism to therapies in systemic lupus erythematosus. Current Opinion in Rheumatology, 2017, 29, 178-186.	2.0	32
309	Novel "Elements―of Immune Suppression within the Tumor Microenvironment. Cancer Immunology Research, 2017, 5, 426-433.	1.6	52
310	Intracellular complement â^' the complosome â^' in immune cell regulation. Molecular Immunology, 2017, 89, 2-9.	1.0	163
311	Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nature Communications, 2017, 8, 15677.	5.8	34
312	Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature, 2017, 546, 158-161.	13.7	153
313	Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Reports, 2017, 19, 1640-1653.	2.9	127

		CITATION R	EPORT	
#	Article		IF	CITATIONS
314	Glucose represses dendritic cell-induced T cell responses. Nature Communications, 2017	, 8, 15620.	5.8	116
315	<scp>mTORC</scp> 1 and <scp>mTORC</scp> 2 as regulators of cell metabolism in imm Letters, 2017, 591, 3089-3103.	unity. FEBS	1.3	194
316	Obesity altered T cell metabolism and the response to infection. Current Opinion in Imm 46, 1-7.	unology, 2017,	2.4	77
317	T cell metabolism in metabolic disease-associated autoimmunity. Immunobiology, 2017,	222, 925-936.	0.8	12
318	Macrophage Immunometabolism: Where Are We (Going)?. Trends in Immunology, 2017	, 38, 395-406.	2.9	758
319	D-Glyceraldehyde-3-Phosphate Dehydrogenase Structure and Function. Sub-Cellular Bioc 2017, 83, 413-453.	hemistry,	1.0	44
320	Metabolic regulation of inflammation. Nature Reviews Rheumatology, 2017, 13, 267-279	Э.	3.5	211
321	The Therapeutic Potential of T Cell Metabolism. American Journal of Transplantation, 201	.7, 17, 1705-1712.	2.6	7
322	Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypo Immunology Research, 2017, 5, 9-16.	oxia. Cancer	1.6	381
323	Cutting Edge: Murine Mast Cells Rapidly Modulate Metabolic Pathways Essential for Dist Functions. Journal of Immunology, 2017, 198, 640-644.	inct Effector	0.4	34
324	Cytokines and metabolic factors regulate tumoricidal T-cell function during cancer immu Immunotherapy, 2017, 9, 71-82.	notherapy.	1.0	5
325	Mitochondrial Dysfunction in Lung Pathogenesis. Annual Review of Physiology, 2017, 79	, 495-515.	5.6	79
327	Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-bl resistance in tumor. Nature Immunology, 2017, 18, 1332-1341.	lockade	7.0	508
328	Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a syst with RBDmap. Nature Protocols, 2017, 12, 2447-2464.	em-wide scale	5.5	32
329	Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to I Cell, 2017, 171, 783-794.e13.	Infection.	13.5	203
330	Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Prom Leukemia Zinc Finger. Journal of Immunology, 2017, 199, 3478-3487.	iyelocytic	0.4	27
331	Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective Cellular Immunology, 2017, 322, 1-14.	mechanisms.	1.4	114
332	Resveratrol stimulates the metabolic reprogramming of human CD4 ⁺ T cell effector function. Science Signaling, 2017, 10, .	ls to enhance	1.6	29

#	Article	IF	CITATIONS
333	Gut Permeability and Glucose Absorption Are Affected at Early Stages of Graft Rejection in a Small Bowel Transplant Rat Model. Transplantation Direct, 2017, 3, e220.	0.8	11
334	Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nature Immunology, 2017, 18, 1342-1352.	7.0	83
335	Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity, 2017, 47, 406-420.	6.6	340
336	T cells display mitochondria hyperpolarization in human type 1 diabetes. Scientific Reports, 2017, 7, 10835.	1.6	34
337	Metabolic orchestration of T lineage differentiation and function. FEBS Letters, 2017, 591, 3104-3118.	1.3	19
339	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and Biology, 2017, 1011, 1-85.	0.8	14
340	Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1011, 163-196.	0.8	23
341	Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1011, 211-223.	0.8	22
342	Exploring Metabolic Configurations of Single Cells within Complex Tissue Microenvironments. Cell Metabolism, 2017, 26, 788-800.e6.	7.2	81
343	TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: implications for CTCL. Blood, 2017, 130, 982-994.	0.6	17
344	D-mannose induces regulatory T cells and suppresses immunopathology. Nature Medicine, 2017, 23, 1036-1045.	15.2	153
345	Translation is actively regulated during the differentiation of CD8+ effector T cells. Nature Immunology, 2017, 18, 1046-1057.	7.0	126
346	High levels of eukaryotic Initiation Factor 6 (eIF6) are required for immune system homeostasis and for steering the glycolytic flux of TCR-stimulated CD4+ T cells in both mice and humans. Developmental and Comparative Immunology, 2017, 77, 69-76.	1.0	17
347	Poly (I:C) alleviates obesity related pro-inflammatory status and promotes glucose homeostasis. Cytokine, 2017, 99, 225-232.	1.4	2
348	Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open, 2017, 2, e000213.	2.0	248
349	Manipulating Glucose Metabolism during Different Stages of Viral Pathogenesis Can Have either Detrimental or Beneficial Effects. Journal of Immunology, 2017, 199, 1748-1761.	0.4	36
350	The Effects of Tacrolimus on T-Cell Proliferation Are Short-Lived: A Pilot Analysis of Immune Function Testing. Transplantation Direct, 2017, 3, e199.	0.8	13
351	Lymphocyte Fate and Metabolism: A Clonal Balancing Act. Trends in Cell Biology, 2017, 27, 946-954.	3.6	11

#	Article	IF	Citations
352	The intragraft microenvironment as a central determinant of chronic rejection or local immunoregulation/tolerance. Current Opinion in Organ Transplantation, 2017, 22, 55-63.	0.8	5
353	Viruses hijack a host IncRNA to replicate. Science, 2017, 358, 993-994.	6.0	19
354	Roles of PFKFB3 in cancer. Signal Transduction and Targeted Therapy, 2017, 2, 17044.	7.1	189
355	Suppression of FIP200 and autophagy by tumor-derived lactate promotes naÃ ⁻ ve T cell apoptosis and affects tumor immunity. Science Immunology, 2017, 2, .	5.6	83
356	An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 2017, 32, 669-683.e5.	7.7	352
357	Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metabolism, 2017, 26, 49-70.	7.2	268
358	Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy. Cell Metabolism, 2017, 26, 94-109.	7.2	374
359	Reprogramming of metabolism in immune-mediated cells. Diabetology International, 2017, 8, 244-247.	0.7	5
360	Metabolic control of type 2 immunity. European Journal of Immunology, 2017, 47, 1266-1275.	1.6	21
361	Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17, 608-620.	10.6	306
362	Sensitivity to Restimulation-Induced Cell Death Is Linked to Glycolytic Metabolism in Human T Cells. Journal of Immunology, 2017, 198, 147-155.	0.4	19
363	Tâ€cell metabolism governing activation, proliferation and differentiation; a modular view. Immunology, 2017, 150, 35-44.	2.0	136
364	Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. Journal of Allergy and Clinical Immunology, 2017, 140, 204-214.e8.	1.5	24
365	Metabolic variations in normal and fibrotic human laryngotrachealâ€derived fibroblasts: A Warburgâ€like effect. Laryngoscope, 2017, 127, E107-E113.	1.1	32
366	Comparison of the effect of the aerobic glycolysis inhibitor dichloroacetate and of the Krebs cycle inhibitor LW6 on cellular and humoral alloimmunity. Biomedical Reports, 2017, 7, 439-444.	0.9	10
367	Cerebral Gluconeogenesis and Diseases. Frontiers in Pharmacology, 2016, 7, 521.	1.6	55
368	Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism. Nucleic Acids Research, 2017, 45, 10845-10860.	6.5	30
369	Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells. Cancers, 2017, 9, 132.	1.7	24

#	Article	IF	CITATIONS
370	The Glyoxalase System and Methylglyoxal-Derived Carbonyl Stress in Sepsis: Glycotoxic Aspects of Sepsis Pathophysiology. International Journal of Molecular Sciences, 2017, 18, 657.	1.8	25
371	Keeping It All Going—Complement Meets Metabolism. Frontiers in Immunology, 2017, 8, 1.	2.2	534
372	Nutrient and Metabolic Sensing in T Cell Responses. Frontiers in Immunology, 2017, 8, 247.	2.2	82
373	Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Frontiers in Immunology, 2017, 8, 248.	2.2	274
374	Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel. Frontiers in Immunology, 2017, 8, 267.	2.2	61
375	Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Frontiers in Immunology, 2017, 8, 330.	2.2	44
376	What Fuels Natural Killers? Metabolism and NK Cell Responses. Frontiers in Immunology, 2017, 8, 367.	2.2	83
377	Similarities in the Metabolic Reprogramming of Immune System and Endothelium. Frontiers in Immunology, 2017, 8, 837.	2.2	45
378	Sugar or Fat?—Metabolic Requirements for Immunity to Viral Infections. Frontiers in Immunology, 2017, 8, 1311.	2.2	42
379	Exploring Non-Metabolic Functions of Glycolytic Enzymes in Immunity. Frontiers in Immunology, 2017, 8, 1549.	2.2	33
380	Metabolism Controls the Balance of Th17/T-Regulatory Cells. Frontiers in Immunology, 2017, 8, 1632.	2.2	90
381	Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Frontiers in Cellular Neuroscience, 2017, 11, 199.	1.8	43
382	Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy. Frontiers in Oncology, 2017, 7, 68.	1.3	142
383	Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. ELife, 2017, 6, .	2.8	148
384	Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. Journal of Immunology Research, 2017, 2017, 1-12.	0.9	17
385	Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS ONE, 2017, 12, e0175549.	1.1	67
386	Stomatin-like protein 2 deficiency results in impaired mitochondrial translation. PLoS ONE, 2017, 12, e0179967.	1.1	14
387	Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS ONE, 2017, 12, e0183931.	1.1	29

	CHATON	LEPORT	
#	Article	IF	CITATIONS
388	Extracellular Vesicleâ€Associated RNA as a Carrier of Epigenetic Information. Genes, 2017, 8, 240.	1.0	45
389	Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight, 2017, 2, e89160.	2.3	150
390	Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight, 2017, 2, .	2.3	257
391	Microenvironment Signals and Mechanisms in the Regulation of Osteosarcoma. , 0, , .		6
392	Understanding Subset Diversity in T Cell Memory. Immunity, 2018, 48, 214-226.	6.6	389
393	Detection and Characterization of CD8+ Autoreactive Memory Stem T Cells in Patients With Type 1 Diabetes. Diabetes, 2018, 67, 936-945.	0.3	52
394	Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells. Immunity, 2018, 48, 542-555.e6.	6.6	133
395	IL-23 and IL-1β Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Reports, 2018, 22, 2642-2653.	2.9	157
396	Metabo-Devo: A metabolic perspective of development. Mechanisms of Development, 2018, 154, 12-23.	1.7	28
397	Celastrol mediates Th17 and Treg cell generation via metabolic signaling. Biochemical and Biophysical Research Communications, 2018, 497, 883-889.	1.0	27
398	Interferon Gamma Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity. EBioMedicine, 2018, 30, 303-316.	2.7	184
399	The Effects of Viral Infection on Lymphocyte Metabolism: A New Perspective on Disease Characterization. Viral Immunology, 2018, 31, 278-281.	0.6	4
400	Biochemistry of proinflammatory macrophage activation. Cellular and Molecular Life Sciences, 2018, 75, 2093-2109.	2.4	82
401	Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Digestive Diseases and Sciences, 2018, 63, 1706-1725.	1.1	13
402	Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annual Review of Immunology, 2018, 36, 461-488.	9.5	537
403	Obesity induced T cell dysfunction and implications for cancer immunotherapy. Current Opinion in Immunology, 2018, 51, 181-186.	2.4	52
404	Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Experimental and Molecular Medicine, 2018, 50, 1-16.	3.2	52
405	Fatty acid metabolism in <scp>CD</scp> 8 ⁺ T cell memory: Challenging current concepts. Immunological Reviews, 2018, 283, 213-231.	2.8	103

#	Article	IF	CITATIONS
406	Differential Reliance on Lipid Metabolism as a Salvage Pathway Underlies Functional Differences of T Cell Subsets in Poor Nutrient Environments. Cell Reports, 2018, 23, 741-755.	2.9	45
407	Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis and Rheumatology, 2018, 70, 984-999.	2.9	210
408	Interplay Between Metabolic Sensors and Immune Cell Signaling. Experientia Supplementum (2012), 2018, 109, 115-196.	0.5	2
409	T Cell Dysfunction in Cancer. Cancer Cell, 2018, 33, 547-562.	7.7	787
410	Metabolic Host Response to Intracellular Infections. Experientia Supplementum (2012), 2018, 109, 319-350.	0.5	0
411	Metabolic exhaustion in infection, cancer and autoimmunity. Nature Immunology, 2018, 19, 213-221.	7.0	84
412	Early TCR Signaling Induces Rapid Aerobic Glycolysis Enabling Distinct Acute T Cell Effector Functions. Cell Reports, 2018, 22, 1509-1521.	2.9	322
413	E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor. Immunity, 2018, 48, 258-270.e5.	6.6	76
414	Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends in Immunology, 2018, 39, 489-502.	2.9	229
415	A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19, 327-341.	16.1	1,172
416	Autophagy and T cell metabolism. Cancer Letters, 2018, 419, 20-26.	3.2	45
417	RNA-binding proteins control gene expression and cell fate in the immune system. Nature Immunology, 2018, 19, 120-129.	7.0	168
418	The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery?. Advanced Healthcare Materials, 2018, 7, 1701174.	3.9	66
419	The Metabolic Microenvironment Steers Bone Tissue Regeneration. Trends in Endocrinology and Metabolism, 2018, 29, 99-110.	3.1	58
420	Cancer, obesity and immunometabolism $\hat{a} \in $ Connecting the dots. Cancer Letters, 2018, 417, 11-20.	3.2	36
421	Reinterpreting recent thymic emigrant function: defective or adaptive?. Current Opinion in Immunology, 2018, 51, 1-6.	2.4	29
422	Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246.	9.5	93
423	Metabolic Barriers to T Cell Function in Tumors. Journal of Immunology, 2018, 200, 400-407.	0.4	144

#	Article	IF	CITATIONS
424	C1q restrains autoimmunity and viral infection by regulating CD8 ⁺ T cell metabolism. Science, 2018, 360, 558-563.	6.0	133
425	Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. Journal of Hematology and Oncology, 2018, 11, 31.	6.9	256
426	Activation of LANCL2 by BT-11 Ameliorates IBD by Supporting Regulatory T Cell Stability Through Immunometabolic Mechanisms. Inflammatory Bowel Diseases, 2018, 24, 1978-1991.	0.9	17
427	Hallmarks of T-cell Exit from Quiescence. Cancer Immunology Research, 2018, 6, 502-508.	1.6	55
428	The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Scientific Reports, 2018, 8, 6289.	1.6	119
429	Hypomethylation of the Interferon <i>γ</i> Gene as a Potential Risk Factor for Essential Hypertension: A Case-Control Study. Tohoku Journal of Experimental Medicine, 2018, 244, 283-290.	0.5	7
431	Complement and the Regulation of T Cell Responses. Annual Review of Immunology, 2018, 36, 309-338.	9.5	171
432	Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science, 2018, 360, 449-453.	6.0	489
433	Early TCR Signaling Sweetens Effector Function through PDHK1. Trends in Endocrinology and Metabolism, 2018, 29, 595-597.	3.1	6
434	Lysine Deacetylases and Regulated Glycolysis in Macrophages. Trends in Immunology, 2018, 39, 473-488.	2.9	61
435	TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cellular and Molecular Immunology, 2018, 15, 428-437.	4.8	116
436	IFN Regulatory Factor 2 Inhibits Expression of Glycolytic Genes and Lipopolysaccharide-Induced Proinflammatory Responses in Macrophages. Journal of Immunology, 2018, 200, 3218-3230.	0.4	41
437	4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. Journal of Experimental Medicine, 2018, 215, 1091-1100.	4.2	197
438	PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Seminars in Cancer Biology, 2018, 48, 91-103.	4.3	257
439	Microglial Function during Glucose Deprivation: Inflammatory and Neuropsychiatric Implications. Molecular Neurobiology, 2018, 55, 1477-1487.	1.9	44
440	Tumor Metabolic Features Identified by ¹⁸ F-FDG PET Correlate with Gene Networks of Immune Cell Microenvironment in Head and Neck Cancer. Journal of Nuclear Medicine, 2018, 59, 31-37.	2.8	31
441	Survival of the fittest: Cancer challenges T cell metabolism. Cancer Letters, 2018, 412, 216-223.	3.2	27
442	Mitochondrial activity in T cells. Mitochondrion, 2018, 41, 51-57.	1.6	107

		CITATION REPORT		
#	Article		IF	CITATIONS
443	The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 2018	3, 18, 153-167.	10.6	1,210
444	The spectrum of T cell metabolism in health and disease. Nature Reviews Immunology, 2	2018, 18, 19-34.	10.6	315
445	Rescue of T-cell function during persistent pulmonary adenoviral infection by Toll-like re activation. Journal of Allergy and Clinical Immunology, 2018, 141, 416-419.e10.	ceptor 9	1.5	2
446	Complement as a regulator of adaptive immunity. Seminars in Immunopathology, 2018	, 40, 37-48.	2.8	91
447	Navigating T-Cell Immunometabolism in Transplantation. Transplantation, 2018, 102, 2	30-239.	0.5	14
448	Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1. Journa Experimental Medicine, 2018, 215, 51-62.	ll of	4.2	91
449	Metabolic Control of CD8+ T Cell Fate Decisions and Antitumor Immunity. Trends in Mc Medicine, 2018, 24, 30-48.	vlecular	3.5	158
450	Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effect Chronic Infection. Journal of Immunology, 2018, 200, 643-656.	or T Cells in	0.4	26
451	JAK/STAT3-Regulated Fatty Acid \hat{l}^2 -Oxidation Is Critical for Breast Cancer Stem Cell Self-Chemoresistance. Cell Metabolism, 2018, 27, 136-150.e5.	Renewal and	7.2	519
452	Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Letters, 2018,	414, 127-135.	3.2	13
453	CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metab 85-100.e8.	olism, 2018, 27,	7.2	197
454	The <scp>GAIT</scp> translational control system. Wiley Interdisciplinary Reviews RNA	, 2018, 9, e1441.	3.2	46
455	Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. Journal of C Communication and Signaling, 2018, 12, 245-252.	Cell	1.8	11
456	Lactate and Immunosuppression in Sepsis. Shock, 2018, 49, 120-125.		1.0	112
457	Crosstalk between transcription and metabolism: how much enzyme is enough for a ce Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1396.	ll?. Wiley	6.6	26
458	Immunometabolism in rheumatoid arthritis. Immunological Medicine, 2018, 41, 89-97.		1.4	14
459	Immunometabolism: A novel perspective of liver cancer microenvironment and its influe progression. World Journal of Gastroenterology, 2018, 24, 3500-3512.	nce on tumor	1.4	58
460	NaÃ ⁻ ve CD8+ T-Cells Engage a Versatile Metabolic Program Upon Activation in Humans Energetically From Memory CD8+ T-Cells. Frontiers in Immunology, 2018, 9, 2736.	and Differ	2.2	53

#	Article	IF	CITATIONS
462	In vivo imaging of the immune response upon systemic RNA cancer vaccination by FDG-PET. EJNMMI Research, 2018, 8, 80.	1.1	28
463	Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging. F1000Research, 2018, 7, 125.	0.8	24
464	TPP2 mutation associated with sterile brain inflammation mimicking MS. Neurology: Genetics, 2018, 4, e285.	0.9	6
465	Metabolic regulation of infection and inflammation. Cytokine, 2018, 112, 1-11.	1.4	28
466	The elevated glutaminolysis of bladder cancer and T cells in a simulated tumor microenvironment contributes to the up-regulation of PD-L1 expression by interferon-γ. OncoTargets and Therapy, 2018, Volume 11, 7229-7243.	1.0	11
467	Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Medicine, 2018, 7, 6124-6136.	1.3	371
468	Modulating T Cell Responses via Autophagy: The Intrinsic Influence Controlling the Function of Both Antigen-Presenting Cells and T Cells. Frontiers in Immunology, 2018, 9, 2914.	2.2	42
469	Natural Killer Cell Education Is Associated With a Distinct Glycolytic Profile. Frontiers in Immunology, 2018, 9, 3020.	2.2	36
470	Resident-Memory T Cells in Tissue-Restricted Immune Responses: For Better or Worse?. Frontiers in Immunology, 2018, 9, 2827.	2.2	71
471	The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflammation and Regeneration, 2018, 38, 24.	1.5	82
472	Metabolic Reprogramming of Non-Hodgkin's B-Cell Lymphomas and Potential Therapeutic Strategies. Frontiers in Oncology, 2018, 8, 556.	1.3	67
473	The LKB1â€AMPK and mTORC1 Metabolic Signaling Networks in Schwann Cells Control Axon Integrity and Myelination. BioEssays, 2019, 41, e1800075.	1.2	28
474	Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends in Immunology, 2018, 39, 862-873.	2.9	33
475	Peroxisome Proliferator-Activated Receptor–δSupports the Metabolic Requirements of Cell Growth in TCRβ-Selected Thymocytes and Peripheral CD4+ T Cells. Journal of Immunology, 2018, 201, 2664-2682.	0.4	13
476	Interplay between Cellular Metabolism and Cytokine Responses during Viral Infection. Viruses, 2018, 10, 521.	1.5	33
477	mTOR Regulation of Glycolytic Metabolism in T Cells. Frontiers in Cell and Developmental Biology, 2018, 6, 122.	1.8	142
478	Revisiting the role of metabolism during development. Development (Cambridge), 2018, 145, .	1.2	136
479	T Cell Calcium Signaling Regulation by the Co-Receptor CD5. International Journal of Molecular Sciences, 2018, 19, 1295	1.8	20

11	Article	IF	CITATIONS
480	Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Scientific Reports, 2018, 8, 14430.	1.6	181
481	Metabolic regulation of innate and adaptive lymphocyte effector responses. Immunological Reviews, 2018, 286, 137-147.	2.8	19
482	Complement receptor CD46 co-stimulates optimal human CD8+ T cell effector function via fatty acid metabolism. Nature Communications, 2018, 9, 4186.	5.8	75
483	Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 2018, 10, 1564.	1.7	616
484	Role of the immunosuppressive microenvironment in immunotherapy. Advances in Radiation Oncology, 2018, 3, 520-526.	0.6	107
485	Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nature Communications, 2018, 9, 4408.	5.8	138
486	Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged CD4+ T Cell Activation. Journal of Immunology, 2018, 201, 3294-3306.	0.4	39
487	Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell, 2018, 175, 1780-1795.e19.	13.5	445
488	The Translational Machinery of Human CD4+ T Cells Is Poised for Activation and Controls the Switch from Quiescence to Metabolic Remodeling. Cell Metabolism, 2018, 28, 895-906.e5.	7.2	116
489	Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer & Metabolism, 2018, 6, 10.	2.4	33
490	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .	5.6	44
490 491	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, . Interferon-Î ³ and Colorectal Cancer: an up-to date. Journal of Cancer, 2018, 9, 232-238.	5.6	44 26
490 491 492	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, . Interferon-î ³ and Colorectal Cancer: an up-to date. Journal of Cancer, 2018, 9, 232-238. HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Glycolysis in Glioma Cell. Cancers, 2018, 10, 301.	5.6 1.2 1.7	44 26 22
490 491 492 493	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .Interferon-î³ and Colorectal Cancer: an up-to date. Journal of Cancer, 2018, 9, 232-238.HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Glycolysis in Glioma Cell. Cancers, 2018, 10, 301.Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Frontiers in Immunology, 2018, 9, 1878.	5.6 1.2 1.7 2.2	44 26 22 127
490 491 492 493 494	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .Interferon-γ and Colorectal Cancer: an up-to date. Journal of Cancer, 2018, 9, 232-238.HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Clycolysis in Glioma Cell. Cancers, 2018, 10, 301.Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Frontiers in Immunology, 2018, 9, 1878.Clycolytic Stimulation Is Not a Requirement for M2 Macrophage Differentiation. Cell Metabolism, 2018, 28, 463-475.e4.	5.6 1.2 1.7 2.2 7.2	44 26 22 127 230
 490 491 492 493 494 495 	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .Interferon-γ and Colorectal Cancer: an up-to date. Journal of Cancer, 2018, 9, 232-238.HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Glycolysis in Glioma Cell. Cancers, 2018, 10, 301.Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Frontiers in Immunology, 2018, 9, 1878.Glycolytic Stimulation Is Not a Requirement for M2 Macrophage Differentiation. Cell Metabolism, 2018, 28, 463-475.e4.Insulin Receptor-Mediated Stimulation Boosts T Cell Immunity during Inflammation and Infection. Cell Metabolism, 2018, 28, 922-934.e4.	5.6 1.2 1.7 2.2 7.2 7.2	 44 26 22 127 230 188
 490 491 492 493 494 495 496 	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .Interferon-13 and Colorectal Cancer: an up-to date. Journal of Cancer, 2018, 9, 232-238.HIV-1 Envelope Protein gp120 Promotes Proliferation and the Activation of Glycolysis in Glioma Cell. Cancers, 2018, 10, 301.Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Frontiers in Immunology, 2018, 9, 1878.Glycolytic Stimulation Is Not a Requirement for M2 Macrophage Differentiation. Cell Metabolism, 2018, 28, 463-475.e4.Insulin Receptor-Mediated Stimulation Boosts T Cell Immunity during Inflammation and Infection. Cell Metabolism, 2018, 28, 922-934.e4.GITR Agonism Enhances Cellular Metabolism to Support CD8+ T-cell Proliferation and Effector Cytokine Production in a Mouse Tumor Model. Cancer Immunology Research, 2018, 6, 1199-1211.	 5.6 1.2 1.7 2.2 7.2 7.2 1.6 	 44 26 22 127 230 188 39

#	Articie	IF	Citations
498	Novel non-invasive early detection of lung cancer using liquid immunobiopsy metabolic activity profiles. Cancer Immunology, Immunotherapy, 2018, 67, 1135-1146.	2.0	5
499	Aerobic Glycolysis Controls Myeloid-Derived Suppressor Cells and Tumor Immunity via a Specific CEBPB Isoform in Triple-Negative Breast Cancer. Cell Metabolism, 2018, 28, 87-103.e6.	7.2	263
500	<scp>CD</scp> 57 identifies T cells with functional senescence before terminal differentiation and relative telomere shortening in patients with activated <scp>PI</scp> 3 kinase delta syndrome. Immunology and Cell Biology, 2018, 96, 1060-1071.	1.0	29
501	Deficient mitochondrial biogenesis in IL-2 activated NK cells correlates with impaired PGC1-α upregulation in elderly humans. Experimental Gerontology, 2018, 110, 73-78.	1.2	18
502	Reprogramming of Th1 cells into regulatory T cells through rewiring of the metabolic status. International Immunology, 2018, 30, 357-373.	1.8	13
503	Regulation of Immune Cell Functions by Metabolic Reprogramming. Journal of Immunology Research, 2018, 2018, 1-12.	0.9	57
504	Iron Drives T Helper Cell Pathogenicity by Promoting RNA-Binding Protein PCBP1-Mediated Proinflammatory Cytokine Production. Immunity, 2018, 49, 80-92.e7.	6.6	107
505	Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. Cell Metabolism, 2018, 28, 504-515.e7.	7.2	264
506	Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy for Mismatch Repair Proficient (pMMR)/non-MSI-H Metastatic Colorectal Cancer. Clinical Colorectal Cancer, 2018, 17, 258-273.	1.0	41
507	Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila. ELife, 2018, 7, .	2.8	113
508	Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 51-66.	3.3	241
509	Immuno-metabolic changes in herpes virus infection. Cytokine, 2018, 112, 52-62.	1.4	11
510	Immunometabolism of T cells and NK cells: metabolic control of effector and regulatory function. Inflammation Research, 2018, 67, 813-828.	1.6	47
511	Cutting Edge: Glycolytic Metabolism and Mitochondrial Metabolism Are Uncoupled in Antigen-Activated CD8+ Recent Thymic Emigrants. Journal of Immunology, 2018, 201, 1627-1632.	0.4	12
512	Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Reports, 2018, 24, 1136-1150.	2.9	50
513	Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8017-E8026.	3.3	93
514	Serum metabolomic profiling predicts synovial gene expression in rheumatoid arthritis. Arthritis Research and Therapy, 2018, 20, 164.	1.6	36
515	Immunometabolism in cancer at a glance. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	70

#	Article	IF	CITATIONS
516	Translating InÂVitro T Cell Metabolic Findings to InÂVivo Tumor Models of Nutrient Competition. Cell Metabolism, 2018, 28, 190-195.	7.2	19
517	Imaging Cancer Metabolism: Underlying Biology and Emerging Strategies. Journal of Nuclear Medicine, 2018, 59, 1340-1349.	2.8	50
518	Metabolic wiring of murine TÂcell and intraepithelial lymphocyte maintenance and activation. European Journal of Immunology, 2018, 48, 1430-1440.	1.6	10
519	Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses. Mediators of Inflammation, 2018, 2018, 1-15.	1.4	11
520	Role of SLC7A5 in Metabolic Reprogramming of Human Monocyte/Macrophage Immune Responses. Frontiers in Immunology, 2018, 9, 53.	2.2	93
521	A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Frontiers in Immunology, 2018, 9, 141.	2.2	363
522	Metabolic Modulation in Macrophage Effector Function. Frontiers in Immunology, 2018, 9, 270.	2.2	246
523	Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Frontiers in Immunology, 2018, 9, 276.	2.2	91
524	Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Frontiers in Immunology, 2018, 9, 339.	2.2	133
525	Metabolic Adaptations of CD4+ T Cells in Inflammatory Disease. Frontiers in Immunology, 2018, 9, 540.	2.2	44
526	Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Frontiers in Immunology, 2018, 9, 714.	2.2	23
527	CD28 Costimulation of T Helper 1 Cells Enhances Cytokine Release In Vivo. Frontiers in Immunology, 2018, 9, 1060.	2.2	11
528	Rotenone Treatment Reveals a Role for Electron Transport Complex I in the Subcellular Localization of Key Transcriptional Regulators During T Helper Cell Differentiation. Frontiers in Immunology, 2018, 9, 1284.	2.2	13
529	Regulation of the Immune Response by the Inflammatory Metabolic Microenvironment in the Context of Allotransplantation. Frontiers in Immunology, 2018, 9, 1465.	2.2	14
530	Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last?. EMBO Molecular Medicine, 2018, 10, .	3.3	164
531	Upregulation of Glucose Uptake and Hexokinase Activity of Primary Human CD4+ T Cells in Response to Infection with HIV-1. Viruses, 2018, 10, 114.	1.5	59
532	Metabolic Stress in the Immune Function of T Cells, Macrophages and Dendritic Cells. Cells, 2018, 7, 68.	1.8	54
533	2B4 Mediates Inhibition of CD8+T Cell Responses via Attenuation of Glycolysis and Cell Division. Journal of Immunology, 2018, 201, 1536-1548.	0.4	6

#	Article	IF	CITATIONS
534	Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Frontiers in Oncology, 2018, 8, 81.	1.3	86
535	Mannose Metabolism Is Essential for Th1 Cell Differentiation and IFN-Î ³ Production. Journal of Immunology, 2018, 201, 1400-1411.	0.4	6
536	Early effector maturation of naìve human CD8 ⁺ TÂcells requires mitochondrial biogenesis. European Journal of Immunology, 2018, 48, 1632-1643.	1.6	23
537	Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Science Immunology, 2018, 3, .	5.6	57
538	Metabolic Checkpoints: Novel Avenues for Immunotherapy of Cancer. Frontiers in Immunology, 2018, 9, 1816.	2.2	34
539	Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy. Frontiers in Oncology, 2018, 8, 237.	1.3	123
540	Lactate transporters as therapeutic targets in cancer and inflammatory diseases. Expert Opinion on Therapeutic Targets, 2018, 22, 735-743.	1.5	43
541	Glycolysis and the Hexosamine Biosynthetic Pathway as Novel Targets for Upper and Lower Airway Inflammation. Allergy, Asthma and Immunology Research, 2018, 10, 6.	1.1	11
542	Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends in Molecular Medicine, 2018, 24, 838-855.	3.5	59
543	Unconventional RNAâ€binding proteins step into the virus–host battlefront. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1498.	3.2	65
544	Comparative proteomic analysis of hepatic mechanisms of Megalobrama amblycephala infected by Aeromonas hydrophila. Fish and Shellfish Immunology, 2018, 82, 339-349.	1.6	8
545	Mammalian embryos show metabolic plasticity toward the surrounding environment during neural tube closure. Genes To Cells, 2018, 23, 794-802.	0.5	5
546	Small-Molecule Modulation of Lipid-Dependent Cellular Processes against Cancer: Fats on the Gunpoint. BioMed Research International, 2018, 2018, 1-17.	0.9	12
547	Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, 2018, 420, 175-210.	0.7	2
548	Progressive Upregulation of Oxidative Metabolism Facilitates Plasmablast Differentiation to a T-Independent Antigen. Cell Reports, 2018, 23, 3152-3159.	2.9	123
549	Unconventional <scp>RNA</scp> â€binding proteins: an uncharted zone in <scp>RNA</scp> biology. FEBS Letters, 2018, 592, 2917-2931.	1.3	39
550	From Nutritional Immunology to Drug Development. , 2018, , 41-56.		0
551	Role of miR-449a in the Activation and Metabolism of CD4 + T Cells. Transplantation Proceedings, 2018, 50, 1519-1524.	0.3	3

#	Article	IF	CITATIONS
552	Unexpected Roles for Intracellular Complement in the Regulation of Th1 Responses. Advances in Immunology, 2018, 138, 35-70.	1.1	20
553	Metabolic changes in bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 327-337.	0.8	43
554	Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Medicinal Research Reviews, 2019, 39, 70-113.	5.0	65
555	DEPTOR modulates activation responses in CD4+ T cells and enhances immunoregulation following transplantation. American Journal of Transplantation, 2019, 19, 77-88.	2.6	12
556	The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2019, 30, 1553-1598.	2.5	82
557	Metabolism of T Lymphocytes in Health and Disease. International Review of Cell and Molecular Biology, 2019, 342, 95-148.	1.6	20
558	Transcription Factor IRF4 Dysfunction Affects the Immunosuppressive Function of Treg Cells in Patients with Primary Immune Thrombocytopenia. BioMed Research International, 2019, 2019, 1-11.	0.9	16
559	mTOR and other effector kinase signals that impact T cell function and activity. Immunological Reviews, 2019, 291, 134-153.	2.8	53
560	Metabolic regulation of pathogenic autoimmunity: therapeutic targeting. Current Opinion in Immunology, 2019, 61, 10-16.	2.4	24
561	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	21.5	176
562	Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Frontiers in Immunology, 2019, 10, 1743.	2.2	77
563	Rewiring regulatory T cells for tumour killing. Nature Biomedical Engineering, 2019, 3, 766-767.	11.6	1
564	IDH1 fine-tunes cap-dependent translation initiation. Journal of Molecular Cell Biology, 2019, 11, 816-828.	1.5	3
565	Putting Together the Pieces: A Metabolic Model of Viral Infection and the Subsequent Development of Asthma. Viral Immunology, 2019, 32, 239-243.	0.6	0
566	Functionally significant metabolic differences between B and T lymphocyte lineages. Immunology, 2019, 158, 104-120.	2.0	21
567	Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nature Metabolism, 2019, 1, 717-730.	5.1	62
568	ILC3s integrate glycolysis and mitochondrial production of reactive oxygen species to fulfill activation demands. Journal of Experimental Medicine, 2019, 216, 2231-2241.	4.2	69
569	Dynamic Metabolic State of Tissue Resident CD8 T Cells. Frontiers in Immunology, 2019, 10, 1683.	2.2	41

#	Article	IF	CITATIONS
570	Microenvironmental Metabolism Regulates Antitumor Immunity. Cancer Research, 2019, 79, 4003-4008.	0.4	91
571	Systemic Immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respiratory Research, 2019, 20, 171.	1.4	32
572	Acylglycerol Kinase Maintains Metabolic State and Immune Responses of CD8+ T Cells. Cell Metabolism, 2019, 30, 290-302.e5.	7.2	55
573	Single-Cell RNA Sequencing of the T Helper Cell Response to House Dust Mites Defines a Distinct Gene Expression Signature in Airway Th2 Cells. Immunity, 2019, 51, 169-184.e5.	6.6	167
574	What Defines NK Cell Functional Fate: Phenotype or Metabolism?. Frontiers in Immunology, 2019, 10, 1414.	2.2	83
575	Research on the Reasonable Spacing of Post-casting Belt of 100m Long Inverted-T Shape Concrete Structures on Soft Foundation. IOP Conference Series: Earth and Environmental Science, 2019, 304, 052008.	0.2	0
576	NK Cell Metabolism and Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2278.	2.2	264
577	Cutting Edge: Elevated Glycolytic Metabolism Limits the Formation of Memory CD8+ T Cells in Early Life. Journal of Immunology, 2019, 203, 2571-2576.	0.4	17
578	Targeting T Cell Metabolism in Inflammatory Skin Disease. Frontiers in Immunology, 2019, 10, 2285.	2.2	19
579	Metabolic Profiling Using Stable Isotope Tracing Reveals Distinct Patterns of Glucose Utilization by Physiologically Activated CD8+ T Cells. Immunity, 2019, 51, 856-870.e5.	6.6	250
580	Fatty Acid Synthase Contributes to Restimulation-Induced Cell Death of Human CD4 T Cells. Frontiers in Molecular Biosciences, 2019, 6, 106.	1.6	24
581	Glucose metabolism in CD4 and CD8 T cells. , 2019, , 129-147.		0
582	The Induction of a Permissive Environment to Promote T Cell Immune Evasion in Acute Myeloid Leukemia: The Metabolic Perspective. Frontiers in Oncology, 2019, 9, 1166.	1.3	14
583	Comparison of two commonly used methods for stimulating T cells. Biotechnology Letters, 2019, 41, 1361-1371.	1.1	8
584	IL-36Î ² Promotes CD8+ T Cell Activation and Antitumor Immune Responses by Activating mTORC1. Frontiers in Immunology, 2019, 10, 1803.	2.2	23
585	Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies. Genes and Diseases, 2019, 6, 232-246.	1.5	44
586	Metabolism and Autoimmune Responses: The microRNA Connection. Frontiers in Immunology, 2019, 10, 1969.	2.2	21
587	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	7.7	34

#	Article	IF	CITATIONS
588	High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity, 2019, 51, 671-681.e5.	6.6	158
589	Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. International Immunopharmacology, 2019, 75, 105822.	1.7	11
590	Tumor Metabolism as a Regulator of Tumor–Host Interactions in the B-Cell Lymphoma Microenvironment—Fueling Progression and Novel Brakes for Therapy. International Journal of Molecular Sciences, 2019, 20, 4158.	1.8	14
591	Role of purines in regulation of metabolic reprogramming. Purinergic Signalling, 2019, 15, 423-438.	1.1	27
592	NLRP3 gain-of-function in CD4+ T lymphocytes ameliorates experimental autoimmune encephalomyelitis. Clinical Science, 2019, 133, 1901-1916.	1.8	22
593	Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges. Frontiers in Immunology, 2019, 10, 1889.	2.2	56
594	Autoimmune epithelitis (Sjögren's syndrome); the impact of metabolic status of glandular epithelial cells on auto-immunogenicity. Journal of Autoimmunity, 2019, 104, 102335.	3.0	28
595	Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy. Journal of Experimental and Clinical Cancer Research, 2019, 38, 403.	3.5	95
596	Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2019, 183, 111686.	2.6	35
597	Prospects for combining immune checkpoint blockade with PARP inhibition. Journal of Hematology and Oncology, 2019, 12, 98.	6.9	92
598	Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis. Frontiers in Immunology, 2019, 10, 2191.	2.2	42
599	The Metabolic Requirements of Th2 Cell Differentiation. Frontiers in Immunology, 2019, 10, 2318.	2.2	98
600	Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4 ⁺ T cells. Science Signaling, 2019, 12, .	1.6	61
601	Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy. Cell Reports, 2019, 29, 135-150.e9.	2.9	189
602	T Cell–Specific Adaptor Protein Regulates Mitochondrial Function and CD4+ T Regulatory Cell Activity In Vivo following Transplantation. Journal of Immunology, 2019, 203, 2328-2338.	0.4	5
603	Intracellular Sensors and Cellular Metabolism in Allogeneic Hematopoietic Stem Cell Transplantation. , 2019, , 349-374.		0
604	Malonylation of GAPDH is an inflammatory signal in macrophages. Nature Communications, 2019, 10, 338.	5.8	129
605	Metabolic Reprogramming in Breast Cancer and Its Therapeutic Implications. Cells, 2019, 8, 89.	1.8	136

		CITATION R	EPORT	
#	Article		IF	CITATIONS
606	Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound protect IDH1-bound transcriptome. Nucleic Acids Research, 2019, 47, 2244-2262.	ome and	6.5	29
607	Potential Therapies for Infectious Diseases Based on Targeting Immune Evasion Mecha Pathogens Have in Common With Cancer Cells. Frontiers in Cellular and Infection Micr 9, 25.	nisms That bbiology, 2019,	1.8	6
608	NK cell metabolism. Journal of Leukocyte Biology, 2019, 105, 1235-1242.		1.5	57
609	Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating C ⁺ T cells. Science Immunology, 2019, 4, .	D8	5.6	95
610	Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. Front Genetics, 2019, 10, 332.	iers in	1.1	57
611	The Lysophosphatidylcholine Transporter MFSD2A Is Essential for CD8+ Memory T Cell and Secondary Response to Infection. Journal of Immunology, 2019, 203, 117-126.	Maintenance	0.4	22
612	Mitochondria as central hub of the immune system. Redox Biology, 2019, 26, 101255.		3.9	187
613	IFN-Î ³ : A cytokine at the right time, is in the right place. Seminars in Immunology, 2019	, 43, 101280.	2.7	134
614	Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function 2019, 571, 403-407.	n. Nature,	13.7	156
615	Immunometabolism and atherosclerosis: perspectives and clinical significance: a position the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiovascular Research, 2019, 115, 1385-1392.	on paper from [•] Cardiology.	1.8	58
616	CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and cli through CAR engineering. Biotechnology Advances, 2019, 37, 107411.	nical outcome	6.0	12
617	Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell s ONE, 2019, 14, e0217761.	ubsets. PLoS	1.1	21
618	Regulation of Fatty Acid Oxidation by Twist 1 in the Metabolic Adaptation of T Helper L Chronic Inflammation. Arthritis and Rheumatology, 2019, 71, 1756-1765.	ymphocytes to	2.9	18
619	The metabolic spectrum of memory T cells. Immunology and Cell Biology, 2019, 97, 63	6-646.	1.0	53
620	Immunometabolism around the Clock. Trends in Molecular Medicine, 2019, 25, 612-62	5.	3.5	47
621	Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell, 2019, 178, 1	76-189.e15.	13.5	327
622	Deciphering targets of Th17 cells fate: From metabolism to nuclear receptors. Scanding Immunology, 2019, 90, e12793.	avian Journal of	1.3	11
623	Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes. Co 18, 1316-1334.	ell Cycle, 2019,	1.3	32

#	Article	IF	CITATIONS
624	PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8+ T lymphocytes. , 2019, 7, 151.		83
625	The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. Journal of Experimental Medicine, 2019, 216, 1664-1681.	4.2	71
626	Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma. Journal of Hepatology, 2019, 71, 333-343.	1.8	106
627	Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. Journal of Leukocyte Biology, 2019, 106, 703-716.	1.5	52
628	Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Reports, 2019, 27, 2063-2074.e5.	2.9	205
629	Strategies to Interfere with Tumor Metabolism through the Interplay of Innate and Adaptive Immunity. Cells, 2019, 8, 445.	1.8	21
630	Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood, 2019, 134, 44-58.	0.6	118
631	Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment. Journal of Biological Chemistry, 2019, 294, 8973-8990.	1.6	41
632	Immunometabolism: A new target for improving cancer immunotherapy. Advances in Cancer Research, 2019, 143, 195-253.	1.9	30
633	Shortâ€chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. European Journal of Immunology, 2019, 49, 842-848.	1.6	116
634	Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Science Translational Medicine, 2019, 11, .	5.8	92
635	Cancer-Induced Reprogramming of Host Glucose Metabolism: "Vicious Cycle―Supporting Cancer Progression. Frontiers in Oncology, 2019, 9, 218.	1.3	28
636	Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity. Frontiers in Immunology, 2019, 10, 883.	2.2	32
637	How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Frontiers in Cellular and Infection Microbiology, 2019, 9, 42.	1.8	149
638	Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 295.	2.2	20
639	Metabolic regulation of TH17 cells. Molecular Immunology, 2019, 109, 81-87.	1.0	47
640	Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7439-7448.	3.3	68
641	Regulation of endothelial cell survival and death by the MAP kinase/ERK kinase kinase 3 - glyceraldehyde-3-phosphate dehydrogenase signaling axis. Cellular Signalling, 2019, 58, 20-33.	1.7	9
#	Article	IF	CITATIONS
-----	--	------	-----------
642	The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Research, 2019, 47, 4240-4254.	6.5	32
643	Towards multiscale modeling of the CD8 ⁺ T cell response to viral infections. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1446.	6.6	16
644	Mitochondrial Retrograde Signalling and Metabolic Alterations in the Tumour Microenvironment. Cells, 2019, 8, 275.	1.8	44
645	Targeting immune cells for cancer therapy. Redox Biology, 2019, 25, 101174.	3.9	151
646	Sensing between reactions–Âhow the metabolic microenvironment shapes immunity. Clinical and Experimental Immunology, 2019, 197, 161-169.	1.1	9
647	Helper T cell differentiation. Cellular and Molecular Immunology, 2019, 16, 634-643.	4.8	258
648	Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine, 2019, 42, 86-96.	2.7	55
649	Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting. Clinical and Experimental Immunology, 2019, 197, 153-160.	1.1	48
650	Autophagy Regulation of Metabolism Is Required for CD8+ T Cell Anti-tumor Immunity. Cell Reports, 2019, 27, 502-513.e5.	2.9	134
651	Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4+ T Cells. Cell Reports, 2019, 27, 129-141.e4.	2.9	55
652	AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3604-3613.	3.3	96
653	The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications, 2019, 10, 760.	5.8	275
654	Immune cell metabolism in autoimmunity. Clinical and Experimental Immunology, 2019, 197, 181-192.	1.1	25
655	Immunometabolism regulates TCR recycling and iNKT cell functions. Science Signaling, 2019, 12, .	1.6	22
656	Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account?. Frontiers in Immunology, 2019, 10, 79.	2.2	20
657	The second genome: Effects of the mitochondrial genome on cancer progression. Advances in Cancer Research, 2019, 142, 63-105.	1.9	19
658	Mitochondrial superoxide disrupts the metabolic and epigenetic landscape of CD4+ and CD8+ T-lymphocytes. Redox Biology, 2019, 27, 101141.	3.9	23
659	Metabolic interventions in the immune response to cancer. Nature Reviews Immunology, 2019, 19, 324-335.	10.6	190

#	Article	IF	CITATIONS
660	CD4 ⁺ T help promotes influenza virus-specific CD8 ⁺ T cell memory by limiting metabolic dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4481-4488.	3.3	42
661	Differential Regulation of Human Treg and Th17 Cells by Fatty Acid Synthesis and Glycolysis. Frontiers in Immunology, 2019, 10, 115.	2.2	134
662	Cancer Metabolism Drives a Stromal Regenerative Response. Cell Metabolism, 2019, 29, 576-591.	7.2	92
663	Intrinsic and Extrinsic Determinants of T Cell Metabolism in Health and Disease. Frontiers in Molecular Biosciences, 2019, 6, 118.	1.6	11
664	The clock is ticking: the impact of ageing on T cell metabolism. Clinical and Translational Immunology, 2019, 8, e01091.	1.7	30
665	Metabolic Control of Epigenetics and Its Role in CD8+ T Cell Differentiation and Function. Frontiers in Immunology, 2019, 10, 2718.	2.2	36
666	Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metabolism, 2019, 30, 1075-1090.e8.	7.2	71
667	Metabolic Pathways Involved in Regulatory T Cell Functionality. Frontiers in Immunology, 2019, 10, 2839.	2.2	104
668	PKM2: A Potential Regulator of Rheumatoid Arthritis via Glycolytic and Non-Glycolytic Pathways. Frontiers in Immunology, 2019, 10, 2919.	2.2	40
669	Ping-Pong—Tumor and Host in Pancreatic Cancer Progression. Frontiers in Oncology, 2019, 9, 1359.	1.3	25
670	Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling. Nature Immunology, 2019, 20, 1668-1680.	7.0	53
671	Compromised Metabolic Reprogramming Is an Early Indicator of CD8+ T Cell Dysfunction during Chronic Mycobacterium tuberculosis Infection. Cell Reports, 2019, 29, 3564-3579.e5.	2.9	58
672	Chimeric Antigen Receptor T Cells in Chronic Lymphocytic Leukemia. Cancer Journal (Sudbury, Mass), 2019, 25, 436-441.	1.0	2
673	CD147‑mediated reprogrammed glycolytic metabolism potentially induces immune escape in the tumor microenvironment (Review). Oncology Reports, 2019, 41, 2945-2956.	1.2	8
674	Deceleration of glycometabolism impedes IgGâ€producing Bâ€cellâ€mediated tumor elimination by targeting <scp>SATB</scp> 1. Immunology, 2019, 156, 56-68.	2.0	12
675	β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunology, Immunotherapy, 2019, 68, 11-22.	2.0	94
676	CR6â€interacting factor 1 controls autoimmune arthritis by regulation of signal transducer and activator of transcription 3 pathway and T helper type 17 cells. Immunology, 2019, 156, 413-421.	2.0	4
677	Late-Stage Tumor Regression after PD-L1 Blockade Plus a Concurrent OX40 Agonist. Cancer Immunology Research, 2019, 7, 269-281.	1.6	31

#	Article	IF	CITATIONS
678	Metabolism as a guiding force for immunity. Nature Cell Biology, 2019, 21, 85-93.	4.6	214
679	Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nature Biotechnology, 2019, 37, 169-178.	9.4	247
680	Activation of Peroxisome Proliferator-Activated Receptors α and δ Synergizes with Inflammatory Signals to Enhance Adoptive Cell Therapy. Cancer Research, 2019, 79, 445-451.	0.4	43
681	An evolutionary perspective on immunometabolism. Science, 2019, 363, .	6.0	263
682	Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nature Metabolism, 2019, 1, 16-33.	5.1	260
683	Lipopolysaccharideâ€induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67, 1047-1061.	2.5	155
684	A Bioelectronic System to Measure the Glycolytic Metabolism of Activated CD4+ T Cells. Biosensors, 2019, 9, 10.	2.3	4
685	Metabolic Signaling. Methods in Molecular Biology, 2019, , .	0.4	2
686	From zero to sixty and back to zero again: the metabolic life of B cells. Current Opinion in Immunology, 2019, 57, 1-7.	2.4	31
687	Assessing the Impact of the Nutrient Microenvironment on the Metabolism of Effector CD8+ T Cells. Methods in Molecular Biology, 2019, 1862, 187-216.	0.4	4
688	Nutrients, immune system, and exercise: Where will it take us?. Nutrition, 2019, 61, 151-156.	1.1	31
689	Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clinical Cancer Research, 2019, 25, 1036-1049.	3.2	41
690	TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy. Cell Metabolism, 2019, 29, 103-123.e5.	7.2	149
691	Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science, 2019, 363, .	6.0	219
692	The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene, 2019, 38, 2223-2240.	2.6	244
693	Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells. Journal of Allergy and Clinical Immunology, 2019, 143, 346-358.e6.	1.5	59
694	Influence of obesity on the response to influenza infection and vaccination. , 2019, , 227-259.		13
695	The tumor microenvironment: Thousand obstacles for effector T cells. Cellular Immunology, 2019, 343, 103730.	1.4	9

#	Article	IF	CITATIONS
696	GAPDH as a model non-canonical AU-rich RNA binding protein. Seminars in Cell and Developmental Biology, 2019, 86, 162-173.	2.3	40
697	Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology. Seminars in Cell and Developmental Biology, 2020, 98, 202-210.	2.3	23
698	Expression of bovine interleukin 15 in Pichia pastoris and study on its biological activity: a T-cell activator. Animal Biotechnology, 2020, 31, 357-364.	0.7	1
699	The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. Journal of Cellular Physiology, 2020, 235, 3169-3188.	2.0	35
700	Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology, 2020, 20, 55-70.	10.6	393
701	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	13.1	190
702	Metabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2020, 4, 17-40.	2.3	61
703	Prenatal inflammation suppresses blood Th1 polarization and gene clusters related to cellular energy metabolism in preterm newborns. FASEB Journal, 2020, 34, 2896-2911.	0.2	11
704	Hypomorphic variants in AK2 reveal the contribution of mitochondrial function to B-cell activation. Journal of Allergy and Clinical Immunology, 2020, 146, 192-202.	1.5	13
705	Serum metabolic fingerprinting of pre-lameness dairy cows by GC–MS reveals typical profiles that can identify susceptible cows. Journal of Proteomics, 2020, 213, 103620.	1.2	8
706	Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. Journal of Biological Chemistry, 2020, 295, 99-110.	1.6	20
707	Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells. Journal of Gastrointestinal Cancer, 2020, 51, 738-747.	0.6	43
708	LncRNA PVT1 links Myc to glycolytic metabolism upon CD4+ T cell activation and Sjögren's syndrome-like autoimmune response. Journal of Autoimmunity, 2020, 107, 102358.	3.0	48
709	miR-155 Overexpression in OT-1 CD8+ T Cells Improves Anti-Tumor Activity against Low-Affinity Tumor Antigen. Molecular Therapy - Oncolytics, 2020, 16, 111-123.	2.0	15
710	Lactate: Fueling the fire starter. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1474.	6.6	29
711	Generating stem-like memory T cells with antioxidants for adoptive cell transfer immunotherapy of cancer. Methods in Enzymology, 2020, 631, 137-158.	0.4	8
712	The Untapped Opportunity and Challenge of Immunometabolism: A New Paradigm for Drug Discovery. Cell Metabolism, 2020, 31, 26-34.	7.2	34
713	Physiological functions of mitochondrial Na+-Ca2+ exchanger, NCLX, in lymphocytes. Cell Calcium, 2020, 85, 102114.	1.1	9

#	Article	IF	CITATIONS
714	Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188332.	3.3	36
715	STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metabolism, 2020, 31, 148-161.e5.	7.2	201
716	Self-Maintaining CD103+ Cancer-Specific T Cells Are Highly Energetic with Rapid Cytotoxic and Effector Responses. Cancer Immunology Research, 2020, 8, 203-216.	1.6	27
717	Temporal modulation of host aerobic glycolysis determines the outcome of Mycobacterium marinum infection. Fish and Shellfish Immunology, 2020, 96, 78-85.	1.6	5
718	Tumor Microenvironment: A Metabolic Player that Shapes the Immune Response. International Journal of Molecular Sciences, 2020, 21, 157.	1.8	136
719	CAR T-Cell Therapy for CNS Malignancies. , 2020, , 165-198.		0
720	Memory T Cells in Transplantation: Old Challenges Define New Directions. Transplantation, 2020, 104, 2024-2034.	0.5	11
721	Metabolic needs of brainâ€infiltrating leukocytes and microglia in multiple sclerosis. Journal of Neurochemistry, 2021, 158, 14-24.	2.1	8
722	Neutral Sphingomyelinase-2 (NSM 2) Controls T Cell Metabolic Homeostasis and Reprogramming During Activation. Frontiers in Molecular Biosciences, 2020, 7, 217.	1.6	6
723	Microglial Immunometabolism in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2020, 14, 563446.	1.8	27
724	The Antidiabetic Agent Acarbose Improves Anti-PD-1 and Rapamycin Efficacy in Preclinical Renal Cancer. Cancers, 2020, 12, 2872.	1.7	12
725	IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathogens, 2020, 16, e1008994.	2.1	15
726	Decreased glycolysis induced dysfunction of NK cells in Henoch-Schonlein purpura patients. BMC Immunology, 2020, 21, 53.	0.9	6
727	In Mixed Lymphocyte Reaction, the Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitor Roxadustat Suppresses Cellular and Humoral Alloimmunity. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 31.	1.0	6
728	Immunometabolism in the Single-Cell Era. Cell Metabolism, 2020, 32, 710-725.	7.2	116
729	Novel Frontiers of Treatment for Advanced Gastric or Gastroesophageal Junction Cancer (GC/GEJC): Will Immunotherapy Be a Future Direction?. Frontiers in Oncology, 2020, 10, 912.	1.3	6
730	Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nature Immunology, 2020, 21, 1022-1033.	7.0	227
731	Platelet factor 4 enhances CD4+ T effector memory cell responses via Aktâ€PGC1αâ€TFAM signalingâ€mediated mitochondrial biogenesis. Journal of Thrombosis and Haemostasis, 2020, 18, 2685-2700.	1.9	18

ARTICLE IF CITATIONS # <p>Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause 732 0.9 21 and Effect</p>. Cancer Management and Research, 2020, Volume 12, 5957-5974. Themis regulates metabolic signaling and effector functions in CD4+ T cells by controlling NFAT 733 4.8 nuclear translocation. Cellular and Molecular Immunology, 2021, 18, 2249-2261. Lactate Metabolism and Immune Modulation in Breast Cancer: A Focused Review on Triple Negative 734 26 1.3 Breast Tumors. Frontiers in Oncology, 2020, 10, 598626. Dynamic Cardiolipin Synthesis Is Required for CD8+ T Cell Immunity. Cell Metabolism, 2020, 32, 981-995.e7. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Experimental Gerontology, 736 1.2 73 2020, 142, 111147. Divergent Impact of Clucose Availability on Human Virus-Specific and Generically Activated CD8 T 1.3 Cells. Metabolites, 2020, 10, 461. The Non-canonical Role of Metabolic Enzymes in Immune Cells and Its Impact on Diseases. Current 738 1.3 5 Tissue Microenvironment Reports, 2020, 1, 221-237. Sirt2 Inhibition Enhances Metabolic Fitness and Effector Functions of Tumor-Reactive T Cells. Cell 7.2 Metabolism, 2020, 32, 420-436.e12. Cereblon harnesses Myc-dependent bioenergetics and activity of CD8+ T lymphocytes. Blood, 2020, 136, 740 0.6 18 857-870. Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nature Metabolism, 2020, 2, 741 5.1 703-716. Metabolic Reprogramming in Immune Response and Tissue Inflammation. Arteriosclerosis, Thrombosis, 742 1.1 53 and Vascular Biology, 2020, 40, 1990-2001. Metabolic Pathways in Alloreactive T Cells. Frontiers in Immunology, 2020, 11, 1517. 743 2.2 M1 Macrophage Derived Exosomes Aggravate Experimental Autoimmune Neuritis via Modulating Th1 744 2.2 40 Response. Frontiers in Immunology, 2020, 11, 1603. Transcriptome-wide stability analysis uncovers LARP4-mediated NFI®B1 mRNA stabilization during TÂcell activation. Nucleic Acids Research, 2020, 48, 8724-8739. 745 6.5 746 Metabolic signaling in T cells. Cell Research, 2020, 30, 649-659. 5.7 186 Hypoxic microenvironment shapes HIV-1 replication and latency. Communications Biology, 2020, 3, 376. 747 2.0 Metabolite Transporters as Regulators of Immunity. Metabolites, 2020, 10, 418. 748 1.321 749 Calcium regulation of T cell metabolism. Current Opinion in Physiology, 2020, 17, 207-223.

#	Article	IF	CITATIONS
750	Fursultiamine Alleviates Choroidal Neovascularization by Suppressing Inflammation and Metabolic Reprogramming. , 2020, 61, 24.		10
751	Ovarian Cancer Cells Promote Glycolysis Metabolism and TLR8-Mediated Metabolic Control of Human CD4+ T Cells. Frontiers in Oncology, 2020, 10, 570899.	1.3	7
752	IL-7Rαlow CD8+ T Cells from Healthy Individuals Are Anergic with Defective Glycolysis. Journal of Immunology, 2020, 205, 2968-2978.	0.4	5
753	Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Science Translational Medicine, 2020, 12, .	5.8	70
754	HIV-1 Infection and Glucose Metabolism Reprogramming of T Cells: Another Approach Toward Functional Cure and Reservoir Eradication. Frontiers in Immunology, 2020, 11, 572677.	2.2	26
755	The Ups and Downs of Metabolism during the Lifespan of a T Cell. International Journal of Molecular Sciences, 2020, 21, 7972.	1.8	21
756	Study and analysis of antitumor resistance mechanism of PD1/PD‣1 immune checkpoint blocker. Cancer Medicine, 2020, 9, 8086-8121.	1.3	95
757	Calcium Fructoborate Prevents Skin Cancer Development in Balb-c Mice: Next Part, Reverse Inflammation, and Metabolic Alteration. Biological Trace Element Research, 2020, 199, 2627-2634.	1.9	1
758	Rewiring Mitochondrial Metabolism for CD8+ T Cell Memory Formation and Effective Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1834.	2.2	26
759	Dynamic Roles for IL-2–STAT5 Signaling in Effector and Regulatory CD4+ T Cell Populations. Journal of Immunology, 2020, 205, 1721-1730.	0.4	52
760	Metabolic and epigenetic regulation of T-cell exhaustion. Nature Metabolism, 2020, 2, 1001-1012.	5.1	167
761	Legionella-Infected Macrophages Engage the Alveolar Epithelium to Metabolically Reprogram Myeloid Cells and Promote Antibacterial Inflammation. Cell Host and Microbe, 2020, 28, 683-698.e6.	5.1	43
762	Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Frontiers in Immunology, 2020, 11, 1269.	2.2	14
763	Dysfunction of CD8 + PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism axis. Scientific Reports, 2020, 10, 14928.	i-immune 1.6	28
764	Ethyl Pyruvate Promotes Proliferation of Regulatory T Cells by Increasing Glycolysis. Molecules, 2020, 25, 4112.	1.7	7
765	Systemic Immunometabolism: Challenges and Opportunities. Immunity, 2020, 53, 496-509.	6.6	73
766	Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Multiple Sclerosis Journal, 2022, 28, 7-15.	1.4	40
768	T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nature Communications, 2020, 11, 4113.	5.8	77

#	Article	IF	CITATIONS
769	Cytoplasmic Citrate Flux Modulates the Immune Stimulatory NKG2D Ligand MICA in Cancer Cells. Frontiers in Immunology, 2020, 11, 1968.	2.2	11
770	Cellular and molecular profiling of T-cell subsets at the onset of human acute GVHD. Blood Advances, 2020, 4, 3927-3942.	2.5	16
771	New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis, 2020, 9, 73.	2.1	14
772	Association of TIM-3 expression with glucose metabolism in Jurkat T cells. BMC Immunology, 2020, 21, 48.	0.9	28
773	Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers, 2020, 12, 2274.	1.7	71
774	Obesity-Related Fatty Acid and Cholesterol Metabolism in Cancer-Associated Host Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 600350.	1.8	8
775	FXR mediates T cell-intrinsic responses to reduced feeding during infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33446-33454.	3.3	19
776	Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. Journal of Translational Medicine, 2020, 18, 471.	1.8	15
777	Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Reports, 2020, 33, 108500.	2.9	135
778	CD4 ⁺ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Science Immunology, 2020, 5, .	5.6	31
779	The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites, 2020, 10, 426.	1.3	11
780	Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunology Letters, 2020, 223, 53-61.	1.1	7
781	How DNA methylation affects the Warburg effect. International Journal of Biological Sciences, 2020, 16, 2029-2041.	2.6	15
782	Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacologica Sinica, 2020, 41, 970-985.	2.8	49
783	A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nature Chemical Biology, 2020, 16, 731-739.	3.9	101
784	Formate induces a metabolic switch in nucleotide and energy metabolism. Cell Death and Disease, 2020, 11, 310.	2.7	31
785	Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules, 2020, 10, 661.	1.8	63
786	The fat and the furious: fatty acids fuel hyperproliferative germinal center B cells. Cellular and Molecular Immunology, 2020, 17, 794-796.	4.8	2

#	Article	IF	CITATIONS
787	Mitochondrial function in immune cells in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165845.	1.8	115
788	Glycolytic inhibitor 2-deoxyglucose suppresses inflammatory response in innate immune cells and experimental staphylococcal endophthalmitis. Experimental Eye Research, 2020, 197, 108079.	1.2	19
789	Human cancer germline antigen-specific cytotoxic T cell—what can we learn from patient. Cellular and Molecular Immunology, 2020, 17, 684-692.	4.8	12
790	Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Molecular Cell, 2020, 78, 1019-1033.	4.5	450
791	Glycolysis and Autoimmune Diseases: A Growing Relationship. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2020, 14, 91-106.	0.3	1
792	Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Communications Biology, 2020, 3, 305.	2.0	82
793	Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nature Metabolism, 2020, 2, 635-647.	5.1	150
794	The effects of carbon dots produced by the Maillard reaction on the HepG2 cell substance and energy metabolism. Food and Function, 2020, 11, 6487-6495.	2.1	7
795	Linking TPPII to the protein interaction and signalling networks. Computational Biology and Chemistry, 2020, 87, 107291.	1.1	2
796	Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. International Journal of Molecular Sciences, 2020, 21, 4030.	1.8	7
797	Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules, 2020, 10, 868.	1.8	19
798	System-wide analyses of the fission yeast poly(A) ⁺ RNA interactome reveal insights into organization and function of RNA–protein complexes. Genome Research, 2020, 30, 1012-1026.	2.4	6
799	A long noncoding RNA regulates inflammation resolution by mouse macrophages through fatty acid oxidation activation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14365-14375.	3.3	39
800	Single-Cell RNA-Seq Analysis Uncovers Distinct Functional Human NKT Cell Sub-Populations in Peripheral Blood. Frontiers in Cell and Developmental Biology, 2020, 8, 384.	1.8	22
801	Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clinical and Translational Medicine, 2020, 10, 374-411.	1.7	33
802	Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm, 2020, 1, 47-68.	3.1	93
803	Integrins meet complement: The evolutionary tip of an iceberg orchestrating metabolism and immunity. British Journal of Pharmacology, 2021, 178, 2754-2770.	2.7	15
804	CPEB4 Increases Expression of PFKFB3 to Induce Glycolysis and Activate Mouse and Human Hepatic Stellate Cells, Promoting Liver Fibrosis. Gastroenterology, 2020, 159, 273-288.	0.6	61

		EPORT	
#	Article	IF	CITATIONS
805	Lactic Acid: A Novel Signaling Molecule in Early Pregnancy?. Frontiers in Immunology, 2020, 11, 279.	2.2	57
806	Pemetrexed Enhances Membrane PD-L1 Expression and Potentiates T Cell-Mediated Cytotoxicity by Anti-PD-L1 Antibody Therapy in Non-Small-Cell Lung Cancer. Cancers, 2020, 12, 666.	1.7	24
807	Glycolysis and Oxidative Phosphorylation Play Critical Roles in Natural Killer Cell Receptor-Mediated Natural Killer Cell Functions. Frontiers in Immunology, 2020, 11, 202.	2.2	69
808	Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncolmmunology, 2020, 9, 1731942.	2.1	107
809	The immunological Warburg effect: Can a metabolicâ€ŧumorâ€stroma score (MeTS) guide cancer immunotherapy?. Immunological Reviews, 2020, 295, 187-202.	2.8	71
810	Signaling networks in immunometabolism. Cell Research, 2020, 30, 328-342.	5.7	120
811	Diapedesis-Induced Integrin Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrinsic Complement C3 Expression in Immune Cells. Immunity, 2020, 52, 513-527.e8.	6.6	57
812	Histone Deacetylase Inhibitors and IL21 Cooperate to Reprogram Human Effector CD8+ T Cells to Memory T Cells. Cancer Immunology Research, 2020, 8, 794-805.	1.6	17
813	Metabolic determinants of lupus pathogenesis. Immunological Reviews, 2020, 295, 167-186.	2.8	30
814	Complement and human T cell metabolism: Location, location, location. Immunological Reviews, 2020, 295, 68-81.	2.8	50
815	Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Molecular Cancer, 2020, 19, 50.	7.9	192
816	Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells, 2020, 9, 562.	1.8	24
817	Targeting immunometabolism as an anti-inflammatory strategy. Cell Research, 2020, 30, 300-314.	5.7	285
818	Lactation stage impacts the glycolytic function of bovine CD4+ T cells during ex vivo activation. Scientific Reports, 2020, 10, 4045.	1.6	8
819	Long-Term Programming of CD8ÂT Cell Immunity by Perinatal Exposure to Glucocorticoids. Cell, 2020, 180, 847-861.e15.	13.5	51
820	Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165887.	1.8	12
821	Amino Assets: How Amino Acids Support Immunity. Cell Metabolism, 2020, 32, 154-175.	7.2	256
822	Metabolism of immune cells in cancer. Nature Reviews Cancer, 2020, 20, 516-531.	12.8	407

#	Article	IF	CITATIONS
823	Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy, 2021, 17, 1571-1591.	4.3	27
824	Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathogens, 2020, 16, e1008359.	2.1	28
825	Clutamine Metabolism and Its Role in Immunity, a Comprehensive Review. Animals, 2020, 10, 326.	1.0	38
826	The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1486.	6.6	60
827	Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nature Immunology, 2020, 21, 331-342.	7.0	172
828	Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks and Tick-borne Diseases, 2020, 11, 101386.	1.1	20
829	Exploiting immunometabolism and T cell function for solid organ transplantation. Cellular Immunology, 2020, 351, 104068.	1.4	7
830	The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes and Diseases, 2020, 7, 299-307.	1.5	12
831	Mitochondrial Oxidative Phosphorylation Regulates the Fate Decision between Pathogenic Th17 and Regulatory T Cells. Cell Reports, 2020, 30, 1898-1909.e4.	2.9	103
832	Tumor hypermetabolism confers resistance to immunotherapy. Seminars in Cancer Biology, 2020, 65, 155-163.	4.3	17
833	Metabolic Adaptations to Infections at the Organismal Level. Trends in Immunology, 2020, 41, 113-125.	2.9	56
834	Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Reports, 2020, 21, e48052.	2.0	129
835	Regulation of immune cell metabolism by cancer cell oncogenic mutations. International Journal of Cancer, 2020, 147, 307-316.	2.3	3
837	Procyanidin B2 gallate regulates TNF-α production from T cells through inhibiting glycolytic activity via mTOR-HIF-1 pathway. Biochemical Pharmacology, 2020, 177, 113952.	2.0	17
838	Glycolysis – a key player in the inflammatory response. FEBS Journal, 2020, 287, 3350-3369.	2.2	250
839	Cellâ€intrinsic metabolic regulation of mononuclear phagocyte activation: Findings from the tip of the iceberg. Immunological Reviews, 2020, 295, 54-67.	2.8	45
840	Chemical individuality in T cells: A Garrodian view of immunometabolism. Immunological Reviews, 2020, 295, 82-100.	2.8	8
841	TCR Dependent Metabolic Programming Regulates Autocrine IL-4 Production Resulting in Self-Tuning of the CD8+ T Cell Activation Setpoint. Frontiers in Immunology, 2020, 11, 540.	2.2	3

#	Article	IF	CITATIONS
842	Methylglyoxal couples metabolic and translational control of Notch signalling in mammalian neural stem cells. Nature Communications, 2020, 11, 2018.	5.8	25
843	Targeting Metabolism as a Platform for Inducing Allograft Tolerance in the Absence of Long-Term Immunosuppression. Frontiers in Immunology, 2020, 11, 572.	2.2	5
844	The Swing of Lipids at Peroxisomes and Endolysosomes in T Cell Activation. International Journal of Molecular Sciences, 2020, 21, 2859.	1.8	1
845	Deamidation Shunts RelA from Mediating Inflammation to Aerobic Glycolysis. Cell Metabolism, 2020, 31, 937-955.e7.	7.2	19
846	Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nature Immunology, 2020, 21, 555-566.	7.0	147
847	Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Scientific Reports, 2020, 10, 7085.	1.6	27
848	Extracellular Vesicles isolated from Mesenchymal Stromal Cells Modulate CD4+ T Lymphocytes Toward a Regulatory Profile. Cells, 2020, 9, 1059.	1.8	21
849	Hypoxia-inducible factor-11± shifts metabolism from oxidative phosphorylation to glycolysis in response to pathogen challenge in Apostichopus japonicus. Aquaculture, 2020, 526, 735393.	1.7	10
850	Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunological Reviews, 2020, 295, 140-166.	2.8	14
851	Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host and Microbe, 2020, 27, 571-584.e7.	5.1	20
852	Dimethyl fumarate ameliorates hepatic inflammation in alcohol related liver disease. Liver International, 2020, 40, 1610-1619.	1.9	20
853	AKT but not MYC promotes reactive oxygen species-mediated cell death in oxidative culture. Journal of Cell Science, 2020, 133, .	1.2	7
854	Autophagy-related protein PIK3C3/VPS34 controls T cell metabolism and function. Autophagy, 2021, 17, 1193-1204.	4.3	44
855	Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance. Cellular and Molecular Life Sciences, 2021, 78, 173-193.	2.4	72
856	Hexosamine biosynthetic pathway promotes the antiviral activity of SAMHD1 by enhancing O-GlcNAc transferase-mediated protein O-GlcNAcylation. Theranostics, 2021, 11, 805-823.	4.6	34
857	Metabolic interventions: A new insight into the cancer immunotherapy. Archives of Biochemistry and Biophysics, 2021, 697, 108659.	1.4	8
858	Classification of T-cell activation via autofluorescence lifetime imaging. Nature Biomedical Engineering, 2021, 5, 77-88.	11.6	92
859	Targeting metabolism to reverse Tâ€cell exhaustion in chronic viral infections. Immunology, 2021, 162, 135-144.	2.0	23

#	Article	IF	CITATIONS
860	Metabolism and immunity in breast cancer. Frontiers of Medicine, 2021, 15, 178-207.	1.5	27
861	Anti-tumor activity and immunogenicity of a succinoglycan riclin. Carbohydrate Polymers, 2021, 255, 117370.	5.1	18
862	Metabolic regulation of the HBV-specific T cell function. Antiviral Research, 2021, 185, 104989.	1.9	9
863	Immunometabolism of regulatory T cells in cancer. Molecular Aspects of Medicine, 2021, 77, 100936.	2.7	9
864	Pharmacologic Screening Identifies Metabolic Vulnerabilities of CD8+ T Cells. Cancer Immunology Research, 2021, 9, 184-199.	1.6	74
865	Functional and metabolic dichotomy of murine Î ³ δT cell subsets in cancer immunity. European Journal of Immunology, 2021, 51, 17-26.	1.6	10
866	Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity, 2021, 54, 68-83.e6.	6.6	51
867	Goals in Nutrition Science 2020-2025. Frontiers in Nutrition, 2021, 7, 606378.	1.6	20
868	Nanoparticle-Mediated Delivery of 2-Deoxy-D-Glucose Induces Antitumor Immunity and Cytotoxicity in Liver Tumors in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 739-762.	2.3	29
869	Mesenchymal Stromal Cells Inhibit Aerobic Glycolysis in Activated T Cells by Negatively Regulating Hexokinase II Activity Through PD-1/PD-L1 Interaction. Transplantation and Cellular Therapy, 2021, 27, 231.e1-231.e8.	0.6	3
870	Immunometabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2021, 5, 137-159.	2.3	28
871	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	2.1	38
872	Addressing Patient to Patient Variability for Autologous CAR T Therapies. Journal of Pharmaceutical Sciences, 2021, 110, 1871-1876.	1.6	12
873	Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell, 2021, 39, 28-37.	7.7	183
874	Neuroinflammatory inhibition of synaptic longâ€ŧerm potentiation requires immunometabolic reprogramming of microglia. Glia, 2021, 69, 567-578.	2.5	38
875	Immune landscape and therapeutic strategies: new insights into PD-L1 in tumors. Cellular and Molecular Life Sciences, 2021, 78, 867-887.	2.4	9
876	Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nature Reviews Immunology, 2021, 21, 151-161.	10.6	330
877	Vitamin D and Immune Regulation: Antibacterial, Antiviral, Antiâ€Inflammatory. JBMR Plus, 2021, 5, e10405.	1.3	158

		CITATION REPORT		
#	Article		IF	CITATIONS
879	Cancer-associated adipocytes as immunomodulators in cancer. Biomarker Research, 20	021, 9, 2.	2.8	44
880	Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine lev cellular compartments. Computational and Structural Biotechnology Journal, 2021, 19	els across , 3034-3041.	1.9	9
881	Sirtuins in immunometabolism. , 2021, , 91-101.			0
882	Inhibition of succinate dehydrogenase activity impairs human T cell activation and fun Reports, 2021, 11, 1458.	ction. Scientific	1.6	24
883	Metabolic Codependencies in the Tumor Microenvironment. Cancer Discovery, 2021,	11, 1067-1081.	7.7	144
884	Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat Communications, 2021, 12, 98.	ture	5.8	78
885	Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-im Current Research in Immunology, 2021, 2, 132-141.	mune escape.	1.2	27
886	RhoA and Cdc42 in T cells: Are they targetable for T cell-mediated inflammatory diseas Clinical Medicine, 2021, 4, 56-61.	es?. Precision	1.3	18
887	Therapeutic vaccination targeting CD40 and TLR3 controls melanoma growth through intratumoral CD8 T cells without new T cell infiltration. Cancer Immunology, Immunot 70, 2139-2150.	existing herapy, 2021,	2.0	9
888	NK cell-mediated immunotherapy: The exquisite role of PGC-1a in metabolic reprogram 121-142.	ming. , 2021, ,		0
889	Glycolytic metabolism of pathogenic T cells enables early detection of GVHD by 13C-N 137, 126-137.	IRI. Blood, 2021,	0.6	29
890	Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-indinflammation. Nature Communications, 2021, 12, 1209.	duced	5.8	76
893	The Systemic and Cellular Metabolic Phenotype of Infection and Immune Response to monocytogenes. Frontiers in Immunology, 2020, 11, 614697.	Listeria	2.2	3
894	Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment Immunology, Immunotherapy, 2021, 70, 2103-2121.	t. Cancer	2.0	23
895	Complement Has Brains—Do Intracellular Complement and Immunometabolism Coo Homeostasis and Behavior?. Frontiers in Immunology, 2021, 12, 629986.	perate in Tissue	2.2	30
896	The role and mechanism of mitochondrial functions and energy metabolism in the func regulation of the mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12,	ction 140.	2.4	53
897	Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer Cellular Physiology, 2021, 236, 6168-6189.	. Journal of	2.0	8
898	An exacerbated metabolism and mitochondrial reactive oxygen species contribute to r alterations and apoptosis in CD4 T cells during the acute phase of Trypanosoma cruzi Radical Biology and Medicine, 2021, 163, 268-280.	nitochondrial nfection. Free	1.3	11

#	Article	IF	CITATIONS
899	Lactate anions participate in T cell cytokine production and function. Science China Life Sciences, 2021, 64, 1895-1905.	2.3	12
900	The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. Research, 2021, 2021, 4189516.	2.8	35
901	Functional Analysis of Immune Signature Genes in Th1* Memory Cells Links ISOC1 and Pyrimidine Metabolism to IFN-γ and IL-17 Production. Journal of Immunology, 2021, 206, 1181-1193.	0.4	8
902	Transcriptome of CD8+ tumor-infiltrating T cells: a link between diabetes and colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 2625-2638.	2.0	3
903	CD73 Ectonucleotidase Restrains CD8+ T Cell Metabolic Fitness and Anti-tumoral Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 638037.	1.8	27
904	CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature, 2021, 591, 652-658.	13.7	187
905	Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature, 2021, 591, 645-651.	13.7	492
906	Adaptive immunity at the crossroads of autophagy and metabolism. Cellular and Molecular Immunology, 2021, 18, 1096-1105.	4.8	26
907	Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 645242.	2.2	69
908	T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation, 2021, 105, e191-e201.	0.5	4
909	Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Science Translational Medicine, 2021, 13, .	5.8	101
910	Engineering Metabolism of Chimeric Antigen Receptor (CAR) Cells for Developing Efficient Immunotherapies. Cancers, 2021, 13, 1123.	1.7	11
911	Heat-Inactivation of Human Serum Destroys C1 Inhibitor, Pro-motes Immune Complex Formation, and Improves Human T Cell Function. International Journal of Molecular Sciences, 2021, 22, 2646.	1.8	11
912	Mitochondrial metabolism is essential for invariant natural killer T cell development and function. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
913	Validation of the American Joint Committee on Cancer Eighth Edition Staging of Patients With Metastatic Cutaneous Melanoma Treated With Immune Checkpoint Inhibitors. JAMA Network Open, 2021, 4, e210980.	2.8	16
915	Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Frontiers in Immunology, 2021, 12, 652687.	2.2	54
916	Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature, 2021, 592, 444-449.	13.7	233
917	Blockade of 6-phosphogluconate dehydrogenase generates CD8+ effector TÂcells with enhanced anti-tumor function. Cell Reports, 2021, 34, 108831.	2.9	23

#	Article	IF	CITATIONS
918	Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy. Cancer Immunology Research, 2021, 9, 255-260.	1.6	16
919	Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment. Biomaterials, 2021, 270, 120678.	5.7	19
920	Intratumoral Hypoxia and Mechanisms of Immune Evasion Mediated by Hypoxia-Inducible Factors. Physiology, 2021, 36, 73-83.	1.6	29
921	Targeting mitochondria to beat HIV-1. Nature Immunology, 2021, 22, 398-399.	7.0	5
922	The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Letters, 2021, 500, 75-86.	3.2	79
923	The complexity of p53-mediated metabolic regulation in tumor suppression. Seminars in Cancer Biology, 2022, 85, 4-32.	4.3	104
925	SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Reports, 2021, 34, 108821.	2.9	32
926	Hypoxia-Driven HIF-1α Activation Reprograms Pre-Activated NK Cells towards Highly Potent Effector Phenotypes via ERK/STAT3 Pathways. Cancers, 2021, 13, 1904.	1.7	20
927	Metabolic rewiring: a new master of Th17 cell plasticity and heterogeneity. FEBS Journal, 2022, 289, 2448-2466.	2.2	10
928	Mitochondrial Metabolism Regulation of T Cell–Mediated Immunity. Annual Review of Immunology, 2021, 39, 395-416.	9.5	34
929	Clucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV-1 particles to maintain infectivity. Biochemical and Biophysical Research Communications, 2021, 549, 187-193.	1.0	9
930	RNA Flow Cytometry for the Study of T Cell Metabolism. International Journal of Molecular Sciences, 2021, 22, 3906.	1.8	6
931	Metabolic regulation of tissue-resident memory CD8+ T cells. Current Opinion in Pharmacology, 2021, 57, 117-124.	1.7	7
933	A systematic review and meta-analysis on the regulation of programmed cell death-1 on T-cells in type 2 diabetes. Medicine (United States), 2021, 100, e25488.	0.4	3
934	Metabolic barriers to cancer immunotherapy. Nature Reviews Immunology, 2021, 21, 785-797.	10.6	245
935	Tinkering under the Hood: Metabolic Optimisation of CAR-T Cell Therapy. Antibodies, 2021, 10, 17.	1.2	14
936	Targeting immune cell metabolism in kidney diseases. Nature Reviews Nephrology, 2021, 17, 465-480.	4.1	31
937	Natural product 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose is a reversible inhibitor of glyceraldehyde 3-phosphate dehydrogenase. Acta Pharmacologica Sinica, 2022, 43, 470-482.	2.8	9

#	Article	IF	CITATIONS
939	Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction. International Journal of Molecular Sciences, 2021, 22, 4460.	1.8	13
940	Immune metabolism: a bridge of dendritic cells function. International Reviews of Immunology, 2022, 41, 313-325.	1.5	8
941	Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. International Journal of Molecular Sciences, 2021, 22, 4065.	1.8	13
942	Hypomagnesemia Is a Risk Factor for Infections after Kidney Transplantation: A Retrospective Cohort Analysis. Nutrients, 2021, 13, 1296.	1.7	11
943	Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications. Frontiers in Immunology, 2021, 12, 641883.	2.2	10
944	LDH Isotyping for Checkpoint Inhibitor Response Prediction in Patients with Metastatic Melanoma. Immuno, 2021, 1, 67-77.	0.6	3
945	Control of T Cell Metabolism by Cytokines and Hormones. Frontiers in Immunology, 2021, 12, 653605.	2.2	20
946	Immunotherapy breaches low-sugar dieting of tumor Treg cells. Cell Metabolism, 2021, 33, 851-852.	7.2	2
947	SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell–mediated immunity. Science, 2021, 372, .	6.0	43
948	LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. Journal of Molecular Medicine, 2021, 99, 1139-1150.	1.7	13
951	Reduced Th1 response is associated with lower glycolytic activity in activated peripheral blood mononuclear cells after metabolic and bariatric surgery. Journal of Endocrinological Investigation, 2021, 44, 2819-2830.	1.8	5
952	Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance. Frontiers in Immunology, 2021, 12, 657293.	2.2	18
953	Navigating in Deep Waters: How Tissue Damage and Inflammation Shape Effector and Memory CD8+ T Cell Responses. ImmunoHorizons, 2021, 5, 338-348.	0.8	3
954	Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity, 2021, 54, 976-987.e7.	6.6	56
955	Chromatin accessibility governs the differential response of cancer and TÂcells to arginine starvation. Cell Reports, 2021, 35, 109101.	2.9	20
956	Metformin regulates the Th17/Treg balance by glycolysis with TIGAR in hepatic ischemia-reperfusion injury. Journal of Pharmacological Sciences, 2021, 146, 40-48.	1.1	8
957	Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 2021, 20, 531-550.	21.5	236
958	Modeling the Th17 and Tregs Paradigm: Implications for Cancer Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 675099.	1.8	6

		EPORT	
# 959	ARTICLE CD8+ T cell metabolism in infection and cancer. Nature Reviews Immunology, 2021, 21, 718-738.	lF 10.6	Citations
961	Metabolic regulation in the immune response to cancer. Cancer Communications, 2021, 41, 661-694.	3.7	23
962	Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Frontiers in Immunology, 2021, 12, 688132.	2.2	21
963	Fever supports CD8 ⁺ effector T cell responses by promoting mitochondrial translation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
964	Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation. Platelets, 2021, , 1-11.	1.1	7
965	Veryâ€lowâ€carbohydrate diet enhances human Tâ€cell immunity through immunometabolic reprogramming. EMBO Molecular Medicine, 2021, 13, e14323.	3.3	44
966	î"133p53α enhances metabolic and cellular fitness of TCR-engineered T cells and promotes superior antitumor immunity. , 2021, 9, e001846.		6
967	Preclinical Development of FA5, a Novel AMP-Activated Protein Kinase (AMPK) Activator as an Innovative Drug for the Management of Bowel Inflammation. International Journal of Molecular Sciences, 2021, 22, 6325.	1.8	5
968	Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. International Journal of Molecular Sciences, 2021, 22, 6262.	1.8	53
969	Optical Control of CD8+ T Cell Metabolism and Effector Functions. Frontiers in Immunology, 2021, 12, 666231.	2.2	21
970	Increased hexokinase-2 as a novel biomarker for the diagnosis and correlating with disease severity in rheumatoid arthritis. Medicine (United States), 2021, 100, e26504.	0.4	6
971	T Cell-Intrinsic CDK6 Is Dispensable for Anti-Viral and Anti-Tumor Responses In Vivo. Frontiers in Immunology, 2021, 12, 650977.	2.2	4
972	The expanding world of metabolic enzymes moonlighting as RNA binding proteins. Biochemical Society Transactions, 2021, 49, 1099-1108.	1.6	13
973	Early glycolytic reprogramming controls microglial inflammatory activation. Journal of Neuroinflammation, 2021, 18, 129.	3.1	73
975	Immunometabolic regulation of adipose tissue resident immune cells. Current Opinion in Pharmacology, 2021, 58, 44-51.	1.7	4
976	Dysregulation of Pyruvate Kinase M2 Promotes Inflammation in a Mouse Model of Obese Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 709-721.	1.4	9
977	Plasma Metabolomics Reveals Dysregulated Metabolic Signatures in HIV-Associated Immune Reconstitution Inflammatory Syndrome. Frontiers in Immunology, 2021, 12, 693074.	2.2	11
978	Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity, 2021, 54, 1320-1337.e4.	6.6	77

#	Article	IF	CITATIONS
979	Metabolic reprogramming and immune regulation in viral diseases. Reviews in Medical Virology, 2022, 32, e2268.	3.9	7
980	Glycolysis Inhibition Induces Functional and Metabolic Exhaustion of CD4+ T Cells in Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 669456.	2.2	38
981	Immunomodulatory Therapies for the Treatment of Graft-versus-host Disease. HemaSphere, 2021, 5, e581.	1.2	10
982	The Natural History of T Cell Metabolism. International Journal of Molecular Sciences, 2021, 22, 6779.	1.8	9
983	Inhibition of host Ogr1 enhances effector CD8+ T-cell function by modulating acidic microenvironment. Cancer Gene Therapy, 2021, 28, 1213-1224.	2.2	13
984	Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Reports, 2021, 35, 109210.	2.9	50
985	Transcriptomic Analysis of the Effect of GAT-2 Deficiency on Differentiation of Mice NaÃ⁻ve T Cells Into Th1 Cells In Vitro. Frontiers in Immunology, 2021, 12, 667136.	2.2	7
986	Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through â€~reverse phenotyping'. Nature Communications, 2021, 12, 4515.	5.8	23
987	Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 703972.	2.2	49
988	The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Frontiers in Immunology, 2021, 12, 692004.	2.2	17
990	Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nature Communications, 2021, 12, 4371.	5.8	55
991	Targeting the spectrum of immune checkpoints in prostate cancer. Expert Review of Clinical Pharmacology, 2021, 14, 1253-1266.	1.3	13
992	Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nature Communications, 2021, 12, 4077.	5.8	222
993	Fatty acid oxidation: driver of lymph node metastasis. Cancer Cell International, 2021, 21, 339.	1.8	25
994	Mitochondrial-encoded MOTS-c prevents pancreatic islet destruction in autoimmune diabetes. Cell Reports, 2021, 36, 109447.	2.9	21
995	Targeted Glucose or Glutamine Metabolic Therapy Combined With PD-1/PD-L1 Checkpoint Blockade Immunotherapy for the Treatment of Tumors - Mechanisms and Strategies. Frontiers in Oncology, 2021, 11, 697894.	1.3	19
996	Late-phase dominance of a single epitope-specific CD8+ T-cell response in passive neutralizing antibody-infused SIV controllers. Aids, 2021, Publish Ahead of Print, 2281-2288.	1.0	2
997	Altered Metabolic Phenotype of Immune Cells in a Spontaneous Autoimmune Uveitis Model. Frontiers in Immunology, 2021, 12, 601619.	2.2	2

#	Article	IF	CITATIONS
998	The <scp>RNA</scp> regulatory programs that govern lymphocyte development and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1683.	3.2	8
999	PPARα Agonist Fenofibrate Enhances Cancer Vaccine Efficacy. Cancer Research, 2021, 81, 4431-4440.	0.4	17
1000	Bispecific Antibody Armed Metabolically Enhanced Headless CAR T Cells. Frontiers in Immunology, 2021, 12, 690437.	2.2	11
1001	Characterization of RNA-binding proteins in the cell nucleus and cytoplasm. Analytica Chimica Acta, 2021, 1168, 338609.	2.6	5
1002	Lactate: a multifunctional signaling molecule. Yeungnam University Journal of Medicine, 2021, 38, 183-193.	0.7	39
1003	CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. Journal of Allergy and Clinical Immunology, 2021, 148, 16-32.	1.5	49
1004	A role for metabolism in determining neonatal immune function. Pediatric Allergy and Immunology, 2021, 32, 1616-1628.	1.1	5
1005	NLRP3 inflammasomes that induce antitumor immunity. Trends in Immunology, 2021, 42, 575-589.	2.9	29
1006	Glycometabolism regulates hepatitis C virus release. PLoS Pathogens, 2021, 17, e1009746.	2.1	5
1007	NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated TÂcells. Cell Reports, 2021, 36, 109516.	2.9	50
1008	Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Medicine, 2021, 10, 6374-6383.	1.3	19
1009	Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Seminars in Immunology, 2021, 52, 101485.	2.7	24
1010	$HIF1\hat{1}\pmis$ required for NK cell metabolic adaptation during virus infection. ELife, 2021, 10, .	2.8	12
1011	HBV-Specific CD8+ T-Cell Tolerance in the Liver. Frontiers in Immunology, 2021, 12, 721975.	2.2	29
1012	Regulatory roles of mitochondria and metabolism in neurogenesis. Current Opinion in Neurobiology, 2021, 69, 231-240.	2.0	52
1013	Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochemical Pharmacology, 2021, 190, 114597.	2.0	12
1015	BMP4 Moderates Glycolysis and Regulates Activation and Interferon-Gamma Production in CD4+ T Cells. Frontiers in Immunology, 2021, 12, 702211.	2.2	4
1016	IFNÎ ³ signaling integrity in colorectal cancer immunity and immunotherapy. Cellular and Molecular Immunology, 2022, 19, 23-32.	4.8	57

#	Article	IF	CITATIONS
1017	The plasticity of mRNA translation during cancer progression and therapy resistance. Nature Reviews Cancer, 2021, 21, 558-577.	12.8	100
1018	LFA-1 in T cell priming, differentiation, and effector functions. Trends in Immunology, 2021, 42, 706-722.	2.9	43
1019	Metabolic checkpoints and novel approaches for immunotherapy against cancer. International Journal of Cancer, 2022, 150, 195-207.	2.3	7
1020	Interrogating in vivo T-cell metabolism in mice using stable isotope labeling metabolomics and rapid cell sorting. Nature Protocols, 2021, 16, 4494-4521.	5.5	20
1021	Spatially Resolved Immunometabolism to Understand Infectious Disease Progression. Frontiers in Microbiology, 2021, 12, 709728.	1.5	6
1022	The Potential of Tissue-Resident Memory T Cells for Adoptive Immunotherapy against Cancer. Cells, 2021, 10, 2234.	1.8	10
1023	Distinct Bioenergetic Features of Human Invariant Natural Killer T Cells Enable Retained Functions in Nutrient-Deprived States. Frontiers in Immunology, 2021, 12, 700374.	2.2	3
1024	More Than Meets the Eye Regarding Cancer Metabolism. International Journal of Molecular Sciences, 2021, 22, 9507.	1.8	11
1025	Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathogens, 2021, 17, e1009943.	2.1	10
1026	Pharmacological effects on anaplerotic pathways alters the metabolic landscape in the tumor microenvironment, causing unpredictable, sustained antitumor immunity. International Immunology, 2021, , .	1.8	1
1027	Mitochondria and Mitochondrial DNA: Key Elements in the Pathogenesis and Exacerbation of the Inflammatory State Caused by COVID-19. Medicina (Lithuania), 2021, 57, 928.	0.8	17
1028	Elevated glycolysis imparts functional ability to CD8 ⁺ T cells in HIV infection. Life Science Alliance, 2021, 4, e202101081.	1.3	16
1029	Metabolic orchestration of the wound healing response. Cell Metabolism, 2021, 33, 1726-1743.	7.2	101
1030	Mutations in cis that affect mRNA synthesis, processing and translation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166166.	1.8	15
1031	Moonlighting functions of metabolic enzymes and metabolites in cancer. Molecular Cell, 2021, 81, 3760-3774.	4.5	65
1032	Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 10268.	1.8	11
1033	Immunological exhaustion: How to make a disparate concept operational?. PLoS Pathogens, 2021, 17, e1009892.	2.1	11
1034	Is Galactose a Hormetic Sugar? An Exploratory Study of the Rat Hippocampal Redox Regulatory Network. Molecular Nutrition and Food Research, 2021, 65, e2100400.	1.5	16

#	Article	IF	CITATIONS
1035	Mining nematode protein secretomes to explain lifestyle and host specificity. PLoS Neglected Tropical Diseases, 2021, 15, e0009828.	1.3	11
1036	Regulation of humoral immune response by HIF-1α-dependent metabolic reprogramming of the germinal center reaction. Cellular Immunology, 2021, 367, 104409.	1.4	12
1037	Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused?. Cells, 2021, 10, 2333.	1.8	13
1038	The Role of mRNA Translational Control in Tumor Immune Escape and Immunotherapy Resistance. Cancer Research, 2021, 81, 5596-5604.	0.4	11
1039	Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncology Reports, 2021, 46, .	1.2	5
1040	Glyceraldehyde-3-phosphate dehydrogenase present in extracellular vesicles from Leishmania major suppresses host TNF-alpha expression. Journal of Biological Chemistry, 2021, 297, 101198.	1.6	11
1041	Signatures of Multi-Omics Reveal Distinct Tumor Immune Microenvironment Contributing to Immunotherapy in Lung Adenocarcinoma. Frontiers in Immunology, 2021, 12, 723172.	2.2	11
1042	Human Wharton's jelly-derived mesenchymal stem cells alleviate concanavalin A-induced fulminant hepatitis by repressing NF-κB signaling and glycolysis. Stem Cell Research and Therapy, 2021, 12, 496.	2.4	8
1043	Atherosclerosis Impairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2387-2398.	1.1	11
1044	Transcriptional regulation of T cell metabolism and metabolic control of T cell gene expression. Current Opinion in Genetics and Development, 2021, 70, 83-88.	1.5	1
1045	Integrating metabolic engineering and immunotherapy. Current Opinion in Systems Biology, 2021, 28, 100361.	1.3	2
1046	Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.		1
1048	NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nature Immunology, 2021, 22, 193-204.	7.0	52
1049	Distinct metabolic programs established in the thymus control effector functions of γδT cell subsets in tumor microenvironments. Nature Immunology, 2021, 22, 179-192.	7.0	99
1051	Hematopoietic versus Solid Cancers and T Cell Dysfunction: Looking for Similarities and Distinctions. Cancers, 2021, 13, 284.	1.7	15
1052	Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders. Npj Systems Biology and Applications, 2021, 7, 4.	1.4	18
1053	Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. Mucosal Immunology, 2021, 14, 828-841.	2.7	36
1054	Mitochondria-targeted drugs and immune function. , 2021, , 499-524.		0

#	Article	IF	CITATIONS
1055	Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nature Metabolism, 2021, 3, 21-32.	5.1	250
1056	The Immune Consequences of Lactate in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1259, 113-124.	0.8	43
1057	Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. Advances in Experimental Medicine and Biology, 2020, 1248, 33-59.	0.8	232
1058	The CD28–B7 Family of Co-signaling Molecules. Advances in Experimental Medicine and Biology, 2019, 1189, 25-51.	0.8	41
1059	Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. Advances in Experimental Medicine and Biology, 2019, 1189, 85-133.	0.8	14
1060	Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nature Communications, 2020, 11, 604.	5.8	44
1061	T cell metabolism in graft-versus-host disease. Blood Science, 2020, 2, 16-21.	0.4	5
1079	Designing the Next Generation of Vaccines: Relevance for Future Pandemics. MBio, 2020, 11, .	1.8	17
1080	Metabolic ROS Signaling: To Immunity and Beyond. Biochemistry (Moscow), 2020, 85, 1650-1667.	0.7	13
1081	Effect of HIV infection and antiretroviral therapy on immune cellular functions. JCI Insight, 2019, 4, .	2.3	70
1082	Donor and host B7-H4 expression negatively regulates acute graft-versus-host disease lethality. JCI Insight, 2019, 4, .	2.3	8
1083	Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight, 2017, 2, .	2.3	90
1084	Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. Journal of Clinical Investigation, 2018, 128, 4884-4897.	3.9	95
1085	Immunometabolism of pro-repair cells. Journal of Clinical Investigation, 2019, 129, 2597-2607.	3.9	30
1086	Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity. Journal of Clinical Investigation, 2019, 129, 5600-5614.	3.9	70
1087	Harnessing FOXP3+ regulatory T cells for transplantation tolerance. Journal of Clinical Investigation, 2014, 124, 1439-1445.	3.9	56
1088	High salt reduces the activation of IL-4– and IL-13–stimulated macrophages. Journal of Clinical Investigation, 2015, 125, 4223-4238.	3.9	229
1089	Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. Journal of Clinical Investigation, 2016, 126, 1337-1352.	3.9	107

#	Article	IF	CITATIONS
1090	Metabolic regulation of immune responses: therapeutic opportunities. Journal of Clinical Investigation, 2016, 126, 2031-2039.	3.9	78
1091	Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. Journal of Clinical Investigation, 2016, 126, 2642-2660.	3.9	81
1092	Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. Journal of Clinical Investigation, 2017, 127, 3609-3623.	3.9	35
1093	Polarized mitochondria as guardians of NK cell fitness. Blood Advances, 2021, 5, 26-38.	2.5	32
1094	Metabolic substrate utilization in stress-induced immune cells. Intensive Care Medicine Experimental, 2020, 8, 28.	0.9	21
1095	Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells. Biomedical Optics Express, 2020, 11, 5674.	1.5	15
1096	Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function. PLoS Genetics, 2020, 16, e1009192.	1.5	43
1097	Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses. PLoS ONE, 2015, 10, e0137776.	1.1	9
1098	Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses. PLoS ONE, 2016, 11, e0149582.	1.1	11
1099	Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism. PLoS ONE, 2016, 11, e0157175.	1.1	43
1100	Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS ONE, 2016, 11, e0164609.	1.1	35
1101	Programmed cell death-1, PD-1, is dysregulated in T cells from children with new onset type 1 diabetes. PLoS ONE, 2017, 12, e0183887.	1.1	31
1102	Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathogens, 2020, 16, e1008957.	2.1	13
1103	Expression of bovine interleukin 15 and evaluation of its biological activity in vitro. Veterinary World, 2015, 8, 295-300.	0.7	1
1104	T lymphocytes against solid malignancies: winning ways to defeat tumours. Cell Stress, 2018, 2, 200-212.	1.4	22
1105	Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging, 2020, 12, 26263-26278.	1.4	25
1106	The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget, 2018, 9, 23274-23288.	0.8	9
1107	Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain. Oncotarget, 2015, 6, 41582-41599.	0.8	44

#	Article	IF	CITATIONS
1108	The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget, 2016, 7, 38908-38926.	0.8	90
1109	Changing perspective on oncometabolites: from metabolic signature of cancer to tumorigenic and immunosuppressive agents. Oncotarget, 2016, 7, 46692-46706.	0.8	25
1110	Comprehensive insights into the effects and regulatory mechanisms of immune cells expressing programmed death-1/programmed death ligand 1 in solid tumors. Cancer Biology and Medicine, 2020, 17, 626-639.	1.4	7
1111	Complement and T Cell Metabolism: Food for Thought. Immunometabolism, 2019, 1, e190006.	0.7	14
1112	Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers. Endocrine Regulations, 2020, 54, 160-171.	0.5	24
1113	Imaging the Cancer Immune Environment and Its Response to Pharmacologic Intervention, Part 1: The Role of ¹⁸ F-FDG PET/CT. Journal of Nuclear Medicine, 2020, 61, 943-950.	2.8	39
1114	Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Frontiers in Pharmacology, 2020, 11, 590344.	1.6	29
1115	Interplay among Oxidative Stress, Methylglyoxal Pathway and S-Glutathionylation. Antioxidants, 2021, 10, 19.	2.2	32
1116	IRF4 Couples Anabolic Metabolism to Th1 Cell Fate Determination. ImmunoHorizons, 2017, 1, 156-161.	0.8	9
1117	Differential Fuel Requirements of Human NK Cells and Human CD8 T Cells: Glutamine Regulates Glucose Uptake in Strongly Activated CD8 T Cells. ImmunoHorizons, 2020, 4, 231-244.	0.8	11
1118	Translational control of mRNAs by 3'-Untranslated region binding proteins. BMB Reports, 2017, 50, 194-200.	1.1	26
1119	Immunometabolism: A target for the comprehension of immune response toward transplantation. World Journal of Transplantation, 2019, 9, 27-34.	0.6	6
1120	Long-term antigen exposure irreversibly modifies metabolic requirements for T cell function. ELife, 2018, 7, .	2.8	31
1121	A novel role for lipoxin A4 in driving a lymph node–eye axis that controls autoimmunity to the neuroretina. ELife, 2020, 9, .	2.8	12
1122	The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. ELife, 2020, 9, .	2.8	168
1123	Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. ELife, 2020, 9, .	2.8	9
1124	Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. ELife, 2020, 9, .	2.8	19
1125	The effects of age and systemic metabolism on anti-tumor T cell responses. ELife, 2020, 9, .	2.8	34

#	Article	IF	Citations
1127	Mitochondrial translation is required for sustained killing by cytotoxic T cells. Science, 2021, 374, eabe9977.	6.0	55
1128	Impact of intracellular innate immune receptors on immunometabolism. Cellular and Molecular Immunology, 2022, 19, 337-351.	4.8	61
1130	Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. Journal of Hematology and Oncology, 2021, 14, 169.	6.9	42
1132	Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren's syndrome by secreting soluble PD-L1. Journal of Leukocyte Biology, 2022, 111, 1043-1055.	1.5	10
1133	Metabolic Profile of Adaptive Immune Cells. , 2022, , 115-132.		0
1134	Review of the recent clinical trials for PD-1/PD-L1 based lung cancer immunotherapy. Expert Review of Anticancer Therapy, 2021, 21, 1355-1370.	1.1	6
1135	Metabolic regulation of the cancer-immunity cycle. Trends in Immunology, 2021, 42, 975-993.	2.9	28
1136	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
1137	Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomedicine and Pharmacotherapy, 2021, 144, 112230.	2.5	33
1138	Metabolic changes in cardiomyocytes during sepsis. Critical Care, 2013, 17, 186.	2.5	5
1140	T Cell Senescence and Autoimmunity. , 2015, , 119-128.		2
1142	Harnessing Stem Cell-Like Memory T Cells for Adoptive Cell Transfer Therapy of Cancer. Cancer Drug Discovery and Development, 2015, , 183-209.	0.2	4
1143	Quality of CTL Therapies: A Changing Landscape. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 303-349.	0.1	0
1145	Epidermal Fatty Acid Binding Protein (E-FABP) Is Not Required for the Generation or Maintenance of Effector and Memory T Cells following Infection with Listeria monocytogenes. PLoS ONE, 2016, 11, e0162427.	1.1	2
1146	Immunometabolism of lymphocytes and its changes in experimental diabetes mellitus. PatologÃe, 2016, .	0.1	0
1147	ls It Possible To Induce The "Spontaneous Regression" Of Cancer? A Mechanism of Activation for the Innate Immune Response. Journal of Nutritional Biology, 2016, 2, .	0.2	1
1149	Immunometabolomics: The metabolic landscape of immune cells in tumor microenvironment. Tumor & Microenvironment, 2018, 1, 72.	0.7	0
1155	Probing the RNA-Binding Proteome from Yeast to Man: Major Advances and Challenges. Methods in Molecular Biology, 2019, 2049, 213-231.	0.4	1

#	Article	IF	CITATIONS
1157	Immunometabolism: A target for the comprehension of immune response toward transplantation. World Journal of Transplantation, 2019, 9, 0-0.	0.6	0
1159	Targeting Strategies for Glucose Metabolic Pathways and T Cells in Colorectal Cancer. Current Cancer Drug Targets, 2019, 19, 534-550.	0.8	1
1161	T Cell Metabolism Is Dependent on Anatomical Location within the Lung. ImmunoHorizons, 2019, 3, 433-439.	0.8	1
1168	The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Reports, 2020, 21, e48260.	2.0	6
1171	Immunometabolic Therapeutic Targets of Graft-versus-Host Disease (GvHD). Metabolites, 2021, 11, 736.	1.3	8
1172	The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers, 2021, 13, 5447.	1.7	3
1173	Fueling T-cell Antitumor Immunity: Amino Acid Metabolism Revisited. Cancer Immunology Research, 2021, 9, 1373-1382.	1.6	33
1174	Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods in Molecular Biology, 2020, 2184, 233-263.	0.4	1
1176	Tumor Lactic Acidosis: Protecting Tumor by Inhibiting Cytotoxic Activity Through Motility Arrest and Bioenergetic Silencing. Frontiers in Oncology, 2020, 10, 589434.	1.3	24
1177	ĐžÑ, Đ¼ĐµÑ,Đ°Đ±Đ¾Đ»Đ,ĐĐ¼Đ° Đº Đ,Đ¼Đ¼ÑƒĐ½Đ,Ñ,еÑ,у: Đ ĐĐ š Đ, ĐÑ€ÑƒĐ³Đ,е ÑĐ,Đ³Đ½Đ°Đ»Ñ	. Btoohem	ist o y, 2020, 8
1180	T-Cell Metabolism and Its Dysfunction Induced by Cancer. , 2020, , 107-116.		0
1181	Innate-like T Cells in the Context of Metabolic Disease and Novel Therapeutic Targets. Immunometabolism, 2020, , .	0.7	1
1187	Tumor microenvironment: the formation of the immune profile. Medical Immunology (Russia), 2020, 22, 207-220.	0.1	3
1189	Pagulatory TAcall differentiation is controlled by 1+KC induced alterations in mitochondrial metabolism		
	and lipid homeostasis. Cell Reports, 2021, 37, 109911.	2.9	39
1190	and lipid homeostasis. Cell Reports, 2021, 37, 109911. Selection and stability validation of reference gene candidates for transcriptional analysis in Rousettus aegyptiacus. Scientific Reports, 2021, 11, 21662.	2.9	39 4
1190 1192	and lipid homeostasis. Cell Reports, 2021, 37, 109911. Selection and stability validation of reference gene candidates for transcriptional analysis in Rousettus aegyptiacus. Scientific Reports, 2021, 11, 21662. Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity. Journal of Histochemistry and Cytochemistry, 2022, 70, 53-81.	2.9 1.6 1.3	39 4 6
1190 1192 1196	 and lipid homeostasis. Cell Reports, 2021, 37, 109911. Selection and stability validation of reference gene candidates for transcriptional analysis in Rousettus aegyptiacus. Scientific Reports, 2021, 11, 21662. Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity. Journal of Histochemistry and Cytochemistry, 2022, 70, 53-81. The E3 ubiquitin ligase Peli1 regulates the metabolic actions of mTORC1 to suppress antitumor T cell responses. EMBO Journal, 2021, 40, e104532. 	2.9 1.6 1.3 3.5	39 4 6 14

#	Article	IF	CITATIONS
1198	The role of metabolic reprogramming in T cell fate and function. Current Trends in Immunology, 2016, 17, 1-12.	4.0	29
1199	The small chain fatty acid butyrate antagonizes the TCR-stimulation-induced metabolic shift in murine epidermal gamma delta T cells. EXCLI Journal, 2020, 19, 334-350.	0.5	3
1200	Latency-associated DNA methylation patterns among HIV-1 infected individuals with distinct disease progression courses or antiretroviral virologic response. Scientific Reports, 2021, 11, 22993.	1.6	3
1201	Cancer metabolism and tumor microenvironment: fostering each other?. Science China Life Sciences, 2022, 65, 236-279.	2.3	68
1202	Mitochondrial Dysfunction in Advanced Liver Disease: Emerging Concepts. Frontiers in Molecular Biosciences, 2021, 8, 772174.	1.6	9
1203	RNA-Binding Protein Expression Alters Upon Differentiation of Human B Cells and T Cells. Frontiers in Immunology, 2021, 12, 717324.	2.2	13
1204	Quantitative genome-scale metabolic modeling of human CD4+ TÂcell differentiation reveals subset-specific regulation of glycosphingolipid pathways. Cell Reports, 2021, 37, 109973.	2.9	8
1205	Mitochondrial-Linked De Novo Pyrimidine Biosynthesis Dictates Human T-Cell Proliferation but Not Expression of Effector Molecules. Frontiers in Immunology, 2021, 12, 718863.	2.2	7
1206	T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic Malignancy. Frontiers in Immunology, 2021, 12, 780442.	2.2	42
1208	Targeting T cell metabolism for immunotherapy. Journal of Leukocyte Biology, 2021, 110, 1081-1090.	1.5	3
1209	Fatty acid metabolism in adaptive immunity. FEBS Journal, 2023, 290, 584-599.	2.2	13
1210	Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Frontiers in Oncology, 2021, 11, 773028.	1.3	10
1211	Editorial: Hexose Uptake and Metabolism in Immune Homeostasis and Inflammation. Frontiers in Immunology, 2021, 12, 832293.	2.2	1
1212	D2HGDH-mediated D2HG catabolism enhances the anti-tumor activities of CAR-T cells in an immunosuppressive microenvironment. Molecular Therapy, 2022, 30, 1188-1200.	3.7	19
1213	Enhanced Proinflammatory Cytokine Production and Immunometabolic Impairment of NK Cells Exposed to Mycobacterium tuberculosis and Cigarette Smoke. Frontiers in Cellular and Infection Microbiology, 2021, 11, 799276.	1.8	3
1214	Predicting Tâ€cell quality during manufacturing through an artificial intelligenceâ€based integrative multiomics analytical platform. Bioengineering and Translational Medicine, 2022, 7, e10282.	3.9	9
1215	Ethyl pyruvate, a versatile protector in inflammation and autoimmunity. Inflammation Research, 2022, 71, 169-182.	1.6	8
1216	Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy. Cancer Letters, 2022, 529, 139-152.	3.2	18

#	Article	IF	CITATIONS
1217	NRF2: KEAPing Tumors Protected. Cancer Discovery, 2022, 12, 625-643.	7.7	60
1218	Fighting in a wasteland: deleterious metabolites and antitumor immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	21
1219	Identification of rare cell populations in autofluorescence lifetime image data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 497-506.	1.1	7
1220	Protein synthesis, degradation, and energy metabolism in T cell immunity. Cellular and Molecular Immunology, 2022, 19, 303-315.	4.8	38
1221	Metabolic adaptation of lymphocytes in immunity and disease. Immunity, 2022, 55, 14-30.	6.6	91
1222	Role of Cellular Metabolism during Candida-Host Interactions. Pathogens, 2022, 11, 184.	1.2	14
1223	Noncognate Signals Drive Enhanced Effector CD8 + T Cell Responses through an IFNAR1-Dependent Pathway after Infection with the Prototypic Vaccine, OΔNLS, against Herpes Simplex Virus 1. Journal of Virology, 2022, , JVI0172421.	1.5	2
1224	G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. , 2022, 10, e003543.		10
1225	Hyperglycemia and Not Hyperinsulinemia Mediates Diabetes-Induced Memory CD8 T-Cell Dysfunction. Diabetes, 2022, 71, 706-721.	0.3	19
1226	Mitochondria and Viral Infection: Advances and Emerging Battlefronts. MBio, 2022, 13, e0209621.	1.8	10
1227	The Influence of Obesity and Weight Loss on the Bioregulation of Innate/Inflammatory Responses: Macrophages and Immunometabolism. Nutrients, 2022, 14, 612.	1.7	6
1228	Imaging the Rewired Metabolism in Lung Cancer in Relation to Immune Therapy. Frontiers in Oncology, 2021, 11, 786089.	1.3	2
1229	Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells, 2022, 11, 179.	1.8	15
1230	Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies. Science Translational Medicine, 2022, 14, eabg3072.	5.8	47
1231	Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8+ T Cells in Elderly Humans. Journal of Immunology, 2022, 208, 562-570.	0.4	15
1232	Immunometabolism in biofilm infection: lessons from cancer. Molecular Medicine, 2022, 28, 10.	1.9	18
1233	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	9.5	42
1234	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	12.8	101

1235 æ⁰¨åŸºé…,æ"ŸçŸ¥ç³»ç»ŸmTORC1å'ŒGCN2è°f控机ä¼2"å…ç−«ç»†èfžå'è,²ã€å^†åŒ−åŠåŠŸèf½çš"作ç"¨æœ?å^¶. Sciontia Sinica

1238	The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes?. Frontiers in Immunology, 2022, 13, 828875.	2.2	31
1239	Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology, 2022, 86, 542-565.	4.3	51
1240	Metformin attenuated sepsis-associated liver injury and inflammatory response in aged mice. Bioengineered, 2022, 13, 4598-4609.	1.4	10
1241	Challenges of chimeric antigen receptor T-cell therapy in chronic lymphocytic leukemia: lessons learned. Experimental Hematology, 2022, 108, 1-7.	0.2	9
1242	Broiler chickens with 1950s genetics display a stable immune profile as measured by Kinome, mRNA expression, and metabolism when stimulated early in life with CpC. Poultry Science, 2022, 101, 101775.	1.5	4
1243	Chemical augmentation of mitochondrial electron transport chains tunes T cell activation threshold in tumors. , 2022, 10, e003958.		4
1244	Itaconate indirectly influences expansion of effector T cells following vaccination with Francisella tularensis live vaccine strain. Cellular Immunology, 2022, 373, 104485.	1.4	5
1245	Coenzyme A fuels TÂcell anti-tumor immunity. Cell Metabolism, 2021, 33, 2415-2427.e6.	7.2	31
1246	Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 2021, 6, 425.	7.1	302
1247	Mitochondrial C5aR1 activity in macrophages controls IL-1Î ² production underlying sterile inflammation. Science Immunology, 2021, 6, eabf2489.	5.6	50
1249	Mitochondria Transfer to CD4+ T Cells May Alleviate Rheumatoid Arthritis by Suppressing Pro-Inflammatory Cytokine Production. Immunometabolism, 2022, 4, .	0.7	4
1250	Improving Cancer Immunotherapy: Exploring and Targeting Metabolism in Hypoxia Microenvironment. Frontiers in Immunology, 2022, 13, 845923.	2.2	11
1251	Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft-Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Frontiers in Immunology, 2022, 13, 751296.	2.2	6
1252	New Developments in T Cell Immunometabolism and Implications for Cancer Immunotherapy. Cells, 2022, 11, 708.	1.8	8
1253	IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 TÂcells cross-primed by liver sinusoidal endothelial cells. Cell Reports, 2022, 38, 110389.	2.9	10
1254	Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Frontiers in Immunology, 2022, 13, 828191.	2.2	14
1256	Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment. Acta Pharmaceutica Sinica B, 2022, 12, 1825-1839.	5.7	9

.

#	ARTICLE	IF	CITATIONS
1257	Zinc Levels Affect the Metabolic Switch of T Cells by Modulating Glucose Uptake and Insulin Receptor Signaling. Molecular Nutrition and Food Research, 2022, 66, e2100944.	1.5	4
1258	Identification of Distinct Inflammatory Programs and Biomarkers in Systemic Juvenile Idiopathic Arthritis and Related Lung Disease by Serum Proteome Analysis. Arthritis and Rheumatology, 2022, 74, 1271-1283.	2.9	24
1259	Nicotinamide breaks effector CD8 TÂcell responses by targeting mTOR signaling. IScience, 2022, 25, 103932.	1.9	4
1260	1,25â€Dihydroxyvitamin D3 suppresses CD4 ⁺ Tâ€cell effector functionality by inhibition of glycolysis. Immunology, 2022, 166, 299-309.	2.0	6
1261	Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases?. Frontiers in Allergy, 2022, 3, 825931.	1.2	7
1262	Allo-reactive tissue-resident T cells causing damage: An inside job. Journal of Experimental Medicine, 2022, 219, .	4.2	1
1263	The Role of Metabolic Dysfunction in T-Cell Exhaustion During Chronic Viral Infection. Frontiers in Immunology, 2022, 13, 843242.	2.2	10
1264	T Cell Metabolism in Infection. Frontiers in Immunology, 2022, 13, 840610.	2.2	45
1265	FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends in Cancer, 2022, 8, 598-614.	3.8	61
1266	STAT3 Role in T-Cell Memory Formation. International Journal of Molecular Sciences, 2022, 23, 2878.	1.8	10
1267	Insulin and cancer: a tangled web. Biochemical Journal, 2022, 479, 583-607.	1.7	22
1268	Superior antitumor immunotherapy efficacy of kynureninase modified CAR-T cells through targeting kynurenine metabolism. Oncolmmunology, 2022, 11, 2055703.	2.1	8
1269	Roles of RNA-binding proteins in immune diseases and cancer. Seminars in Cancer Biology, 2022, 86, 310-324.	4.3	14
1270	Sirtuins are crucial regulators of T cell metabolism and functions. Experimental and Molecular Medicine, 2022, 54, 207-215.	3.2	23
1271	CRISPR-Cas9 screen identifies oxidative phosphorylation as essential for cancer cell survival at low extracellular pH. Cell Reports, 2022, 38, 110493.	2.9	25
1272	Postbiotics Enhance NK Cell Activation in Stress-Induced Mice through Gut Microbiome Regulation. Journal of Microbiology and Biotechnology, 2022, 32, 612-620.	0.9	3
1273	Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. Journal of Hematology and Oncology, 2022, 15, 38.	6.9	20
1274	Clinically relevant TÂcell expansion media activate distinct metabolic programs uncoupled from cellular function. Molecular Therapy - Methods and Clinical Development, 2022, 24, 380-393.	1.8	12

#	Article	IF	CITATIONS
1275	Metabolic programs tailor TÂcell immunity in viral infection, cancer, and aging. Cell Metabolism, 2022, 34, 378-395.	7.2	41
1276	Metabolic Regulation of CD8 ⁺ T Cells: From Mechanism to Therapy. Antioxidants and Redox Signaling, 2022, 37, 1234-1253.	2.5	5
1277	A genome-scale gain-of-function CRISPR screen in CD8 TÂcells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism, 2022, 34, 595-614.e14.	7.2	70
1278	Drug delivery for metabolism targeted cancer immunotherapy. Advanced Drug Delivery Reviews, 2022, 184, 114242.	6.6	10
1279	CAR TÂcell therapy and the tumor microenvironment: Current challenges and opportunities. Molecular Therapy - Oncolytics, 2022, 25, 69-77.	2.0	60
1280	GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nature Communications, 2021, 12, 6666.	5.8	42
1281	The Chemokine Receptor CCR5 Links Memory CD4+ T Cell Metabolism to T Cell Antigen Receptor Nanoclustering. Frontiers in Immunology, 2021, 12, 722320.	2.2	4
1282	Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 TÂcell expansion and anti-tumor immunity. Cell Reports, 2021, 37, 110083.	2.9	22
1283	Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers, 2022, 14, 183.	1.7	8
1284	Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers, 2021, 13, 6231.	1.7	13
1286	The Pyruvate Dehydrogenase Complex in Sepsis: Metabolic Regulation and Targeted Therapy. Frontiers in Nutrition, 2021, 8, 783164.	1.6	22
1287	Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. Journal of Translational Medicine, 2021, 19, 499.	1.8	33
1288	ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nature Cancer, 2022, 3, 75-89.	5.7	58
1289	Sirtuin 5 is Dispensable for CD8+ T Cell Effector and Memory Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 761193.	1.8	0
1290	Divergent Genetic Regulation of Nitric Oxide Production between C57BL/6J and Wild-Derived PWD/PhJ Mice Controls Postactivation Mitochondrial Metabolism, Cell Survival, and Bacterial Resistance in Dendritic Cells. Journal of Immunology, 2022, 208, 97-109.	0.4	2
1291	Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clinical Reviews in Allergy and Immunology, 2022, 63, 499-529.	2.9	17
1293	Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death and Disease, 2022, 13, 378.	2.7	37
1294	IFNα Potentiates Anti–PD-1 Efficacy by Remodeling Glucose Metabolism in the Hepatocellular Carcinoma Microenvironment. Cancer Discovery, 2022, 12, 1718-1741.	7.7	66

		I.	Circuration
#	AKTICLE	IF	CHATIONS
1295	immunometabolism to control immunity. Medical Hypotheses, 2022, 163, 110841.	0.8	0
1296	Ex vivo activated CD4+ T cells from young calves exhibit Th2-biased effector function with distinct metabolic reprogramming compared to adult cows. Veterinary Immunology and Immunopathology, 2022, 248, 110418.	0.5	0
1325	Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clinical Science, 2022, 136, 435-454.	1.8	8
1327	Dissecting the heterogeneity of exhausted T cells at the molecular level. International Immunology, 2022, 34, 547-553.	1.8	2
1328	PDK4 Constitutes a Novel Prognostic Biomarker and Therapeutic Target in Gastric Cancer. Diagnostics, 2022, 12, 1101.	1.3	2
1329	How CAR T Cells Breathe. Cells, 2022, 11, 1454.	1.8	4
1330	Treatment with Exogenously Added Catalase Alters CD8 T Cell Memory Differentiation and Function. Advanced Biology, 2023, 7, e2101320.	1.4	3
1331	Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annual Review of Immunology, 2022, 40, 45-74.	9.5	122
1332	Loss of voltage-gated hydrogen channel 1 expression reveals heterogeneous metabolic adaptation to intracellular acidification by T cells. JCI Insight, 2022, 7, .	2.3	7
1333	The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology, 2022, 19, 723-736.	6.1	62
1334	HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy. Journal of Clinical Investigation, 2022, 132, .	3.9	44
1335	Brain Endothelial Cells Utilize Glycolysis for the Maintenance of the Transcellular Permeability. Molecular Neurobiology, 2022, 59, 4315-4333.	1.9	6
1336	<scp>CD8</scp> agonism functionally activates memory T cells and enhances antitumor immunity. International Journal of Cancer, 2022, 151, 797-808.	2.3	3
1337	Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers, 2022, 14, 2392.	1.7	7
1338	Fatty Acid Metabolism and T Cells in Multiple Sclerosis. Frontiers in Immunology, 2022, 13, .	2.2	6
1339	Dysregulation of immune checkpoint proteins in hepatocellular carcinoma: Impact on metabolic reprogramming. Current Opinion in Pharmacology, 2022, 64, 102232.	1.7	1
1340	Metabolic reprogramming by ex vivo glutamine inhibition endows CAR-T cells with less-differentiated phenotype and persistent antitumor activity. Cancer Letters, 2022, 538, 215710.	3.2	17
1341	Tetrandrine, an immunosuppressive alkaloid isolated from <i>Steohania tetrandra</i> S. Moore, induces the generation of Treg cells through enhancing fatty acid oxidation. Immunology, 2022, 166, 492-506.	2.0	2

#	Article	IF	CITATIONS
1342	A potent PGK1 antagonist reveals PGK1 regulates the production of IL-1Î ² and IL-6. Acta Pharmaceutica Sinica B, 2022, 12, 4180-4192.	5.7	9
1343	Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules, 2022, 12, 702.	1.8	3
1349	Emerging roles for RNA-binding proteins in T lymphocytes. Immunology Letters, 2022, 246, 52-56.	1.1	4
1350	The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nature Communications, 2022, 13, .	5.8	11
1351	Distinguishing the Pros and Cons of Metabolic Reprogramming in Oncolytic Virus Immunotherapy. International Journal of Cancer, 0, , .	2.3	0
1352	Intracellular Acetyl CoA Potentiates the Therapeutic Efficacy of Antitumor CD8+ T Cells. Cancer Research, 2022, 82, 2640-2655.	0.4	13
1353	Enhanced T Cell Glucose Uptake Is Associated With Progression of Beta-Cell Function in Type 1 Diabetes. Frontiers in Immunology, 0, 13, .	2.2	1
1354	How the metabolic phenotype in adulthood is affected by long-lasting immunological trajectories since adolescence. Scientific Reports, 2022, 12, .	1.6	0
1355	Lysophosphatidylserines derived from microbiota in Crohn's disease elicit pathological Th1 response. Journal of Experimental Medicine, 2022, 219, .	4.2	12
1360	Tumor Glycolytic Profiling Through 18F-FDG PET/CT Predicts Immune Checkpoint Inhibitor Efficacy in Advanced NSCLC. SSRN Electronic Journal, 0, , .	0.4	0
1361	Arming a killer: mitochondrial regulation of CD8+ T cell cytotoxicity. Trends in Cell Biology, 2023, 33, 138-147.	3.6	9
1362	Atopy as Immune Dysregulation: Offender Genes and Targets. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1737-1756.	2.0	15
1363	Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Frontiers in Immunology, 0, 13, .	2.2	1
1364	Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	10
1365	Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. Immunotherapy Advances, 2022, 2, .	1.2	5
1367	Elevated CD4+ T-cell glucose metabolism in HIV+ women with diabetes mellitus. Aids, 2022, 36, 1327-1336.	1.0	4
1368	Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration?. Cells, 2022, 11, 1854.	1.8	7
1369	Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila. Nature Communications, 2022, 13, .	5.8	9

#	Article	IF	CITATIONS
1370	Manipulating Metabolic Alterations and their Consequences to Unleash the Potential of Antitumor Immunotherapy. Current Protein and Peptide Science, 2022, 23, 585-601.	0.7	1
1372	Fatty acid metabolism in T-cell function and differentiation. International Immunology, 2022, 34, 579-587.	1.8	11
1373	T Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	2
1374	Nutrient Condition in the Microenvironment Determines Essential Metabolisms of CD8+ T Cells for Enhanced IFNÎ ³ Production by Metformin. Frontiers in Immunology, 0, 13, .	2.2	8
1375	Integrative understanding of immune-metabolic interaction. BMB Reports, 2022, 55, 259-266.	1.1	1
1376	Impaired Lymphocyte Responses in Pediatric Sepsis Vary by Pathogen Type and are Associated with Features of Immunometabolic Dysregulation. Shock, 2022, 57, 191-199.	1.0	7
1377	P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules, 2022, 12, 983.	1.8	6
1378	Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ TÂcells. Cell Metabolism, 2022, 34, 1137-1150.e6.	7.2	78
1379	A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment. Frontiers in Oncology, 0, 12, .	1.3	7
1380	Controlling Herpes Simplex Virus-Induced Immunoinflammatory Lesions Using Metabolic Therapy: a Comparison of 2-Deoxy- <scp>d</scp> -Glucose with Metformin. Journal of Virology, 0, , .	1.5	5
1381	Altered Transcriptional Regulation of Glycolysis in Circulating CD8+ T Cells of Rheumatoid Arthritis Patients. Genes, 2022, 13, 1216.	1.0	3
1382	Targeting the tissue-complosome for curbing inflammatory disease. Seminars in Immunology, 2022, 60, 101644.	2.7	4
1383	Regulatory Tâ€cell development in the tumor microenvironment. European Journal of Immunology, 2022, 52, 1216-1227.	1.6	29
1384	Pathophysiology of RAGE in inflammatory diseases. Frontiers in Immunology, 0, 13, .	2.2	44
1385	A prognostic Risk Score model for oral squamous cell carcinoma constructed by 6 glycolysis-immune-related genes. BMC Oral Health, 2022, 22, .	0.8	2
1386	The mutual interaction of glycolytic enzymes and RNA in post-transcriptional regulation. Rna, 2022, 28, 1446-1468.	1.6	6
1387	Invariant NKT cells metabolically adapt to the acute myeloid leukaemia environment. Cancer Immunology, Immunotherapy, 2023, 72, 543-560.	2.0	3
1388	Intestinal tissue-resident T cell activation depends on metabolite availability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9

#	Article	IF	CITATIONS
1389	mTOR regulation of metabolism limits LPS-induced monocyte inflammatory and procoagulant responses. Communications Biology, 2022, 5, .	2.0	3
1391	Immune cellular components and signaling pathways in the tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 187-201.	4.3	18
1392	Carbon source availability drives nutrient utilization in CD8+ TÂcells. Cell Metabolism, 2022, 34, 1298-1311.e6.	7.2	47
1393	mTOR participates in the formation, maintenance, and function of memory CD8+T cells regulated by glycometabolism. Biochemical Pharmacology, 2022, 204, 115197.	2.0	3
1394	Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Seminars in Cancer Biology, 2022, 86, 14-27.	4.3	21
1395	Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis. Parasitology International, 2023, 92, 102661.	0.6	2
1396	General and Emerging Concepts of Immunity. , 2022, , .		0
1397	Comprehensive Analysis of the Significance of Ferroptosis-Related Genes in the Prognosis and Immunotherapy of Oral Squamous Cell Carcinoma. Bioinformatics and Biology Insights, 2022, 16, 117793222211155.	1.0	2
1398	scRNA-seq reveals ATPIF1 activity in control of T cell antitumor activity. Oncolmmunology, 2022, 11, .	2.1	4
1399	Mitochondrial dysfunction triggers actin polymerization necessary for rapid glycolytic activation. Journal of Cell Biology, 2022, 221, .	2.3	4
1400	Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Frontiers in Immunology, 0, 13, .	2.2	4
1402	An expanded population of CD8dim T cells with features of mitochondrial dysfunction and senescence is associated with persistent HIV-associated Kaposi's sarcoma under ART. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1404	Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	17
1405	Enforcing GLUT3 expression in CD8+ T cells improves fitness and tumor control by promoting glucose uptake and energy storage. Frontiers in Immunology, 0, 13, .	2.2	7
1406	Metabolic plasticity and regulation of T cell exhaustion. Immunology, 2022, 167, 482-494.	2.0	14
1407	Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nature Communications, 2022, 13, .	5.8	88
1408	Predictive value of baseline metabolic tumor volume for non-small-cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Frontiers in Oncology, 0, 12, .	1.3	2
1409	Intracellular complement: Evidence, definitions, controversies, and solutions. Immunological Reviews, 2023, 313, 104-119.	2.8	13
	CITATIO	N REPORT	
------	---	----------	-----------
#	Article	IF	CITATIONS
1410	Introduction: Redefining T-cell Exhaustion Special Issue. International Immunology, 2022, 34, 545-546.	1.8	0
1411	Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell, 2022, 40, 1207-1222.e10.	7.7	76
1412	NAMPT is a metabolic checkpoint of IFNÎ ³ -producing CD4+ TÂcells in lupus nephritis. Molecular Therapy, 2023, 31, 193-210.	3.7	6
1413	Siglec-7 represents a glyco-immune checkpoint for non-exhausted effector memory CD8+ T cells with high functional and metabolic capacities. Frontiers in Immunology, 0, 13, .	2.2	9
1414	Oncometabolite <scp>d</scp> -2HG alters T cell metabolism to impair CD8 ⁺ T cell function. Science, 2022, 377, 1519-1529.	6.0	85
1415	Human Umbilical Vein Endothelial Cells Survive on the Ischemic TCA Cycle under Lethal Ischemic Conditions. Journal of Proteome Research, 2022, 21, 2385-2396.	1.8	0
1416	High serum LDH and liver metastases are the dominant predictors of primary cancer resistance to anti-PD(L)1 immunotherapy. European Journal of Cancer, 2022, 177, 80-93.	1.3	12
1417	Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	33
1419	Lipid metabolic features of T cells in the Tumor Microenvironment. Lipids in Health and Disease, 2022, 21, .	1.2	2
1420	High expression of HNRNPR in ESCA combined with 18F-FDG PET/CT metabolic parameters are novel biomarkers for preoperative diagnosis of ESCA. Journal of Translational Medicine, 2022, 20, .	1.8	6
1421	Unraveling tumor microenvironment of small-cell lung cancer: Implications for immunotherapy. Seminars in Cancer Biology, 2022, 86, 117-125.	4.3	30
1422	Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment. Sub-Cellular Biochemistry, 2022, , 3-65.	1.0	4
1423	Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Sub-Cellular Biochemistry, 2022, , 581-616.	1.0	0
1424	AKT Isoforms in the Immune Response in Cancer. Current Topics in Microbiology and Immunology, 2022, , 349-366.	0.7	0
1425	Protein Kinase CK2 Controls CD8 ⁺ T Cell Effector and Memory Function during Infection. Journal of Immunology, 2022, 209, 896-906.	0.4	4
1427	Mitochondrial VDAC1: A Potential Therapeutic Target of Inflammation-Related Diseases and Clinical Opportunities. Cells, 2022, 11, 3174.	1.8	15
1429	Metabolic communication in the tumour–immune microenvironment. Nature Cell Biology, 2022, 24, 1574-1583.	4.6	65
1430	Metabolic features of innate lymphoid cells. Journal of Experimental Medicine, 2022, 219, .	4.2	2

#	Article	IF	CITATIONS
1431	Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	5
1432	Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. Journal of the National Cancer Center, 2022, 2, 243-262.	3.0	5
1433	Protective effect of Schistosoma japonicum eggs on TNBS-induced colitis is associated with regulating Treg/Th17 balance and reprogramming glycolipid metabolism in mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
1434	Lactate induces metabolic and epigenetic reprogramming of proâ€inflammatory Th17 cells. EMBO Reports, 2022, 23, .	2.0	20
1435	Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers, 2022, 14, 5108.	1.7	9
1436	Keratinocyte-induced costimulation of human T cells through CD6 - but not CD2 - activates mTOR and prevents oxidative stress. Frontiers in Immunology, 0, 13, .	2.2	0
1437	Inhibition of Pyruvate Dehydrogenase Kinase 4 in CD4+ T Cells Ameliorates Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 439-461.	2.3	8
1438	NKT cells adopt a glutamine-addicted phenotype to regulate their homeostasis and function. Cell Reports, 2022, 41, 111516.	2.9	5
1439	From thymus to tissues and tumors: AÂreview of T-cell biology. Journal of Allergy and Clinical Immunology, 2023, 151, 81-97.	1.5	14
1440	Innate metabolic responses against viral infections. Nature Metabolism, 2022, 4, 1245-1259.	5.1	28
1441	Reinventing the Penumbra — the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Translational Stroke Research, 2023, 14, 643-666.	2.3	9
1442	Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. Journal of Hematology and Oncology, 2022, 15, .	6.9	60
1443	Nanomodulation and nanotherapeutics of tumor-microenvironment. OpenNano, 2022, 8, 100099.	1.8	0
1444	Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Frontiers in Microbiology, 0, 13, .	1.5	1
1445	Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine and Growth Factor Reviews, 2022, 68, 81-92.	3.2	55
1446	What role for cellular metabolism in the control of hepatitis viruses?. Frontiers in Immunology, 0, 13,	2.2	4
1447	Acute and chronic inflammation alter immunometabolism in a cutaneous delayed-type hypersensitivity reaction (DTHR) mouse model. Communications Biology, 2022, 5, .	2.0	5
1448	CD8+ TÂcell metabolic rewiring defined by scRNA-seq identifies a critical role of ASNS expression dynamics in TÂcell differentiation. Cell Reports, 2022, 41, 111639.	2.9	12

#	Article	IF	CITATIONS
1449	Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines, 2022, 10, 2809.	1.4	8
1450	Multiomics analysis couples mRNA turnover and translational control of glutamine metabolism to the activated CD4+ T cell. Scientific Reports, 2022, 12, .	1.6	5
1451	OXPHOS promotes apoptotic resistance and cellular persistence in T _H 17 cells in the periphery and tumor microenvironment. Science Immunology, 2022, 7, .	5.6	29
1452	Mitochondrial function and immune response-regulating factor-encoding gene promoters. , 2023, , 15-31.		0
1453	Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Seminars in Cancer Biology, 2023, 88, 32-45.	4.3	12
1454	The signaling and the metabolic differences of various CAR T cell designs. International Immunopharmacology, 2023, 114, 109593.	1.7	2
1455	mTOR inhibitor, gemcitabine and PD-L1 antibody blockade combination therapy suppresses pancreatic cancer progression via metabolic reprogramming and immune microenvironment remodeling in Trp53flox/+LSL-KrasG12D/+Pdx-1-Cre murine models. Cancer Letters, 2023, 554, 216020.	3.2	4
1456	Procyanidin B2 3,3″-di-O-gallate suppresses IFN-γ production in murine CD4+ T cells through the regulation of glutamine influx via direct interaction with ASCT2. International Immunopharmacology, 2023, 115, 109617.	1.7	3
1457	Tumor glycolytic profiling through ¹⁸ F-FDG PET/CT predicts immune checkpoint inhibitor efficacy in advanced NSCLC. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592211383.	1.4	2
1458	Targeting the CD47/thrombospondin-1 signaling axis regulates immune cell bioenergetics in the tumor microenvironment to potentiate antitumor immune response. , 2022, 10, e004712.		11
1459	Increased tumor glycolysis is associated with decreased immune infiltration across human solid tumors. Frontiers in Immunology, 0, 13, .	2.2	6
1460	LDHA: The Obstacle to T cell responses against tumor. Frontiers in Oncology, 0, 12, .	1.3	4
1461	Prognostic Hematologic Biomarkers Following Immune Checkpoint Inhibition in Metastatic Uveal Melanoma. Cancers, 2022, 14, 5789.	1.7	3
1462	Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Frontiers in Immunology, 0, 13, .	2.2	3
1464	GLUT-1/PKM2 loop dysregulation in patients with non-ST-segment elevation myocardial infarction promotes metainflammation. Cardiovascular Research, 0, , .	1.8	4
1465	Label-free optical imaging of cell function and collagen structure for cell-based therapies. Current Opinion in Biomedical Engineering, 2023, 25, 100433.	1.8	0
1466	Mitochondria Drive Immune Responses in Critical Disease. Cells, 2022, 11, 4113.	1.8	5
1467	lsotope tracing reveals distinct substrate preference in murine melanoma subtypes with differing anti-tumor immunity. Cancer & Metabolism, 2022, 10, .	2.4	8

#	Article	IF	CITATIONS
1468	IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein. Science Immunology, 2022, 7, .	5.6	25
1469	Glycolytic flux-signaling controls mouse embryo mesoderm development. ELife, 0, 11, .	2.8	14
1470	Metabolism heterogeneity in melanoma fuels deactivation of immunotherapy: Predict before protect. Frontiers in Oncology, 0, 12, .	1.3	6
1471	Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Frontiers in Immunology, 0, 13, .	2.2	8
1472	Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Frontiers in Immunology, 0, 13, .	2.2	4
1473	Age-associated remodeling of TÂcell immunity and metabolism. Cell Metabolism, 2023, 35, 36-55.	7.2	19
1474	Memory CD8 ⁺ T cells upregulate glycolysis and effector functions under limiting oxygen conditions. European Journal of Immunology, 2023, 53, .	1.6	1
1475	Cancer cell targeting by CAR-T cells: A matter of stemness. Frontiers in Molecular Medicine, 0, 2, .	0.6	1
1476	FLIM of NAD(P)H in Lymphatic Nodes Resolves T-Cell Immune Response to the Tumor. International Journal of Molecular Sciences, 2022, 23, 15829.	1.8	1
1479	Immune Cell Metabolism and Immuno-Oncology. Annual Review of Cancer Biology, 2023, 7, 93-110.	2.3	4
1480	Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Frontiers in Immunology, 0, 13, .	2.2	2
1481	Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunology, 2023, 16, 72-85.	2.7	5
1482	Partners in crime: The feedback loop between metabolic reprogramming and immune checkpoints in the tumor microenvironment. Frontiers in Oncology, 0, 12, .	1.3	1
1483	Metformin and Its Immune-Mediated Effects in Various Diseases. International Journal of Molecular Sciences, 2023, 24, 755.	1.8	8
1484	Enhancing Mucosal-Associated Invariant T Cell Function and Expansion with Human Selective Serum. ImmunoHorizons, 2023, 7, 116-124.	0.8	2
1485	Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. Journal of Leukocyte Biology, 2023, 113, 164-190.	1.5	3
1486	PHD2 Constrains Antitumor CD8+ T-cell Activity. Cancer Immunology Research, 2023, 11, 339-350.	1.6	2
1487	LDHA as a regulator of T cell fate and its mechanisms in disease. Biomedicine and Pharmacotherapy, 2023, 158, 114164.	2.5	8

#	Article	IF	CITATIONS
1488	Natural killer cells and type 1 innate lymphoid cells in cancer. Seminars in Immunology, 2023, 66, 101709.	2.7	9
1489	Single-cell metabolic analysis by mass cytometry reveals distinct transitional states of CD8 T cell differentiation. Journal of Immunology, 2020, 204, 155.18-155.18.	0.4	1
1490	Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	10
1491	Current Technical Approaches to Study RNA–Protein Interactions in mRNAs and Long Non-Coding RNAs. Biochem, 2023, 3, 1-14.	0.5	Ο
1492	Amelioration of Autoimmunity in a Lupus Mouse Model by Modulation of <scp>Tâ€Bet</scp> –Promoted Energy Metabolism in Pathogenic Age/ <scp>Autoimmuneâ€Associated</scp> B Cells. Arthritis and Rheumatology, 2023, 75, 1203-1215.	2.9	7
1493	Metabolic reprogramming by miRNAs in the tumor microenvironment: Focused on immunometabolism. Frontiers in Oncology, 0, 12, .	1.3	7
1494	A High-Throughput Sequencing Data-Based Classifier Reveals the Metabolic Heterogeneity of Hepatocellular Carcinoma. Cancers, 2023, 15, 592.	1.7	2
1495	T cell exhaustion in malignant gliomas. Trends in Cancer, 2023, 9, 270-292.	3.8	23
1496	MAITabolism2 – the emerging understanding of MAIT cell metabolism and their role in metabolic disease. Frontiers in Immunology, 0, 13, .	2.2	0
1497	Alterations in Lymphocytic Metabolism—An Emerging Hallmark of MS Pathophysiology?. International Journal of Molecular Sciences, 2023, 24, 2094.	1.8	1
1498	Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Reports, 2023, 42, 112035.	2.9	3
1499	Biological Aging in People Living with HIV on Successful Antiretroviral Therapy: Do They Age Faster?. Current HIV/AIDS Reports, 2023, 20, 42-50.	1.1	4
1500	Mitochondrial-linked de novo pyrimidine synthesis as a regulator of T cell responses. Immunometabolism, 2023, 5, e00019.	0.7	1
1501	Metabolism along the life journey of T cells. , 2023, 2, .		4
1502	Tumor lactic acid: a potential target for cancer therapy. Archives of Pharmacal Research, 2023, 46, 90-110.	2.7	8
1503	Glycolytic activity in human immune cells: inter-individual variation and functional implications during health and diabetes. Immunometabolism, 2022, 4, e00008.	0.7	2
1504	Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer. Iranian Biomedical Journal, 2023, 27, 1-14.	0.4	0
1505	The Inhibition of Glycolysis in T Cells by a Jak Inhibitor Ameliorates the Pathogenesis of Allergic Contact Dermatitis in Mice. Journal of Investigative Dermatology, 2023, 143, 1973-1982.e5.	0.3	1

ARTICLE IF CITATIONS # Deciphering the tumour immune microenvironment cell by cell. Immuno-Oncology Technology, 2023, 1506 0.2 1 18, 100383. Metabolic challenges and interventions in CAR T cell therapy. Science Immunology, 2023, 8, . 5.6 OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochemical Pharmacology, 2023, 211, 1508 2.0 2 115531. Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Frontiers in Immunology, 0, 14, . Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast 1510 2.5 1 cancer. Biomedicine and Pharmacotherapy, 2023, 162, 114648. Acetyl-CoA metabolism in cancer. Nature Reviews Cancer, 2023, 23, 156-172. 12.8 After virus exposure, early bystander naà ve CD8 T cell activation relies on NAD+ salvage metabolism. 1512 2.2 0 Frontiers in Immunology, 0, 13, . Calcium-based nanotechnology for cancer therapy. Coordination Chemistry Reviews, 2023, 481, 215050. Targeting immune-onco-metabolism for precision cancer therapy. Frontiers in Oncology, 0, 13, . 0 1514 1.3 High glucose promotes regulatory T cell differentiation. PLoS ONE, 2023, 18, e0280916. 1.1 Characterization of the effect of the GLUT-1 inhibitor BAY-876 on T cells and macrophages. European 1516 4 1.7 Journal of Pharmacology, 2023, 945, 175552. Metabolism and epigenetics at the heart of T cell function. Trends in Immunology, 2023, 44, 231-244. 2.9 Optimizing the manufacturing and antitumour response of CARÂT therapy., 2023, 1, 271-285. 1518 14 Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell, 2023, 41, 421-433 Transcriptomic and Metabolomic Studies Reveal That Toll-like Receptor 2 Has a Role in Glucose-Related 1520 1.3 0 Metabolism in Unchallenged Zebrafish Larvae (Danio rerio). Biology, 2023, 12, 323. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Frontiers in Oncology, 0, 13, . USP25 deficiency promotes T cell dysfunction and transplant acceptance via mitochondrial dynamics. 1522 1.7 0 International Immunopharmacology, 2023, 117, 109917. Metabolic regulation of NK cell antiviral functions during cytomegalovirus infection. Journal of 1.5 Leukocyte Biology, 2023, 113, 525-534.

#	Article	IF	CITATIONS
1525	Goliath induces inflammation in obese mice by linking fatty acid βâ€oxidation to glycolysis. EMBO Reports, 2023, 24, .	2.0	1
1526	T regulatory cells metabolism: The influence on functional properties and treatment potential. Frontiers in Immunology, 0, 14, .	2.2	7
1528	Linoleic acid potentiates CD8+ TÂcell metabolic fitness and antitumor immunity. Cell Metabolism, 2023, 35, 633-650.e9.	7.2	36
1529	The role of the complosome in health and disease. Frontiers in Immunology, 0, 14, .	2.2	3
1530	P2RX7 signaling drives the differentiation of Th1 cells through metabolic reprogramming for aerobic glycolysis. Frontiers in Immunology, 0, 14, .	2.2	1
1531	Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Frontiers in Immunology, 0, 14, .	2.2	4
1532	Deletion of the tyrosine phosphatase Shp2 in cervical cancer cells promotes reprogramming of glutamine metabolism. FASEB Journal, 2023, 37, .	0.2	1
1533	Alone and together: current approaches to targeting glutaminase enzymes as part of anti-cancer therapies. Future Drug Discovery, 2022, 4, .	0.8	5
1534	Specialized Ribosomes in Health and Disease. International Journal of Molecular Sciences, 2023, 24, 6334.	1.8	8
1535	2-DG Re-Normalized IFN-Î ³ Production in T Cells Excluding T _{EMRA} Cells from Patients with Aplastic Anemia. Immunological Investigations, 2023, 52, 467-481.	1.0	1
1536	Single-cell RNA sequencing depicts metabolic changes in children with aplastic anemia. Frontiers in Oncology, 0, 13, .	1.3	0
1537	Lysophosphatidylcholine facilitates the pathogenesis of psoriasis through activating keratinocytes and T cells differentiation via glycolysis. Journal of the European Academy of Dermatology and Venereology, 2023, 37, 1344-1360.	1.3	1
1538	The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nature Communications, 2023, 14, .	5.8	7
1539	Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. International Journal of Molecular Sciences, 2023, 24, 7076.	1.8	3
1540	Complosome — the intracellular complement system. Nature Reviews Nephrology, 2023, 19, 426-439.	4.1	31
1541	Mitochondrial Dysfunction in CD4+ T Effector Memory RA+ Cells. Biology, 2023, 12, 597.	1.3	2
1542	Immunosuppressive tumor microenvironment contributes to tumor progression in diffuse large B-cell lymphoma upon anti-CD19 chimeric antigen receptor T therapy. Frontiers of Medicine, 2023, 17, 699-713.	1.5	5
1544	Clinical and biochemical footprints of inherited metabolic diseases. XII. Immunological defects. Molecular Genetics and Metabolism, 2023, 139, 107582.	0.5	4

#	Article	IF	CITATIONS
1545	The eIF4EBP-eIF4E axis regulates CD4+ TÂcell differentiation through modulation of TÂcell activation and metabolism. IScience, 2023, 26, 106683.	1.9	0
1546	Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Frontiers in Immunology, 0, 14, .	2.2	0
1563	The essential elements of adaptive immunity and their relevance to cancer immunology. , 2024, , 129-156.e6.		1
1565	Localization, tissue biology and T cell state — implications for cancer immunotherapy. Nature Reviews Immunology, 2023, 23, 807-823.	10.6	10
1594	Implications of immunometabolism for smouldering MS pathology and therapy. Nature Reviews Neurology, 0, , .	4.9	0
1597	The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. , 2023, 40, .		1
1603	Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer and Metastasis Reviews, 2023, 42, 959-1020.	2.7	1
1615	Regulation of CD8+ T memory and exhaustion by the mTOR signals. , 2023, 20, 1023-1039.		4
1618	Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	34
1627	Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death and Disease, 2023, 14, .	2.7	6
1644	Interaction between mitochondria and microbiota modulating cellular metabolism in inflammatory bowel disease. Journal of Molecular Medicine, 0, , .	1.7	0
1656	Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Frontiers of Medicine, 2023, 17, 805-822.	1.5	1
1661	The immunometabolic ecosystem in cancer. Nature Immunology, 2023, 24, 2008-2020.	7.0	1