Flexible polymer transistors with high pressure sensitive skin and health monitoring

Nature Communications

4, 1859

DOI: 10.1038/ncomms2832

Citation Report

#	Article	IF	CITATIONS
1	Organic Bendable and Stretchable Field Effect Devices for Sensing Applications. IEEE Sensors Journal, 2013, 13, 4764-4772.	4.7	24
2	Design and evaluation of a skin-like sensor with high stretchability for contact pressure measurement. Sensors and Actuators A: Physical, 2013, 204, 114-121.	4.1	25
3	Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano, 2013, 7, 8266-8274.	14.6	529
4	Swelling of Polymer Dielectric Thin Films for Organic-Transistor-Based Aqueous Sensing Applications. Chemistry of Materials, 2013, 25, 5018-5022.	6.7	8
5	Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Applied Physics Letters, 2013, 103, .	3.3	111
6	A Flexible and Highly Pressureâ€Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design. Advanced Materials, 2013, 25, 6692-6698.	21.0	985
7	Ultraflexible organic devices for biomedical applications. , 2013, , .		2
8	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€5kin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	21.0	2,001
9	Quantum Confinement Effects in Transferrable Silicon Nanomembranes and Their Applications on Unusual Substrates. Nano Letters, 2013, 13, 5600-5607.	9.1	49
10	Organic Thin-Film Transistor (OTFT)-Based Sensors. Electronics (Switzerland), 2014, 3, 234-254.	3.1	93
11	Imperceptible Electronic Skin. Information Display, 2014, 30, 20-25.	0.2	4
12	Wrist Pulse Detection System Based on Changes in the Near-Field Reflection Coefficient of a Resonator. IEEE Microwave and Wireless Components Letters, 2014, 24, 719-721.	3.2	20
13	Stretchable capacitive tactile skin on humanoid robot fingers — First experiments and results. , 2014, , .		20
14	Highly Sensitive Flexible Printed Accelerometer System for Monitoring Vital Signs. Soft Robotics, 2014, 1, 132-135.	8.0	21
15	Printed wearable temperature sensor for health monitoring. , 2014, , .		34
16	Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. Extreme Mechanics Letters, 2014, 1, 120-126.	4.1	27
17	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	14.2	487
18	Bionic skins using flexible organic devices. , 2014, , .		2

#	Article	IF	CITATIONS
19	Alternating Current Electrohydrodynamic Printing of Microdroplets. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	3
20	Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	21
21	Investigation of the effect of gate voltage on the performance of organic bulk hetero-junction based phototransistor. , 2014, , .		0
22	A flexible skin piloerection monitoring sensor. Applied Physics Letters, 2014, 104, 253502.	3.3	15
23	Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration. AlP Advances, 2014, 4, 067126.	1.3	2
24	Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. Journal of Materials Chemistry B, 2014, 2, 5739-5745.	5.8	87
25	Flexible Threeâ€Axial Force Sensor for Soft and Highly Sensitive Artificial Touch. Advanced Materials, 2014, 26, 2659-2664.	21.0	383
26	Printable and foldable electrodes based on a carbon nanotube-polymer composite. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2631-2634.	1.8	11
27	Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics. Advanced Functional Materials, 2014, 24, 5427-5434.	14.9	424
28	Transparent, Lowâ€Power Pressure Sensor Matrix Based on Coplanarâ€Gate Graphene Transistors. Advanced Materials, 2014, 26, 4735-4740.	21.0	185
29	A hierarchical computational model for stretchable interconnects with fractal-inspired designs. Journal of the Mechanics and Physics of Solids, 2014, 72, 115-130.	4.8	115
30	Fully Printed Flexible Fingerprint-like Three-Axis Tactile and Slip Force and Temperature Sensors for Artificial Skin. ACS Nano, 2014, 8, 12851-12857.	14.6	285
31	Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays. BioNanoScience, 2014, 4, 349-355.	3.5	29
32	All-organic optoelectronic sensor for pulse oximetry. Nature Communications, 2014, 5, 5745.	12.8	555
33	Specific and Reproducible Gas Sensors Utilizing Gasâ€Phase Chemical Reaction on Organic Transistors. Advanced Materials, 2014, 26, 2862-2867.	21.0	86
34	Fully printed, large-scale, high sensitive strain sensor array for stress monitoring of infrastructures. , 2014, , .		0
35	Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing. Applied Physics Letters, 2014, 104, .	3.3	35
36	Fully-organic flexible tactile sensor for advanced robotic applications. , 2014, , .		5

#	Article	IF	CITATIONS
37	A Flexible Reduced Graphene Oxide Fieldâ€Effect Transistor for Ultrasensitive Strain Sensing. Advanced Functional Materials, 2014, 24, 117-124.	14.9	132
38	Allâ€Elastomeric, Strainâ€Responsive Thermochromic Color Indicators. Small, 2014, 10, 1266-1271.	10.0	56
39	Bandgap Engineering through Controlled Oxidation of Polythiophenes. Angewandte Chemie - International Edition, 2014, 53, 1832-1836.	13.8	50
40	Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science, 2014, 344, 70-74.	12.6	982
41	Silkâ€Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Advanced Materials, 2014, 26, 1336-1342.	21.0	1,225
42	Wearable, Humanâ€Interactive, Healthâ€Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques. Advanced Functional Materials, 2014, 24, 3299-3304.	14.9	392
43	Unobtrusive Sensing and Wearable Devices for Health Informatics. IEEE Transactions on Biomedical Engineering, 2014, 61, 1538-1554.	4.2	607
44	Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Advanced Functional Materials, 2014, 24, 4666-4670.	14.9	923
45	Triboelectrification Based Motion Sensor for Human-Machine Interfacing. ACS Applied Materials & Interfaces, 2014, 6, 7479-7484.	8.0	162
46	Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1703-1707.	7.1	234
47	Alternating Conjugated Electron Donor–Acceptor Polymers Entailing Pechmann Dye Framework as the Electron Acceptor Moieties for High Performance Organic Semiconductors with Tunable Characteristics. Macromolecules, 2014, 47, 2899-2906.	4.8	54
48	Fabrication of ultra-flexible, ultra-thin organic field-effect transistors and circuits by a peeling-off method. Journal of Materials Chemistry C, 2014, 2, 1260-1263.	5.5	27
49	A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014, 5, 3132.	12.8	1,731
50	Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab on A Chip, 2014, 14, 1107.	6.0	123
51	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	12.8	1,225
52	Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nature Communications, 2014, 5, 2954.	12.8	362
53	Wearing Sensors Inside and Outside of the Human Body for the Early Detection of Diseases. , 2014, , 543-562.		4
54	Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array. Advanced Materials, 2014, 26, 3451-3458.	21.0	1,030

#	Article	IF	CITATIONS
55	Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures. ACS Nano, 2014, 8, 12020-12029.	14.6	516
56	Bionic skins using flexible organic devices. , 2014, , .		12
57	Stretchable Energyâ€Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Advanced Materials, 2014, 26, 7324-7332.	21.0	481
58	Functionalization of Single-Walled Carbon Nanotubes via the Piers–Rubinsztajn Reaction. Macromolecules, 2014, 47, 6527-6530.	4.8	25
59	Ï€â€Extented Conjugated Polymers Entailing Pechmann Dye Moieties for Solutionâ€Processed Ambipolar Organic Semiconductors. Chinese Journal of Chemistry, 2014, 32, 788-796.	4.9	14
60	Threeâ€Dimensional Compressible and Stretchable Conductive Composites. Advanced Materials, 2014, 26, 810-815.	21.0	156
61	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications, 2014, 5, 4496.	12.8	757
62	Microflotronics: A Flexible, Transparent, Pressureâ€5ensitive Microfluidic Film. Advanced Functional Materials, 2014, 24, 6195-6203.	14.9	66
63	A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature. Advanced Materials, 2014, 26, 796-804.	21.0	375
64	Microfluidic tactile sensors for three-dimensional contact force measurements. Lab on A Chip, 2014, 14, 4344-4353.	6.0	47
65	Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification. Nano Letters, 2014, 14, 3208-3213.	9.1	405
66	Highly deformable liquid-state heterojunction sensors. Nature Communications, 2014, 5, 5032.	12.8	221
67	Tactile Imaging of an Imbedded Palpable Structure for Breast Cancer Screening. ACS Applied Materials & Interfaces, 2014, 6, 16368-16374.	8.0	16
68	Mechanically Gated Electrical Switches by Creasing of Patterned Metal/Elastomer Bilayer Films. Advanced Materials, 2014, 26, 4381-4385.	21.0	55
69	Splitâ€Gate Organic Fieldâ€Effect Transistors for Highâ€Speed Operation. Advanced Materials, 2014, 26, 2983-2988.	21.0	33
70	Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nature Communications, 2014, 5, 4938.	12.8	227
71	The WiseSkin artificial skin for tactile prosthetics: A power budget investigation. , 2014, , .		8
72	Highâ€Performance and Tailorable Pressure Sensor Based on Ultrathin Conductive Polymer Film. Small, 2014, 10, 1466-1472.	10.0	189

# 73	ARTICLE Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small, 2014, 10, 3625-3631.	IF 10.0	CITATIONS
74	Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014, 9, 244-260.	11.9	246
75	Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano, 2014, 8, 4689-4697.	14.6	726
76	Highly Conductive, Flexible, and Compressible Allâ€Graphene Passive Electronic Skin for Sensing Human Touch. Advanced Materials, 2014, 26, 5018-5024.	21.0	273
78	Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. Journal of Materials Research, 2015, 30, 3584-3594.	2.6	51
79	Ultraflexible organic electronics. MRS Bulletin, 2015, 40, 1130-1137.	3.5	17
80	A post-CMOS compatible smart yarn technology based on SOI wafers. Sensors and Actuators A: Physical, 2015, 233, 397-404.	4.1	8
81	Zinc oxide nanowire-based pressure and temperature sensor. , 2015, , .		0
82	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	11.2	789
83	Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles. Scientific Reports, 2015, 5, 16095.	3.3	35
84	Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors. Scientific Reports, 2015, 5, 18082.	3.3	70
85	A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring. Scientific Reports, 2015, 5, 12705.	3.3	79
86	Very large strain gauges based on single layer MoSe2 and WSe2 for sensing applications. Applied Physics Letters, 2015, 107, .	3.3	32
87	Wearable Fall Detector using Integrated Sensors and Energy Devices. Scientific Reports, 2015, 5, 17081.	3.3	74
88	Revealing bending and force in a soft body through a plant root inspired approach. Scientific Reports, 2015, 5, 8788.	3.3	45
89	Highâ€Performance, Mechanically Flexible, and Vertically Integrated 3D Carbon Nanotube and InGaZnO Complementary Circuits with a Temperature Sensor. Advanced Materials, 2015, 27, 4674-4680.	21.0	99
90	"Cutâ€andâ€Paste―Manufacture of Multiparametric Epidermal Sensor Systems. Advanced Materials, 2015, 27, 6423-6430.	21.0	254
92	Bubbleâ€Decorated Honeycombâ€Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors. Advanced Functional Materials, 2015, 25, 6545-6551.	14.9	189

#	Article	IF	CITATIONS
93	An Allâ€Solidâ€State Flexible Piezoelectric Highâ€ <i>k</i> Film Functioning as Both a Generator and In Situ Storage Unit. Advanced Functional Materials, 2015, 25, 7029-7037.	14.9	50
94	Highly Sensitive and Multimodal Allâ€Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli. Advanced Materials, 2015, 27, 4178-4185.	21.0	367
95	Synergistic Photomodulation of Capacitive Coupling and Charge Separation Toward Functional Organic Fieldâ€Effect Transistors with High Responsivity. Advanced Electronic Materials, 2015, 1, 1500159.	5.1	28
96	Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing. Advanced Materials, 2015, 27, 6055-6062.	21.0	354
97	Highly Stable Liquid–Solid Metal Contact Toward Multilayered Detachable Flexible Devices. Advanced Electronic Materials, 2015, 1, 1500080.	5.1	15
98	Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping. Advanced Electronic Materials, 2015, 1, 1500142.	5.1	226
99	Sensitive Flexible Magnetic Sensors using Organic Transistors with Magneticâ€Functionalized Suspended Gate Electrodes. Advanced Materials, 2015, 27, 7979-7985.	21.0	52
100	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angewandte Chemie - International Edition, 2015, 54, 9760-9774.	13.8	135
101	Magnetic Nanocomposite Cilia Tactile Sensor. Advanced Materials, 2015, 27, 7888-7892.	21.0	156
102	Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edgeâ€Cutting Transfer and Printing for van der Waals Heterojunctions. Small, 2015, 11, 4140-4148.	10.0	23
103	The inside story on wearable electronics. Nature, 2015, 528, 26-28.	27.8	76
104	Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors. Sensors, 2015, 15, 23459-23476.	3.8	38
105	Electromechanical Response of Conductive Porous Structure. Journal of Nanomaterials, 2015, 2015, 1-6.	2.7	1
106	Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale, 2015, 7, 6208-6215.	5.6	323
107	Flexible pressure sensing film based on ultra-sensitive SWCNT/PDMS spheres for monitoring human pulse signals. Journal of Materials Chemistry B, 2015, 3, 5436-5441.	5.8	48
108	Tunneling piezoresistive tactile sensing array fabricated by a novel fabrication process with membrane filters. , 2015, , .		7
109	Resistive Switching Memory Devices Based on Proteins. Advanced Materials, 2015, 27, 7670-7676.	21.0	140
110	Highly Stretchy Black Gold Eâ€Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 2015, 1, 1400063.	5.1	405

ARTICLE IF CITATIONS A thin film pressure sensor with double sensitive units., 2015,,. 1 111 Celluloseâ€Derivativeâ€Based Gate Dielectric for Highâ€Performance Organic Complementary Inverters. 21.0 69 Advanced Materials, 2015, 27, 7645-7656. Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon 113 4 degradation., 2015, ,. Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains. ACS Applied 114 Materials & amp; Interfaces, 2015, 7, 26726-26734. Spontaneous Formation of an Ideal-Like Field-Effect Channel for Decay-Free Polymeric Thin-Film Transistors by Multiple-Scale Phase Separation. ACS Applied Materials & amp; Interfaces, 2015, 7, 115 8.0 16 16486-16494. All-solution-processed, flexible thin-film transistor based on PANI/PETA as gate/gate insulator. RSC Advances, 2015, 5, 105785-105788. 3.6 Printed pressure sensor matrix with organic field-effect transistors. Sensors and Actuators A: 117 4.1 24 Physical, 2015, 236, 343-348. Highly Sensitive Tactile Sensing Array Realized Using a Novel Fabrication Process With Membrane 118 2.5 19 Filters. Journal of Microelectromechanical Systems, 2015, 24, 2062-2070. Thermally Stable, Biocompatible, and Flexible Organic Fieldâ€Effect Transistors and Their Application in 119 14.9 184 Temperature Sensing Arrays for Artificial Skin. Advanced Functional Materials, 2015, 25, 2138-2146. Ultrasensitive self-powered pressure sensing system. Extreme Mechanics Letters, 2015, 2, 28-36. 4.1 Stretchable Selfâ€Powered Fiberâ€Based Strain Sensor. Advanced Functional Materials, 2015, 25, 1798-1803. 121 14.9 155 Imperceptible magnetoelectronics. Nature Communications, 2015, 6, 6080. 12.8 184 Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized 123 13.6 147 oligothiophenes. Nature Chemistry, 2015, 7, 209-214. Highly Skinâ€Conformal Microhairy Sensor for Pulse Signal Amplification. Advanced Materials, 2015, 27, 634-640. 124 21.0 621 Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and 125 21.0 487 Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326. Largeâ€Area Compliant Tactile Sensors Using Printed Carbon Nanotube Activeâ€Matrix Backplanes. 198 Advanced Materials, 2015, 27, 1561-1566. A theoretical model of reversible adhesion in shape memory surface relief structures and its 127 4.8 44 application in transfer printing. Journal of the Mechanics and Physics of Solids, 2015, 77, 27-42. Highly Sensitive and Selective Liquidâ€Phase Sensors Based on a Solventâ€Resistant Organicâ€Transistor 21.0 Platform. Advanced Materials, 2015, 27, 1540-1546.

#	Article	IF	CITATIONS
129	Continuous graphene and carbon nanotube based high flexible and transparent pressure sensor arrays. Nanotechnology, 2015, 26, 115501.	2.6	25
130	Enhanced performances of organic thin film transistors by dual interfacial modification of dielectric layer. Applied Physics A: Materials Science and Processing, 2015, 118, 809-815.	2.3	4
131	A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. Scientific Reports, 2015, 5, 8603.	3.3	415
132	Solutionâ€Processed Largeâ€Area Nanocrystal Arrays of Metal–Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring. Small, 2015, 11, 3351-3356.	10.0	75
133	Flexible and Highly Sensitive Strain Sensors Fabricated by Pencil Drawn for Wearable Monitor. Advanced Functional Materials, 2015, 25, 2395-2401.	14.9	439
134	Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015, 2, 486-494.	12.2	29
135	Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control. Macromolecules, 2015, 48, 4339-4346.	4.8	194
136	A flexible high-sensitivity piezoresistive sensor comprising a Au nanoribbon-coated polymer sponge. Journal of Materials Chemistry C, 2015, 3, 9247-9252.	5.5	46
137	A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale, 2015, 7, 14766-14773.	5.6	126
138	Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy, 2015, 17, 1-9.	16.0	82
139	Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Transactions on Biomedical Engineering, 2015, 62, 1879-1901.	4.2	640
140	Percolation, Tie-Molecules, and the Microstructural Determinants of Charge Transport in Semicrystalline Conjugated Polymers. ACS Macro Letters, 2015, 4, 708-712.	4.8	107
141	Soft Tactile Sensors for Human-Machine Interaction. , 2015, , 1-28.		0
142	Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display. Scientific Reports, 2015, 5, 11755.	3.3	38
143	Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity. Nanoscale, 2015, 7, 8636-8644.	5.6	84
144	Influence of bilayer resist processing on p-i-n OLEDs: towards multicolor photolithographic structuring of organic displays. Proceedings of SPIE, 2015, , .	0.8	3
145	Body Sensor Networks: In the Era of Big Data and Beyond. IEEE Reviews in Biomedical Engineering, 2015, 8, 4-16.	18.0	111
146	Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Advances, 2015, 5, 30170-30174.	3.6	128

#	Article	IF	CITATIONS
147	Printable flexible tactile pressure and temperature sensors with high selectivity against bending. , 2015, , .		3
148	Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nature Communications, 2015, 6, 6269.	12.8	473
149	Active Matrix Electronic Skin Strain Sensor Based on Piezopotentialâ€Powered Graphene Transistors. Advanced Materials, 2015, 27, 3411-3417.	21.0	287
150	Fabrication and characterization of organic bulk heterojunction based displacement and bend sensitive field effect transistors. , 2015, , .		1
151	Selfâ€Assembled, Millimeter‣ized TIPSâ€Pentacene Spherulites Grown on Partially Crosslinked Polymer Gate Dielectric. Advanced Functional Materials, 2015, 25, 3658-3665.	14.9	38
152	Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging. Nanotechnology, 2015, 26, 165501.	2.6	15
153	Inâ€Đepth Studies on Rapid Photochemical Activation of Various Sol–Gel Metal Oxide Films for Flexible Transparent Electronics. Advanced Functional Materials, 2015, 25, 2807-2815.	14.9	172
154	Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.	5.8	44
155	Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7, 9252-9260.	5.6	126
156	Elastomeric Electronic Skin for Prosthetic Tactile Sensation. Advanced Functional Materials, 2015, 25, 2287-2295.	14.9	321
157	Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano, 2015, 9, 4398-4405.	14.6	63
158	Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications, 2015, 6, 8356.	12.8	453
159	Flexible temperature sensors based on charge modulated organic thin film transistors. , 2015, , .		1
160	Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano, 2015, 9, 9974-9985.	14.6	361
161	Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. Journal of Materials Chemistry C, 2015, 3, 11806-11814.	5.5	171
162	Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Science Advances, 2015, 1, e1500661.	10.3	704
163	Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Science Advances, 2015, 1, e1500701.	10.3	189
164	Highly flexible, tailorable and all-solid-state supercapacitors from carbon nanotube–MnO _x composite films. RSC Advances, 2015, 5, 89188-89194.	3.6	10

	CITATION	Report	
# 165	ARTICLE Flexible, printed tactle, friction, and temperature sensor array for artificial skin. , 2015, , .	IF	Citations 2
166	Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. Applied Physics Letters, 2015, 106, .	3.3	44
167	A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Advanced Materials, 2015, 27, 6954-6961.	21.0	544
168	A skin-inspired organic digital mechanoreceptor. Science, 2015, 350, 313-316.	12.6	708
169	System design for organic pulse oximeter. , 2015, , .		8
170	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	12.8	749
171	Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. ACS Nano, 2015, 9, 8801-8810.	14.6	450
172	Improving the Sensitivity of Elastic Capacitive Pressure Sensors Using Silver Nanowire Mesh Electrodes. IEEE Nanotechnology Magazine, 2015, 14, 619-623.	2.0	20
173	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	8.0	273
174	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.8	155
175	Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14533-14538.	7.1	313
176	Toward Flexible and Wearable Humanâ€Interactive Healthâ€Monitoring Devices. Advanced Healthcare Materials, 2015, 4, 487-500.	7.6	289
177	Wearable Triboelectric Generator for Powering the Portable Electronic Devices. ACS Applied Materials & Interfaces, 2015, 7, 18225-18230.	8.0	133
178	From cotton to wearable pressure sensor. Journal of Materials Chemistry A, 2015, 3, 2181-2187.	10.3	159
179	Selfâ€Assembly of Functional Molecules into 1D Crystalline Nanostructures. Advanced Materials, 2015, 27, 985-1013.	21.0	130
180	4K-bit and microlithographic integration of organic nonvolatile resistive memory devices. Organic Electronics, 2015, 17, 192-197.	2.6	16
181	Zinc Oxide Nanowire-Poly(Methyl Methacrylate) Dielectric Layers for Polymer Capacitive Pressure Sensors. ACS Applied Materials & amp; Interfaces, 2015, 7, 45-50.	8.0	64
182	Flexible Organic Electronics in Biology: Materials and Devices. Advanced Materials, 2015, 27, 7493-7527.	21.0	353

#	Article	IF	CITATIONS
183	Flexible Electrolyte-Gated Ion-Selective Sensors Based on Carbon Nanotube Networks. IEEE Sensors Journal, 2015, 15, 3127-3134.	4.7	31
184	Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2, 140-156.	12.2	995
185	High performance organic transistor active-matrix driver developed on paper substrate. Scientific Reports, 2014, 4, 6430.	3.3	110
186	A Flexible and Highly Sensitive Piezoresistive Pressure Sensor Based on Micropatterned Films Coated with Carbon Nanotubes. Journal of Nanomaterials, 2016, 2016, 1-5.	2.7	8
187	Integration of a Thin Film PDMS-Based Capacitive Sensor for Tactile Sensing in an Electronic Skin. Journal of Sensors, 2016, 2016, 1-7.	1.1	33
188	Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications. Micromachines, 2016, 7, 206.	2.9	154
189	Flexible Touch Sensors Made of Two Layers of Printed Conductive Flexible Adhesives. Sensors, 2016, 16, 1515.	3.8	10
190	Flexible Pressure Sensor with Ag Wrinkled Electrodes Based on PDMS Substrate. Sensors, 2016, 16, 2131.	3.8	70
191	Soft Manipulators and Grippers: A Review. Frontiers in Robotics and Al, 0, 3, .	3.2	403
192	A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications. Sensors, 2016, 16, 809.	3.8	75
193	Printing of Fine Metal Electrodes for Organic Thinâ \in Film Transistors. , 0, , .		0
194	High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing. Small, 2016, 12, 3827-3836.	10.0	177
195	Flexible Piezoresistive Sensor Patch Enabling Ultralow Power Cuffless Blood Pressure Measurement. Advanced Functional Materials, 2016, 26, 1178-1187.	14.9	367
196	Strong Electronâ€Deficient Polymers Lead to High Electron Mobility in Air and Their Morphologyâ€Dependent Transport Behaviors. Advanced Materials, 2016, 28, 7213-7219.	21.0	168
197	Alcoholâ€Mediated Resistanceâ€&witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie, 2016, 128, 9030-9034.	2.0	19
198	Pursuing prosthetic electronic skin. Nature Materials, 2016, 15, 937-950.	27.5	1,821
199	Expedient floating process for ultra-thin InGaZnO thin-film-transistors and their high bending performance. RSC Advances, 2016, 6, 63418-63424.	3.6	9
200	Highly Flexible Organic Nanofiber Phototransistors Fabricated on a Textile Composite for Wearable Photosensors. Advanced Functional Materials, 2016, 26, 1445-1453.	14.9	103

#	Article	IF	CITATIONS
201	Extraordinarily Sensitive and Lowâ€Voltage Operational Clothâ€Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses: A Tactileâ€Induced Insulatingâ€ŧoâ€Conducting Transition. Advanced Functional Materials, 2016, 26, 1286-1295.	14.9	134
202	Ambipolar Organic Triâ€Gate Transistor for Lowâ€Power Complementary Electronics. Advanced Materials, 2016, 28, 284-290.	21.0	39
203	Alignment and Patterning of Ordered Smallâ€Molecule Organic Semiconductor Microâ€⁄Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 2475-2503.	21.0	129
204	Highâ€Mobility Transistors Based on Largeâ€Area and Highly Crystalline CVDâ€Grown MoSe ₂ Films on Insulating Substrates. Advanced Materials, 2016, 28, 2316-2321.	21.0	107
205	Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chemical Reviews, 2016, 116, 13009-13041.	47.7	422
206	Silk Fibroin for Flexible Electronic Devices. Advanced Materials, 2016, 28, 4250-4265.	21.0	466
207	Highly Flexible Wrinkled Carbon Nanotube Thin Film Strain Sensor to Monitor Human Movement. Advanced Materials Technologies, 2016, 1, 1600053.	5.8	154
208	Alcoholâ€Mediated Resistance‧witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie - International Edition, 2016, 55, 8884-8888.	13.8	72
209	Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer. Small, 2016, 12, 5042-5048.	10.0	377
210	A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca ²⁺ and pH. ACS Nano, 2016, 10, 7216-7224.	14.6	480
211	Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays. Advanced Functional Materials, 2016, 26, 5061-5067.	14.9	87
212	Flexible Polymer Transducers for Dynamic Recognizing Physiological Signals. Advanced Functional Materials, 2016, 26, 3640-3648.	14.9	75
213	Doubleâ€Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradientâ€Coated Thread for Multidimensional Flexible Pressureâ€Sensing Devices. Advanced Functional Materials, 2016, 26, 4078-4084.	14.9	65
214	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	21.0	234
215	Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. Advanced Materials, 2016, 28, 4513-4523.	21.0	185
216	Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 4373-4395.	21.0	1,033
217	Photoreactive and Metalâ€Platable Copolymer Inks for Highâ€Throughput, Roomâ€Temperature Printing of Flexible Metal Electrodes for Thinâ€Film Electronics. Advanced Materials, 2016, 28, 4926-4934.	21.0	77
218	Polysilicon Thin Film Developed on Flexible Polyimide for Biomedical Applications. Journal of Microelectromechanical Systems, 2016, 25, 585-592.	2.5	8

#	ARTICLE	IF	CITATIONS
219	Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile. Scientific Reports, 2016, 6, 35153.	3.3	111
220	Electrically induced reorganization phenomena of liquid metal film printed on biological skin. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	4
221	Ultra-thin and ultra-flexible temperature/strain sensor with CNT nanostrips. , 2016, , .		0
222	Rolling-based direct-transfer printing: A process for large-area transfer of micro- and nanostructures onto flexible substrates. Journal of Applied Physics, 2016, 120, .	2.5	9
223	Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics. Applied Physics Reviews, 2016, 3, 021302.	11.3	88
224	Demonstration of flexible thin film transistors with GaN channels. Applied Physics Letters, 2016, 109, 233504.	3.3	12
225	The rise of plastic bioelectronics. Nature, 2016, 540, 379-385.	27.8	1,280
226	Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors. Scientific Reports, 2016, 6, 35585.	3.3	28
227	Enhancing the quality of transferred single-layer graphene with poly(4-vinylphenol) interlayer on flexible substrates. Japanese Journal of Applied Physics, 2016, 55, 060305.	1.5	1
228	Ultrathin, Skin-Like Devices for Precise, Continuous Thermal Property Mapping of Human Skin and Soft Tissues. Microsystems and Nanosystems, 2016, , 117-132.	0.1	6
229	Soft Biosensor Systems Using Flexible and Stretchable Electronics Technology. Microsystems and Nanosystems, 2016, , 133-149.	0.1	2
230	High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials. Microsystems and Nanosystems, 2016, , 151-171.	0.1	2
231	Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process. Nano Energy, 2016, 26, 148-156.	16.0	71
232	A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8, 12105-12112.	5.6	141
233	Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs. ACS Nano, 2016, 10, 4550-4558.	14.6	49
234	A Super Stretchable Organic Thin-Film Diodes Network That Can Be Embedded Into Carbon Fiber Composite Materials for Sensor Network Applications. Journal of Microelectromechanical Systems, 2016, 25, 524-532.	2.5	10
235	Enhancement of Closed-Loop Gain of Organic Amplifiers Using Double Gate Structures. IEEE Electron Device Letters, 2016, , 1-1.	3.9	1
236	Thermal reorganization of alkyl-substituted thienothiophene semiconductors. Journal of Materials Chemistry C, 2016, 4, 5255-5262.	5.5	5

#	Article	IF	CITATIONS
237	Blue emitting organic semiconductors under high pressure: status and outlook. Reports on Progress in Physics, 2016, 79, 066601.	20.1	12
238	Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors. Journal of Materials Chemistry C, 2016, 4, 5289-5296.	5.5	29
239	Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sensors, 2016, 1, 866-874.	7.8	297
240	Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. Journal of Materials Chemistry C, 2016, 4, 5642-5647.	5.5	89
241	Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge. Journal Physics D: Applied Physics, 2016, 49, 275108.	2.8	5
242	Ultralight Biomassâ€Derived Carbonaceous Nanofibrous Aerogels with Superelasticity and High Pressureâ€Sensitivity. Advanced Materials, 2016, 28, 9512-9518.	21.0	405
243	Silicon Valley meets the ivory tower: Searchable data repositories for experimental nanomaterials research. Current Opinion in Solid State and Materials Science, 2016, 20, 338-343.	11.5	14
244	Improving Mobility and Stability of Organic Field-Effect Transistors by Employing a Tetratetracontane Modifying PMMA Dielectric. IEEE Transactions on Electron Devices, 2016, 63, 4440-4444.	3.0	15
245	Solvent-free fabrication of multi-walled carbon nanotube based flexible pressure sensors for ultra-sensitive touch pad and electronic skin applications. RSC Advances, 2016, 6, 95836-95845.	3.6	25
246	A highly sensitive flexible capacitive pressure sensor with micro-array dielectric layer. , 2016, , .		0
247	Fully printed and flexible ferroelectric capacitors based on a ferroelectric polymer for pressure detection. Japanese Journal of Applied Physics, 2016, 55, 10TA18.	1.5	14
248	Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane. ACS Applied Materials & Interfaces, 2016, 8, 21770-21775.	8.0	55
249	Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 2016, 8, 22374-22381.	8.0	176
250	Enhanced biocompatibility in poly(3-hexylthiophene)-based organic thin-film transistors upon blending with poly(2-(2-acetoxyacetyl)ethyl methacrylate). RSC Advances, 2016, 6, 16540-16547.	3.6	5
251	Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature. Advanced Healthcare Materials, 2016, 5, 119-127.	7.6	101
252	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	2.8	65
253	Paper Skin Multisensory Platform for Simultaneous Environmental Monitoring. Advanced Materials Technologies, 2016, 1, 1600004.	5.8	93
254	Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems. Advanced Materials Technologies, 2016, 1, 1600013.	5.8	167

#	Article	IF	Citations
255	Colloidal Synthesis of Uniform‣ized Molybdenum Disulfide Nanosheets for Wafer‣cale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332.	21.0	151
256	Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Seaâ€Urchin Shaped Metal Nanoparticles. Advanced Materials, 2016, 28, 9364-9369.	21.0	166
257	Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network. Nanoscale, 2016, 8, 16596-16605.	5.6	60
258	Biomimic Hairy Skin Tactile Sensor Based on Ferromagnetic Microwires. ACS Applied Materials & Interfaces, 2016, 8, 33848-33855.	8.0	33
259	Skin-inspired organic electronic materials and devices. MRS Bulletin, 2016, 41, 897-904.	3.5	53
260	Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2016, 2, e1601473.	10.3	273
261	Rapid Fabrication of Soft, Multilayered Electronics for Wearable Biomonitoring. Advanced Functional Materials, 2016, 26, 8496-8504.	14.9	119
262	Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range. ACS Applied Materials & Interfaces, 2016, 8, 20364-20370.	8.0	187
263	Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel. Science Bulletin, 2016, 61, 1624-1630.	9.0	31
264	An Inherent Multifunctional Sellotape Substrate for Highâ€Performance Flexible and Wearable Organic Singleâ€Crystal Nanowire Arrayâ€Based Transistors. Advanced Electronic Materials, 2016, 2, 1600129.	5.1	8
265	Ultra‣tretchable and Force‣ensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Advanced Materials, 2016, 28, 8037-8044.	21.0	274
266	Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress. Journal of Magnetism and Magnetic Materials, 2016, 420, 81-87.	2.3	21
267	Flexible and Stretchable Oxide Electronics. Advanced Electronic Materials, 2016, 2, 1600105.	5.1	42
268	Flexible Textile Strain Wireless Sensor Functionalized with Hybrid Carbon Nanomaterials Supported ZnO Nanowires with Controlled Aspect Ratio. Advanced Functional Materials, 2016, 26, 6206-6214.	14.9	132
269	Organic thermoelectric materials for energy harvesting and temperature control. Nature Reviews Materials, 2016, 1, .	48.7	927
270	Filmâ€Depthâ€Dependent Light Absorption and Charge Transport for Polymer Electronics: A Case Study on Semiconductor/Insulator Blends by Plasma Etching. Advanced Electronic Materials, 2016, 2, 1600359.	5.1	74
271	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie - International Edition, 2016, 55, 15864-15868.	13.8	32
272	Tribotronic Transistor Array as an Active Tactile Sensing System. ACS Nano, 2016, 10, 10912-10920.	14.6	112

#	Article	IF	CITATIONS
273	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie, 2016, 128, 16096-16100.	2.0	4
274	Screen-printed flexible MRI receive coils. Nature Communications, 2016, 7, 10839.	12.8	152
275	Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 2016, 30, 450-459.	16.0	157
276	Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems and Nanoengineering, 2016, 2, 16043.	7.0	385
277	Ultraflexible organic photonic skin. Science Advances, 2016, 2, e1501856.	10.3	788
278	Continuous Blood Pressure Measurement From Invasive to Unobtrusive: Celebration of 200th Birth Anniversary of Carl Ludwig. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1455-1465.	6.3	124
279	Hydrogel microphones for stealthy underwater listening. Nature Communications, 2016, 7, 12316.	12.8	91
280	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Advanced Functional Materials, 2016, 26, 8435-8445.	14.9	115
281	Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing. Scientific Reports, 2016, 6, 20671.	3.3	109
282	Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11682-11687.	7.1	175
283	The effect of mechanical strain on contact resistance in flexible printed organic thin-film transistors. Flexible and Printed Electronics, 2016, 1, 035005.	2.7	11
284	Numerical study on displacement of dielectric film composed of array of differently shaped elements for capacitance based MEMS sensors. , 2016, , .		1
285	Outputting Olfactory Bionic Electric Impulse by PANI/PTFE/PANI Sandwich Nanostructures and their Application as Flexible, Smelling Electronic Skin. Advanced Functional Materials, 2016, 26, 3128-3138.	14.9	102
286	Understanding the Shape Memory Behavior of Selfâ€Bending Materials and Their Use as Sensors. Advanced Functional Materials, 2016, 26, 3282-3290.	14.9	72
287	Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. Advanced Materials, 2016, 28, 2099-2147.	21.0	323
288	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	21.0	894
289	An Allâ€Elastomeric Transparent and Stretchable Temperature Sensor for Bodyâ€Attachable Wearable Electronics. Advanced Materials, 2016, 28, 502-509.	21.0	715
290	Capacitance Characterization of Elastomeric Dielectrics for Applications in Intrinsically Stretchable Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4680-4686.	14.9	77

#	Article	IF	CITATIONS
291	A Stretchable Electronic Fabric Artificial Skin with Pressureâ€; Lateral Strainâ€; and Flexion‣ensitive Properties. Advanced Materials, 2016, 28, 722-728.	21.0	400
292	Device Engineered Organic Transistors for Flexible Sensing Applications. Advanced Materials, 2016, 28, 4549-4555.	21.0	143
293	Electrical Characterization of PEDOT:PSS Strips Deposited by Inkjet Printing on Plastic Foil for Sensor Manufacturing. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2137-2144.	4.7	14
294	A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor. Organic Electronics, 2016, 36, 57-60.	2.6	80
295	A versatile, superelastic polystyrene/graphene capsule-like framework. Journal of Materials Chemistry A, 2016, 4, 10118-10123.	10.3	26
296	Magnetic Tactile Sensor for Braille Reading. IEEE Sensors Journal, 2016, 16, 8700-8705.	4.7	53
297	Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016, 33, 2771-2787.	2.7	23
298	Printing Stretchable Spiral Interconnects Using Reactive Ink Chemistries. ACS Applied Materials & Interfaces, 2016, 8, 12594-12598.	8.0	30
299	Soluble salt-driven matrix swelling of a block copolymer for rapid fabrication of a conductive elastomer toward highly stretchable electronics. Materials and Design, 2016, 100, 263-270.	7.0	11
300	Hemodynamic monitoring in the era of digital health. Annals of Intensive Care, 2016, 6, 15.	4.6	44
301	Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Applied Materials & Interfaces, 2016, 8, 16922-16931.	8.0	404
302	"Cut-and-paste" manufacture of multiparametric epidermal electronic systems. Proceedings of SPIE, 2016, , .	0.8	0
303	Elastomeric nanowire composite for flexible pressure sensors with tunable sensitivity. Journal of Information Display, 2016, 17, 59-64.	4.0	13
304	Highâ€Performance Flexible Multilayer MoS ₂ Transistors on Solutionâ€Based Polyimide Substrates. Advanced Functional Materials, 2016, 26, 2426-2434.	14.9	75
305	Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Humanâ€Activity Monitoringand Personal Healthcare. Advanced Materials, 2016, 28, 4338-4372.	21.0	1,594
306	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	21.0	173
307	Stretchable and Multimodal All Graphene Electronic Skin. Advanced Materials, 2016, 28, 2601-2608.	21.0	493
308	Biasâ€Stressâ€Stable Lowâ€Voltage Organic Fieldâ€Effect Transistors with Ultrathin Polymer Dielectric on C Nanoparticles. Advanced Electronic Materials, 2016, 2, 1500349.	5.1	14

#	Article	IF	CITATIONS
309	Flexible Non-Constrained RF Wrist Pulse Detection Sensor Based on Array Resonators. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 300-308.	4.0	33
310	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.	31.5	680
311	Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores. Sensors and Actuators A: Physical, 2016, 240, 103-109.	4.1	171
312	Influence of substrate temperature and overlap condition on the evaporation behavior of inkjet-printed semiconductor layers in organic thin film transistors. Thin Solid Films, 2016, 598, 219-225.	1.8	5
313	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11, 566-572.	31.5	1,394
314	Interpenetrating poly(urethane-urea)–polydimethylsiloxane networks designed as active elements in electromechanical transducers. Polymer Chemistry, 2016, 7, 2709-2719.	3.9	43
315	Biocompatible and Ultra-Flexible Inorganic Strain Sensors Attached to Skin for Long-Term Vital Signs Monitoring. IEEE Electron Device Letters, 2016, 37, 496-499.	3.9	59
316	Photosensitive and Flexible Organic Fieldâ€Effect Transistors Based on Interface Trapping Effect and Their Application in 2D Imaging Array. Advanced Science, 2016, 3, 1500435.	11.2	107
317	Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence. Nano Energy, 2016, 20, 48-56.	16.0	43
318	An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23, 7-14.	16.0	467
319	A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Science Advances, 2016, 2, e1501101.	10.3	139
320	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of Materials Chemistry B, 2016, 4, 2999-3018.	5.8	116
321	Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals. Biosensors and Bioelectronics, 2016, 77, 907-913.	10.1	65
322	A nanogroove-guided slot-die coating technique for highly ordered polymer films and high-mobility transistors. Chemical Communications, 2016, 52, 358-361.	4.1	27
323	Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosensors and Bioelectronics, 2017, 89, 72-84.	10.1	192
324	Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Advanced Functional Materials, 2017, 27, 1606066.	14.9	522
325	A wearable piezoelectric bending motion sensor for simultaneous detection of bending curvature and speed. RSC Advances, 2017, 7, 2520-2526.	3.6	34
326	Highly sensitive and stable flexible pressure sensors with micro-structured electrodes. Journal of Alloys and Compounds, 2017, 699, 824-831.	5.5	49

#	Article	IF	CITATIONS
327	Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect. Journal of Materials Chemistry C, 2017, 5, 1231-1239.	5.5	51
328	Solvent-Free Processable and Photo-Patternable Hybrid Gate Dielectric for Flexible Top-Gate Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 5366-5374.	8.0	28
329	Materials and devices for transparent stretchable electronics. Journal of Materials Chemistry C, 2017, 5, 2202-2222.	5.5	118
330	Paper: A promising material for human-friendly functional wearable electronics. Materials Science and Engineering Reports, 2017, 112, 1-22.	31.8	128
331	Dual-gate low-voltage organic transistor for pressure sensing. Applied Physics Express, 2017, 10, 021601.	2.4	17
332	Intensive care medicine in 2050: NEWS for hemodynamic monitoring. Intensive Care Medicine, 2017, 43, 440-442.	8.2	25
333	Highly Selective Synthesis of Hydrosiloxanes by Au-Catalyzed Dehydrogenative Cross-Coupling Reaction of Silanols with Hydrosilanes. ACS Catalysis, 2017, 7, 1836-1840.	11.2	44
334	Highly Reliable and Sensitive Tactile Transistor Memory. Advanced Electronic Materials, 2017, 3, 1600548.	5.1	19
335	Patterning of Stretchable Organic Electrochemical Transistors. Chemistry of Materials, 2017, 29, 3126-3132.	6.7	116
336	Cardanol-based polymeric gate dielectric for solution-processed organic field-effect transistors on flexible substrates. Organic Electronics, 2017, 44, 144-148.	2.6	9
337	Flexible heartbeat sensor for wearable device. Biosensors and Bioelectronics, 2017, 94, 250-255.	10.1	117
338	Furan Is Superior to Thiophene: A Furanâ€Cored AlEgen with Remarkable Chromism and OLED Performance. Advanced Science, 2017, 4, 1700005.	11.2	94
339	Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nature Biomedical Engineering, 2017, 1, .	22.5	210
340	Imperceptible organic electronics. MRS Bulletin, 2017, 42, 124-130.	3.5	42
341	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	31.8	557
342	Electronic Skin with Multifunction Sensors Based on Thermosensation. Advanced Materials, 2017, 29, 1606151.	21.0	194
343	Sol-gel metal oxide dielectrics for all-solution-processed electronics. Materials Science and Engineering Reports, 2017, 114, 1-22.	31.8	180
344	Recyclable Nonfunctionalized Paperâ€Based Ultralowâ€Cost Wearable Health Monitoring System. Advanced Materials Technologies, 2017, 2, 1600228.	5.8	63

#	Article	IF	CITATIONS
345	Ultrathin and Wearable Microtubular Epidermal Sensor for Realâ€Time Physiological Pulse Monitoring. Advanced Materials Technologies, 2017, 2, 1700016.	5.8	68
346	Ordered and Patterned Assembly of Organic Micro/Nanocrystals for Flexible Electronic and Optoelectronic Devices. Advanced Materials Technologies, 2017, 2, 1600280.	5.8	21
347	3D Graphite–Polymer Flexible Strain Sensors with Ultrasensitivity and Durability for Realâ€Time Human Vital Sign Monitoring and Musical Instrument Education. Advanced Materials Technologies, 2017, 2, 1700070.	5.8	48
348	Epidermal electronic systems for sensing and therapy. Proceedings of SPIE, 2017, , .	0.8	6
349	Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Applied Materials & amp; Interfaces, 2017, 9, 14207-14215.	8.0	239
350	High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy, 2017, 36, 38-45.	16.0	160
351	Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy, 2017, 36, 166-175.	16.0	185
352	Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing. Applied Surface Science, 2017, 414, 262-269.	6.1	2
353	High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS Applied Materials & amp; Interfaces, 2017, 9, 14911-14919.	8.0	134
354	Vapor phase organic chemistry to deposit conjugated polymer films on arbitrary substrates. Journal of Materials Chemistry C, 2017, 5, 5787-5796.	5.5	41
355	Graphene for flexible and wearable device applications. Carbon, 2017, 120, 244-257.	10.3	137
356	Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38, 28-35.	16.0	194
357	Pressure-sensitive carbon black/graphene nanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensional polydopamine-modified polyurethane sponge. Journal of Materials Science: Materials in Electronics, 2017, 28, 9495-9504.	2.2	45
358	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36, 366-373.	16.0	117
359	A novel means of fabricating microporous structures for the dielectric layers of capacitive pressure sensor. Microelectronic Engineering, 2017, 179, 60-66.	2.4	55
360	Rugged Textile Electrodes for Wearable Devices Obtained by Vapor Coating Offâ€theâ€Shelf, Plainâ€Woven Fabrics. Advanced Functional Materials, 2017, 27, 1700415.	14.9	76
361	Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology. ACS Applied Materials & Interfaces, 2017, 9, 17499-17507.	8.0	139
362	An indacenodithiophene-based semiconducting polymer with high ductility for stretchable organic electronics. Polymer Chemistry, 2017, 8, 5185-5193.	3.9	38

#	Article	IF	CITATIONS
363	A near-infrared organic light-emitting diode based on an Yb(iii) complex synthesized by vacuum co-deposition. Chemical Communications, 2017, 53, 5457-5460.	4.1	31
364	Development of poly(vinyl alcohol)/wood-derived biochar composites for use in pressure sensor applications. Journal of Materials Science, 2017, 52, 8247-8257.	3.7	35
365	A triboelectric charge top-gated graphene transistor. Diamond and Related Materials, 2017, 73, 33-38.	3.9	9
366	Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry, 2017, 89, 249-275.	6.5	71
367	Deposition of Pentacene Thin Film on Polydimethylsiloxane Elastic Dielectric Layer for Flexible Thin-Film Transistors. IEEE Electron Device Letters, 2017, 38, 1031-1034.	3.9	15
368	Wearable Flexible Sensors: A Review. IEEE Sensors Journal, 2017, 17, 3949-3960.	4.7	379
369	Roughâ€&urfaceâ€Enabled Capacitive Pressure Sensors with 3D Touch Capability. Small, 2017, 13, 1700368.	10.0	142
370	Recent advances of conductive nanocomposites in printed and flexible electronics. Smart Materials and Structures, 2017, 26, 083001.	3.5	62
371	Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor. Small, 2017, 13, 1700109.	10.0	46
372	A pressure sensitive ionic gel FET for tactile sensing. Applied Physics Letters, 2017, 110, .	3.3	19
373	Self-powered pressure sensor for ultra-wide range pressure detection. Nano Research, 2017, 10, 3557-3570.	10.4	117
374	Graphene field effect transistors for highly sensitive and selective detection of K+ ions. Sensors and Actuators B: Chemical, 2017, 253, 759-765.	7.8	61
375	Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Architecture. ACS Applied Materials & Interfaces, 2017, 9, 22685-22693.	8.0	41
376	A Fully Biobased Encapsulant Constructed of Soy Protein and Cellulose Nanocrystals for Flexible Electromechanical Sensing. ACS Sustainable Chemistry and Engineering, 2017, 5, 7063-7070.	6.7	60
377	Photopatternable PEDOT:PSS/PEG hybrid thin film with moisture stability and sensitivity. Microsystems and Nanoengineering, 2017, 3, 17004.	7.0	50
378	Fully Stretchable Optoelectronic Sensors Based on Colloidal Quantum Dots for Sensing Photoplethysmographic Signals. ACS Nano, 2017, 11, 5992-6003.	14.6	115
379	Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chemical Communications, 2017, 53, 7182-7193.	4.1	118
380	Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Advanced Healthcare Materials, 2017, 6, 1601371.	7.6	217

#	Article	IF	CITATIONS
381	Fabrication of strain gauge based sensors for tactile skins. , 2017, , .		10
382	Solution-Processed High-Voltage Organic Thin Film Transistor. MRS Advances, 2017, 2, 2961-2966.	0.9	3
383	Soft Robotics: Review of Fluidâ€Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Humanâ€Robot Interaction. Advanced Engineering Materials, 2017, 19, 1700016.	3.5	707
384	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	7.6	155
385	Flexible Organic/Inorganic Hybrid Nearâ€Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring. Advanced Materials, 2017, 29, 1700975.	21.0	193
386	Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret. ACS Applied Materials & Interfaces, 2017, 9, 23716-23722.	8.0	48
387	Enhancement of organic field-effect transistor performance by incorporating functionalized double-walled carbon nanotubes. RSC Advances, 2017, 7, 30626-30631.	3.6	7
388	Piezoelectricity in two-dimensional covalent organic frameworks. Journal of Applied Physics, 2017, 121, 225112.	2.5	0
389	Al-doped cellulose ZnO hybrid nanocomposite. Materials Research Express, 2017, 4, 045001.	1.6	0
390	Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews, 2017, 117, 6467-6499.	47.7	624
391	Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano, 2017, 11, 4507-4513.	14.6	435
392	Advanced Materials for Health Monitoring with Skinâ€Based Wearable Devices. Advanced Healthcare Materials, 2017, 6, 1700024.	7.6	221
393	Microtopographyâ€Guided Conductive Patterns of Liquidâ€Driven Graphene Nanoplatelet Networks for Stretchable and Skinâ€Conformal Sensor Array. Advanced Materials, 2017, 29, 1606453.	21.0	101
394	Organic transistor for bioelectronic applications. Science China Chemistry, 2017, 60, 437-449.	8.2	22
395	Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. ACS Applied Materials & Interfaces, 2017, 9, 10128-10135.	8.0	272
396	Highly Sensitive and Bendable Capacitive Pressure Sensor and Its Application to 1 V Operation Pressureâ€Sensitive Transistor. Advanced Electronic Materials, 2017, 3, 1600455.	5.1	78
397	Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 13, 1602790.	10.0	690
398	Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide. Physica B: Condensed Matter, 2017, 514, 8-12.	2.7	6

#	Article	IF	CITATIONS
399	Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity. 2D Materials, 2017, 4, 025049.	4.4	34
400	High-κ organometallic lanthanide complex as gate dielectric layer for low-voltage, high-performance organic thin-film transistors. Thin Solid Films, 2017, 626, 209-213.	1.8	4
401	Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Applied Materials & Interfaces, 2017, 9, 11759-11769.	8.0	80
402	Additive Manufacturing Fused Filament Fabrication Three-Dimensional Printed Pressure Sensor for Prosthetics with Low Elastic Modulus and High Filler Ratio Filament Composites. 3D Printing and Additive Manufacturing, 2017, 4, 30-40.	2.9	12
403	Energyâ€Autonomous, Flexible, and Transparent Tactile Skin. Advanced Functional Materials, 2017, 27, 1606287.	14.9	264
404	All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy, 2017, 35, 121-127.	16.0	132
405	Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors. Analytical Chemistry, 2017, 89, 2032-2038.	6.5	84
406	Flexible capacitive pressure sensor based on multiâ€walled carbon nanotube electrodes. Micro and Nano Letters, 2017, 12, 45-48.	1.3	15
407	Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon, 2017, 114, 209-216.	10.3	201
408	Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer. 2D Materials, 2017, 4, 024001.	4.4	12
409	Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy, 2017, 32, 42-49.	16.0	123
410	A highly sensitive and wide-range pressure sensor based on a carbon nanocoil network fabricated by an electrophoretic method. Journal of Materials Chemistry C, 2017, 5, 11892-11900.	5.5	32
411	Recent Progress of Selfâ€Powered Sensing Systems for Wearable Electronics. Small, 2017, 13, 1701791.	10.0	223
413	Wearable and visual pressure sensors based on Zn ₂ GeO ₄ @polypyrrole nanowire aerogels. Journal of Materials Chemistry C, 2017, 5, 11018-11024.	5.5	34
414	Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites. ACS Applied Materials & Interfaces, 2017, 9, 36206-36219.	8.0	85
415	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	47.7	578
416	A Solutionâ€Processable, Omnidirectionally Stretchable, and Highâ€Pressureâ€Sensitive Piezoresistive Device. Advanced Materials, 2017, 29, 1703004.	21.0	67
417	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	21.0	558

#	Article	IF	Citations
418	Inorganic semiconducting materials for flexible and stretchable electronics. Npj Flexible Electronics, 2017, 1, .	10.7	144
419	Highly Sensitive, Flexible MEMS Based Pressure Sensor with Photoresist Insulation Layer. Small, 2017, 13, 1702422.	10.0	50
420	Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin. ACS Applied Materials & Interfaces, 2017, 9, 37921-37928.	8.0	230
421	Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Scientific Reports, 2017, 7, 12949.	3.3	144
422	Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials. Nanoscale, 2017, 9, 16915-16921.	5.6	13
423	Improving the performance and stability of flexible pressure sensors with an air gap structure. RSC Advances, 2017, 7, 48354-48359.	3.6	15
424	Ultrafast response flexible breath sensor based on vanadium dioxide. Journal of Breath Research, 2017, 11, 036002.	3.0	43
425	3D-printed biodegradable polymeric stent integrated with a battery-less pressure sensor for biomedical applications. , 2017, , .		5
426	Ultralight and Binderâ€Free Allâ€Solidâ€State Flexible Supercapacitors for Powering Wearable Strain Sensors. Advanced Functional Materials, 2017, 27, 1702738.	14.9	75
427	Highly Stable Indiumâ€Calliumâ€Zincâ€Oxide Thinâ€Film Transistors on Deformable Softening Polymer Substrates. Advanced Electronic Materials, 2017, 3, 1700221.	5.1	28
428	A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sensors Journal, 2017, , 1-1.	4.7	75
429	Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10554-10559.	7.1	201
430	Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing. Scientific Reports, 2017, 7, 10854.	3.3	37
431	Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications. , 2017, , 1-14.		0
432	Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano, 2017, 11, 9614-9635.	14.6	1,245
433	Flexible Bimodal Sensor for Simultaneous and Independent Perceiving of Pressure and Temperature Stimuli. Advanced Materials Technologies, 2017, 2, 1700183.	5.8	46
434	Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy, 2017, 41, 301-307.	16.0	104
435	Hollowâ€&tructured Graphene–Siliconeâ€Compositeâ€Based Piezoresistive Sensors: Decoupled Property Tuning and Bending Reliability. Advanced Materials, 2017, 29, 1702675.	21.0	213

#	Article	IF	CITATIONS
436	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	6.3	170
437	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	38.1	322
438	Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability. Applied Physics Letters, 2017, 111, .	3.3	16
439	Flexible pressure and proximity sensor surfaces manufactured with organic materials. , 2017, , .		4
440	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Advanced Materials, 2017, 29, 1701780.	21.0	68
441	Phenyl Derivative of Dibenzothiopheno[6,5â€ <i>b</i> :6′,5′â€ <i>f</i>]Thieno[3,2â€ <i>b</i>]Thiophene (DPhâ€DBTTT): High Thermally Durable Organic Semiconductor for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2017, 3, 1700142.	5.1	13
442	Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics. Scientific Reports, 2017, 7, 5728.	3.3	2
443	All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics. Nano Energy, 2017, 39, 590-600.	16.0	99
444	A Highly Sensitive, Direct Xâ€Ray Detector Based on a Lowâ€Voltage Organic Fieldâ€Effect Transistor. Advanced Electronic Materials, 2017, 3, 1600409.	5.1	42
445	Flexible unipolar thermoelectric devices based on patterned poly[K _x (Ni-ethylenetetrathiolate)] thin films. Materials Chemistry Frontiers, 2017, 1, 2111-2116.	5.9	28
446	Selfâ€Powered Realâ€Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Advanced Materials, 2017, 29, 1702308.	21.0	495
447	Recent progresses on flexible tactile sensors. Materials Today Physics, 2017, 1, 61-73.	6.0	227
448	Flexible Filterâ€Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. Advanced Functional Materials, 2017, 27, 1702360.	14.9	57
449	Highly Elastic Grapheneâ€Based Electronics Toward Electronic Skin. Advanced Functional Materials, 2017, 27, 1701513.	14.9	123
450	Attachable Pulse Sensors Integrated with Inorganic Optoelectronic Devices for Monitoring Heart Rates at Various Body Locations. ACS Applied Materials & Interfaces, 2017, 9, 25700-25705.	8.0	36
451	Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano, 2017, 11, 7925-7937.	14.6	52
452	Self-excited multi-scale skin vibrations probed by optical tracking micro-motions of tracers on arms. Journal of Applied Physics, 2017, 122, 024701.	2.5	1
453	Passive and Space-Discriminative Ionic Sensors Based on Durable Nanocomposite Electrodes toward Sign Language Recognition. ACS Nano, 2017, 11, 8590-8599.	14.6	73

#	Article	IF	CITATIONS
454	Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors. Scientific Reports, 2017, 7, 5015.	3.3	30
455	Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics. Advanced Functional Materials, 2017, 27, 1702589.	14.9	111
456	Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy, 2017, 40, 432-439.	16.0	150
457	Highâ€Performance Wearable Microâ€Supercapacitors Based on Microfluidicâ€Directed Nitrogenâ€Doped Graphene Fiber Electrodes. Advanced Functional Materials, 2017, 27, 1702493.	14.9	144
458	A wearable tactile sensor based on electrical-contact-resistance (ECR) variation with high sensitivity for health monitoring. , 2017, , .		4
459	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. Chemical Reviews, 2017, 117, 11239-11268.	47.7	418
460	Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Advanced Materials, 2017, 29, 1701985.	21.0	431
461	2-V operated flexible vertical organic transistor with good air stability and bias stress reliability. Organic Electronics, 2017, 50, 325-330.	2.6	16
462	Strain Balanced AlGaN/GaN/AlGaN nanomembrane HEMTs. Scientific Reports, 2017, 7, 6360.	3.3	20
463	Unprecedented sensitivity towards pressure enabled by graphene foam. Nanoscale, 2017, 9, 19346-19352.	5.6	40
464	Highâ€Resolution Patterning and Transferring of Grapheneâ€Based Nanomaterials onto Tape toward Rollâ€ŧoâ€Roll Production of Tapeâ€Based Wearable Sensors. Advanced Materials Technologies, 2017, 2, 1700223.	5.8	79
465	Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures. ACS Applied Materials & Interfaces, 2017, 9, 42996-43003.	8.0	53
466	Fabrication of prebent MoS2 biosensors on flexible substrates. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	7
467	Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli. ACS Applied Materials & Interfaces, 2017, 9, 43822-43829.	8.0	42
468	A polymer transistor array with a pressure-sensitive elastomer for electronic skin. Journal of Materials Chemistry C, 2017, 5, 12039-12043.	5.5	16
469	Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 2017, 42, 300-306.	16.0	126
470	A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring. ACS Sensors, 2017, 2, 967-974.	7.8	260
471	Crack-based strain sensor with diverse metal films by inserting an inter-layer. RSC Advances, 2017, 7, 34810-34815.	3.6	51

#	Article	IF	CITATIONS
472	Capacitive behavior of carbon nanotube thin film induced by deformed ZnO microspheres. Nanotechnology, 2017, 28, 395101.	2.6	3
473	Extreme Conductance Suppression in Molecular Siloxanes. Journal of the American Chemical Society, 2017, 139, 10212-10215.	13.7	33
474	Stability of MOSFET-Based Electronic Components in Wearable and Implantable Systems. IEEE Transactions on Electron Devices, 2017, 64, 3443-3451.	3.0	16
475	Ultrasensitive Pressure Sensor Based on an Ultralight Sparkling Graphene Block. ACS Applied Materials & Interfaces, 2017, 9, 22885-22892.	8.0	113
476	Superflexible Wood. ACS Applied Materials & amp; Interfaces, 2017, 9, 23520-23527.	8.0	141
477	One-dimensional CdS _x Se _{1â°'x} nanoribbons for high-performance rigid and flexible photodetectors. Journal of Materials Chemistry C, 2017, 5, 7521-7526.	5.5	29
478	Integrated Simultaneous Detection of Tactile and Bending Cues for Soft Robotics. Soft Robotics, 2017, 4, 400-410.	8.0	34
479	The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Applied Physics Letters, 2017, 110, .	3.3	59
480	Wearable Training-Monitoring Technology: Applications, Challenges, and Opportunities. International Journal of Sports Physiology and Performance, 2017, 12, S2-55-S2-62.	2.3	110
481	A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 2017, 31, 37-48.	16.0	172
482	Tactile Sensing From Laser-Ablated Metallized PET Films. IEEE Sensors Journal, 2017, 17, 7-13.	4.7	62
483	Array of Organic Field-Effect Transistor for Advanced Sensing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 92-101.	3.6	14
484	Flexible Electronic Devices for Biomedical Applications. Microsystems and Nanosystems, 2017, , 341-366.	0.1	4
485	A sneak peek into digital innovations and wearable sensors for cardiac monitoring. Journal of Clinical Monitoring and Computing, 2017, 31, 253-259.	1.6	47
486	A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor. Journal of Materials Chemistry A, 2017, 5, 3221-3229.	10.3	26
487	Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. CheM, 2017, 3, 724-763.	11.7	158
488	Remote tactile sensing system integrated with magnetic synapse. Scientific Reports, 2017, 7, 16963.	3.3	23
489	A novel multi-functional self-powered pressure sensor with hierarchical wrinkle structure. , 2017, , .		1

#	Article	IF	Citations
490	Mechanical-field-coupled thin-film transistor for tactile sensing with mN dynamic force detection capability and wearable self-driven heart rate monitoring with 1¼W power consumption. , 2017, , .		7
491	Pressure sensitive ionic gel-fets of extremely high sensitivity over 2,200 kPaâ~'1 operated under 2 V. , 2017, , .		1
492	A wearable autonomous heart rate sensor based on piezoelectric-charge-gated thin-film transistor for continuous multi-point monitoring. , 2017, 2017, 3281-3284.		12
493	Fully Solution Processed Bottom-Gate Organic Field-Effect Transistor With Steep Subthreshold Swing Approaching the Theoretical Limit. IEEE Electron Device Letters, 2017, 38, 1465-1468.	3.9	41
494	Dielectric Elastomer Sensors. , 0, , .		13
495	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	4.5	185
496	An All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties. Materials, 2017, 10, 530.	2.9	19
497	A Stretchable Pressure-Sensitive Array Based on Polymer Matrix. Sensors, 2017, 17, 1571.	3.8	18
498	Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities. Sensors, 2017, 17, 2621.	3.8	62
499	A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors, 2017, 17, 341.	3.8	231
500	Could We Realize the Fully Flexible System by Real-Time Computing with Thin-Film Transistors?. Applied Sciences (Switzerland), 2017, 7, 1224.	2.5	2
501	Strain, Pressure, Temperature, Proximity, and Tactile Sensors From Biopolymer Composites. , 2017, , 437-457.		7
502	Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene. Sensors, 2017, 17, 1069.	3.8	12
503	Wearable Pressure Sensor Array for Health Monitoring. , 0, , .		11
504	A Wearable Photobiomodulation Patch Using a Flexible Redâ€Wavelength OLED and Its In Vitro Differential Cell Proliferation Effects. Advanced Materials Technologies, 2018, 3, 1700391.	5.8	68
505	Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. Journal of Materials Chemistry A, 2018, 6, 5065-5070.	10.3	33
508	Materials and Wearable Devices for Autonomous Monitoring of Physiological Markers. Advanced Materials, 2018, 30, e1705024.	21.0	145
509	Effect of composite structure on capacity instability of SnO2-Coated multiwalled carbon nanotube composite anode. Journal of Alloys and Compounds, 2018, 742, 542-548.	5.5	12

#	Article	IF	CITATIONS
510	Kirigami enhances film adhesion. Soft Matter, 2018, 14, 2515-2525.	2.7	74
512	Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nature Electronics, 2018, 1, 237-245.	26.0	86
513	The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chemical Society Reviews, 2018, 47, 4757-4780.	38.1	70
514	Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electronics, 2018, 145, 29-33.	1.4	54
515	A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle. Advanced Materials, 2018, 30, e1706705.	21.0	255
516	Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range. ACS Nano, 2018, 12, 4045-4054.	14.6	360
517	Systematic study and experiment of a flexible pressure and tactile sensing array for wearable devices applications. Journal of Micromechanics and Microengineering, 2018, 28, 075019.	2.6	14
518	An Organic Temperature Sensor Based on Asymmetric Metal Insulator Semiconductor Capacitor With Electrically Tunable Sensing Area. , 2018, 2, 1-4.		12
519	Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Materials Research Bulletin, 2018, 102, 92-99.	5.2	76
520	Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Materials Science and Engineering C, 2018, 86, 151-172.	7.3	99
521	Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale, 2018, 10, 5264-5271.	5.6	144
522	Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin. Nano Letters, 2018, 18, 2054-2059.	9.1	172
523	Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles. Small, 2018, 14, 1703432.	10.0	112
524	A semi-permanent and durable nanoscale-crack-based sensor by on-demand healing. Nanoscale, 2018, 10, 4354-4360.	5.6	52
525	Customizable, Flexible Pressure, and Temperature Step Sensors with Human Skinlike Color. ACS Omega, 2018, 3, 1110-1116.	3.5	15
526	Strategies for Improving the Performance of Sensors Based on Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1705642.	21.0	114
527	Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials. Small, 2018, 14, 1703126.	10.0	135
528	Bioinspired, Spineâ€Like, Flexible, Rechargeable Lithiumâ€lon Batteries with High Energy Density. Advanced Materials, 2018, 30, e1704947.	21.0	109

#	Article	IF	CITATIONS
529	Selfâ€Assembly of Enzymeâ€Like Nanofibrous Gâ€Molecular Hydrogel for Printed Flexible Electrochemical Sensors. Advanced Materials, 2018, 30, e1706887.	21.0	198
530	Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure. Applied Physics Letters, 2018, 112, .	3.3	39
531	Recent progress of flexible and wearable strain sensors for human-motion monitoring. Journal of Semiconductors, 2018, 39, 011012.	3.7	93
532	Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. Journal of Semiconductors, 2018, 39, 014002.	3.7	11
533	Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale, 2018, 10, 4344-4353.	5.6	79
534	Green-solvent processable semiconducting polymers applicable in additive-free perovskite and polymer solar cells: molecular weights, photovoltaic performance, and thermal stability. Journal of Materials Chemistry A, 2018, 6, 5538-5543.	10.3	51
535	Flexible devices: from materials, architectures to applications. Journal of Semiconductors, 2018, 39, 011010.	3.7	56
536	Hybrid functional microfibers for textile electronics and biosensors. Journal of Semiconductors, 2018, 39, 011009.	3.7	4
537	A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology, 2018, 29, 115502.	2.6	94
538	Enhanced Piezocapacitive Effect in CaCu ₃ Ti ₄ O ₁₂ –Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor. ACS Applied Nano Materials, 2018, 1, 274-283.	5.0	54
539	Self-powered implantable electronic-skin for <i>in situ</i> analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis. Nanoscale, 2018, 10, 2099-2107.	5.6	49
540	Research Advances of Bio-Inspired Carbon Nanotubes-Based Sensors. MRS Advances, 2018, 3, 1-11.	0.9	8
541	Imperceptible Epidermal–Iontronic Interface for Wearable Sensing. Advanced Materials, 2018, 30, 1705122.	21.0	150
542	Wellâ€Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward Highâ€Performance Flexible Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1705286.	21.0	70
543	A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Composites Science and Technology, 2018, 156, 276-286.	7.8	276
544	A Light Harvesting, Selfâ€Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI ₃ Perovskite. Advanced Materials, 2018, 30, 1705778.	21.0	51
545	Twisting patterning: electrochemical deposition of stretchable spiral metallic conductors on elastic polymer threads. Journal of Materials Chemistry C, 2018, 6, 1215-1223.	5.5	2
546	Facile fabrication of Ag nanowires for capacitive flexible pressure sensors by liquid polyol reduction method. Materials Research Express, 2018, 5, 015041.	1.6	6

#	Article	IF	CITATIONS
547	Multifunctional Sensor Based on Porous Carbon Derived from Metal–Organic Frameworks for Real Time Health Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 3986-3993.	8.0	134
548	Noncontact Heartbeat and Respiration Monitoring Based on a Hollow Microstructured Self-Powered Pressure Sensor. ACS Applied Materials & amp; Interfaces, 2018, 10, 3660-3667.	8.0	119
549	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Interfaces, 2018, 10, 3895-3901.	8.0	85
550	Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Science China Materials, 2018, 61, 1587-1595.	6.3	122
551	Microbubble-Triggered Spontaneous Separation of Transparent Thin Films from Substrates Using Evaporable Core–Shell Nanocapsules. ACS Applied Materials & Interfaces, 2018, 10, 17375-17382.	8.0	5
552	A Highly Stretchable, Sensitive, and Transparent Strain Sensor Based on Binary Hybrid Network Consisting of Hierarchical Multiscale Metal Nanowires. Advanced Materials Technologies, 2018, 3, 1800020.	5.8	55
553	An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy, 2018, 49, 603-613.	16.0	124
554	Organic Pressure-Sensing Surfaces Fabricated by Lamination of Flexible Substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1159-1166.	2.5	10
555	Interfacial aspects of carbon composites. Composite Interfaces, 2018, 25, 539-605.	2.3	51
556	Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks. ACS Applied Materials & Interfaces, 2018, 10, 12816-12823.	8.0	236
557	Piezo-capacitive behavior of a magnetically structured particle-based conductive polymer with high sensitivity and a wide working range. Journal of Materials Chemistry C, 2018, 6, 5401-5411.	5.5	12
558	One-dimensional conjugated polymer nanomaterials for flexible and stretchable electronics. Journal of Materials Chemistry C, 2018, 6, 3538-3550.	5.5	42
559	Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale, 2018, 10, 7387-7395.	5.6	85
560	Stretchable Triboelectric–Photonic Smart Skin for Tactile and Gesture Sensing. Advanced Materials, 2018, 30, e1800066.	21.0	205
561	Flexible Highly Sensitive Pressure Sensor Based on Ionic Liquid Gel Film. ACS Omega, 2018, 3, 3014-3021.	3.5	66
562	Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer. Scientific Reports, 2018, 8, 4442.	3.3	90
563	The future of intraoperative blood pressure management. Journal of Clinical Monitoring and Computing, 2018, 32, 1-4.	1.6	23
564	Polyurethane Composite Foams in High-Performance Applications: A Review. Polymer-Plastics Technology and Engineering, 2018, 57, 346-369.	1.9	185

#	Article	IF	CITATIONS
565	Textileâ€Enabled Highly Reproducible Flexible Pressure Sensors for Cardiovascular Monitoring. Advanced Materials Technologies, 2018, 3, 1700222.	5.8	72
566	Potential applications of human artificial skin and electronic skin (e-skin): a review. Bioinspired, Biomimetic and Nanobiomaterials, 2018, 7, 53-64.	0.9	26
567	Device-assisted transdermal drug delivery. Advanced Drug Delivery Reviews, 2018, 127, 35-45.	13.7	237
568	Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites. Advanced Science, 2018, 5, 1700256.	11.2	213
569	Wearable sensors: modalities, challenges, and prospects. Lab on A Chip, 2018, 18, 217-248.	6.0	778
570	Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 1067-1076.	8.0	84
571	Flexible solution-processed high-voltage organic thin film transistor. Journal of Materials Research, 2018, 33, 149-160.	2.6	6
572	Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Organic Electronics, 2018, 53, 213-220.	2.6	54
573	A Breathable and Screenâ€Printed Pressure Sensor Based on Nanofiber Membranes for Electronic Skins. Advanced Materials Technologies, 2018, 3, 1700241.	5.8	163
574	A self-powered brain multi-perception receptor for sensory-substitution application. Nano Energy, 2018, 44, 43-52.	16.0	44
575	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	16.0	216
576	A flexible multifunctional tactile sensor using interlocked zinc oxide nanorod arrays for artificial electronic skin. Sensors and Actuators A: Physical, 2018, 269, 574-584.	4.1	68
577	Solution Adsorption Formation of a Ï€â€Conjugated Polymer/Graphene Composite for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1705377.	21.0	48
578	Fabrication of controlled hierarchical wrinkle structures on polydimethylsiloxane via one-step C ₄ F ₈ plasma treatment. Journal of Micromechanics and Microengineering, 2018, 28, 015007.	2.6	9
579	Flexible Piezoresistive Pressure Sensor Using Wrinkled Carbon Nanotube Thin Films for Human Physiological Signals. Advanced Materials Technologies, 2018, 3, 1700158.	5.8	136
580	Sensitive and selective pentacene-guanine field-effect transistor sensing of nitrogen dioxide and interferent vapor analytes. Sensors and Actuators B: Chemical, 2018, 254, 940-948.	7.8	30
581	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 2018, 11, 1124-1134.	10.4	185
582	Wearable carbon nanotube based dry-electrodes for electrophysiological sensors. Japanese Journal of Applied Physics, 2018, 57, 05GD02.	1.5	16

#	ARTICLE	IF	CITATIONS
583	Development of Enzymatic Sensors Based on Extended-gate-type Organic Field-effect Transistors. Electrochemistry, 2018, 86, 303-308.	1.4	18
584	Multifunctional Wearable System that Integrates Sweatâ€Based Sensing and Vitalâ€&ign Monitoring to Estimate Preâ€#Postâ€Exercise Glucose Levels. Advanced Functional Materials, 2018, 28, 1805754.	14.9	143
585	Smart Materials for Wearable Healthcare Devices. , 0, , .		4
586	Low Voltage Graphene FET Based Pressure Sensor. , 2018, , .		1
587	A Pilot Study of Neural Stimulation and Motion Intervention via Self-powered Wearable Electronics*.		0
588	Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments. Journal of Materials Chemistry A, 2018, 6, 24114-24119.	10.3	75
589	Crisscross-designed piezoresistive strain sensors with a cracked microtectonic architecture for direction-selective tensile perception. Journal of Materials Chemistry C, 2018, 6, 11170-11177.	5.5	15
590	A self-powered brain-linked biosensing electronic-skin for actively tasting beverage and its potential application in artificial gustation. Nanoscale, 2018, 10, 19987-19994.	5.6	21
591	Hybrid Architectures of Heterogeneous Carbon Nanotube Composite Microstructures Enable Multiaxial Strain Perception with High Sensitivity and Ultrabroad Sensing Range. Small, 2018, 14,	10.0	51
592	PZT and PNIPAM Film-Based Flexible and Stretchable Electronics for Knee Health Monitoring and Enhanced Drug Delivery. IEEE Sensors Journal, 2018, 18, 9736-9743.	4.7	18
593	Recent Advances in Ferroelectric Nanosensors: Toward Sensitive Detection of Gas, Mechanothermal Signals, and Radiation. Journal of Nanomaterials, 2018, 2018, 1-15.	2.7	29
594	Dual-Function Electrochromic Supercapacitors Displaying Real-Time Capacity in Color. ACS Applied Materials & Interfaces, 2018, 10, 43993-43999.	8.0	82
595	Gate-Free Hydrogel–Graphene Transistors as Underwater Microphones. ACS Applied Materials & Interfaces, 2018, 10, 42573-42582.	8.0	21
596	An Elastic Interfacial Transistor Enabled by Superhydrophobicity. Small, 2018, 14, e1804006.	10.0	6
597	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	5.8	128
598	Conjugated Polymers Based on Thiazole Flanked Naphthalene Diimide for Unipolar n-Type Organic Field-Effect Transistors. Chemistry of Materials, 2018, 30, 8343-8351.	6.7	30
599	Stretchability of Archimedean-Spiral Interconnects Design. , 2018, , .		3
600	A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. Journal of Materials Chemistry C, 2018, 6, 13232-13240.	5.5	160

#	Article	IF	CITATIONS
601	49.1: <i>Invited Paper:</i> Optical Sensitive Organic Memory Transistors. Digest of Technical Papers SID International Symposium, 2018, 49, 509-511.	0.3	0
602	The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly Sensitive Pressure Sensors. Advanced Materials, 2019, 31, e1805630.	21.0	115
603	Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nature Communications, 2018, 9, 5161.	12.8	138
604	Effect of Hardness on Surface Strain of PDMS Films Detected by a Surface Labeled Grating Method. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 523-526.	0.3	6
605	Self-Powered Wearable Pressure Sensors with Enhanced Piezoelectric Properties of Aligned P(VDF-TrFE)/MWCNT Composites for Monitoring Human Physiological and Muscle Motion Signs. Nanomaterials, 2018, 8, 1021.	4.1	56
606	Recent Advances in Largeâ€Scale Tactile Sensor Arrays Based on a Transistor Matrix. Advanced Materials Interfaces, 2018, 5, 1801061.	3.7	48
607	Sensitive and Wearable Optical Microfiber Sensor for Human Health Monitoring. Advanced Materials Technologies, 2018, 3, 1800296.	5.8	78
608	Mental health monitoring with multimodal sensing and machine learning: A survey. Pervasive and Mobile Computing, 2018, 51, 1-26.	3.3	215
609	Plantâ€Based Modular Building Blocks for "Green―Electronic Skins. Advanced Functional Materials, 2018, 28, 1804510.	14.9	97
610	Long side-chain grafting imparts intrinsic adhesiveness to poly(thiophene phenylene) conjugated polymer. European Polymer Journal, 2018, 109, 237-247.	5.4	7
612	Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Advanced Materials, 2018, 30, e1803430.	21.0	124
613	Nanoscale Variable-Area Electronic Devices: Contact Mechanics and Hypersensitive Pressure Application. ACS Applied Materials & Interfaces, 2018, 10, 39168-39176.	8.0	16
614	Direct Laser Writing of Crystallized TiO ₂ and TiO ₂ /Carbon Microstructures with Tunable Conductive Properties. Advanced Materials, 2018, 30, e1805093.	21.0	37
615	Smart Material Constructed Flexible and Stretchable Electronics for Knee Joint Health Monitoring and Improved Drug Delivery. , 2018, , .		0
616	Selfâ€Healable and Mechanically Reinforced Multidimensionalâ€Carbon/Polyurethane Dielectric Nanocomposite Incorporates Various Functionalities for Capacitive Strain Sensor Applications. Macromolecular Chemistry and Physics, 2018, 219, 1800369.	2.2	17
617	Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing. Sensors and Actuators A: Physical, 2018, 284, 260-265.	4.1	67
618	Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Advanced Science, 2018, 5, 1700931.	11.2	83
619	Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Advanced Functional Materials, 2018, 28, 1804222.	14.9	134

#	Article	IF	CITATIONS
620	Tunable wrinkled graphene foams for highly reliable piezoresistive sensor. Sensors and Actuators A: Physical, 2018, 281, 141-149.	4.1	17
621	Ultrastretchable Multilayered Fiber with a Hollow-Monolith Structure for High-Performance Strain Sensor. ACS Applied Materials & Interfaces, 2018, 10, 34592-34603.	8.0	81
622	Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9542-E9549.	7.1	50
623	Alignmentâ€Free Liquidâ€Capsule Pressure Sensor for Cardiovascular Monitoring. Advanced Functional Materials, 2018, 28, 1805045.	14.9	52
624	Flexible and Highly Sensitive Resistive Pressure Sensor Based on Carbonized Crepe Paper with Corrugated Structure. ACS Applied Materials & amp; Interfaces, 2018, 10, 34646-34654.	8.0	137
625	Printed Organic Complementary Inverter with Single SAM Process Using a p-type D-A Polymer Semiconductor. Applied Sciences (Switzerland), 2018, 8, 1331.	2.5	16
626	A Flexible Tactile Sensor With Good Consistency. IEEE Access, 2018, 6, 51647-51654.	4.2	4
627	Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2018, 2, 687-695.	22.5	520
628	A Wearable Self-Driven Impulse Sensor Based on a Mechanical-Field-Coupled Thin-Film Transistor. IEEE Electron Device Letters, 2018, 39, 1756-1759.	3.9	3
629	A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30, e1804944.	21.0	396
630	High-performance transparent pressure sensors based on sea-urchin shaped metal nanoparticles and polyurethane microdome arrays for real-time monitoring. Nanoscale, 2018, 10, 18812-18820.	5.6	35
631	Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels. ACS Applied Materials & Interfaces, 2018, 10, 32640-32648.	8.0	107
632	Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing. Nanomaterials, 2018, 8, 657.	4.1	42
633	Flexible and Anisotropic Strain Sensor Based on Carbonized Crepe Paper with Aligned Cellulose Fibers. Advanced Functional Materials, 2018, 28, 1802547.	14.9	228
634	A Highly Sensitive Force Sensor with Fast Response Based on Interlocked Arrays of Indium Tin Oxide Nanosprings toward Human Tactile Perception. Advanced Functional Materials, 2018, 28, 1804132.	14.9	36
635	Ultrasensitive, Low-Power Oxide Transistor-Based Mechanotransducer with Microstructured, Deformable Ionic Dielectrics. ACS Applied Materials & Interfaces, 2018, 10, 31472-31479.	8.0	34
636	An Acquisition Research into Radial Artery Tremor Signal Based on PVDF. , 2018, , .		1
637	Integration of Biomaterials into Sensors Based on Organic Thinâ€Film Transistors. Macromolecular Rapid Communications, 2018, 39, e1800084.	3.9	24
#	Article	IF	CITATIONS
-----	---	------	-----------
638	Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors. Scientific Reports, 2018, 8, 8073.	3.3	92
639	Intraoperative monitoring of neuromuscular function with soft, skin-mounted wireless devices. Npj Digital Medicine, 2018, 1, .	10.9	22
640	Flexible Polymeric Substrates for Electronic Applications. Polymer Reviews, 2018, 58, 630-667.	10.9	73
641	Tracing the Evolving Trends in Electronic Skin (e-Skin) Technology Using Growth Curve and Technology Position-Based Patent Bibliometrics. IEEE Access, 2018, 6, 26530-26542.	4.2	25
642	Lignin-based highly sensitive flexible pressure sensor for wearable electronics. Journal of Materials Chemistry C, 2018, 6, 6423-6428.	5.5	59
643	Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperature and stress sensitivity for electronic skin. Journal of Materials Chemistry C, 2018, 6, 5877-5887.	5.5	36
644	Review on flexible photonics/electronics integrated devices and fabrication strategy. Science China Information Sciences, 2018, 61, 1.	4.3	72
645	A Pulse-Biasing Small-Signal Measurement Technique Enabling 40 MHz Operation of Vertical Organic Transistors. Scientific Reports, 2018, 8, 7643.	3.3	47
646	Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method. Nanoscale, 2018, 10, 10691-10698.	5.6	102
647	Highly Sensitive Flexible Pressure Sensor by the Integration of Microstructured PDMS Film With a-IGZO TFTs. IEEE Electron Device Letters, 2018, 39, 1073-1076.	3.9	53
648	Flexible pressure sensors using highly-oriented and free-standing carbon nanotube sheets. Carbon, 2018, 139, 586-592.	10.3	45
649	Carbon nanotube-based flexible electronics. Journal of Materials Chemistry C, 2018, 6, 7714-7727.	5.5	77
650	The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Composites Science and Technology, 2018, 165, 131-139.	7.8	31
651	A Composite Elastic Conductor with High Dynamic Stability Based on 3Dâ€Calabash Bunch Conductive Network Structure for Wearable Devices. Advanced Electronic Materials, 2018, 4, 1800137.	5.1	57
652	Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale, 2018, 10, 13722-13729.	5.6	71
653	Organic synaptic devices for neuromorphic systems. Journal Physics D: Applied Physics, 2018, 51, 314004.	2.8	89
654	Lowâ€Power Monolithically Stacked Organic Photodiodeâ€Blocking Diode Imager by Turnâ€On Voltage Engineering. Advanced Electronic Materials, 2018, 4, 1800311.	5.1	18
655	Pulse sensor based on single-electrode triboelectric nanogenerator. Sensors and Actuators A: Physical, 2018, 280, 326-331.	4.1	32

#	Article	IF	CITATIONS
656	High performance strain sensor based on buckypaper for full-range detection of human motions. Nanoscale, 2018, 10, 14966-14975.	5.6	48
657	Ionic Skin with Biomimetic Dielectric Layer Templated from <i>Calathea Zebrine</i> Leaf. Advanced Functional Materials, 2018, 28, 1802343.	14.9	216
658	Sandpaper-molded wearable pressure sensor for electronic skins. Sensors and Actuators A: Physical, 2018, 280, 205-209.	4.1	43
659	Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin. Small, 2018, 14, e1801657.	10.0	153
660	Novel Electronics for Flexible and Neuromorphic Computing. Advanced Functional Materials, 2018, 28, 1801690.	14.9	94
661	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	14.6	257
662	Highly-sensitive linear tactile array for continuously monitoring blood pulse waves. Sensors and Actuators A: Physical, 2018, 280, 261-270.	4.1	10
663	Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces. Materials, 2018, 11, 187.	2.9	166
664	Cakingâ€Inspired Cold Sintering of Plastic Supramolecular Films as Multifunctional Platforms. Advanced Functional Materials, 2018, 28, 1803370.	14.9	25
665	High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure. Polymers, 2018, 10, 587.	4.5	9
666	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 2018, 18, 5.	3.8	32
667	Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors, 2018, 18, 330.	3.8	158
668	Floating Gate, Organic Field-Effect Transistor-Based Sensors towards Biomedical Applications Fabricated with Large-Area Processes over Flexible Substrates. Sensors, 2018, 18, 688.	3.8	25
669	Recent Progress in Technologies for Tactile Sensors. Sensors, 2018, 18, 948.	3.8	169
670	Flexible Neuromorphic Architectures Based on Self-Supported Multiterminal Organic Transistors. ACS Applied Materials & Interfaces, 2018, 10, 26443-26450.	8.0	99
671	Towards the development of a wearable temperature sensor based on a ferroelectric capacitor. , 2018, , .		2
672	Solutionâ€Processed Bilayer Dielectrics for Flexible Lowâ€Voltage Organic Fieldâ€Effect Transistors in Pressureâ€Sensing Applications. Advanced Science, 2018, 5, 1701041.	11.2	66
673	Recent advances in organic sensors for health self-monitoring systems. Journal of Materials Chemistry C, 2018, 6, 8569-8612.	5.5	110

#	Article	IF	Citations
674	Liquid Metal Enabled Wearable Electronics. Springer Series in Biomaterials Science and Engineering, 2018, , 369-416.	1.0	0
675	Nonvolatile Memories Based on Graphene-Based Nanomaterials. , 2018, , 41-69.		0
676	A Highly Skin onformal and Biodegradable Grapheneâ€Based Strain Sensor. Small Methods, 2018, 2, 1700374.	8.6	41
677	Self-powered triboelectric touch sensor made of 3D printed materials. Nano Energy, 2018, 52, 54-62.	16.0	52
678	Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 2018, 4, eaar2904.	10.3	395
679	Connection-Improved Conductive Network of Carbon Nanotubes in a Rubber Cross-Link Network. ACS Applied Materials & Interfaces, 2018, 10, 18213-18219.	8.0	49
680	Design Guidelines of Stretchable Pressure Sensorsâ€Based Triboelectrification. Advanced Engineering Materials, 2018, 20, 1700997.	3.5	21
681	A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sensors, 2018, 3, 944-952.	7.8	285
682	Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C, 2018, 6, 11878-11892.	5.5	194
683	Photosynthetic Bioelectronic Sensors for Touch Perception, UVâ€Detection, and Nanopower Generation: Toward Selfâ€Powered Eâ€Skins. Advanced Materials, 2018, 30, e1802290.	21.0	62
684	Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. Advanced Materials, 2018, 30, e1802560.	21.0	140
685	Substrate-led cholesterol extraction from supported lipid membranes. Nanoscale, 2018, 10, 16332-16342.	5.6	13
686	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano, 2018, 12, 9134-9141.	14.6	455
687	Wearable and Implantable Epidermal Paper-Based Electronics. ACS Applied Materials & Interfaces, 2018, 10, 31061-31068.	8.0	55
688	Chemically Reactive Polyurethane–Carbon Nanotube Fiber with Aerogelâ€Microsphereâ€Thinâ€Film Selective Filter. Advanced Materials Interfaces, 2018, 5, 1800935.	3.7	9
689	A Micro-fabricated flexible and flat polyimide module with highly C-axis oriented AlN piezoelectric element for accurate vital signs monitoring. , 2018, , .		2
690	Asynchronous synthesis method of waterborne polyurethane with the differences of structural features and thermal conductivity. Journal of Polymer Research, 2018, 25, 1.	2.4	11
691	Flexible THV/COC Piezoelectret Nanogenerator for Wide-Range Pressure Sensing. ACS Applied Materials & Interfaces, 2018, 10, 29675-29683.	8.0	21

#	Article	IF	CITATIONS
692	High Performance Flexible Organic Electrochemical Transistors for Monitoring Cardiac Action Potential. Advanced Healthcare Materials, 2018, 7, e1800304.	7.6	50
693	Singleâ€Crackâ€Activated Ultrasensitive Impedance Strain Sensor. Advanced Materials Interfaces, 2018, 5, 1800616.	3.7	21
694	Multifunctionality and Mechanical Actuation of 2D Materials for Skinâ€Mimicking Capabilities. Advanced Materials, 2018, 30, e1802418.	21.0	72
695	Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication. Scientific Reports, 2018, 8, 12313.	3.3	30
696	Extreme electron transport suppression in siloxane ring-based molecular devices. Physical Chemistry Chemical Physics, 2018, 20, 23352-23362.	2.8	3
697	High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network. ACS Applied Materials & Interfaces, 2018, 10, 19906-19913.	8.0	40
698	Eâ€6kin Tactile Sensor Matrix Pixelated by Positionâ€Registered Conductive Microparticles Creating Pressureâ€6ensitive Selectors. Advanced Functional Materials, 2018, 28, 1801858.	14.9	86
699	Micropatterned Elastic Goldâ€Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Advanced Materials Technologies, 2018, 3, 1800051.	5.8	59
700	Time-domain transient fluorescence spectroscopy for thermal characterization of polymers. Applied Thermal Engineering, 2018, 138, 403-408.	6.0	4
701	Organic Flexible Electronics. Small Methods, 2018, 2, 1800070.	8.6	177
702	Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. Journal of Materials Chemistry C, 2018, 6, 6840-6846.	5.5	64
703	Piezoresistive Eâ€Skin Sensors Produced with Laser Engraved Molds. Advanced Electronic Materials, 2018, 4, 1800182.	5.1	56
704	Stretchable Ionics – A Promising Candidate for Upcoming Wearable Devices. Advanced Materials, 2018, 30, e1704403.	21.0	234
705	Actively Perceiving and Responsive Soft Robots Enabled by Selfâ€Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity―and Pressureâ€Sensing Skins. Advanced Materials, 2018, 30, e1801114.	21.0	254
706	Flexible-detachable dual-output sensors of fluid temperature and dynamics based on structural design of thermoelectric materials. Nano Energy, 2018, 50, 733-743.	16.0	13
707	Noninvasive Cardiac Output Monitoring in Cardiothoracic Surgery Patients: Available Methods and Future Directions. Journal of Cardiothoracic and Vascular Anesthesia, 2019, 33, 1742-1752.	1.3	26
708	Flexible Logic Circuits by using Van Der Waals Contacted Graphene Field-Effect Transistors. , 2019, , .		3
709	Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 2019, 65, 104033.	16.0	107

#	Article	IF	CITATIONS
710	Wearable Piezoresistive Sensors with Ultrawide Pressure Range and Circuit Compatibility Based on Conductive-Island-Bridging Nanonetworks. ACS Applied Materials & Interfaces, 2019, 11, 32291-32300.	8.0	29
711	Structural evolution in liquid GaIn eutectic alloy under high temperature and pressure. Journal of Applied Physics, 2019, 126, .	2.5	6
712	A novel capacitive pressure sensor based on non-coplanar comb electrodes. Sensors and Actuators A: Physical, 2019, 297, 111525.	4.1	8
713	Simple and efficient pressure sensor based on PDMS wrapped CNT arrays. Carbon, 2019, 155, 71-76.	10.3	66
714	Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors. Chemistry of Materials, 2019, 31, 7608-7617.	6.7	23
715	A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na ⁺ concentration. Lab on A Chip, 2019, 19, 3179-3189.	6.0	56
716	Hydrophobic, Structure‶unable Cu Nanowire@Graphene Core–Shell Aerogels for Piezoresistive Pressure Sensing. Advanced Materials Technologies, 2019, 4, 1900470.	5.8	17
717	A Structured Design for Highly Stretchable Electronic Skin. Advanced Materials Technologies, 2019, 4, 1900492.	5.8	18
718	Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. ACS Applied Electronic Materials, 2019, 1, 1718-1734.	4.3	108
719	An ultraflexible organic differential amplifier for recording electrocardiograms. Nature Electronics, 2019, 2, 351-360.	26.0	114
720	UV cured PVP gate dielectric for Flexible Organic Field Effect Transistors. , 2019, , .		1
721	Flexible Pressure-Sensitive Contact Transistors Operating in the Subthreshold Regime. ACS Applied Materials & amp; Interfaces, 2019, 11, 31111-31118.	8.0	26
722	A Highly Sensitive and Costâ€Effective Flexible Pressure Sensor with Micropillar Arrays Fabricated by Novel Metalâ€Assisted Chemical Etching for Wearable Electronics. Advanced Materials Technologies, 2019, 4, 1900367.	5.8	34
723	Flexible Fabrication of Flexible Electronics: A General Laser Ablation Strategy for Robust Largeâ€Area Copperâ€Based Electronics. Advanced Electronic Materials, 2019, 5, 1900365.	5.1	37
724	3Dâ€Printed Coaxial Fibers for Integrated Wearable Sensor Skin. Advanced Materials Technologies, 2019, 4, 1900504.	5.8	58
725	Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information. Nanoscale Research Letters, 2019, 14, 263.	5.7	172
726	Wearable sensors based on colloidal nanocrystals. Nano Convergence, 2019, 6, 10.	12.1	43
727	Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a Worm-Shaped Graphene Microlayer. Nano Letters, 2019, 19, 6592-6599.	9.1	126

#		IF	CITATIONS
Ŧ	AKTICLE	II	CHATIONS
728	Sciences, 2019, 62, 1255-1276.	4.0	18
729	Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 29014-29021.	8.0	148
730	Defect generation mechanism in magnetron sputtered metal films on PMMA substrates. Journal of Materials Science: Materials in Electronics, 2019, 30, 14847-14854.	2.2	7
731	Porous CNT/rubber composite for resistive pressure sensor. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 387-393.	5.3	23
732	High Durable, Biocompatible, and Flexible Piezoelectric Pulse Sensor Using Singleâ€Crystalline IIIâ€N Thin Film. Advanced Functional Materials, 2019, 29, 1903162.	14.9	56
733	Saw-Toothed Microstructure-Based Flexible Pressure Sensor as the Signal Readout for Point-of-Care Immunoassay. ACS Sensors, 2019, 4, 2272-2276.	7.8	91
734	Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions. RSC Advances, 2019, 9, 22740-22748.	3.6	16
735	Skinâ€Inspired Electronics and Its Applications in Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900063.	6.1	15
736	Two-Dimensional van der Waals Materials with Aligned In-Plane Polarization and Large Piezoelectric Effect for Self-Powered Piezoelectric Sensors. Nano Letters, 2019, 19, 5410-5416.	9.1	132
737	Study of Burnâ€In Loss in Green Solventâ€Processed Ternary Blended Organic Photovoltaics Derived from UVâ€Crosslinkable Semiconducting Polymers and Nonfullerene Acceptors. Advanced Energy Materials, 2019, 9, 1901829.	19.5	47
738	Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting. Scientific Reports, 2019, 9, 10595.	3.3	26
739	Monolithic Dualâ€Material 3D Printing of Ionic Skins with Longâ€Term Performance Stability. Advanced Functional Materials, 2019, 29, 1904716.	14.9	76
740	A Solidâ€State Aqueous Electrolyteâ€Cated Fieldâ€Effect Transistor as a Lowâ€Voltage Operation Pressureâ€Sensitive Platform. Advanced Materials Interfaces, 2019, 6, 1900719.	3.7	22
741	Soft Bioelectronic Stickers: Selection and Evaluation of Skinâ€Interfacing Electrodes. Advanced Healthcare Materials, 2019, 8, e1900234.	7.6	77
742	Polymer Template Synthesis of Flexible BaTiO ₃ Crystal Nanofibers. Advanced Functional Materials, 2019, 29, 1907919.	14.9	129
743	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	21.0	936
744	Fully Printed Organic Electrochemical Transistors from Green Solvents. Advanced Functional Materials, 2019, 29, 1905266.	14.9	42
745	Skinâ€Integrated Grapheneâ€Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. Advanced Materials Technologies, 2019, 4, 1900744.	5.8	52

ARTICLE IF CITATIONS # Tailor-Made Engineering of Bioinspired Inks for Writing Barcode-like Multifunctional Sensory 746 7.8 10 Electronics. ACS Sensors, 2019, 4, 2588-2592. A wearable and sensitive graphene-cotton based pressure sensor for human physiological signals 747 3.3 34 monitoring. Scientific Reports, 2019, 9, 14457. 748 Devices for promising applications., 2019, , 247-314. 0 Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs. Proceedings of the IEEE, 2019, 107, 749 214 2016-2033. Nanomaterialâ€Modified Conducting Paper: Fabrication, Properties, and Emerging Biomedical 750 3.6 23 Applications. Global Challenges, 2019, 3, 1900041. High-Performance Paper-Based Capacitive Flexible Pressure Sensor and Its Application in 5.7 Human-Related Measurement. Nanoscale Research Letters, 2019, 14, 183. Fabrication and Characterization of Wrapped Metal Yarns-based Fabric Temperature Sensors. 752 4.5 9 Polymers, 2019, 11, 1549. Rechargeable Softâ€Matter EGaInâ€MnO₂ Battery for Stretchable Electronics. Advanced 19.5 54 Energy Materials, 2019, 9, 1902798. Flexible and Ultrasensitive Piezoelectric Composites Based on Highly (00l)â€Assembled 754 BaTiO₃ Microplatelets for Wearable Electronics Application. Advanced Materials 5.8 9 Technologies, 2019, 4, 1900689. Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible 4.1 pressure sensors. Sensors and Actuators A: Physical, 2019, 299, 111625. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired 757 47.7 269 Chemical Sensors. Chemical Reviews, 2019, 119, 11761-11817. Preparation of a Highly Sensitive and Stretchable Strain Sensor of MXene/Silver Nanocomposite-Based 8.0 128 Yarn and Wearable Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 45930-45938. Stretchable, Patchâ€Type Calorieâ€Expenditure Measurement Device Based on Popâ€Up Shaped Nanoscale 759 7.6 21 Crackâ€Based Sensor. Advanced Healthcare Materials, 2019, 8, e1801593. Carbon Black from Diesel Soot for Highâ€Performance Wearable Pressure Sensors. Advanced Materials 5.8 Technologies, 2019, 4, 1900475. Investigation of the sensing mechanism of dual-gate low-voltage organic transistor based pressure 761 2.6 15 sensor. Organic Electronics, 2019, 75, 105431. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flexible and Printed Electronics, 2019, 4, 044004. Flexible Pressure Sensors with Wide Linearity Range and High Sensitivity Based on Selective Laser 763 5.8 38 Sintering 3D Printing. Advanced Materials Technologies, 2019, 4, 1900679. Graphene Aerogel Broken to Fragments for a Piezoresistive Pressure Sensor with a Higher Sensitivity. 764 58 ACS Applied Materials & amp; Interfaces, 2019, 11, 33165-33172.

#	Article	IF	CITATIONS
765	Regenerating leather waste for flexible pressure sensing applications. Journal of Leather Science and Engineering, 2019, 1, .	6.0	14
766	Reliability Challenges in Fabrication of Flexible Hybrid Electronics for Human Performance Monitors: A System-Level Study. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9, 1872-1887.	2.5	21
767	Evaluation of Printed P(VDF-TrFE) Pressure Sensor Signal Quality in Arterial Pulse Wave Measurement. IEEE Sensors Journal, 2019, 19, 11072-11080.	4.7	18
768	Electrospun Polytetrafluoroethylene Nanofibrous Membrane for High-Performance Self-Powered Sensors. Nanoscale Research Letters, 2019, 14, 251.	5.7	17
769	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	6.1	80
770	A graphene rheostat for highly durable and stretchable strain sensor. InformaÄnÃ-Materiály, 2019, 1, 396-406.	17.3	35
771	Photodetectors based on two dimensional materials for biomedical application. Biosensors and Bioelectronics, 2019, 143, 111617.	10.1	34
772	Smart Floor for a more comfortable and safer life. , 2019, , .		2
773	An Inkjet-printed Strain Sensor with a Carbon-SilverPolyimide Topology. , 2019, , .		2
774	A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nature Communications, 2019, 10, 4019.	12.8	138
775	An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays. Nature Communications, 2019, 10, 4024.	12.8	79
776	Response characteristics of strain sensors based on closely spaced nanocluster films with controlled coverage. Chinese Journal of Chemical Physics, 2019, 32, 213-217.	1.3	5
777	Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wearable Healthcare Device. , 2019, , .		2
778	A Blood Pressure Monitoring Device with Tactile and Tension Sensors Assisted by a Machine Learning Technique. , 2019, , .		2
779	Flexible Multimodal Sensors for Electronic Skin: Principle, Materials, Device, Array Architecture, and Data Acquisition Method. Proceedings of the IEEE, 2019, 107, 2065-2083.	21.3	59
780	Versatile Electronic Skins with Biomimetic Micronanostructures Fabricated Using Natural Reed Leaves as Templates. ACS Applied Materials & Interfaces, 2019, 11, 38084-38091.	8.0	50
781	Printable Stretchable Silver Ink and Application to Printed RFID Tags for Wearable Electronics. Materials, 2019, 12, 3036.	2.9	29
782	Wearable, Stretchable, Transparent All-in-One Soft Sensor Formed from Supersonically Sprayed Silver Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 40232-40242.	8.0	62

ARTICLE IF CITATIONS # Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with 783 5.6 131 continuous-gradient wrinkles. Nanoscale, 2019, 11, 4258-4266. Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure 784 5.6 sensing. Nanoscale, 2019, 11, 2779-2786. High sensitivity knitted fabric bi-directional pressure sensor based on conductive blended yarn. Smart 785 3.5 24 Materials and Structures, 2019, 28, 035017. Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a 786 graphene field effect transistor. Materials Horizons, 2019, 6, 302-310. Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. Small, 2019, 15, 787 10.0 53 e1805453. 788 Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533. 47.7 P andÂN type copper phthalocyanines as effective semiconductors in organic thin-film transistor based 789 3.6 42 DNA biosensors at elevated temperatures. RSC Advances, 2019, 9, 2133-2142. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and 790 14.9 316 Manufacturing. Advanced Functional Materials, 2019, 29, 1808509. A flexible piezoresistive sensor with highly elastic weave pattern for motion detection. Smart 791 3.5 20 Materials and Structures, 2019, 28, 035020. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea 792 10.3 bonds. Journal of Materials Chemistry A, 2019, 7, 3101-3111. Healthcare Sensing and Monitoring. Lecture Notes in Computer Science, 2019, , 226-262. 793 1.3 27 Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy, 2019, 58, 794 16.0 143 624-632. Solution-Processed Organic Field-Effect Transistors with High Performance and Stability on Paper 795 8.0 50 Substrates. ACS Applied Materials & amp; Interfaces, 2019, 11, 8357-8364. A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range 796 9.1 Human–Machine Interfacing. Nano Letters, 2019, 19, 1143-1150. Effect of Crystallization Modes in TIPS-pentacene/Insulating Polymer Blends on the Gas Sensing 797 3.3 58 Properties of Organic Field-Effect Transistors. Scientific Reports, 2019, 9, 21. Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2019, 48, 1492-1530. 798 38.1 314 3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons, 2019, 6, 799 12.2 165 767-780. Wrinkling of two-dimensional materials: methods, properties and applications. Nanoscale Horizons, 2019, 4, 291-320.

#	Article	IF	CITATIONS
801	Advanced electronic skin devices for healthcare applications. Journal of Materials Chemistry B, 2019, 7, 173-197.	5.8	193
802	Stretchable and self-healable hydrogel-based capacitance pressure and strain sensor for electronic skin systems. Materials Research Express, 2019, 6, 0850b9.	1.6	25
803	A Natureâ€Inspired, Flexible Substrate Strategy for Future Wearable Electronics. Small, 2019, 15, e1902440.	10.0	52
804	A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure–temperature detection. Nanoscale, 2019, 11, 14242-14249.	5.6	41
805	Colorimetric and plasmonic pressure sensors based on polyacrylamide/Au nanoparticles. Sensors and Actuators A: Physical, 2019, 295, 503-511.	4.1	24
806	Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices. ACS Applied Materials & Interfaces, 2019, 11, 23639-23648.	8.0	155
807	All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & amp; Interfaces, 2019, 11, 25034-25042.	8.0	240
808	Paper-Based Mechanical Sensors Enabled by Folding and Stacking. ACS Applied Materials & Interfaces, 2019, 11, 26339-26345.	8.0	37
809	A Wrinkled Ag/CNTs-PDMS Composite Film for a High-Performance Flexible Sensor and Its Applications in Human-Body Single Monitoring. Nanomaterials, 2019, 9, 850.	4.1	31
810	Effect of chain topology on plasmonic properties of pressure sensor films based on poly(acrylamide) and Au nanoparticles. Sensors and Actuators A: Physical, 2019, 295, 237-243.	4.1	4
811	A Flexible and Highly Sensitive Inductive Pressure Sensor Array Based on Ferrite Films. Sensors, 2019, 19, 2406.	3.8	23
812	A critical review of reactive vapor deposition for conjugated polymer synthesis. Journal of Materials Chemistry C, 2019, 7, 7159-7174.	5.5	33
813	Thermochromic and Piezocapacitive Flexible Sensor Array by Combining Composite Elastomer Dielectrics and Transparent Ionic Hydrogel Electrodes. Advanced Materials Technologies, 2019, 4, 1900327.	5.8	44
814	Wearable graphene film strain sensors encapsulated with nylon fabric for human motion monitoring. Sensors and Actuators A: Physical, 2019, 295, 200-209.	4.1	25
815	A flexible tactile sensor integrated with carbon black/carbon nanotube composite film and flexible printed circuit. Japanese Journal of Applied Physics, 2019, 58, SDDD03.	1.5	3
816	An aramid nanofibers-based gel polymer electrolyte with high mechanical and heat endurance for all-solid-state NIR electrochromic devices. Solar Energy Materials and Solar Cells, 2019, 200, 109952.	6.2	21
817	Modulation of mechanical properties and stable light energy harvesting by poling in polymer integrated perovskite films: a wide range, linear and highly sensitive tactile sensor. Journal of Materials Chemistry A, 2019, 7, 14192-14198.	10.3	11
818	Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. Npj Digital Medicine, 2019, 2, 39.	10.9	104

#	Article	IF	CITATIONS
819	Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips. Biosensors and Bioelectronics, 2019, 139, 111296.	10.1	26
820	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€Skin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	21.0	313
821	Influence of the Porosity of Polymer Foams on the Performances of Capacitive Flexible Pressure Sensors. Sensors, 2019, 19, 1968.	3.8	35
822	Ultrawide Sensing Range and Highly Sensitive Flexible Pressure Sensor Based on a Percolative Thin Film with a Knoll-like Microstructured Surface. ACS Applied Materials & Interfaces, 2019, 11, 20500-20508.	8.0	45
823	Effect of Process Parameters on Organic Micro Patterns Fabricated on a Flexible Substrate Using the Near-Field Electrohydrodynamic Direct-Writing Method. Micromachines, 2019, 10, 287.	2.9	10
824	Ultrathin, flexible and transparent graphene-based triboelectric nanogenerators for attachable curvature monitoring. Journal Physics D: Applied Physics, 2019, 52, 314002.	2.8	12
825	A Brief Review on E-skin and its Multifunctional Sensing Applications. Current Smart Materials, 2019, 4, 3-14.	0.5	24
826	<i>In Situ</i> Observation of Alignment Templating by Seed Crystals in Highly Anisotropic Polymer Transistors. Chemistry of Materials, 2019, 31, 4133-4147.	6.7	40
827	Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins. ACS Applied Materials & amp; Interfaces, 2019, 11, 21218-21226.	8.0	151
828	Cobalt-Catalyzed Selective Synthesis of Disiloxanes and Hydrodisiloxanes. ACS Catalysis, 2019, 9, 5552-5561.	11.2	31
829	Printed High- <i>k</i> Dielectric for Flexible Low-Power Extended Gate Field-Effect Transistor in Sensing Pressure. ACS Applied Electronic Materials, 2019, 1, 711-717.	4.3	26
830	Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Materials and Structures, 2019, 28, 065019.	3.5	37
831	Nanofiberâ€Reinforced Silver Nanowires Network as a Robust, Ultrathin, and Conformable Epidermal Electrode for Ambulatory Monitoring of Physiological Signals. Small, 2019, 15, e1900755.	10.0	62
832	Sideways and stable crack propagation in a silicone elastomer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9251-9256.	7.1	36
833	Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors. Applied Physics Letters, 2019, 114, .	3.3	31
834	Soft force sensor made of magnetic powder blended with silicone rubber. Sensors and Actuators A: Physical, 2019, 293, 108-118.	4.1	34
835	Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 17796-17803.	8.0	292
836	Doping–Dedoping Interplay to Realize Patterned/Stacked All-Polymer Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 18580-18589.	8.0	7

#	Article	IF	CITATIONS
837	Robust and Wearable Pressure Sensor Assembled from AgNW-Coated PDMS Micropillar Sheets with High Sensitivity and Wide Detection Range. ACS Applied Nano Materials, 2019, 2, 3196-3205.	5.0	50
838	Flexible Sensors—From Materials to Applications. Technologies, 2019, 7, 35.	5.1	139
839	Electronic Skins Based on Liquid Metals. Proceedings of the IEEE, 2019, 107, 2168-2184.	21.3	77
840	Electrochemically Exfoliated Highâ€Quality 2Hâ€MoS ₂ for Multiflake Thin Film Flexible Biosensors. Small, 2019, 15, e1901265.	10.0	65
841	Fatigue of metals at nanoscale: Metal thin films and conductive interconnects for flexible device application. Nano Materials Science, 2019, 1, 198-207.	8.8	21
842	Nanomeshed Si nanomembranes. Npj Flexible Electronics, 2019, 3, .	10.7	12
843	Flexible Breathable Nanomesh Electronic Devices for Onâ€Demand Therapy. Advanced Functional Materials, 2019, 29, 1902127.	14.9	108
844	Interactive Skin Display with Epidermal Stimuli Electrode. Advanced Science, 2019, 6, 1802351.	11.2	68
845	Monitoring of physiological body signals and human activity based on ultra-sensitive tactile sensor and artificial electronic skin by direct growth of ZnSnO3 on silica cloth. Materials Science in Semiconductor Processing, 2019, 99, 125-133.	4.0	12
846	Development of Compact Load Cell Using Multiwall Carbon Nanotube/Cotton Composites and Its Application to Human Health and Activity Monitoring. Journal of Nanomaterials, 2019, 2019, 1-15.	2.7	5
847	An Ultraâ€sensitive, Rapidly Responsive Strain Sensor Based on Silver Microflakes by Simple Process. ChemistrySelect, 2019, 4, 4407-4415.	1.5	3
849	A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. Journal of Power Sources, 2019, 426, 205-215.	7.8	77
850	Novel flexible pressure sensor combining with dynamic-time-warping algorithm for handwriting identification. Sensors and Actuators A: Physical, 2019, 293, 70-76.	4.1	12
851	Physical and Chemical Sensing With Electronic Skin. Proceedings of the IEEE, 2019, 107, 2155-2167.	21.3	56
852	Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications. Proceedings of the IEEE, 2019, 107, 2185-2197.	21.3	55
853	Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport. Accounts of Chemical Research, 2019, 52, 1113-1124.	15.6	41
854	Skin-Mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 2019, 21, 299-323.	12.3	45
856	Shear-Force Sensors on Flexible Substrates Using Inkjet Printing. Journal of Sensors, 2019, 2019, 1-11.	1.1	8

#	Article	IF	CITATIONS
857	Fingertipâ€ S kinâ€Inspired Highly Sensitive and Multifunctional Sensor with Hierarchically Structured Conductive Graphite/Polydimethylsiloxane Foams. Advanced Functional Materials, 2019, 29, 1808829.	14.9	157
858	Highly Stretchable Strain Sensors Comprising Double Network Hydrogels Fabricated by Microfluidic Devices. Advanced Materials Technologies, 2019, 4, 1800739.	5.8	46
859	Connecting 1D and 2D Confined Polymer Dynamics to Its Bulk Behavior via Density Scaling. ACS Macro Letters, 2019, 8, 304-309.	4.8	26
860	CdSSe nanowire-chip based wearable sweat sensor. Journal of Nanobiotechnology, 2019, 17, 42.	9.1	14
861	Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. Microsystems and Nanoengineering, 2019, 5, 9.	7.0	35
862	E-Skin Bimodal Sensors for Robotics and Prosthesis Using PDMS Molds Engraved by Laser. Sensors, 2019, 19, 899.	3.8	26
863	A Sprayed Graphene Pattern-Based Flexible Strain Sensor with High Sensitivity and Fast Response. Sensors, 2019, 19, 1077.	3.8	22
864	Fabrication of carboxymethyl cellulose and graphene oxide bio-nanocomposites for flexible nonvolatile resistive switching memory devices. Carbohydrate Polymers, 2019, 214, 213-220.	10.2	54
865	Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications. Sensors, 2019, 19, 1250.	3.8	64
866	A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers. ACS Applied Nano Materials, 2019, 2, 2013-2025.	5.0	168
867	Wearable Leather-Based Electronics for Respiration Monitoring. ACS Applied Bio Materials, 2019, 2, 1427-1431.	4.6	39
868	Flexible Biosensors for the Impedimetric Detection of Protein Targets Using Silk-Conductive Polymer Biocomposites. ACS Sensors, 2019, 4, 1040-1047.	7.8	66
869	Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays. PLoS ONE, 2019, 14, e0214120.	2.5	26
870	Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Advanced Healthcare Materials, 2019, 8, e1801660.	7.6	86
871	Improving the Electronic Transporting Property for Flexible Field-Effect Transistors with Naphthalene Diimide-Based Conjugated Polymer through Branching/Linear Side-Chain Engineering Strategy. ACS Applied Materials & Interfaces, 2019, 11, 15837-15844.	8.0	32
872	Conjugated polymers and composites for stretchable organic electronics. Journal of Materials Chemistry C, 2019, 7, 5534-5552.	5.5	114
873	Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. ACS Applied Materials & amp; Interfaces, 2019, 11, 16006-16017.	8.0	58
874	A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon, 2019, 149, 63-70.	10.3	30

#	Article	IF	CITATIONS
875	Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale, 2019, 11, 10229-10238.	5.6	111
876	Flexible semi-transparent organic transistors and circuits based on easily prepared polyphenyleneoxide dielectric. Organic Electronics, 2019, 69, 308-312.	2.6	11
877	Toward a new generation of smart skins. Nature Biotechnology, 2019, 37, 382-388.	17.5	323
878	Humanâ€Interactive, Activeâ€Matrix Displays for Visualization of Tactile Pressures. Advanced Materials Technologies, 2019, 4, 1900082.	5.8	53
879	Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. Npj Flexible Electronics, 2019, 3, .	10.7	124
880	Screenâ€Printed Soft Capacitive Sensors for Spatial Mapping of Both Positive and Negative Pressures. Advanced Functional Materials, 2019, 29, 1809116.	14.9	75
881	Highly conductive and stretchable film fabricated by efficient transfer of silver nanowires. High Performance Polymers, 2019, 31, 1153-1161.	1.8	3
882	Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310.	16.0	285
883	Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Advanced Materials, 2019, 31, e1803309.	21.0	203
884	A facile post-peeling modification approach of elastic dielectrics for high-performance conformal organic thin-film transistors. Journal of Materials Chemistry C, 2019, 7, 3199-3205.	5.5	10
885	A Multiparameter Pressure–Temperature–Humidity Sensor Based on Mixed Ionic–Electronic Cellulose Aerogels. Advanced Science, 2019, 6, 1802128.	11.2	114
886	Fabrication of the Flexible Dual-Gate OFET Based Organic Pressure Sensor. IEICE Transactions on Electronics, 2019, E102.C, 188-191.	0.6	4
887	Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nature Communications, 2019, 10, 756.	12.8	71
888	"Cut-and-paste―method for the rapid prototyping of soft electronics. Science China Technological Sciences, 2019, 62, 199-208.	4.0	5
889	Arterial Blood Pressure. Lessons From the ICU, 2019, , 233-245.	0.1	0
890	Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chemical Society Reviews, 2019, 48, 1787-1825.	38.1	226
891	Ionic liquid–activated wearable electronics. Materials Today Physics, 2019, 8, 78-85.	6.0	47
892	Stretchable Graphene Pressure Sensors with Shar-Pei-like Hierarchical Wrinkles for Collision-Aware Surgical Robotics. ACS Applied Materials & Interfaces, 2019, 11, 10226-10236.	8.0	98

#	Apticie	IE	CITATIONS
#	Energy transfer processes in electrochemical P3HT thin films, lournal of Materials Science: Materials	IF	CHAHONS
893	in Electronics, 2019, 30, 4289-4295.	2.2	3
894	All MoS ₂ -Based Large Area, Skin-Attachable Active-Matrix Tactile Sensor. ACS Nano, 2019, 13, 3023-3030.	14.6	171
895	Self-healing electronic skins for aquatic environments. Nature Electronics, 2019, 2, 75-82.	26.0	424
896	Flexible Spoof Plasmonic Microfluidic Sensor for Detecting Liquid Solutions. , 2019, , .		0
897	Electronic Skin Design Methods Applied to Capsule Robot. , 2019, , .		0
898	Localisation of thin- film resistive sensors for force sensing applications. , 2019, , .		1
899	Flexible Temperature-Pressure Organic Sensor. , 2019, , .		0
900	Highly Flexible and Stretchable Structure Based on Au/Graphene Film and Polyurethane Yarn. , 2019, , .		1
901	Magnetic-Assisted Transparent and Flexible Percolative Composite for Highly Sensitive Piezoresistive Sensor via Hot Embossing Technology. ACS Applied Materials & Interfaces, 2019, 11, 48331-48340.	8.0	33
902	A Humid-Air-Operable, NO ₂ -Responsive Polymer Transistor Series Circuit with Improved Signal-to-Drift Ratio Based on Polymer Semiconductor Oxidation. ACS Sensors, 2019, 4, 3240-3247.	7.8	22
903	A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing. Sensors, 2019, 19, 4713.	3.8	16
904	Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems. Advanced Healthcare Materials, 2019, 8, e1801345.	7.6	32
905	Flexible Pressure Sensors with a Wide Detection Range Based on Self-Assembled Polystyrene Microspheres. Sensors, 2019, 19, 5194.	3.8	14
906	Humidity Sensor Using Subthreshold Regime of Flexible Organic Field Effect Transistor: Concomitant Effect of Gate Leakage Current and Semiconductor Conductivity. , 2019, , .		3
907	Flexible Pressure Sensor Array with Tunable Measurement Range and High Sensitivity. , 2019, , .		2
908	A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection. Journal of Materials Science and Technology, 2019, 35, 176-180.	10.7	21
909	A Highly Sensitive Tactile Sensor Using a Pyramidâ€Plug Structure for Detecting Pressure, Shear Force, and Torsion. Advanced Materials Technologies, 2019, 4, 1800284.	5.8	76
910	Highly Ordered 3D Microstructure-Based Electronic Skin Capable of Differentiating Pressure, Temperature, and Proximity. ACS Applied Materials & amp; Interfaces, 2019, 11, 1503-1511.	8.0	92

#	Article	IF	CITATIONS
911	Ultrasensitive Interfacial Capacitive Pressure Sensor Based on a Randomly Distributed Microstructured Iontronic Film for Wearable Applications. ACS Applied Materials & Interfaces, 2019, 11, 3438-3449.	8.0	159
912	Highly stretchable and transparent dielectric gels for high sensitivity tactile sensors. Smart Materials and Structures, 2019, 28, 024003.	3.5	10
913	Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture. Advanced Functional Materials, 2019, 29, 1807569.	14.9	172
914	Highly Sensitive, Low Voltage Operation, and Low Power Consumption Resistive Strain Sensors Based on Vertically Oriented Graphene Nanosheets. Advanced Materials Technologies, 2019, 4, 1800572.	5.8	15
915	Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano Futures, 2019, 3, 011001.	2.2	16
916	Flexible Crossbarâ€Structured Phase Change Memory Array via Moâ€Based Interfacial Physical Liftâ€Off. Advanced Functional Materials, 2019, 29, 1806338.	14.9	31
917	Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon, 2019, 143, 743-751.	10.3	33
918	Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics. Advanced Materials Technologies, 2019, 4, 1800487.	5.8	169
919	Design and synthesis of high performance π-conjugated materials through antiaromaticity and quinoid strategy for organic field-effect transistors. Materials Science and Engineering Reports, 2019, 136, 13-26.	31.8	72
920	Fast Deposition of Aligning Edgeâ€On Polymers for Highâ€Mobility Ambipolar Transistors. Advanced Materials, 2019, 31, e1805761.	21.0	70
921	Polyelectrolyte Dielectrics for Flexible Lowâ€Voltage Organic Thinâ€Film Transistors in Highly Sensitive Pressure Sensing. Advanced Functional Materials, 2019, 29, 1806092.	14.9	71
922	Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites. Applied Surface Science, 2019, 470, 13-18.	6.1	65
923	A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sensors and Actuators A: Physical, 2019, 285, 427-436.	4.1	64
924	Energy autonomous electronic skin. Npj Flexible Electronics, 2019, 3, .	10.7	245
925	Allâ€inâ€One Iontronic Sensing Paper. Advanced Functional Materials, 2019, 29, 1807343.	14.9	85
926	Flexible Multifunctional Sensors for Wearable and Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800626.	5.8	221
927	Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Composites Science and Technology, 2019, 172, 7-16.	7.8	86
928	Direct write of a flexible high-sensitivity pressure sensor with fast response for electronic skins. Organic Electronics, 2019, 67, 10-18.	2.6	38

#	Article	IF	CITATIONS
929	Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants. ACS Nano, 2019, 13, 660-670.	14.6	30
930	Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns. Advanced Electronic Materials, 2019, 5, 1800924.	5.1	19
931	2D reentrant micro-honeycomb structure of graphene-CNT in polyurethane: High stretchability, superior electrical/thermal conductivity, and improved shape memory properties. Composites Part B: Engineering, 2019, 162, 580-588.	12.0	52
932	Multi-stimuli responsive novel polyimide smart materials bearing triarylamine and naphthalimide groups. European Polymer Journal, 2019, 112, 291-300.	5.4	22
933	Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors. Nano Energy, 2019, 58, 96-104.	16.0	123
934	Bioinspired Electronics for Artificial Sensory Systems. Advanced Materials, 2019, 31, e1803637.	21.0	195
935	Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Materials Science and Engineering C, 2019, 94, 1102-1124.	7.3	70
936	Molecule–Graphene Hybrid Materials with Tunable Mechanoresponse: Highly Sensitive Pressure Sensors for Health Monitoring. Advanced Materials, 2019, 31, e1804600.	21.0	159
937	The design, fabrication, and applications of flexible biosensing devices. Biosensors and Bioelectronics, 2019, 124-125, 96-114.	10.1	124
938	Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 2019, 56, 693-699.	16.0	71
939	Rollâ€ŧoâ€Roll (R2R) Production of Ultrasensitive, Flexible, and Transparent Pressure Sensors Based on Vertically Aligned Lead Zirconate Titanate and Graphene Nanoplatelets. Advanced Materials Technologies, 2019, 4, 1800425.	5.8	21
940	Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. Advanced Science, 2019, 6, 1801283.	11.2	119
941	Highly stretchable sensors for wearable biomedical applications. Journal of Materials Science, 2019, 54, 5187-5223.	3.7	49
942	Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 2019, 48, 1465-1491.	38.1	855
943	Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals. Advanced Functional Materials, 2020, 30, 1903100.	14.9	265
944	When Flexible Organic Fieldâ€Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things. Advanced Materials, 2020, 32, e1901493.	21.0	136
945	Mechanoluminescent, Air-Dielectric MoS ₂ Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 2020, 20, 66-74.	9.1	80
946	Ionic Tactile Sensors for Emerging Humanâ€Interactive Technologies: A Review of Recent Progress. Advanced Functional Materials, 2020, 30, 1904532.	14.9	122

#	Article	IF	CITATIONS
947	Organic Semiconducting Materials Based on BDOPV: Structures, Properties, and Applications. Chinese Journal of Chemistry, 2020, 38, 13-24.	4.9	23
948	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	21.0	243
949	Touch Sensor Based on Flexible AlN Piezocapacitor Coupled With MOSFET. IEEE Sensors Journal, 2020, 20, 6810-6817.	4.7	21
950	Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small, 2020, 16, e1901124.	10.0	97
951	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	14.2	110
952	Directly monitoring and power generation from pulsating 3D heart model with organic flexible piezoelectric device. Japanese Journal of Applied Physics, 2020, 59, SDDF02.	1.5	4
953	One-step synthesis of Ag nanoparticles for fabricating highly conductive patterns using infrared sintering. Journal of Materials Research and Technology, 2020, 9, 142-151.	5.8	18
954	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices. , 2020, , 199-252.		2
955	Inkjetâ€Printed Soft Resistive Pressure Sensor Patch for Wearable Electronics Applications. Advanced Materials Technologies, 2020, 5, 1900717.	5.8	81
956	Biomedical sensors. , 2020, , 51-79.		11
957	Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices. Journal of Materials Science and Technology, 2020, 45, 241-247.	10.7	39
958	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	2.9	74
959	A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy, 2020, 70, 104436.	16.0	344
960	Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nature Communications, 2020, 11, 209.	12.8	426
961	A high-resolution flexible sensor array based on PZT nanofibers. Nanotechnology, 2020, 31, 155503.	2.6	27
962	A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites. Journal of Materials Chemistry C, 2020, 8, 1788-1795.	5.5	91
963	Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry C, 2020, 8, 759-787.	5.5	368
964	Highly Morphologyâ€Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermisâ€Dermisâ€Inspired Interlocked Asymmetricâ€Nanocone Arrays for Detection of Tiny Pressure. Small, 2020, 16, e1904774.	10.0	166

#	Article	IF	CITATIONS
965	Facile production of natural silk nanofibers for electronic device applications. Composites Science and Technology, 2020, 187, 107950.	7.8	28
966	Flexible bioelectronics for physiological signals sensing and disease treatment. Journal of Materiomics, 2020, 6, 397-413.	5.7	28
967	Enhanced Piezoelectric Effect Derived from Grain Boundary in MoS ₂ Monolayers. Nano Letters, 2020, 20, 201-207.	9.1	66
968	Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device. ACS Applied Materials & Interfaces, 2020, 12, 3953-3960.	8.0	40
969	State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2020, 3, 43-52.	3.2	42
970	Highly sensitive flexible capacitive pressure sensor with a broad linear response range and finite element analysis of micro-array electrode. Journal of Materiomics, 2020, 6, 321-329.	5.7	50
971	Recent innovations in artificial skin. Biomaterials Science, 2020, 8, 776-797.	5.4	38
972	A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure. Chemical Engineering Journal, 2020, 392, 123672.	12.7	45
973	The materials science of skin: Analysis, characterization, and modeling. Progress in Materials Science, 2020, 110, 100634.	32.8	58
974	Largeâ€Area Integrated Triboelectric Sensor Array for Wireless Static and Dynamic Pressure Detection and Mapping. Small, 2020, 16, e1906352.	10.0	43
975	Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors. Smart Materials and Structures, 2020, 29, 025002.	3.5	7
976	High-performance epidermal strain sensor based on macro-defect graphene foams. Sensors and Actuators A: Physical, 2020, 303, 111721.	4.1	10
977	Architectural design of flexible anisotropic piezoresistive composite for multiple-loading recognization. Composites Part B: Engineering, 2020, 182, 107631.	12.0	8
978	Stretchable multifunctional dielectric nanocomposites based on polydimethylsiloxane mixed with metal nanoparticles. Materials Research Express, 2020, 7, 015007.	1.6	16
979	Microgelâ€Based Devices as Wearable Capacitive Electronic Skins for Monitoring Cardiovascular Risks. Advanced Materials Technologies, 2020, 5, 1900818.	5.8	23
980	Amino acids nanocrystals for piezoelectric detection of ultra-low mechanical pressure. Materials Science and Engineering C, 2020, 108, 110468.	7.3	17
981	Flexible Electronics: Status, Challenges and Opportunities. Frontiers in Electronics, 2020, 1, .	3.2	133
982	Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor. Polymer, 2020, 211, 123095.	3.8	38

#	Article	IF	CITATIONS
983	Contact Modulated Ionic Transfer Doping in Allâ€Solidâ€State Organic Electrochemical Transistor for Ultraâ€High Sensitive Tactile Perception at Low Operating Voltage. Advanced Functional Materials, 2020, 30, 2006186.	14.9	42
984	Organic Semiconductor–DNA Hybrid Assemblies. Advanced Materials, 2020, 32, e2002213.	21.0	21
985	Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy, 2020, 77, 105242.	16.0	72
986	Recent Progress in Pressure Sensors for Wearable Electronics: From Design to Applications. Applied Sciences (Switzerland), 2020, 10, 6403.	2.5	18
987	A robust stretchable pressure sensor for electronic skins. Organic Electronics, 2020, 86, 105926.	2.6	4
988	Green-solvent-processable organic semiconductors and future directions for advanced organic electronics. Journal of Materials Chemistry A, 2020, 8, 21455-21473.	10.3	51
989	Organic-based inverters: basic concepts, materials, novel architectures and applications. Chemical Society Reviews, 2020, 49, 7627-7670.	38.1	48
990	Triode-Mimicking Graphene Pressure Sensor with Positive Resistance Variation for Physiology and Motion Monitoring. ACS Nano, 2020, 14, 10104-10114.	14.6	180
991	A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications, 2020, 11, 3530.	12.8	313
992	3D sprayed polyurethane functionalized graphene / carbon nanotubes hybrid architectures to enhance the piezo-resistive response of quantum resistive pressure sensors. Carbon, 2020, 168, 564-579.	10.3	28
993	Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InformaÄnÃ-Materiály, 2020, 2, 1131-1162.	17.3	343
994	Highly sensitive ionic pressure sensor with broad sensing range based on interlaced ridge-like microstructure. Sensors and Actuators A: Physical, 2020, 313, 112173.	4.1	10
995	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	3.7	57
996	Photoâ€Curable Ionâ€Enhanced Fluorinated Elastomers for Pressureâ€Sensitive Textiles. Advanced Intelligent Systems, 2020, 2, 1900180.	6.1	7
997	Wearable Sensors Incorporating Compensatory Reserve Measurement for Advancing Physiological Monitoring in Critically Injured Trauma Patients. Sensors, 2020, 20, 6413.	3.8	30
998	Organic Electrochemical Transistors (OECTs) Toward Flexible and Wearable Bioelectronics. Molecules, 2020, 25, 5288.	3.8	32
999	Wireless, skin-interfaced sensors for compression therapy. Science Advances, 2020, 6, .	10.3	52
1000	Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture. Sensors, 2020, 20, 6588.	3.8	3

		CITATION RE	PORT	
# 1001	ARTICLE Highly Sensitive Flow Sensor Based on Flexible Dual-Layer Heating Structures. Sensors,	, 2020, 20, 6657.	IF 3.8	CITATIONS 2
1002	Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbo Copper Electroplating. ACS Applied Materials & Interfaces, 2020, 12, 53193-5320	nization and 5.	8.0	20
1003	Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution slip and grip for closed-loop robotics. Science Advances, 2020, 6, .	ı enabling	10.3	77
1004	Smart materials for smart healthcare– moving from sensors and actuators to self-sus nanoenergy nanosystems. Smart Materials in Medicine, 2020, 1, 92-124.	stained	6.7	85
1005	Microengineering Pressure Sensor Active Layers for Improved Performance. Advanced I Materials, 2020, 30, 2003491.	Functional	14.9	290
1006	Recent Advances in the Construction of Flexible Sensors for Biomedical Applications. B Journal, 2020, 15, e2000094.	iotechnology	3.5	27
1007	Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electron Pressure Sensors: A Review of Recent Advances. Sensors, 2020, 20, 4407.	ic Skin	3.8	35
1008	Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators. Advanced Materials, 2020, 30, 2004673.	f Functional	14.9	88
1009	Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxand micro-pyramids for bio-signal monitoring. Sensors and Actuators A: Physical, 2020, 314	e 4, 112251.	4.1	49
1010	Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electro Supercapacitors. Nanoscale Research Letters, 2020, 15, 151.	odes for	5.7	56
1011	Surface Engineering of a 3D Topological Network for Ultrasensitive Piezoresistive Press ACS Applied Materials & amp; Interfaces, 2020, 12, 38805-38812.	sure Sensors.	8.0	38
1012	Recent Advances in Flexible Fieldâ€Effect Transistors toward Wearable Sensors. Advan Systems, 2020, 2, 2000113.	ced Intelligent	6.1	46
1013	Multifunctional Selfâ€Powered Eâ€Skin with Tactile Sensing and Visual Warning for De Safety. Advanced Materials Interfaces, 2020, 7, 2000536.	etecting Robot	3.7	29
1014	Intrinsically Stretchable and Selfâ€Healing Electroconductive Composites Based on Su Organic Polymer Embedded with Copper Microparticles. Advanced Electronic Materials 2000527.	pramolecular 5, 2020, 6,	5.1	8
1015	Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Perspectives. Sensors, 2020, 20, 4484.	Future	3.8	27
1016	A Novel Capacitive-Based Flexible Pressure Sensor Based on Stretchable Composite Ele Dielectric Elastomer With Microstructures. IEEE Access, 2020, 8, 142810-142818.	ctrodes and a	4.2	10
1017	Sequential Improvement from Cosolvents Ink Formulation to Vacuum Annealing for Inl Quantum-Dot Light-Emitting Diodes. Materials, 2020, 13, 4754.	۶-Jet Printed	2.9	12
1018	Highly Sensitive P(VDF-TrFE)/BTO Nanofiber-Based Pressure Sensor with Dense Stress Microstructures. ACS Applied Polymer Materials, 2020, 2, 4399-4404.	Concentration	4.4	22

		CITATION REPORT	
#	Article	IF	CITATIONS
1019	Identifying human body states by using a flexible integrated sensor. Npj Flexible Electronics, 2020), 4, . 10.7	' 37
1020	Multi-Stage Organic Logic Circuits Using Via-Hole-Less Metal Interconnects. IEEE Electron Device Letters, 2020, 41, 1685-1687.	3.9	6
1021	Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 49398-49406.	8.0	45
1022	Artificially Intelligent Tactile Ferroelectric Skin. Advanced Science, 2020, 7, 2001662.	11.2	45
1023	Flexible and Printed Microwave Plasmonic Sensor for Noninvasive Measurement. IEEE Access, 202 163238-163243.	20, 8, 4.2	17
1024	Phase-Sensitive Pulse Sensor Using 2-D Active Plasmonics on Conformal Substrates. IEEE Transac on Electron Devices, 2020, 67, 4379-4384.	tions 3.0	2
1025	MXene-Coated Air-Permeable Pressure-Sensing Fabric for Smart Wear. ACS Applied Materials &ar Interfaces, 2020, 12, 46446-46454.	າp; 8.0	111
1026	Triboelectric touch sensor for position mapping during total hip arthroplasty. BMC Research Note 2020, 13, 395.	'S, 1.4	3
1027	Highly Stretchable Fiber-Based Potentiometric Ion Sensors for Multichannel Real-Time Analysis of Human Sweat. ACS Sensors, 2020, 5, 2834-2842.	7.8	50
1028	A Flexible Low-Pass Filter Based on Laser-Induced Graphene. Journal of Electronic Materials, 2020 6348-6357.	49, 2.2	0
1029	Using Stretchable PPy@PVA Composites as a High-Sensitivity Strain Sensor To Monitor Minute M ACS Applied Materials & Interfaces, 2020, 12, 45373-45382.	otion. 8.0	48
1030	Electrochemical detection of ascorbic acid in artificial sweat using aÂflexible alginate/CuO-modifi electrode. Mikrochimica Acta, 2020, 187, 520.	ed 5.0	37
1031	Significantly Enhanced Mechanical Strength by the Hollow Structure of Conductive Stretchable Silver Nanoflowerâ€Polyurethane Fibers. Advanced Engineering Materials, 2020, 22, 2000674.	3.5	4
1032	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materi 2020, 30, 2003601.	als, 14.9	0 112
1033	Compressible AgNWs/Ti ₃ C ₂ T _x MXene aerogel-based high sensitive piezoresistive pressure sensor as versatile electronic skins. Journal of Materials Chemistr A, 2020, 8, 20030-20036.	ly y 10.8	3 95
1034	Organic Thin Film Transistors in Mechanical Sensors. Advanced Functional Materials, 2020, 30, 2004700.	14.9	21
1035	Degradable self-adhesive epidermal sensors prepared from conductive nanocomposite hydrogel. Nanoscale, 2020, 12, 18771-18781.	5.6	44
1036	CNT@leather-based electronic bidirectional pressure sensor. Science China Technological Science 2020, 63, 2137-2146.	s, 4.0	8

#	Article	IF	CITATIONS
1037	Zinc oxide nanostructure-based textile pressure sensor for wearable applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 16519-16530.	2.2	23
1038	Performance Analysis of Embedded Mechanoluminescence-Perovskite Self-Powered Pressure Sensor for Structural Health Monitoring. Journal of Composites Science, 2020, 4, 190.	3.0	8
1039	Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture. Micromachines, 2020, 11, 1103.	2.9	9
1040	Si Nanoribbons based High Performance Printed FETs using Room-Temperature deposited Dielectric. , 2020, , .		2
1041	Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials & Interfaces, 2020, 12, 58301-58316.	8.0	65
1042	Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Science Advances, 2020, 6, .	10.3	118
1043	2D-SnSe ₂ Nanosheet Functionalized Piezo-resistive Flexible Sensor for Pressure and Human Breath Monitoring. ACS Sustainable Chemistry and Engineering, 2020, 8, 7741-7749.	6.7	54
1044	Organic field-effect transistor-based flexible sensors. Chemical Society Reviews, 2020, 49, 3423-3460.	38.1	230
1045	Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring. Journal of Materials Science, 2020, 55, 10084-10094.	3.7	14
1046	A bioinspired stretchable membrane-based compliance sensor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11314-11320.	7.1	90
1047	Mesoâ€Reconstruction of Wool Keratin 3D "Molecular Springs―for Tunable Ultraâ€Sensitive and Highly Recovery Strain Sensors. Small, 2020, 16, e2000128.	10.0	33
1048	Fabrication and Piezoresistive/Piezoelectric Sensing Characteristics of Carbon Nanotube/PVA/Nano-ZnO Flexible Composite. Scientific Reports, 2020, 10, 8895.	3.3	30
1049	Tunable flexible pressure sensor based on bioinspired capillary-driven method. Microelectronic Engineering, 2020, 231, 111370.	2.4	10
1050	Tunable ionic pressure sensor based on 3D printed ordered hierarchical mesh structure. Sensors and Actuators A: Physical, 2020, 308, 112012.	4.1	11
1051	All-Organic Cross-Linked Polysiloxane-Aromatic Thiourea Dielectric Films for Electrical Energy Storage Application. ACS Applied Energy Materials, 2020, 3, 5198-5207.	5.1	32
1052	Performance characterization of ionic-hydrogel based strain sensors. Science China Technological Sciences, 2020, 63, 923-930.	4.0	12
1053	A flexible self-arched biosensor based on combination of piezoelectric and triboelectric effects. Applied Materials Today, 2020, 20, 100699.	4.3	45
1054	Skin-inspired electronics: emerging semiconductor devices and systems. Journal of Semiconductors, 2020, 41, 041601.	3.7	63

#	Article	IF	CITATIONS
1055	Facile Photo-cross-linking System for Polymeric Gate Dielectric Materials toward Solution-Processed Organic Field-Effect Transistors: Role of a Cross-linker in Various Polymer Types. ACS Applied Materials & Interfaces, 2020, 12, 30600-30615.	8.0	33
1056	Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method. Nano Energy, 2020, 76, 105029.	16.0	61
1057	Soft Electronics for the Skin: From Health Monitors to Human–Machine Interfaces. Advanced Materials Technologies, 2020, 5, .	5.8	80
1058	Plasmon Hybridization in Compressible Metal–Insulator–Metal Nanocavities: An Optical Approach for Sensing Deep Subâ€Wavelength Deformation. Advanced Optical Materials, 2020, 8, 2000609.	7.3	14
1059	Fully Integrated Mechanoluminescent Devices with Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing. ACS Applied Nano Materials, 2020, 3, 6749-6756.	5.0	25
1060	Sensitive piezoresistive sensors using ink-modified plant fiber sponges. Chemical Engineering Journal, 2020, 401, 126029.	12.7	22
1061	Skin-Interfaced Sensors in Digital Medicine: from Materials to Applications. Matter, 2020, 2, 1414-1445.	10.0	134
1062	Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Letters, 2020, 41, 1233-1236.	3.9	10
1063	Optoelectronic Enhancement for Piezoresistive Pressure Sensor. , 2020, , .		3
1064	Ultrastretchable, Selfâ€Healable, and Wearable Epidermal Sensors Based on Ultralong Ag Nanowires Composited Binaryâ€Networked Hydrogels. Advanced Electronic Materials, 2020, 6, 2000267.	5.1	52
1065	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	24.7	119
1066	Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir, 2020, 36, 3029-3037.	3.5	45
1067	Tailoring sensing behavior of Cu@multi-wall carbon nanotubes/polydimethylsiloxane strain sensors through surface Cu geometrical structures. Journal of Materials Chemistry C, 2020, 8, 5202-5210.	5.5	8
1068	Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science Advances, 2020, 6, eaay2840.	10.3	309
1069	Highly sensitive and flexible wearable pressure sensor with dielectric elastomer and carbon nanotube electrodes. Sensors and Actuators A: Physical, 2020, 305, 111941.	4.1	51
1070	Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO ₃ Nanowires through Microstructuration. ACS Applied Materials & amp; Interfaces, 2020, 12, 18421-18430.	8.0	63
1071	Design of a wireless smart insole using stretchable microfluidic sensor for gait monitoring. Smart Materials and Structures, 2020, 29, 065003.	3.5	29
1072	Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing. Materials Chemistry Frontiers, 2020, 4, 1459-1470.	5.9	21

Ŧ	Article	IF	CITATIONS
1073	Skin-Patchable Electrodes for Biosensor Applications: A Review. ACS Biomaterials Science and Engineering, 2020, 6, 1823-1835.	5.2	98
1074	A Flexible Piezoelectric Strain Sensor Array With Laser-Patterned Serpentine Interconnects. IEEE Sensors Journal, 2020, 20, 8463-8468.	4.7	19
1075	Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18Âcm2/(V s). Science Bulletin, 2020, 65, 791-795.	9.0	27
1076	Opto-electronic coupling in semiconductors: towards ultrasensitive pressure sensing. Journal of Materials Chemistry C, 2020, 8, 4713-4721.	5.5	22
1077	Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires. Applied Materials Today, 2020, 19, 100610.	4.3	19
1078	Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors, 2020, 20, 3624.	3.8	33
1079	Magnetically controllable and flexible phototransistor for artificial intelligent skin with additional perception. Organic Electronics, 2020, 85, 105849.	2.6	7
1080	Holistically Engineered Polymer–Polymer and Polymer–Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for Highâ€Performance Triboelectric Devices in Selfâ€Powered Wearable Cardiovascular Monitorings. Advanced Materials, 2020, 32, e2002878.	21.0	66
1081	One-Rupee Ultrasensitive Wearable Flexible Low-Pressure Sensor. ACS Omega, 2020, 5, 16944-16950.	3.5	27
1082	Metal oxide dielectrics. , 2020, , 31-39.		2
1082 1083	Metal oxide dielectrics. , 2020, , 31-39. A 13.56ÂMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329.	21.0	2
1082 1083 1084	Metal oxide dielectrics., 2020,, 31-39. A 13.56ÂMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & amp; Interfaces, 2020, 12, 34337-34361.	21.0	2 31 72
1082 1083 1084 1085	Metal oxide dielectrics., 2020,, 31-39. A 13.56ÂMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & amp; Interfaces, 2020, 12, 34337-34361. Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549.	21.0 8.0 6.7	2 31 72 27
1082 1083 1084 1085	Metal oxide dielectrics. , 2020, , 31-39.A 13.56ÂMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329.Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & amp; Interfaces, 2020, 12, 34337-34361.Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549.Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 2020, 4,.	21.0 8.0 6.7	2 31 72 27 25
1082 1083 1084 1085 1085	Metal oxide dielectrics. , 2020, , 31-39.A 13.56ÂMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329.Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & amp; Interfaces, 2020, 12, 34337-34361.Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549.Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 2020, 4, .Flexible electrochemical biosensors for healthcare monitoring. Journal of Materials Chemistry B, 2020, 8, 7303-7318.	21.0 8.0 6.7 10.7 5.8	2 31 72 27 25 64
1082 1083 1084 1085 1085 1087	Metal oxide dielectrics., 2020, , 31-39. A 13.56ÅMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & amp; Interfaces, 2020, 12, 34337-34361. Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549. Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 2020, 4, . Flexible electrochemical biosensors for healthcare monitoring. Journal of Materials Chemistry B, 2020, 8, 7303-7318. Liquidå€6tate Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	 21.0 8.0 6.7 10.7 5.8 5.1 	2 31 72 27 25 64
1082 1083 1084 1085 1086 1087	Metal oxide dielectrics., 2020, , 31-39. A 13.56ÅMHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Advanced Materials, 2020, 32, e2002329. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & amp; Interfaces, 2020, 12, 34337-34361. Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549. Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 2020, 4, . Flexible electrochemical biosensors for healthcare monitoring. Journal of Materials Chemistry B, 2020, 8, 7303-7318. Liquid‣tate Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135. Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors. Journal of Materials Science: Materials in Electronics, 2020, 31, 4788-4796.	 21.0 8.0 6.7 10.7 5.8 5.1 2.2 	2 31 72 27 25 64 14

#	Article	IF	CITATIONS
1091	Wireless implantable and biodegradable sensors for postsurgery monitoring: current status and future perspectives. Nanotechnology, 2020, 31, 252001.	2.6	42
1092	Nanoribbonâ€Based Flexible Highâ€Performance Transistors Fabricated at Room Temperature. Advanced Electronic Materials, 2020, 6, 1901023.	5.1	34
1093	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	8.0	67
1094	Ultra-Sensitive Flexible Pressure Sensor Based on Microstructured Electrode. Sensors, 2020, 20, 371.	3.8	58
1095	Accurate Recognition of Lightweight Objects With Low Resolution Pressure Sensor Array. IEEE Sensors Journal, 2020, 20, 3280-3284.	4.7	8
1096	Simultaneous Sensing of Touch and Pressure by Using Highly Elastic e-Fabrics. Applied Sciences (Switzerland), 2020, 10, 989.	2.5	10
1097	Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chemical Reviews, 2020, 120, 2879-2949.	47.7	213
1098	Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nature Communications, 2020, 11, 1107.	12.8	162
1099	2D Percolation Design with Conductive Microparticles for Low train Detection in a Stretchable Sensor. Advanced Functional Materials, 2020, 30, 1908514.	14.9	25
1100	Nucleotide-driven skin-attachable hydrogels toward visual human–machine interfaces. Journal of Materials Chemistry A, 2020, 8, 4515-4523.	10.3	68
1101	A green method for synthesizing novel nanoparticles and their application in flexible conductive patterns. Journal of Materiomics, 2020, 6, 300-307.	5.7	10
1102	Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science and Technology, 2020, 43, 175-188.	10.7	225
1103	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	17.3	34
1104	Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. Journal of Materials Chemistry A, 2020, 8, 6219-6228.	10.3	101
1105	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0
1106	Wearable strain sensor based on highly conductive carbon nanotube/polyurethane composite fibers. Nanotechnology, 2020, 31, 205701.	2.6	20
1107	A Wireless Textile-Based Sensor System for Self-Powered Personalized Health Care. Matter, 2020, 2, 896-907.	10.0	310
1108	Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nature Electronics, 2020, 3, 59-69.	26.0	150

#	Article	IF	CITATIONS
1109	Microchannelâ€Confined MXene Based Flexible Piezoresistive Multifunctional Microâ€Force Sensor. Advanced Functional Materials, 2020, 30, 1909603.	14.9	248
1110	Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction. Journal of Materials Chemistry B, 2020, 8, 3647-3654.	5.8	47
1111	Microfluidic solution-processed organic and perovskite nanowires fabricated for field-effect transistors and photodetectors. Journal of Materials Chemistry C, 2020, 8, 2353-2362.	5.5	17
1112	Variableâ€Temperature Electron Transport and Dipole Polarization Turning Flexible Multifunctional Microsensor beyond Electrical and Optical Energy. Advanced Materials, 2020, 32, e1907156.	21.0	288
1113	Highly stretchable, solution-processable, and crosslinkable poly(3,4-ethylenedioxithiophene)-based conjugated polymers. European Polymer Journal, 2020, 125, 109508.	5.4	7
1114	Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Advanced Functional Materials, 2020, 30, 1909616.	14.9	29
1115	Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosensors and Bioelectronics, 2020, 152, 112013.	10.1	50
1116	Smart Soft Actuators and Grippers Enabled by Selfâ€Powered Triboâ€Skins. Advanced Materials Technologies, 2020, 5, 1901075.	5.8	52
1117	Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. Journal of the Electrochemical Society, 2020, 167, 037561.	2.9	105
1118	Wide band gap pyromellitic diimides for photo stable n-channel thin film transistors. Journal of Materials Chemistry C, 2020, 8, 7344-7349.	5.5	10
1119	Electrode Effects on Flexible and Robust Polypropylene Ferroelectret Devices for Fully Integrated Energy Harvesters. ACS Applied Materials & Interfaces, 2020, 12, 22815-22824.	8.0	8
1120	Highly Sensitive, Wide-Range, and Flexible Pressure Sensor Based on Honeycomb-Like Graphene Network. IEEE Transactions on Electron Devices, 2020, 67, 2153-2156.	3.0	20
1121	Bioinspired, High-Sensitivity Mechanical Sensors Realized with Hexagonal Microcolumnar Arrays Coated with Ultrasonic-Sprayed Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 18813-18822.	8.0	29
1122	Preparation and Force Sensitive Properties of ZnO/Graphene Composite Films. IOP Conference Series: Materials Science and Engineering, 2020, 772, 012004.	0.6	0
1123	Electronic skins and machine learning for intelligent soft robots. Science Robotics, 2020, 5, .	17.6	339
1124	Recent Advances in Printed Capacitive Sensors. Micromachines, 2020, 11, 367.	2.9	35
1125	A Review of Methods for Non-Invasive Heart Rate Measurement on Wrist. Irbm, 2021, 42, 4-18.	5.6	22
1126	A Soft Material Flow Sensor for Micro Air Vehicles. Soft Robotics, 2021, 8, 119-127.	8.0	7

#	Article	IF	CITATIONS
1127	Novel, Flexible, and Ultrathin Pressure Feedback Sensor for Miniaturized Intraventricular Neurosurgery Robotic Tools. IEEE Transactions on Industrial Electronics, 2021, 68, 4415-4425.	7.9	26
1128	Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chemical Engineering Journal, 2021, 404, 126064.	12.7	71
1129	Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy, 2021, 80, 105580.	16.0	63
1130	Ultraconformable organic devices. , 2021, , 437-478.		3
1131	Flexible and wearable monitoring systems for biomedical applications in organic flexible electronics: Fundamentals, devices, and applications. , 2021, , 599-625.		5
1132	Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108293.	5.0	130
1133	Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Applied Bio Materials, 2021, 4, 122-139.	4.6	52
1134	Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale, 2021, 13, 253-260.	5.6	14
1135	Linking Glassâ€Transition Behavior to Photophysical and Charge Transport Properties of Highâ€Mobility Conjugated Polymers. Advanced Functional Materials, 2021, 31, 2007359.	14.9	26
1136	Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun. Chemical Engineering Journal, 2021, 407, 127960.	12.7	54
1137	Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sensors and Actuators A: Physical, 2021, 321, 112425.	4.1	113
1138	Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection. Composites Science and Technology, 2021, 203, 108571.	7.8	83
1139	Nanocellulose-based materials/composites for sensors. , 2021, , 185-214.		4
1140	How Far Are We from Achieving Selfâ€Powered Flexible Health Monitoring Systems: An Energy Perspective. Advanced Energy Materials, 2021, 11, 2002646.	19.5	70
1141	Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Composites Science and Technology, 2021, 202, 108600.	7.8	165
1142	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	21.0	75
1143	First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Advanced Materials, 2021, 33, e2003464.	21.0	155
1144	Analysis of ultrathin organic inverters by using in situ grazing incidence X-ray diffraction under high bending times and low voltage. Organic Electronics, 2021, 88, 106002.	2.6	4

#	ARTICLE Printed Organic Electronics on Flexible Foil: Circuit Design and Emerging Applications. IEEE	۱F	CITATIONS
1145	Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 42-48. A Battery-Free, Chipless, Highly Sensitive LC Pressure Sensor Tag Using PEDOT: PSS and Melamine Foam. IEEE Sensors Journal, 2021, 21, 2184-2193.	4.7	18
1147	Wearable Sensing Devices for Point of Care Diagnostics. ACS Applied Bio Materials, 2021, 4, 47-70.	4.6	58
1148	MoS ₂ -Based Multifunctional Sensor for Both Chemical and Physical Stimuli and Their Classification Using Machine Learning Algorithms. IEEE Sensors Journal, 2021, 21, 3694-3701.	4.7	6
1149	An ultra-broad-range pressure sensor based on a gradient stiffness design. Materials Horizons, 2021, 8, 2260-2272.	12.2	24
1150	Review on two-dimensional organic semiconductors for thin film transistor application. Materials Today: Proceedings, 2021, 46, 2322-2325.	1.8	1
1151	Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Science Advances, 2021, 7, .	10.3	107
1152	Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. Journal of Materials Chemistry C, 2021, 9, 2660-2684.	5.5	41
1153	New Methods and Sensors for Hemodynamic Monitoring. , 2021, , 267-274.		0
1154	A Sub-1-V, Microwatt Power-Consumption Iontronic Pressure Sensor Based on Organic Electrochemical Transistors. IEEE Electron Device Letters, 2021, 42, 46-49.	3.9	27
1155	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	5.1	18
1156	Fabrication of Stretchable and Transparent Core–Shell Polymeric Nanofibers Using Coaxial Electrospinning and Their Application to Phototransistors. Advanced Electronic Materials, 2021, 7, 2001000.	5.1	15
1157	Multilayer Flexible Pressure Sensor With High Sensitivity Over Wide Linearity Detection Range (August 2021). IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	7
1158	Parasitic Capacitance-Free Flexible Tactile Sensor with a Real-Contact Trigger. Soft Robotics, 2022, 9, 119-127.	8.0	11
1159	ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy and Fuels, 2021, 5, 4389-4400.	4.9	21
1160	A remarkably ultra-sensitive large area matrix of MXene based multifunctional physical sensors (pressure, strain, and temperature) for mimicking human skin. Journal of Materials Chemistry B, 2021, 9, 4523-4534.	5.8	48
1161	Eu(tta) ₃ DPPZ-based organic light-emitting diodes: spin-coating <i>vs</i> . vacuum-deposition. Dalton Transactions, 2021, 50, 9685-9689.	3.3	17
1162	The piezoresistive performances of the devices with fullerene-doped MEH-PPV films. Microsystem Technologies, 2021, 27, 2661-2670.	2.0	2

#	Article	IF	CITATIONS
1163	Surface-control enhanced crater-like electrode in a gelatin/polyvinyl alcohol/carbon composite for biodegradable multi-modal sensing systems with human-affinity. Journal of Materials Chemistry A, 2021, 9, 9145-9156.	10.3	7
1164	Controlling the gate dielectric properties of vinyl-addition polynorbornene copolymers <i>via</i> thiol–ene click chemistry for organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 4742-4747.	5.5	11
1165	Wearing sensors inside and outside of the human body for the early detection of diseases. , 2021, , 85-103.		0
1166	Bending Setups for Reliability Investigation of Flexible Electronics. Micromachines, 2021, 12, 78.	2.9	36
1167	Research and Application Progress of Intelligent Wearable Devices. Chinese Journal of Analytical Chemistry, 2021, 49, 159-171.	1.7	21
1168	Interface Design for Stretchable Electronic Devices. Advanced Science, 2021, 8, 2004170.	11.2	44
1169	Piezoresistive Electronic-Skin Sensors Produced With Self-Channeling Laser Microstructured Silicon Molds. IEEE Transactions on Electron Devices, 2021, 68, 786-792.	3.0	15
1170	Trap-Induced Dense Monocharged Perfluorinated Electret Nanofibers for Recyclable Multifunctional Healthcare Mask. ACS Nano, 2021, 15, 5486-5494.	14.6	41
1171	Compression sensors constructed from ferromagnetic particles embedded within soft materials. MRS Communications, 2021, 11, 94-99.	1.8	1
1172	Tactile Avatar: Tactile Sensing System Mimicking Human Tactile Cognition. Advanced Science, 2021, 8, 2002362.	11.2	27
1173	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	16.1	36
1174	Reliable sensors based on graphene textile with negative resistance variation in three dimensions. Nano Research, 2021, 14, 2810-2818.	10.4	9
1175	Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities. ACS Applied Materials & Interfaces, 2021, 13, 10257-10270.	8.0	28
1176	Piezoresistive electronic skin based on diverse bionic microstructure. Sensors and Actuators A: Physical, 2021, 318, 112532.	4.1	17
1177	Deep learning framework for subject-independent emotion detection using wireless signals. PLoS ONE, 2021, 16, e0242946.	2.5	28
1178	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	14.9	100
1179	Recycled Iontronic from Discarded Chewed Gum for Personalized Healthcare Monitoring and Intelligent Information Encryption. ACS Applied Materials & Interfaces, 2021, 13, 6731-6738.	8.0	29
1180	Nanofibrous Grids Assembled Orthogonally from Direct-Written Piezoelectric Fibers as Self-Powered Tactile Sensors. ACS Applied Materials & Interfaces, 2021, 13, 10623-10631.	8.0	18

# 1181	ARTICLE Flexible pressure sensors with microstructures. Nano Select, 2021, 2, 1874-1901.	IF 3.7	CITATIONS
1182	Robust and flexible transparent protective film fabricated with an ambient-curable hybrid resin. Journal of Coatings Technology Research, 2021, 18, 1065-1073.	2.5	0
1183	Bending behaviors of flexible acoustic wave devices under non-uniform elasto-plastic deformation. Applied Physics Letters, 2021, 118, .	3.3	7
1184	Surface Etching of Polymeric Semiconductor Films Improves Environmental Stability of Transistors. Chemistry of Materials, 2021, 33, 2673-2682.	6.7	13
1185	Mechanoluminescence Rebrightening the Prospects of Stress Sensing: A Review. Advanced Materials, 2021, 33, e2005925.	21.0	181
1186	Recent progress in self-healing conductive materials and flexible sensors with desired functional repairability. Multifunctional Materials, 2021, 4, 012002.	3.7	2
1187	Flexible Electronics and Healthcare Applications. Frontiers in Nanotechnology, 2021, 3, .	4.8	16
1189	Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nature Communications, 2021, 12, 1776.	12.8	109
1190	Unidirectional sensitive flexible sensor for bending measurements. Current Applied Physics, 2021, 23, 36-41.	2.4	3
1191	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	14.2	107
1192	Three-Dimensional Force Prediction of a Flexible Tactile Sensor Based on Radial Basis Function Neural Networks. Journal of Sensors, 2021, 2021, 1-12.	1.1	5
1193	Printed Iontophoreticâ€Integrated Wearable Microfluidic Sweatâ€Sensing Patch for Onâ€Demand Pointâ€Ofâ€Care Sweat Analysis. Advanced Materials Technologies, 2021, 6, 2000910.	5.8	32
1194	A flexible microfluidic sensor based on main-channel and branch-channels for aerodynamic pressure measurement. Sensors and Actuators A: Physical, 2021, 319, 112546.	4.1	6
1195	Effects of crosslinking reaction and extension strain on the electrical properties of silicone rubber/carbon nanofiller composites. Journal of Applied Polymer Science, 2021, 138, 50727.	2.6	5
1196	Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Advanced Materials Technologies, 2021, 6, 2001023.	5.8	131
1197	The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 2021, 33, e2004178.	21.0	279
1198	Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose, 2021, 28, 4295-4311.	4.9	92
1199	Flexible piezo-resistive pressure sensor based on conducting PANI on paper substrate. Synthetic Metals, 2021, 273, 116697.	3.9	38

		CITATION REPORT		
#	Article		IF	CITATIONS
1200	Nanofibers $\hat{a} \in \hat{A}$ Newer Technology. Research Journal of Pharmacy and Technology, 20	21,,2321-2327.	0.8	3
1201	Hybrid ternary rice paper/polypyrrole ink/pen ink nanocomposites as components of fle supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 13219-13229.	xible	7.1	7
1202	Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Fu Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.	iture	4.3	21
1203	Recent Progress in Flexible Tactile Sensors for Humanâ€Interactive Systems: From Sens Applications. Advanced Materials, 2021, 33, e2005902.	ors to Advanced	21.0	216
1204	Self-Adhesive, Stretchable, Biocompatible, and Conductive Nonvolatile Eutectogels as Conformal Strain and Pressure Sensors and Biopotential Electrodes for Precise Health M ACS Applied Materials & amp; Interfaces, 2021, 13, 20735-20745.	Vearable Aonitoring.	8.0	86
1205	Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794-810.		24.0	79
1206	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.		14.2	65
1207	Imperceptible energy harvesting device and biomedical sensor based on ultraflexible feature transducers and organic diodes. Nature Communications, 2021, 12, 2399.	roelectric	12.8	101
1208	Wearable Strain Sensor Based on Double‣ayer Graphene Fabrics for Realâ€Time, Cor Acquirement of Human Pulse Signal in Daily Activities. Advanced Materials Technologie 2001071.	ıtinuous s, 2021, 6,	5.8	18
1209	Wireless Battery-Free Broad-Band Sensor for Wearable Multiple Physiological Measurer Applied Electronic Materials, 2021, 3, 1681-1690.	nent. ACS	4.3	7
1210	Aerosol-jet-printed, conformable microfluidic force sensors. Cell Reports Physical Science 100386.	:e, 2021, 2,	5.6	17
1211	Multistimuliâ€Responsive Artificial Skin with Dual Output of Photoelectric Signals. Mac Materials and Engineering, 2021, 306, 2100017.	romolecular	3.6	4
1212	All-Fabric Ultrathin Capacitive Sensor with High Pressure Sensitivity and Broad Detectic Electronic Skin. ACS Applied Materials & amp; Interfaces, 2021, 13, 24062-24069.	n Range for	8.0	56
1213	A Wearable Sensor Based on Gold Nanowires/Textile and Its Integrated Smart Glove for Monitoring and Gesture Expression. Energy Technology, 2021, 9, 2100166.	Motion	3.8	32
1214	2D Materials for Skinâ€Mountable Electronic Devices. Advanced Materials, 2021, 33, e	2005858.	21.0	51
1215	Alignment of linear polymeric grains for highly stable N-type thin-film transistors. CheM 1258-1270.	, 2021, 7,	11.7	33
1216	Flexible Wearable Sensors for Cardiovascular Health Monitoring. Advanced Healthcare 2021, 10, e2100116.	Materials,	7.6	170
1217	A self-powered laminated fabric sensor for human motion detection and heart-rate mor on PPy/Al Schottky contact. Journal of Sandwich Structures and Materials, 0, , 1099636	nitoring based 522110218.	3.5	6

# 1218	ARTICLE Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chemical Engineering Journal, 2021, 412, 128649.	IF 12.7	CITATIONS
1219	Recent Applications of Different Microstructure Designs in High Performance Tactile Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10291-10303.	4.7	27
1220	Model-based Assessment of Brachial Artery Diameter From Electrical Impedance Measurement. , 2021, , .		3
1221	A Flexible Two-Sensor System for Temperature and Bending Angle Monitoring. Materials, 2021, 14, 2962.	2.9	7
1222	Multifunctional, Wash Durable and Reâ€usable Conductive Textiles for Wearable Electro/Physiological Monitoring. Macromolecular Materials and Engineering, 2021, 306, 2000804.	3.6	3
1223	Hydrogelâ€based composites: Unlimited platforms for biosensors and diagnostics. View, 2021, 2, 20200165.	5.3	31
1224	A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sensors and Actuators A: Physical, 2021, 322, 112611.	4.1	30
1225	Sensing mechanism of a carbon nanocomposite-printed fabric as a strain sensor. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106350.	7.6	25
1226	A Novel Oriented CNT fiber/PDMS Elastic Conductive Composite with Reversible Two-Stage Conductivity. Nano, 2021, 16, 2150062.	1.0	0
1227	Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods, 2021, 5, e2100409.	8.6	67
1228	Review of flexible microelectromechanical system sensors and devices. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2021, 4, 025001.	3.2	23
1229	Preparation of Bamboo-Like Carbon Nanotube Loaded Piezoresistive Polyurethane-Silicone Rubber Composite. Polymers, 2021, 13, 2144.	4.5	6
1230	A Flexible Integrated Bending Strain and Pressure Sensor System for Motion Monitoring. Sensors, 2021, 21, 3969.	3.8	16
1231	Photomemory and Pulse Monitoring Featured Solutionâ€Processed Nearâ€Infrared Graphene/Organic Phototransistor with Detectivity of 2.4 × 10 ¹³ Jones. Advanced Functional Materials, 2021, 31, 2103988.	14.9	31
1232	Measurement of Blood Pressure via a Skin-Mounted, Non-Invasive Pressure Sensor. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	8
1233	Metal cation-ligand interaction modulated mono-network ionic conductive hydrogel for wearable strain sensor. Journal of Materials Science, 2021, 56, 14531-14541.	3.7	11
1234	A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chemical Engineering Journal, 2022, 427, 130886.	12.7	29
1235	Development of a Highly Sensitive Wearable Tactile Sensor on Fabric by Using Conductive Inks Based on Electrical Contact Resistance (ECR) Change Mechanism. Macromolecular Materials and Engineering, 2021, 306, 2100130.	3.6	0

(TITATION DEDOD	
	т

#	Article	IF	CITATIONS
1236	A facile strategy to construct flexible and conductive silk fibroin aerogel for pressure sensors using bifunctional PEG. European Polymer Journal, 2021, 153, 110513.	5.4	13
1237	Reduced graphene oxide-based wearable and bio-electrolyte triggered pressure sensor with tunable sensitivity. Ceramics International, 2021, 47, 17702-17710.	4.8	24
1238	Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule, 2021, 5, 1391-1431.	24.0	261
1239	An artificial neural tactile sensing system. Nature Electronics, 2021, 4, 429-438.	26.0	161
1240	Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines, 2021, 12, 698.	2.9	33
1241	Wearable electrochemical flexible biosensors: With the focus on affinity biosensors. Sensing and Bio-Sensing Research, 2021, 32, 100403.	4.2	29
1242	Highâ€Performance Flexible Pressure Sensor Based on Controllable Hierarchical Microstructures by Laser Scribing for Wearable Electronics. Advanced Materials Technologies, 2021, 6, 2100122.	5.8	42
1243	Enabling the Unconstrained Epidermal Pulse Wave Monitoring via Fingerâ€Touching. Advanced Functional Materials, 2021, 31, 2102378.	14.9	29
1244	Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. Small, 2021, 17, e2100804.	10.0	82
1245	Tactile and Vision Perception for Intelligent Humanoids. Advanced Intelligent Systems, 2022, 4, 2100074.	6.1	16
1246	Flexible and Stretchable Capacitive Sensors with Different Microstructures. Advanced Materials, 2021, 33, e2008267.	21.0	196
1247	Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Structure Design for Low Pressure Measurement. Sensors, 2021, 21, 4732.	3.8	2
1248	Reprint of:The materials science of skin: Analysis, characterization, and modeling. Progress in Materials Science, 2021, 120, 100816.	32.8	3
1249	Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method. International Journal of Smart and Nano Materials, 2021, 12, 256-268.	4.2	17
1250	Review—Recent Progress in the Diversity of Inkjet-Printed Flexible Sensor Structures in Biomedical Engineering Applications. Journal of the Electrochemical Society, 2021, 168, 077508.	2.9	20
1251	Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Design and Manufacturing, 2022, 5, 201-209.	7.7	53
1252	Stretchable, Rehealable, Recyclable, and Reconfigurable Integrated Strain Sensor for Joint Motion and Respiration Monitoring. Research, 2021, 2021, 9846036.	5.7	19
1253	Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications. Vacuum, 2021, 189, 110249.	3.5	9

#	Article	IF	CITATIONS
1254	Importance of internal stress control in organic/metal-oxide hybrid devices. Applied Physics Letters, 2021, 119, 013502.	3.3	3
1255	Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers, 2021, 13, 2478.	4.5	22
1256	Chemical sensing based on water-gated polythiophene thin-film transistors. Polymer Journal, 2021, 53, 1315-1323.	2.7	2
1257	Piezotronics in twoâ€dimensional materials. InformaÄnÃ-Materiály, 2021, 3, 987-1007.	17.3	54
1258	In Situ Formation of Ag Nanoparticles for Fiber Strain Sensors: Toward Textile-Based Wearable Applications. ACS Applied Materials & Interfaces, 2021, 13, 39868-39879.	8.0	26
1259	Vital Sign Monitoring System for Healthcare Through IoT Based Personal Service Application. Wireless Personal Communications, 2022, 122, 129-156.	2.7	14
1260	Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon, 2021, 181, 169-176.	10.3	27
1261	A Soft Pressure Sensor Array Based on a Conducting Nanomembrane. Micromachines, 2021, 12, 933.	2.9	4
1262	Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Advanced Energy Materials, 2021, 11, 2101854.	19.5	52
1263	Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Advanced Composites and Hybrid Materials, 2022, 5, 766-775.	21.1	80
1264	Thermoplasmonic effect onto Toad physiology signals by plasmonic microchip structure. Scientific Reports, 2021, 11, 17287.	3.3	1
1265	Ambulatory Cardiovascular Monitoring Via a Machineâ€Learningâ€Assisted Textile Triboelectric Sensor. Advanced Materials, 2021, 33, e2104178.	21.0	167
1266	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	14.9	38
1267	Laser-Assisted Gaussian Microstructure Patterned PDMS Encapsulated Ti ₃ C ₂ T _x (MXene)-Based Pressure Sensor for Object and Touch Detection. IEEE Sensors Journal, 2021, 21, 16547-16553.	4.7	15
1268	A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	24
1269	Materials and Devices for On-Chip and Off-Chip Peltier Cooling: A Review. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1267-1281.	2.5	11
1270	Structural and optical properties of Nd:YAB-nanoparticle-doped PDMS elastomers for random lasers. Scientific Reports, 2021, 11, 16803.	3.3	1
1271	Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sensing and Bio-Sensing Research, 2021, 33, 100434.	4.2	48

#	Article	IF	CITATIONS
1272	Analytical Model of Micropyramidal Capacitive Pressure Sensors and Machineâ€Learningâ€Assisted Design. Advanced Materials Technologies, 0, , 2100634.	5.8	7
1273	Materials Chemistry, Device Engineering, and Promising Applications of Polymer Transistors. Chemistry of Materials, 2021, 33, 7572-7594.	6.7	10
1274	Heterogeneous Functional Dielectric Patterns for Charge arrier Modulation in Ultraflexible Organic Integrated Circuits. Advanced Materials, 2021, 33, e2104446.	21.0	10
1275	Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers, 2021, 13, 3272.	4.5	12
1276	Research on thermal properties of flexible electronic devices under solar radiation. AIP Advances, 2021, 11, 095309.	1.3	0
1277	A Selfâ€Powered Early Warning Glove with Integrated Elasticâ€Arched Triboelectric Nanogenerator and Flexible Printed Circuit for Realâ€īme Safety Protection. Advanced Materials Technologies, 2022, 7, 2100787.	5.8	17
1278	Plantar Pressureâ€Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Advanced Materials Technologies, 2022, 7, 2100566.	5.8	35
1279	Electrical characterization of flexible hafnium oxide capacitors on deformable softening polymer substrate. Microelectronic Engineering, 2021, 249, 111618.	2.4	11
1280	Computational Design of an Integrated CMOS Readout Circuit for Sensing With Organic Field-Effect Transistors. Frontiers in Electronics, 2021, 2, .	3.2	1
1281	E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines, 2021, 12, 1091.	2.9	23
1282	Rapid Detection of SARS-CoV-2 Antigens and Antibodies Using OFET Biosensors Based on a Soft and Stretchable Semiconducting Polymer. ACS Biomaterials Science and Engineering, 2023, 9, 2140-2147.	5.2	32
1283	A Flexible Force-sensitive Film with Ultra-high Sensitivity and Wide Linear Range and Its Sensor. Journal of Alloys and Compounds, 2021, , 162026.	5.5	4
1284	A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator. Smart Materials and Structures, 2021, 30, 105020.	3.5	8
1285	Current development of wearable sensors based on nanosheets and applications. TrAC - Trends in Analytical Chemistry, 2021, 143, 116334.	11.4	21
1286	Local Structure of Ga _{85:8} In _{14:2} Eutectic Alloy and Its Pressure–Temperature Melting Line. Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100423.	2.4	1
1287	Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method. Extreme Mechanics Letters, 2021, 48, 101279.	4.1	59
1288	Textile Triboelectric Nanogenerators for Wearable Pulse Wave Monitoring. Trends in Biotechnology, 2021, 39, 1078-1092.	9.3	96
1289	Reliability of forearm medial-anterior surface dimensional changes at different isometric hand grip forces. Journal of Bodywork and Movement Therapies, 2021, 28, 92-97.	1.2	0
ARTICLE IF CITATIONS Stretchable organic optoelectronic devices: Design of materials, structures, and applications. 1290 31.8 48 Materials Science and Engineering Reports, 2021, 146, 100631. Approaches to deformable physical sensors: Electronic versus iontronic. Materials Science and 1291 31.8 29 Engineering Reports, 2021, 146, 100640. MXene-enhanced l2-phase crystallization in ferroelectric porous composites for highly-sensitive 1292 16.0 66 dynamic force sensors. Nano Energy, 2021, 89, 106409. The insertion of the ALD diffusion barriers: An approach to improve the quality of the GaN deposited 1293 6.1 on Kapton by PEALD. Applied Surface Science, 2021, 566, 150684. Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting 1294 16.0 36 triboelectric nanogenerator and self-powered wearable electronics. Nano Energy, 2021, 90, 106525. One-pot facile fabrication of covalently cross-linked carbon nanotube/PDMS composite foam as a 1295 pressure/temperature sensor with high sensitivity and stability. Journal of Materials Chemistry C, 5.52021, 9, 15337-15345. Ultrahigh compressibility and superior elasticity carbon framework derived from shaddock peel for 1296 3.6 5 high-performance pressure sensing. RSC Advances, 2021, 11, 28621-28631. Evaluation of Devices for Measurement of Blood Pressure., 2021, , 273-281. Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, 1298 21.0 16 e2004707. Gold Nanoparticle Thin Film-Based Strain Sensors for Monitoring Human Pulse. ACS Applied Nano 1299 Materials, 2021, 4, 1712-1718. Electromechanical coupling of isotropic fibrous networks with tailored auxetic behavior induced by 1300 5.55 water-printing under tension. Journal of Materials Chemistry C, 2021, 9, 4544-4553. Flexible Graphene Textile Temperature Sensing RFID Coils Based on Spray Printing. IEEE Sensors 4.7 Journal, 2021, 21, 26382-26388. Bending TIPS-pentacene single crystals: from morphology to transistor performance. Journal of 1302 5.5 6 Materials Chemistry C, 2021, 9, 5621-5627. Recent advances in stretchable field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 1303 5.5 7796-7828. 1304 Tactile sensor based on capacitive structure., 2021, , 31-52. 3 Tactile sensors based on organic field-effect transistors. , 2021, , 53-66. Bioinspired Fluffy Fabric with In Situ Grown Carbon Nanotubes for Ultrasensitive Wearable Airflow 1307 21.0 146 Sensor. Advanced Materials, 2020, 32, e1908214. Flexible Difunctional (Pressure and Light) Sensors Based on ZnO Nanowires/Graphene Heterostructures. Advanced Materials Interfaces, 2020, 7, 1901932.

	CITATION	CITATION REPORT	
# 1309	ARTICLE A Highly Sensitive Capacitiveâ€Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer. Advanced Materials Technologies, 2018, 3, 1700237.	IF 5.8	Citations 233
1310	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	5.8	42
1311	3D Multiscale Gradient Pores Impregnated with Ag Nanowires for Simultaneous Pressure and Bending Detection with Enhanced Linear Sensitivity. Advanced Materials Technologies, 2020, 5, 1901041.	5.8	5
1312	loT Sensing Capabilities: Sensor Deployment and Node Discovery, Wearable Sensors, Wireless Body Area Network (WBAN), Data Acquisition. Intelligent Systems Reference Library, 2020, , 127-151.	1.2	35
1313	Soft Tactile Sensors for Human-Machine Interaction. , 2015, , 317-355.		2
1314	A graphite nanoplatelet-based highly sensitive flexible strain sensor. Carbon, 2020, 166, 316-327.	10.3	34
1315	"All-in-one―hydrolyzed keratin protein-modified polyacrylamide composite hydrogel transducer. Chemical Engineering Journal, 2020, 398, 125555.	12.7	53
1316	Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy, 2020, 74, 104932.	16.0	64
1319	Rational Polymer Design of Stretchable Poly(ionic liquid) Membranes for Dual Applications. Macromolecules, 2021, 54, 896-905.	4.8	19
1320	Low-Hysteresis and Ultrasensitive Microcellular Structures for Wearable Electronic Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 1632-1643.	8.0	11
1321	Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23059-23095.	10.3	151
1322	Organic electronics Axon-Hillock neuromorphic circuit: towards biologically compatible, and physically flexible, integrate-and-fire spiking neural networks. Journal Physics D: Applied Physics, 2021, 54, 104004.	2.8	16
1323	First-principles study of mechanical and electronic properties of bent monolayer transition metal dichalcogenides. Physical Review Materials, 2019, 3, .	2.4	28
1324	A skin-inspired tactile sensor for smart prosthetics. Science Robotics, 2018, 3, .	17.6	195
1325	Wrinkle Structured Network of Silver-Coated Carbon Nanotubes for Wearable Sensors. Nanoscale Research Letters, 2019, 14, 356.	5.7	10
1326	Highly Sensitive, Flexible Pressure Sensors Based on Carbon Nanotube Microfibers Hybridized with Au Flowers. Textile Science and Engineering, 2016, 53, 7-14.	0.4	1
1327	Non-invasive human vital signs monitoring based on twin-core optical fiber sensors. Biomedical Optics Express, 2019, 10, 5940.	2.9	40
1328	Wearable technology for baby monitoring: a review. Journal of Textile Engineering & Fashion Technology, 2020, 6, .	0.3	20

#	Article	IF	CITATIONS
1330	Highly Stretchable, Elastic, and Sensitive MXene-Based Hydrogel for Flexible Strain and Pressure Sensors. Research, 2020, 2020, 2038560.	5.7	121
1331	Trends in Epidermal Stretchable Electronics for Noninvasive Long-term Healthcare Applications. International Journal of Automation and Smart Technology, 2017, 7, 37-52.	0.4	10
1332	A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin. Journal of Materials Chemistry B, 2021, 9, 8862-8870.	5.8	25
1333	Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device. Nano Energy, 2021, 90, 106617.	16.0	25
1334	E‣kin Piezoresistive Pressure Sensor Combining Laser Engraving and Shrinking Polymeric Films for Health Monitoring Applications. Advanced Materials Interfaces, 2021, 8, 2100877.	3.7	3
1336	Tunable seesaw-like 3D capacitive sensor for force and acceleration sensing. Npj Flexible Electronics, 2021, 5, .	10.7	12
1337	Elastomeric Nanodielectrics for Soft and Hysteresisâ€Free Electronics. Advanced Materials, 2021, 33, e2104761.	21.0	7
1338	Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsystems and Nanoengineering, 2021, 7, 85.	7.0	24
1339	An artificial neural network chip based on two-dimensional semiconductor. Science Bulletin, 2022, 67, 270-277.	9.0	20
1340	Omnidirectional Tactile Profiling Using a Deformable Pressure Sensor Array Based on Localized Piezoresistivity. Advanced Materials Technologies, 2022, 7, 2100688.	5.8	6
1341	Lithographically patterned stretchable metallic microwiring on electrospun nanofiber mats. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	2
1342	Biosensing Detection. , 2014, , 77-109.		0
1343	Pressure Sensitive Device Using Conductive and Porous Structures. Transactions of the Korean Society of Mechanical Engineers, B, 2014, 38, 601-605.	0.1	0
1344	Soft Robotic Micro-Tentacle: A Case Study. SpringerBriefs in Applied Sciences and Technology, 2017, , 39-58.	0.4	0
1345	Enabling Technologies. SpringerBriefs in Applied Sciences and Technology, 2017, , 11-38.	0.4	0
1347	Current Progress. SpringerBriefs in Applied Sciences and Technology, 2017, , 59-78.	0.4	0
1348	Graphene, Its Analogues, and Modern Science. Springer Proceedings in Physics, 2019, , 215-236.	0.2	0
1349	Polyurethane Foams Reinforced with Biobased Materials: Properties and Applications. Current Applied Polymer Science, 2019, 3, 14-29.	0.2	0

#	Article	IF	CITATIONS
1350	Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284.		1
1351	Electronic tattoos: the most multifunctional but imperceptible wearables. , 2019, , .		3
1352	Seeing pressure in color based on integration of highly sensitive pressure sensor and emission tunable light emitting diode. Optics Express, 2019, 27, 35448.	3.4	1
1353	Self-supported Materials for Flexible/Stretchable Sensors. Engineering Materials, 2020, , 269-296.	0.6	0
1354	Antrenman Yükü. CBÜ Beden Eğitimi Ve Spor Bilimleri Dergisi, 2019, 14, 152-175.	0.7	3
1355	Ultrahigh Skin-Conformal and Biodegradable Graphene-based Flexible Sensor for Measuring ECG Signal. International Journal of Information and Electronics Engineering, 2020, 10, 52-56.	0.2	1
1356	Wearable Devices for Monitoring Work related Musculoskeletal and Gait Disorders. , 2020, , .		1
1357	Electronic Skin Based on a Cellulose/Carbon Nanotube Fiber Network for Large-Area 3D Touch and Real-Time 3D Surface Scanning. ACS Applied Materials & Interfaces, 2021, 13, 53111-53119.	8.0	18
1358	A theoretical model of a flexible capacitive pressure sensor with microstructured electrodes for highly sensitive electronic skin. Journal Physics D: Applied Physics, 2022, 55, 094001.	2.8	10
1359	Flexible Pressure Sensor with Micro-Structure Arrays Based on PDMS and PEDOT:PSS/PUD&CNTs Composite Film with 3D Printing. Materials, 2021, 14, 6499.	2.9	14
1360	Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors. Micro and Nano Systems Letters, 2020, 8, .	3.7	15
1361	Wearable Sensors and Deep Learning for the Management of Acute Pancreatitis in Precision Medicine. , 2021, , .		0
1362	Photoproteins Tapping Solar Energy to Power Sensors. Green Energy and Technology, 2020, , 127-140.	0.6	0
1363	A novel PANI/SEBS film/fiber large deformation conductive elastomer with rapid recovery of resistance. Materials Letters, 2021, 308, 131205.	2.6	1
1364	Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy. Flexible and Printed Electronics, 2021, 6, 043003.	2.7	5
1365	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	12.0	16
1366	Directly Electroplated Metallization on Flexible Substrates Based on Silver Nanowire Conductive Composite for Wearable Electronics. ACS Applied Nano Materials, 2021, 4, 12098-12107.	5.0	9
1367	Highly Elastic and Fatigue-Resistant Graphene-Wrapped Lamellar Wood Sponges for High-Performance Piezoresistive Sensors. ACS Sustainable Chemistry and Engineering, 2021, 9, 15267-15277.	6.7	28

	CITATION	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
1368	riexible transparent array capacitive sensor based on pyrainid structure. , 2020, , .		0
1369	A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy, 2022, 91, 106695.	16.0	40
1370	Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring. Nano Energy, 2022, 92, 106755.	16.0	19
1371	Ultrafastâ€Response/Recovery Flexible Piezoresistive Sensors with DNAâ€Like Double Helix Yarns for Epidermal Pulse Monitoring. Advanced Materials, 2022, 34, e2104313.	21.0	63
1372	Laser Direct Writing of Highly Ordered Two‣evel Hierarchical Microstructures for Flexible Piezoresistive Sensor with Enhanced Sensitivity. Advanced Materials Interfaces, 2022, 9, .	3.7	25
1373	Electronic and Magnetic Properties of a Three-Arm Nonconjugated Open-Shell Macromolecule. ACS Polymers Au, 2022, 2, 59-68.	4.1	6
1374	Cost-effective vital signs monitoring system for COVID-19 patients in smart hospital. Health and Technology, 2022, 12, 239-253.	3.6	12
1375	A Multifunctional Flexible Ferroelectric Transistor Sensor for Electronic Skin. Advanced Materials Interfaces, 2021, 8, .	3.7	9
1376	Flexible smart sensing skin for "Fly-by-Feel―morphing aircraft. Science China Technological Sciences, 2022, 65, 1-29.	4.0	28
1377	Enabling the aqueous solution sensing of skin-conformable organic field-effect transistor using an amphiphilic molecule. Applied Materials Today, 2022, 26, 101275.	4.3	5
1378	Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity. Applied Materials Today, 2021, 25, 101247.	4.3	11
1379	A Flexible and Ultra-Highly Sensitive Tactile Sensor through a Parallel Circuit by a Magnetic Aligned Conductive Composite. ACS Nano, 2022, 16, 746-754.	14.6	31
1380	A Flexible Pressure Sensor Based on Composite Piezoresistive Layer. IEEE Sensors Journal, 2022, 22, 405-411.	4.7	8
1381	Curing quality monitoring and loading detection of composite structures with embedded capacitive sensor array. Materials and Design, 2022, 213, 110321.	7.0	4
1383	Design of Pulse Diagnostic Robot for Traditional Chinese Medicine. , 2020, , .		2
1385	Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials, 2022, 12, 334.	4.1	32
1386	Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics. ACS Nano, 2022, 16, 1271-1279.	14.6	18
1387	Recent progress in flexible capacitive sensors: Structures and properties. Nano Materials Science, 2023, 5, 265-277.	8.8	24

#	Article	IF	CITATIONS
1388	Respiratory fabric sensor based on the side luminescence and photosensitivity mechanism of polymer optical fibers. Optics Express, 2022, 30, 2721.	3.4	6
1389	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	11.2	29
1390	<i>In situ</i> controlled and conformal coating of polydimethylsiloxane foams with silver nanoparticle networks with tunable piezo-resistive properties. Nanoscale Horizons, 2022, 7, 425-436.	8.0	18
1391	Wearable Pressure Sensors for Pulse Wave Monitoring. Advanced Materials, 2022, 34, e2109357.	21.0	253
1392	Flexible Pressure Sensors Based on Bionic Microstructures: From Plants to Animals. Advanced Materials Interfaces, 2022, 9, .	3.7	35
1393	Flexible and stretchable indium-fallium-zinc oxide-based electronic devices for sweat pH sensor application. , 2022, , 525-543.		1
1394	A highly temperature- and pressure-sensitive soft sensor self-powered by a galvanic cell design. Journal of Materials Chemistry A, 2022, 10, 4408-4417.	10.3	11
1395	Carbon Black/PDMS Based Flexible Capacitive Tactile Sensor for Multi-Directional Force Sensing. Sensors, 2022, 22, 628.	3.8	24
1396	Enhanced electromechanical resilience and mechanism of the composites-coated fabric sensors with crack-induced conductive network for wearable applications. Smart Materials and Structures, 2022, 31, 035032.	3.5	2
1397	MXene-containing pressure sensor based on nanofiber film and spacer fabric with ultrahigh sensitivity and Joule heating effect. Textile Reseach Journal, 2022, 92, 1999-2009.	2.2	8
1398	Soft bioelectronics for cardiac interfaces. Biophysics Reviews, 2022, 3, .	2.7	8
1399	Flexible capacitive pressure sensors using microdome like structured polydimethylsiloxane dielectric layers. Sensors and Actuators A: Physical, 2022, 335, 113393.	4.1	32
1400	Electronic skin based on PLLA/TFT/PVDF-TrFE array for Multi-Functional tactile sensing and visualized restoring. Chemical Engineering Journal, 2022, 434, 134735.	12.7	20
1401	A nature-inspired hierarchical branching structure pressure sensor with high sensitivity and wide dynamic range for versatile medical wearables. Biosensors and Bioelectronics, 2022, 203, 114028.	10.1	10
1402	Nanoarchitectonics of Stretchable Organic Electronics Materials. RSC Nanoscience and Nanotechnology, 2022, , 518-545.	0.2	0
1403	Crocodile skin inspired rigid-supple integrated flexible lithium ion batteries with high energy density and bidirectional deformability. Energy Storage Materials, 2022, 47, 149-157.	18.0	28
1404	The fabrication and properties of a flexible sensor based on polyvinylidene fluoride fiber. Textile Reseach Journal, 2022, 92, 3443-3450.	2.2	1
1405	Flexible, wearable biosensors for digital health. Medicine in Novel Technology and Devices, 2022, 14, 100118.	1.6	25

#	ARTICLE A gold nanowire-integrated soft wearable system for dynamic continuous non-invasive cardiac	IF	CITATIONS
1407	monitoring. Biosensors and Bioelectronics, 2022, 205, 114072. Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 2022, 16, 3341-3350.	14.6	72
1408	Nano-Patterned Ionogel Film for High-Sensitivity and Recyclable Flexible Pressure Sensor. IEEE Sensors Journal, 2022, 22, 7656-7664.	4.7	1
1409	Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates. Nanoscale, 2022, 14, 4679-4689.	5.6	6
1410	lce-Crystal Templated "Accordion-Like―Biodegradable Cellulose Nanofiber / Mxene Composite Aerogels for Sensitive Wearable Pressure Sensors. SSRN Electronic Journal, 0, , .	0.4	0
1411	Development of Triaxis Electromagnetic Tactile Sensor With Adjustable Sensitivity and Measurement Range for Robot Manipulation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	10
1412	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	6.1	64
1413	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	21.0	211
1414	Near-Zero Hysteresis Ionic Conductive Elastomers with Long-Term Stability for Sensing Applications. ACS Applied Materials & Interfaces, 2022, 14, 11727-11738.	8.0	14
1415	Revolution in Flexible Wearable Electronics for Temperature and Pressure Monitoring—A Review. Electronics (Switzerland), 2022, 11, 716.	3.1	29
1416	Multiâ€Hierarchical Microstructures Boosted Linearity of Flexible Capacitive Pressure Sensor. Advanced Engineering Materials, 2022, 24, .	3.5	9
1417	MetaMembranes for the Sensitivity Enhancement of Wearable Piezoelectric MetaSensors. Sensors, 2022, 22, 1909.	3.8	3
1418	Hierarchical Network Enabled Flexible Textile Pressure Sensor with Ultrabroad Response Range and Highâ€Temperature Resistance. Advanced Science, 2022, 9, e2105738.	11.2	37
1419	Integrated Strain Sensors with Stretchable Vertical Graphene Networks for Non-invasive Physiological Assessment. ACS Applied Electronic Materials, 2022, 4, 964-973.	4.3	8
1420	Flexible optical pressure sensor with high spatial resolution based on deep learning. , 2022, , .		0
1421	Development of an automatic measurement system for medical pills based on a PDMS capacitive sensor. Measurement: Journal of the International Measurement Confederation, 2022, 192, 110899.	5.0	1
1422	Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. Journal of Mechanical Science and Technology, 2022, 36, 1059-1077.	1.5	8
1423	Ultralight Iontronic Triboelectric Mechanoreceptor with High Specific Outputs for Epidermal Electronics. Nano-Micro Letters, 2022, 14, 86.	27.0	27

#	Article	IF	CITATIONS
1424	Flexible Pseudocapacitive Iontronic Tactile Sensor Based on Microsphereâ€Decorated Electrode and Microporous Polymer Electrolyte for Ultrasensitive Pressure Detection. Advanced Electronic Materials, 2022, 8, .	5.1	17
1425	NiO-Based Electronic Flexible Devices. Applied Sciences (Switzerland), 2022, 12, 2839.	2.5	12
1426	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. Advanced Electronic Materials, 2022, 8, .	5.1	3
1427	Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy. Small, 2022, 18, e2107034.	10.0	45
1428	Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nature Communications, 2022, 13, 1317.	12.8	141
1429	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	11.9	54
1430	An all-elastomer pressure sensor utilizing printed carbon nanotube patterns with high sensitivity. Micro and Nano Engineering, 2022, 14, 100113.	2.9	2
1431	Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum. Science Advances, 2022, 8, eabn2156.	10.3	62
1432	Debonding characterization of stiff film/compliant substrate systems based on the bilinear cohesive zone model. Engineering Fracture Mechanics, 2022, 265, 108363.	4.3	7
1433	Cuffless Blood Pressure Measurement. Annual Review of Biomedical Engineering, 2022, 24, 203-230.	12.3	36
1434	Shape and stiffness memory ionogels with programmable pressure-resistance response. Nature Communications, 2022, 13, 1743.	12.8	54
1435	Toward enhanced output performance by optimizing permittivity of capacitor medium in electret-based energy harvester. Nano Energy, 2022, 95, 107057.	16.0	3
1436	Wearable triboelectric devices for haptic perception and VR/AR applications. Nano Energy, 2022, 96, 107112.	16.0	39
1437	Piezoelectric sensing performance of flexible P(VDF-TrFE)/PBDMS porous polymer materials. Organic Electronics, 2022, 105, 106491.	2.6	5
1438	High-performance cellulose nanofiber-derived composite films for efficient thermal management of flexible electronic devices. Chemical Engineering Journal, 2022, 439, 135675.	12.7	26
1439	Bioinspired hierarchical polydimethylsiloxane/polyaniline array for ultrasensitive pressure monitoring. Chemical Engineering Journal, 2022, 441, 136028.	12.7	16
1440	Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. Applied Physics Letters, 2021, 119, .	3.3	3
1441	Compressed Sensing Image Reconstruction of Ultrasound Image for Treatment of Early Traumatic Myositis Ossificans of Elbow Joint by Electroacupuncture. Journal of Healthcare Engineering, 2021, 2021, 1-11.	1.9	0

#	Article	IF	CITATIONS
1442	Backâ€End CMOS Compatible and Flexible Ferroelectric Memories for Neuromorphic Computing and Adaptive Sensing. Advanced Intelligent Systems, 2022, 4, .	6.1	17
1443	Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity. ACS Nano, 2022, 16, 541-553.	14.6	43
1444	Flexible mechanical metamaterials enabling soft tactile sensors with multiple sensitivities at multiple force sensing ranges. Scientific Reports, 2021, 11, 24125.	3.3	16
1445	Origins of strain localization in a silver-based flexible ink under tensile load. Flexible and Printed Electronics, 2021, 6, 045017.	2.7	0
1447	Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays. ACS Nano, 2022, 16, 368-377.	14.6	63
1448	Organic Logâ€Domain Integrator Synapse. Advanced Electronic Materials, 2022, 8, 2100724.	5.1	4
1449	High-Porosity Foam-Based Iontronic Pressure Sensor with Superhigh Sensitivity of 9280ÂkPaâ^'1. Nano-Micro Letters, 2022, 14, 21.	27.0	72
1450	Metal Oxides/Carbon Felt Pressure Sensors with Ultraâ€Broadâ€Range High Sensitivity. Advanced Materials Interfaces, 2022, 9, .	3.7	10
1451	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	38.1	85
1452	Highâ€Performance Flexible Pressure Sensor with a Selfâ€Healing Function for Tactile Feedback. Advanced Science, 2022, 9, e2200507.	11.2	84
1453	Organic electrochemical transistors toward synaptic electronics. Journal Physics D: Applied Physics, 2022, 55, 304006.	2.8	10
1454	High-Performance and Broadband Flexible Photodetectors Employing Multicomponent Alloyed 1D CdS _{<i>x</i>} Se _{1–<i>x</i>} Micro-Nanostructures. ACS Applied Materials & Interfaces, 2022, 14, 19659-19671.	8.0	12
1455	Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 2022, 33, 322002.	2.6	27
1456	A wearable and fully-textile capacitive sensor based on flat-knitted spacing fabric for human motions detection. Sensors and Actuators A: Physical, 2022, 340, 113558.	4.1	8
1457	Highly Sensitive and Flexible Capacitive Pressure Sensor Based on Alignment Airgap Dielectric Layer. SSRN Electronic Journal, 0, , .	0.4	5
1458	Early Notice Pointer, an IoT-like Platform for Point-of-Care Feet and Body Balance Screening. Micromachines, 2022, 13, 682.	2.9	2
1459	In-situ sugar-templated porous elastomer sensor with high sensitivity for wearables. Frontiers of Materials Science, 2022, 16, .	2.2	2
1460	Progress of flexible strain sensors for physiological signal monitoring. Biosensors and Bioelectronics, 2022, 211, 114298.	10.1	59

#	Article	IF	CITATIONS
1461	Smart Core‧hell Nanostructures for Force, Humidity, and Temperature Multi‧timuli Responsiveness. Advanced Materials Technologies, 2022, 7, .	5.8	10
1462	Enhancing Transition Dipole Moments of Heterocyclic Semiconductors via Rational Nitrogen‧ubstitution for Sensitive Near Infrared Detection. Advanced Materials, 2022, 34, e2201600.	21.0	19
1463	Advances in perception-functionalized organic field-effect transistors. Scientia Sinica Chimica, 2022, 52, 1896-1912.	0.4	2
1464	External field alignment of nickel-coated carbon fiber/PDMS composite for biological monitoring with high sensitivity. Journal of Polymer Engineering, 2022, 42, 637-643.	1.4	2
1465	A Flexible, Transparent, Ultralow Detection Limit Capacitive Pressure Sensor. Advanced Materials Interfaces, 2022, 9, .	3.7	13
1466	Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Science Advances, 2022, 8, eabm1175.	10.3	41
1467	Sustainableâ€Macromoleculeâ€Assisted Preparation of Crossâ€linked, Ultralight, Flexible Graphene Aerogel Sensors toward Lowâ€Frequency Strain/Pressure to Highâ€Frequency Vibration Sensing. Small, 2022, 18, e2202047.	10.0	20
1468	A flexible tactile sensor that uses polyimide/graphene oxide nanofiber as dielectric membrane for vertical and lateral force detection. Nanotechnology, 2022, 33, 405205.	2.6	9
1469	Marangoni-flow-assisted assembly of single-walled carbon nanotube films for human motion sensing. Fundamental Research, 2022, , .	3.3	1
1470	A printed proximity-sensing surface based on organic pyroelectric sensors and organic thin-film transistor electronics. Nature Electronics, 2022, 5, 289-299.	26.0	21
1471	Effects of chain ends and densities on the glass transition of polymer thin films probed by linear and cyclic polystyrene. Polymer, 2022, 253, 124986.	3.8	3
1472	Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers, 2022, 14, 2219.	4.5	5
1473	Constructing Flexible All‣olid‣tate Supercapacitors from 3D Nanosheets Active Bricks via 3D Manufacturing Technology: A Perspective Review. Advanced Functional Materials, 2022, 32, .	14.9	33
1474	Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors, 2022, 12, 385.	4.7	38
1475	Learning time-dependent deposition protocols to design thin films via genetic algorithms. Materials and Design, 2022, 219, 110815.	7.0	5
1476	Self-sensing composite material based on piezoelectric nanofibers. Materials and Design, 2022, 219, 110787.	7.0	14
1477	Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Applied Surface Science, 2022, 598, 153803.	6.1	22
1478	Enhancing the performance of transparent and highly stretchable organic electrochemical transistors by acid treatment and copolymer blending of electrospun PEDOT:PSS fibers. Journal of Materials Chemistry C. 2022, 10, 11739-11746.	5.5	5

#	Article	IF	CITATIONS
1479	Highly Sensitive Flexible Capacitive Pressure Sensor Based on Bionic Hybrid Microstructures. , 2022, , .		1
1480	Dielectric interface passivation of polyelectrolyte-gated organic field-effect transistors for ultrasensitive low-voltage pressure sensors in wearable applications. , 2022, 1, 100001.		14
1481	Highly Sensitive, Stretchable Pressure Sensor Using Blue Laser Annealed CNTs. Nanomaterials, 2022, 12, 2127.	4.1	5
1482	Effect of heat treatment with different heat transfer modes on the polymerization of tosylate-doped poly(3,4-ethylenedioxythiophene) films. Scientific Reports, 2022, 12, .	3.3	1
1483	Grazingâ€Incidence Texture Tomography and Diffuse Reflectivity Tomography of an Organic Semiconductor Device Array**. Chemistry Methods, 2022, 2, .	3.8	1
1484	An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements. Nano-Micro Letters, 2022, 14, .	27.0	27
1485	Recent advances in field-effect transistors for heavy metal ion detection. Journal of Materials Science: Materials in Electronics, 2022, 33, 15965-15991.	2.2	1
1486	Structurally Modified PDMS-Based Capacitive Pressure Sensor. , 2022, , .		8
1488	Kirigamiâ€Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Advanced Materials, 2022, 34, .	21.0	63
1489	3D Porous MXene Aerogel through Gas Foaming for Multifunctional Pressure Sensor. Research, 2022, 2022, .	5.7	22
1490	Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics. ACS Nano, 2022, 16, 8798-8811.	14.6	24
1491	High-performance Multilayer Flexible Piezoresistive Pressure Sensor with Bionic Hierarchical and Anisotropic Structure. Journal of Bionic Engineering, 2022, 19, 1439-1448.	5.0	10
1492	Sensitivity-Photo-Patternable Ionic Pressure Sensor Array with a Wearable Measurement Unit. ACS Applied Materials & Interfaces, 2022, 14, 33641-33649.	8.0	9
1493	Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Letters, 2022, 14, .	27.0	75
1494	Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors. Sensors and Actuators A: Physical, 2022, 344, 113770.	4.1	24
1495	Enhancing the properties of graphene oxide/natural rubber nanocompositeâ€based strain sensor modified by aminoâ€functionalized silanes. Polymers for Advanced Technologies, 2022, 33, 3386-3398.	3.2	5
1496	Structure-Driven, Flexible, Multilayered, Paper-Based Pressure Sensor for Human–Machine Interfacing. ACS Sustainable Chemistry and Engineering, 2022, 10, 9697-9706.	6.7	28
1497	An Analytic Orthotropic Heat Conduction Model for the Stretchable Network Heaters. Micromachines, 2022, 13, 1133.	2.9	2

#	Article	IF	Citations
1498	Self-powered and flexible piezo-sensors based on conductivity-controlled GaN nanowire-arrays for mimicking rapid- and slow-adapting mechanoreceptors. Npj Flexible Electronics, 2022, 6, .	10.7	6
1499	Photolithographic Highâ€Conductivity Transparent Conformal rGO/PEDOT:PSS Electrodes for Flexible Skinâ€Like All Solutionâ€Processed Organic Transistors. Advanced Materials Technologies, 2022, 7, .	5.8	3
1500	High sensitivity and broad linearity range pressure sensor based on hierarchical in-situ filling porous structure. Npj Flexible Electronics, 2022, 6, .	10.7	23
1501	Bioinspired Thermoplastic Elastomer with Flexible, Self-Healing Capabilities. Langmuir, 2022, 38, 8862-8870.	3.5	5
1502	Selfâ€Adaptive Hierarchical Gradient Structureâ€Based In Situ Sensor with Highâ€Pressure Resolution. Advanced Materials Technologies, 2023, 8, .	5.8	2
1503	Highly Reliable Sensitive Capacitive Tactile Sensor with Spontaneous Micronâ€Pyramid Structures for Electronic Skins. Macromolecular Materials and Engineering, 2022, 307, .	3.6	11
1504	Porous Microstructureâ€Assisted Flexible and Highly Sensitive Polymer Piezoresistive Pressure Sensor. Advanced Engineering Materials, 2022, 24, .	3.5	18
1505	Functional electrospun polymeric materials for bioelectronic devices: a review. Materials Advances, 2022, 3, 6753-6772.	5.4	11
1506	Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. Micromachines, 2022, 13, 1220.	2.9	6
1507	Intrinsically Stretchable Organic Electrochemical Transistors with Rigidâ€Đeviceâ€Benchmarkable Performance. Advanced Science, 2022, 9, .	11.2	12
1508	Highlyâ€Bendable MoS ₂ /SnS Flexible Photodetector with Broadband Infrared Response. Advanced Materials Interfaces, 2022, 9, .	3.7	7
1509	Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. Biosensors, 2022, 12, 630.	4.7	26
1510	Wireless Nonâ€Invasive Monitoring of Cholesterol Using a Smart Contact Lens. Advanced Science, 2022, 9, .	11.2	32
1511	BaTiO ₃ -assisted rGO-based flexible thin films for energy storage applications. International Journal of Polymer Analysis and Characterization, 2022, 27, 496-513.	1.9	2
1512	Chain-Extending Polymerization for Significant Improvement in Organic Thin-Film Transistor Performance. ACS Applied Materials & Interfaces, 2022, 14, 36918-36926.	8.0	6
1513	Gold nanowire electrodes for flexible organic thin-film transistors. Applied Physics Express, 2022, 15, 096501.	2.4	2
1514	Flexible pressure sensor for high-precision measurement of epidermal arterial pulse. Nano Energy, 2022, 102, 107710.	16.0	20
1515	Knitted structural design of MXene/Cu2O based strain sensor for smart wear. Cellulose, 2022, 29, 9453-9467.	4.9	5

#	Article	IF	CITATIONS
1516	Highly-stable flexible pressure sensor using piezoelectric polymer film on metal oxide TFT. RSC Advances, 2022, 12, 21014-21021.	3.6	7
1517	Formulation of conductive inks printable on textiles for electronic applications: a review. Textile Progress, 2022, 54, 103-200.	2.0	3
1518	Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sensors, 2022, 7, 2495-2520.	7.8	34
1519	Sensitivity Design and Reliability Analysis of Pressure-sensitive Layer for 5G Flexible Wearable Sensors. , 2022, , .		0
1520	A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on Alignment Airgap Dielectric. Sensors, 2022, 22, 7390.	3.8	8
1521	Nanoarchitectonics with MWCNT and Ecoflex film for flexible strain sensors: wide linear range for wearable applications and monitoring of pressure distribution. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	2
1523	Interfacial Enhanced 1D–2D Composite toward Mechanically Robust Strain Sensors. Advanced Materials Interfaces, 2022, 9, .	3.7	2
1524	Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. Micromachines, 2022, 13, 1588.	2.9	4
1525	A Fully Integrated Flexible Electronic System With Highly Sensitive MWCNTs Piezoresistive Array Sensors for Pressure Monitoring. IEEE Sensors Journal, 2022, 22, 18143-18150.	4.7	3
1526	Reduction of the Error in the Electrical Characterization of Organic Field-Effect Transistors Based on Donor–Acceptor Polymer Semiconductors. ACS Applied Electronic Materials, 2022, 4, 4677-4682.	4.3	1
1527	A dual-response flexible capacitive pressure sensor based on ZnS:Cu2+. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	0
1529	Flexible and Wearable Optical System Based on Uâ€Shaped Cascaded Microfiber Interferometer. Advanced Materials Technologies, 2023, 8, .	5.8	15
1530	Selfâ€Powered Wearable Micropyramid Piezoelectric Film Sensor for Realâ€Time Monitoring of Blood Pressure. Advanced Engineering Materials, 2023, 25, .	3.5	14
1531	Organic Electrochemical Transistor. , 2022, , 207-220.		0
1532	Printed flexible mechanical sensors. Nanoscale, 2022, 14, 17134-17156.	5.6	6
1533	Self-Healing Polymers for Electronics and Energy Devices. Chemical Reviews, 2023, 123, 558-612.	47.7	48
1534	Robust ultrasensitive stretchable sensor for wearable and high-end robotics applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 26447-26463.	2.2	10
1535	Biopolymer Composites with Sensors for Environmental and Medical Applications. Materials, 2022, 15, 7493.	2.9	8

#	Article	IF	CITATIONS
1536	Flexible Thin-Film Speaker Integrated with an Array of Quantum-Dot Light-Emitting Diodes for the Interactive Audiovisual Display of Multi-functional Sensor Signals. ACS Applied Materials & Interfaces, 2022, 14, 48844-48856.	8.0	7
1537	Bending instability of island-bridge structures. Journal of Applied Physics, 2022, 132, .	2.5	1
1538	Field effect transistorâ€based tactile sensors: From sensor configurations to advanced applications. InformaÄnÃ-Materiály, 2023, 5, .	17.3	24
1539	The effect of substrate curvature on capacitance and transfer characteristics for thin film transistors on the surface of spheres. Journal of Applied Physics, 2022, 132, .	2.5	1
1540	Highly-sensitive organic field effect transistor sensors for dual detection of humidity and NO2. Sensors and Actuators B: Chemical, 2023, 374, 132815.	7.8	8
1541	Field effect transistor-based pressure sensor with dielectric elastomer, for robotic hand. , 2022, , .		0
1542	3D Printed Multifunctional Selfâ€Adhesive and Conductive Polyacrylamide/Chitosan/Sodium Carboxymethyl Cellulose/CNT Hydrogels as Flexible Sensors. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	8
1543	Multiple design strategies of flexible piezoresistive pressure sensors in radial artery pulse signals monitoring. , 2022, , .		0
1544	OTFT Biosensor on Flexible Substrates for Human Health Monitoring: a Review. IEEE Sensors Journal, 2023, 23, 997-1011.	4.7	4
1545	Dispersed VO ₂ phases in a flexible sensor for recognizing tensile and compressive stress. Journal of Materials Chemistry C, 2023, 11, 513-519.	5.5	4
1546	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	38.1	18
1547	Facile preparation of micropatterned thermoplastic surface for wearable capacitive sensor. Composites Science and Technology, 2023, 232, 109863.	7.8	13
1548	Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator. Micromachines, 2022, 13, 2065.	2.9	4
1549	A multi-scale model of film/substrate interface damage due to the evolution of vacancy concentration inside the film. Mechanics of Advanced Materials and Structures, 0, , 1-11.	2.6	3
1550	A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. Advanced Fiber Materials, 2023, 5, 429-460.	16.1	24
1551	Nonpatterned Soft Piezoresistive Films with Filamentous Conduction Paths for Mimicking Multiple-Resolution Receptors of Human Skin. ACS Applied Materials & Interfaces, 2022, 14, 55088-55097.	8.0	3
1552	Tough, Bioâ€disintegrable and Stretchable Substrate Reinforced with Nanofibers for Transient Wearable Electronics. Advanced Functional Materials, 2023, 33, .	14.9	10
1553	A Flexible Pressure Sensor with a Mesh Structure Formed by Lost Hair for Human Epidermal Pulse Wave Monitoring. Sensors, 2023, 23, 45.	3.8	3

#	Article	IF	CITATIONS
1554	Understanding resistance increase in composite inks under monotonic and cyclic stretching. Flexible and Printed Electronics, 2022, 7, 045010.	2.7	1
1555	The evolution of digital health technologies in cardiovascular disease research. Npj Digital Medicine, 2023, 6, .	10.9	16
1556	Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications. Small, 2023, 19, .	10.0	7
1557	A review of wearable carbon-based sensors for strain detection: fabrication methods, properties, and mechanisms. Textile Reseach Journal, 2023, 93, 2918-2940.	2.2	5
1558	Isophoroneâ€Based Quaternary Compound Modified Graphene for Machine Washable Nonwoven Piezoresistive Sensors. Advanced Materials Interfaces, 0, , 2202020.	3.7	0
1559	Carbon nanotubes field-effect transistor pressure sensor based on three-dimensional conformal force-sensitive gate modulation. Carbon, 2023, 204, 456-464.	10.3	10
1560	Application of Sensors in the System of Shell Structures with Flexible Wearable Electronics. , 2022, , .		0
1561	Advancement in the Cuffless and Noninvasive Measurement of Blood Pressure: A Review of the Literature and Open Challenges. Bioengineering, 2023, 10, 27.	3.5	9
1562	Solar Cells. Springer Series in Materials Science, 2023, , 59-69.	0.6	1
1563	Wearable strain sensors: state-of-the-art and future applications. Materials Advances, 2023, 4, 1444-1459.	5.4	7
1564	Humidityâ€Resistant, Broadâ€Range Pressure Sensors for Garmentâ€Integrated Health, Motion, and Grip Strength Monitoring in Natural Environments. Advanced Materials Technologies, 2023, 8, .	5.8	4
1565	Observation of Large Threshold Voltage Shift Induced by Pre-applied Voltage to SiO2 Gate Dielectric in Organic Field-Effect Transistors. Electronics (Switzerland), 2023, 12, 540.	3.1	1
1566	å∙有è¶é«~çµæ•度ã€å®½å·¥ä½œèŒfå›´ã€ë½Žæ£€æµ‹é™çš"3D气凕èf¶å•ç©¿æ^´åŽ‹åŠ›ä¼æ"Ÿå™`ç	;""₿₽₫ ѐ⁻éŸ	³èĦå^«å'Œç"
1567	Solution-Processed OLED Based on a Mixed-Ligand Europium Complex. Materials, 2023, 16, 959.	2.9	1
1568	An Inverted Layerâ€byâ€Layer Process to Enable Ultrasmooth MXene–Ag Nanowire Hybrid Electrode for Organic Photovoltaics. Solar Rrl, 2023, 7, .	5.8	5
1569	Emerging Trends in 2D TMDs Photodetectors and Piezoâ€Phototronic Devices. Small, 2023, 19, .	10.0	29
1570	Structural Control of Charge Transport in Polymer Monolayer Transistors by a Thermodynamically Assisted Dip-Coating Strategy. Journal of Materials Chemistry C, 0, , .	5.5	1
1571	Structural properties and sensing characteristics of recently developed sensor materials. , 2023, , .		0

#	Article	IF	CITATIONS
1572	Flexible pressure sensor based on polystyrene foam with superelasticity and ultra-wide range. Smart Materials and Structures, 2023, 32, 045006.	3.5	2
1573	A High-Temperature Accelerometer with Excellent Performance Based on the Improved Graphene Aerogel. ACS Applied Materials & Interfaces, 2023, 15, 19337-19348.	8.0	5
1574	Human motion recognition by a shoes-floor triboelectric nanogenerator and its application in fall detection. Nano Energy, 2023, 108, 108230.	16.0	12
1575	Fabrication of flexible organic field effect transistors with high carrier mobility via sheath gas-assisted direct writing Poly(3-hexylthiophene) solution. Organic Electronics, 2023, 119, 106813.	2.6	1
1576	Graphene materials for fabrication of robots. Materials Chemistry and Physics, 2023, 302, 127781.	4.0	3
1577	Structural Engineering of Flexible Electronics. , 2022, , 1-26.		0
1578	Piezo/Triboelectric Nanogenerator from Lithium-Modified Zinc Titanium Oxide Nanofibers to Monitor Contact in Sports. ACS Applied Nano Materials, 2023, 6, 1770-1782.	5.0	11
1579	Conjugated Polymer-Based Nanocomposites for Pressure Sensors. Molecules, 2023, 28, 1627.	3.8	10
1580	Tailor-Made Synthesis of Hydrosilanols, Hydrosiloxanes, and Silanediols Catalyzed by di-Silyl Rhodium(III) and Iridium(III) Complexes. Inorganic Chemistry, 2023, 62, 3095-3105.	4.0	6
1581	Ice-Crystal-Templated "Accordion-Like―Cellulose Nanofiber/MXene Composite Aerogels for Sensitive Wearable Pressure Sensors. ACS Sustainable Chemistry and Engineering, 2023, 11, 3208-3218.	6.7	7
1582	Highly Sensitive and Flexible Capacitive Pressure Sensors Based on Vertical Graphene and Micro-Pyramidal Dielectric Layer. Nanomaterials, 2023, 13, 701.	4.1	5
1583	Flexible Electronics. , 2023, , 139-153.		0
1584	Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate, 2023, 4, .	9.9	5
1585	Hierarchical Wrinklingâ€Cracking Architectures for Flexible Pressure Sensors. Advanced Materials Interfaces, 2023, 10, .	3.7	2
1586	A Wearable Flexible Tactile Sensor with Textile Microstructure for Wirelessly Recognizing Human Activity. , 2023, 2, .		3
1587	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Polymers, 2023, 24, 1167-1182.	2.1	4
1588	Ultrathin Mo ₂ S ₃ Nanowire Network for High-Sensitivity Breathable Piezoresistive Electronic Skins. ACS Nano, 2023, 17, 4862-4870.	14.6	12
1589	Flexible Antiswelling Photothermalâ€Therapy MXene Hydrogelâ€Based Epidermal Sensor for Intelligent Human–Machine Interfacing. Advanced Functional Materials, 2023, 33, .	14.9	23

# 1590	ARTICLE Advanced Bioinspired Organic Sensors for Futureâ€Oriented Intelligent Applications. , 0, , 2200066.	IF	CITATIONS 2
1591	Wearable technology in healthcare engineering. , 2023, , 227-248.		1
1592	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	21.0	21
1593	Microstructured Droplet Based Porous Capacitive Pressure Sensor. , 2022, , .		1
1594	Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nature Communications, 2023, 14, .	12.8	29
1595	Spider-inspired tunable mechanosensor for biomedical applications. Npj Flexible Electronics, 2023, 7, .	10.7	10
1596	Multifunctional Starchâ€Based Sensor with Non ovalent Network to Achieve "3R―Circulation. Small, 2023, 19, .	10.0	2
1597	Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. Npj Flexible Electronics, 2023, 7, .	10.7	15
1598	Sensing-triggered stiffness-tunable smart adhesives. Science Advances, 2023, 9, .	10.3	6
1599	Electrical properties of flexible ceramics. , 2023, , 75-127.		0
1600	Flexible Wearable Capacitive Sensors Based on Ionic Gel with Full-Pressure Ranges. ACS Applied Materials & Interfaces, 2023, 15, 15884-15892.	8.0	14
1601	Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human–Machine Interaction. Biosensors, 2023, 13, 393.	4.7	8
1602	Toward Realâ€Time Blood Pressure Monitoring via Highâ€Fidelity Iontronic Tonometric Sensors with High Sensitivity and Large Dynamic Ranges. Advanced Healthcare Materials, 2023, 12, .	7.6	3
1603	Nanoarchitectonics and Applications of Galliumâ€Based Liquid Metal Micro―and Nanoparticles. ChemNanoMat, 2023, 9, .	2.8	6
1604	Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews, 2023, 123, 5049-5138.	47.7	85
1605	Recent Advances of Capacitive Sensors: Materials, Microstructure Designs, Applications, and Opportunities. Advanced Materials Technologies, 2023, 8, .	5.8	20
1606	Broadening the Utilization of Flexible and Wearable Pressure Sensors for the Monitoring of Health and Physiological Activities. , 2023, 1, 1009-1021.		5
1607	An Overstretch Strategy to Double the Designed Elastic Stretchability of Stretchable Electronics. Advanced Materials, 2023, 35, .	21.0	4

		CHATION REPORT		
#	Article	IF	Сіта	ATIONS
1608	Dual-Gated Low Operating Voltage Metal Oxide Thin-Film Transistor for Highly Sensitive and Fast-Response Pressure Sensing Application. IEEE Sensors Journal, 2023, 23, 11482-11489.	4.7	2	
1609	Nature-Driven Biocompatible Epidermal Electronic Skin for Real-Time Wireless Monitoring of Huma Physiological Signals. ACS Applied Materials & Interfaces, 2023, 15, 20372-20384.	n 8.0	8	
1610	Flexible Magnetic Sensors. Sensors, 2023, 23, 4083.	3.8	8	
1611	A novel MXene-based high-performance flexible pressure sensor for detection of human motion. Smart Materials and Structures, 2023, 32, 065007.	3.5	3	
1612	Nano and micro elastomeric foams in energy and other related applications. , 2023, , 143-165.		0	
1613	Soft Multimaterial Magnetic Fibers and Textiles. Advanced Materials, 2023, 35, .	21.0	12	
1615	Liquid dielectric layer-based microfluidic capacitive sensor for wireless pressure monitoring. Sensors and Actuators A: Physical, 2023, 357, 114393.	4.1	2	
1616	Flexible and Stretchable Piezoresistive Sensor with Decoupled Pressure Sensing Capability. Advanc Materials Technologies, 2023, 8, .	ed 5.8	1	
1617	Recent Advances in 2D Wearable Flexible Sensors. Advanced Materials Technologies, 2023, 8, .	5.8	3	
1618	Microcracked strain sensor based on carbon nanotubes/copper composite film with high performa and waterproof property for underwater motion detection. Composites Part B: Engineering, 2023, 110574.	nce 254, 12.0	12	
1619	Recent progress in flexible micro-pressure sensors for wearable health monitoring. Nanoscale Advances, 2023, 5, 3131-3145.	4.6	12	
1620	Multifunctional Wearable System for Mapping Body Temperature and Analyzing Sweat. ACS Sensc 2023, 8, 1980-1988.	Prs, 7.8	8	
1621	Tribotronics for active mechanosensation. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologi 2023, , .	ca, 0.5	0	
1622	Latest Innovations in 2D Flexible Nanoelectronics. Advanced Materials, 2023, 35, .	21.0	10	
1623	Advanced polymer materialsâ€based electronic skins for tactile and nonâ€contact sensing applicat InformaÄnÄ-Materiály, 2023, 5, .	ions. 17.3	9	
1624	Skin-Inspired Highly Sensitive Tactile Sensors with Ultrahigh Resolution over a Broad Sensing Rang ACS Applied Materials & Interfaces, 2023, 15, 30486-30494.	e. 8.0	5	
1625	Graphene aerogel-based vibration sensor with high sensitivity and wide frequency response range. Nano Research, 2023, 16, 11342-11349.	10.4	+ O	
1626	Al-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors. ACS Applied Materials & Interfaces, 2023, 15, 30924-30934.	amp; 8.0	3	

#	Article	IF	CITATIONS
1627	A General Strategy for Rapidly Optimizing Wearable Resistive Pressure Sensors. Advanced Electronic Materials, 2023, 9, .	5.1	2
1628	A Light/Pressure Bifunctional Electronic Skin Based on a Bilayer Structure of PEDOT:PSS-Coated Cellulose Paper/CsPbBr3 QDs Film. Polymers, 2023, 15, 2136.	4.5	1
1629	MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. PhotoniX, 2023, 4, .	13.5	18
1630	Strategy from the Fabrication of Polymer Thin Film Transistor on Rigid and Flexible Substrate to LTspice Simulation Towards Circuit Applications. , 2022, , .		0
1631	3D printing of polymer composites to fabricate wearable sensors: A comprehensive review. Materials Science and Engineering Reports, 2023, 154, 100734.	31.8	22
1632	Design of 3D Controller Using Nanocracking Structure-Based Stretchable Strain Sensor. Sensors, 2023, 23, 4941.	3.8	0
1633	Multifunctional Flexible Sensor Based on PUâ€TA@MXene Janus Architecture for Selective Direction Recognition. Advanced Materials, 2023, 35, .	21.0	31
1634	Recent Progress in Self-Powered Sensors Based on Liquid–Solid Triboelectric Nanogenerators. Sensors, 2023, 23, 5888.	3.8	4
1635	Tailoring mechanical and electrical properties of polydimethylsiloxane nanocomposites With graphene and carbon nanotubes for wearable electronics. Polymers and Polymer Composites, 2023, 31,	1.9	0
1636	Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model. Experimental Neurobiology, 2023, 32, 157-169.	1.6	1
1637	Flexible and wearable electrochemical biosensors based on 2D materials. , 2023, , 355-373.		0
1638	Trends in Graphene-Based E-Skin and Artificial Intelligence for Biomedical Applications—A Review. IEEE Sensors Journal, 2023, 23, 18963-18976.	4.7	6
1639	Review: Recent progress in fluorescent molecular systems for the detection of disease-related biomarkers in biofluids. Coordination Chemistry Reviews, 2023, 494, 215336.	18.8	9
1640	Encryptable Electrochromic Smart Windows: Uniaxially Oriented and Polymerized Hierarchical Nanostructures Constructed by Self-Assembly of Tetrathiafulvalene-Based Reactive Mesogens. ACS Nano, 2023, 17, 14750-14760.	14.6	2
1641	Self-Healing Flexible Pressure Sensor for Human Motion Detection Based on Silver-Nanoparticle-Modified Polyimide Membranes. ACS Applied Polymer Materials, 2023, 5, 5951-5960.	4.4	4
1642	The 2023 wearable photoplethysmography roadmap. Physiological Measurement, 2023, 44, 111001.	2.1	4
1643	Origamiâ€Enabled Stretchable Electrodes Based on Parylene Deposition and 3D Printing. Advanced Electronic Materials, 2023, 9, .	5.1	1
1644	Moldâ€Free Manufacturing of Highly Sensitive and Fastâ€Response Pressure Sensors Through Highâ€Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers. Advanced Materials, 2023, 35, .	21.0	2

#	Article	IF	CITATIONS
1645	Fabrication and characterization of nano-ZnO/CNTs/PDMS flexible pressure sensor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	3
1646	23.1: Controllable Growth of Conjugated Polymer Monolayer: from Fieldâ€Effect Transistors to Integrated Circuits. Digest of Technical Papers SID International Symposium, 2023, 54, 165-168.	0.3	0
1647	Highly Deformable Rigid Glassy Conjugated Polymeric Thin Films. Advanced Functional Materials, 2023, 33, .	14.9	5
1648	Wearable Chemosensors in Physiological Monitoring. Chemosensors, 2023, 11, 459.	3.6	0
1649	A Skinâ€Bioinspired Urchinâ€Like Microstructureâ€Contained Photothermalâ€Therapy Flexible Electronics for Ultrasensitive Humanâ€Interactive Sensing. Advanced Functional Materials, 2023, 33, .	14.9	10
1650	Recent Progress in Advanced Tactile Sensing Technologies for Soft Grippers. Advanced Functional Materials, 2023, 33, .	14.9	23
1651	A Stretchable Argentum/Polyurethance Fiber Strain Sensor for Wearable Sensing Devices. , 2023, , .		0
1652	An FBC-Based Sensor with Both Wearable and Handheld forms for Carotid Arterial Pulse Waveform Measurement. IEEE Transactions on Instrumentation and Measurement, 2023, , 1-1.	4.7	0
1653	Wearable Liquid Metal Composite with Skin-Adhesive Chitosan–Alginate–Chitosan Hydrogel for Stable Electromyogram Signal Monitoring. Polymers, 2023, 15, 3692.	4.5	1
1654	Recent trends in electronic skin for transdermal drug delivery. , 2023, 1, 183-191.		3
1655	Communication protocols integrating wearables, ingestibles, and implantables for closed-loop therapies. , 2023, 1, 100092.		5
1656	Advancing personalized healthcare and entertainment: Progress in energy harvesting materials and techniques of self-powered wearable devices. Progress in Materials Science, 2023, 139, 101184.	32.8	3
1657	Photothermal Actuated Miniature Graphene Resonator for High-Sensitivity Pressure Detection. IEEE Sensors Journal, 2023, 23, 22332-22339.	4.7	0
1658	Multimodal force and temperature tactile sensor based on a short-channel organic transistor with high sensitivity. Scientific Reports, 2023, 13, .	3.3	0
1659	3D-printed epifluidic electronic skin for machine learning–powered multimodal health surveillance. Science Advances, 2023, 9, .	10.3	10
1660	Failure mechanisms in flexible electronics. International Journal of Smart and Nano Materials, 2023, 14, 510-565.	4.2	3
1661	A Hierarchical Theory for the Tensile Stiffness of Non-Buckling Fractal-Inspired Interconnects. Nanomaterials, 2023, 13, 2542.	4.1	0
1662	Skin-interfaced self-powered pressure and strain sensors based on fish gelatin-based hydrogel for wireless wound strain and human motion detection. Nano Energy, 2023, 118, 108932.	16.0	2

#	Article	IF	Citations
1663	Multilayer self-filled iontronic pressure sensor with ultrahigh sensitivity and broad sensing range. Sensors and Actuators A: Physical, 2023, 361, 114600.	4.1	2
1664	Mechanoreceptor-inspired in-ear triboelectric sensor for unconstrained physiological monitoring and human–machine interaction. Nano Energy, 2023, 117, 108900.	16.0	0
1666	Optical and electrical dual-mode tactile sensor with interlinked interfaces recording normal force and slip for closed-loop robotics. Chemical Engineering Journal, 2023, 475, 146279.	12.7	3
1667	Application of adhesive controllable galactomannan hydrogel initiated by aluminum ions at room temperature in flexible sensors. Reactive and Functional Polymers, 2023, 193, 105738.	4.1	0
1668	An Emerging Era: Conformable Ultrasound Electronics. Advanced Materials, 2024, 36, .	21.0	0
1669	Flexible PDMS Pressure Sensor Based on Mutual Inductance Coil. , 2023, , .		0
1670	A 3D cross-linked hierarchical hydrogel E-skin with sensing of touch position and pressure. Carbon, 2024, 216, 118514.	10.3	0
1671	Gradual Electricalâ€Double‣ayer Modulation in Ionâ€Polymer Networks for Flexible Pressure Sensors with Wide Dynamic Range. Advanced Functional Materials, 2024, 34, .	14.9	0
1672	Comparison of miniaturized mechanical and osmotic energy harvesting systems. Nano Energy, 2023, 118, 109004.	16.0	1
1673	Recent advances in smart wearable sensors as electronic skin. Journal of Materials Chemistry B, 2023, 11, 10332-10354.	5.8	0
1674	Metal-grade laminated nanofiber films with outstanding EMI shielding performances and high-temperature resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 680, 132701.	4.7	1
1675	Flexible wood-based triboelectric nanogenerator for versatile self-powered sensing. Sustainable Materials and Technologies, 2023, 38, e00771.	3.3	0
1676	Capacitive flexible haptic sensor based on micro-cylindrical structure dielectric layer and its decoupling study. Measurement: Journal of the International Measurement Confederation, 2023, 223, 113785.	5.0	1
1678	A cross-scale honeycomb architecture-based flexible piezoresistive sensor for multiscale pressure perception and fine-grained identification. Materials Horizons, 2024, 11, 510-518.	12.2	3
1679	Flexible Piezoresistive Sensor with High Strain Sensitivity and Pressure Insensitivity for Motion Monitoring. , 2023, , 1-1.		0
1680	Chemical Resistant Yarn with Hierarchical Core–Shell Structure for Safety Monitoring and Tunable Thermal Management in High-Risk Environments. Engineering, 2024, 32, 217-225.	6.7	0
1681	Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. Materials Horizons, 2024, 11, 1152-1176.	12.2	0
1682	Microstructured Polyelectrolyte Elastomerâ€Based Ionotronic Sensors with High Sensitivities and Excellent Stability for Artificial Skins. Advanced Materials, 0, , .	21.0	1

#	Article	IF	CITATIONS
1683	Lateral Thermo-magneto-optoelectronic Effects in a 3C-SiC Nanothin Film on the Si Heterojunction. Journal of Physical Chemistry C, 0, , .	3.1	0
1684	ARâ€Enabled Persistent Human–Machine Interfaces via a Scalable Soft Electrode Array. Advanced Science, 2024, 11, .	11.2	0
1685	Human-Inspired Tactile Perception System for Real-Time and Multimodal Detection of Tactile Stimuli. Soft Robotics, 0, , .	8.0	1
1686	Fiberâ€Based Flexible Ionic Diode with High Robustness and Rectifying Performance: Toward Electronic Textile Circuits. Advanced Electronic Materials, 2024, 10, .	5.1	0
1688	Technological trends in medical robotic sensing with soft electronic skin. Sensors & Diagnostics, 2024, 3, 218-237.	3.8	0
1689	Intrinsically Stretchable and Healable Polymer Semiconductors. Advanced Science, 2024, 11, .	11.2	0
1690	Recent Trends of Functional Composites and Structures for Electromechanical Sensors: A Review. Advanced Intelligent Systems, 0, , .	6.1	0
1691	Bending sensor using ionic liquid crystal elastomers as solid electrolyte of organic electrochemical transistors. Liquid Crystals, 0, , 1-8.	2.2	0
1692	3D Printable Hydrogel Bioelectronic Interfaces for Healthcare Monitoring and Disease Diagnosis: Materials, Design Strategies, and Applications. Advanced Materials Technologies, 2024, 9, .	5.8	0
1693	Knee function assessment of anterior cruciate ligament injury with a Kirigami bucklingâ€resistant stretchable sensor. SmartMat, 0, , .	10.7	0
1694	A Continuous Pressure Positioning Sensor with Flexible Multilayer Structures Based on a Combinatorial Bionic Strategy. Advanced Functional Materials, 2024, 34, .	14.9	2
1695	Self-Powered Textile Triboelectric Pulse Sensor for Cardiovascular Monitoring. , 2023, , .		0
1696	Eco-friendly solution-processed narrowband OLEDs using non-halogenated aliphatic solvent systems. Chemical Engineering Journal, 2024, 481, 148484.	12.7	0
1697	Biomechanical mechanism of noninvasive plaque detection based on multi-sensor fusion. Physics of Fluids, 2024, 36, .	4.0	1
1698	Advanced Technologies and Applications of Robotic Soft Grippers. Advanced Materials Technologies, 0, , .	5.8	0
1699	An intensive study on organic thin film transistors (OTFTs) for future flexible/wearable electronics applications. , 2024, 187, 207766.		0
1700	Fabrication and Investigation of Deformable Rubber–Carbon Nanotube–Clue Gel-Based Impedimetric and Capacitive Tactile Sensors for Pressure and Displacement Measurements. Gels, 2024, 10, 76.	4.5	0
1701	Accessorizing Quadrupedal Robots with Wearable Electronics. Advanced Intelligent Systems, 2024, 6, .	6.1	0

#	Article	IF	CITATIONS
1702	Fabrication of a high performance flexible capacitive porous GO/PDMS pressure sensor based on droplet microfluidic technology. Lab on A Chip, 2024, 24, 1668-1675.	6.0	0
1703	3D Printing of Capacitive Pressure Sensors with Tuned Wide Detection Range and High Sensitivity Inspired by Bioâ€Inspired Kapok Structures. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
1704	A multi-dimensional tactile perception system based on triboelectric sensors: Towards intelligent sorting without seeing. Nano Energy, 2024, 123, 109398.	16.0	0
1705	Ultraconformable Capacitive Strain Sensor Utilizing Network Structure of Single-Walled Carbon Nanotubes for Wireless Body Sensing. ACS Applied Materials & Interfaces, 2024, 16, 10427-10438.	8.0	0
1706	Progress and challenges in flexible capacitive pressure sensors: Microstructure designs and applications. Chemical Engineering Journal, 2024, 485, 149926.	12.7	0
1707	A wireless fluorescent flexible force sensor based on aggregation-induced emission doped liquid crystal elastomers. Soft Matter, 2024, 20, 2562-2567.	2.7	0
1708	A Stretchable Conductive Fiber for Wearable Strain Sensor Application. , 2024, , .		0
1709	Surface manipulated triboelectric polymer films via direct fluorination towards high performance TENG. Nano Energy, 2024, 123, 109441.	16.0	0
1711	Advancing rehabilitation: Knittable fiber-shaped sensors for monitoring rotator cuff injury recovery. Chemical Engineering Journal, 2024, 487, 150470.	12.7	0
1712	Stretchable Electronic Skin using Laserâ€Induced Graphene and Liquid Metal with an Action Recognition System Powered by Machine Learning. Advanced Functional Materials, 0, , .	14.9	0
1713	Cellulose/Singleâ€Walled Carbon Nanotubeâ€Based Pressureâ€Sensing Thin Film Transistor with Channel Conductivity Modulation. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	0