Cloning of Dirac fermions in graphene superlattices

Nature 497, 594-597 DOI: 10.1038/nature12187

Citation Report

#	Article	IF	Citations
3	The electronic structure of ideal graphene. , 2012, , 1-22.		4
4	Electron states in a magnetic field. , 0, , 23-62.		0
5	Quantum transport via evanescent waves. , 0, , 63-76.		0
6	Edges, nanoribbons and quantum dots. , 0, , 103-133.		ο
7	Optics and response functions. , 2012, , 161-184.		2
8	Crystal lattice dynamics, structure and thermodynamics. , 0, , 205-242.		1
9	Gauge fields and strain engineering. , 0, , 243-265.		0
10	Scattering mechanisms and transport properties. , 0, , 266-300.		Ο
11	Van der Waals heterostructures. Nature, 2013, 499, 419-425.	13.7	8,378
12	Tunable Superlattice in Graphene To Control the Number of Dirac Points. Nano Letters, 2013, 13, 3990-3995.	4.5	76
13	Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotechnology, 2013, 8, 625-633.	15.6	377
14	High-Quality Multiterminal Suspended Graphene Devices. Nano Letters, 2013, 13, 5165-5170.	4.5	26
15	Periodic Landau gauge and quantum Hall effect in twisted bilayer graphene. Physical Review B, 2013, 88,	1.1	22
16	Helical networks in twisted bilayer graphene under interlayer bias. Physical Review B, 2013, 88, .	1.1	121
17	Raman Fingerprint of Aligned Graphene/h-BN Superlattices. Nano Letters, 2013, 13, 5242-5246.	4.5	102
18	Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices. Physical Review Letters, 2013, 111, 185302.	2.9	899
19	Quantum capacitance measurements of electron-hole asymmetry and next-nearest-neighbor hopping in graphene. Physical Review B, 2013, 88, .	1.1	88
20	Critical Mass in Graphene. Science, 2013, 340, 1413-1414.	6.0	18

TATION REPO

	CITATION	CITATION REPORT	
#	Article	IF	Citations
21	One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013, 342, 614-617.	6.0	2,236
22	Pacific Ocean Heat Content During the Past 10,000 Years. Science, 2013, 342, 617-621.	6.0	65
23	Optical properties of the Hofstadter butterfly in the moir $ ilde{A}$ © superlattice. Physical Review B, 2013, 88, .	1.1	29
24	Heterostructures of bilayer graphene and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>h</mml:mi>-BN: Interplay between misalignment, interlayer asymmetry, and trigonal warping. Physical Review B. 2013. 88</mml:math 	1.1	47
25	TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS. International Journal of Modern Physics B, 2013, 27, 1330017.	1.0	340
26	Field-effect transistors based on two-dimensional materials for logic applications. Chinese Physics B, 2013, 22, 098505.	0.7	32
27	Electron Interactions and Gap Opening in Graphene Superlattices. Physical Review Letters, 2013, 111, 266801.	2.9	142
28	Moiré minibands in graphene heterostructures with almost commensurate3×3hexagonal crystals. Physical Review B, 2013, 88, .	1.1	30
29	Infrared absorption by graphene–hBN heterostructures. New Journal of Physics, 2013, 15, 123009.	1.2	32
30	Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science, 2013, 340, 1427-1430.	6.0	1,392
31	Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices. Physical Review B, 2013, 87, .	1.1	26
32	Two-dimensional Bloch electrons in perpendicular magnetic fields: An exact calculation of the Hofstadter butterfly spectrum. Physical Review B, 2013, 87, .	1.1	10
33	The butterfly emerges. Nature Physics, 2013, 9, 395-396.	6.5	5
34	Ferromagnetic two-dimensional crystals: Single layers of K <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>CuF<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>4</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 88, .</mml:math </mml:math 	1.1	85
35	Structure and local variations of the graphene moir \tilde{A} [©] on Ir(111). Physical Review B, 2013, 88, .	1.1	57
36	Modulation of Fermi velocities of Dirac electrons in single layer graphene by moiré superlattice. Applied Physics Letters, 2013, 103, .	1.5	5
37	Quantum Dot Systems: a versatile platform for quantum simulations. Annalen Der Physik, 2013, 525, 808-826.	0.9	54
38	A taste of pasta?. Nature Physics, 2013, 9, 396-397.	6.5	14

#	Article	IF	CITATIONS
39	Looking for Hofstadter's Butterfly in Cold Atoms. Physics Magazine, 2013, 6, .	0.1	12
40	Introduction to carbon-based nanostructures. , 0, , 1-10.		Ο
41	Electronic properties of carbon-based nanostructures. , 0, , 11-90.		0
42	Efficient algorithm to compute the Berry conductivity. New Journal of Physics, 2014, 16, 073016.	1.2	4
43	Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes. Nano Research, 2014, 7, 1548-1555.	5.8	18
44	Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2259-2265.	2.0	5
45	Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Materials, 2014, 1, 011012.	2.0	49
46	Effects of periodic scattering potential on Landau quantization and ballistic transport of electrons in graphene. , 2014, , .		2
47	Dot-bound and dispersive states in graphene quantum dot superlattices. Physical Review B, 2014, 89, .	1.1	16
48	Synthetic Gauge Fields in Synthetic Dimensions. Physical Review Letters, 2014, 112, 043001.	2.9	446
49	Generation and morphing of plasmons in graphene superlattices. Physical Review B, 2014, 90, .	1.1	24
50	In-plane chiral tunneling and out-of-plane valley-polarized quantum tunneling in twisted graphene trilayer. Physical Review B, 2014, 90, .	1.1	7
51	Highly anisotropic hybridization, dispersion, damping, and propagation of quantum plasmons in graphene superlattices. Physical Review B, 2014, 90, .	1.1	3
52	Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer. Physical Review B, 2014, 89, .	1.1	30
53	Carbon nanotube quantum dots on hexagonal boron nitride. Applied Physics Letters, 2014, 105, .	1.5	13
54	Seeing Hofstadter's butterfly in atomic Fermi gases. Physical Review A, 2014, 89, .	1.0	7
55	Quantum confined acceptors and donors in InSe nanosheets. Applied Physics Letters, 2014, 105, 221909.	1.5	58
56	Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice. Journal of Applied Physics, 2014, 116, .	1.1	15

#	Article	IF	CITATIONS
57	Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Applied Physics Letters, 2014, 105, .	1.5	280
58	Dirac edges of fractal magnetic minibands in graphene with hexagonal moiré superlattices. Physical Review B, 2014, 89, .	1.1	42
59	Electronic properties of graphene/hexagonal-boron-nitride moiré superlattice. Physical Review B, 2014, 90, .	1.1	185
60	Perturbative approach to flat Chern bands in the Hofstadter model. Physical Review B, 2014, 90, .	1.1	35
62	Moiré Patterns as a Probe of Interplanar Interactions for Graphene on h-BN. Physical Review Letters, 2014, 113, 135504.	2.9	130
63	Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Physical Review X, 2014, 4, .	2.8	102
64	Magnetisation oscillations, boundary conditions and the Hofstadter butterfly in graphene flakes. Annalen Der Physik, 2014, 526, 449-460.	0.9	3
65	Mapping of strained graphene into one-dimensional Hamiltonians: Quasicrystals and modulated crystals. Physical Review B, 2014, 89, .	1.1	38
66	Revealing Hofstadter spectrum for graphene in a periodic potential. Physical Review B, 2014, 89, .	1.1	21
67	Probing layer localization in twisted graphene bilayers via cyclotron resonance. Physical Review B, 2014, 90, .	1.1	5
68	Pseudodiffusive conductance, quantum-limited shot noise, and Landau-level hierarchy in a biased graphene bilayer. Physical Review B, 2014, 89, .	1.1	5
69	Optical absorption of twisted bilayer graphene with interlayer potential asymmetry. Physical Review B, 2014, 90, .	1.1	39
70	Spin-Valley Filtering in Strained Graphene Structures with Artificially Induced Carrier Mass and Spin-Orbit Coupling. Physical Review Letters, 2014, 113, 046601.	2.9	98
71	The perception of nanotechnology and nanomedicine: a worldwide social media study. Nanomedicine, 2014, 9, 1475-1486.	1.7	34
72	Dirac physics in flakes of artificial graphene in magnetic fields. Physical Review B, 2014, 89, .	1.1	13
73	Spectrum of a lattice exciton in a transverse magnetic field: Emergence of full translational symmetry. Physical Review B, 2014, 89, .	1.1	1
74	Critical integer quantum Hall topology and the integrable Maryland model as a topological quantum critical point. Physical Review B, 2014, 90, .	1.1	15
75	Superlattice structures in twisted bilayers of folded graphene. Nature Communications, 2014, 5, 5742.	5.8	73

#	Article	IF	CITATIONS
76	Integer and half-integer quantum Hall effect in silicene: Influence of an external electric field and impurities. Physical Review B, 2014, 90, .	1.1	33
77	Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles. Journal of Physics Condensed Matter, 2014, 26, 095002.	0.7	24
78	\$mathcal {PT}\$-symmetric optical superlattices. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 165302.	0.7	13
79	Graphene–boron nitride superlattices: the role of point defects at the BN layer. Nanotechnology, 2014, 25, 165705.	1.3	17
80	Epitaxial graphene on SiC{0001}: advances and perspectives. Physical Chemistry Chemical Physics, 2014, 16, 3501.	1.3	147
81	Magnetic breakdown in twisted bilayer graphene. Physical Review B, 2014, 89, .	1.1	14
82	Lattice matching and electronic structure of finite-layer graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi>-BN thin films. Physical Review B, 2014, 89, .</mml:math 	1.1	21
83	Transient <i>Zitterbewegung</i> of graphene superlattices. Physical Review A, 2014, 89, .	1.0	10
84	Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6198-6202.	3.3	970
85	Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nature Physics, 2014, 10, 451-456.	6.5	737
86	Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers. ACS Nano, 2014, 8, 2951-2958.	7.3	388
87	Emergence of Massless Dirac Fermions in Graphene's Hofstadter Butterfly at Switches of the Quantum Hall Phase Connectivity. Physical Review Letters, 2014, 112, 196602.	2.9	41
88	Room-temperature enantioselective C–H iodination via kinetic resolution. Science, 2014, 346, 451-455.	6.0	198
89	Topological phase transition in the Hofstadter-Hubbard model. Physical Review B, 2014, 90, .	1.1	21
90	Matched infrared soliton pairs in graphene under Landau quantization via four-wave mixing. Physical Review A, 2014, 90, .	1.0	52
91	Spin-dependent terahertz oscillator based on hybrid graphene superlattices. Applied Physics Letters, 2014, 105, 103109.	1.5	17
92	Phonons and electronâ€phonon coupling in grapheneâ€ <i>h</i> â€BN heterostructures. Annalen Der Physik, 2014, 526, 381-386.	0.9	40
93	Electron interactions and Dirac fermions in graphene-Ge2Sb2Te5 superlattices. Journal of Applied Physics, 2014, 115, 233714.	1.1	14

#	Article	IF	CITATIONS
94	Four-fold Raman enhancement of 2D band in twisted bilayer graphene: evidence for a doubly degenerate Dirac band and quantum interference. Nanotechnology, 2014, 25, 335201.	1.3	18
95	Quasi-periodic Wannier–Stark ladders from driven atomic Bloch oscillations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140421.	1.0	0
96	Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale, 2014, 6, 12250-12272.	2.8	323
97	Superstructural defects and superlattice domains in stacked graphene. Carbon, 2014, 80, 755-761.	5.4	12
98	Metal-Insulator Transition in Graphene on Boron Nitride. Physical Review Letters, 2014, 113, 096801.	2.9	37
99	Strain-Controllable Magnetism in Co Decorated Pyridinic N-Doped Graphene. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
100	Spontaneous strains and gap in graphene on boron nitride. Physical Review B, 2014, 90, .	1.1	96
101	Quantum Spin Hall Effect in Two-Dimensional Crystals of Transition-Metal Dichalcogenides. Physical Review Letters, 2014, 113, 077201.	2.9	139
102	Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discussions, 2014, 173, 137-43.	1.6	36
103	Polycrystalline Graphene with Single Crystalline Electronic Structure. Nano Letters, 2014, 14, 5706-5711.	4.5	134
104	<i>Colloquium</i> : Graphene spectroscopy. Reviews of Modern Physics, 2014, 86, 959-994.	16.4	220
105	Dirac materials. Advances in Physics, 2014, 63, 1-76.	35.9	759
106	In search of the perfect glass. Nature Physics, 2014, 10, 555-556.	6.5	5
107	Graphene on hexagonal boron nitride. Journal of Physics Condensed Matter, 2014, 26, 303201.	0.7	76
108	Hydrogen storage using Na-decorated graphyne and its boron nitride analog. International Journal of Hydrogen Energy, 2014, 39, 12757-12764.	3.8	100
109	Valley and band structure engineering of folded MoS2 bilayers. Nature Nanotechnology, 2014, 9, 825-829.	15.6	267
110	Tunable Exciton Funnel Using Moiré Superlattice in Twisted van der Waals Bilayer. Nano Letters, 2014, 14, 5350-5357.	4.5	55
111	Graphene on boron-nitride: Moiré pattern in the van der Waals energy. Applied Physics Letters, 2014, 104, .	1.5	66

#	Article	IF	Citations
π 112	Local work function and STM tip-induced distortion of graphene on Ir(111). New Journal of Physics,	1.2	30
112	2014, 16, 053036.	1,2	30
113	Proximity Effect in Graphene–Topological-Insulator Heterostructures. Physical Review Letters, 2014, 112, 096802.	2.9	99
114	On the ladder. Nature Physics, 2014, 10, 554-555.	6.5	1
115	Dense Network of One-Dimensional Midgap Metallic Modes in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoSe</mml:mi></mml:mrow><mml:mrow><r Their Spatial Undulations, Physical Review Letters, 2014, 113, 066105.</r </mml:mrow></mml:msub></mml:mrow></mml:math 	2.9 ∩mt:mn>2	<del 172
116	Epitaxial Growth of Asymmetricallyâ€Doped Bilayer Graphene for Photocurrent Generation. Small, 2014, 10, 2245-2250.	5.2	6
117	Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nature Communications, 2014, 5, 4461.	5.8	148
118	Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. Journal Physics D: Applied Physics, 2014, 47, 094013.	1.3	50
119	Chemistry Makes Graphene beyond Graphene. Journal of the American Chemical Society, 2014, 136, 12194-12200.	6.6	235
120	Angle-dependent van Hove singularities and their breakdown in twisted graphene bilayers. Physical Review B, 2014, 90, .	1.1	47
121	Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nature Nanotechnology, 2014, 9, 808-813.	15.6	435
122	Detecting topological currents in graphene superlattices. Science, 2014, 346, 448-451.	6.0	619
123	Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride. Physical Review B, 2014, 90, .	1.1	83
124	Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nature Physics, 2014, 10, 743-747.	6.5	64
125	Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities. European Physical Journal B, 2014, 87, 1.	0.6	14
126	Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology, 2014, 9, 682-686.	15.6	1,838
127	Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nature Physics, 2014, 10, 737-742.	6.5	63
128	Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Communications, 2014, 5, 4966.	5.8	533
129	Gap Structure of the Hofstadter System of Interacting Dirac Fermions in Graphene. Physical Review Letters, 2014, 112, 176401.	2.9	26

#	ARTICLE	IF	CITATIONS
130	Limitations to Carrier Mobility and Phase-Coherent Transport in Bilayer Graphene. Physical Review Letters, 2014, 113, 126801.	2.9	55
131	Fabrication of ballistic suspended graphene with local-gating. Carbon, 2014, 79, 486-492.	5.4	21
132	Wormhole for electron waves in graphene. Physical Review B, 2014, 90, .	1.1	14
133	Bilayer Graphene on hBN. Springer Theses, 2014, , 55-63.	0.0	0
134	Semiconductor artificial graphene: Effects in weak magnetic fields. JETP Letters, 2014, 99, 204-209.	0.4	8
135	Anomalous confined electron states in graphene superlattices. Applied Physics Letters, 2014, 105, 013512.	1.5	1
136	Electric-Dipole-Induced Universality for Dirac Fermions in Graphene. Physical Review Letters, 2014, 112, 186603.	2.9	28
137	Quasi-one-dimensional graphene superlattices formed on high-index surfaces. Physical Review B, 2014, 89, .	1.1	22
138	Transport fingerprints at graphene superlattice Dirac points induced by a boron nitride substrate. Physical Review B, 2014, 89, .	1.1	10
139	Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nature Communications, 2014, 5, 3960.	5.8	79
140	Buckled Germanene Formation on Pt(111). Advanced Materials, 2014, 26, 4820-4824.	11.1	770
141	Photoinduced doping in heterostructures of graphene and boron nitride. Nature Nanotechnology, 2014, 9, 348-352.	15.6	287
142	Heterostructures Produced from Nanosheet-Based Inks. Nano Letters, 2014, 14, 3987-3992.	4.5	165
143	<i>Ab initio</i> theory of moiré superlattice bands in layered two-dimensional materials. Physical Review B, 2014, 89, .	1.1	216
144	Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nature Physics, 2014, 10, 525-529.	6.5	161
145	Impact of thermal annealing on graphene devices encapsulated in hexagonal boron nitride. Physica Status Solidi (B): Basic Research, 2014, 251, 2545-2550.	0.7	13
146	High Broadâ€Band Photoresponsivity of Mechanically Formed InSe–Graphene van der Waals Heterostructures. Advanced Materials, 2015, 27, 3760-3766.	11.1	320
147	Moiré superlattice effects in graphene/boronâ€nitride van der Waals heterostructures. Annalen Der Physik, 2015, 527, 359-376.	0.9	73

#	Article	IF	CITATIONS
148	Kekulé textures, pseudospin-one Dirac cones, and quadratic band crossings in a graphene-hexagonal indium chalcogenide bilayer. Physical Review B, 2015, 91, .	1.1	55
149	Efficient linear scaling approach for computing the Kubo Hall conductivity. Physical Review B, 2015, 91,	1.1	16
150	Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B, 2015, 91, .	1.1	174
151	Fractal butterflies in buckled graphenelike materials. Physical Review B, 2015, 91, .	1.1	9
152	Lifshitz transition and Van Hove singularity in a three-dimensional topological Dirac semimetal. Physical Review B, 2015, 92, .	1.1	31
153	Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator. Physical Review B, 2015, 92, .	1.1	25
154	Magneto-optical response of graphene: Probing substrate interactions. Physical Review B, 2015, 92, .	1.1	15
155	Terahertz conductivity of graphene on boron nitride. Physical Review B, 2015, 92, .	1.1	8
156	Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene. Physical Review B, 2015, 92, .	1.1	114
157	Direct manifestation of topological order in the winding number of the Wannier-Stark ladder. Physical Review B, 2015, 92, .	1.1	12
158	Fractal butterflies of chiral fermions in bilayer graphene: Phase transitions and emergent properties. Physical Review B, 2015, 92, .	1.1	2
159	Supercriticality of novel type induced by electric dipole in gapped graphene. Physical Review B, 2015, 92,	1.1	11
160	Effect of Structural Relaxation on the Electronic Structure of Graphene on Hexagonal Boron Nitride. Physical Review Letters, 2015, 115, 186801.	2.9	93
161	Attractive Hofstadter-Hubbard model with imbalanced chemical and vector potentials. Physical Review A, 2015, 91, .	1.0	11
162	Spin transitions in graphene butterflies at an integer filling factor. Physical Review B, 2015, 91, .	1.1	6
163	Velocity renormalization and Dirac cone multiplication in graphene superlattices with various barrier-edge geometries. Physical Review B, 2015, 91, .	1.1	7
164	Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride. Physical Review B, 2015, 92, .	1.1	14
165	Heterostructures of graphene and nitrogenated holey graphene: Moir \tilde{A} $\mbox{\sc pattern}$ and Dirac ring. Physical Review B, 2015, 92, .	1.1	34

#	Article	IF	CITATIONS
166	Fractional Chern Insulators in Harper-Hofstadter Bands with Higher Chern Number. Physical Review Letters, 2015, 115, 126401.	2.9	71
167	Edge States and Topological Insulating Phases Generated by Curving a Nanowire with Rashba Spin-Orbit Coupling. Physical Review Letters, 2015, 115, 256801.	2.9	48
168	Fractal butterflies of Dirac fermions in monolayer and bilayer graphene. IET Circuits, Devices and Systems, 2015, 9, 19-29.	0.9	5
169	van der Waals Heteroepitaxy of Semiconductor Nanowires. Semiconductors and Semimetals, 2015, , 125-172.	0.4	7
170	Towards a tunable graphene-based Landau level laser in the terahertz regime. Scientific Reports, 2015, 5, 12646.	1.6	33
171	Growth and Features of Epitaxial Graphene on SiC. Journal of the Physical Society of Japan, 2015, 84, 121014.	0.7	23
172	Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy. Scientific Reports, 2015, 5, 16642.	1.6	62
173	Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells. Scientific Reports, 2015, 5, 17578.	1.6	28
174	Rotationâ€Misfitâ€Free Heteroepitaxial Stacking and Stitching Growth of Hexagonal Transitionâ€Metal Dichalcogenide Monolayers by Nucleation Kinetics Controls. Advanced Materials, 2015, 27, 3803-3810.	11.1	113
175	Finite-size effects and interactions in artificial graphene formed by repulsive scatterers. Journal of Physics Condensed Matter, 2015, 27, 425501.	0.7	5
176	Electronic Properties of Incommensurate Atomic Layers. Journal of the Physical Society of Japan, 2015, 84, 121001.	0.7	36
177	Revealing the Preferred Interlayer Orientations and Stackings of Twoâ€Dimensional Bilayer Gallium Selenide Crystals. Angewandte Chemie, 2015, 127, 2750-2755.	1.6	5
178	The rare two-dimensional materials with Dirac cones. National Science Review, 2015, 2, 22-39.	4.6	332
179	Persistent hysteresis in graphene-mica van der Waals heterostructures. Nanotechnology, 2015, 26, 015202.	1.3	24
180	Generalized Hamiltonian for a graphene subjected to arbitrary in-plane strains. Functional Materials Letters, 2015, 08, 1530001.	0.7	6
181	Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science, 2015, 350, 1231-1234.	6.0	155
182	Engineering electrical properties of graphene: chemical approaches. 2D Materials, 2015, 2, 042001.	2.0	46
183	Composite fermions and broken symmetries in graphene. Nature Communications, 2015, 6, 5838.	5.8	84

#	Article	IF	CITATIONS
184	Intrinsic Disorder in Graphene on Transition Metal Dichalcogenide Heterostructures. Nano Letters, 2015, 15, 1925-1929.	4.5	37
185	Revealing the Preferred Interlayer Orientations and Stackings of Twoâ€Dimensional Bilayer Gallium Selenide Crystals. Angewandte Chemie - International Edition, 2015, 54, 2712-2717.	7.2	45
186	Lighten the Olympia of the Flatland: Probing and Manipulating the Photonic Properties of 2D Transitionâ€Metal Dichalcogenides. Small, 2015, 11, 3206-3220.	5.2	15
187	Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 2015, 6, 6519.	5.8	190
188	Origin of band gaps in graphene on hexagonal boron nitride. Nature Communications, 2015, 6, 6308.	5.8	253
189	Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications, 2015, 6, 6242.	5.8	1,252
190	Finite-difference calculation of the electronic structure of artificial graphene, the 2D hexagonal Al w Ga 1â"w As/GaAs structure with tunable interactions. Computer Physics Communications, 2015, 191, 106-118.	3.0	2
191	Transport and particle-hole asymmetry in graphene on boron nitride. Physical Review B, 2015, 91, .	1.1	33
192	Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride. ACS Photonics, 2015, 2, 790-796.	3.2	115
193	Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite. 2D Materials, 2015, 2, 034010.	2.0	164
194	Liquid-assisted tip manipulation: fabrication of twisted bilayer graphene superlattices on HOPG. Nanoscale, 2015, 7, 14865-14871.	2.8	7
195	Modelling of stacked 2D materials and devices. 2D Materials, 2015, 2, 032003.	2.0	59
196	Localization-delocalization transition in self-dual quasi-periodic lattices. Europhysics Letters, 2015, 110, 57003.	0.7	20
197	Interlayer interaction in general incommensurate atomic layers. New Journal of Physics, 2015, 17, 015014.	1.2	105
198	Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS ₂ Heterostructure Devices. Nano Letters, 2015, 15, 5017-5024.	4.5	150
199	Growth from behind: Intercalation-growth of two-dimensional FeO moiré structure underneath of metal-supported graphene. Scientific Reports, 2015, 5, 11378.	1.6	31
200	Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic Properties: Predictions from a Multiscale Computational Approach. Scientific Reports, 2015, 5, 10872.	1.6	76
201	Magnetization Signatures of Light-Induced Quantum Hall Edge States. Physical Review Letters, 2015, 114, 246802.	2.9	37

#	Article	IF	Citations
202	Stripe-ordered superfluid and supersolid phases in the attractive Hofstadter-Hubbard model. Physical Review A, 2015, 91, .	1.0	9
203	Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nature Communications, 2015, 6, 6499.	5.8	173
204	Stabilizing non-Hermitian systems by periodic driving. Physical Review A, 2015, 91, .	1.0	49
205	Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nature Communications, 2015, 6, 7372.	5.8	154
206	Hofstadter spectra for d-orbital electrons: a case study on MoS ₂ . RSC Advances, 2015, 5, 20858-20864.	1.7	7
207	Nano-scale displacement sensing based on van der Waals interactions. Nanoscale, 2015, 7, 8962-8967.	2.8	18
208	Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nature Communications, 2015, 6, 6835.	5.8	191
209	Probing Defectâ€Induced Midgap States in MoS ₂ Through Graphene–MoS ₂ Heterostructures. Advanced Materials Interfaces, 2015, 2, 1500064.	1.9	17
210	Fractional quantum Hall effect in Hofstadter butterflies of Dirac fermions. Journal of Physics Condensed Matter, 2015, 27, 185301.	0.7	7
211	Van Hove singularities in doped twisted graphene bilayers studied by scanning tunneling spectroscopy. Physical Review B, 2015, 91, .	1.1	26
212	Topological Winding Number Change and Broken Inversion Symmetry in a Hofstadter's Butterfly. Nano Letters, 2015, 15, 6395-6399.	4.5	19
213	Strong interface-induced spin–orbit interaction in graphene on WS2. Nature Communications, 2015, 6, 8339.	5.8	314
214	Ultrafast carrier dynamics in Landau-quantized graphene. Nanophotonics, 2015, 4, 224-249.	2.9	33
215	Plasmons in graphene moiré superlattices. Nature Materials, 2015, 14, 1217-1222.	13.3	141
216	Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride. Applied Physics Letters, 2015, 107, .	1.5	8
217	Strain Lattice Imprinting in Graphene by C ₆₀ Intercalation at the Graphene/Cu Interface. Nano Letters, 2015, 15, 7421-7430.	4.5	25
218	First-Principles Study on Graphene/Hexagonal Boron Nitride Heterostructures. Journal of the Physical Society of Japan, 2015, 84, 121002.	0.7	21
219	Electronic properties of two-dimensional van der Waals GaS/GaSe heterostructures. Journal of Materials Chemistry C, 2015, 3, 11548-11554.	2.7	66

#	Article	IF	CITATIONS
220	Electronic and Mechanical Properties of Graphene–Germanium Interfaces Grown by Chemical Vapor Deposition. Nano Letters, 2015, 15, 7414-7420.	4.5	103
221	Incommensurate double-walled carbon nanotubes as one-dimensional moiré crystals. Physical Review B, 2015, 91, .	1.1	50
222	Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon. Physical Review B, 2015, 91, .	1.1	13
223	Double-walled carbon nanocones: stability and electronic structure. European Physical Journal B, 2015, 88, 1.	0.6	7
224	Huge magnetoresistance in graphene-based magnetic tunnel junctions with superlattice barriers. Journal Physics D: Applied Physics, 2015, 48, 335004.	1.3	4
225	Observations of New Dirac Points in One-Dimensionally-Rippled Graphene on Hexagonal BN Using Scanning Tunneling Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 19535-19538.	1.5	6
226	Adatom-induced phenomena in graphene. Synthetic Metals, 2015, 210, 68-79.	2.1	9
227	Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Physical Chemistry Chemical Physics, 2015, 17, 29380-29386.	1.3	34
228	Noise in Graphene Superlattices Grown on Hexagonal Boron Nitride. ACS Nano, 2015, 9, 11382-11388.	7.3	15
229	Conductance signatures of electron confinement induced by strained nanobubbles in graphene. Nanoscale, 2015, 7, 15300-15309.	2.8	35
230	Supercritical electric dipole and migration of electron wave function in gapped graphene. Europhysics Letters, 2015, 111, 37003.	0.7	13
231	Fabrication and properties of silicene and silicene–graphene layered structures on Ir (111). Chinese Physics B, 2015, 24, 086803.	0.7	14
232	Valley Hall Effect in Two-Dimensional Hexagonal Lattices. Journal of the Physical Society of Japan, 2015, 84, 121006.	0.7	55
233	Fully dry PMMA transfer of graphene on <i>h</i> -BN using a heating/cooling system. 2D Materials, 2015, 2, 041002.	2.0	116
234	Nanomesh-Type Graphene Superlattice on Au(111) Substrate. Nano Letters, 2015, 15, 8295-8299.	4.5	21
235	Ballistic Transport in Graphene Antidot Lattices. Nano Letters, 2015, 15, 8402-8406.	4.5	70
236	Plasmons in moiré superlattices. Nature Materials, 2015, 14, 1187-1188.	13.3	15
237	Turbulent power. Nature Materials, 2015, 14, 1188-1188.	13.3	5

#	Article	IF	CITATIONS
238	Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Physics, 2015, 11, 162-166.	6.5	777
239	Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015, 15, 410-415.	4.5	285
240	Band Engineering for Novel Twoâ€Ðimensional Atomic Layers. Small, 2015, 11, 1868-1884.	5.2	96
241	From two-dimensional materials to heterostructures. Progress in Surface Science, 2015, 90, 21-45.	3.8	123
242	Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Physics, 2015, 11, 75-81.	6.5	79
243	Edge contacts of graphene formed by using a controlled plasma treatment. Nanoscale, 2015, 7, 825-831.	2.8	52
244	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
245	Hofstadter's Cocoon. International Journal of Theoretical Physics, 2015, 54, 219-226.	0.5	0
246	Charge Inversion and Topological Phase Transition at a Twist Angle Induced van Hove Singularity of Bilayer Graphene. Nano Letters, 2016, 16, 5053-5059.	4.5	89
247	Excitation gap of fractal quantum hall states in graphene. Journal of Physics Condensed Matter, 2016, 28, 015801.	0.7	3
248	Spontaneous Formation of a Superconductor–Topological Insulator–Normal Metal Layered Heterostructure. Advanced Materials, 2016, 28, 5013-5017.	11.1	24
249	Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice. 2D Materials, 2016, 3, 035003.	2.0	30
250	Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports, 2016, 6, 25670.	1.6	48
251	Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field. Physical Review A, 2016, 94, .	1.0	65
252	Optical modulators with two-dimensional layered materials. , 2016, , .		0
253	Quantum Hall effect in epitaxial graphene with permanent magnets. Scientific Reports, 2016, 6, 38393.	1.6	9
254	Two-dimensional van der Waals materials. Physics Today, 2016, 69, 38-44.	0.3	381
255	Ising and Gross-Neveu model in next-to-leading order. Physical Review B, 2016, 94, .	1.1	44

#	Article	IF	CITATIONS
256	Graphene nanoribbons epitaxy on boron nitride. Applied Physics Letters, 2016, 108, .	1.5	21
257	Time evolution of electron waves in graphene superlattices. AIP Advances, 2016, 6, 075109.	0.6	8
258	Reconstruction-induced trefoil knot Fermi contour of Au(111). Physical Review B, 2016, 94, .	1.1	4
259	Angle-dependent bandgap engineering in gated graphene superlattices. AIP Advances, 2016, 6, .	0.6	11
260	Optical advantages of graphene on the boron nitride in visible and SW-NIR regions. RSC Advances, 2016, 6, 111345-111349.	1.7	17
261	Robust fractional quantum Hall effect in the N=2 Landau level in bilayer graphene. Nature Communications, 2016, 7, 13908.	5.8	27
262	Method for determining the residual electron- and hole-densities about the neutrality point over the gate-controlled n ↔ p transition in graphene. Applied Physics Letters, 2016, 108, 033507.	1.5	11
263	Optical modulators with 2D layered materials. Nature Photonics, 2016, 10, 227-238.	15.6	1,188
264	Influence of surface defects on superlattice patterns in graphene on graphite. Surface Science, 2016, 651, 51-56.	0.8	1
265	Van der Waals stacked 2D layered materials for optoelectronics. 2D Materials, 2016, 3, 022001.	2.0	213
266	Spatial Control of Laser-Induced Doping Profiles in Graphene on Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 2016, 8, 9377-9383.	4.0	20
267	Graphene nano-heterostructures for quantum devices. Materials Today, 2016, 19, 375-381.	8.3	14
268	Postsynthesis of hâ€BN/Graphene Heterostructures Inside a STEM. Small, 2016, 12, 252-259.	5.2	23
269	Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures. ACS Nano, 2016, 10, 5431-5439.	7.3	57
270	Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. Nano Letters, 2016, 16, 3314-3320.	4.5	122
271	Epitaxially Stabilized Oxide Composed of Twisted Triangular-Lattice Layers. Chemistry of Materials, 2016, 28, 1165-1169.	3.2	2
272	Interlayer Potential for Graphene/ <i>h</i> -BN Heterostructures. Journal of Chemical Theory and Computation, 2016, 12, 2896-2905.	2.3	107
273	Bilayered graphene as a platform of nanostructures with folded edge holes. Physical Chemistry Chemical Physics, 2016, 18, 27432-27441.	1.3	21

	Сітатіо	n Report	
#	Article	IF	Citations
274	Ballistic miniband conduction in a graphene superlattice. Science, 2016, 353, 1526-1529.	6.0	116
275	Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science, 2016, 353, 1529-1531.	6.0	109
276	Modification of the electronic properties of hexagonal boron-nitride in BN/graphene vertical heterostructures. 2D Materials, 2016, 3, 045002.	2.0	10
277	Berry phase transition in twisted bilayer graphene. 2D Materials, 2016, 3, 035005.	2.0	11
278	Magnetic properties of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mo>â^'Magneto-optical conductivity and the Hofstadter butterfly. Physical Review B, 2016, 94, .</mml:mo></mml:mrow></mml:math 	ıml:mo1.4mml	:m su b> <mml:< td=""></mml:<>
279	Suspended Graphene. , 2016, , 3-27.		2
280	Modulating the Electronic Properties of Monolayer Graphene Using a Periodic Quasi-One-Dimensional Potential Generated by Hex-Reconstructed Au(001). ACS Nano, 2016, 10, 7550-7557.	7.3	18
281	2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, 2016, 11, 483-520.	6.2	95
283	2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439.	6.0	4,958
284	Graphene Heterostructures. , 2016, , 3-20.		Ο
285	Seed-Assisted Growth of Single-Crystalline Patterned Graphene Domains on Hexagonal Boron Nitride by Chemical Vapor Deposition. Nano Letters, 2016, 16, 6109-6116.	4.5	69
286	Dirac State in the FeB ₂ Monolayer with Graphene-Like Boron Sheet. Nano Letters, 2016, 16, 6124-6129.	4.5	200
287	Gaps induced by inversion symmetry breaking andÂsecond-generation Dirac cones in graphene/hexagonal boron nitride. Nature Physics, 2016, 12, 1111-1115.	6.5	179
288	Multiple hot-carrier collection in photo-excited graphene Moiré superlattices. Science Advances, 2016, 2, e1600002.	4.7	42
289	Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES. Journal of Physics Condensed Matter, 2016, 28, 444002.	0.7	14
290	Gate-Tunable Landau Level Filling and Spectroscopy in Coupled Massive and Massless Electron Systems. Physical Review Letters, 2016, 117, 026601.	2.9	4
291	Hierarchy of gaps and magnetic minibands in graphene in the presence of the Abrikosov vortex lattice. Physical Review B, 2016, 93, .	1.1	5
292	Engineering interaction-induced topological insulators in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msqrt><mml:mn>3</mml:mn>honeycomb superlattice. Physical Review B, 2016, 93, .</mml:msqrt></mml:mrow></mml:math 	nml:maqrt> <r< td=""><td>nm⊉sno>×<</td></r<>	nm⊉ s no>×<

ARTICLE IF CITATIONS # Dynamical polarization and plasmons in a two-dimensional system with merging Dirac points. Physical 293 1.1 27 Review B, 2016, 93, . $Moir\tilde{A} @$ miniband features in the angle-resolved photoemission spectra of graphene/hBNheterostructures. Physical Review B, 2016, 93, . 294 1.1 Competition of density waves and quantum multicritical behavior in Dirac materials from functional 295 1.1 28 renormalization. Physical Review B, 2016, 93, . Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model. 1.1 Physical Review B, 2016, 93, . Multiple negative differential conductance regions and inelastic phonon assisted tunneling in<mml:math 297 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>graphene</mml:mtext><mml:mo>/</mml:mo>/</mml:mo>//mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h</mml:mi>h Physical Review B, 2016, 93, Measurement of Chern numbers through center-of-mass responses. Physical Review B, 2016, 93, . 1.1 64 Thermally Induced Graphene Rotation on Hexagonal Boron Nitride. Physical Review Letters, 2016, 116, 299 2.9 142 126101. Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride. Physical Review Letters, 2016, 300 2.9 117, 036802. 301 Electronic properties of graphene-based bilayer systems. Physics Reports, 2016, 648, 1-104. 10.3 323 Effects of interaction in the Hofstadter regime of the honeycomb lattice. Physical Review B, 2016, 93, . 1.1 Atomic force spectroscopy and density-functional study of graphene corrugation on Ru(0001). 303 1.1 10 Physical Review B, 2016, 93, . Valleytronics in 2D materials. Nature Reviews Materials, 2016, 1, . 23.3 1,712 Charge transport through one-dimensional Moiré crystals. Scientific Reports, 2016, 6, 19701. 305 1.6 19 Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets. 306 1.6 Scientific Reports, 2016, 6, 26084. Controlled formation of isolated miniband in bilayer graphene on almost commensurate $3\tilde{A}-3$ 307 1.1 1 substrate. Physical Review B, 2016, 94, . Two-dimensional GaSe/MoSe ₂ misfit bilayer heterojunctions by van der Waals epitaxy. 308 239 Science Advances, 2016, 2, e1501882. Nonlinear THz response of metallic armchair graphene nanoribbon superlattices. Journal Physics D: 309 1.35 Applied Physics, 2016, 49, 46LT01. Phase control of optical bistability and multistability in closed-type Landau-quantized graphene. Laser Physics Letters, 2016, 13, 125201.

#	Article	IF	CITATIONS
311	Recent progress of photodetectors based on MX2/graphene van der Waals heterostructures. , 2016, , .		1
312	Macroscopic self-reorientation of interacting two-dimensional crystals. Nature Communications, 2016, 7, 10800.	5.8	108
313	Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure. European Physical Journal Plus, 2016, 131, 1.	1.2	2
314	Origin and Magnitude of †Designer' Spin-Orbit Interaction in Graphene on Semiconducting Transition Metal Dichalcogenides. Physical Review X, 2016, 6, .	2.8	140
315	Robust ultra-low-friction state of graphene via moir \tilde{A} superlattice confinement. Nature Communications, 2016, 7, 13204.	5.8	116
316	Zero-energy modes and valley asymmetry in the Hofstadter spectrum of bilayer graphene van der Waals heterostructures with hBN. Physical Review B, 2016, 94, .	1.1	6
317	Supercurrent in van der Waals Josephson junction. Nature Communications, 2016, 7, 10616.	5.8	65
318	Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure. Scientific Reports, 2016, 6, 31160.	1.6	19
319	Temporospatial Control of Graphene Wettability. Advanced Materials, 2016, 28, 661-667.	11.1	39
320	Graphene/ <i>h</i> â€BN Heterostructures: Recent Advances in Controllable Preparation and Functional Applications. Advanced Energy Materials, 2016, 6, 1600541.	10.2	24
321	Magnetoresistance (MR) of twisted bilayer graphene on electron transparent substrate. Synthetic Metals, 2016, 216, 65-71.	2.1	5
322	Band Alignment and Minigaps in Monolayer MoS ₂ -Graphene van der Waals Heterostructures. Nano Letters, 2016, 16, 4054-4061.	4.5	288
323	Coherent commensurate electronic states at the interface between misoriented graphene layers. Nature Nanotechnology, 2016, 11, 752-757.	15.6	107
324	Efficient Multiscale Lattice Simulations of Strained and Disordered Graphene. Semiconductors and Semimetals, 2016, , 35-99.	0.4	12
325	Tuning equilibration of quantum Hall edge states in graphene – Role of crossed electric and magnetic fields. Solid State Communications, 2016, 237-238, 59-63.	0.9	3
326	The electronic structure and intervalley coupling of artificial and genuine graphene superlattices. Nano Research, 2016, 9, 1101-1115.	5.8	5
327	Novel effects of strains in graphene and other two dimensional materials. Physics Reports, 2016, 617, 1-54.	10.3	315
328	Tunability of 1/f Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices. Nano Letters, 2016, 16, 1042-1049.	4.5	37

#	Article	IF	CITATIONS
329	Modulation of mechanical resonance by chemical potential oscillation in graphene. Nature Physics, 2016, 12, 240-244.	6.5	47
330	Hexagonal Boron Nitride–Graphene Heterostructures: Synthesis and Interfacial Properties. Small, 2016, 12, 32-50.	5.2	136
331	van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Letters, 2016, 16, 1989-1995.	4.5	477
332	Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations. Journal of Physics Condensed Matter, 2016, 28, 103003.	0.7	55
333	Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351, 688-691.	6.0	606
334	Hofstadter Butterfly and Many-Body Effects in Epitaxial Graphene Superlattice. Nano Letters, 2016, 16, 2387-2392.	4.5	36
337	Covalent pathways in engineering h-BN supported graphene. Carbon, 2016, 98, 449-456.	5.4	8
338	STM observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite. Applied Surface Science, 2016, 360, 451-460.	3.1	15
339	2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm, 2016, 18, 3968-3984.	1.3	171
340	Controllable optical bistability and multistability in a graphene monolayer system. Journal of Luminescence, 2016, 170, 72-77.	1.5	23
341	Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe ₅ . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 816-821.	3.3	77
342	Fabrication of graphene–silicon layered heterostructures by carbon penetration of silicon film. Nanotechnology, 2017, 28, 084003.	1.3	3
343	Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS ₂ /WSe ₂ hetero-bilayers. Science Advances, 2017, 3, e1601459.	4.7	414
344	Thermal activated rotation of graphene flake on graphene. 2D Materials, 2017, 4, 025015.	2.0	21
345	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369
346	Creating and Steering Highly Directional Electron Beams in Graphene. Physical Review Letters, 2017, 118, 066801.	2.9	54
347	Recent progress in van der Waals heterojunctions. Nanoscale, 2017, 9, 4324-4365.	2.8	155
348	Chiral Second-Sound Collective Modes at the Edge of 2D Systems with a Nontrivial Berry Curvature. Physical Review Letters, 2017, 118, 036802.	2.9	3

#	Article	IF	CITATIONS
349	Generation of Anisotropic Massless Dirac Fermions and Asymmetric Klein Tunneling in Few-Layer Black Phosphorus Superlattices. Nano Letters, 2017, 17, 2280-2286.	4.5	52
350	Precise Identification of Graphene's Crystal Structures by Removable Nanowire Epitaxy. Journal of Physical Chemistry Letters, 2017, 8, 1302-1309.	2.1	11
351	Quantum interference in a macroscopic van der Waals conductor. Physical Review B, 2017, 95, .	1.1	4
352	Interfacial Engineering of Van der Waals Coupled 2D Layered Materials. Advanced Materials Interfaces, 2017, 4, 1601054.	1.9	26
353	Recent Development of Boron Nitride towards Electronic Applications. Advanced Electronic Materials, 2017, 3, 1600485.	2.6	98
354	Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties. Journal of Materials Chemistry A, 2017, 5, 9060-9066.	5.2	31
355	Substrate dependent electronic structure variations of van der Waals heterostructures of MoSe ₂ or MoSe _{2(1â^ <i>x</i>)} Te _{2 <i>x</i>} grown by van der Waals epitaxy. 2D Materials, 2017, 4, 025094.	2.0	19
356	Progress in Controllable Construction and Energyâ€Related Applications of MX ₂ /Graphene and MX ₂ /MX ₂ Heterostructures. ChemNanoMat, 2017, 3, 340-351.	1.5	5
357	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	15.6	1,459
358	Emergence of Tertiary Dirac Points in Graphene Moiré Superlattices. Nano Letters, 2017, 17, 3576-3581.	4.5	28
359	Landau quantization of Dirac fermions in graphene and its multilayers. Frontiers of Physics, 2017, 12, 1.	2.4	52
360	Tunable bending stiffness of MoSe2/WSe2 heterobilayers from flexural wrinkling. Nanotechnology, 2017, 28, 195701.	1.3	8
361	Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate. 2D Materials, 2017, 4, 025079.	2.0	33
362	Gas sensing in 2D materials. Applied Physics Reviews, 2017, 4, .	5.5	600
363	Nickeloceneâ€Precursorâ€Facilitated Fast Growth of Graphene/hâ€BN Vertical Heterostructures and Its Applications in OLEDs. Advanced Materials, 2017, 29, 1701325.	11.1	54
364	Strongly Coupled High-Quality Graphene/2D Superconducting Mo ₂ C Vertical Heterostructures with Aligned Orientation. ACS Nano, 2017, 11, 5906-5914.	7.3	110
365	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	5.5	476
366	A two-dimensional Dirac fermion microscope. Nature Communications, 2017, 8, 15783.	5.8	72

#	Article	IF	CITATIONS
367	Electronic and optical properties of strained graphene and other strained 2D materials: a review. Reports on Progress in Physics, 2017, 80, 096501.	8.1	383
368	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46, 3661-3715.	18.7	153
369	Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene–WSe ₂ Heterostructures. Nano Letters, 2017, 17, 3919-3925.	4.5	53
370	Two-Dimensional MoS ₂ -Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap. Chemistry of Materials, 2017, 29, 5504-5512.	3.2	131
371	Two-electron bound states near a Coulomb impurity in gapped graphene. Physical Review B, 2017, 95, .	1.1	7
372	Cantor spectra of magnetic chain graphs. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 165201.	0.7	2
373	Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Physical Review B, 2017, 95, .	1.1	128
374	Graphene bubbles and their role in graphene quantum transport. Nanoscale, 2017, 9, 6041-6047.	2.8	23
375	Self-similar conductance patterns in graphene Cantor-like structures. Scientific Reports, 2017, 7, 617.	1.6	22
376	Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures. Journal of Semiconductors, 2017, 38, 031004.	2.0	15
377	Intermediate stages of surface state formation and collapse of topological protection to transport in Bi ₂ Se ₃ . Journal of Physics Condensed Matter, 2017, 29, 185001.	0.7	4
378	Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proceedings of the United States of America, 2017, 114, 3364-3369.	3.3	434
379	Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Advances, 2017, 7, 16801-16822.	1.7	500
380	Enhanced Light–Matter Interaction in Graphene/h-BN van der Waals Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 1464-1471.	2.1	26
381	Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nature Communications, 2017, 8, 14767.	5.8	68
382	Precisely Aligned Monolayer MoS ₂ Epitaxially Grown on hâ€BN basal Plane. Small, 2017, 13, 1603005.	5.2	91
383	Interlayer Exciton Optoelectronics in a 2D Heterostructure p–n Junction. Nano Letters, 2017, 17, 638-643.	4.5	253
384	Single-electron transport in graphene-like nanostructures. Physics Reports, 2017, 669, 1-42.	10.3	22

#	Article	IF	CITATIONS
385	Spectroscopic and DFT studies of graphene intercalation systems on metals. Journal of Electron Spectroscopy and Related Phenomena, 2017, 219, 77-85.	0.8	12
386	Fabry-Pérot Resonances in a Graphene/hBN Moiré Superlattice. Nano Letters, 2017, 17, 328-333.	4.5	32
387	Energy minibands degeneration induced by magnetic field effects in graphene superlattices. Superlattices and Microstructures, 2017, 112, 561-573.	1.4	3
388	Translational symmetry breaking and the disintegration of the Hofstadter butterfly. Physical Review B, 2017, 95, .	1.1	6
389	Moiré Superstructure and Dimensional Crossover of 2D Electronic States on Nanoscale Lead Quantum Films. Scientific Reports, 2017, 7, 12735.	1.6	4
390	Calculation of magnetic properties of metals by means of the magnetic-field-containing relativistic tight-binding approximation method. Physical Review B, 2017, 95, .	1.1	7
391	Metal Thio―and Selenophosphates as Multifunctional van der Waals Layered Materials. Advanced Materials, 2017, 29, 1602852.	11.1	256
392	Stacking in incommensurate graphene/hexagonal-boron-nitride heterostructures based on <i>ab initio</i> study of interlayer interaction. Physical Review B, 2017, 96, .	1.1	23
393	Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi ₂ Se ₃ and MoS ₂ atomic layers. Science Advances, 2017, 3, e1601741.	4.7	39
394	Moiré band model and band gaps of graphene on hexagonal boron nitride. Physical Review B, 2017, 96, .	1.1	68
395	Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface. Nano Letters, 2017, 17, 6435-6442.	4.5	204
396	Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance. Nanoscale, 2017, 9, 15206-15225.	2.8	156
397	Nanostructural origin of giant Rashba effect in intercalated graphene. 2D Materials, 2017, 4, 035010.	2.0	21
398	Tuning electronic structures of Sc ₂ CO ₂ /MoS ₂ polar–nonpolar van der Waals heterojunctions: interplay of internal and external electric fields. Journal of Materials Chemistry C, 2017, 5, 8128-8134.	2.7	8
399	Spatially resolving density-dependent screening around a single charged atom in graphene. Physical Review B, 2017, 95, .	1.1	16
400	Graphene–BN Heterostructures. , 0, , 219-237.		0
401	High-density carriers at a strongly coupled interface between graphene and a three-dimensional topological insulator. Physical Review B, 2017, 96, .	1.1	14
402	Twisted Bilayer Graphene: Interlayer Configuration and Magnetotransport Signatures. Annalen Der Physik, 2017, 529, 1700025.	0.9	18

# 403	ARTICLE Effect of window shape on the detection of hyperuniformity via the local number variance. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 013402.	IF 0.9	CITATIONS
404	High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science, 2017, 357, 181-184.	6.0	117
405	Giant Edelstein effect in topological-insulator–graphene heterostructures. Physical Review B, 2017, 96, .	1.1	57
406	Fano resonances in bilayer graphene superlattices. Scientific Reports, 2017, 7, 16708.	1.6	12
407	van der Waals Layered Materials: Opportunities and Challenges. ACS Nano, 2017, 11, 11803-11830.	7.3	394
408	Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation. Physical Review B, 2017, 96, .	1.1	19
409	Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 2017, 358, 1175-1179.	6.0	315
410	Oxygen-assisted synthesis of hexagonal boron nitride films for graphene transistors. Applied Physics Letters, 2017, 111, .	1.5	12
411	Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Science Advances, 2017, 3, e1701696.	4.7	427
412	Hofstadter-Hubbard model with opposite magnetic fields: Bardeen-Cooper-Schrieffer pairing and superfluidity in the nearly flat butterfly bands. Physical Review A, 2017, 96, .	1.0	8
413	Fortune teller fermions in two-dimensional materials. Nanoscale, 2017, 9, 19337-19345.	2.8	9
414	Effective Medium Theory of Electromagnetic and Quantum Metamaterials. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 37-86.	0.1	1
415	Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials. Progress in Crystal Growth and Characterization of Materials, 2017, 63, 72-93.	1.8	12
416	Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, 46, 4572-4613.	18.7	275
417	Effects of moir $ ilde{A}$ © lattice structure on electronic properties of graphene. Physical Review B, 2017, 96, .	1.1	10
418	One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting αâ^'Mo2C. Physical Review B, 2017, 95, .	1.1	49
419	Electric field-tunable electronic structures of 2D alkaline-earth metal hydroxide–graphene heterostructures. Journal of Materials Chemistry C, 2017, 5, 7230-7235.	2.7	21
420	2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation. 2D Materials, 2017, 4, 035009.	2.0	23

	CITATION	Report	
#	Article	IF	CITATIONS
421	Topological Exciton Bands in Moiré Heterojunctions. Physical Review Letters, 2017, 118, 147401.	2.9	248
422	Optical, photonic and optoelectronic properties of graphene, h-BN and their hybrid materials. Nanophotonics, 2017, 6, 943-976.	2.9	78
423	Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nature Physics, 2017, 13, 127-131.	6.5	173
424	Topological mosaics in moiré superlattices of vanÂder Waals heterobilayers. Nature Physics, 2017, 13, 356-362.	6.5	205
425	Lattice relaxation and energy band modulation in twisted bilayer graphene. Physical Review B, 2017, 96,	1.1	374
426	4. Controlled Chemical Synthesis in CVD Graphene. , 2017, , .		1
427	Controlled Chemical Synthesis in CVD Graphene. ChemistrySelect, 2017, 2, .	0.7	7
428	Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mi>/graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi> -BN</mml:math </mml:mi></mml:msub></mml:math 	ml:mn > < /mr 1.1	ml:msub> 118
429	heterostructures. Physical Review 8, 2016, 97, . InSe: a two-dimensional material with strong interlayer coupling. Nanoscale, 2018, 10, 7991-7998.	2.8	102
430	Interfacial engineering in graphene bandgap. Chemical Society Reviews, 2018, 47, 3059-3099.	18.7	153
431	Gate Modulation of the Spin-orbit Interaction in Bilayer Graphene Encapsulated by WS2 films. Scientific Reports, 2018, 8, 3412.	1.6	20
432	Observation of fractional Chern insulators in a van der Waals heterostructure. Science, 2018, 360, 62-66.	6.0	147
433	Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556, 80-84.	13.7	3,086
434	Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556, 43-50.	13.7	5,221
435	Quantum particles on graphenic systems. Part 1. roadmap for semiconductor based graphenes. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 303-314.	1.0	2
436	Electronic Spectrum of Twisted Graphene Layers under Heterostrain. Physical Review Letters, 2018, 120, 156405.	2.9	118
437	Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nature Communications, 2018, 9, 1413.	5.8	212
438	Critical chiral Heisenberg model with the functional renormalization group. Physical Review B, 2018, 97, .	1.1	35

#	Article	IF	CITATIONS
439	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	1.1	3
440	When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures. Advanced Materials, 2018, 30, e1706103.	11.1	194
441	Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Physical Review B, 2018, 97, .	1.1	199
442	Many-Particle Effects in the Cyclotron Resonance of Encapsulated Monolayer Graphene. Physical Review Letters, 2018, 120, 047401.	2.9	21
443	Synthesis of Inâ€Plane Artificial Lattices of Monolayer Multijunctions. Advanced Materials, 2018, 30, 1704796.	11.1	35
444	Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study. Journal of Electronic Materials, 2018, 47, 2209-2214.	1.0	3
445	Edge Modes and Nonlocal Conductance in Graphene Superlattices. Physical Review Letters, 2018, 120, 026802.	2.9	17
446	Interfacial Coupling Effect on Electron Transport in MoS2/SrTiO3 Heterostructure: An Ab-initio Study. Scientific Reports, 2018, 8, 714.	1.6	9
447	Temperature effect of the bound magnetopolaron on the bandgap in monolayer graphene. Superlattices and Microstructures, 2018, 123, 30-36.	1.4	7
448	Emergence of Interfacial Polarons from Electron–Phonon Coupling in Graphene/h-BN van der Waals Heterostructures. Nano Letters, 2018, 18, 1082-1087.	4.5	55
449	Unconventional superconductivity discovered in graphene bilayers. Physics Today, 2018, 71, 15-19.	0.3	8
450	High-order fractal states in graphene superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5135-5139.	3.3	63
451	Electron scattering in graphene by defects in underlying <i>h</i> -BN layer: First-principles transport calculations. Journal of Applied Physics, 2018, 123, .	1.1	4
452	Synthesis of graphene-based nanostructures by the combined method comprising sol-gel and sonochemistry techniques. Diamond and Related Materials, 2018, 85, 23-36.	1.8	6
453	Antiferromagnetic monolayer MnC ₂ with density functional theory prediction. Journal of Physics Condensed Matter, 2018, 30, 175301.	0.7	8
454	Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 1655-1662.	2.1	75
455	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chemical Society Reviews, 2018, 47, 3129-3151.	18.7	132
456	Atomic force microscopy for two-dimensional materials: A tutorial review. Optics Communications, 2018, 406, 3-17.	1.0	57

#	Article	IF	CITATIONS
457	Engineering multiple topological phases in nanoscale Van der Waals heterostructures: realisation of α-antimonene. 2D Materials, 2018, 5, 011002.	2.0	38
459	Quantum Wires and Waveguides Formed in Graphene by Strain. Nano Letters, 2018, 18, 64-69.	4.5	37
460	Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Letters, 2018, 18, 498-504.	4.5	39
461	Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chemical Society Reviews, 2018, 47, 53-68.	18.7	473
462	Formation of the n = 0 Landau level in hybrid graphene. Journal of Physics Communications, 2018, 2, 051001.	0.5	2
463	Interlayer Interactions in Low-Dimensional Layered Hetero-Structures: Modeling and Applications. , 2018, , 1-25.		0
464	Moiré-templated strain patterning in transition-metal dichalcogenides and application in twisted bilayer MoS ₂ . Nanoscale, 2018, 10, 20689-20701.	2.8	27
465	Strain-Engineering of Twist-Angle in Graphene/hBN Superlattice Devices. Nano Letters, 2018, 18, 7919-7926.	4.5	25
466	Accurate Gap Determination in Monolayer and Bilayer Graphene/ <i>h</i> -BN Moiré Superlattices. Nano Letters, 2018, 18, 7732-7741.	4.5	69
467	Electronic structure of graphene nanoribbons on hexagonal boron nitride. Physical Review B, 2018, 98, .	1.1	11
468	Moiré Intralayer Excitons in a MoSe ₂ /MoS ₂ Heterostructure. Nano Letters, 2018, 18, 7651-7657.	4.5	113
469	Floquet Hofstadter butterfly on the kagome and triangular lattices. Physical Review B, 2018, 98, .	1.1	17
470	Finite-wave-vector electromagnetic response in lattice quantum Hall systems. Physical Review B, 2018, 98, .	1.1	4
471	Topological multiferroic phases in the extended Kane-Mele-Hubbard model in the Hofstadter regime. Physical Review B, 2018, 98, .	1.1	5
472	Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13174-13179.	3.3	222
473	A capacitance spectroscopy-based platform for realizing gate-defined electronic lattices. Journal of Applied Physics, 2018, 124, 124305.	1.1	0
474	Skyrmions in the Moiré of van der Waals 2D Magnets. Nano Letters, 2018, 18, 7194-7199.	4.5	168
475	Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice. Physical Review Letters, 2018, 121, 137701.	2.9	21

ARTICLE IF CITATIONS # Electronic transport in a two-dimensional superlattice engineered via self-assembled nanostructures. 476 3.9 25 Npj 2D Materials and Applications, 2018, 2, Localization physics in graphene moiré superlattices. Physical Review B, 2018, 98, . 1.1 478 Magnonic Floquet Hofstadter butterfly. Annals of Physics, 2018, 399, 93-107. 1.0 11 Electron quantum metamaterials in van der Waals heterostructures. Nature Nanotechnology, 2018, 13, 479 84 986-993. Ultrafast dynamics in van der Waals heterostructures. Nature Nanotechnology, 2018, 13, 994-1003. 480 15.6 392 Mirror twin grain boundaries in molybdenum dichalcogenides. Journal of Physics Condensed Matter, 2018, 30, 493001. Low-energy band structure and even-odd layer number effect in AB-stacked multilayer graphene. 482 1.6 16 Scientific Reports, 2018, 8, 13018. Negative-Differential-Resistance Devices Achieved by Band-Structure Engineering in Silicene under 1.5 19 Periodic Potentials. Physical Review Applied, 2018, 10, . Inter-valley spiral order in the Mott insulating state of a heterostructure of trilayer graphene-boron 484 4.3 13 nitride. Science Bulletin, 2018, 63, 1087-1091. Aligned van der Waals Coupled Growth of Carbon Nanotubes to Hexagonal Boron Nitride. Advanced 1.9 Materials Interfaces, 2018, 5, 1800793. Genesis of the Floquet Hofstadter butterfly. Physical Review B, 2018, 98, . 486 1.1 14 Electronic Band Engineering in Elemental 2D Materials. Advanced Materials Interfaces, 2018, 5, 1800749. Moiré Patterns and Electronic Structures in Van der Waals Atomic Layer Materials. Vacuum and 488 0.0 0 Surface Science, 2018, 61, 706-711. Proximity exchange induced gap opening and topological feature in graphene/1Tâ \in^2 -MX₂ (Mâ \in ‰â \in ‰a \in ‰Mo,W; Xâ \in ‰a \in ‰a \in ‰a \in ‰a \in ‰S,Se,Te) Dirac heterostructures. Journal of Physics Condensed Matter, 2018 Artificial gauge fields and topology with ultracold atoms in optical lattices. Journal of Physics B: 490 0.6 12 Atomic, Molecular and Optical Physics, 2018, 51, 193001. Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a 1.1 magnetic field. Physical Review B, 2018, 97, . Observation of the quantum valley Hall state in ballistic graphene superlattices. Science Advances, 492 4.7 78 2018, 4, eaaq0194. Coherent control of thermal phonon transport in van der Waals superlattices. Nanoscale, 2018, 10, 2.8 14432-14440.

#	Article	IF	CITATIONS
494	Boosting Carrier Mobility of Synthetic Few Layer Graphene on SiO ₂ by Interlayer Rotation and Decoupling. Advanced Materials Interfaces, 2018, 5, 1800454.	1.9	19
495	Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature, 2018, 557, 404-408.	13.7	223
496	Sonochemical Preparation and Subsequent Fixation of Oxygen-Free Graphene Sheets at N,N-Dimethyloctylamine-Aqua Boundary. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.0	12
497	Interlayer coupling in two-dimensional semiconductor materials. Semiconductor Science and Technology, 2018, 33, 093001.	1.0	29
498	Etch track-directed growth of carbon nanotubes on graphite. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 165-172.	1.3	1
499	Transport measurements in twisted bilayer graphene: Electron-phonon coupling and Landau level crossing. Physical Review B, 2018, 98, .	1.1	47
500	Quantum transport in graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'junctions with moiré superlattice modulation. Physical Review B, 2018, 98, .</mml:mtext></mml:mrow></mml:math 	l:mtext><	mr ak mi>n
501	Large Landau-level splitting in a tunable one-dimensional graphene superlattice probed by magnetocapacitance measurements. Physical Review B, 2018, 98, .	1.1	6
502	Commensurability Oscillations in One-Dimensional Graphene Superlattices. Physical Review Letters, 2018, 121, 026806.	2.9	24
503	Semiconducting van der Waals Interfaces as Artificial Semiconductors. Nano Letters, 2018, 18, 5146-5152.	4.5	25
504	Interminiband Optical Transitions in Graphene Lateral Superlattices. ACS Photonics, 2018, 5, 3331-3337.	3.2	2
505	Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy. IEEE Transactions on Electron Devices, 2018, 65, 4059-4067.	1.6	26
506	Band structure engineering of 2D materials using patterned dielectric superlattices. Nature Nanotechnology, 2018, 13, 566-571.	15.6	157
507	Superlattice-induced minigaps in graphene band structure due to underlying one-dimensional nanostructuration. Physical Review B, 2018, 97, .	1.1	14
508	Tuning Band Gap and Work Function Modulations in Monolayer hBN/Cu(111) Heterostructures with Moiré Patterns. ACS Nano, 2018, 12, 9355-9362.	7.3	33
509	Dynamical signature of the moir $ ilde{A}$ © pattern in a non-Hermitian ladder. Physical Review B, 2018, 98, .	1.1	9
510	A 2D ferromagnetic semiconductor in monolayer Cr-trihalide and its Janus structures. Physical Chemistry Chemical Physics, 2018, 20, 21755-21763.	1.3	38
511	Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure. Carbon, 2018, 140, 164-170.	5.4	25

#	Article		CITATIONS
512	Spin-Conserving Resonant Tunneling in Twist-Controlled WSe ₂ -hBN-WSe ₂ Heterostructures. Nano Letters, 2018, 18, 5967-5973.	4.5	29
513	Realization of Hofstadter's butterfly and a one-way edge mode in a polaritonic system. Physical Review B, 2018, 98, .	1.1	18
514	Twistable electronics with dynamically rotatable heterostructures. Science, 2018, 361, 690-693.	6.0	387
515	Artificial gauge fields in materials and engineered systems. Comptes Rendus Physique, 2018, 19, 394-432.	0.3	143
516	Moiré Phonons in Twisted Bilayer MoS ₂ . ACS Nano, 2018, 12, 8770-8780.	7.3	149
517	Emergent Multi-Flavor <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>QED</mml:mi></mml:mrow><mml:mrow><m at the Plateau Transition between Fractional Chern Insulators: Applications to Graphene Heterostructures. Physical Review X. 2018. 8.</m </mml:mrow></mml:msub></mml:mrow></mml:math>	ml:mn>3<, 2.8	/mml:mn>
518	Terahertz photoconductivity and photocarrier dynamics in few-layer hBN/WS2 van der Waals heterostructure laminates. Semiconductor Science and Technology, 2018, 33, 084001.	1.0	8
519	Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers. Nano Letters, 2018, 18, 4241-4246.	4.5	19
520	Superlattices based on van der Waals 2D materials. Chemical Communications, 2019, 55, 11498-11510.	2.2	48
521	Magnetic Proximity Effect in a van der Waals Moiré Superlattice. Physical Review Applied, 2019, 12, .	1.5	26
522	Interplay between destructive quantum interference and symmetry-breaking phenomena in graphene quantum junctions. Physical Review B, 2019, 100, .	1.1	20
523	On the infinite-dimensional QR algorithm. Numerische Mathematik, 2019, 143, 17-83.	0.9	13
524	Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572, 215-219.	13.7	458
525	Effect of E-beam irradiation on graphene sandwiched between h-BN layers. Microelectronic Engineering, 2019, 216, 111044.	1.1	1
526	Electronic Compressibility of Magic-Angle Graphene Superlattices. Physical Review Letters, 2019, 123, 046601.	2.9	106
527	Strong magnetophonon oscillations in extra-large graphene. Nature Communications, 2019, 10, 3334.	5.8	25
528	Nonreversible Transition from the Hexagonal to Wurtzite Phase of Boron Nitride under High Pressure: Optical Properties of the Wurtzite Phase. Journal of Physical Chemistry C, 2019, 123, 20167-20173.	1.5	12
529	Thermoelectric properties of gapped bilayer graphene. Journal of Physics Condensed Matter, 2019, 31, 415501.	0.7	9

	CHAHON	CITATION REPORT	
#	Article	IF	CITATIONS
530	How to Compute Spectra with Error Control. Physical Review Letters, 2019, 122, 250201.	2.9	35
531	Tailoring commensurability of hBN/graphene heterostructures using substrate morphology and epitaxial growth conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 051503.	0.9	6
532	Associative attention networks for temporal relation extraction from electronic health records. Journal of Biomedical Informatics, 2019, 99, 103309.	2.5	3
533	Insulating State in Lowâ€Ðisorder Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900269.	0.7	4
534	Correlated Insulating States in Twisted Double Bilayer Graphene. Physical Review Letters, 2019, 123, 197702.	2.9	194
535	Two novel triangular borophenes B3H and B6O: first-principles prediction. Nanotechnology, 2019, 30, 495201.	1.3	2
536	Emerging properties of two-dimensional twisted bilayer materials*. Chinese Physics B, 2019, 28, 107304.	0.7	18
537	Effects of Se substitution and transition metal doping on the electronic and magnetic properties of a MoS _x Se _{2â^'x} /h-BN heterostructure. Physical Chemistry Chemical Physics, 2019, 21, 20073-20082.	1.3	14
538	Polaronic Trions at the MoS 2 /SrTiO 3 Interface. Advanced Materials, 2019, 31, 1903569.	11.1	26
539	Bilayer Graphene's Wicked, Twisted Road. Physics Magazine, 0, 12, .	0.1	51
540	Cantor spectrum of graphene in magnetic fields. Inventiones Mathematicae, 2019, 218, 979-1041.	1.3	14
541	Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nature Communications, 2019, 10, 4008.	5.8	67
542	Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Science Advances, 2019, 5, eaaw9770.	4.7	138
543	Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nature Communications, 2019, 10, 4472.	5.8	59
544	Magnetotransport in a strain superlattice of graphene. Applied Physics Letters, 2019, 115, .	1.5	16
545	Ultrafast Unbalanced Electron Distributions in Quasicrystalline 30° Twisted Bilayer Graphene. ACS Nano, 2019, 13, 11981-11987.	7.3	28
546	Realization of larger band gap opening of graphene and type-I band alignment with BN intercalation layer in graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:msub> <mml:r heterojunctions. Physical Review B, 2019, 100, .</mml:r </mml:msub></mml:mrow></mml:math 	mi> X: /mm	l:mi> <mml:m< td=""></mml:m<>
547	Unique Schrödinger semimetal state in ternary Be ₂ P ₃ N honeycomb lattice. Journal of Materials Chemistry C, 2019, 7, 4118-4123.	2.7	8

#	Article	IF	CITATIONS
548	Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nature Physics, 2019, 15, 237-241.	6.5	436
549	Effects of site asymmetry and valley mixing on Hofstadter-type spectra of bilayer graphene in a square-scatter array potential. Journal of Physics Condensed Matter, 2019, 31, 125503.	0.7	1
550	van der Waals heterostructures combining graphene and hexagonal boron nitride. Nature Reviews Physics, 2019, 1, 112-125.	11.9	320
551	Field-induced insulating states in a graphene superlattice. Physical Review B, 2019, 99, .	1.1	2
552	Observation of intercalation-driven zone folding in quasi-free-standing graphene energy bands. Physical Review B, 2019, 99, .	1.1	6
553	Plasmons in realistic graphene/hexagonal boron nitride moir $ ilde{A}$ © patterns. Physical Review B, 2019, 99, .	1.1	6
554	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
555	Coherent spin transport properties of ferromagnetic graphene superlattice unit cell. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 97-102.	1.3	6
556	Synthesis and stacking sequence characterization of h-BN/graphene heterostructures on Cu–Ni alloy. Carbon, 2019, 152, 521-526.	5.4	15
557	Fractional and Symmetry-Broken Chern Insulators in Tunable Moiré Superlattices. Nano Letters, 2019, 19, 4321-4326.	4.5	3
558	Topological valley currents in bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Letters, 2019, 114, .	1.5	29
559	Spin-Split Band Hybridization in Graphene Proximitized with α-RuCl ₃ Nanosheets. Nano Letters, 2019, 19, 4659-4665.	4.5	62
560	Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Communications Physics, 2019, 2, .	2.0	85
561	Strain-tunable van der Waals interactions in few-layer black phosphorus. Nature Communications, 2019, 10, 2447.	5.8	98
562	Band structure and topological properties of twisted double bilayer graphene. Physical Review B, 2019, 99, .	1.1	133
563	van der Waals Heterostructures. Springer Theses, 2019, , 19-31.	0.0	1
564	Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters. Physical Review B, 2019, 99, .	1.1	116
565	Controlling Rotation of Two-Dimensional Material Flakes. ACS Nano, 2019, 13, 6925-6931.	7.3	27

#	Article	IF	CITATIONS
566	Comments on the fractal energy spectrum of honeycomb lattice with defects. Journal of Physics Communications, 2019, 3, 055003.	0.5	4
567	Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 2019, 16, 1-20.	2.3	82
568	Mechanical and liquid phase exfoliation of cylindrite: a natural van der Waals superlattice with intrinsic magnetic interactions. 2D Materials, 2019, 6, 035023.	2.0	38
569	Chiral twisted van der Waals nanowires. Nature, 2019, 570, 354-357.	13.7	117
571	Persistence of gaps in the interacting anisotropic Hofstadter model. Physical Review B, 2019, 99, .	1.1	6
572	Quasicrystalline electronic states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mn>30</mml:mn><mml:mo>â~rotated twisted bilayer graphene. Physical Review B, 2019, 99, .</mml:mo></mml:msup></mml:math 	l:ma> <td>mlæsup></td>	ml æ sup>
573	Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nature Materials, 2019, 18, 448-453.	13.3	454
574	Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Physical Review B, 2019, 99, .	1.1	73
575	Interlayer hybridization and moir \tilde{A} © superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Physical Review B, 2019, 99, .	1.1	116
576	Superlubricity enabled dry transfer of non-encapsulated graphene. Chinese Physics B, 2019, 28, 028102.	0.7	2
577	High-temperature electronic devices enabled by hBN-encapsulated graphene. Applied Physics Letters, 2019, 114, .	1.5	32
578	Reconstructed Fermi surface in graphene on Ir(111) by Gd-Ir surface alloying. Carbon, 2019, 147, 182-186.	5.4	9
580	New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures. Nano Letters, 2019, 19, 2371-2376.	4.5	85
581	Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567, 76-80.	13.7	791
582	Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567, 66-70.	13.7	842
583	Graphene and other two-dimensional materials. Frontiers of Physics, 2019, 14, 1.	2.4	72
584	Lithographic band structure engineering of graphene. Nature Nanotechnology, 2019, 14, 340-346.	15.6	82
585	Photocatalytic performance of few-layer graphitic C ₃ N ₄ : enhanced by interlayer coupling. Nanoscale, 2019, 11, 4101-4107.	2.8	34

	Сітатіо	CITATION REPORT	
# 586	ARTICLE Moiré patterns in van der Waals heterostructures. Physical Review B, 2019, 99, .	IF 1.1	CITATIONS
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
587	Spectroscopic photoemission and low-energy electron microscopy studies of the surface and electronic structure of two-dimensional materials. Advances in Physics: X, 2019, 4, 1688187.	1.5	5
588	Determination of the electrostatic potential produced by a uniformly charged ring. Journal of Physics: Conference Series, 2019, 1403, 012004.	0.3	1
589	Effective lattice model of graphene moiré superlattices on hexagonal boron nitride. Physical Review B, 2019, 100, .	1.1	17
590	Hydrophilic encapsulation of reduced graphite oxide (r-GO) by admicellar polymerization for application in biosensors. New Journal of Chemistry, 2019, 43, 16314-16321.	1.4	4
591	Dirac point formation revealed by Andreev tunneling in superlattice-graphene/superconductor junctions. Physical Review B, 2019, 100, .	1.1	3
592	Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites. Journal of Semiconductors, 2019, 40, 111608.	2.0	29
593	Theory of spin injection in two-dimensional metals with proximity-induced spin-orbit coupling. Physical Review B, 2019, 100, .	1.1	5
594	Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Science Advances, 2019, 5, eaax7407.	4.7	56
595	Composite super-moiré lattices in double-aligned graphene heterostructures. Science Advances, 2019, 5, eaay8897.	4.7	74
596	Heterogeneous Integration of 2D Materials: Recent Advances in Fabrication and Functional Device Applications. Nano, 2019, 14, 1930009.	0.5	10
598	Realizing the Harper model with ultracold atoms in a ring lattice. Physical Review A, 2019, 99, .	1.0	15
599	Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moiré Superlattices. Physical Review Letters, 2019, 122, 016401.	2.9	130
600	Recent progress in synthesis, properties, and applications of hexagonal boron nitride-based heterostructures. Nanotechnology, 2019, 30, 074003.	1.3	31
601	Impacts of in-plane strain on commensurate graphene/hexagonal boron nitride superlattices. Physica B: Condensed Matter, 2019, 565, 33-39.	1.3	6
602	Unusual Electronic States and Superconducting Proximity Effect of Bi Films Modulated by a NbSe ₂ Substrate. ACS Nano, 2019, 13, 1885-1892.	7.3	23
603	Raman Spectroscopy of van der Waals Heterostructures. Springer Series in Materials Science, 2019, , 81-98.	0.4	1
604	Excess resistivity in graphene superlattices caused by umklapp electron–electron scattering. Nature Physics, 2019, 15, 32-36.	6.5	46

		CITATION REPORT	
#	Article	IF	CITATIONS
605	Interplay of Two Dimensional Lattices of Atomic Layers at the Junction. , 2019, , 47-72.		0
606	Giant magnetic field from moir \tilde{A} induced Berry phase in homobilayer semiconductors. Natior Science Review, 2020, 7, 12-20.	nal 4.6	40
607	Moiré patterns: a simple analytical model. 2D Materials, 2020, 7, 011005.	2.0	13
609	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		Ο
610	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70)-91.	0
611	Quantum Transport: General Concepts. , 2020, , 92-119.		Ο
612	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0
613	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		Ο
616	Electronic Properties of Carbon-Based Nanostructures. , 2020, , 11-69.		0
617	Quantum Hall Effects in Graphene. , 2020, , 210-236.		о
618	Spin-Related Phenomena. , 2020, , 237-277.		0
619	Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials. , 2020, , 293-353.		Ο
623	Experimental evidence of a new class of massless fermions. Nanoscale Horizons, 2020, 5, 679-	682. 4.1	5
624	Hexagonal Boron Nitride Synthesized at Atmospheric Pressure Using Metal Alloy Solvents: Eval as a Substrate for 2D Materials. Nano Letters, 2020, 20, 735-740.	uation 4.5	16
625	Synthetic Semimetals with van der Waals Interfaces. Nano Letters, 2020, 20, 1322-1328.	4.5	9
626	Bridging the van der Waals Interface for Advanced Optoelectronic Devices. Advanced Materials 32, e1906874.	s, 2020, 11.1	31
627	Gate-tunable flat bands in van der Waals patterned dielectric superlattices. 2D Materials, 2020 015028.	, 7, 2.0	20
628	Non-invasive detection of glucose <i>via</i> a solution-gated graphene transistor. Analyst, The, 145, 887-896.	2020, 1.7	27

#	Article	IF	CITATIONS
629	Midâ€Infrared Photonics Using 2D Materials: Status and Challenges. Laser and Photonics Reviews, 2020, 14, 1900098.	4.4	106
631	Novel phenomena in two-dimensional semiconductors. , 2020, , 25-79.		0
632	Decisive Role of Interlayer Ionic Couplings for the Electronic Properties of Two-Dimensional Layered Electrides. Journal of Physical Chemistry C, 2020, 124, 1398-1404.	1.5	14
633	Heteromoiré Engineering on Magnetic Bloch Transport in Twisted Graphene Superlattices. Nano Letters, 2020, 20, 7572-7579.	4.5	10
634	Graphene-based Josephson junction microwave bolometer. Nature, 2020, 586, 42-46.	13.7	88
635	Dynamical Floquet spectrum of Kekulé-distorted graphene under normal incidence of electromagnetic radiation. Physical Review B, 2020, 102, .	1.1	17
636	Moiré pattern of a spin liquid and a Néel magnet in the Kitaev model. Physical Review B, 2020, 102, .	1.1	1
637	Gate-Tunable Two-Dimensional Superlattices in Graphene. Nano Letters, 2020, 20, 8046-8052.	4.5	27
638	Light-induced irreversible structural phase transition in trilayer graphene. Light: Science and Applications, 2020, 9, 174.	7.7	40
639	Emergent flat band lattices in spatially periodic magnetic fields. Physical Review B, 2020, 102, .	1.1	2
640	Moiré Band Topology in Twisted Bilayer Graphene. Nano Letters, 2020, 20, 6076-6083.	4.5	30
641	Flattening is flattering: The revolutionizing 2D electronic systems*. Chinese Physics B, 2020, 29, 097307.	0.7	6
642	The effects of transition metal adatoms on the electronic properties of stanene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114365.	1.3	11
643	Configurable phonon polaritons in twisted α-MoO3. Nature Materials, 2020, 19, 1307-1311.	13.3	180
644	2D electron gas in chalcogenide multilayers. , 2020, , 189-234.		1
645	Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588, 71-76.	13.7	165
646	Anomalous Cyclotron Motion in Graphene Superlattice Cavities. Physical Review Letters, 2020, 125, 217701.	2.9	11
647	Long-range ballistic transport of Brown-Zak fermions in graphene superlattices. Nature Communications, 2020, 11, 5756.	5.8	25

#	Article	IF	CITATIONS
648	Hofstadter Topology: Noncrystalline Topological Materials at High Flux. Physical Review Letters, 2020, 125, 236804.	2.9	49
649	In situ manipulation of van der Waals heterostructures for twistronics. Science Advances, 2020, 6, .	4.7	69
650	Detection of chirality of single-walled carbon nanotubes on hexagonal boron nitride. Applied Physics Letters, 2020, 117, .	1.5	5
651	Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures. Chemical Research in Chinese Universities, 2020, 36, 525-550.	1.3	6
652	Electronic-structure methods for twisted moir $ ilde{A}$ © layers. Nature Reviews Materials, 2020, 5, 748-763.	23.3	142
653	Moiré is More: Access to New Properties of Two-Dimensional Layered Materials. Matter, 2020, 3, 1142-1161.	5.0	46
654	Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy. Nature Communications, 2020, 11, 3582.	5.8	10
655	Electric polarization related Dirac half-metallicity in Mn-trihalide Janus monolayers. Physical Chemistry Chemical Physics, 2020, 22, 26468-26477.	1.3	9
656	Quantum phases of two-component bosons on the Harper-Hofstadter ladder. Physical Review A, 2020, 102, .	1.0	3
657	Emergence of orbital angular moment at van Hove singularity in graphene/h-BN moiré superlattice. Nature Communications, 2020, 11, 5380.	5.8	15
658	Wide application feasibility report on graphene. Emerging Materials Research, 2020, 9, 1168-1194.	0.4	1
659	Infrared-Active Modes in Finite and Infinite Hexagonal Boron Nitride. IOP Conference Series: Materials Science and Engineering, 2020, 783, 012012.	0.3	0
660	Highly Ordered Boron Nitride/Epigraphene Epitaxial Films on Silicon Carbide by Lateral Epitaxial Deposition. ACS Nano, 2020, 14, 12962-12971.	7.3	14
661	Spectra of PT-symmetric fractional SchrĶdinger equations with multiple quantum wells. Journal of Computational Electronics, 2020, 19, 1416-1425.	1.3	2
662	Self-similar transport, spin polarization and thermoelectricity in complex silicene structures. Scientific Reports, 2020, 10, 14679.	1.6	5
663	Chiral channel network from magnetization textures in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MnBi</mml:mi><mm Physical Review B, 2020, 102, .</mm </mml:msub></mml:mrow></mml:math 	l:mn>2 <td>nn12mn></td>	n n1 2mn>
664	Nonadiabatic superconductivity in a Li-intercalated hexagonal boron nitride bilayer. Beilstein Journal of Nanotechnology, 2020, 11, 1178-1189.	1.5	2
665	Topological valley currents via ballistic edge modes in graphene superlattices near the primary Dirac point. Communications Physics, 2020, 3, .	2.0	11

#	Article	IF	CITATIONS
666	Magic-angle bilayer phononic graphene. Physical Review B, 2020, 102, .	1.1	37
667	Band Engineering of Large-Twist-Angle <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mtext>Graphene</mml:mtext><mml:mo>/</mml:mo><mml:mrow><mml:mi> Moiré Superlattices with Pressure. Physical Review Letters, 2020, 125, 226403.</mml:mi></mml:mrow></mml:mrow></mml:math>	h≰¢mml:m	ni≱≭mml:mt
668	Cloning of zero modes in one-dimensional graphene superlattices. Physical Review B, 2020, 102, .	1.1	5
669	Classification of Topological Phase Transitions and van Hove Singularity Steering Mechanism in Graphene Superlattices. Physical Review Letters, 2020, 125, 236805.	2.9	14
670	Substrate-Dependent Band Structures in Trilayer Graphene/hâ^'BN Heterostructures. Physical Review Letters, 2020, 125, 246401.	2.9	3
671	2D Materials and Heterostructures at Extreme Pressure. Advanced Science, 2020, 7, 2002697.	5.6	68
672	Superconductivity and strong correlations in moir $ ilde{A}$ © flat bands. Nature Physics, 2020, 16, 725-733.	6.5	448
673	Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. Physical Review Letters, 2020, 124, 206101.	2.9	100
674	Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583, 215-220.	13.7	433
675	Electronic structure and transport properties of graphene/h-BN controlled by boundary potential and magnetic field. Modern Physics Letters B, 2020, 34, 2050180.	1.0	2
676	Diffusion quantum Monte Carlo and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W</mml:mi> of the electronic properties of monolayer and bulk hexagonal boron nitride. Physical Review B, 2020, 101, .</mml:mrow></mml:math 	√mml:mr	ow>
677	Control of electron-electron interaction in graphene by proximity screening. Nature Communications, 2020, 11, 2339.	5.8	46
678	Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nature Photonics, 2020, 14, 549-553.	15.6	76
679	Commensurate and incommensurate double moire interference in graphene encapsulated by hexagonal boron nitride. 2D Materials, 2020, 7, 031005.	2.0	20
680	Emergent quantum materials. MRS Bulletin, 2020, 45, 340-347.	1.7	14
682	The electronic structure of ideal graphene. , 2020, , 1-23.		0
685	Electron states in a magnetic field. , 2020, , 24-62.		1
686	Quantum transport via evanescent waves. , 2020, , 63-76.		0

#	Article	IF	CITATIONS
687	The Klein paradox and chiral tunneling. , 2020, , 77-107.		0
688	Edges, nanoribbons, and quantum dots. , 2020, , 108-140.		0
689	Point defects. , 2020, , 141-167.		0
690	Optics and response functions. , 2020, , 168-192.		ο
691	The Coulomb problem. , 2020, , 193-212.		0
692	Crystal lattice dynamics, structure, and thermodynamics. , 2020, , 213-256.		Ο
693	Gauge fields and strain engineering. , 2020, , 257-278.		0
694	Scattering mechanisms and transport properties. , 2020, , 279-325.		Ο
695	Spin effects and magnetism. , 2020, , 326-350.		0
696	Graphene on hexagonal boron nitride. , 2020, , 351-378.		Ο
697	Twisted bilayer graphene. , 2020, , 379-388.		0
698	Many-body effects in graphene. , 2020, , 389-400.		0
701	Graphene Fieldâ€Effect Transistors on Hexagonalâ€Boron Nitride for Enhanced Interfacial Thermal Dissipation. Advanced Electronic Materials, 2020, 6, 2000059.	2.6	8
702	Opportunities and Challenges in Twisted Bilayer Graphene: A Review. Nano-Micro Letters, 2020, 12, 126.	14.4	86
703	Formation of Moiré superstructure of epitaxial graphene on Pt(111): A molecular dynamic simulation investigation. Materials Chemistry and Physics, 2020, 253, 123126.	2.0	5
704	Influence of Nanoarchitecture on Charge Donation and the Electrical-Transport Properties in [(SnSe) _{1+l´}][TiSe ₂] _{<i>q</i>} Heterostructures. Chemistry of Materials, 2020, 32, 5802-5813.	3.2	6
705	The effect of moiré superstructures on topological edge states in twisted bismuthene homojunctions. Science Advances, 2020, 6, eaba2773.	4.7	39
706	Moiréâ€Patternâ€Tuned Electronic Structures of van der Waals Heterostructures. Advanced Functional Materials, 2020, 30, 2002672.	7.8	31

	Сіта	tion Report	
#	Article	IF	CITATIONS
707	Electrostatic superlattices on scaled graphene lattices. Communications Physics, 2020, 3, .	2.0	18
708	Polar coupling enabled nonlinear optical filtering at MoS2/ferroelectric heterointerfaces. Nature Communications, 2020, 11, 1422.	5.8	31
709	Single-Carrier Transport in Graphene/hBN Superlattices. Nano Letters, 2020, 20, 2551-2557.	4.5	10
710	Periodically Gated Bilayer Graphene as an Electronic Metamaterial. Physical Review Applied, 2020, 13, .	1.5	4
711	Tunable Cherenkov Radiation of Phonon Polaritons in Silver Nanowire/Hexagonal Boron Nitride Heterostructures. Nano Letters, 2020, 20, 2770-2777.	4.5	19
712	Observation of Drastic Electronic-Structure Change in a One-Dimensional Moiré Superlattice. Physical Review Letters, 2020, 124, 106101.	2.9	23
713	Multiband Ballistic Transport and Anisotropic Commensurability Magnetoresistance in Antidot Lattices of AB-stacked Trilayer Graphene. Journal of the Physical Society of Japan, 2020, 89, 044703.	0.7	2
714	When graphene goes strange. Nature Materials, 2020, 19, 368-368.	13.3	1
715	Evidence for Electron Transfer between Graphene and Nonâ€Covalently Bound Ï€â€Systems. Chemistry European Journal, 2020, 26, 6694-6702.	- A 1.7	10
716	Correlated states in twisted double bilayer graphene. Nature Physics, 2020, 16, 520-525.	6.5	374
717	Direct observation of minibands in a twisted graphene/WS ₂ bilayer. Science Advances, 2020, 6, eaay6104.	4.7	39
718	Fabrication of folded bilayer-bilayer graphene/hexagonal boron nitride superlattices. Applied Physics Express, 2020, 13, 035003.	1.1	2
719	Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579, 56-61.	13.7	425
720	Ultra-flat twisted superlattices in 2D heterostructures. Npj Computational Materials, 2020, 6, .	3.5	2
721	Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583, 221-225	. 13.7	385
722	High-order minibands and interband Landau level reconstruction in graphene moiré superlattices. Physical Review B, 2020, 102, .	1.1	7
723	Electronic properties of two-dimensional materials. , 2020, , 77-109.		11
724	Flat bands in twisted bilayer transition metal dichalcogenides. Nature Physics, 2020, 16, 1093-1096.	6.5	197

	C	CITATION REPORT	
#	Article	IF	CITATIONS
725	Untying the insulating and superconducting orders in magic-angle graphene. Nature, 2020, 583, 375	5-378. 13.7	323
726	Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 8533-8538.	4.0	49
727	Transfer assembly for two-dimensional van der Waals heterostructures. 2D Materials, 2020, 7, 02200	05. 2.0	87
728	A generic method to control hysteresis and memory effect in Van der Waals hybrids. Materials Research Express, 2020, 7, 014004.	0.8	12
729	Weak localization in graphene sandwiched by aligned <i>h</i> -BN flakes. Nanotechnology, 2020, 31 215712.	, 1.3	3
730	Honeycomb Borophene Fragment Stabilized in Polyanionic Sandwich Lithium Salt: A New Type of Two-Dimensional Material with Superconductivity. Journal of Physical Chemistry C, 2020, 124, 5870-5879.	1.5	9
731	Quantum Transport beyond DC. , 2020, , 278-292.		0
733	Topological charge pumping by a sliding moir $ ilde{A}$ © pattern. Physical Review B, 2020, 101, .	1.1	22
734	Topological sliding moir $ ilde{A}$ $\mathbb C$ heterostructure. Physical Review B, 2020, 101, .	1.1	20
735	Topological charge pumping in twisted bilayer graphene. Physical Review B, 2020, 101, .	1.1	25
736	Antiferromagnetic Semimetal in Ti-Intercalated Borophene Heterobilayer. Journal of Physical Chemistry C, 2020, 124, 4709-4716.	1.5	5
737	Enhancement of the Fano-resonance response in bilayer graphene single and double barriers induced by bandgap opening. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113999.	1.3	5
738	Controllable Epitaxial Growth of MoSe ₂ Bilayers with Different Stacking Orders by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 23347-	23355. 4.0	21
739	Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Research, 2020, 13, 1060-1064.	5.8	11
740	Stacking order driving bandgap and conductance of graphene/C3B (C3N) van der Waals heterostructures. Applied Physics Letters, 2020, 116, .	1.5	12
741	Step-flow growth of graphene-boron nitride lateral heterostructures by molecular beam epitaxy. 2D Materials, 2020, 7, 035014.	2.0	14
742	Mobility Enhancement in Graphene by <i>inÂsitu</i> Reduction of Random Strain Fluctuations. Phys Review Letters, 2020, 124, 157701.	ical 2.9	20
743	Minibands in twisted bilayer graphene probed by magnetic focusing. Science Advances, 2020, 6, eaay7838.	4.7	21

#	Article	IF	CITATIONS
744	Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InformaÄnÄ-MateriÄ¡ly, 2021, 3, 133-154.	8.5	29
745	Tunable tilted anisotropy of massless Dirac fermion in magnetic Kronig-Penney-type graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114501.	1.3	6
746	Strain effect on the mechanical and electronic properties of graphene-like B4P4C4 and B2P2C8: First-principles calculation. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114583.	1.3	3
747	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Advanced Materials, 2021, 33, e2000769.	11.1	71
748	Two-dimensional MX Dirac materials and quantum spin Hall insulators with tunable electronic and topological properties. Nano Research, 2021, 14, 584-589.	5.8	14
749	Moiréâ€Potentialâ€Induced Band Structure Engineering in Graphene and Silicene. Small, 2021, 17, e1903769.	5.2	9
750	From magic angle twisted bilayer graphene to moiré superlattice quantum simulator. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 118101.	0.2	3
751	Exotic physical properties of 2D materials modulated by moiré superlattices. Materials Advances, 2021, 2, 5542-5559.	2.6	13
752	Investigations of Electron-Electron and Interlayer Electron-Phonon Coupling in van der Waals hBN/WSe2/hBN Heterostructures by Photoluminescence Excitation Experiments. Materials, 2021, 14, 399.	1.3	8
753	Electronic transport in graphene. , 2021, , 27-49.		2
754	Recent progress of transfer methods of two-dimensional atomic crystals and high-quality electronic devices. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 138202.	0.2	0
755	Atomic and electronic structure of graphene. , 2021, , 15-26.		1
756	Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chemical Society Reviews, 2021, 50, 6401-6422.	18.7	38
757	Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 027901-027901.	0.2	5
758	Computing Spectral Measures of Self-Adjoint Operators. SIAM Review, 2021, 63, 489-524.	4.2	20
759	Optical conductivity of twisted bilayer graphene near the magic angle*. Chinese Physics B, 2021, 30, 017303.	0.7	11
760	Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nature Physics, 2021, 17, 478-481.	6.5	138
761	Anisotropic band flattening in graphene with one-dimensional superlattices. Nature Nanotechnology, 2021, 16, 525-530.	15.6	44

#	Article	IF	CITATIONS
762	Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nature Communications, 2021, 12, 917.	5.8	99
763	Quantum transport, electronic properties and molecular adsorptions in graphene. Modern Physics Letters B, 2021, 35, 2130001.	1.0	3
764	Modulation of the second-harmonic generation in MoS ₂ by graphene covering*. Chinese Physics B, 2021, 30, 027803.	0.7	3
765	Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS ₂ /MoS ₂ and WSe ₂ /MoSe ₂ bilayers. 2D Materials, 2021, 8, 025030.	2.0	36
766	Prediction of massless Dirac fermions in a carbon nitride covalent network. Applied Physics Letters, 2021, 118, .	1.5	6
767	Nano-imaging photoresponse in a moir $ ilde{A}$ © unit cell of minimally twisted bilayer graphene. Nature Communications, 2021, 12, 1640.	5.8	29
768	Tunable electronic properties of two-dimensional type-I 1T-SN2/hBN and type-II 1T-XN2/hBN (XÂ=ÂSe, Te) van der Waals heterostructures from first-principle study. Applied Surface Science, 2021, 542, 148659.	3.1	6
769	Raman spectroscopic study of artificially twisted and non-twisted trilayer graphene. Applied Physics Letters, 2021, 118, .	1.5	3
770	Moiré-induced electronic structure modifications in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">V<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">S<mml:mn>3</mml:mn></mml:mi </mml:msub></mml:mrow> on</mml:math 	1.1	3
771	Au(111). Physical Review B, 2021, 103, . Fermi Velocity Reduction of Dirac Fermions around the Brillouin Zone Center in In 2 Se 3 –Bilayer Graphene Heterostructures. Advanced Materials, 2021, 33, 2007503.	11.1	7
772	Anomalous Hall effect in graphene coupled to a layered magnetic semiconductor. Physical Review B, 2021, 103, .	1.1	8
773	Twistronics: a turning point in 2D quantum materials. Electronic Structure, 2021, 3, 014004.	1.0	40
774	Enhanced electron-phonon coupling in doubly aligned hexagonal boron nitride bilayer graphene heterostructure. Physical Review B, 2021, 103, .	1.1	15
775	Recent Advances in Synthesis and Study of 2D Twisted Transition Metal Dichalcogenide Bilayers. Small Structures, 2021, 2, 2000153.	6.9	29
776	Accurate Measurement of the Gap of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>Graphene</mml:mi><mml:mo>/</mml:mo><<mml:mi>hMoiré Superlattice through Photocurrent Spectroscopy. Physical Review Letters, 2021, 126, 146402.</mml:mi></mml:mrow></mml:math>	nl 2ng > <td>ml:onrow><n< td=""></n<></td>	m l:o nrow> <n< td=""></n<>
777	Moiré superlattice on the surface of a topological insulator. Physical Review B, 2021, 103, .	1.1	28
778	Growth of h-BN/graphene heterostructure using proximity catalysis. Nanotechnology, 2021, 32, 275602.	1.3	4
779	Computing Spectral Measures and Spectral Types. Communications in Mathematical Physics, 2021, 384, 433-501.	1.0	13

#	Article	IF	CITATIONS
780	Skyrmions in twisted van der Waals magnets. Physical Review B, 2021, 103, .	1.1	41
781	Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate. Npj 2D Materials and Applications, 2021, 5, .	3.9	23
782	Band alignment in SiC-based one-dimensional van der Waals homojunctions. Chinese Physics B, O, , .	0.7	1
783	Moiré edge states in twisted bilayer graphene and their topological relation to quantum pumping. Physical Review B, 2021, 103, .	1.1	15
784	Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene. Chinese Physics Letters, 2021, 38, 047301.	1.3	20
785	Imaging Dual-Moiré Lattices in Twisted Bilayer Graphene Aligned on Hexagonal Boron Nitride Using Microwave Impedance Microscopy. Nano Letters, 2021, 21, 4292-4298.	4.5	15
786	Layered heterostructure of planar and buckled phases of silicene. 2D Materials, 2021, 8, 035038.	2.0	14
787	Electronic spectrum of Kekulé patterned graphene considering second neighbor-interactions. Journal of Physics Condensed Matter, 2021, 33, 225301.	0.7	8
788	Unconventional satellite resistance peaks in moiré superlattice of h-BN/ AB-stacked tetralayer-graphene heterostructures. Communications Physics, 2021, 4, .	2.0	4
789	Recent advances in graphene and other 2D materials. Nano Materials Science, 2022, 4, 3-9.	3.9	97
790	Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372, 1458-1462.	6.0	344
791	Trigonal quasicrystalline states in \$\$30^circ\$\$ rotated double moiré superlattices. Scientific Reports, 2021, 11, 11548.	1.6	0
792	Correlation hard gap in antidot graphene. Physical Review B, 2021, 103, .	1.1	1
793	A hyper-block self-consistent approach to nonlinear Schrodinger equations: Breeding, metamorphosis, and killing of Hofstadter Butterflies. Communications in Nonlinear Science and Numerical Simulation, 2021, 97, 105724.	1.7	3
794	Theory of angle-resolved photoemission spectroscopy in graphene-based moiré superlattices. Physical Review B, 2021, 103, .	1.1	5
795	Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature, 2021, 594, 517-521.	13.7	48
796	Twoâ€Dimensional Metal Chalcogenide Heterostructures: Designed Growth and Emerging Novel Applications. Advanced Materials Interfaces, 2021, 8, 2100515.	1.9	3
797	Localization transitions and mobility edges in quasiperiodic ladder. Journal of Physics Condensed Matter, 2021, 33, 365403.	0.7	1

#	Article	IF	CITATIONS
798	Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moir ${ m \tilde{A}}$ © superlattices*. Chinese Physics B, 2021, 30, 077803.	0.7	3
799	Fractal energy gaps and topological invariants in hBN/graphene/hBN double moiré systems. Physical Review B, 2021, 104, .	1.1	17
800	Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications. ACS Nano, 2021, 15, 12358-12366.	7.3	31
801	Fractal defect states in the Hofstadter butterfly. Physical Review B, 2021, 104, .	1.1	6
802	Intrinsic Room-Temperature Ferromagnetism in V ₂ C MXene Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 33363-33370.	4.0	20
803	Honeycomb structures in magnetic fields. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 345203.	0.7	0
804	Ultrafast Electron Tunneling Devices—From Electricâ€Field Driven to Opticalâ€Field Driven. Advanced Materials, 2021, 33, e2101449.	11.1	8
805	Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
806	Criteria for Assessing the Interlayer Coupling of van der Waals Heterostructures Using Ultrafast Pump–Probe Photoluminescence Spectroscopy. ACS Nano, 2021, 15, 12966-12974.	7.3	2
807	Nonlinear Hall Effect with Timeâ€Reversal Symmetry: Theory and Material Realizations. Advanced Quantum Technologies, 2021, 4, 2100056.	1.8	36
808	The optical response of artificially twisted MoS\$\$_2\$\$ bilayers. Scientific Reports, 2021, 11, 17037.	1.6	10
809	New method of transport measurements on van der Waals heterostructures under pressure. Journal of Applied Physics, 2021, 130, .	1.1	16
810	Bandgap engineering of stacked two-dimensional polyaniline by twist angle. Applied Physics Letters, 2021, 119, 061602.	1.5	7
811	HHG-laser-based time- and angle-resolved photoemission spectroscopy of quantum materials. Journal of Electron Spectroscopy and Related Phenomena, 2021, 251, 147105.	0.8	12
812	Moiré physics in twisted van der Waals heterostructures of 2D materials. Emergent Materials, 2021, 4, 813-826.	3.2	17
813	Direct Growth of van der Waals Tin Diiodide Monolayers. Advanced Science, 2021, 8, e2100009.	5.6	10
814	The effect of Cl- and N-doped MoS2 and WS2 coated on epitaxial graphene in gas-sensing applications. Surfaces and Interfaces, 2021, 25, 101200.	1.5	14
815	Tunable Dirac points and zero-energy modes in periodic curved graphene superlattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 409, 127510.	0.9	1

#	Article	IF	CITATIONS
816	Hyperbolic band theory under magnetic field and Dirac cones on a higher genus surface. Journal of Physics Condensed Matter, 2021, 33, 485602.	0.7	21
817	Epitaxial Intercalation Growth of Scalable Hexagonal Boron Nitride/Graphene Bilayer Moiré Materials with Highly Convergent Interlayer Angles. ACS Nano, 2021, 15, 14384-14393.	7.3	14
818	A review of assembly techniques for fabricating twisted bilayer graphene. Journal of Micromechanics and Microengineering, 2021, 31, 114004.	1.5	5
819	QUANTUM TRANSPORT AND THERMOELECTRICITY IN COMPLEX MAGNETIC GRAPHENE STRUCTURES. Fractals, 0, , 2150181.	1.8	1
820	Optoelectronic fingerprints of interference between different charge carriers and band flattening in graphene superlattices. Physical Review B, 2021, 104, .	1.1	10
821	The potential of stanene with transition metal adsorbed as a promising gas sensor: A first-principles study. Results in Physics, 2021, 28, 104617.	2.0	11
822	Three-dimensional non-Abelian generalizations of the Hofstadter model: Spin-orbit-coupled butterfly trios. Physical Review B, 2021, 104, .	1.1	2
823	Fermi Velocity Modulation Induced Lowâ€Bias Negative Differential Resistance in Graphene Double Barrier Resonant Tunneling diode. Annalen Der Physik, 2021, 533, 2100121.	0.9	4
824	Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure. Npj 2D Materials and Applications, 2021, 5, .	3.9	34
825	Experimental evidence of plasmarons and effective fine structure constant in electron-doped graphene/h-BN heterostructure. Npj Quantum Materials, 2021, 6, .	1.8	3
826	Substrate effect on the electronic properties of graphene on vicinal Pt(1 1 1). Applied Surface Science, 2021, 565, 150593.	3.1	2
827	Energy dissipation mechanism of commensurate graphene layers. Science China Technological Sciences, 2021, 64, 635-640.	2.0	5
828	When graphene meets white graphene – recent advances in the construction of graphene and <i>h</i> -BN heterostructures. Nanoscale, 2021, 13, 13174-13194.	2.8	9
829	Direct imaging of interlayer-coupled symmetric and antisymmetric plasmon modes in graphene/hBN/graphene heterostructures. Nanoscale, 2021, 13, 14628-14635.	2.8	3
830	High shear <i>in situ</i> exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. Nanoscale Advances, 2021, 3, 5785-5792.	2.2	6
831	Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature, 2021, 589, 536-541.	13.7	151
832	Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nature Communications, 2021, 12, 347.	5.8	132
833	Creation of moirel̀•bands in a monolayer semiconductor by spatially periodic dielectric screening. Nature Materials, 2021, 20, 645-649.	13.3	45

#	Article	IF	CITATIONS
835	The electronic band structure of graphene. , 2018, , 674-682.		1
838	Spontaneous Folding Growth of Graphene on h-BN. Nano Letters, 2021, 21, 2033-2039.	4.5	11
839	Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe ₂ Heterostructure. ACS Nano, 2021, 15, 916-922.	7.3	13
840	Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nature Nanotechnology, 2020, 15, 592-597.	15.6	245
841	Fabrication Techniques of Graphene Nanostructures. RSC Nanoscience and Nanotechnology, 2014, , 1-30.	0.2	17
842	Circular electromechanical resonators based on hexagonal-boron nitride-graphene heterostructures. Applied Physics Letters, 2020, 117, .	1.5	8
843	Magnetic field induced symmetry breaking in nonequilibrium quantum networks. New Journal of Physics, 2020, 22, 083026.	1.2	10
844	A review of experimental advances in twisted graphene moiré superlattice*. Chinese Physics B, 2020, 29, 128104.	0.7	12
845	Interferences of electrostatic moiré potentials and bichromatic superlattices of electrons and excitons in transition metal dichalcogenides. 2D Materials, 2021, 8, 025007.	2.0	17
846	Acoustomagnetoelectric effect in two-dimensional materials: Geometric resonances and Weiss oscillations. Physical Review B, 2020, 102, .	1.1	7
847	Dirac electrons in Moiré superlattice: From two to three dimensions. Physical Review Materials, 2017, 1, .	0.9	9
848	Two-dimensional spinodal interface in one-step grown graphene-molybdenum carbide heterostructures. Physical Review Materials, 2018, 2, .	0.9	9
849	Three-dimensional metamaterial Hall-bar devices. Physical Review Materials, 2019, 3, .	0.9	2
850	Topological Floquet engineering of twisted bilayer graphene. Physical Review Research, 2019, 1, .	1.3	56
851	Deconfined metal-insulator transitions in quantum Hall bilayers. Physical Review Research, 2020, 2, .	1.3	10
852	Hofstadter butterfly and Floquet topological insulators in minimally twisted bilayer graphene. Physical Review Research, 2020, 2, .	1.3	17
853	Emergent QCD3 quantum phase transitions of fractional Chern insulators. Physical Review Research, 2020, 2, .	1.3	5
854	Moiré effects in graphene-hBN heterostructures. Physical Review Research, 2020, 2, .	1.3	9

#	Article	IF	CITATIONS
855	Dielectric Constant and van der Waals Interlayer Interaction of MoS2-Graphene Heterostructures. , 2020, , .		5
856	Topological edge states in bichromatic photonic crystals. Optica, 2019, 6, 96.	4.8	20
857	An Exercise(?) in Fourier Analysis on the Heisenberg Group. Annales De La Faculté Des Sciences De Toulouse, 2017, 26, 263-288.	0.3	6
858	Graphene/h-BN Moiré superlattice. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 077305.	0.2	7
859	Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 216103.	0.2	1
860	Topological properties of graphene moiré superlattice systems and recent optical studies. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 220303.	0.2	7
861	Review of Rhombohedral Graphite. Springer Theses, 2021, , 1-40.	0.0	0
862	Steering on Degrees of Freedom of 2D Van der Waals Heterostructures. Small Science, 2022, 2, 2100033.	5.8	13
863	Bloch and Bethe AnsÃæze for the Harper model: A butterfly with a boundary. Physical Review B, 2021, 104, .	1.1	1
864	Flexible Diodes/Transistors Based on Tunable p-n-Type Semiconductivity in Graphene/Mn-Co-Ni-O Nanocomposites. Research, 2021, 2021, 9802795.	2.8	2
865	Robust Interlayer Exciton in WS ₂ /MoSe ₂ van der Waals Heterostructure under High Pressure. Nano Letters, 2021, 21, 8035-8042.	4.5	30
866	Optical Absorption in Graphene-hBN Heterostructures. Springer Theses, 2014, , 33-39.	0.0	Ο
867	Fractal Spectrum of Magnetic Minibands in Graphene-hBN Heterostructures. Springer Theses, 2014, , 41-50.	0.0	0
870	First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 136101.	0.2	1
871	Structural Supercritical Instability of Dirac Electrons in the Field of Two Oppositely Charged Nuclei. Ukrainian Journal of Physics, 2016, 61, 759-773.	0.1	1
872	Abelian Gauge Potentials on Cubic Lattices. Springer INdAM Series, 2017, , 47-70.	0.4	2
873	How to detect Berry phase in graphene without magnetic field?. , 2017, , .		0
875	Structure and band structure of epitaxial graphene on hexagonal silicon carbide. , 2018, , 689-715.		Ο

#	Article	IF	CITATIONS
876	Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 167101.	0.2	2
877	Studying Superlattice Kinks via Electronic Transport. Springer Theses, 2019, , 53-70.	0.0	0
879	Band Engineering in van der Waals Heterostructures Graphene/h-BN. Springer Theses, 2020, , 31-51.	0.0	0
880	Two-dimensional hexagonal Zn ₃ Si ₂ monolayer: Dirac cone material and Dirac half-metallic manipulation*. Chinese Physics B, 2020, 29, 087103.	0.7	2
881	Realization of asymmetric spin splitting Dirac cones in antiferromagnetic graphene/CrAs2/graphene heterotrilayer. Journal of Physics Condensed Matter, 2020, 32, 435503.	0.7	4
882	Ab initio modeling of thermal transport through van der Waals materials. Physical Review Materials, 2020, 4, .	0.9	4
883	Developing Grapheneâ€Based Moiré Heterostructures for Twistronics. Advanced Science, 2022, 9, e2103170.	5.6	21
884	On Dielectric Screening in Twisted Double Bilayer Graphene. Journal of the Physical Society of Japan, 2021, 90, .	0.7	2
885	Interlayer Interactions in Low-Dimensional Layered Hetero-structures: Modeling and Applications. , 2020, , 635-659.		0
886	Reshaping of Dirac Cones by Magnetic Fields. Springer Theses, 2021, , 115-140.	0.0	0
887	Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures*. Chinese Physics B, 2020, 29, 127304.	0.7	8
889	Twist the doorknob to open the electronic properties of graphene-based van der Waals structure. Matter, 2021, 4, 3444-3482.	5.0	12
890	Theory of Hofstadter superconductors. Physical Review B, 2021, 104, .	1.1	18
891	Twistronics in graphene-based van der Waals structures. Chinese Physics B, 2020, 29, 117303.	0.7	23
892	Quantum transport: general concepts. , 0, , 91-117.		1
893	Photocurrent generation in graphene/h-BN heterostructures under solar illumination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115540.	1.7	0
894	Effect of boron nitride defects and charge inhomogeneity on 1/ <i>f</i> noise in encapsulated graphene. Applied Physics Letters, 2021, 119, .	1.5	5
895	Robust Quantum Oscillation of Dirac Fermions in a Single-Defect Resonant Transistor. ACS Nano, 2021, 15, 20013-20019.	7.3	6

#	ARTICLE	IF	CITATIONS
896	Modification of the Magnetic and Electronic Properties of the Grapheneâ€Ni(111) Interface via Halogens Intercalation. Advanced Theory and Simulations, 0, , 2100319.	1.3	1
897	Fabrication of BP2T functionalized graphene via non-covalent ï€â€"ï€ stacking interactions for enhanced ammonia detection. RSC Advances, 2021, 11, 35982-35987.	1.7	2
898	Investigation in double layer graphene superlattice and its electronic properties. Journal of Physics: Conference Series, 2022, 2152, 012054.	0.3	0
899	Geometric interference in a high-mobility graphene annulus <i>p-n</i> junction device. Physical Review B, 2022, 105, .	1.1	1
900	Ferrimagnetism and reentrant behavior in a coronene-like superlattice with double-layer. Physica A: Statistical Mechanics and Its Applications, 2022, 589, 126671.	1.2	13
901	Magnetic ordering tendencies in hexagonal-boron-nitride–bilayer-graphene moiré structures. Physical Review B, 2021, 104, .	1.1	1
902	Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375, 430-433.	6.0	34
903	Moiré Superlattice Effects and Band Structure Evolution in Near-30-Degree Twisted Bilayer Graphene. ACS Nano, 2022, 16, 1954-1962.	7.3	6
904	Topological invariants in two-dimensional quasicrystals. Physical Review Research, 2022, 4, .	1.3	11
905	Superlattice in a Ru superstructure for enhancing hydrogen evolution. Angewandte Chemie, 0, , .	1.6	5
906	Biperiodic superlattices and transparent states in graphene. Scientific Reports, 2022, 12, 832.	1.6	1
907	Magnetoconductance modulations due to interlayer tunneling in radial superlattices. Nanoscale Horizons, 2022, 7, 168-173.	4.1	0
908	Non-conventional Fermi velocity graphene superlattices. Superlattices and Microstructures, 2022, , 107158.	1.4	1
909	Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
910	Reproducibility in the fabrication and physics of moir $ ilde{A}$ © materials. Nature, 2022, 602, 41-50.	13.7	97
911	Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nature Nanotechnology, 2022, 17, 378-383.	15.6	35
912	Evidence for a monolayer excitonic insulator. Nature Physics, 2022, 18, 87-93.	6.5	70
913	Twist-angle-controlled neutral exciton annihilation in WS ₂ homostructures. Nanoscale, 2022, 14, 5537-5544.	2.8	4

#	Article	IF	CITATIONS
914	Devices and defects in two-dimensional materials: outlook and perspectives. , 2022, , 339-401.		1
915	High pressure induced secondary and tertiary gaps in relaxed graphene on hexagonal boron nitride. Physical Review B, 2022, 105, .	1.1	2
916	Properties and applications of boron nitride nanotubes. Nanotechnology, 2022, 33, 242001.	1.3	28
917	Two-dimensional ferromagnetism detected by proximity-coupled quantum Hall effect of graphene. Npj Quantum Materials, 2022, 7, .	1.8	11
918	Spectroscopy signatures of electron correlations in a trilayer graphene/hBN moiré superlattice. Science, 2022, 375, 1295-1299.	6.0	30
919	Thermal Properties of 2D Dirac Materials MN ₄ (M = Be and Mg): A First-Principles Study. ACS Omega, 2022, 7, 10812-10819.	1.6	13
920	Electronic structure of 2D van der Waals crystals and heterostructures investigated by spatially- and angle-resolved photoemission. Comptes Rendus Physique, 2021, 22, 107-131.	0.3	0
921	Chiral limits and effect of light on the Hofstadter butterfly in twisted bilayer graphene. Physical Review B, 2022, 105, .	1.1	7
922	Improvement of tunneling magnetoresistance and spin-valley polarization in magnetic silicene superlattices induced by structural disorder. Physical Review B, 2022, 105, .	1.1	8
923	Generalized phase-space description of nonlinear Hamiltonian systems and Harper-like dynamics. Physical Review A, 2022, 105, .	1.0	4
924	Dynamical preparation of an atomic condensate in a Hofstadter band. Physical Review A, 2022, 105, .	1.0	1
925	Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Science and Technology of Advanced Materials, 2022, 23, 275-299.	2.8	32
926	High-performance Pt/Ti3C2Tx MXene based graphene electrochemical transistor for selective detection of dopamine. Analytica Chimica Acta, 2022, 1201, 339653.	2.6	28
927	Influence of numerous Moiré superlattices on transport properties of twisted multilayer graphene. Carbon, 2022, 194, 52-61.	5.4	6
928	Electronic Spectrum of Encapsulated Monolayers: Analytical Results. Technical Physics Letters, 2021, 47, 649-652.	0.2	0
929	Emergence and Tuning of Multiple Flat Bands in Twisted Bilayer Î ³ -Graphyne. Journal of Physical Chemistry Letters, 2021, 12, 12283-12291.	2.1	3
930	Correlated states in doubly-aligned hBN/graphene/hBN heterostructures. Nature Communications, 2021, 12, 7196.	5.8	22
931	Oscillations of the Spacing between van Hove Singularities Induced by sub-Ãngstrom Fluctuations of Interlayer Spacing in Graphene Superlattices. Physical Review Letters, 2021, 127, 266801.	2.9	10

#	Article	IF	CITATIONS
932	Observation of high-order moiré effect and multiple Dirac fermions replicas in graphene-SiC heterostructures. Physical Review B, 2021, 104, .	1.1	5
933	2D multifunctional SiAs2/GeAs2 van der waals heterostructure. Nanotechnology, 2021, , .	1.3	1
934	Unusual magnetotransport in twisted bilayer graphene. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118482119.	3.3	13
935	The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano, 2022, 16, 6960-7079.	7.3	149
936	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		0
937	Quantum transport in disordered graphene-based materials. , 0, , 143-218.		0
938	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		0
939	Electronic structure calculations: the density functional theory (DFT). , 0, , 314-331.		0
940	Electronic structure calculations: the many-body perturbation theory (MBPT). , 0, , 332-337.		0
941	Green's functions and ab initio quantum transport in the Landauer–Büttiker formalism. , 0, , 338-357.		0
942	Dirac Fermion Cloning, Moiré Flat Bands, and Magic Lattice Constants in Epitaxial Monolayer Graphene. Advanced Materials, 2022, 34, e2200625.	11.1	9
943	Recent experimental progresses on 2D van der Waals semiconductor moiré superlattices. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
944	Polaritons in low-dimensional materials and their coupling characteristics. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 127104.	0.2	2
945	Laughlin's Topological Charge Pump in an Atomic Hall Cylinder. Physical Review Letters, 2022, 128, 173202.	2.9	14
946	One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature, 2022, 605, 57-62.	13.7	44
947	Highly Tunable Carrier Tunneling in Vertical Graphene–WS ₂ –Graphene van der Waals Heterostructures. ACS Nano, 2022, 16, 7880-7889.	7.3	17
948	Tunable multi-bands in twisted double bilayer graphene. 2D Materials, 2022, 9, 034001.	2.0	2
949	Flat bands and topological properties of twisted bilayer WSe ₂ under external stimuli. Physica Scripta, 0, , .	1.2	Ο

#	Article	IF	CITATIONS
950	Exciton moiré potential in twisted WSe ₂ homobilayers modulated by electric field. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
951	Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Advanced Materials, 2022, 34, e2200956.	11.1	12
952	Observation of Reentrant Correlated Insulators and Interaction-Driven Fermi-Surface Reconstructions at One Magnetic Flux Quantum per Moiré Unit Cell in Magic-Angle Twisted Bilayer Graphene. Physical Review Letters, 2022, 128, .	2.9	17
953	Floquet engineering the Hofstadter butterfly in the square lattice and its effective Hamiltonian. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	1
954	Fabrication of patternable Janus transition-metal dichalcogenides assisted by electron beam irradiation. Applied Physics Letters, 2022, 120, 221901.	1.5	2
955	Band conductivity oscillations in a gate-tunable graphene superlattice. Nature Communications, 2022, 13, .	5.8	17
956	Synthesis and Structure of a Two-Dimensional Palladium Oxide Network on Reduced Graphene Oxide. Nano Letters, 2022, 22, 4854-4860.	4.5	3
957	A Review on MX2 (MÂ=ÂMo, W and XÂ=ÂS, Se) layered material for opto-electronic devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 023001.	0.7	5
958	Quantum interference tuning of spin-orbit coupling in twisted van der Waals trilayers. Physical Review Research, 2022, 4, .	1.3	19
959	Bandgap engineering in massive-massless graphene superlattices. Physica B: Condensed Matter, 2022, 640, 414052.	1.3	1
961	Lattice relaxation and substrate effects on the electronic properties of graphene superlattice. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
962	Kagome network of miniband-edge states in double-aligned graphene–hexagonal boron nitride structures. Physical Review B, 2022, 105, .	1.1	5
963	Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene. Molecules, 2022, 27, 3740.	1.7	2
964	Electric field induced spin resolved graphene p–n junctions on magnetic Janus VSeTe monolayer. Journal Physics D: Applied Physics, 2022, 55, 365303.	1.3	7
965	Optical Properties of Graphene-like Be ₃ C ₂ Monolayer by First-Principles Calculations. Journal of the Physical Society of Japan, 2022, 91, .	0.7	2
966	In Silico Study of Adsorption of Oxide Gases by Mn4 (M = Be, Mg) Monolayers. SSRN Electronic Journal, 0, , .	0.4	0
967	Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. Nanoscale Horizons, 2022, 7, 849-872.	4.1	19
968	Phonon-assisted carrier cooling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi> -BN/graphene van der Waals heterostructures. Physical Review B, 2022, 105, .</mml:math 	1.1	0

#	Article	IF	CITATIONS
969	Moiré-Induced Transport in CVD-Based Small-Angle Twisted Bilayer Graphene. Nano Letters, 2022, 22, 5252-5259.	4.5	4
970	First-principles calculations of the optical properties of Phagraphene. Modern Physics Letters B, 2022, 36, .	1.0	1
971	LaBr2 bilayer multiferroic moiré superlattice with robust magnetoelectric coupling and magnetic bimerons. Npj Computational Materials, 2022, 8, .	3.5	12
972	xmins:mml= http://www.w3.org/1998/Wath/Wath/Wath/Wath/Wath/Wath/Wath/Wath	0.9	2
973	Tuning polaritons in van der Waals moiré superlattices with interlayer spacing. Applied Physics Letters, 2022, 121, 053101.	1.5	0
974	Thermodynamics of correlated electrons in a magnetic field. Communications Physics, 2022, 5, .	2.0	2
975	Wider transmission forbidden gaps and tamm state in a complex optoelectronic superlattice based on monolayer MoS2. , 2022, 170, 207378.		0
976	In silico study of adsorption of oxide gases by MN4 (MÂ=ÂBe, Mg) monolayers. Applied Surface Science, 2022, 605, 154711.	3.1	5
977	Introduction toÂ2-Dimensional Materials andÂMoiré Superlattices. Springer Theses, 2022, , 5-28.	0.0	0
978	Valley Currents in Graphene. , 2024, , 652-658.		0
979	Self-Induced Dirac Boundary State and Digitization in a Nonlinear Resonator Chain. Physical Review Letters, 2022, 129, .	2.9	1
980	Quantitative determination of interlayer electronic coupling at various critical points in bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow>.</mml:math 	i 1.1	4
981	Physical Review 8, 2022, 106, . Reentrant magic-angle phenomena in twisted bilayer graphene in integer magnetic fluxes. Physical Review B, 2022, 106, .	1.1	4
982	Optical Sensing of Fractional Quantum Hall Effect in Graphene. Nano Letters, 2022, 22, 7363-7369.	4.5	11
983	Phonon physics in twisted two-dimensional materials. Applied Physics Letters, 2022, 121, .	1.5	11
984	Half-integer Wannier diagram and Brown-Zak fermions of graphene on hexagonal boron nitride. Physical Review B, 2022, 106, .	1.1	3
985	High-Temperature Quantum Hall Effect in Graphite-Gated Graphene Heterostructure Devices with High Carrier Mobility. Nanomaterials, 2022, 12, 3777.	1.9	1
986	Dual-gated hBN/bilayer-graphene superlattices and the transitions between the insulating phases at the charge neutrality point. Physical Review B, 2022, 106, .	1.1	2

#	Article	IF	CITATIONS
987	Direct Observation of a Localized Flat-Band State in a Mapped Moiré Hubbard Photonic Lattice. Physical Review Applied, 2022, 18, .	1.5	2
988	Moiré-driven reconstitution on electromagnetic energy transfer. Materials Today Physics, 2022, 28, 100891.	2.9	1
989	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	10.3	4
990	Anomalous strain-dependent charge density in honeycomb borophene. Computational Materials Science, 2023, 216, 111838.	1.4	0
991	Engineering high quality graphene superlattices via ion milled ultra-thin etching masks. Nature Communications, 2022, 13, .	5.8	5
992	Correlated and topological physics in ABC-trilayer graphene moir $ ilde{A}$ ${ m @}$ superlattices. , 2022, 1, .		1
993	Cloning the Dirac cones of bilayer graphene to the zone center by selenium adsorption. Npj 2D Materials and Applications, 2022, 6, .	3.9	2
994	Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring. Analytica Chimica Acta, 2023, 1239, 340719.	2.6	6
995	Wannier Diagrams for Semiconductor Artificial Graphene. JETP Letters, 2022, 116, 638-642.	0.4	1
996	Unconventional self-similar Hofstadter superconductivity from repulsive interactions. Nature Communications, 2022, 13, .	5.8	12
997	Observation of electronic structure replicas in photoemission spectra of graphite upon adsorption of tin phthalocyanine. Journal of Physics Condensed Matter, 0, , .	0.7	0
998	Signature of Cascade Transitions between Interlayer Excitons in a Moiré Superlattice. Physical Review Letters, 2022, 129, .	2.9	8
999	On the Computation of Geometric Features of Spectra of Linear Operators on Hilbert Spaces. Foundations of Computational Mathematics, 0, , .	1.5	6
1000	Exotic states in moiré superlattices of twisted semiconducting transition metal dichalcogenides. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 027802.	0.2	1
1001	A natural indirect-to-direct band gap transition in artificially fabricated MoS ₂ and MoSe ₂ flowers. Nanoscale, 2023, 15, 7792-7802.	2.8	2
1002	Kitaev formula for periodic, quasicrystal, and fractal Floquet topological insulators. Physical Review B, 2023, 107, .	1.1	0
1003	Moiré phonons in graphene/hexagonal boron nitride moiré superlattice. Physical Review B, 2023, 107, .	1.1	4
1004	Inducing Single Spinâ€Polarized Flat Bands in Monolayer Graphene. Advanced Materials, 2023, 35, .	11.1	2

#	Article	IF	CITATIONS
1005	Nanoscale Periodic Trapping Sites for Interlayer Excitons Built by Deformable Molecular Crystal on 2D Crystal. ACS Nano, 2023, 17, 7775-7786.	7.3	2
1006	Tuning the magnetoresistance properties of phosphorene with periodic magnetic modulation. Journal of Physics Condensed Matter, 2023, 35, 265301.	0.7	2
1007	The giant tunneling electroresistance effect in monolayer In ₂ SSeTe-based lateral ferroelectric tunnel junctions. Materials Advances, 2023, 4, 1572-1582.	2.6	2
1008	Giant Rashba effect and nonlinear anomalous Hall conductivity in a two-dimensional molybdenum-based Janus structure. Physical Review B, 2023, 107, .	1.1	1
1009	Exact first-principles calculation reveals universal moir $ ilde{A}$ © potential in twisted two-dimensional materials. Physical Review B, 2023, 107, .	1.1	2
1010	Tunneling-induced fractal transmission in valley Hall waveguides. Physical Review B, 2023, 107, .	1.1	0
1011	Effective medium model for graphene superlattices with electrostatic and magnetic vector potentials. Physical Review B, 2023, 107, .	1.1	1
1012	First-principles study on tuning electronic and optical properties in graphene rotation on h-BN. Chemical Physics Letters, 2023, 815, 140366.	1.2	0
1013	Transport evidence of superlattice Dirac cones in graphene monolayer on twisted boron nitride substrate. 2D Materials, 2023, 10, 025016.	2.0	3
1014	High-pressure studies of atomically thin van der Waals materials. Applied Physics Reviews, 2023, 10, .	5.5	9
1015	Highly sensitive and selective detection of enrofloxacin residues in chicken based on solution-gated graphene field-effect transistors. Journal of Electroanalytical Chemistry, 2023, 935, 117325.	1.9	1
1016	Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS ₂ and monolayer graphene. Science Advances, 2023, 9, .	4.7	6
1017	Raman spectroscopic studies on the evolution of interlayer coupling and stacking order in twisted bilayers and polytypes of WSe ₂ . Journal of Applied Physics, 2023, 133, 114301.	1.1	0
1018	微纳结构调控二维èᇿ,jé‡ʿ属çj«åŒ–物二æ¬jè°æ³¢. Scientia Sinica: Physica, Mechanica Et As	tr on 20mica	a, 2 023, , .
1019	Topological nature of dislocation networks in two-dimensional moiré materials. Physical Review B, 2023, 107, .	1.1	11
1020	Dynamic stability in spinor Bose gases in moiré lattices with square and hexagonal symmetries. Physical Review A, 2023, 107, .	1.0	0
1021	A family of robust Dirac cone materials: two-dimensional hexagonal M ₃ X ₂ (M) Tj ETQq	0 0 0 rgBT 1.3	Qverlock 1

1022	Electrical Manipulation of Spin-Dependent Anisotropy of a Dirac Cone in a Graphene Superlattice with Alternating Periodic Electrostatic and Exchange Fields. Condensed Matter, 2023, 8, 28.	0.8	0
------	---	-----	---

		CITATION R	EPORT	
#	Article		IF	Citations
1023	Two-dimensional Dirac fermions in a mass superlattice. Physical Review B, 2023, 107, .		1.1	3
1024	Hierarchies of Hofstadter butterflies in 2D covalent organic frameworks. Npj 2D Materia Applications, 2023, 7, .	ls and	3.9	0
1025	Signatures of hot carriers and hot phonons in the re-entrant metallic and semiconductir Moiré-gapped graphene. Nature Communications, 2023, 14, .	ig states of	5.8	3
1026	Tuning of the moir \tilde{A} [©] bands in graphene on hexagonal boron nitride by the periodic ele gating. 2D Materials, 2023, 10, 035003.	ctrostatic	2.0	0
1027	Moiré photonics and optoelectronics. Science, 2023, 379, .		6.0	34
1028	Ultraflexible two-dimensional Janus heterostructure superlattice: a novel intrinsic wrinkl structure. Nanoscale, 2023, 15, 8654-8661.	ed	2.8	11
1029	Tuning of Interlayer Interaction in MoS ₂ –WS ₂ van der Waa Heterostructures Using Hydrostatic Pressure. Journal of Physical Chemistry C, 2023, 12	ıls 7, 7784-7791.	1.5	1
1031	Unconventional Flat Chern Bands and 2 <i>e</i> Charges in Skyrmionic Moiré Superla Letters, 2023, 23, 4209-4215.	ttices. Nano	4.5	0
1033	A review on graphene in energy devices. AIP Conference Proceedings, 2023, , .		0.3	0
1051	Hofstadter butterfly in graphene. , 2024, , 724-731.			0
1053	Twisted bilayer graphene. , 2024, , 288-294.			0
1072	Bloch electrons in a magnetic field. , 2024, , 700-711.			0
1080	Interlayer exciton dynamics of transition metal dichalcogenide heterostructures under e fields. Nano Research, 0, , .	lectric	5.8	1
1084	Engineering correlated insulators in bilayer graphene with a remote Coulomb superlattic Materials, 2024, 23, 189-195.	ce. Nature	13.3	1
1100	Stacking engineering in layered homostructures: transitioning from 2D to 3D architectu Chemistry Chemical Physics, 2024, 26, 7988-8012.	res. Physical	1.3	0