Bio-nanocomposites for food packaging applications

Progress in Polymer Science 38, 1629-1652 DOI: 10.1016/j.progpolymsci.2013.05.008

Citation Report

#	Article	IF	CITATIONS
1	POTENTIAL APPLICATIONS OF CHITOSAN NANOPARTICLES AS NOVEL SUPPORT IN ENZYME IMMOBILIZATION. American Journal of Biochemistry and Biotechnology, 2012, 8, 203-219.	0.4	87
2	Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies, 2013, 20, 1-15.	5.6	381
3	Prevention of bacterial foodborne disease using nanobiotechnology. Nanotechnology, Science and Applications, 2014, 7, 73.	4.6	16
4	Nanocomposites of poly(3â€hydroxybutyrate)/organomodified montmorillonite: Effect of the nanofiller on the polymer's biodegradation. Journal of Applied Polymer Science, 2015, 132, .	2.6	1
5	Insertion of nano-crystalline cellulose into epoxy resin via resilin to construct a novel elastic adhesive. Cellulose, 2014, 21, 4369-4379.	4.9	20
6	Thermooxidative degradation of injection-moulded sepiolite/polyamide 66 nanocomposites. Mineralogical Magazine, 2014, 78, 1227-1239.	1.4	6
7	Carbon Nanofibers-Poly-3-hydroxyalkanoates Nanocomposite: Ultrasound-Assisted Dispersion and Thermostructural Properties. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	17
8	Barrier properties of polylactic acid/layered silicate nanocomposites for food contact applications. Polymer Science - Series A, 2014, 56, 896-906.	1.0	11
9	Photoluminescence Studies in II-VI Nanoparticles Embedded in Polymer Matrix. Defect and Diffusion Forum, 2014, 357, 95-126.	0.4	3
10	Characterization of clay platelet orientation in polylactide–montmorillonite nanocomposite films by X-ray pole figures. European Polymer Journal, 2014, 61, 274-284.	5.4	10
11	Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2014, 2, 296-303.	0.6	265
13	Anomalous impact strength for layered double hydroxideâ€palmitate/poly(εâ€caprolactone) nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
14	Polymer Films for Packaging. , 2014, , 1-8.		3
15	Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 2014, 15, 10950-10973.	4.1	212
16	Stretchable Gas Barrier Achieved with Partially Hydrogenâ€Bonded Multilayer Nanocoating. Macromolecular Rapid Communications, 2014, 35, 960-964.	3.9	39
17	Effects of nanoâ€clay type and content on the physical properties of sesame seed meal protein composite films. International Journal of Food Science and Technology, 2014, 49, 1869-1875.	2.7	34
18	New printing inks with barrier performance for packaging applications: Design and investigation. Progress in Organic Coatings, 2014, 77, 646-656.	3.9	11
19	Characterization of Poly(ε-caprolactone)-Based Nanocomposites Containing Hydroxytyrosol for Active Food Packaging. Journal of Agricultural and Food Chemistry, 2014, 62, 2244-2252.	5.2	50

TION RED

#	Article	IF	CITATIONS
20	Biodegradation assessment of PLA and its nanocomposites. Environmental Science and Pollution Research, 2014, 21, 9477-9486.	5.3	23
21	Thermal properties and crystallization behavior of thermoplastic starch/poly(É›-caprolactone) composites. Carbohydrate Polymers, 2014, 102, 746-754.	10.2	59
22	Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iranian Polymer Journal (English Edition), 2014, 23, 917-931.	2.4	30
23	Reinforcement of graphene nanoplatelets on plasticized poly(lactic acid) nanocomposites: Mechanical, thermal, morphology, and antibacterial properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
24	Adsorption, Aggregation, and Desorption of Proteins on Smectite Particles. Langmuir, 2014, 30, 11650-11659.	3.5	15
25	Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. Journal of Materials Chemistry A, 2014, 2, 15853-15863.	10.3	78
26	Graphene oxide and laponite composite films with high oxygen-barrier properties. Nanoscale, 2014, 6, 10824.	5.6	31
27	Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polymer Chemistry, 2014, 5, 5985-5993.	3.9	76
28	Ethylene control in cut flowers: Classical and innovative approaches. Postharvest Biology and Technology, 2014, 97, 83-92.	6.0	61
29	ZnO-Reinforced Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Bionanocomposites with Antimicrobial Function for Food Packaging. ACS Applied Materials & Interfaces, 2014, 6, 9822-9834.	8.0	246
30	Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science and Technology, 2014, 40, 226-241.	15.1	172
31	Nanotechnology development in food packaging: A review. Trends in Food Science and Technology, 2014, 40, 149-167.	15.1	454
32	Biopolymers for surface engineering of paper-based products. Cellulose, 2014, 21, 3145-3160.	4.9	64
33	Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innovative Food Science and Emerging Technologies, 2014, 26, 330-340.	5.6	68
34	Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Advances, 2014, 4, 29393-29428.	3.6	100
35	Progress in Nanomaterials for Food Packaging. , 2014, , .		1
36	Significantly Improving Oxygen Barrier Properties of Polylactide via Constructing Parallel-Aligned Shish-Kebab-Like Crystals with Well-Interlocked Boundaries. Biomacromolecules, 2014, 15, 1507-1514.	5.4	147
37	Integrative strategies to hybrid lamellar compounds: an integration challenge. Applied Clay Science, 2014, 100, 2-21.	5.2	48

#	Article	IF	CITATIONS
39	Smart/Intelligent Nanopackaging Technologies for the Food Sector. , 2014, , 378-391.		0
40	Laser Ablation Synthesis in Solution of Nanoantimicrobials for Food Packaging Applications. Materials Research Society Symposia Proceedings, 2015, 1804, 37-42.	0.1	2
41	Size-dependence hydrophobicity in nanocrystalline talc produced by high-intensity planetary ball milling. Materials Research Society Symposia Proceedings, 2015, 1805, 1.	0.1	4
42	Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science, 2015, 132, .	2.6	106
43	Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 411-430.	11.7	115
48	Preparation and characterization of biodegradable polymer blends from poly(3â€hydroxybutyrate)/poly(vinyl acetate)â€modified corn starch. Polymer Engineering and Science, 2015, 55, 1321-1329.	3.1	25
49	LDPE Surface Modifications Induced by Atmospheric Plasma Torches with Linear and Showerhead Configurations. Plasma Processes and Polymers, 2015, 12, 771-785.	3.0	19
50	Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO ₂ nanocomposites. Polymer International, 2015, 64, 1245-1251.	3.1	14
51	Modeling and experimental investigations of elastic and creep properties of thermoplastic polymer nanocomposites. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2015, 95, 1198-1110.	1.6	3
52	Fabrication of Robust Protein Films Using Nanoimprint Lithography. Advanced Materials, 2015, 27, 6251-6255.	21.0	29
53	Commercial Opportunities and Market Demand for Nanotechnologies in Agribusiness Sector. Journal of Technology Management and Innovation, 2015, 10, 40-51.	0.7	35
54	Oxygen Permeability Coefficient of High Density Polyethylene/Cu Nanofibers Nanocomposites below Percolation. Materials Research, 2015, 18, 1109-1114.	1.3	3
55	Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials. Materials, 2015, 8, 7106-7117.	2.9	44
58	Evaluation of Antioxidant Cellulose Nanocrystals and Applications in Gellan Gum Films. Industrial Biotechnology, 2015, 11, 59-68.	0.8	17
59	Nanotechnology in Meat Processing and Packaging: Potential Applications — A Review. Asian-Australasian Journal of Animal Sciences, 2015, 28, 290-302.	2.4	104
60	Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate Polymers, 2015, 130, 353-363.	10.2	225
61	Effect of clay mineral addition on properties of bio-based polymer blends. Applied Clay Science, 2015, 104, 277-285.	5.2	20
62	Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(<scp>l</scp> -lactide)/multi-walled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 2015, 3, 13835-13847.	10.3	49

		CITATION REPORT		
#	Article		IF	CITATIONS
63	Sustainability and Challenges of Minimally Processed Foods. Food Engineering Series, 2	2015,,279-295.	0.7	5
64	Synthesis and characterization of a novel drug-loaded polymer, poly(lactic) Tj ETQq1 1	0.784314 rgBT /Overlock	10 Tf 50 7 1.6	702 Td (acid
65	Preparation And Properties Of Bionanocomposite Films Reinforced With Nanocellulose Moroccan Alfa Fibres. Autex Research Journal, 2015, 15, 164-172.	e Isolated From	1.1	29
66	Kinks in experimental diffusion profiles of a dissolving semi-crystalline polymer explaine concentration-dependent diffusion coefficient. Physical Chemistry Chemical Physics, 2 15781-15787.	ed by a 015, 17,	2.8	10
67	Effects of preparation method on properties of poly(butylene adipate-co-terephthalate Science and Biotechnology, 2015, 24, 1679-1685.) films. Food	2.6	59
68	A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Resea 249-255.	arch, 0, 1134,	0.3	130
69	A review of the recent advances in starch as active and nanocomposite packaging film and Agriculture, 2015, 1, 1115640.	s. Cogent Food	1.4	35
70	Minimally Processed Foods. Food Engineering Series, 2015, , .		0.7	14
71	Valorisation of fishery industry wastes to manufacture sustainable packaging films: mo moisture-sorption behaviour. Journal of Cleaner Production, 2015, 91, 36-42.	odelling	9.3	18
72	Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosa Biomacromolecules, 2015, 16, 1062-1071.	an.	5.4	130
73	Quinoline-functionalized cross-linked poly(vinyl acetate) and poly(vinyl alcohol) nanop potential pH-responsive luminescent sensors. Sensors and Actuators B: Chemical, 201		7.8	20
74	Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibitic cytotoxicity. Journal of Materials Science: Materials in Medicine, 2015, 26, 5367.	n and reduced	3.6	43
75	Assessing consumers' adoption of active and intelligent packaging. British Food Jo 157-177.	urnal, 2015, 117,	2.9	53
76	Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Polymers, 2015, 121, 265-275.	Carbohydrate	10.2	276
77	Development of a chicken feet protein film containing essential oils. Food Hydrocolloid 208-215.	łs, 2015, 46,	10.7	86
78	Development of dense films from <scp><i>M</i></scp> <i>elia azedarach</i> polysacc of Applied Polymer Science, 2015, 132, .	harides. Journal	2.6	6
79	Properties and applications of nanoclay composites. , 2015, , 127-155.			14
80	Catalyst free-click polymerization: A versatile method for the preparation of soybean o poly1,2,3-triazoles as coatings with efficient biocidal activity and excellent cytocompar2015, 62, 94-108.	il based tibility. Polymer,	3.8	20

#	ARTICLE	IF	Citations
81	Facile green ring-opening polymerization of l-lactide catalyzed by natural kaoline. Polymer Chemistry, 2015, 6, 3083-3089.	3.9	7
82	Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Research Letters, 2015, 10, 57.	5.7	56
83	Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science and Technology, 2015, 43, 43-62.	15.1	118
84	Diffusion modeling in polymer–clay nanocomposites for food packaging applications through finite element analysis of TEM images. Journal of Membrane Science, 2015, 482, 92-102.	8.2	28
85	"Brill Transition―Shown by Green Material Poly(octamethylene carbonate). ACS Macro Letters, 2015, 4, 317-321.	4.8	18
86	Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohydrate Polymers, 2015, 134, 20-29.	10.2	99
87	Gas barrier properties of polymer/clay nanocomposites. RSC Advances, 2015, 5, 63669-63690.	3.6	213
88	Preparation of Poly(butylene succinate)/poly(ϵ-caprolactone) Blends Compatibilized With Poly(butylene succinate-co-ϵ-caprolactone) Copolymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 625-629.	2.2	14
89	Photothermal and morphological characterization of PLA/PCL polymer blends. Applied Physics A: Materials Science and Processing, 2015, 120, 1323-1329.	2.3	7
90	Preparation and application of agar/alginate/collagen ternary blend functional food packaging films. International Journal of Biological Macromolecules, 2015, 80, 460-468.	7.5	192
91	Polyamide blend-based nanocomposites: A review. EXPRESS Polymer Letters, 2015, 9, 211-232.	2.1	57
92	Mechanical and thermal properties of microcrystalline cellulose-reinforced soy protein isolate–gelatin eco-friendly films. RSC Advances, 2015, 5, 56518-56525.	3.6	41
93	Pickering Emulsion Polymerization. , 2015, , 1634-1639.		0
94	Cellulose Nanofiber for Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, 2015, , 323-365.	0.5	7
95	Biodegradable Polymer/Clay Nanocomposites. Advanced Structured Materials, 2015, , 109-135.	0.5	2
96	Polymer Flocculants. , 2015, , 1884-1892.		0
97	Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate Polymers, 2015, 127, 101-109.	10.2	210
98	Biodegradation of a poly(ε-caprolactone-co-l-lactide)–visible-light-sensitive TiO2 composite with an on/off biodegradation function. Polymer Degradation and Stability, 2015, 114, 65-71.	5.8	24

		CITATION REPORT		
#	Article		IF	CITATIONS
99	Thermal Degradation of Bio-nanocomposites. Engineering Materials, 2015, , 221-245.		0.6	3
100	Development of linseed oil–TiO ₂ green nanocomposites as antimicrobi Journal of Materials Chemistry B, 2015, 3, 4458-4471.	al coatings.	5.8	53
101	Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanoco synthesized via "in situ―polymerization of l-lactide with silane-modified nanosilica montmorillonite. European Polymer Journal, 2015, 66, 478-491.	imposites a and	5.4	60
102	Characterization of cetylpyridinium bromide-modified montmorillonite incorporated ce acetate nanocomposite films. Journal of Materials Science, 2015, 50, 3772-3780.	llulose	3.7	10
103	Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineerin , 1-16.	g Materials, 2015,	0.6	8
104	Environment friendly green composites based on soy protein isolate – A review. Foo 2015, 50, 174-192.	d Hydrocolloids,	10.7	179
105	Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-formi solutions, transparency, water vapor barrier and tensile properties of films. Carbohydra 2015, 129, 156-167.		10.2	321
106	Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, st thermomechanical properties of polylactide based composites. Applied Clay Science, 2 231-240.		5.2	36
107	Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineerin	g Materials, 2015,	0.6	17
108	Studies on the effect of silicon carbide nanoparticles on the thermal, mechanical, and b properties of poly(caprolactone). Journal of Applied Polymer Science, 2015, 132, .	biodegradation	2.6	10
109	The effect of peanut protein nanoparticles on characteristics of protein- and starch-bas nanocomposite films: A comparative study. Industrial Crops and Products, 2015, 77, 5	sed 65-574.	5.2	37
110	Polyhedral Oligomeric Silsesquioxanes (POSS). , 2015, , 1835-1841.			0
111	Polymer-Based Sensors. , 2015, , 1938-1944.			0
112	Poly(Arylene Ethynylene)s. , 2015, , 1658-1664.			124
113	Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lig composite films. International Journal of Biological Macromolecules, 2015, 81, 267-27		7.5	133
114	Visible and ultraviolet antibacterial behavior in PVDF–TiO2 nanocomposite films. Eur Journal, 2015, 71, 412-422.	opean Polymer	5.4	19
115	Polyacrylonitrile (PAN). , 2015, , 1745-1750.			8
116	Preparation and characterization of novel clay/PLA nanocomposites. Applied Clay Scier 87-96.	nce, 2015, 115,	5.2	30

#	Article	IF	CITATIONS
117	Syntheses and Physical Characterization of Biodegradable Poly(butylene succinate-co-butylene) Tj ETQq0 0 0 rgBT 745-751.		10 Tf 50 7 13
118	Chitosan bionanocomposites prepared in the self-organized regime. Pure and Applied Chemistry, 2015, 87, 793-803.	1.9	12
119	Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: Plastificant and reinforcement effects. Polymer Degradation and Stability, 2015, 121, 171-179.	5.8	35
120	Eco-Friendly Chitosan-Based Nanocomposites: Chemistry and Applications. Advanced Structured Materials, 2015, , 341-386.	0.5	11
121	Polymer Catalysts. , 2015, , 1864-1871.		2
122	Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB). Fibers and Polymers, 2015, 16, 1751-1758.	2.1	36
123	Ring-opening polymerization of rac-lactide mediated by tetrametallic lithium and sodium diamino-bis(phenolate) complexes. Dalton Transactions, 2015, 44, 20216-20231.	3.3	43
124	Synthesis of Cellulose Methylcarbonate in Ionic Liquids using Dimethylcarbonate. ChemSusChem, 2015, 8, 77-81.	6.8	41
125	Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 2015, 45, 264-271.	10.7	333
126	Amination and thiolation of chloroacetyl cellulose through reactive dissolution in N,N-dimethylformamide. Carbohydrate Polymers, 2015, 116, 60-66.	10.2	19
127	Cellulose nanocrystal driven crystallization of poly(<scp>d</scp> , <scp>l</scp> â€lactide) and improvement of the thermomechanical properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	39
128	Synthesis of poly(butylene succinate) using metal catalysts. Polymer Engineering and Science, 2015, 55, 1889-1896.	3.1	34
129	Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polymer Bulletin, 2015, 72, 235-254.	3.3	75
130	Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene) Tj ETQq1 1 0.784314 366-373.	rgBT /Ove 7.3	erlock 10 H 14
131	Effects of heat moisture treatment on the physicochemical properties of starch nanoparticles. Carbohydrate Polymers, 2015, 117, 605-609.	10.2	57
132	Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 2015, 117, 468-475.	10.2	223
133	Nanoindentation in polymer nanocomposites. Progress in Materials Science, 2015, 67, 1-94.	32.8	306
134	Novel nanocomposite based on reactive organoclay and photosensitive aliphatic–aromatic polyamide: Synthesis and characterization. Polymer Composites, 2015, 36, 1502-1509.	4.6	5

#	Article	IF	CITATIONS
135	LDPE/clay/carvacrol nanocomposites with prolonged antimicrobial activity. Journal of Applied Polymer Science, 2015, 132, .	2.6	36
136	Nanoscale dispersion crystal bundles of palygorskite by associated modification with phytic acid and high-pressure homogenization for enhanced colloidal properties. Powder Technology, 2015, 269, 85-92.	4.2	49
137	Polymers Extracted from Biomass. , 2016, , .		1
138	Photodegradation and Photostabilization of Poly(3-Hydroxybutyrate). Materials Research, 2016, 19, 759-764.	1.3	11
139	FILME COMESTÃVEL A BASE DE AMIDO E MICRO/NANOFIBRILAS DE CELULOSE DE CENOURA PROLONGA A VIDA ÊTIL DE CENOURA MINIMAMENTE PROCESSADA. Boletim Centro De Pesquisa De Processamento De Alimentos, 2016, 34, .	0.2	0
140	Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	75
141	Use of Pectin to Formulate Antimicrobial Packaging. , 2016, , 675-680.		1
142	Innovative Biobased Materials for Packaging Sustainability. , 2016, , 167-189.		9
143	Antimicrobial Food Packaging Based on Biodegradable Materials. , 2016, , 363-384.		24
144	Nanotechnology in healthier meat processing. , 2016, , 313-345.		2
145	Antimicrobial nanocomposites for food packaging applications: novel approaches. , 2016, , 347-386.		7
146	Chitosan-Based Bionanocomposites: Development and Perspectives in Food and Agricultural Applications. , 2016, , 315-338.		8
147	Polysaccharide-Based Membranes in Food Packaging Applications. Membranes, 2016, 6, 22.	3.0	194
148	A Sustainable Performance Assessment Framework for Plastic Film Supply Chain Management from a Chinese Perspective. Sustainability, 2016, 8, 1042.	3.2	24
149	Novel nanoparticle materials for drug/food delivery-polysaccharides. ChemistrySelect, 2016, 1, .	1.5	5
150	Reducing Postharvest Losses. , 2016, , 135-156.		7
151	Antimicrobial Packaging of Beverages. , 2016, , 281-296.		1
152	Managing Contamination Risks From Packaging Materials. , 2016, , 147-177.		2

#	Article	IF	CITATIONS
153	Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium. Polimeros, 2016, 26, 327-335.	0.7	6
154	The Downside of Antimicrobial Packaging. , 2016, , 81-93.		11
155	Microcellular injection molded polylactic acid/poly (ε-caprolactone) blends with supercritical CO ₂ : Correlation between rheological properties and their foaming behavior. Polymer Engineering and Science, 2016, 56, 939-946.	3.1	21
156	Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3â€hydroxybutyrate). Polymer International, 2016, 65, 1157-1164.	3.1	50
157	Toxicological Effects Induced by Silver Nanoparticles in Zebra Fish (Danio Rerio) and in the Bacteria Communities Living at Their Surface. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 456-462.	2.7	25
158	Influence of melt processing on biodegradable nisinâ€< scp>PBAT films intended for active food packaging applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	60
159	Effects of graphene oxide on the formation, structure and properties of bionanocomposite films made from wheat gluten with chitosan. Polymer International, 2016, 65, 1039-1045.	3.1	11
160	On the use of tris(nonylphenyl) phosphite as a chain extender in meltâ€blended poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 2016, 133, .	2.6	13
161	Toward High-Performance Poly(<scp>l</scp> -lactide) Fibers via Tailoring Crystallization with the Aid of Fibrillar Nucleating Agent. ACS Sustainable Chemistry and Engineering, 2016, 4, 3939-3947.	6.7	41
162	Opportunities for Cellulose Nanomaterials in Packaging Films: A Review and Future Trends. Journal of Renewable Materials, 2016, 4, 313-326.	2.2	52
163	The rheological property, antimicrobial stability and release evaluation of soya protein isolate/alginateâ€based films incorporated with thymol. International Journal of Food Science and Technology, 2016, 51, 2503-2511.	2.7	1
164	Effect of solubility of a hydrazide compound on the crystallization behavior of poly(<scp>l</scp> -lactide). RSC Advances, 2016, 6, 113377-113389.	3.6	12
166	Improved Permeability Properties for Bacterial Cellulose/Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling. Journal of Renewable Materials, 2016, 4, 57-65.	2.2	14
167	8. Novel nanoparticle materials for drug/food delivery-polysaccharides. , 2016, , 159-190.		0
168	Effects of surface modification and ultrasonic agitation on the properties of PHBV/ZnO nanocomposites. Pure and Applied Chemistry, 2016, 88, 1027-1035.	1.9	3
169	Powder metallurgy inspired low-temperature fabrication of high-performance stereocomplexed polylactide products with good optical transparency. Scientific Reports, 2016, 6, 20260.	3.3	55
170	Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydrate Polymers, 2016, 147, 372-378.	10.2	138
171	Probing the chain segment mobility at the interface of semi-crystalline polylactide/clay nanocomposites. European Polymer Journal, 2016, 78, 274-289.	5.4	41

#	Article	IF	CITATIONS
172	Physical and chemical characteristics of alginate-poly (vinyl alcohol) based controlled release hydrogel. Journal of Environmental Chemical Engineering, 2016, 4, 4863-4869.	6.7	17
173	Effect of high energy Î ² -radiation and addition of triallyl isocyanurate on the selected properties of polylactide. Nuclear Instruments & Methods in Physics Research B, 2016, 377, 59-66.	1.4	22
174	Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renewable and Sustainable Energy Reviews, 2016, 62, 654-664.	16.4	60
175	Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT - Food Science and Technology, 2016, 72, 149-156.	5.2	95
176	Highly Enhanced Mesophase Formation in Glassy Poly(<scp>l</scp> -lactide) at Low Temperatures by Low-Pressure CO ₂ That Provides Moderately Increased Molecular Mobility. Macromolecules, 2016, 49, 2262-2271.	4.8	46
177	Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 2016, 132, 2-10.	5.8	54
178	Nanostructured biocomposites from aliphatic polyesters and bacterial cellulose. Industrial Crops and Products, 2016, 93, 251-266.	5.2	59
179	Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydrate Polymers, 2016, 146, 208-216.	10.2	74
180	Preparation and characterization of sodium carboxymethyl cellulose/silk fibroin/graphene oxide nanocomposite films. Polymer Testing, 2016, 52, 218-224.	4.8	62
181	Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate- <i>co</i> -terephthalate). ACS Applied Materials & Interfaces, 2016, 8, 8096-8109.	8.0	102
182	Research Advancement in High-Performance Polyamides and Polyamide Blends Loaded with Layered Silicate. Polymer-Plastics Technology and Engineering, 2016, 55, 1536-1556.	1.9	10
183	PLA-based thermogel for the sustained delivery of chemotherapeutics in a mouse model of hepatocellular carcinoma. RSC Advances, 2016, 6, 44506-44513.	3.6	66
184	Gelatin-Based Nanocomposite Films. , 2016, , 339-348.		21
185	In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(butylene succinate) Composite Films. ACS Sustainable Chemistry and Engineering, 2016, 4, 2887-2897.	6.7	43
186	Cytocompatible antibacterial fibrous membranes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and quaternarized N-halamine polymer. RSC Advances, 2016, 6, 42600-42610.	3.6	36
187	Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 2016, 8, 63-70.	7.5	250
188	Effect of nanocomposite packaging on postharvest quality and reactive oxygen species metabolism of mushrooms (Flammulina velutipes). Postharvest Biology and Technology, 2016, 119, 49-57.	6.0	65
189	Environmental release of core–shell semiconductor nanocrystals from free-standing polymer nanocomposite films. Environmental Science: Nano, 2016, 3, 657-669.	4.3	29

#	ARTICLE	IF	CITATIONS
190	Sustainable Composites from Biodegradable Polyester Modified with Camelina Meal: Synergistic Effects of Multicomponents on Ductility Enhancement. ACS Sustainable Chemistry and Engineering, 2016, 4, 3228-3234.	6.7	15
191	Structural Insights into Water-Based Spider Silk Protein–Nanoclay Composites with Excellent Gas and Water Vapor Barrier Properties. ACS Applied Materials & Interfaces, 2016, 8, 25535-25543.	8.0	44
192	Intelligent Food Packaging. Comprehensive Analytical Chemistry, 2016, 74, 377-387.	1.3	15
193	Real-time tracking of the hierarchical structure of biodegradable poly(butylene succinate- co) Tj ETQq1 1 0.784314 Technology, 2016, 134, 201-208.	4 rgBT /Ov 7.8	verlock 10 Tr 19
194	Assessment of the Morphology and Interaction of PHBV/Clay Bionanocomposites: Uses as Food Packaging. Macromolecular Symposia, 2016, 367, 113-118.	0.7	7
195	Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Advances, 2016, 6, 92569-92578.	3.6	36
196	Mesophase-Mediated Crystallization of Poly(<scp>l</scp> -lactide): Deterministic Pathways to Nanostructured Morphology and Superstructure Control. Macromolecules, 2016, 49, 7387-7399.	4.8	34
197	Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids and Surfaces B: Biointerfaces, 2016, 148, 600-606.	5.0	131
198	Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 2016, 94, 800-811.	5.2	307
199	Synthesis and structural characterization of titanium and zirconium complexes containing half-salen ligands as catalysts for polymerization reactions. New Journal of Chemistry, 2016, 40, 9824-9839.	2.8	37
200	Microscopy of Nanomaterials. , 2016, , 117-140.		1
201	Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT - Food Science and Technology, 2016, 74, 338-345.	5.2	96
202	Polysaccharide based bionanocomposites, properties and applications: A review. International Journal of Biological Macromolecules, 2016, 92, 1012-1024.	7.5	153
203	Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. International Journal of Biological Macromolecules, 2016, 92, 842-849.	7.5	133
204	Multifunctional Applications of Nanocellulose-Based Nanocomposites. , 2016, , 177-204.		8
205	Silver Nanoparticles (AgNP) in the Environment: a Review of Potential Risks on Human and Environmental Health. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	109
206	Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 2016, 24, 671-681.	1.9	353
207	Biodegradable nanocomposites based on starch/polycaprolactone/compatibilizer ternary blends reinforced with natural and organoâ€modified montmorillonite. Journal of Applied Polymer Science, 2016, 133, .	2.6	30

#	Article	IF	CITATIONS
208	Responsive Food Packaging: Recent Progress and Technological Prospects. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 3-15.	11.7	147
209	Effects of simulation conditions on antibacterial performance of polypropylene and polystyrene doped with HPQM antibacterial agent. Polymer Testing, 2016, 55, 123-134.	4.8	10
210	Highly Efficient "Composite Barrier Wall―Consisting of Concentrated Graphene Oxide Nanosheets and Impermeable Crystalline Structure for Poly(lactic acid) Nanocomposite Films. Industrial & Engineering Chemistry Research, 2016, 55, 9544-9554.	3.7	15
211	Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. Sustainable Agriculture Reviews, 2016, , 59-128.	1.1	15
212	Nanobiotechnology Methods to Incorporate Bioactive Compounds in Food Packaging. Sustainable Agriculture Reviews, 2016, , 27-58.	1.1	7
213	Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. Journal of Food Science and Technology, 2016, 53, 3395-3407.	2.8	58
214	Biocidal and Antifouling Chlorinated Protein Films. ACS Biomaterials Science and Engineering, 2016, 2, 1862-1866.	5.2	16
215	Use of oxidized regenerated cellulose as bactericidal filler for food packaging applications. Cellulose, 2016, 23, 3209-3219.	4.9	14
216	Synthesis and characterization of cellulose nanocrystal-graft-poly(d-lactide) and its nanocomposite with poly(l-lactide). Polymer, 2016, 103, 365-375.	3.8	55
217	Effect of incorporation of boron nitride nanoparticles on the oxygen barrier and thermal properties of poly(3-hydroxybutyrate-co-hydroxyvalerate). RSC Advances, 2016, 6, 90973-90981.	3.6	37
218	Sodium iminoquinolates with cubic and hexagonal prismatic motifs: synthesis, characterization and their catalytic behavior toward the ROP of rac-lactide. Inorganic Chemistry Frontiers, 2016, 3, 1178-1189.	6.0	26
219	Biodegradable hybrid nanocomposites of starch/lysine and ZnO nanoparticles with shape memory properties. Materials and Design, 2016, 109, 590-595.	7.0	37
220	Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. International Journal of Food Science and Technology, 2016, 51, 1967-1978.	2.7	36
222	Nanocomposite for food encapsulation packaging. , 2016, , 421-454.		2
223	Water-induced structural changes in poly(lactic acid) and PLLA-clay nanocomposites. Polymer, 2016, 107, 211-222.	3.8	37
224	Enzymatic Synthesis of a Bio-Based Copolyester from Poly(butylene succinate) and Poly((<i>R</i>)-3-hydroxybutyrate): Study of Reaction Parameters on the Transesterification Rate. Biomacromolecules, 2016, 17, 4054-4063.	5.4	34
225	Preparation, Characterization, Bioactivity, and Long-Term Stability of Electrospun, Clay-Reinforced Poly (Îμ-Caprolactone)/Starch Hybrid Nanofibers. , 2016, , 37-54.		0
226	Nanocompounds as Formulating Aids. Food Preservation Technology, 2016, , 241-261.	0.0	0

#	Article	IF	CITATIONS
227	Standard and New Processing Techniques Used in the Preparation of Films and Coatings at the Lab Level and Scale-Up. Food Preservation Technology, 2016, , 1-23.	0.0	0
228	Biodegradable Polymer for Food Packaging: Degradation and Waste Management. Food Preservation Technology, 2016, , 531-547.	0.0	0
230	Topological characterization of nanocrystalline cellulose reinforced Poly (lactic acid) and Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites. AIP Conference Proceedings, 2016, ,	0.4	0
231	Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	29
232	Poly(lactic acid) biocomposites reinforced with ultrafine bambooâ€char: Morphology, mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 2016, 133, .	2.6	41
233	Physicochemical and antibacterial properties of chitosanâ€polyvinylpyrrolidone films containing selfâ€organized graphene oxide nanolayers. Journal of Applied Polymer Science, 2016, 133, .	2.6	49
234	Nonisothermal melt crystallization of PHB/babassu compounds. Journal of Thermal Analysis and Calorimetry, 2016, 126, 755-769.	3.6	26
235	Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. Journal of Renewable Materials, 2016, 4, 123-132.	2.2	27
236	Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science and Technology, 2016, 54, 155-164.	15.1	294
237	Stereocomplex crystallites induce simultaneous enhancement in impact toughness and heat resistance of injection-molded polylactide/polyurethane blends. RSC Advances, 2016, 6, 17008-17015.	3.6	26
238	Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea. Chemical Communications, 2016, 52, 8826-8829.	4.1	35
239	Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers, 2016, 149, 357-368.	10.2	94
240	Impact of coated calcium carbonate nanofillers and annealing treatments on the microstructure and gas barrier properties of poly(lactide) based nanocomposite films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 649-658.	2.1	14
241	Controlled biodegradation of polymers using nanoparticles and its application. RSC Advances, 2016, 6, 67449-67480.	3.6	62
242	Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International Journal of Biological Macromolecules, 2016, 91, 778-788.	7.5	157
243	<scp>PLA</scp> /functionalizedâ€gum arabic based bionanocomposite films for high gas barrier applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	33
244	Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiation Physics and Chemistry, 2016, 118, 61-69.	2.8	37
245	Active packaging with antifungal activities. International Journal of Food Microbiology, 2016, 220, 73-90.	4.7	124

#	Article	IF	Citations
246	Active coating for storage of Mozzarella cheese packaged under thermal abuse. Food Control, 2016, 64, 10-16.	5.5	27
247	Edible bio-nano-hybrid coatings for food protection based on pectins and LDH-salicylate: Preparation and analysis of physical properties. LWT - Food Science and Technology, 2016, 69, 139-145.	5.2	61
248	Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 2016, 54, 533-549.	16.4	157
250	Remarkably Enhanced Impact Toughness and Heat Resistance of poly(<scp>l</scp> -Lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. ACS Sustainable Chemistry and Engineering, 2016, 4, 111-120.	6.7	123
251	Safe and efficient membrane permeabilizing polymers based on PLLA for antibacterial applications. RSC Advances, 2016, 6, 28947-28955.	3.6	92
252	Antimicrobial PLA/TPS/gelatin sheets with enzymatically crosslinked surface containing silver nanoparticles. Journal of Applied Polymer Science, 2016, 133, .	2.6	8
253	Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 2016, 146, 36-45.	10.2	150
254	Microfibrillated cellulose and borax as mechanical, O 2 -barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP. Carbohydrate Polymers, 2016, 143, 179-187.	10.2	34
255	Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 2016, 93, 276-289.	5.2	186
256	Characterization of chitosan–nanoclay bionanocomposite active films containing milk thistle extract. International Journal of Biological Macromolecules, 2016, 86, 613-621.	7.5	93
257	Innovative enhancement of gas barrier properties of biodegradable poly(butylene succinate) nanocomposite films by introducing confined crystals. RSC Advances, 2016, 6, 2530-2536.	3.6	14
258	Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 2016, 213, 172-180.	9.6	223
259	New class of shear oriented, biodegradable packaging material. Composites Part B: Engineering, 2016, 92, 1-8.	12.0	11
260	Bio-nanocomposite films reinforced with organo-modified layered double hydroxides: Preparation, morphology and properties. Applied Clay Science, 2016, 126, 72-80.	5.2	36
261	Effects of two organomodified clays intended to food contact materials on the genomic instability and gene expression of hepatoma cells. Food and Chemical Toxicology, 2016, 88, 57-64.	3.6	4
262	Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydrate Polymers, 2016, 140, 408-415.	10.2	95
263	Innovations in Food Packaging Materials. Food Engineering Series, 2016, , 383-412.	0.7	2
264	Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 2016, 93, 290-301.	5.2	112

#	Article	IF	CITATIONS
265	Poly(butylene succinate) bionanocomposites: a novel bio-organo-modified layered double hydroxide for superior mechanical properties. RSC Advances, 2016, 6, 4780-4791.	3.6	27
266	Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT - Food Science and Technology, 2016, 68, 454-461.	5.2	146
267	Fabrication and characterization chitosan/functionalized zinc oxide bionanocomposites and study of their antibacterial activity. Composite Interfaces, 2016, 23, 175-189.	2.3	19
268	Polyolefin in Packaging and Food Industry. Springer Series on Polymer and Composite Materials, 2016, , 181-199.	0.7	13
269	Nano-TiO 2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO 2 migration from film matrix in food simulants. Innovative Food Science and Emerging Technologies, 2016, 33, 145-153.	5.6	86
270	Simple sodium and potassium phenolates as catalysts for highly isoselective polymerization of rac-lactide. Catalysis Science and Technology, 2016, 6, 515-520.	4.1	54
271	Research Progress on Properties and Applications of Polymer/Clay Nanocomposite. Polymer-Plastics Technology and Engineering, 2016, 55, 684-703.	1.9	60
272	Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 2016, 35, 447-470.	3.1	294
273	Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chemistry, 2016, 197, 250-256.	8.2	77
274	Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly(lactic) Tj ETQq1 1 0.7	84314 rgB 1.4	T /Overlock 1
274 275	Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly(lactic) Tj ETQq1 1 0.74 Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. Journal of Food Measurement and Characterization, 2016, 10, 137-147.	84314 rgB 1.4 3.2	T /Overlock 1 32
	Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer.	1.7	20
275	Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. Journal of Food Measurement and Characterization, 2016, 10, 137-147. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and	3.2	32
275 276	 Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. Journal of Food Measurement and Characterization, 2016, 10, 137-147. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 2016, 135, 18-26. Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied 	3.2 10.2 2.6	32 276 54
275 276 277	Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. Journal of Food Measurement and Characterization, 2016, 10, 137-147. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 2016, 135, 18-26. Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied Polymer Science, 2016, 133, . Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic) Tj ETQq110.	3.2 10.2 2.6 784314 rg	32 276 54 ;BT /Overlock
275 276 277 278	Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. Journal of Food Measurement and Characterization, 2016, 10, 137-147. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 2016, 135, 18-26. Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied Polymer Science, 2016, 133, . Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic) Tj ETQq1 1 0. 53, 59-67. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend	3.2 10.2 2.6 784314 rg 3.1	32 276 54 8T /Overlock 35
275 276 277 278 279	 Physical, mechanical, and antimicrobial properties of ethylene vinyl alcohol copolymer/chitosan/nano-ZnO (ECNZn) nanocomposite films incorporating glycerol plasticizer. Journal of Food Measurement and Characterization, 2016, 10, 137-147. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 2016, 135, 18-26. Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied Polymer Science, 2016, 133, . Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic) Tj ETQq1 1 0. 53, 59-67. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT - Food Science and Technology, 2016, 65, 398-405. Supramolecular Polymer Networkâ€Mediated Selfâ€Assembly of Semicrystalline Polymers with Excellent 	1.4 3.2 10.2 2.6 784314 rg 3.1	23 32 276 54 8T /Overlo ck 35 175

#	Article	IF	CITATIONS
283	One-step preparation of banana powder/silver nanoparticles composite films. Journal of Food Science and Technology, 2017, 54, 497-506.	2.8	33
284	Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites. Journal of Polymer Engineering, 2017, 37, 559-576.	1.4	6
285	Highly thermostable and crystalline poly(butylene adipate) bionanocomposites prepared by <i>in situ</i> polycondensation with organically modified Moroccan beidellite clay. Polymer International, 2017, 66, 939-949.	3.1	10
286	Poly(lactic acid)â€based nanocomposites. Polymers for Advanced Technologies, 2017, 28, 919-930.	3.2	52
287	Flexible Multistate Data Storage Devices Fabricated Using Natural Lignin at Room Temperature. ACS Applied Materials & Interfaces, 2017, 9, 6207-6212.	8.0	81
288	Morphological and Thermochemical Changes upon Autohydrolysis and Microemulsion Treatments of Coir and Empty Fruit Bunch Residual Biomass to Isolate Lignin-Rich Micro- and Nanofibrillar Cellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 2483-2492.	6.7	41
289	Edible nano-bio-composite film cargo device for food packaging applications. Food Packaging and Shelf Life, 2017, 11, 98-105.	7.5	47
290	Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer, 2017, 113, 92-104.	3.8	32
291	Titanium-catalyzed transesterification as a route to the synthesis of fully biobased poly(3-hydroxybutyurate- co -butylene dicarboxylate) copolyesters, from their homopolyesters. European Polymer Journal, 2017, 90, 92-104.	5.4	9
292	Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 2017, 101, 254-272.	7.5	228
293	Identification of trace additives in polymer materials by attenuated total reflection Fourier transform infrared mapping coupled with multivariate curve resolution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 180, 154-160.	3.9	9
294	Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecological Indicators, 2017, 76, 230-239.	6.3	79
295	Modeling of oxygen permeation through filled polymeric layers for barrier coatings. Journal of Applied Polymer Science, 2017, 134, .	2.6	6
296	Nucleobase-functionalized supramolecular polymer films with tailorable properties and tunable biodegradation rates. Polymer Chemistry, 2017, 8, 1454-1459.	3.9	11
297	Critical review of the migration potential of nanoparticles in food contact plastics. Trends in Food Science and Technology, 2017, 63, 39-50.	15.1	160
298	Active Nanocomposites in Food Contact Materials. Sustainable Agriculture Reviews, 2017, , 1-44.	1.1	4
300	New approaches and future aspects of antibacterial food packaging: from nanoparticles coating to nanofibers and nanocomposites, with foresight to address the regulatory uncertainty. , 2017, , 533-565.		9
301	Bionanocomposites: smart biodegradable packaging material for food preservation. , 2017, , 79-110.		17

#	Article	IF	CITATIONS
302	Engineering of crosslinked poly(isothiouronium methylstyrene) microparticles of narrow size distribution for antibacterial applications. Polymers for Advanced Technologies, 2017, 28, 188-192.	3.2	3
303	Compatibilization of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate)–poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science, 2017, 134, .	2.6	30
304	PLA Nanocomposites Reinforced with Cellulose Nanocrystals from <i>Posidonia oceanica</i> and ZnO Nanoparticles for Packaging Application. Journal of Renewable Materials, 2017, 5, 103-115.	2.2	34
305	Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 2017, 169, 264-271.	10.2	134
306	Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food and Bioprocess Technology, 2017, 10, 1441-1453.	4.7	73
307	Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. International Journal of Biological Macromolecules, 2017, 102, 789-795.	7.5	41
308	Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. International Journal of Biological Macromolecules, 2017, 102, 1304-1311.	7.5	22
309	Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids, 2017, 71, 76-84.	10.7	190
310	Thermal Performance of a Blend System Based on Poly(l-lactic acid) and an Aliphatic Multiamide Derivative of 1H-Benzotriazole. Journal of Macromolecular Science - Physics, 2017, 56, 64-73.	1.0	4
311	Properties and Characteristics of Multi-Layered Films from Tilapia Skin Gelatin and Poly(Lactic Acid). Food Biophysics, 2017, 12, 222-233.	3.0	25
312	Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydrate Polymers, 2017, 169, 467-479.	10.2	76
313	Oxygen scavenging polymer coating prepared by hydrophobic modification of glucose oxidase. Journal of Coatings Technology Research, 2017, 14, 489-495.	2.5	9
314	Development and characterization of bacterial cellulose reinforced biocomposite films based on protein from buckwheat distiller's dried grains. International Journal of Biological Macromolecules, 2017, 96, 353-360.	7.5	51
315	Antimicrobial behavior and photostability of polyvinyl chloride/1â€vinylimidazole nanocomposites loaded with silver or copper nanoparticles. Journal of Vinyl and Additive Technology, 2017, 23, E25.	3.4	16
316	Design of high-performance poly(l-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereocomplex crystallization. Polymer, 2017, 108, 38-49.	3.8	41
317	Cellulose Functionalized High Molecular Weight Stereocomplex Polylactic Acid Biocomposite Films with Improved Gas Barrier, Thermomechanical Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 6835-6844.	6.7	67
318	The potential use of dairy by-products for the production of nonfood biomaterials. Critical Reviews in Environmental Science and Technology, 2017, 47, 621-642.	12.8	19
319	Active starch-gelatin films for shelf-life extension of marinated salmon. LWT - Food Science and Technology, 2017, 84, 189-195.	5.2	35

#	Article	IF	CITATIONS
320	Enhancement of discharged energy density of poly(ethylene oxide) by soy protein isolate. Journal of Applied Polymer Science, 2017, 134, 45214.	2.6	3
321	Cost Reduction and Mechanical Enhancement of Biopolyesters Using an Agricultural Byproduct from Konjac Glucomannan Processing. ACS Sustainable Chemistry and Engineering, 2017, 5, 6498-6506.	6.7	9
322	Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. International Journal of Biological Macromolecules, 2017, 103, 669-675.	7.5	51
323	Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites. Composites Science and Technology, 2017, 148, 89-96.	7.8	21
324	Potassium complexes supported by monoanionic tetradentate amino-phenolate ligands: synthesis, structure and catalysis in the ring-opening polymerization of rac-lactide. Dalton Transactions, 2017, 46, 6087-6097.	3.3	16
326	Design for Sustainability in Composite Product Development. , 2017, , 273-294.		1
327	Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 2017, 70, 152-162.	10.7	113
328	Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 2017, 15, 193-204.	16.2	54
329	Nanotechnology for Food Packaging and Food Quality Assessment. Advances in Food and Nutrition Research, 2017, 82, 149-204.	3.0	46
331	Exfoliation of layered zirconium phosphate nanoplatelets by melt compounding. Materials and Design, 2017, 122, 247-254.	7.0	13
332	One-step surface grafting of organic nanoparticles: in situ deposition of antimicrobial agents vanillin and chitosan on polyethylene packaging films. Journal of Materials Chemistry B, 2017, 5, 2655-2661.	5.8	21
333	Starch as ion-based gate dielectric for oxide thin film transistors. Organic Electronics, 2017, 45, 203-208.	2.6	16
334	Properties of biodegradable poly(butylene succinate) (PBS) composites with carbon black. Polymer Science - Series A, 2017, 59, 416-424.	1.0	7
335	Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers. Journal of Plastic Film and Sheeting, 2017, 33, 309-336.	2.2	22
336	Conformational Regulation and Crystalline Manipulation of PLLA through a Self-Assembly Nucleator. Biomacromolecules, 2017, 18, 1440-1448.	5.4	58
337	Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis, 2017, 25, 245-253.	1.9	240
338	Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International Journal of Biological Macromolecules, 2017, 97, 373-381.	7.5	131
339	PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polymer-Plastics Technology and Engineering, 2017, 56, 1307-1344.	1.9	181

#	Article	IF	CITATIONS
340	Sustainable supply-chain: evolution of the quality characteristics of strawberries stored in green film packaging. CYTA - Journal of Food, 2017, 15, 211-219.	1.9	22
341	Effect of Varying Filler Concentration on Zinc Oxide Nanoparticle Embedded Chitosan Films as Potential Food Packaging Material. Journal of Polymers and the Environment, 2017, 25, 1087-1098.	5.0	89
342	Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. International Journal of Biological Macromolecules, 2017, 96, 340-352.	7.5	178
343	Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films. Applied Clay Science, 2017, 150, 138-146.	5.2	66
344	Utilization of Edible Films and Coatings as Packaging Materials for Preservation of Cheeses. Journal of Packaging Technology and Research, 2017, 1, 87-99.	1.5	26
346	Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay. Carbohydrate Polymers, 2017, 176, 117-126.	10.2	13
347	Mono-BHT heteroleptic magnesium complexes: synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters. Dalton Transactions, 2017, 46, 12132-12146.	3.3	53
348	Advances in Soy Protein-Based Nanocomposites. , 2017, , 39-66.		0
349	Nanotechnology Applications in Food Packaging Industry. , 2017, , 87-113.		4
350	Nanotechnology: Meat Safety Revolution. , 2017, , 45-64.		1
351	Optimizing the balance between stiffness and flexibility by tuning the compatibility of a poly(lactic) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
352	A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry, 2017, 19, 4737-4753.	9.0	251
355	Low-temperature crystallization of poly(butylene succinate). European Polymer Journal, 2017, 94, 384-391.	5.4	36
356	Luminescent behavior of semiconductor doped polyamide. AIP Conference Proceedings, 2017, , .	0.4	2
357	Poly(lactic acid)/starch composites: Effect of microstructure and morphology of starch granules on performance. Journal of Applied Polymer Science, 2017, 134, 45504.	2.6	24

358	Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT - Food Science and Technology, 2017, 86, 116-122.	5.2	35
359	Engineering of crosslinked polyisothiouronium methylstyrene microparticles of narrow size distribution for antibacterial applications. Polymers for Advanced Technologies, 2017, 28, 1730-1734.	3.2	2
360	The influence of moisture content on the polymer structure of polyvinyl alcohol in dispersion barrier coatings and its effect on the mass transport of oxygen. Journal of Coatings Technology Research, 2017, 14, 1345-1355.	2.5	28

#	Article	IF	CITATIONS
361	Activity of chitosan–lysozyme nanoparticles on the growth, membrane integrity, and β-1,3-glucanase production by Aspergillus parasiticus. 3 Biotech, 2017, 7, 279.	2.2	11
362	Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films. LWT - Food Science and Technology, 2017, 86, 318-326.	5.2	58
364	Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. Journal of Materials Chemistry A, 2017, 5, 19729-19737.	10.3	67
366	Membranes for Continuous Nonenergized Air Freshener Perfume Delivery. Industrial & Engineering Chemistry Research, 2017, 56, 13791-13799.	3.7	2
367	Rheology, Mechanical Properties, and Barrier Properties of Poly(lactic acid). Advances in Polymer Science, 2017, , 303-341.	0.8	15
368	Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules, 2017, 104, 687-707.	7.5	378
369	Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydrate Polymers, 2017, 174, 235-242.	10.2	49
370	Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. European Polymer Journal, 2017, 94, 111-124.	5.4	49
371	A novel solution blending method for using olive oil and corn oil as plasticizers in chitosan based organoclay nanocomposites. Carbohydrate Polymers, 2017, 157, 550-557.	10.2	47
372	Effect of montmorillonite clay addition on the morphological and physical properties of <i>Jatropha curcas</i> L. and <i>Glycine max</i> L. protein concentrate films. Journal of Applied Polymer Science, 2017, 134, .	2.6	3
373	Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocolloids, 2017, 64, 70-77.	10.7	35
374	Introduction of Biopolymer Composites: What to Do in Electronics?. , 2017, , 1-12.		7
375	Chitosanâ€konjac glucomannanâ€cassava starchâ€nanosilver composite films with moisture resistant and antimicrobial properties for foodâ€packaging applications. Starch/Staerke, 2017, 69, 1600210.	2.1	37
376	Surface characteristics and enhancement of water vapour properties of paperboard coated with polycaprolactone nanocomposites. Journal of Adhesion Science and Technology, 2017, 31, 466-486.	2.6	11
377	Mechanical and thermal properties of PLA/halloysite bio-nanocomposite films: effect of halloysite nanoclay concentration and addition of glycerol. Journal of Polymer Engineering, 2017, 37, 381-389.	1.4	9
378	Characterization of nanocomposite film based on chitosan intercalated in clay platelets by electron beam irradiation. Carbohydrate Polymers, 2017, 157, 226-235.	10.2	49
379	Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocolloids, 2017, 63, 201-208.	10.7	129
380	Enhanced anti-aging and mechanical properties of polyamide 1010 by sol-hydrothermal synthetic titanium dioxide-coated kaolinite addition. Journal of Alloys and Compounds, 2017, 693, 381-388.	5.5	9

#	Article	IF	CITATIONS
381	Investigation of polyethyleneâ€graftedâ€maleic anhydride presence as a compatibilizer on various properties of nanocomposite films based on polyethylene/ethylene vinyl alcohol/ nanoclay. Polymers for Advanced Technologies, 2017, 28, 449-462.	3.2	12
909	Development and material properties of poly(lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 707 Td (acid)/p		/droxybutyr
382	nanocomposites. Journal of Applied Polymer Science, 2017, 134, .	2.6	Э
383	Gas Permeability and Permselectivity of Poly(L‣actic Acid)/SiO <i>_x</i> Film and Its Application in Equilibriumâ€Modified Atmosphere Packaging for Chilled Meat. Journal of Food Science, 2017, 82, 97-107.	3.1	21
384	Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. International Journal of Biological Macromolecules, 2017, 95, 306-313.	7.5	194
385	Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers, 2017, 156, 108-117.	10.2	94
386	Preparation of modified-TiO2/PLA nanocomposite films: Micromorphology, photo-degradability and antibacterial studies. AIP Conference Proceedings, 2017, , .	0.4	7
387	Utilization of amylopectin-grafted-poly(hexyl methacrylate) as bio-compatible agent for polypropylene/starch polymers blend. IOP Conference Series: Materials Science and Engineering, 2017, 223, 012015.	0.6	0
388	Bionanocomposites for Food Packaging Applications. , 2017, , 363-379.		32
389	Natural bacterial biodegradable medical polymers. , 2017, , 257-277.		11
390	Biodegradable food packaging nanocomposites based on ZnO-reinforced polyhydroxyalkanoates. , 2017, , 185-221.		5
391	The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging. , 2017, , 637-697.		25
392	Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polimeros, 2017, 27, 320-329.	0.7	22
393	Polyhydroxyalkanoates in the Food Packaging Industry. , 2017, , 153-177.		19
394	Preparation of bionanocomposites and bionanomaterials from agricultural wastes. , 2017, , 341-371.		2
395	Biodegradable polymernanocomposites for packaging applications. , 2017, , 329-363.		10
396	Effects of Corn Starch and Kappaphycus alvarezii Seaweed Blend Concentration on the Optical, Mechanical, and Water Vapor Barrier Properties of Composite Films. BioResources, 2017, 13, .	1.0	8
397	New trends in the food industry: application of nanosensors in food packaging. , 2017, , 773-804.		20
398	The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid) Films. Materials, 2017, 10, 546.	2.9	42

#	Article	IF	CITATIONS
399	Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application. Materials, 2017, 10, 667.	2.9	38
400	Antimicrobial Polymers in the Nano-World. Nanomaterials, 2017, 7, 48.	4.1	121
401	Preparation of Nanocomposites of Poly(ε-caprolactone) and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers, 2017, 9, 322.	4.5	19
402	Spectroscopy and microscopy of microfibrillar and nanofibrillar composites. , 2017, , 279-299.		2
403	Biopolymer/clay nanocomposites as the high barrier packaging material: recent advances. , 2017, , 425-463.		8
404	High barrier composite materials based on renewable sources for food packaging applications. , 2017, , 45-78.		4
405	Nanoencapsulation of flavor and aromas in food packaging. , 2017, , 567-601.		8
406	Nanotechnology: An Untapped Resource for Food Packaging. Frontiers in Microbiology, 2017, 8, 1735.	3.5	228
407	Properties of Polystyrene Clay Nanocomposites Prepared Using Two New Imidazolium Surfactants. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	10
408	PHB/Bentonite Compounds. Effect of Clay Modification and Thermal Aging on Properties. Materials Research, 2017, 20, 1503-1510.	1.3	6
409	Bionanocomposites. , 2017, , 239-272.		5
410	Alginate-Based Hybrid Nanocomposite Materials. , 2017, , 603-648.		7
411	A Relook at Food Packaging for Cost Effective by Incorporation of Novel Technologies. Journal of Packaging Technology and Research, 2017, 1, 67-85.	1.5	12
413	MMT and LDH organo-modification with surfactants tailored for PLA nanocomposites. EXPRESS Polymer Letters, 2017, 11, 163-175.	2.1	16
414	Food applications of nanostructured antimicrobials. , 2017, , 35-74.		8
415	New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. EXPRESS Polymer Letters, 2017, 11, 531-544.	2.1	95
416	Microalgae biopeptides applied in nanofibers for the development of active packaging. Polimeros, 2017, 27, 290-297.	0.7	12
417	Study of the structure/property relationship of nanomaterials for development of novel food packaging. , 2017, , 265-294.		2

#	Article	IF	Citations
418	Effect of surface property of halloysite on the crystallization behavior of PBAT. Applied Clay Science, 2018, 157, 218-226.	5.2	68
419	Influence of sepiolite on thermal, mechanical and biodegradation properties of poly-3-hydroxybutyrate- co -3-hydroxyvalerate nanocomposites. Applied Clay Science, 2018, 156, 11-19.	5.2	28
420	Influence of cellulose nanocrystal on strength and properties of low density polyethylene and thermoplastic starch composites. Industrial Crops and Products, 2018, 115, 298-305.	5.2	55
421	Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 2018, 23, 383-395.	1.9	236
422	Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. Journal of Food Science, 2018, 83, 1299-1310.	3.1	100
423	Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization. Food Packaging and Shelf Life, 2018, 16, 103-111.	7.5	96
424	How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review. Journal of Membrane Science, 2018, 556, 393-418.	8.2	147
425	Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. International Journal of Biological Macromolecules, 2018, 115, 227-235.	7.5	77
426	Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 2018, 112, 567-575.	7.5	94
427	Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends in Food Science and Technology, 2018, 74, 1-11.	15.1	72
428	A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydrate Polymers, 2018, 189, 48-55.	10.2	166
429	Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocolloids, 2018, 80, 195-205.	10.7	84
430	Supramolecular Approach for Efficient Processing of Polylactide/Starch Nanocomposites. ACS Omega, 2018, 3, 1069-1080.	3.5	10
432	Modern Trends and Applications of Gas Transport Through Various Polymers. , 2018, , 363-389.		3
433	Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein Nanoparticle Films. Food Biophysics, 2018, 13, 25-36.	3.0	40
434	Diffusion in Materials Science and Technology. , 2018, , 261-275.		0
435	Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydrate Polymers, 2018, 183, 267-277.	10.2	46
436	Modern Trends and Applications of Solvent/Gas Transport Through Various Polymers and Their Nanocomposites. , 2018, , 15-33.		0

#	Article	IF	CITATIONS
437	Bioâ€nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polymer International, 2018, 67, 386-392.	3.1	50
438	Nanotechnology: current uses and future applications in the food industry. 3 Biotech, 2018, 8, 74.	2.2	153
439	Facile preparation of Eu3+ and Fâ~' co-doped luminescent hydroxyapatite polymer composites via the photo-RAFT polymerization. Journal of the Taiwan Institute of Chemical Engineers, 2018, 83, 184-191.	5.3	10
440	Sustainable packaging biocomposites from polylactic acid and wheat straw: Enhanced physical performance by solid state shear milling process. Composites Science and Technology, 2018, 158, 34-42.	7.8	62
441	Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydrate Polymers, 2018, 184, 453-464.	10.2	302
442	Structure and stability analysis of biocompatible hydroxyapatite reinforced chitosan nanocomposite. Polymer Composites, 2018, 39, E573.	4.6	6
443	Synergism Effect of Surfactant and Inorganic Salt on the Properties of Starch/Poly(Vinyl Alcohol) Film. Starch/Staerke, 2018, 70, 1700146.	2.1	5
444	Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids, 2018, 82, 116-123.	10.7	172
445	A review: Breathable films for packaging applications. Trends in Food Science and Technology, 2018, 76, 15-27.	15.1	44
446	Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers, 2018, 193, 19-27.	10.2	514
447	Enhancing the Oxygen-Barrier Properties of Polylactide by Tailoring the Arrangement of Crystalline Lamellae. ACS Sustainable Chemistry and Engineering, 2018, 6, 6247-6255.	6.7	33
448	The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloids, 2018, 81, 456-466.	10.7	71
449	Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, 2018, 80, 1-38.	24.7	155
450	Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends in Food Science and Technology, 2018, 75, 129-145.	15.1	55
451	Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. International Journal of Biological Macromolecules, 2018, 113, 1080-1091.	7.5	33
452	Nanostructures for delivery of natural antimicrobials in food. Critical Reviews in Food Science and Nutrition, 2018, 58, 2202-2212.	10.3	56
453	Dissimilar Tendencies of Innovative Green Clay Organo-Modifier on the Final Properties of Poly(ε-caprolactone) Based Nanocomposites. Journal of Polymers and the Environment, 2018, 26, 716-727.	5.0	13
454	The Influence of Artificial Photodegradation on Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/Graphite Nanosheets (GNS) Nanocomposites. Journal of Polymers and the Environment, 2018, 26, 1511-1519	5.0	10

#	Article	IF	CITATIONS
455	Layered double hydroxides/reduced graphene oxide nanocomposites with enhanced barrier properties. Polymer Composites, 2018, 39, 3841-3848.	4.6	11
456	Gas barrier and optical properties of cellulose nanofiber coatings with dispersed TiO 2 nanoparticles. Surface and Coatings Technology, 2018, 343, 131-137.	4.8	25
457	Use of nonthermal technologies in the production of functional beverages from vegetable ingredients to preserve heatâ€labile phytochemicals. Journal of Food Processing and Preservation, 2018, 42, e13506.	2.0	10
458	Bio- and Nanosorbents from Natural Resources. Springer Series on Polymer and Composite Materials, 2018, , .	0.7	0
459	Mechanical behavior of biopolymer composite coatings on plastic films by depth-sensing indentation – A nanoscale study. Journal of Colloid and Interface Science, 2018, 512, 638-646.	9.4	10
460	Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement. Applied Surface Science, 2018, 434, 1086-1100.	6.1	32
461	Functional Biopolymer Composites. Springer Series on Polymer and Composite Materials, 2018, , 159-182.	0.7	7
462	Polyphenol-induced cellulose nanofibrils anchored graphene oxide as nanohybrids for strong yet tough soy protein nanocomposites. Carbohydrate Polymers, 2018, 180, 354-364.	10.2	53
463	Synthesis of lactide/ <i>É›</i> â€caprolactone quasiâ€random copolymer by using rationally designed mononuclear aluminum complexes with modified βâ€ketiminato ligand. Journal of Polymer Science Part A, 2018, 56, 203-212.	2.3	20
464	Biodegradation of gamma irradiated poly-3-hydroxybutyrate/sepiolite nanocomposites. International Biodeterioration and Biodegradation, 2018, 126, 1-9.	3.9	12
465	Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. International Journal of Biological Macromolecules, 2018, 107, 1724-1731.	7.5	134
466	Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. International Journal of Environmental Science and Technology, 2018, 15, 1347-1380.	3.5	78
467	Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. International Journal of Biological Macromolecules, 2018, 107, 17-27.	7.5	73
468	Polymer Based Hybrid Nanocomposites; A Progress Toward Enhancing Interfacial Interaction and Tailoring Advanced Applications. Chemical Record, 2018, 18, 759-775.	5.8	16
469	Photo-producible and photo-degradable starch/TiO2 bionanocomposite as a food packaging material: Development and characterization. International Journal of Biological Macromolecules, 2018, 106, 661-669.	7.5	53
470	Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. International Journal of Biological Macromolecules, 2018, 107, 615-625.	7.5	130
471	The starch nanocrystal filled biodegradable poly(Îμ-caprolactone) composite membrane with highly improved properties. Carbohydrate Polymers, 2018, 182, 115-122.	10.2	38
472	Preparation and characterization of nanocrystalline cellulose/Eucommia ulmoides gum nanocomposite film. Carbohydrate Polymers, 2018, 181, 825-832.	10.2	70

#	ARTICLE	IF	CITATIONS
473	Perspectives of Bio-nanocomposites for Food Packaging Applications. , 2018, , 1-32.		15
474	Chitosan-Based Bionanocomposite for Packaging Applications. , 2018, , 107-124.		0
475	Polysaccharides-Based Bionanocomposites for Food Packaging Applications. , 2018, , 191-208.		7
476	The bio-touch: Increasing coating functionalities via biomass-derived components. Surface and Coatings Technology, 2018, 341, 2-14.	4.8	6
477	Classification and Operating Principles of Nanodevices. Lecture Notes in Nanoscale Science and Technology, 2018, , 147-206.	0.8	0
478	Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Research International, 2018, 105, 637-644.	6.2	45
479	A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules, 2018, 109, 273-286.	7.5	796
480	Preparation and characterisation of poly(vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials. Journal of Materials Science, 2018, 53, 3455-3469.	3.7	47
481	Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydrate Polymers, 2018, 183, 102-109.	10.2	195
482	Layer Double Hydroxide Reinforced Polymer Bionanocomposites for Packaging Applications. , 2018, , 269-290.		4
483	Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 165-199.	11.7	583
484	Influence of PEG on Mechanical Properties and Biodegradability of Composites Based on PLA and Starch. Starch/Staerke, 2018, 70, 1700268.	2.1	36
485	Effects of Aging and Different Mechanical Recycling Processes on the Structure and Properties of Poly(lactic acid)-clay Nanocomposites. Journal of Polymers and the Environment, 2018, 26, 2142-2152.	5.0	20
486	Investigation the effect of graphene oxide and gelatin/starch weight ratio on the properties of starch/gelatin/GO nanocomposite films: The RSM study. International Journal of Biological Macromolecules, 2018, 109, 1019-1028.	7.5	43
487	Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Advanced Functional Materials, 2018, 28, 1703868.	14.9	205
488	Alginate-Based Nanosorbents for Water Remediation. Springer Series on Polymer and Composite Materials, 2018, , 103-121.	0.7	0
489	Sugar Palm Starch-Based Composites for Packaging Applications. , 2018, , 125-147.		73
490	Biopolymeric bilayer films produced by co-extrusion film blowing. Polymer Testing, 2018, 65, 35-43.	4.8	29

#	Article	IF	CITATIONS
491	Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International Journal of Biological Macromolecules, 2018, 106, 681-691.	7.5	155
492	Evaluation of hydrolytic degradation of bionanocomposites through fourier transform infrared spectroscopy. Polimeros, 2018, 28, 348-354.	0.7	11
493	Effect of Mesoporous Nanoparticles from LCD Glass Panels Waste toward Polypropylene Based Hybrid Composites. , 2018, , .		0
494	Sustainable Development of Polysaccharide Polyelectrolyte Complexes as Eco-Friendly Barrier Materials for Packaging Applications. ACS Symposium Series, 2018, , 109-123.	0.5	6
496	Synthesis of Film Nanocomposites under Laser Ablation and Drift Embedding of Nanoparticles into Polymer in Supercritical Carbon Dioxide. Russian Journal of Physical Chemistry B, 2018, 12, 1160-1165.	1.3	5
498	Chitosan-Based Edible Membranes for Food Packaging. , 2018, , 237-267.		1
499	Bio-nanocomposites in Packaging: Business Model for Products' Commercialisation. , 2018, , 147-172.		0
500	Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers, 2018, 10, 1249.	4.5	59
501	Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. Polymers, 2018, 10, 1232.	4.5	19
502	Chitosan-Based Nanocomposites in Food Packaging. , 2018, , 269-285.		5
503	Interaction Phenomena Between Packaging and Product. , 2018, , 33-56.		2
504	Toplinska i mehaniÄka svojstva mjeÅ _i avina na bazi termoplastiÄnog Å _i kroba. Kemija U Industriji, 2018, 67, P21-P31.	0.3	0
505	Toxicity and Safety Evaluation of Nanoclays. , 2018, , 57-76.		7
506	Moisture Absorption Behaviour of Biopolymer Polycapralactone (PCL) / Organo Modified Montmorillonite Clay (OMMT) biocomposite films. IOP Conference Series: Materials Science and Engineering, 2018, 346, 012027.	0.6	8
507	Bacteriostatic Effect of a Calcined Waste Clamshell-Activated Plastic Film for Food Packaging. Materials, 2018, 11, 1370.	2.9	11
508	Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product. Nano Structures Nano Objects, 2018, 16, 45-58.	3.5	58
509	Mechanical and solubility properties of bio-nanocomposite film of semi refined kappa carrageenan/ZnO nanoparticles. AIP Conference Proceedings, 2018, , .	0.4	15
510	Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials, 2018, 11, 1893.	2.9	55

#	Article	IF	CITATIONS
511	Bionanocomposite Films for Food Packaging Applications. , 2018, , .		32
512	Effects of Zinc Oxide Nanoparticles on the Properties of Pectin/Alginate Edible Films. International Journal of Polymer Science, 2018, 2018, 1-9.	2.7	58
514	Flame retarded poly(lactic acid): A review. EXPRESS Polymer Letters, 2018, 12, 396-417.	2.1	80
515	Crosslinking of agar by diisocyanates. Carbohydrate Polymers, 2018, 202, 454-460.	10.2	21
516	Development and Characterization of Polyamide-Supported Chitosan Nanocomposite Membranes for Hydrophilic Pervaporation. Polymers, 2018, 10, 868.	4.5	30
517	Lowâ€Temperature Sintering of Stereocomplexâ€Type Polylactide Nascent Powder: From Compression Molding to Injection Molding. Macromolecular Materials and Engineering, 2018, 303, 1800178.	3.6	14
518	Release of essential oil constituent from thermoplastic starch/layered silicate bionanocomposite film as a potential active packaging material. European Polymer Journal, 2018, 109, 64-71.	5.4	30
519	Enhanced durability of sustainable poly (lactic acid)-based composites with renewable starch and wood flour. Journal of Cleaner Production, 2018, 203, 328-339.	9.3	25
520	Composites for « white and green » solutions: Coupling UV resistance and chain extension effect from poly(butylene succinate) and layered double hydroxides composites. Journal of Solid State Chemistry, 2018, 268, 9-15.	2.9	9
521	The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film. AIP Conference Proceedings, 2018, , .	0.4	2
522	Highly Branched Polycaprolactone/Clycidol Copolymeric Green Plasticizer by One-Pot Solvent-Free Polymerization. ACS Sustainable Chemistry and Engineering, 2018, 6, 9006-9017.	6.7	55
523	Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International Journal of Biological Macromolecules, 2018, 117, 742-751.	7.5	71
524	Cellulose Mineralization as a Route for Novel Functional Materials. Advanced Functional Materials, 2018, 28, 1705042.	14.9	50
525	UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. LWT - Food Science and Technology, 2018, 96, 307-314.	5.2	77
526	Silver nanoparticles added PVDF/ZnO nanocomposites: Synthesis and characterization. AIP Conference Proceedings, 2018, , .	0.4	1
527	Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 2018, 111, 1-19.	3.6	281
528	Polylactic acid/chitosan films for packaging of Indian white prawn (Fenneropenaeus indicus). International Journal of Biological Macromolecules, 2018, 117, 1002-1010.	7.5	70
529	Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life, 2018, 17, 30-38.	7.5	49

#	Article	IF	CITATIONS
530	Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles. Carbohydrate Polymers, 2018, 197, 349-358.	10.2	33
531	Nanotechnology in Food Packaging: Opportunities and Challenges. , 2018, , 1-11.		26
532	Production and Processing of Polymer-Based Nanocomposites. , 2018, , 111-146.		1
533	Active Packaging. , 2018, , 173-202.		15
534	Antimicrobial Coatings Based on Linseed Oil/TiO 2 Nanocomposites. , 2018, , 411-434.		3
535	Inorganic-Based Nanostructures and Their Use in Food Packaging. , 2018, , 13-45.		8
536	Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packaging and Shelf Life, 2018, 17, 142-149.	7.5	115
537	High strength cellulose/ATT composite films with good oxygen barrier property for sustainable packaging applications. Cellulose, 2018, 25, 4145-4154.	4.9	21
538	Reinforcement of banana flour biocomposite film with beeswax and montmorillonite and effects on water barrier and physical properties. International Journal of Food Science and Technology, 2018, 53, 2642-2649.	2.7	4
539	The Use of Carbon Nanoparticles for Inkjet-Printed Functional Labels for Smart Packaging. Journal of Nanomaterials, 2018, 2018, 1-10.	2.7	9
540	Polysaccharide Nanobased Packaging Materials for Food Application. , 2018, , 239-270.		2
541	Prospects for Replacement of Some Plastics in Packaging with Lignocellulose Materials: A Brief Review. BioResources, 2018, 13, .	1.0	47
542	The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles. International Journal of Environmental Research and Public Health, 2018, 15, 794.	2.6	33
543	Application of Nanotechnology to Enhance the Nutrient Quality of Food Crops and Agricultural Production. , 2018, , 453-472.		1
544	Novel Approaches of Nanotechnology in Agro and Food Processing. , 2018, , 271-291.		2
545	Effects of poly(butylene adipate-co-terephthalate) coating on the water resistant, mechanical, and antibacterial properties of Kraft paper. Progress in Organic Coatings, 2018, 123, 153-159.	3.9	38
546	Bimetallic Aluminum 5,6-Dihydro-7,7-dimethyl quinolin-8-olates as Pro-Initiators for the ROP of Îμ-CL; Probing the Nuclearity of the Active Initiator. Polymers, 2018, 10, 764.	4.5	11
547	A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends in Food Science and Technology, 2018, 79, 125-135.	15.1	111

			2
#	ARTICLE Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light	IF	CITATIONS
548	barrier, and antibacterial properties of PLA-based nanocomposite films. Materials Science and Engineering C, 2018, 93, 289-298.	7.3	229
549	Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. , 2018, , 271-306.		16
550	Efficiently Extracted Cellulose Nanocrystals and Starch Nanoparticles and Techno-Functional Properties of Films Made Thereof. Coatings, 2018, 8, 142.	2.6	11
551	Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packaging and Shelf Life, 2018, 17, 150-161.	7.5	137
552	Gas Transport ThroughÂPolymer Bio-nanocomposites. , 2018, , 615-632.		0
553	Combined Effect of Ultrasound Stimulations and Autoclaving on the Enhancement of Antibacterial Activity of ZnO and SiO2/ZnO Nanoparticles. Nanomaterials, 2018, 8, 129.	4.1	37
554	A Natural Antibacterial-Antioxidant Film from Soy Protein Isolate Incorporated with Cortex Phellodendron Extract. Polymers, 2018, 10, 71.	4.5	50
555	Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers, 2018, 10, 505.	4.5	134
556	Incineration of Nanoclay Composites Leads to Byproducts with Reduced Cellular Reactivity. Scientific Reports, 2018, 8, 10709.	3.3	16
557	PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties. Composites Part B: Engineering, 2018, 152, 267-274.	12.0	35
558	Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. International Journal of Biological Macromolecules, 2018, 118, 1824-1832.	7.5	96
559	Nanocellulose-polypyrrole-coated paperboard for food packaging application. Progress in Organic Coatings, 2018, 123, 128-133.	3.9	43
560	Effects of Different Thermal Treatment Methods on Preparation and Physical Properties of High Amylose Maize Starch Based Films. International Journal of Food Engineering, 2018, 14, .	1.5	3
561	Development and characterization of bamboo fiber reinforced biopolymer films. Materials Research Express, 2018, 5, 085309.	1.6	15
562	CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization. International Journal of Biological Macromolecules, 2018, 118, 2149-2155.	7.5	29
563	Poly(lactic acid) mass transfer properties. Progress in Polymer Science, 2018, 86, 85-121.	24.7	71
569	Preparation and characterization of poly(ethylene terephthalate) films coated by chitosan and vermiculite nanoclay. Carbohydrate Polymers, 2018, 201, 392-401.	10.2	17
570	Fabrication, properties and applications of soy-protein-based materials: A review. International Journal of Biological Macromolecules, 2018, 120, 475-490.	7.5	163

#	Article	IF	CITATIONS
571	Sistema de baixo custo para determinação da permeabilidade de CO2 em filmes plásticos. Brazilian Journal of Food Technology, 2018, 21, .	0.8	0
572	Ultrafine bamboo-char as a new reinforcement in poly(lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties. Journal of Materials Research, 2018, 33, 3870-3879.	2.6	11
573	Cellulose-Based Hydrogel Films for Food Packaging. Polymers and Polymeric Composites, 2018, , 1-25.	0.6	6
574	Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT - Food Science and Technology, 2018, 98, 260-267.	5.2	53
575	Current Applications in Food Preservation Based on Marine Biopolymers. , 2018, , 609-650.		3
576	Water-Soluble and Insoluble Polymers, Nanoparticles, Nanocomposites and Hybrids With Ability to Remove Hazardous Inorganic Pollutants in Water. Frontiers in Chemistry, 2018, 6, 320.	3.6	61
577	Preparation of Antibacterial Cellulose Paper Using Layer-by-Layer Assembly for Cooked Beef Preservation at Ambient Temperature. Polymers, 2018, 10, 15.	4.5	22
578	A concise guide to active agents for active food packaging. Trends in Food Science and Technology, 2018, 80, 212-222.	15.1	314
579	Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advanced Materials and Devices, 2018, 3, 263-288.	3.1	81
580	A Review on Layered Mineral Nanosheets Intercalated with Hydrophobic/Hydrophilic Polymers and Their Applications. Macromolecular Chemistry and Physics, 2018, 219, 1800142.	2.2	10
581	A Review on Preparation and Properties of Cellulose Nanocrystal-Incorporated Natural Biopolymer. Journal of Packaging Technology and Research, 2018, 2, 149-166.	1.5	30
582	Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications. International Journal of Biological Macromolecules, 2018, 118, 99-106.	7.5	20
583	Bionanocomposites: Green materials for a sustainable future. , 2018, , 699-712.		33
584	Progress and Challenges of Nanotechnology in Food Engineering. , 2018, , 87-112.		2
585	Nanotechnology Trends in the Food Industry: Recent Developments, Risks, and Regulation. , 2018, , 113-141.		5
586	Sugarcane Bagasse Fibers Treated and Untreated: Performance as Reinforcement in Phenolic-Type Matrices Based on Lignosulfonates. Waste and Biomass Valorization, 2019, 10, 3515-3524.	3.4	14
587	Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. Ultrasonics Sonochemistry, 2019, 51, 386-394.	8.2	72
588	PBAT/organoclay composite films—part 2: effect of UV aging on permeability, mechanical properties and biodegradation. Polymer Bulletin, 2019, 76, 291-301.	3.3	24

#	Article	IF	CITATIONS
589	Combined effects of clay minerals and polyethylene glycol in the mechanical and water barrier properties of carboxymethylcellulose films. Industrial Crops and Products, 2019, 140, 111644.	5.2	19
590	Mechanical Properties and Biodegradability of Polylactide—Polysaccharide Compositions. Polymer Science - Series D, 2019, 12, 300-304.	0.6	1
591	Transparent bionanocomposite films based on konjac glucomannan, chitosan, and TEMPO-oxidized chitin nanocrystals with enhanced mechanical and barrier properties. International Journal of Biological Macromolecules, 2019, 138, 866-873.	7.5	37
592	Natural Biodegradable Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging. Journal of Agricultural and Food Chemistry, 2019, 67, 10954-10967.	5.2	85
593	Application of Bionanocomposites on Horticultural Products to Increase the Shelf Life. , 2019, , 525-543.		1
594	Organic nanocomposites for the delivery of bioactive molecules. , 2019, , 471-493.		1
595	Structure and properties of Polylactide/Poly(butylene succinate)/Organically Modified Montmorillonite nanocomposites with high-efficiency intercalation and exfoliation effect manufactured via volume pulsating elongation flow. Polymer, 2019, 180, 121656.	3.8	40
596	Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties. Carbohydrate Polymers, 2019, 223, 115055.	10.2	97
597	Hybrid Gibbsite Nanoplatelet/Cellulose Nanocrystal Multilayered Coatings for Oxygen Barrier Improvement. Frontiers in Chemistry, 2019, 7, 507.	3.6	8
598	Green Biopolymers and Its Nanocomposites in Various Applications: State of the Art. Materials Horizons, 2019, , 1-27.	0.6	1
599	Biopolymer Composites and Bionanocomposites for Energy Applications. Materials Horizons, 2019, , 313-341.	0.6	7
600	Natural antimicrobial agents to improve foods shelf life. , 2019, , 125-157.		17
601	Synthesis, characterization of phosphorus-containing copolyester and its application as flame retardants for poly(butylene succinate) (PBS). Chemosphere, 2019, 235, 163-168.	8.2	9
602	Innovative packaging that saves food. , 2019, , 171-202.		11
603	Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. Journal of Materials Research and Technology, 2019, 8, 3644-3652.	5.8	37
604	Effect of Chitin Whiskers on the Molecular Dynamics of Carrageenan-Based Nanocomposites. Polymers, 2019, 11, 1083.	4.5	15
605	Heterolepic <i>β</i> â€Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide. ChemistryOpen, 2019, 8, 951-960.	1.9	20
606	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .	0.6	11

#	Article	IF	CITATIONS
607	Trends in Beverage Packaging. , 2019, , 1-19.		4
608	Nano-Revolution in Beverage Industry: Tailoring Nano-Engineering to Consummate Novel Processing and Packaging Panacea. , 2019, , 163-190.		1
609	Exploring the interactions between starches, bentonites and plasticizers in sustainable barrier coatings for paper and board. Applied Clay Science, 2019, 183, 105272.	5.2	12
610	Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transport. International Journal of Pharmaceutics, 2019, 571, 118696.	5.2	11
611	Mechanical Properties of Water Hyacinth Fiber Reinforced Bio-Based Epoxy Composite. Key Engineering Materials, 0, 818, 7-11.	0.4	6
612	Influence of nanocellulose addition on the film properties of the bionanocomposite edible films prepared from maize, rice, wheat, and potato starches. AIP Conference Proceedings, 2019, , .	0.4	3
615	Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, 2019, , .	1.0	12
616	(Bio)polymer/ZnO Nanocomposites for Packaging Applications: A Review of Gas Barrier and Mechanical Properties. Nanomaterials, 2019, 9, 1494.	4.1	60
617	PLA/organoclay bionanocomposites impregnated with thymol and cinnamaldehyde by supercritical impregnation for active and sustainable food packaging. Composites Part B: Engineering, 2019, 176, 107336.	12.0	87
618	Novel polylactic acid (PLA)-organoclay nanocomposite bio-packaging for the cosmetic industry; migration studies and inÂvitro assessment of the dermal toxicity of migration extracts. Polymer Degradation and Stability, 2019, 168, 108938.	5.8	30
619	Comparative Study of the Antimicrobial Effect of Nanocomposites and Composite Based on Poly(butylene adipate-co-terephthalate) Using Cu and Cu/Cu2O Nanoparticles and CuSO4. Nanoscale Research Letters, 2019, 14, 158.	5.7	26
620	PLA/PHB Blends: Biocompatibilizer Effects. Polymers, 2019, 11, 1416.	4.5	40
621	Biopolymers From Crop Plants. , 2019, , .		19
622	Isolation of Cellulose Nanocrystals from Various Lignocellulosic Materials: Physico-chemical characterization and Application in Polymer Composites Development. Materials Today: Proceedings, 2019, 13, 964-973.	1.8	28
623	Application of Immobilized Enzymes in Food Industry. Journal of Agricultural and Food Chemistry, 2019, 67, 11553-11567.	5.2	114
624	Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packaging and Shelf Life, 2019, 22, 100396.	7.5	69
625	Preparation and characterization of extruded PBAT/organoclay films. Materials Today: Proceedings, 2019, 8, 812-819.	1.8	4
626	Nanotechnology Applications in Food: Opportunities and Challenges in Food Industry. , 2019, , 295-308.		18

		CITATION REPORT	
#	ARTICLE Design of Supertoughened and Heat-Resistant PLLA/Elastomer Blends by Controlling the Distribution	IF	CITATIONS
627	of Stereocomplex Crystallites and the Morphology. Macromolecules, 2019, 52, 1092-1103.	4.8	149
628	Polyhydroxyalkanoates in Packaging. , 2019, , 363-388.		12
629	Robust cellulose nanocomposite films based on covalently cross-linked network with effective resistance to water permeability. Carbohydrate Polymers, 2019, 211, 237-248.	10.2	15
630	Poly(lactic acid) biocomposites with mango waste and organoâ€montmorillonite for packaging. Journal of Applied Polymer Science, 2019, 136, 47512.	2.6	29
631	Nanobiotechnology in Food: Concepts, Applications and Perspectives. , 2019, , .		16
632	¿What is the new about food packaging material? A bibliometric review during 1996–2016. Trends in Food Science and Technology, 2019, 85, 252-261.	15.1	65
633	Biotechnological Applications of Polyhydroxyalkanoates. , 2019, , .		24
635	Nanotechnology in Food Packaging. , 2019, , 205-232.		18
636	Processing Aspects and Biomedical and Environmental Applications of Sustainable Nanocomposites Containing Nanofillers. , 2019, , 727-757.		1
637	Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strength via in situ formation of nanofibrilized stereocomplex polylactide. Polymer, 2019, 166, 13-20.	3.8	39
638	Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 2019, 12, 1627.	2.9	20
639	The Impact of Nanotechnology on Food. , 2019, , 369-379.		8
640	Nanostructures of chitosan for encapsulation of food ingredients. , 2019, , 381-418.		11
641	Processing and Biomedical Applications of Polymer/Organo-modified Clay Bionanocomposites. , 2019, , 405-428.		1
642	Cellulose Nanocrystals as a Sustainable Raw Material: Cytotoxicity and Applications on Healthcare Technology. Macromolecular Materials and Engineering, 2019, 304, 1900092.	3.6	32
643	A green cascade polymerization method for the facile synthesis of sustainable poly(butylene-co-decylene terephthalate) copolymers. Polymer, 2019, 178, 121591.	3.8	15
644	Enhancing the recrystallization ability of bio-based polylactide stereocomplex by in situ construction of multi-block branched conformation. Journal of Materials Science, 2019, 54, 12145-12158.	3.7	6
645	Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil. Food Packaging and Shelf Life, 2019, 21, 100341.	7.5	72

	Citation	CITATION REPORT	
#	Article	IF	Citations
646	Starch and its derivatives for paper coatings: A review. Progress in Organic Coatings, 2019, 135, 213-227.	3.9	89
647	Study of the hydrolytic degradation of poly-3-hydroxybutyrate in the development of blends and polymeric bionanocomposites. Journal of Thermoplastic Composite Materials, 2019, , 089270571985604.	4.2	7
648	Immobilization of β-Galactosidases on Magnetic Nanocellulose: Textural, Morphological, Magnetic, and Catalytic Properties. Biomacromolecules, 2019, 20, 2315-2326.	5.4	20
649	Effects of bentonite on physical, mechanical and barrier properties of cellulose nanofibril hybrid films for packaging applications. Cellulose, 2019, 26, 5363-5379.	4.9	38
650	Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 2019, 172, 16-25.	12.0	245
651	Preparation and characterization of starchâ€based composite films reinforced by apricot and walnut shells. Journal of Applied Polymer Science, 2019, 136, 47978.	2.6	35
652	Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: Mechanical, morphological and antimicrobial properties. Composites Part B: Engineering, 2019, 172, 103-110.	12.0	75
653	Fast and simple construction of composite films with renewable Eucommia ulmoides gum and Poly(ε-caprolactone). Composites Science and Technology, 2019, 179, 145-151.	7.8	18
654	Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composite films. Food Packaging and Shelf Life, 2019, 21, 100327.	7.5	54
655	Salalens and Salans Derived from 3-Aminopyrrolidine: Aluminium Complexation and Lactide Polymerisation. European Journal of Inorganic Chemistry, 2019, 2019, 2768-2773.	2.0	3
656	Determination of volatile compounds and their sensory impact in a biopolymer based on polylactic acid (PLA) and polyester. Food Chemistry, 2019, 294, 171-178.	8.2	24
657	The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnability. Molecules, 2019, 24, 1513.	3.8	24
658	Applications of nanotechnology in food microbiology. Methods in Microbiology, 2019, 46, 43-60.	0.8	21
659	Antimicrobial, Conductive, and Mechanical Properties of AgCB/PBS Composite System. Journal of Chemistry, 2019, 2019, 1-14.	1.9	12
660	Synergistic effect of hollow glass beads and intumescent flame retardant on improving the fire safety of biodegradable poly (lacticAacid). Polymer Degradation and Stability, 2019, 164, 167-176.	5.8	25
661	Valorization of Tomato Processing Residues Through the Production of Active Bio-Composites for Packaging Applications. Frontiers in Materials, 2019, 6, .	2.4	16
662	Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	42
663	In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. International Journal of Biological Macromolecules, 2019, 132, 385-392.	7.5	67

#	Article	IF	CITATIONS
664	Toughened and water-resistant starch/TiO ₂ bio-nanocomposites as an environment-friendly food packaging material. Materials Research Express, 2019, 6, 055045.	1.6	16
665	Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 2019, 68, 893-903.	3.1	21
666	Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging. Food Chemistry, 2019, 288, 139-145.	8.2	131
667	Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids, 2019, 94, 210-216.	10.7	25
668	Nano silver embedded starch hybrid graphene oxide sandwiched poly(ethylmethacrylate) for packaging application. Nano Structures Nano Objects, 2019, 18, 100300.	3.5	31
669	Physically Transient Memristive Synapse With Short-Term Plasticity Based on Magnesium Oxide. IEEE Electron Device Letters, 2019, 40, 706-709.	3.9	16
670	Production of polyhedral oligomeric silsesquioxane (POSS) containing low density polyethylene (LDPE) based nanocomposite films for minced beef packaging for extension of shelf life. LWT - Food Science and Technology, 2019, 108, 385-391.	5.2	14
671	Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids, 2019, 94, 391-398.	10.7	110
672	Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials, 2019, 12, 641.	2.9	123
674	Mechanical and Water-Resistant Properties of Eco-Friendly Chitosan Membrane Reinforced with Cellulose Nanocrystals. Polymers, 2019, 11, 166.	4.5	65
675	Biopolymers-Based Nanocomposites: Properties and Applications. , 2019, , 255-272.		8
676	Fillers and Reinforcements for Advanced Nanocomposites. , 2019, , 29-48.		3
677	Effect of drying temperature and extent of particle dispersion on composite films of methylcellulose and zein nanoparticles. Journal of Food Engineering, 2019, 250, 26-32.	5.2	10
678	Bioactive Packaging. , 2019, , 233-270.		11
679	Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites. , 2019, , 313-336.		13
680	Oxygen-Scavenging Multilayered Biopapers Containing Palladium Nanoparticles Obtained by the Electrospinning Coating Technique. Nanomaterials, 2019, 9, 262.	4.1	29
681	Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids, 2019, 93, 156-166.	10.7	97
682	Synergistic effect between different clays and plasticizer on the properties of PHBV nanocomposites. Polymer Composites, 2019, 40, 3835-3843.	4.6	5

#	Article	IF	CITATIONS
683	Dialkylaluminum 2-substituted 6,6-dimethylcyclopentylpyridin-7-oxylates toward structural-differentiation of the ring-opening polymerization of ε-caprolactone and <scp>l</scp> -lactides. Dalton Transactions, 2019, 48, 4157-4167.	3.3	16
684	Food packaging and nanotechnology: safeguarding consumer health and safety. Nutrition and Food Science, 2019, 49, 1164-1179.	0.9	44
686	Single-Stage Formation of Film Polymer Composites in Supercritical Colloid Solutions of Nanoparticles Obtained by Laser Ablation. Russian Journal of Physical Chemistry B, 2019, 13, 1235-1244.	1.3	3
687	Chemistry, Biology, and Surface Engineering of Sustainable Nanostructural Materials. , 2019, , 25-52.		0
688	Mechanical and Thermal Behavior of Canola Protein Isolate Films As Improved by Cellulose Nanocrystals. ACS Omega, 2019, 4, 19172-19176.	3.5	11
689	Natural Fiber Reinforced Synthetic Polymer Composites. , 2019, 23, 6-30.		2
690	Sustainable Nanostructured Materials in Food Packaging. , 2019, , 171-213.		13
691	Development, Fabrication, and Characterization of Composite Polycaprolactone Membranes Reinforced with TiO2 Nanoparticles. Polymers, 2019, 11, 1955.	4.5	12
692	Preparation and preliminary characterization of sago flour and semi refined kappa carrageenan-based biocomposite film incorporated with coconut crabs chitosan nanoparticles. IOP Conference Series: Materials Science and Engineering, 2019, 633, 012044.	0.6	2
693	Microstructure and Mechanical/Hydrophilic Features of Agar-Based Films Incorporated with Konjac Glucomannan. Polymers, 2019, 11, 1952.	4.5	27
694	Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Materials Research Bulletin, 2019, 109, 49-59.	5.2	97
695	The antimicrobial effect of metal substrates on food pathogens. Food and Bioproducts Processing, 2019, 113, 68-76.	3.6	32
696	Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids, 2019, 87, 970-976.	10.7	61
697	Smart nanopackaging for theÂenhancement of foodÂshelf life. Environmental Chemistry Letters, 2019, 17, 277-290.	16.2	84
698	Current trends, challenges, and perspectives of anti-fogging technology: Surface and material design, fabrication strategies, and beyond. Progress in Materials Science, 2019, 99, 106-186.	32.8	162
699	Effect of organoclay and preparation method on properties of antimicrobial cellulose acetate films. Polymer Composites, 2019, 40, 2311-2319.	4.6	17
700	Starch, Chitin and Chitosan Based Composites and Nanocomposites. Springer Briefs in Molecular Science, 2019, , .	0.1	11
701	Applications of Polysaccharide Based Composites. Springer Briefs in Molecular Science, 2019, , 43-55.	0.1	1

	Сітатіої	n Report	
#	Article	IF	CITATIONS
702	Dispersion of reduced graphene oxide within thermoplastic starch/poly(lactic acid) blends investigated by small-angle X-ray scattering. Carbohydrate Polymers, 2019, 208, 124-132.	10.2	10
703	Intensifying the Antimicrobial Activity of Poly[2-(tert-butylamino)ethyl Methacrylate]/Polylactide Composites by Tailoring Their Chemical and Physical Structures. Molecular Pharmaceutics, 2019, 16, 709-723.	4.6	22
704	Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. Journal of Packaging Technology and Research, 2019, 3, 77-96.	1.5	272
705	Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochimica Acta, 2019, 672, 14-24.	2.7	46
706	N-Acetylcysteine reverses silver nanoparticle intoxication in rats. Nanotoxicology, 2019, 13, 326-338.	3.0	18
707	Enhancement of basic properties of polysaccharideâ€based composites with organic and inorganic fillers: A review. Journal of Applied Polymer Science, 2019, 136, 47251.	2.6	63
708	A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. International Journal of Biological Macromolecules, 2019, 124, 591-626.	7.5	51
709	Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocolloids, 2019, 89, 682-690.	10.7	129
710	Nanocomposites with nanofibers and fillers from renewable resources. , 2019, , 145-170.		8
711	Nanotechnology: Applications in Energy, Drug and Food. , 2019, , .		8
712	Nanotechnology: Recent Trends in Food Safety, Quality and Market Analysis. , 2019, , 283-293.		6
713	Cellulose-Based Hydrogel Films for Food Packaging. Polymers and Polymeric Composites, 2019, , 1061-1084.	0.6	5
714	Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 2019, 90, 500-507.	10.7	155
715	Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry. European Polymer Journal, 2019, 112, 477-486.	5.4	74
716	Long- and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging. Journal of Plastic Film and Sheeting, 2019, 35, 117-134.	2.2	24
717	Bioactive Compounds and Their Potential Use as Ingredients for Food and Its Application in Food Packaging. , 2019, , 143-156.		15
718	Lignin Separation and Fractionation by Ultrafiltration. , 2019, , 229-265.		20
719	Metal nanoparticles for controlling fungal proliferation: quantitative analysis and applications. Current Opinion in Food Science, 2019, 30, 49-59.	8.0	12

#	Article	IF	CITATIONS
720	Stimuli-responsive bio-based polymeric systems and their applications. Journal of Materials Chemistry B, 2019, 7, 709-729.	5.8	487
721	Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization. International Journal of Biological Macromolecules, 2019, 122, 201-209.	7.5	45
722	Starch-Based Edible Films and Coatings. , 2019, , 359-420.		33
723	Development and characterization of kefiran - Al2O3 nanocomposite films: Morphological, physical and mechanical properties. International Journal of Biological Macromolecules, 2019, 122, 603-609.	7.5	23
724	Cellular morphology evolution of chain extended poly(butylene succinate)/organic montmorillonite nanocomposite foam. Journal of Applied Polymer Science, 2019, 136, 47107.	2.6	7
725	Using photo-modification to compatibilize nano-ZnO in development of starch-kefiran-ZnO green nanocomposite as food packaging material. International Journal of Biological Macromolecules, 2019, 124, 922-930.	7.5	54
726	Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 2019, 205, 106-116.	10.2	162
727	Polymer Composites With Metal Nanoparticles. , 2019, , 249-286.		35
728	Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 2019, 17, 629-654.	16.2	314
729	Construction of Bi2WO6–TiO2/starch nanocomposite films for visible-light catalytic degradation of ethylene. Food Hydrocolloids, 2019, 88, 92-100.	10.7	60
730	Super Toughening, Strengthening, and Antimicrobial Behaviors of Cyclic Olefinic Copolymer/Few Layer Graphene Nanocomposites. Polymer Composites, 2019, 40, 536-543.	4.6	2
731	Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 2019, 40, 893-900.	4.6	28
732	Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. Journal of Natural Fibers, 2019, 16, 933-943.	3.1	51
733	The overview on the use of natural fibers reinforced composites for food packaging. Journal of Natural Fibers, 2019, 16, 1189-1200.	3.1	38
734	Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Reviews in Aquaculture, 2019, 11, 119-132.	9.0	74
735	Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. Journal of King Saud University - Science, 2019, 31, 758-767.	3.5	31
736	Advances in research and development of bioplastic for food packaging. Journal of the Science of Food and Agriculture, 2020, 100, 5032-5045.	3.5	77
737	Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of antibacterial and mechanical properties for packaging applications. Arabian Journal of Chemistry, 2020, 13, 3092-3099.	4.9	55

#	Article	IF	CITATIONS
738	Recent advances in protein derived bionanocomposites for food packaging applications. Critical Reviews in Food Science and Nutrition, 2020, 60, 406-434.	10.3	143
739	Role of Green Polymers in Food Packaging. , 2020, , 305-319.		9
740	Bio-Nanocomposites for Food Packaging Applications. , 2020, , 29-41.		4
741	A review on electrically conducting polymer bionanocomposites for biomedical and other applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 709-727.	3.4	38
742	Production of active film based on potato starch containing Zedo gum and essential oil of <i>Salvia officinalis</i> and study of physical, mechanical, and antioxidant properties. Journal of Thermoplastic Composite Materials, 2020, 33, 915-937.	4.2	67
743	A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. Journal of Plastic Film and Sheeting, 2020, 36, 94-112.	2.2	66
744	Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review. Biological Trace Element Research, 2020, 193, 118-129.	3.5	303
745	Nanotechnology – A shelf life extension strategy for fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2020, 60, 1706-1721.	10.3	47
746	Overview of Nanocellulose in Food Packaging. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 154-167.	0.9	20
747	Fabrication of packaging film reinforced with cellulose nanoparticles synthesised from jack fruit non-edible part using response surface methodology. International Journal of Biological Macromolecules, 2020, 142, 63-72.	7.5	38
748	Nano-Based Products in Beverage Industry. , 2020, , 405-436.		7
749	Improvement of water vapor barrier and mechanical properties of sago starchâ€kaolinite nanocomposites. Polymer Composites, 2020, 41, 201-209.	4.6	19
750	Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocolloids, 2020, 98, 105302.	10.7	156
751	The Use of Montmorillonite (MMT) in Food Nanocomposites: Methods of Incorporation, Characterization of MMT/Polymer Nanocomposites and Main Consequences in the Properties. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 13-26.	0.9	17
752	Optimization of chicken skin gelatin film production with different glycerol concentrations by response surface methodology (RSM) approach. Journal of Food Science and Technology, 2020, 57, 463-472.	2.8	14
753	Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. International Journal of Biological Macromolecules, 2020, 145, 835-844.	7.5	99
754	An investigation of the role of fabrication process in the physicochemical properties of κ-carrageenan-based films incorporated with Zataria multiflora extract and nanoclay. Food Packaging and Shelf Life, 2020, 23, 100435.	7.5	26
755	Effect of organically modified layered double hydroxides on the properties of poly(lactic) Tj ETQq1 1 0.784314 rg	BT /Overlc 2.6	ock 10 Tf 50 7

#	Article	IF	CITATIONS
756	Optical and thermal properties of intelligent pH indicator films based on chitosan/PVA and a new xanthylium dye. Journal of Thermal Analysis and Calorimetry, 2020, 141, 999-1008.	3.6	11
757	Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Research International, 2020, 128, 108765.	6.2	83
758	Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers. Polymer, 2020, 186, 121993.	3.8	9
759	Effect of Amylose–Amylopectin Ratios on Physical, Mechanical, and Thermal Properties of Starchâ€Based Bionanocomposite Films Incorporated with CMC and Nanoclay. Starch/Staerke, 2020, 72, 1900121.	2.1	31
760	Critical evaluation of migration studies of silver nanoparticles present in food packaging: a systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 3083-3102.	10.3	26
761	Formulation and Optimization of Ansamycin-Loaded Polymeric Nanoparticles Using Response Surface Methodology for Bacterial Meningitis. BioNanoScience, 2020, 10, 279-291.	3.5	8
762	Effect of pecan variety and the method of extraction on the antimicrobial activity of pecan shell extracts against different foodborne pathogens and their efficacy on food matrices. Food Control, 2020, 112, 107098.	5.5	17
763	Carboxymethyl and Nanofibrillated Cellulose as Additives on the Preparation of Chitosan Biocomposites: Their Influence Over Films Characteristics. Journal of Polymers and the Environment, 2020, 28, 676-688.	5.0	15
764	Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110761.	5.0	163
765	Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packaging and Shelf Life, 2020, 23, 100450.	7.5	90
766	Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. Food and Bioprocess Technology, 2020, 13, 30-44.	4.7	61
767	Applications of layered double hydroxide biopolymer nanocomposites. , 2020, , 599-676.		2
768	Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chemistry, 2020, 310, 125915.	8.2	294
769	An investigation of PLA/Babassu cold crystallization kinetics. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1389-1397.	3.6	21
770	Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films. Carbohydrate Polymers, 2020, 231, 115729.	10.2	101
771	Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydrate Polymers, 2020, 231, 115702.	10.2	29
772	pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers, 2020, 230, 115638.	10.2	177
773	Preparation and characterization of antibacterial poly(lactic acid) nanocomposites with N-halamine modified silica. International Journal of Biological Macromolecules, 2020, 155, 1468-1477.	7.5	29

#	Article	IF	CITATIONS
774	The effect of different preparation methods on the development of chitosan/thyme oil/montmorillonite nanocomposite active packaging films. Journal of Food Processing and Preservation, 2020, 44, e14327.	2.0	35
775	Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: Rheological and antimicrobial properties. International Journal of Biological Macromolecules, 2020, 148, 1182-1189.	7.5	64
776	High-efficient crystallization promotion and melt reinforcement effect of diblock PDLA-b-PLLA copolymer on PLLA. Polymer, 2020, 186, 122021.	3.8	12
777	Synthesis, morphological, spectral and thermal studies for folic acid conjugated ZnO nanoparticles: potency for multi-functional bio-nanocomposite as antimicrobial, antioxidant and photocatalytic agent. Journal of Materials Research and Technology, 2020, 9, 1905-1917.	5.8	16
778	Effects of organo-LDH dispersion on thermal stability, crystallinity and mechanical features of PLA. Polymer, 2020, 208, 122952.	3.8	15
779	Nanocomposite films consisting of functional nanoparticles (TiO2 and ZnO) embedded in 4A-Zeolite and mixed polymer matrices (gelatin and polyvinyl alcohol). Food Research International, 2020, 137, 109716.	6.2	49
780	The financial impact of replacing plastic packaging by biodegradable biopolymers - A smart solution for the food industry. Journal of Cleaner Production, 2020, 277, 124013.	9.3	42
781	Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules, 2020, 165, 3088-3105.	7.5	63
782	3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Frontiers in Bioengineering and Biotechnology, 2020, 8, 568186.	4.1	26
783	Influence of clay percentage on the technical properties of montmorillonite/polylactic acid nanocomposites. Applied Clay Science, 2020, 198, 105818.	5.2	10
784	Processes and characterization for biobased polymers from polyhydroxyalkanoates. , 2020, , 117-149.		1
785	Bionanocomposites in water treatment. , 2020, , 505-518.		10
786	Influence of NiO Supported Silica Nanoparticles on Mechanical, Barrier, Optical and Antibacterial Properties of Polylactic Acid (PLA) Bio Nanocomposite Films for Food Packaging Applications. Silicon, 2022, 14, 531-538.	3.3	13
787	Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials, 2020, 13, 5145.	2.9	52
788	Areca nut fiber nano crystals, clay nano particles and PVA blended bionanocomposite material for active packaging of food. Applied Nanoscience (Switzerland), 2022, 12, 295-307.	3.1	9
789	Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. International Journal of Biological Macromolecules, 2020, 165, 2974-2983.	7.5	48
790	Poly(hydroxybutyrate-co-hydroxyvalerate)-based nanocomposites for antimicrobial active food packaging containing oregano essential oil. Food Packaging and Shelf Life, 2020, 26, 100602.	7.5	33
791	Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 2020, 250, 116867.	10.2	56

#	Article	IF	CITATIONS
792	Toughness Enhancement in Polyactide Nanocomposites with Swallow-Tailed Graphene Oxide. Polymer Science - Series B, 2020, 62, 560-571.	0.8	2
793	Preparation and Study of the Properties of Compositions Based on Crumb Rubber and Natural Polysaccharides. Polymer Science - Series D, 2020, 13, 329-334.	0.6	1
794	Effect of grapefruit seed extract ratios on functional properties of corn starch-chitosan bionanocomposite films for active packaging. International Journal of Biological Macromolecules, 2020, 163, 1546-1556.	7.5	30
795	Stereocomplexed Poly(lactide) Composites toward Engineering Plastics with Superior Toughness, Heat Resistance and Anti-hydrolysis. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1107-1116.	3.8	20
796	Inâ€chain functionalized poly(ε â€caprolactone): A valuable precursor towards the synthesis of 3â€miktoarm star containing hyperbranched polyethylene. Journal of Polymer Science, 2020, 58, 2764-2773.	3.8	3
798	Morphological Structures, Mechanical, Thermal and Optical Properties of PVA/HNT Bionanocomposite Films. , 2020, , 81-108.		0
799	Component Migration of PVA/HNT Bionanocomposite Films. , 2020, , 153-164.		0
800	Synergistic effect of bacterial cellulose reinforcement and succinic acid crosslinking on the properties of agar. International Journal of Biological Macromolecules, 2020, 165, 3115-3122.	7.5	16
801	Synthesis of metal-organic frameworks (MOFs) and its application in food packaging: A critical review. Trends in Food Science and Technology, 2020, 104, 102-116.	15.1	111
802	pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science and Technology, 2020, 105, 93-144.	15.1	207
803	Characteristics of CNC reinforced cassava starch biocomposites activated with holy basil extract. AIP Conference Proceedings, 2020, , .	0.4	2
804	Functional Biobased Composite Polymers for Food Packaging Applications. , 2020, , 95-136.		5
805	Smart Food Packaging Designed by Nanotechnological and Drug Delivery Approaches. Coatings, 2020, 10, 806.	2.6	34
806	Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research, 2021, 28, 33899-33913.	5.3	41
807	Bioinspired Nanocomposites: Functional Materials for Sustainable Greener Technologies. , 2020, , .		1
808	Effect of Microfibrillated Cellulose Loading on Physical Properties of Starch/Polyvinyl Alcohol Composite Films. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 825-831.	1.0	11
809	Development of a novel active packaging film to retain quality and prolong the shelf life of fresh minced lamb meat. Journal of Food Processing and Preservation, 2020, 44, e14880.	2.0	6
810	Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications: Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals. Nanomaterials, 2020, 10, 2564.	4.1	14

#	Article	IF	CITATIONS
811	Study of the Properties of a Biodegradable Polymer Filled with Different Wood Flour Particles. Polymers, 2020, 12, 2974.	4.5	7
812	Melt extension-induced shish-kebabs with heterogeneous spatial distribution of crystalline polymorphs in lightly crosslinked poly(lactic acid). Polymer, 2020, 208, 122875.	3.8	12
813	Fabrication of Poly(ε-caprolactone)-Based Biodegradable Packaging Materials with High Water Vapor Barrier Property. Industrial & Engineering Chemistry Research, 2020, 59, 22163-22172.	3.7	11
814	Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples. Food and Chemical Toxicology, 2020, 146, 111847.	3.6	39
815	Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods, 2020, 9, 1572.	4.3	25
816	Polyvinyl Alcohol/Halloysite Nanotube Bionanocomposites as Biodegradable Packaging Materials. , 2020, , .		4
817	Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Materials Technology, 2022, 37, 345-354.	3.0	14
818	Effect of repeated heat-moisture treatments on the structural characteristics of nanocrystals from waxy maize starch. International Journal of Biological Macromolecules, 2020, 158, 732-739.	7.5	19
819	Packaging paper with improved mechanical and oil absorption properties based on novel ingredients. Packaging Technology and Science, 2020, 33, 303-320.	2.8	10
820	Preparation and Properties of Biocomposite Films Based on Poly(vinyl alcohol) Incorporated with Eggshell Powder as a Biological Filler. Journal of Polymers and the Environment, 2020, 28, 2020-2028.	5.0	27
821	Heteroleptic β-Ketoiminate Magnesium Catalysts for the Ring-Opening Polymerization of Lactide. Organometallics, 2020, 39, 4221-4231.	2.3	11
822	Environmental Biotechnology Vol. 1. Environmental Chemistry for A Sustainable World, 2020, , .	0.5	0
823	Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications. International Journal of Biological Macromolecules, 2020, 160, 571-582.	7.5	72
824	Emerging Technologies in Food Science. , 2020, , .		21
825	Chitosan nanocomposites for food packaging applications. , 2020, , 393-435.		8
826	A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101540.	3.1	57
827	Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chinese Journal of Chemical Engineering, 2020, 28, 1981-1993.	3.5	41
829	Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. Advanced Therapeutics, 2020, 3, 2000024.	3.2	82

#	Article	IF	Citations
830	Formation of polylactide stereocomplex crystallites and the electrical properties of carbon black-filled PLLA/PDLA composites. Polymer Journal, 2020, 52, 1093-1102.	2.7	1
831	In vitro assays for evaluating the release of nanoencapsulated food ingredients. , 2020, , 123-177.		0
832	Magnetic cellulose: Versatile support for enzyme immobilization - A review. Carbohydrate Polymers, 2020, 246, 116646.	10.2	63
833	Needle-free electrospinning of nanofibrillated cellulose and graphene nanoplatelets based sustainable poly (butylene succinate) nanofibers. Materials Today Chemistry, 2020, 17, 100301.	3.5	38
834	Reduction of molar mass loss and enhancement of thermal and rheological properties of recycled poly(lactic acid) by using chain extenders obtained from RAFT chemistry. Reactive and Functional Polymers, 2020, 153, 104628.	4.1	9
835	Compatibility, crystallinity and mechanical properties of poly(lactic acid)â€poly(etherâ€ <i>block</i> â€amide) based copper nanocomposites. Polymer International, 2020, 69, 1024-1037.	3.1	2
836	Xanthan-Curdlan nexus for synthesizing edible food packaging films. International Journal of Biological Macromolecules, 2020, 162, 43-49.	7.5	42
837	Anthocyanin food colorant and its application in pH-responsive color change indicator films. Critical Reviews in Food Science and Nutrition, 2021, 61, 2297-2325.	10.3	263
838	<scp>PBAT</scp> /hybrid nanofillers composites—Part 1: Oxygen and water vapor permeabilities, <scp>UV</scp> barrier and mechanical properties. Journal of Applied Polymer Science, 2020, 137, 49522.	2.6	19
839	In vivo assays for evaluating the release of nanoencapsulated food ingredients. , 2020, , 179-207.		1
840	Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents. Chemosphere, 2020, 258, 127324.	8.2	59
841	Biofibers and Biopolymers for Biocomposites. , 2020, , .		9
842	Antimicrobial ZnO Nanoparticle–Doped Polyvinyl Alcohol/Pluronic Blends as Active Food Packaging Films. Particle and Particle Systems Characterization, 2020, 37, 2000006.	2.3	27
843	Preparation of hydroxyethyl cellulose/halloysite nanotubes graft polylactic acid-based polyurethane bionanocomposites. International Journal of Biological Macromolecules, 2020, 153, 591-599.	7.5	18
844	Postharvest Application of <i>Aloe vera</i> Gel-Based Edible Coating to Improve the Quality and Storage Stability of Fresh-Cut Papaya. Journal of Food Quality, 2020, 2020, 1-10.	2.6	52
845	Super tough poly(lactic acid) blends: a comprehensive review. RSC Advances, 2020, 10, 13316-13368.	3.6	221
846	Active nanoenabled packaging for the beverage industry. , 2020, , 587-607.		5
847	A Study of the Reinforcement Effect of MWCNTs onto Polyimide Flat Sheet Membranes. Polymers, 2020, 12, 1381.	4.5	7

#	Article	IF	CITATIONS
848	Polyethylene oxide enhances the ductility and toughness of polylactic acid: the role of mesophase. Soft Matter, 2020, 16, 7018-7032.	2.7	7
849	Fundamentals of two-dimensional films and membranes. , 2020, , 35-66.		6
850	Application of edible biopolymer coatings to extend the storage life of fresh fruits and vegetables. , 2020, , 505-513.		0
852	Cellulose nanocrystal reinforced poly(lactic acid) nanocomposites prepared by a solution precipitation approach. Cellulose, 2020, 27, 7489-7502.	4.9	21
853	Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polymer Engineering and Science, 2020, 60, 2214-2223.	3.1	31
854	Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 479-502.	11.7	250
855	Thermal stability and flame retardance of EVA containing DNA-modified clays. Thermochimica Acta, 2020, 686, 178546.	2.7	10
856	An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods, 2020, 9, 148.	4.3	136
857	Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials, 2020, 13, 86.	2.9	5
858	Effect of agro waste α-cellulosic micro filler on mechanical and thermal behavior of epoxy composites. International Journal of Biological Macromolecules, 2020, 152, 327-339.	7.5	38
859	Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): An extended study from the laboratory to possible market. Applied Clay Science, 2020, 188, 105502.	5.2	21
860	Evidence for the Soft and Hard Epitaxies of Poly(<scp>l</scp> -lactic acid) on an Oriented Polyethylene Substrate and Their Dependence on the Crystallization Temperature. Macromolecules, 2020, 53, 1745-1751.	4.8	16
861	Efficiency of Novel Antimicrobial Coating Based on Iron Nanoparticles for Dairy Products' Packaging. Coatings, 2020, 10, 156.	2.6	13
862	Magnetic soft silicone elastomers with tunable mechanical properties for magnetically actuated devices. Polymers for Advanced Technologies, 2020, 31, 1414-1425.	3.2	7
863	Biosynthesis of CMC-Guar gum-AgO nanocomposites for inactivation of food pathogenic microbes and its effect on the shelf life of strawberries. Carbohydrate Polymers, 2020, 236, 116053.	10.2	57
864	Polylactide porous biocomposites with high heat resistance by utilizing cellulose template-directed construction. Cellulose, 2020, 27, 3805-3819.	4.9	7
865	The Impact of Eco-Design Packaging on Food Waste Avoidance: A Conceptual Framework. Journal of Promotion Management, 2020, 26, 768-790.	3.4	17
866	Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Materials Today Communications, 2020, 24, 100984.	1.9	59

	CITATION REPORT		
Article		IF	Citations
Application of nanosensors in the food industry. , 2020, , 355-368.			12
Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: Mecha barrier properties. Industrial Crops and Products, 2020, 148, 112264.	anical and	5.2	38
Eco-friendly Packaging Composite Fabrics based on in situ synthesized Silver nanopart & amp; treatment with Chitosan and/or Date seed extract. Nano Structures Nano Obje 100425.		3.5	23
Potential perspectives of biodegradable plastics for food packaging application-review and recent developments. Food Additives and Contaminants - Part A Chemistry, Analys Exposure and Risk Assessment, 2020, 37, 665-680.	of properties sis, Control,	2.3	79
Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids, 2020, 105, 105774.		10.7	131
Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexi multilayer films for packaging applications. Food Packaging and Shelf Life, 2020, 23, 1	ble 00464.	7.5	66
Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film inc curcumin and zinc oxide. International Journal of Biological Macromolecules, 2020, 14	orporated with 8, 666-676.	7.5	275
High performance of alginate/polyvinyl alcohol composite film based on natural origina nanoparticles used as food thermal insulating and UV–vis block. Carbohydrate Polyr 115884.	al melanin ners, 2020, 233,	10.2	40
Synthesis of Fe3O4@SiO2@PAMAM dendrimer@AgNP hybrid nanoparticles for the pr carrageenan-based functional nanocomposite film. Food Packaging and Shelf Life, 202	reparation of 20, 24, 100473.	7.5	36
Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectiv Letters, 2020, 12, 45.	ves. Nano-Micro	27.0	300
Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Susta Packaging. Polymers, 2020, 12, 202.	ainable	4.5	86

877	Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers, 2020, 12, 202.	4.5	86
878	Polyamide-amine-epichlorohydrin (PAE) induced TiO2 nanoparticles assembly in cellulose network. Journal of Colloid and Interface Science, 2020, 575, 317-325.	9.4	10
879	Development of Polylactic Acid Films with Selenium Microparticles and Its Application for Food Packaging. Coatings, 2020, 10, 280.	2.6	14
880	Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chemistry, 2020, 322, 126782.	8.2	140
881	Plasticized poly(lactic acid) reinforced with antioxidant covalent organic frameworks (COFs) as novel nanofillers designed for non-migrating active packaging applications. Polymer, 2020, 196, 122466.	3.8	28
882	Evaluation of Nanocomposite Made of Polylactic Acid and Nanocellulose from Carrot Pomace Modified with Silver Nanoparticles. Polymers, 2020, 12, 812.	4.5	25
883	CuO/LDPE nanocomposite for active food packaging application: a comparative study of its antibacterial activities with ZnO/LDPE nanocomposite. Polymer Bulletin, 2021, 78, 1671-1682.	3.3	11
884	Development and Analysis of Completely Biodegradable Cellulose/Banana Peel Powder Composite Films. Journal of Natural Fibers, 2021, 18, 151-160.	3.1	7

#

867

869

871

873

875

#	Article	IF	CITATIONS
885	Blending collagen, methylcellulose, and whey protein in films as a greener alternative for food packaging: Physicochemical and biodegradable properties. Packaging Technology and Science, 2021, 34, 91-103.	2.8	19
886	Photoinitiators of polymerization with reduced environmental impact: Nature as an unlimited and renewable source of dyes. European Polymer Journal, 2021, 142, 110109.	5.4	46
887	Influence of PLGA nanoparticles on the deposition of model water-soluble biocompatible polymers by dip coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125591.	4.7	12
888	Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced <scp>PLA</scp> bionanocomposites: A review. Polymer Engineering and Science, 2021, 61, 22-38.	3.1	27
889	Transparent films by ionic liquid welding of cellulose nanofibers and polylactide: Enhanced biodegradability in marine environments. Journal of Hazardous Materials, 2021, 402, 124073.	12.4	24
890	Environmental Microbiology and Biotechnology. , 2021, , .		4
891	Hydrophobic nanocomposites of <scp>PBAT</scp> with <scp>Clâ€<i>fn</i>â€POSS</scp> nanofiller as compostable food packaging films. Polymer Engineering and Science, 2021, 61, 314-326.	3.1	17
892	Facile strategy to improve thermal conductivity of anisotropic poly(butylene succinate) phosphorusâ€containing ionomer films via compression molding. Polymers for Advanced Technologies, 2021, 32, 1194-1204.	3.2	2
893	Functional properties of starch-chitosan blend bionanocomposite films for food packaging: the influence of amylose-amylopectin ratios. Journal of Food Science and Technology, 2021, 58, 3368-3378.	2.8	13
894	Development of new active nanocomposite packaging films containing polyhedral oligomeric silsesquioxane for walnut (Juglans regia L .) kernel packaging. Packaging Technology and Science, 2021, 34, 151-160.	2.8	0
895	Properties and Applications of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposites. Journal of Polymers and the Environment, 2021, 29, 1010-1030.	5.0	31
896	Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environmental Chemistry Letters, 2021, 19, 583-611.	16.2	112
897	Factors Conditioning the Potential Effects TiO2 NPs Exposure on Human Microbiota: a Mini-Review. Biological Trace Element Research, 2021, 199, 4458-4465.	3.5	16
898	Principle of Green Chemistry: A modern perspective for development of sustainable textile fiber-based green nanocomposites. , 2021, , 121-136.		3
899	Fabrication and Biodegradability of Starch Cell-Plastics as Recyclable Resources. Applied Sciences (Switzerland), 2021, 11, 847.	2.5	5
900	Silver-based nanomaterials for food packaging applications. , 2021, , 125-146.		2
901	Comparison of Foam Glass-Ceramics with Different Composition Derived from Ark Clamshell (ACS) and Soda Lime Silica (SLS) Glass Bottles Sintered at Various Temperatures. Materials, 2021, 14, 570.	2.9	7
902	An overview of nanotechnology in plant disease management, food safety, and sustainable agriculture. , 2021, , 193-219.		5

#	Article	IF	Citations
903	Soy protein based biocomposites as ideal packaging materials. , 2021, , 65-84.		1
904	Processing of bio-based polymers for industrial and medical applications. , 2021, , 191-238.		4
905	Nanocomposites in the Food Packaging Industry. , 2021, , 122-146.		3
906	Nanomaterials in Food Packaging. Advances in Chemical and Materials Engineering Book Series, 2021, , 270-287.	0.3	0
907	Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. Environmental Science and Pollution Research, 2021, 28, 7669-7690.	5.3	14
909	Antimicrobial Nanocomposites for Environmental Remediation. Chemistry in the Environment, 2021, , 187-215.	0.4	0
910	Fabrication of DNA/poly l-methionine-silver nanoparticles/pencil graphite electrode and its application to the determination of carboxin. Journal of the Iranian Chemical Society, 2021, 18, 1613-1623.	2.2	3
911	Nanocomposite antimicrobial films based on biopolymers. , 2021, , 149-170.		1
912	Functional nanocomposites and their potential applications: A review. Journal of Polymer Research, 2021, 28, 1.	2.4	77
913	Effect of supercritical incorporation of cinnamaldehyde on physical-chemical properties, disintegration and toxicity studies of PLA/lignin nanocomposites. International Journal of Biological Macromolecules, 2021, 167, 255-266.	7.5	34
914	Nanoscience and nanotechnology regarding food packaging and nanomaterials to extending the postharvest life and the shelf life of foods. , 2021, , 313-384.		2
915	Consumer Nanoproducts Based on Polymer Nanocomposites for Food Packaging. , 2021, , 1-23.		0
916	Recent development in kenaf (Hibiscus cannabinus)-based biocomposites and their potential industrial applications: A review. , 2021, , 329-368.		0
917	Recent trends in Modern Microbial Technology. , 2021, , .		0
919	Biobased Polyesterâ€Amide/Cellulose Nanocrystal Nanocomposites for Food Packaging. Macromolecular Materials and Engineering, 2021, 306, 2000668.	3.6	11
921	New biodegradable composites from starch and fibers of the babassu coconut. Polimeros, 2021, 31, .	0.7	9
922	Alginate-based bionanocomposites in dental applications. , 2021, , 309-326.		1
923	Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation. , 2021, , 1264-1294.		ο

#	Article	IF	CITATIONS
924 925	Food packaging applications of biopolymer-based (nano)materials. , 2021, , 137-186. Biological applications of biopolymer-based (nano)materials. , 2021, , 333-419.		4
926	Consumer Nanoproducts Based on Polymer Nanocomposites Matrices. , 2021, , 1-28.		0
927	Metal-Based Green Synthesized Nanoparticles: Boon for Sustainable Agriculture and Food Security. IEEE Transactions on Nanobioscience, 2022, 21, 44-54.	3.3	15
928	Applications of Biodegradable Green Composites. Materials Horizons, 2021, , 373-392.	0.6	4
929	Polymer Nanocomposite Matrices. , 2021, , 333-344.		0
930	Development of completely furfural-based renewable polyesters with controllable properties. Green Chemistry, 2021, 23, 2437-2448.	9.0	20
931	A Review on Production, Characterization and Application of Bacterial Cellulose and Its Biocomposites. Journal of Polymers and the Environment, 2021, 29, 2738-2755.	5.0	32
932	Perspectives of polylactic acid from structure to applications. Polymers From Renewable Resources, 2021, 12, 60-74.	1.3	17
933	Prolaminâ€based complexes: Structure design and foodâ€related applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1120-1149.	11.7	35
934	Macrocycles in dual role: ancillary ligands in metal complexes and organocatalysts for the ring-opening polymerization of lactide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 100, 1-36.	1.6	4
935	Thermal and rheological properties of fully biodegradable Poly(ethylene succinate)/Cellulose nanocrystals composites. Composites Communications, 2021, 23, 100571.	6.3	15
936	Nano and bio-composites and their applications: A review. IOP Conference Series: Materials Science and Engineering, 2021, 1067, 012093.	0.6	3
937	Biodegradable blend films of poly(ε-caprolactone)/poly(propylene carbonate) for shelf life extension of whole white button mushrooms. Journal of Food Science and Technology, 2022, 59, 144-156.	2.8	7
938	Extruded PLA Nanocomposites Modified by Graphene Oxide and Ionic Liquid. Polymers, 2021, 13, 655.	4.5	12
939	Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition, 2022, 62, 5029-5055.	10.3	73
940	The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access, 2021, 4, 100113.	3.2	47
941	Study of Hematological Parameters and Morphometric Indices of Erythrocytes in Rats Exposed to Calcium Oxide Nanoparticles. Bulletin of Experimental Biology and Medicine, 2021, 170, 665-668.	0.8	2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
942	Preparation of formyl cellulose and its enhancement effect on the mechanical and barrier properties of polylactic acid films. International Journal of Biological Macromolecules, 2021, 172, 82-92.	7.5	13
943	Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles. International Journal of Biological Macromolecules, 2021, 173, 193-202.	7.5	52
944	Gelatin-Based Nanocomposites: A Review. Polymer Reviews, 2021, 61, 765-813.	10.9	24
945	Structure-Gas Barrier Property Relationship in a Novel Polyimide Containing Naphthalene and Amide Groups: Evaluation by Experiments and Simulations. Materials, 2021, 14, 1402.	2.9	2
946	Structure–Property Relationships in Bionanocomposites for Pipe Extrusion Applications. Polymers, 2021, 13, 782.	4.5	5
949	Nanofillers for Food Packaging: Antimicrobial Potential of Metal-based Nanoparticles. Current Nanotoxicity and Prevention, 2021, 1, 44-66.	0.0	2
950	A comprehensive review on the role of some important nanocomposites for antimicrobial and wastewater applications. International Journal of Environmental Science and Technology, 2022, 19, 2221-2246.	3.5	17
951	Collaborations for circular food packaging: The set-up and partner selection process. Sustainable Production and Consumption, 2021, 26, 733-740.	11.0	30
953	Nanobiocomposite Films: a "Greener Alternate―for Food Packaging. Food and Bioprocess Technology, 2021, 14, 1013-1027.	4.7	21
954	Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior. Polymers, 2021, 13, 1167.	4.5	19
955	Desarrollo de pelÃculas biodegradables usando zeolitas impregnadas con plata. Avances Investigación En IngenierÃa, 2021, 18, .	0.0	0
956	An experimental study on characteristics of sago starch film treated with methanol extract from Artemisia sieberi Besser. Journal of Food Measurement and Characterization, 2021, 15, 3298-3306.	3.2	26
957	Thermomechanical Properties and Thermal Behavior of Poly(Lactic Acid) Composites Reinforced with TiO ₂ Nanofiller. Solid State Phenomena, 0, 317, 341-350.	0.3	3
958	Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. International Journal of Biological Macromolecules, 2021, 179, 448-456.	7.5	23
959	Hybrid approaches coupling sol–gel and plasma for the deposition of oxide-based nanocomposite thin films: a review. SN Applied Sciences, 2021, 3, 1.	2.9	6
960	Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials, 2021, 11, 1331.	4.1	69
961	Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes. Foods, 2021, 10, 1150.	4.3	21
962	A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers, 2021, 13, 1544.	4.5	86

#	Article	IF	CITATIONS
963	Applications of nanoâ€materials in food packaging: A review. Journal of Food Process Engineering, 2021, 44, e13708.	2.9	26
964	Insight into the effect of He atmospheric pressure plasma jets on low-density polyethylene surfaces by fixed-point treatment. Journal Physics D: Applied Physics, 2021, 54, 285204.	2.8	10
965	Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polymer Testing, 2021, 97, 107182.	4.8	69
966	Development of PE/PCL Bilayer Films Modified with Casein and Aluminum Oxide. Molecules, 2021, 26, 3090.	3.8	0
967	Improved creep performance of meltâ€extruded polycaprolactone/organoâ€bentonite nanocomposites. Journal of Applied Polymer Science, 2021, 138, 50961.	2.6	7
968	All-Aqueous Multi-phase Systems and Emulsions Formed <i>via</i> Low-Concentration Ultra-high-Molar Mass Polyacrylamides. Macromolecules, 2021, 54, 5366-5375.	4.8	8
970	Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science, 2021, 117, 101395.	24.7	321
971	Application of plant natural products for the management of postharvest diseases in fruits. Folia Horticulturae, 2021, 33, 203-215.	1.8	19
972	Effect of greenly synthetized silver nanoparticles on the properties of active starch films obtained by extrusion and compression molding. Carbohydrate Polymers, 2021, 261, 117871.	10.2	38
973	Can Sustainable Packaging Help to Reduce Food Waste? A Status Quo Focusing Plant-Derived Polymers and Additives. Applied Sciences (Switzerland), 2021, 11, 5307.	2.5	3
974	Novel 2,3-Dialdehyde Cellulose-Based Films with Photodynamic Inactivation Potency by Incorporating the β-Cyclodextrin/Curcumin Inclusion Complex. Biomacromolecules, 2021, 22, 2790-2801.	5.4	30
976	Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 2021, 13, 1191-1219.	5.8	71
977	Advancements in nanotechnology for food science and industry. Food Frontiers, 2022, 3, 56-82.	7.4	40
978	Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: Investigation of physicochemical and antimicrobial properties. Materials Chemistry and Physics, 2021, 267, 124580.	4.0	58
979	Hydrothermal assisted isolation of microcrystalline cellulose from pepper (Piper nigrum L.) processing waste for making sustainable bio-composite. Journal of Cleaner Production, 2021, 305, 127229.	9.3	18
980	Clay-Based Polymer Nanocomposites: Essential Work of Fracture. Polymers, 2021, 13, 2399.	4.5	20
981	Improvement of the UV Barrier and Antibacterial Properties of Crosslinked Pectin/Zinc Oxide Bionanocomposite Films. Polymers, 2021, 13, 2403.	4.5	29
982	Film Blowing of Biodegradable Polymer Nanocomposites for Agricultural Applications. Macromolecular Materials and Engineering, 2021, 306, 2100177.	3.6	16

#	Article	IF	CITATIONS
983	Transient and Biocompatible Resistive Switching Memory Based on Electrochemicallyâ€Deposited Zinc Oxide. Advanced Electronic Materials, 2021, 7, 2100322.	5.1	10
984	Bio-based polyamide-assisted supertoughening of polylactide through hardening of the EGMA elastomeric domains of much low amount. Applied Surface Science, 2021, 556, 149845.	6.1	14
985	Improvement of mechanical, thermal and antimicrobial properties of organically modified montmorillonite loaded polycaprolactone for food packaging. Journal of Vinyl and Additive Technology, 2021, 27, 894-908.	3.4	14
986	Electrohydrodynamic processing of natural polymers for active food packaging: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 6027-6056.	11.7	32
987	A review on recent technologies adopted by food industries and intervention of 2D-inorganic nanoparticles in food packaging applications. European Food Research and Technology, 2021, 247, 2899-2914.	3.3	7
988	Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers, 2021, 13, 2790.	4.5	37
989	Biodegradable Nanocomposite Packaging Films for Meat and Meat Products: A Review. Journal of Packaging Technology and Research, 2021, 5, 143-166.	1.5	8
990	Multivariable analysis for selection of natural fibers as fillers for a sustainable food packaging industry. Materials Research Express, 2021, 8, 095504.	1.6	10
991	Design of Alginate-Based Bionanocomposites with Electrical Conductivity for Active Food Packaging. International Journal of Molecular Sciences, 2021, 22, 9943.	4.1	18
992	A simplified bibliometric mapping and analysis about sustainable polymers. Materials Today: Proceedings, 2022, 49, 2025-2033.	1.8	11
993	The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Critical Reviews in Food Science and Nutrition, 2023, 63, 1822-1845.	10.3	7
994	Effect of Free Volume on Curcumin Release from Various Polymer-Based Composite Films Analyzed Using Positron Annihilation Lifetime Spectroscopy. Materials, 2021, 14, 5679.	2.9	5
995	Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. International Journal of Molecular Sciences, 2021, 22, 9663.	4.1	36
996	Constructing robust chain entanglement network, well-defined nanosized crystals and highly aligned graphene oxide nanosheets: Towards strong, ductile and high barrier Poly(lactic acid) nanocomposite films for green packaging. Composites Part B: Engineering, 2021, 222, 109048.	12.0	29
997	A comparative study: Physical, mechanical and antibacterial properties of bio-composite gelatin films as influenced by chitosan and zinc oxide nanoparticles incorporation. Food Bioscience, 2021, 43, 101250.	4.4	51
998	A bio-inspired exploration of eco-friendly bael gum and guar gum-based bioadhesive as tackifiers for packaging applications. International Journal of Adhesion and Adhesives, 2021, 110, 102946.	2.9	9
999	Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience, 2021, 43, 101251.	4.4	70
1000	A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends. Journal of Materials Research and Technology, 2021, 15, 2287-2316.	5.8	68

ARTICLE IF CITATIONS Impact of calcium-carboxylate interactions in cellulose nanofiber reinforced alginate based film with 1001 5.2 4 triple-decker-like structure. LWT - Food Science and Technology, 2021, 151, 112197. Preparation of effective ultraviolet shielding poly (lactic acid)/poly (butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 707 Td 1002 7.5 International Journal of Biological Macromolecules, 2021, 191, 540-547. Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. 1003 10.2 47 Carbohydrate Polymers, 2021, 271, 118425. Biosensors and biopolymer-based nanocomposites for smart food packaging: Challenges and 1004 opportunities. Food Páckaging and Shelf Life, 2021, 30, 100745. Ultra-high gas barrier and enhanced mechanical properties of corn cellulose nanocomposite films 1005 filled with graphene oxide nanosheets. Carbohydrate Polymer Technologies and Applications, 2021, 2, 2.6 11 100066. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100024. 94 2.6 Sustainable biocomposite development using halloysite nanotubes and polylactic acid., 2022, , 245-264. 1007 0 Advanced nanocellulose-based gas barrier materials: Present status and prospects. Chemosphere, 1008 8.2 Effective strategies of sustained release and retention enhancement of essential oils in active food 1009 8.2 115 packaging films/coatings. Food Chemistry, 2022, 367, 130671. Chitin-based nanomaterials., 2021, , 61-99. 1 Applications in food products., 2021, , 363-386. 1011 0 Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites. Materials 1012 0.6 Horizons, 2021, , 63-133. Bacteriocin nanoconjugates: boon to medical and food industry. Journal of Applied Microbiology, 1013 3.1 20 2021, 131, 1056-1071. Smart Nanobiosensors., 2021, , 231-245. 1014 Nanocomposites containing titanium dioxide for environmental remediation. Designed Monomers and 1015 1.6 13 Polymers, 2021, 24, 22-45. Processing of Commercially Available Bioplastics., 2021, , 103-136. Active biofilms for food packaging applications., 2021, , 65-84. 1017 4 Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications., 2021, , 1019

CITATION REPORT

137-176.

# 1020	ARTICLE Modern Food Production: Fundaments, Sustainability, and the Role of Technological Advances. , 2021, , 1-22.	IF	CITATIONS 2
1021	(Bio)degradable Polymer Nanocomposites for Environmental Protection. , 2021, , 1435-1461.		0
1022	Biopolymeric nanomaterials: design, synthesis, and applications. , 2021, , 1-12.		1
1025	Triboelectric nanogenerator based on degradable materials. EcoMat, 2021, 3, e12072.	11.9	108
1026	Nanotechnology: Current applications and future scope in food. Food Frontiers, 2021, 2, 3-22.	7.4	112
1027	Application of Sustainable Nanocomposites for Water Purification Process. , 2019, , 387-412.		33
1028	Recyclable and Eco-friendly Single Polymer Composite. , 2019, , 693-725.		3
1029	Bionanocomposites from Biofibers and Biopolymers. , 2020, , 135-157.		8
1030	Advanced Treatment Technologies. , 2018, , 1-52.		3
1031	Nanotechnology Applications in Food: A Scientometric Overview. , 2019, , 683-711.		2
1032	Nanopolysaccharides in Barrier Composites. Springer Series in Biomaterials Science and Engineering, 2019, , 321-366.	1.0	3
1033	Biopolymer Nanocomposites and Its Application in Food Processing. Advanced Structured Materials, 2020, , 283-317.	0.5	7
1034	Bionanocomposite Films for Food Packaging Applications. , 2018, , 234-243.		3
1035	Bionanocomposites in food industry. , 2020, , 421-456.		3
1036	Chitosan/chitin-based composites for food packaging applications. , 2020, , 641-670.		8
1037	Biodegradable nanomaterials for drink packaging. , 2020, , 609-632.		5
1038	Significant enhancement of notched Izod impact strength of PLA-based blends through encapsulating PA11 particles of low amounts by EGMA elastomer. Applied Surface Science, 2020, 526, 146657.	6.1	20
1039	Preparation, reinforcement and properties of thermoplastic starch film by film blowing. Food Hydrocolloids, 2020, 108, 106006.	10.7	48

		ON REPORT	
#	Article	IF	Citations
1040	Nanocomposites of Polyhydroxyalkanoates (PHAs). RSC Green Chemistry, 2014, , 98-118.	0.1	4
1041	CHAPTER 7. Nanotechnology in Food Packaging. RSC Nanoscience and Nanotechnology, 2017, , 118-142.	0.2	8
1042	Fabrication and characterization of biodegradable PHBV/SiO ₂ nanocomposite for thermoâ€mechanical and antibacterial applications in food packaging. IET Nanobiotechnology, 2020, 14, 785-795.	3.8	17
1043	Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 513-530.	3.4	56
1044	Potential Applications of Sustainable Polymers in Functionalization of Cellulosic Textile Materials. , 2016, , 248-297.		5
1045	Evolution of biobased and nanotechnology packaging – a review. Nordic Pulp and Paper Research Journal, 2020, 35, 491-515.	0.7	27
1046	Thermal, Morphological, and Mechanical Properties of Regular and Waxy Maize Starch Films Reinforced with Cellulose Nanofibers (CNF). Materials Research, 2020, 23, .	1.3	21
1047	From Obtaining to Degradation of PHB:Material Properties. Part I. IngenierÃa Y Ciencia, 2017, 13, 269-298	3. 0.3	38
1048	THERMAL, MECHANICAL AND ANTIBACTERIAL PROPERTIES OF LDPE/STARCH BIO-BASED POLYMER BLEND FOR FOOD PACKING APPLICATIONS. Journal of the Turkish Chemical Society, Section A: Chemistry, 2017, 3, 637-637.)S 1.1	11
1049	PVA Nanocomposites Of Organoclays Obtained Using Different Cationic Surfactants. Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5, 415-432.	1.1	2
1050	Preparation of Carrageenan-based Antimicrobial Films Incorporated With Sulfur Nanoparticles. Korean Journal of Packaging Science and Technology, 2020, 26, 125-131.	0.1	4
1051	Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 2019, 26, 2502-2513.	2.4	32
1052	Influence of Nanocellulose Additive on the Film Properties of Native Rice Starch-based Edible Films for Food Packaging. Recent Patents on Nanotechnology, 2020, 13, 222-233.	1.3	22
1053	Developing Neo-bioplastics for the Realization of Carbon Sustainable Society. , 2020, 1, .		1
1054	Environmental Impact of Nanoparticles' Application as an Emerging Technology: A Review. Materials, 2021, 14, 166.	2.9	85
1055	Nanocomposites for Food Packaging Applications: An Overview. Nanomaterials, 2021, 11, 10.	4.1	84
1056	Nanocomposites in the Food Packaging Industry. Advances in Mechatronics and Mechanical Engineering, 2020, , 103-135.	1.0	1
1057	Nanotechnology and its potential applications in meat industry. Tehnologija Mesa, 2013, 54, 168-175.	0.1	25

#	Article	IF	CITATIONS
1058	Modification of Nanocrystalline Cellulose for Bioactive Loaded Films. Journal of Research Updates in Polymer Science, 2014, 3, 122-135.	0.3	6
1059	Trends in sustainable biobased packaging materials: a mini review. Materials Today Sustainability, 2021, 15, 100084.	4.1	40
1060	Preparation and characterization of the plasticized polylactic acid films produced by the solventâ€casting method for food packaging applications. Journal of Food Processing and Preservation, 2021, 45, e16089.	2.0	11
1061	Trends and challenges of biopolymerâ€based nanocomposites in food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5321-5344.	11.7	68
1062	A short review on mechanical and barrier properties of polylactic acid-based films. Materials Today: Proceedings, 2022, 56, 3241-3246.	1.8	3
1064	Characterization of Polyvinyl Alcohol (PVA) as Antimicrobial Biocomposite Film: A Review. Asian Journal of University Education, 2021, 7, 79-85.	0.3	2
1065	Effect of rosemary essential oil and ethanol extract on physicochemical and antibacterial properties of optimized gelatin–chitosan film using mixture design. Journal of Food Processing and Preservation, 2022, 46, e16059.	2.0	7
1066	Superior toughened bio-compostable Poly(glycolic acid)-based blends with enhanced melt strength via selective interfacial localization of in-situ grafted copolymers. Polymer, 2021, 235, 124269.	3.8	29
1067	Recent insights into carrageenan-based bio-nanocomposite polymers in food applications: A review. International Journal of Biological Macromolecules, 2021, 192, 197-209.	7.5	48
1068	Development of multifunctional food packaging films based on waste Garlic peel extract and Chitosan. International Journal of Biological Macromolecules, 2021, 192, 479-490.	7.5	30
1069	Interacciones empaque-alimento: migración. Revista IngenierÃas Universidad De MedellÃn, 2014, 13, 99-113.	0.2	2
1070	Application of Starch Nanocomposites in the Food Industry. RSC Green Chemistry, 2015, , 352-402.	0.1	0
1072	Recent Advantages of Biopolymer Preparation and Applications in Bio-Industry. , 2017, , 229-241.		0
1074	Nanocomposites for food packaging applications. , 2018, , 137-171.		1
1075	Gıda Ürünlerinde Yenilebilir Film ve Kaplama Uygulamaları. El-Cezeri Journal of Science and Engineering, 2018, 5, 645-655.	0.1	3
1076	STUDYING INDICATORS OF GELATIN AND NATURAL POLYSACCHARIDES QUALITY AND SAFETY. Journal of Experimental Biology and Agricultural Sciences, 2018, 6, 582-591.	0.4	0
1077	Pleurotus Türlerinde Hasat Sonrası Uygulamaların Kaliteye Etkisi. Harran Tarım Ve Gıda Bilimleri Dergisi, 0, , 445-453.	0.5	0
1078	Nano-Enabled Technological Interventions for Sustainable Production, Protection, and Storage of Fruit Crops. , 2019, , 299-322.		2

#	Article	IF	CITATIONS
1079	Polymer Nanocomposite Matrices. , 2019, , 1-12.		1
1080	Advanced Treatment Technologies. , 2019, , 1289-1339.		0
1081	Preparation and Characterization of Antibacterial Sustainable Nanocomposites. , 2019, , 215-244.		1
1082	Identification and Validation of Decision Factors for Selecting Smart Food Packaging Technology: A Case of Thailand's Food Industry. Open Psychology Journal, 2019, 12, 25-34.	0.3	1
1083	(Bio)degradable Polymer Nanocomposites for Environmental Protection. , 2019, , 1-27.		0
1084	Nanotechnology for Aquaculture. , 2019, , 479-544.		5
1085	Opakowania do żywności - wymagania, kontrowersje i trendy. PrzemysŕSpoŻywczy, 2019, 1, 48-52.	0.1	0
1088	Protein-based bionanocomposites. , 2020, , 267-320.		3

1089 ĐаĐ·Ñ€Đ°Đ±Đ¾Ñ,ĐºĐ° Đ, Đ,ÑŇлеĐĐ¾Đ2аĐ½Đ,е ÑfĐ;аĐºĐ¾Đ2Đ¾Ñ‡Đ½Đ¾Đ1 бÑfĐ¼Đ°Đ3Đ, Đ拗Đ¾ĐĐ,Ñ,Đ,цĐ,Ñ

1091	Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. European Polymer Journal, 2021, 161, 110855.	5.4	77
1092	Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112186.	5.0	37
1093	A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS Applied Materials & Interfaces, 2021, 13, 52998-53008.	8.0	19
1094	Valorization of Hemp Hurds as Bio-Sourced Additives in PLA-Based Biocomposites. Polymers, 2021, 13, 3786.	4.5	10
1095	The biodegradable coating from gluten for paraffined paper. AIP Conference Proceedings, 2020, , .	0.4	0
1096	Film Based Packaging for Food Safety and Preservation: Issues and Perspectives. , 2021, , 309-336.		2
1097	Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloids, 2022, 124, 107249.	10.7	62
1098	Development and characterization of biopolymers films mechanically reinforced with garlic skin waste for fabrication of compostable dishes. Food Hydrocolloids, 2022, 124, 107252.	10.7	16
1099	Plastics in Food Packaging. , 2022, , 178-186.		3

#	Article	IF	Citations
1100	Influence of polylactic acid and polycaprolactone on dissolution characteristics of ansamycin-loaded polymeric nanoparticles: An unsatisfied attempt for drug release profile. Journal of Pharmaceutical Negative Results, 2020, 11, 23.	0.2	11
1101	Fabrication of Metal Oxide-Biopolymer Nanocomposite for Water Defluoridation. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 242-271.	0.4	0
1102	Nanotechnology and Food Microbiology. , 2020, , 109-114.		0
1103	Ecofriendly Synthesis of Biopolymer Nanocomposites and Its Application as a Potent Marine Antifouling Agent. Environmental Chemistry for A Sustainable World, 2020, , 181-195.	0.5	0
1104	Sonochemical Synthesis of Poly(lactic acid) Nanocomposites with ZnO Nanoflowers: Effect of Nanofiller Morphology on Physical Properties. ACS Engineering Au, 2022, 2, 46-60.	5.1	7
1105	Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere, 2022, 291, 132786.	8.2	41
1106	Characterization and application of porous polylactic acid films prepared by nonsolvent-induced phase separation method. Food Chemistry, 2022, 373, 131525.	8.2	14
1107	Comprehensive Review on Silicon-enhanced Green Nanocomposites Towards Sustainable Development. Silicon, 0, , 1.	3.3	1
1108	Film Blowing of PHB-Based Systems for Home Compostable Food Packaging. International Polymer Processing, 2020, 35, 440-447.	0.5	0
1109	Biodegradable Bio-based Plastics Toward Climate Change Mitigation. , 2021, , 1-43.		1
1110	Innovative bio-based materials for packaging sustainability. , 2022, , 173-192.		2
1111	Multifunctional polymeric nanocomposites with graphene. , 2022, , 25-44.		0
1113	Mechanically Strong, Thermally Stable Gas Barrier Polyimide Membranes Derived from Carbon Nanotube-Based Nanofluids. ACS Applied Materials & Interfaces, 2021, 13, 56530-56543.	8.0	9
1114	Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers, 2021, 13, 4198.	4.5	42
1115	Development and investigation of antibacterial and antioxidant characteristics of poly lactic acid films blended with neem oil and curcumin. Journal of Applied Polymer Science, 2022, 139, 51891.	2.6	11
1116	Physical, Mechanical, and Water Vapor Barrier Properties of Starch/Cellulose Nanofiber/Thymol Bionanocomposite Films. Polymers, 2021, 13, 4060.	4.5	17
1117	A bio-based N-heterocyclic poly(aryl ether ketone) with a high biomass content and superior properties prepared from two derivatives of guaiacol and 2,5-furandicarboxylic acid. Polymer Degradation and Stability, 2022, 195, 109792.	5.8	2
1119	Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review. International Journal of Biological Macromolecules, 2021, 193, 2121-2139.	7.5	57

	CITATIO	IN REPORT	
#	Article	IF	Citations
1120	Biobased composites from agro-industrial wastes and by-products. Emergent Materials, 2022, 5, 873-921.	5.7	69
1121	Multifunctional poly(vinyl alcohol) films using cellulose nanocrystals/oregano and cellulose nanocrystals/cinnamon Pickering emulsions: Effect of oil type and concentration. International Journal of Biological Macromolecules, 2022, 194, 736-745.	7.5	30
1123	Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, 2022, 14, 182.	4.5	121
1124	Mapping the environmental impacts and policy effectiveness of takeaway food industry in China. Science of the Total Environment, 2022, 808, 152023.	8.0	25
1125	From traditional paper to nanocomposite films: Analysis of global research into cellulose for food packaging and Shelf Life, 2022, 31, 100788.	7.5	16
1126	Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: A review of the nano-composites in comparison with the conventional counterparts. Carbohydrate Polymers, 2022, 280, 119027.	10.2	18
1127	Nanoclay-based active food packaging systems: A review. Food Packaging and Shelf Life, 2022, 31, 100803.	. 7.5	41
1128	Global Research Trends on the Use of Nanotechnology to Boost Meat Production: A Scientometric Analysis. Frontiers in Research Metrics and Analytics, 2021, 6, 793853.	1.9	1
1129	Application of Gelatin in Food Packaging: A Review. Polymers, 2022, 14, 436.	4.5	75
1130	Lignin-based composites for packaging applications. , 2022, , 131-171.		1
1131	Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review. Applied Sciences (Switzerland), 2022, 12, 1346.	2.5	21
1132	Significantly Enhanced Crystallization of Poly(ethylene succinate-co-1,2-propylene succinate) by Cellulose Nanocrystals as an Efficient Nucleating Agent. Polymers, 2022, 14, 224.	4.5	4
1133	Biodegradable Packaging Materials and Techniques to Improve Their Performance. , 2022, , 61-105.		2
1134	Liquid crystalline polymer-based bio-nanocomposites for spectroscopic applications. , 2022, , 141-162.		2
1136	Cu-based nanomaterials for production of novel agrochemicals. , 2022, , 567-593.		0
1137	Polysaccharide-based blend films as a promising material for food packaging applications: physicochemical properties. Iranian Polymer Journal (English Edition), 2022, 31, 503-518.	2.4	10
1138	A review on polymeric nanomaterials intervention in food industry. Polymer Bulletin, 2023, 80, 137-164.	3.3	8
1139	Biodegradable Polymers and their Applications: A Review. Mini-Reviews in Medicinal Chemistry, 2022, 22, 2081-2101.	2.4	8

#	Article	IF	CITATIONS
1140	Optical, mechanical, and antimicrobial properties of bioâ€based composites of poly(Lâ€lactic acid) and Dâ€limonene/β yclodextrin inclusion complex. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
1141	Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control, 2022, 136, 108875.	5.5	57
1142	Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 2022, 7, 185-200.	2.2	59
1143	Nanotechnology and food safety. , 2022, , 325-340.		3
1144	Food contact materials legislation. , 2022, , 275-324.		0
1146	Intelligent pH Indicative Film from Plant-Based Extract for Active Biodegradable Smart Food Packing. Journal of Nanomaterials, 2022, 2022, 1-8.	2.7	8
1147	Investigation of Degradation of Composites Based on Unsaturated Polyester Resin and Vinyl Ester Resin. Materials, 2022, 15, 1286.	2.9	14
1148	A review on predictive tortuosity models for composite films in gas barrier applications. Journal of Coatings Technology Research, 2022, 19, 699-716.	2.5	16
1149	Cytotoxicity and bactericidal activity of alginate/polyethylene glycol films with zinc oxide or silicon oxide nanoparticles for food packaging. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 577-588.	3.4	4
1150	Fire retardancy in nanocomposites by using nanomaterial additives. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105466.	5.5	19
1151	Antibacterial, Antioxidation, UV-Blocking, and Biodegradable Soy Protein Isolate Food Packaging Film with Mangosteen Peel Extract and ZnO Nanoparticles. Nanomaterials, 2021, 11, 3337.	4.1	21
1152	Life Cycle Assessment on Environmental Sustainability of Food Processing. Annual Review of Food Science and Technology, 2022, 13, 217-237.	9.9	8
1153	A review investigating the influence of nanofiller addition on the mechanical, thermal and water absorption properties of cellulosic fibre reinforced polymer composite. Journal of Industrial Textiles, 2022, 51, 65S-100S.	2.4	24
1155	Reducing the crystallinity of PCL chains by copolymerization with substituted δlε-lactones and its impact on the phase separation of PCL-based block copolymers. Polymer Chemistry, 2022, 13, 2201-2214.	3.9	6
1156	Mechanically treated vermiculite particles in PCL/vermiculite thin films. Materials Today: Proceedings, 2022, 52, 239-247.	1.8	6
1157	Polysaccharide-based nanomaterials. , 2022, , 95-111.		0
1158	Microbial bio-based polymer nanocomposite for food industry applications. , 2022, , 331-354.		1
1159	Impacts of edible coatings enriched with laurel essential oil on the storage life of strawberry â€`Camarosa' fruits. Bragantia, 0, 81, .	1.3	3

#	Article	IF	CITATIONS
1160	Lignocellulosic Nanofibrils as Multifunctional Component for High-Performance Packaging Applications. SSRN Electronic Journal, 0, , .	0.4	0
1161	Nanocellulose biocomposites in specialty papermaking. , 2022, , 353-374.		0
1162	Biomimmetic <scp> ZrO ₂ </scp> @ <scp>PdO</scp> nanocomposites: fabrication, characterization, and water splitting potential exploration. International Journal of Energy Research, 2022, 46, 8516-8526.	4.5	10
1163	Influence of reaction compatibilization on mechanical and barrier properties of poly(lactic) Tj ETQq1 1 0.784314 r 2022, 29, 1.	gBT /Over 2.4	lock 10 Tf 3 2
1164	Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials. Membranes, 2022, 12, 347.	3.0	41
1165	Chemical modification of TiO2 with essential oils for its application in active packaging. Polymer Bulletin, 0, , 1.	3.3	2
1166	Biodegradation of modified starch/poly lactic acid nanocomposite in soil. Polymer Degradation and Stability, 2022, 199, 109902.	5.8	12
1167	A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites. Adsorption Science and Technology, 2022, 2022, .	3.2	28
1168	Preparation and characterization of polyvinyl alcohol/polylactic acid/titanium dioxide nanocomposite films enhanced by γâ€irradiation and its antibacterial activity. Journal of Applied Polymer Science, 2022, 139, .	2.6	10
1169	Extraction of cellulose nanofibrils from Ficus natalensis barkcloth and utilization in preparation of antimicrobial bio-nanocomposite films for possible food packaging applications. Journal of Industrial Textiles, 2022, 51, 3980S-3997S.	2.4	1
1170	Effect of Graft Length and Matrix Molecular Weight on String Assembly of Aligned Nanoplates in a Lamellar Diblock Copolymer. Macromolecules, 2022, 55, 3166-3175.	4.8	2
1171	Effect of a carrageenan/chitosan coating with allyl isothiocyanate on microbial load in chicken breast. LWT - Food Science and Technology, 2022, 161, 113397.	5.2	5
1172	Polyhydroxybutyrate blends: A solution for biodegradable packaging?. International Journal of Biological Macromolecules, 2022, 207, 263-277.	7.5	43
1173	Long-Term Space Nutrition: A Scoping Review. Nutrients, 2022, 14, 194.	4.1	33
1174	A review on the application of bio-nanocomposites for food packaging. Materials Today: Proceedings, 2022, 56, 1302-1306.	1.8	6
1175	Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging. Foods, 2021, 10, 3043.	4.3	9
1176	Performance of Gelatin Films Reinforced with Cloisite Na+ and Black Pepper Essential Oil Loaded Nanoemulsion. Polymers, 2021, 13, 4298.	4.5	12
1177	Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. Polymer Reviews, 2022, 62, 653-721.	10.9	6

#	Article	IF	CITATIONS
1178	Minimizing Oxygen Permeability in Chitin/Cellulose Nanomaterial Coatings by Tuning Chitin Deacetylation. ACS Sustainable Chemistry and Engineering, 2022, 10, 124-133.	6.7	13
1179	Recent developments and future perspectives of biorenewable nanocomposites for advanced applications. Nanotechnology Reviews, 2022, 11, 1696-1721.	5.8	11
1180	Prospection of the use of encapsulation in food packaging. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2309-2334.	11.7	15
1181	Silk fibroinâ€based films in food packaging applications: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2253-2273.	11.7	20
1182	Antibacterial and antioxidant phenolic compounds loaded <scp>PCL</scp> biocomposites for active food packaging application. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
1183	Starch Nanocomposite Films: Migration Studies of Nanoparticles to Food Simulants and Bio-Disintegration in Soil. Polymers, 2022, 14, 1636.	4.5	5
1184	Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri. of Natural and Applied Sciences, 2022, 26, 106-114.	Journal 0.4	6
1185	Mechanical Properties of Carboxymethyl Cellulose Edible Films. Basrah Journal of Agricultural Sciences, 2019, 32, 68-78.	0.5	0
1187	Recent advancements of bionanocomposites in the food industry. , 2022, , 371-411.		0
1188	Starch Based Bio-nanocompositesÂ:Â Modern and Benign Materials in Food Packaging Industry. , 2022, , 881-909.		1
1189	Consumer Nanoproducts Based on Polymer Nanocomposites Matrices. , 2022, , 161-188.		0
1190	Polycaprolactones based bionanocomposites for food packaging applications. , 2022, , 135-151.		0
1191	Chitosan-based bionanocomposites for food packaging applications. , 2022, , 181-200.		2
1192	Active, Smart, Intelligent, and Improved Packaging. , 2022, , 189-202.		3
1193	Polyhydroxyalkanoates-based bionanocomposites for food packaging applications. , 2022, , 247-272.		1
1194	Methods of fabrication of bionanocomposites. , 2022, , 7-29.		1
1195	Poly(hydroxybutyrate)-based bionanocomposites for food packaging applications. , 2022, , 273-294.		1
1196	Bionanocomposites in food packaging applications and their risk assessment for public health. , 2022, , 453-477.		0

		CITATION RI	EPORT	
#	ARTICLE Consumer Nanoproducts Based on Polymer Nanocomposites for Food Packaging. , 202	22, , 1277-1299.	IF	Citations
1198	Fabrication of <scp>antiâ€UV</scp> absorbing and antibacterial soybean protein isolat modified with thyme and mangosteen peel extracts. Journal of Applied Polymer Science	te composite film	2.6	3
1200	Sustainable and Renewable Nano-biocomposites for Sensors and Actuators: A Review c and Performance. Current Analytical Chemistry, 2023, 19, 38-69.		1.2	7
1201	Emerging Trends for ZnO Nanoparticles and Their Applications in Food Packaging. ACS Technology, 2022, 2, 763-781.	Food Science &	2.7	34
1202	Adsorption Studies of Radionuclides by Turkish Minerals: A Review. Journal of the Turkis Society, Section A: Chemistry, 2022, 9, 579-600.	sh Chemical	1.1	2
1204	Development of Gelatin Thin Film Reinforced by Modified Gellan Gum and Naringenin-L Nanoparticle as a Wound Dressing. Macromolecular Research, 2022, 30, 397-405.	paded Zein	2.4	2
1205	Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals. Polymers, 2022	, 14, 1974.	4.5	12
1206	Lignocellulosic nanofibrils as multifunctional component for high-performance packagi applications. Materials Today Communications, 2022, 31, 103630.	ng	1.9	5
1207	Extraction, Characterization, and Comparison of Properties of Cassava Bagasse and Bla Journal of Natural Fibers, 0, , 1-14.	ck Seed Fibers.	3.1	5
1208	Effect of boehmite alumina nanoparticles on the physical and chemical characteristics of sodium alginate/polyvinyl alcohol bio-nanocomposite film. International Journal of Polymand Characterization, 2022, 27, 236-251.		1.9	1
1209	Progress in the Degradability of Biodegradable Film Materials for Packaging. Membrane	s, 2022, 12, 500.	3.0	20
1210	Bionanocomposites of pectin and pracaxi oil nanoemulsion as active packaging for but Packaging and Shelf Life, 2022, 32, 100862.	ter. Food	7.5	9
1211	Biocomposite composting based on the sugar-protein condensation theory. Industrial (Products, 2022, 183, 114974.	Crops and	5.2	8
1213	Sustainable Green Methods for the Extraction of Biopolymers. Springer Series on Polyn Composite Materials, 2022, , 73-110.	er and	0.7	6
1215	Nanostructured Materials from Biobased Precursors for Renewable Energy Storage App Symposium Series, 0, , 307-366.	lications. ACS	0.5	1
1216	Bio-nanomaterial for Renewable Energy Storage Applications. ACS Symposium Series, C		0.5	9
1217	Compositional Influence on the Morphology and Thermal Properties of Woven Non-Wo PLA/OLA/MgO Electrospun Fibers. Polymers, 2022, 14, 2092.		4.5	3
1218	Biodegradable Bio-based Plastics Toward Climate Change Mitigation. , 2022, , 1987-20	29.		0

#	Article	IF	CITATIONS
1219	Removal pesticides by advanced techniques based on nanomaterials. , 2022, , 437-482.		0
1220	A Systematic Literature Review on Packaging Sustainability: Contents, Opportunities, and Guidelines. Sustainability, 2022, 14, 6727.	3.2	7
1221	Nacreâ€Inspired Nanocomposite Films with Enhanced Mechanical and Barrier Properties by Selfâ€Assembly of Poly(Lactic Acid) Coated Mica Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	48
1222	Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Composites. Materials, 2022, 15, 3607.	2.9	10
1223	Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials, 2022, 12, 1843.	4.1	21
1224	Experimental, comparative and statistical study of heat transfer and drag reduction of Water/Polyisobutylene/nanoSiO2 poly-nanofluid through a horizontal pipe. Chemical Engineering Research and Design, 2022, 183, 466-477.	5.6	4
1225	Antimicrobial, antioxidant, and pH-sensitive polyvinyl alcohol/chitosan-based composite films with aronia extract, cellulose nanocrystals, and grapefruit seed extract. International Journal of Biological Macromolecules, 2022, 213, 381-393.	7.5	27
1226	Recent innovations in bionanocomposites-based food packaging films – A comprehensive review. Food Packaging and Shelf Life, 2022, 33, 100877.	7.5	36
1227	Chitosan- or glycidyl methacrylate-based adsorbents for the removal of dyes from aqueous solutions: a review. Materials Advances, 2022, 3, 5645-5671.	5.4	35
1228	Preparation and characterization of cellulose nanocrystals (CNC) reinforced polyvinyl alcohol (PVA) bio- nanocomposite. AlP Conference Proceedings, 2022, , .	0.4	1
1229	Analysis of the Decomposition using the Short Degradation Technique of Polylactic Acid/Halloysite Nanotube Biocomposites. MATEC Web of Conferences, 2022, 357, 05007.	0.2	1
1230	Bionanocomposite Using Nanocellulose Obtained from Agricultural Biomass. ACS Symposium Series, 0, , 75-90.	0.5	0
1231	Biorenewable Nanocomposites as Robust Materials for Energy Storage Applications. ACS Symposium Series, 0, , 197-224.	0.5	0
1233	Food Packaging Applications for Biorenewable-Based Nanomaterials. ACS Symposium Series, 0, , 257-267.	0.5	1
1234	Functional Bionanomaterials—Embedded Devices for Sustainable Energy Storage. ACS Symposium Series, 0, , 1-23.	0.5	2
1235	Hydrogel Nanocomposites Derived from Renewable Resources. ACS Symposium Series, 0, , 269-285.	0.5	2
1236	Polyaniline-Based Flexible Nanocomposite Materials. ACS Symposium Series, 0, , 367-395.	0.5	2
1237	Biomimetic Nanocomposites for Biomedical Applications. ACS Symposium Series, 0, , 163-196.	0.5	2

#	Article	IF	CITATIONS
1238	Nanocomposite Materials for Emerging Supercapacitor Applications: Recent Progress. ACS Symposium Series, 0, , 287-306.	0.5	0
1239	Biorenewables: Properties and Functions in Materials Application. ACS Symposium Series, 0, , 129-161.	0.5	0
1241	Potential Applications of Biorenewable Nanocomposite Materials for Electrocatalysis, Energy Storage, and Wastewater Treatment. ACS Symposium Series, 0, , 25-46.	0.5	4
1244	Bionanocomposite Synthesized from Nanocellulose Obtained from Agricultural Biomass as Raw Material. ACS Symposium Series, 0, , 47-74.	0.5	1
1245	Emerging Trends in Biomass-Derived Carbon-Supported Metal Nanostructures as Efficient Electrocatalysts for Critical Electrochemical Reactions in Low Temperature Fuel Cell Applications. ACS Symposium Series, 0, , 225-256.	0.5	3
1246	Performance of polylactic acid/polycaprolactone/microcrystalline cellulose biocomposites with different filler contents and maleic anhydride compatibilization. Polymer Composites, 2022, 43, 5179-5188.	4.6	13
1247	Improvement of the antioxidant activity of thyme essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. Journal of Trace Elements in Medicine and Biology, 2022, 73, 127024.	3.0	10
1248	pH sensitive water-in-water emulsions based on the pullulan and poly(<i>N</i> , <i>N</i> -dimethylacrylamide) aqueous two-phase system. Polymer Chemistry, 2022, 13, 4170-4177.	3.9	5
1249	Green composites for food packaging. , 2022, , 237-259.		2
1250	Layered double hydroxides (LDHs) as green nanofillers in composites. , 2022, , 23-42.		1
1252	Bionanocomposites from spent hen proteins reinforced with polyhedral oligomeric silsesquioxane		0
	(POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, , 102434.	3.1	0
1253	(POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, , 102434. Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polymer Bulletin, 2023, 80, 4689-4717.	3.1 3.3	5
1253 1254	(POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, , 102434. Bio-based polymer films with potential for packaging applications: a systematic review of the main		
	 (POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, 102434. Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polymer Bulletin, 2023, 80, 4689-4717. Effect of aliphatic segment length and content on crystallization and biodegradation properties of 	3.3	5
1254	 (POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, 102434. Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polymer Bulletin, 2023, 80, 4689-4717. Effect of aliphatic segment length and content on crystallization and biodegradation properties of aliphatic-aromatic co-polyesters. Polymer Degradation and Stability, 2022, 203, 110080. Antibacterial and degradable properties of î²-cyclodextrin-TiO2 cellulose acetate and polylactic acid bionanocomposites for food packaging. International Journal of Biological Macromolecules, 2022, 	3.3 5.8	5 7
1254 1256	 (POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, 102434. Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polymer Bulletin, 2023, 80, 4689-4717. Effect of aliphatic segment length and content on crystallization and biodegradation properties of aliphatic-aromatic co-polyesters. Polymer Degradation and Stability, 2022, 203, 110080. Antibacterial and degradable properties of î²-cyclodextrin-TiO2 cellulose acetate and polylactic acid bionanocomposites for food packaging. International Journal of Biological Macromolecules, 2022, 216, 347-360. Gum arabic – A versatile natural gum: A review on production, processing, properties and 	3.3 5.8 7.5	5 7 15
1254 1256 1257	 (POSS)/cellulose nanocrystals (CNCs). Biocatalysis and Agricultural Biotechnology, 2022, 102434. Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polymer Bulletin, 2023, 80, 4689-4717. Effect of aliphatic segment length and content on crystallization and biodegradation properties of aliphatic-aromatic co-polyesters. Polymer Degradation and Stability, 2022, 203, 110080. Antibacterial and degradable properties of Î²-cyclodextrin-TiO2 cellulose acetate and polylactic acid bionanocomposites for food packaging. International Journal of Biological Macromolecules, 2022, 216, 347-360. Gum arabic – A versatile natural gum: A review on production, processing, properties and applications. Industrial Crops and Products, 2022, 187, 115304. Supertough polylactide-based materials with fast shrinking property by stereocomplex crystallites 	3.35.87.55.2	5 7 15 52

#	Article	IF	CITATIONS
1261	Perhydropolysilazane-derived-SiOx coated cellulose: a transparent biodegradable material with high gas barrier property. Cellulose, 2022, 29, 8293-8303.	4.9	2
1262	Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorganic Chemistry and Applications, 2022, 2022, 1-21.	4.1	5
1263	Physicochemical Characterization and Finite Element Analysis-Assisted Mechanical Behavior of Polylactic Acid-Montmorillonite 3D Printed Nanocomposites. Nanomaterials, 2022, 12, 2641.	4.1	12
1265	Development of polylactic acid based functional films reinforced with ginger essential oil and curcumin for food packaging applications. Journal of Food Measurement and Characterization, 2022, 16, 4703-4715.	3.2	7
1266	A promising antimicrobial bionanocomposite based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced silver doped zinc oxide nanoparticles. Scientific Reports, 2022, 12, .	3.3	11
1267	Emerging Role of Biosensors and Chemical Indicators to Monitor the Quality and Safety of Meat and Meat Products. Chemosensors, 2022, 10, 322.	3.6	10
1268	Biopolymer-based functional films for packaging applications: A review. Frontiers in Nutrition, 0, 9, .	3.7	27
1269	Valorization of Berries' Agro-Industrial Waste in the Development of Biodegradable Pectin-Based Films for Fresh Salmon (Salmo salar) Shelf-Life Monitoring. International Journal of Molecular Sciences, 2022, 23, 8970.	4.1	7
1270	Diffusional and antimicrobial behaviors of some antimicrobial agents in active multilayer plastic films. Packaging Technology and Science, 2022, 35, 803-820.	2.8	3
1271	Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. International Journal of Biological Macromolecules, 2022, 219, 138-149.	7.5	24
1272	The nano antibacterial composite film carboxymethyl chitosan/gelatin/nano ZnO improves the mechanical strength of food packaging. International Journal of Biological Macromolecules, 2022, 220, 462-471.	7.5	37
1273	Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. International Journal of Biological Macromolecules, 2022, 220, 537-572.	7.5	24
1274	Enhancement of PVA packaging properties using calcined eggshell waste as filler and nanonutrient. Materials Chemistry and Physics, 2022, 291, 126611.	4.0	2
1275	Size effect of carnauba wax nanoparticles on water vapor and oxygen barrier properties of starch-based film. Carbohydrate Polymers, 2022, 296, 119935.	10.2	14
1276	Environmentally Friendly Bionanocomposites in Food Industry. Advanced Structured Materials, 2023, , 237-263.	0.5	0
1277	Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. International Journal of Biological Macromolecules, 2022, 221, 536-546.	7.5	13
1278	Antioxidant and antibacterial PBAT/lignin-ZnO nanocomposite films for active food packaging. Industrial Crops and Products, 2022, 187, 115515.	5.2	24
1279	Comparative degradation study of a biodegradable composite based on polylactide with halloysite nanotubes and a polyacrylic acid copolymer. Materials Today Communications, 2022, 33, 104400.	1.9	1

#	Article	IF	CITATIONS
1280	Biodegradable Films with the Addition of Nanofibers: a Review Focusing on Raw Materials and Analysis. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	0
1281	Lignin to value-added chemicals and advanced materials: extraction, degradation, and functionalization. Green Chemistry, 2022, 24, 7705-7750.	9.0	33
1282	Optimization of spray-coated nanochitin/nanocellulose films as renewable oxygen barrier layers <i>via</i> thermal treatment. Materials Advances, 2022, 3, 8351-8360.	5.4	2
1283	Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2024, 64, 2304-2339.	10.3	10
1284	A Transient and Biocompatible Biomemristor Integrated with NonVolatile Memory and Artificial Synapse. Advanced Materials Interfaces, 2022, 9, .	3.7	1
1285	Microbial Polyhydroxyalkanoates (PHAs): A Review on Biosynthesis, Properties, Fermentation Strategies and Its Prospective Applications for Sustainable Future. Journal of Polymers and the Environment, 2022, 30, 4903-4935.	5.0	10
1286	Biodegradable poly(butylene succinateâ€coâ€butylene furandicarboxylate): Effect of butylene furandicarboxylate unit on thermal, mechanical, and ultraviolet shielding properties, and biodegradability. Journal of Applied Polymer Science, 2022, 139, .	2.6	8
1287	Distillery effluent valorization through cost effective production of polyhydroxyalkanoate: optimization and characterization. Biomass Conversion and Biorefinery, O, , .	4.6	1
1288	Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packaging and Shelf Life, 2022, 34, 100955.	7.5	9
1289	Nanocomposite Biodegradable Polymers for Food Packaging. , 2022, , 227-244.		0
1290	Spontaneous Delamination of Affordable Natural Vermiculite as a High Barrier Filler for Biodegradable Food Packaging. Materials Advances, 0, , .	5.4	3
1291	Green Polymer-Based Biodegradable Packaging. , 2022, , 123-134.		1
1292	Zinc 8-aminotrihydroquinolines appended with pendant <i>N</i> -diphenylphosphinoethyl arms as exceptionally active catalysts for the ROP of Îμ-CL. Catalysis Science and Technology, 2022, 12, 6687-6703.	4.1	4
1293	The Green Era of Food Packaging: General Considerations and New Trends. Polymers, 2022, 14, 4257.	4.5	12
1294	Study the factors affecting water vapor barrier properties of organic–inorganic hybrid coatings. Ceramics International, 2023, 49, 1521-1528.	4.8	1
1295	Bio Polymers and Sensors Used in Food Packaging—Present and Future Prospects. , 2023, , 211-226.		1
1296	Using Africa's past to promote change toward safer alternatives for food packaging in <i>Accra</i> . Cogent Social Sciences, 2022, 8, .	1.1	0
1297	Black cumin oil-enriched edible coating application improves the storability of fresh loquat fruits. Acta Horticulturae, 2022, , 473-482.	0.2	0

#	Article	IF	CITATIONS
1299	Extraction of Cellulose from Sugarcane Bagasse Optimization and Characterization. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.8	13
1300	The effect of mild CO2 treatment on thermal properties of poly(l-lactic acid): An experimental study. Thermochimica Acta, 2022, 718, 179386.	2.7	2
1301	Active film packaging based on bio-nanocomposite TiO2 and cinnamon essential oil for enhanced preservation of cheese quality. Food Chemistry, 2023, 405, 134798.	8.2	21
1302	Applications of nanotechnology in food sector: Boons and banes. , 2023, , 473-492.		1
1303	Nanotechnology-based sensors for shelf-life determination of food materials. , 2023, , 289-300.		0
1304	Nanotechnology applications inÂfoodÂpackaging. , 2023, , 301-320.		1
1305	Effect of coating with co-product-based bionanocomposites on the quality of strawberries under refrigerated storage. Scientia Horticulturae, 2023, 309, 111668.	3.6	1
1306	Cellulose nanofibrils and silver nanoparticles enhances the mechanical and antimicrobial properties of polyvinyl alcohol nanocomposite film. Scientific Reports, 2022, 12, .	3.3	8
1307	Advances in multifunctional biomass-derived nanocomposite films for active and sustainable food packaging. Carbohydrate Polymers, 2023, 301, 120323.	10.2	8
1308	From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers, 2022, 14, 4954.	4.5	8
1309	Surface modification of cellulose via photo-induced click reaction. Carbohydrate Polymers, 2023, 301, 120321.	10.2	8
1310	Chitosan–Sodium Caseinate Composite Edible Film Incorporated with Probiotic Limosilactobacillus fermentum: Physical Properties, Viability, and Antibacterial Properties. Foods, 2022, 11, 3583.	4.3	11
1312	Recent advances in polyvinyl alcohol-based composite films and their applications in food packaging. Food Packaging and Shelf Life, 2022, 34, 100991.	7.5	27
1313	Release of oregano essential oil from PHBV films in simulated food conditionsa. Polimeros, 2022, 32, .	0.7	1
1314	Strong, ductile and durable Poly(glycolic acid)-based films by constructing crystalline orientation, entanglement network and rigid amorphous fraction. Polymer, 2023, 264, 125532.	3.8	3
1315	Improved mechanical and antibacterial properties of polyvinyl alcohol composite films using quaternized cellulose nanocrystals as nanofillers. Composites Science and Technology, 2023, 232, 109885.	7.8	16
1316	Bionanocomposites for Food Packaging Materials. , 2022, , 1-8.		0
1317	Nano clays and its composites for food packaging applications. International Nano Letters, 2023, 13, 131-153.	5.0	9

CITATION	Deser
(ITATION	REDUDT
CILATION	KLI OKI

#	Article	IF	CITATIONS
1318	Keten Tohumu Yağı ile Zenginleştirilmiş Yenilebilir Kaplamanın Çilek Meyvelerinin Muhafazası Üzerine Etkileri. Recep Tayyip Erdoğan UÌ^niversitesi Fen Ve MuÌ^hendislik Bilimleri Dergisi, 0, , .	² 0.2	0
1319	Melt rheology analysis through experimental and constitutional mechanical models of exfoliated graphene based polylactic acid (PLA) nanocomposites. Journal of Polymer Research, 2023, 30, .	2.4	2
1320	Smart Food Packaging: An Umbrella Review of Scientific Publications. Coatings, 2022, 12, 1949.	2.6	5
1321	Alginate/dye composite film-based colorimetric sensor for ammonia sensing: Chicken spoilage. Food Control, 2023, 147, 109575.	5.5	8
1323	Starch/Carrageenan Blend-Based Biocomposites as Packaging Materials. Composites Science and Technology, 2023, , 139-161.	0.6	1
1324	Nano-engineered Material and Remediation Strategy. Environmental Footprints and Eco-design of Products and Processes, 2023, , 179-199.	1.1	1
1325	Polymer/Layered Clay/Polyurethane Nanocomposites: P3HB Hybrid Nanobiocomposites—Preparation and Properties Evaluation. Nanomaterials, 2023, 13, 225.	4.1	3
1326	High-Throughput Nanoparticle Characterization via Glow Discharge Optical Emission Spectroscopy Elemental Mapping. Analytical Chemistry, 2023, 95, 2269-2277.	6.5	1
1327	Foam-formed biocomposites based on cellulose products and lignin. Cellulose, 2023, 30, 2253-2266.	4.9	8
1328	Material Applications of Gelatin. , 2023, , 1-34.		1
1329	Carboxymethylcellulose/agar-based functional film incorporated with nitrogen-doped polyethylene glycol-derived carbon dots for active packaging applications. Chemosphere, 2023, 313, 137627.	8.2	11
1330	The effect of different molecular weight chitosan on the physical and mechanical properties of plasticized films. European Journal of Chemistry, 2022, 13, 460-467.	0.6	Ο
1331	Antibacterial Activity of Crocus sativus L. Petals Extracts against Foodborne Pathogenic and Spoilage Microorganisms, with a Special Focus on Clostridia. Life, 2023, 13, 60.	2.4	2
1332	Eco-friendly biodegradable nanocomposite materials and their recent use in food packaging applications: a review. , 2023, 1, 215-227.		8
1333	Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings, 2023, 13, 245.	2.6	4
1334	Advanced functional nanomaterials of biopolymers: Structure, properties, and applications. , 2023, , 521-557.		Ο
1335	Industrial barriers for the application of active and intelligent packaging. , 2023, , 71-96.		1
1336	Gas Barrier Properties and Applications of Nanocellulose-Based Materials. , 2023, , 1-17.		0

#	Article	IF	Citations
1337	Polymer nanocomposites for food-packaging applications. , 2023, , 333-354.		0
1338	Biopolymers as greenâ€based food packaging materials: A focus on modified and unmodified starchâ€based films. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 1148-1183.	11.7	10
1339	Biodegradable, scalable and flexible fiber membrane for green passive radiative cooling. Solar Energy Materials and Solar Cells, 2023, 253, 112209.	6.2	9
1340	Aloe vera silver nanoparticles addition in chitosan films: improvement of physicochemical properties for eco-friendly food packaging material. Journal of Materials Research and Technology, 2023, 24, 1015-1033.	5.8	14
1342	Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience. 3 Biotech, 2023, 13, .	2.2	6
1343	Physicochemical properties and antibacterial activity of polylactic acid/starch acetate films incorporated with chitosan and tea polyphenols. Polymer Bulletin, 0, , .	3.3	2
1344	Multifunctional poly(3-hydroxybutyrate) composites with MoS2 for food packaging applications. European Polymer Journal, 2023, 188, 111914.	5.4	4
1345	A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 2023, 234, 123715.	7.5	63
1346	Food Preservation Packaging. , 0, , .		1
1347	Electrospun Multilayered Films Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Copolyamide 1010/1014, and Electrosprayed Nanostructured Silica. Nanomaterials, 2023, 13, 972.	4.1	1
1349	The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers—A Review. Foods, 2023, 12, 1343.	4.3	6
1351	New poly(lactic acid)-based nanocomposite films for food packaging applications. Iranian Polymer Journal (English Edition), 2023, 32, 855-871.	2.4	5
1352	Use of smart nanomaterials in food packaging. , 2023, , 233-245.		3
1353	Effects of types and concentrations of modified Cloisite Clays on properties of chitosan nanocomposites for food packaging. Polymers for Advanced Technologies, 0, , .	3.2	1
1354	Hydrophobic Biopolymer-Based Films: Strategies, Properties, and Food Applications. Food Engineering Reviews, 2023, 15, 360-379.	5.9	7
1355	Properties of poly (vinyl alcohol) films with embedded zeolitic imidazolate framework (ZIFâ€8) nanoparticles for food packaging applications. Journal of Food Science, 2023, 88, 2078-2089.	3.1	1
1356	Development and characterization of a new active and intelligent packaging system based on soluble soybean polysaccharide-Malva sylvestris extract. Journal of Food Science and Technology, 2023, 60, 1944-1951.	2.8	2
1357	Sustainable Bioconversion of Industrial Wastes into Bacterial Cellulose for Diverse Applications: A Way Towards Pollution Control and Abatement. Current Pollution Reports, 2023, 9, 226-242.	6.6	1

#	Article	IF	CITATIONS
1358	Biocomposites from porcine plasma protein and urban parks and gardens green waste. Industrial Crops and Products, 2023, 198, 116714.	5.2	0
1359	Biodegradable Polymers and Polymer Composites with Antibacterial Properties. International Journal of Molecular Sciences, 2023, 24, 7473.	4.1	9
1360	Taguchi-grey relational analysis in parameter optimisation of green biopolymer composites. Plastics, Rubber and Composites, 2023, 52, 375-386.	2.0	0
1361	Biodegradable polymer nanocomposites for food packaging applications. , 2023, , 639-674.		1
1362	Modification of poly(L-lactic acid)-based films and evaluation of physical and antibacterial properties by using multivariate data analysis. International Journal of Biological Macromolecules, 2023, 241, 124583.	7.5	4
1363	Gas Barrier Properties and Applications of Nanocellulose-Based Materials. , 2023, , 1263-1279.		0
1364	Review on nanotechnology "Impact on the food services industry― Materials Today: Proceedings, 2023, 92, 226-232.	1.8	2
1365	Material Applications of Gelatin. , 2023, , 749-782.		0
1366	Diffusion in Materials Science and Technology. , 2023, , 279-292.		0
1367	Sugar palm (<i>Arenga p innata</i>) thermoplastic starch nanocomposite films reinforced with nanocellulose. ChemistrySelect, 2023, .	1.5	0
1368	Biodegradable layered double hydroxide based polymeric films for sustainable food packaging applications. Applied Clay Science, 2023, 240, 106978.	5.2	3
1369	Development and characterization of sustainable-active-edible-bio based films from orange and pomegranate peel waste for food packaging: Effects of particle size and acid/plasticizer concentrations. Food Packaging and Shelf Life, 2023, 37, 101092.	7.5	4
1370	Formation and characterization of novel antimicrobial chitosan/Moringa oleifera gum/nano silicon dioxide nanocomposite film for active food packaging. Journal of Materials Research, 2023, 38, 3372-3382.	2.6	1
1371	Preparation and Characterization of Cellulose Nanocrystals from Bamboos and Their Application in Cassava Starch-Based Film. Polymers, 2023, 15, 2622.	4.5	3
1372	Recent studies on starch-based materials: Blends, composites, and nanocomposites. , 2023, , 77-95.		1
1373	A Brief Review of Sustainable Composites for Food Packaging Applications. Management and Industrial Engineering, 2023, , 119-130.	0.4	0
1374	Dimer Fatty Acid-Based Polyamides POSS (BP-POSS) Nanocomposites: Dielectric, Thermal, Structural Properties, and Kinetics of Thermal Degradation Studies. Journal of Polymers and the Environment, 0, ,	5.0	0
1375	Potentially effective and active antibacterial nanocomposites for the food industry. , 2023, , 159-189.		0

#	Article	IF	CITATIONS
1376	Morphology and functional properties of gelatinâ€based films modified by UV radiation and bacterial cellulose nanofibers. Journal of Food Process Engineering, 2023, 46, .	2.9	2
1377	Structure, photoactivity, and antimicrobial properties of phloxine B / poly(caprolactone) nanocomposite thin films. Applied Clay Science, 2023, 242, 107037.	5.2	2
1378	Antifungal Activity of Nanobiocomposite Films Based on Silver Nanoparticles Obtained Through Green Synthesis. Current Microbiology, 2023, 80, .	2.2	2
1379	Surface characterization of biodegradable nanocomposites by dynamic speckle analysis. Applied Surface Science Advances, 2023, 16, 100429.	6.8	3
1380	An Overview of Current and Prognostic Trends on Synthesis, Characterization, and Applications of Biobased Silica. Advances in Materials Science and Engineering, 2023, 2023, 1-23.	1.8	8
1381	Food packaging related research trends in the academic discipline of food science and technology: A bibliometric analysis. , 2023, 5, 100046.		8
1382	Toxic Effects of Nanomaterials on Aquatic Animals and Their Future Prospective. , 2023, , 325-351.		0
1383	Review on Physicochemical Modification of Biodegradable Plastic: Focus on Agar and Polyvinyl Alcohol (PVA). Advances in Materials Science and Engineering, 2023, 2023, 1-11.	1.8	2
1384	Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chemistry, 2023, 424, 136404.	8.2	11
1385	Gelatin Improves the Performance of Oregano Essential Oil Nanoparticle Composite Films—Application to the Preservation of Mullet. Foods, 2023, 12, 2542.	4.3	1
1386	Colorimetric Sensing Films of Visible-Light Curable Furfuryl Gelatin for Visual Monitoring of Chicken Freshness. Food and Bioprocess Technology, 2024, 17, 528-543.	4.7	1
1387	Polysaccharides as eco-friendly bio-adsorbents for wastewater remediation: Current state and future perspective. Journal of Water Process Engineering, 2023, 54, 103980.	5.6	12
1388	Preparation of Nanocellulose from Coffee Pulp and Its Potential as a Polymer Reinforcement. ACS Omega, 2023, 8, 25122-25133.	3.5	4
1389	Tailoring of Polymer and Metal Nanobiocomposites Corroborated with Smart Food Packaging Systems—A Review. Food and Bioprocess Technology, 2024, 17, 850-886.	4.7	0
1390	Green and scalable processing of waterâ€soluble, biodegradable polymer/clay barrier films. Journal of Applied Polymer Science, 2023, 140, .	2.6	1
1391	Polyhydroxybutyrate Metabolism in Azospirillum brasilense and Its Applications, a Review. Polymers, 2023, 15, 3027.	4.5	2
1394	Green nanocoating-based polysaccharides decorated with ZnONPs doped Egyptian kaolinite for antimicrobial coating paper. Scientific Reports, 2023, 13, .	3.3	2
1395	Eco-Friendly Sustainable Nanocomposite Food Packaging Materials: Recent Advancements, Challenges, and Way Forward. , 2023, , 405-428.		0

#	Article	IF	CITATIONS
1396	Atomic layer deposition of <scp>ZnO</scp> on <scp>PLA</scp> / <scp>TiO₂</scp> bionanocomposites: Evaluation of surface chemistry and physical properties toward food packaging applications. Journal of Applied Polymer Science, 2023, 140, .	2.6	0
1397	Eco-friendly food packaging innovations: A review of recent progress on recyclable polymers. , 2023, ,		2
1398	Lightweight and sustainable materialsÂfor food packaging applications. , 2023, , 219-240.		0
1399	Lightweight and sustainable materials—a global scenario. , 2023, , 1-18.		0
1400	Electrospinning of Silver and Zinc-Coated Halloysite Nanotube Polylactic Acid Scaffolds. , 2024, 2, 510-520.		1
1402	Development of innovative antioxidant food packaging systems based on natural extracts from food industry waste and Moringa oleifera leaves. Food Chemistry, 2024, 432, 137088.	8.2	2
1403	Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness. International Journal of Biological Macromolecules, 2023, 251, 126220.	7.5	1
1404	Fabrication and characterization of epoxidized natural rubber nanocomposites reinforced with mercaptoâ€functionalized nanozirconia filler. Polymer Composites, 2023, 44, 8063-8074.	4.6	1
1405	Agricultural applications of bionanocomposites. , 2024, , 327-350.		0
1406	Circular economy and upcoming horizons in the field of bionanocomposites. , 2024, , 365-384.		0
1407	Starch/poly(butylene adipate-co-terephthalate) blown antimicrobial films based on ε-polylysine hydrochloride and different nanomontmorillonites. International Journal of Biological Macromolecules, 2023, 253, 126609.	7.5	4
1408	Insight on Incorporation of Essential Oils as Antimicrobial Substances in Biopolymer-Based Active Packaging. Antibiotics, 2023, 12, 1473.	3.7	4
1409	Edible Coatings and Future Trends in Active Food Packaging–Fruits' and Traditional Sausages' Shelf Life Increasing. Foods, 2023, 12, 3308.	4.3	9
1410	Thermoresponsive behaviour of poly(<i>N</i> , <i>N</i> -diethylacrylamide) in aqueous two-phase systems. Polymer Chemistry, 2023, 14, 4101-4108.	3.9	0
1411	Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydrate Polymers, 2023, 321, 121325.	10.2	10
1412	Properties of Paperboard Coated with Natural Polymers and Polymer Blends: Effect of the Number of Coating Layers. Foods, 2023, 12, 2745.	4.3	1
1413	Supramolecular cross-linking affords chitin nanofibril nanocomposites with high strength and water resistance. Composites Science and Technology, 2023, 244, 110295.	7.8	1
1414	Development of pH-sensitive films based on buckwheat starch, critic acid and rose petal extract for active food packaging. Sustainable Chemistry and Pharmacy, 2023, 36, 101236.	3.3	1

#	Article	IF	CITATIONS
1415	Nanocomposites of poly(butylene adipateâ€coâ€terephthalate) containing sepiolite modified with 3â€aminopropyltriethoxysilane and octadecyl isocyanate. Journal of Applied Polymer Science, 2023, 140, .	2.6	0
1416	Novel technologies for improving quality of tofu products and their packaging: A critical overview. , 2023, 1, 41-59.		0
1417	Review of Sansevieria Ehrenbergii (SE) leaf fibers and their potential applications. Cellulose, 2023, 30, 9241-9259.	4.9	0
1418	TEMPO-oxidized nanocellulose immobilized AgNPs modified chitosan composite film with durable antibacterial and preservative properties for fruits and vegetables package. Industrial Crops and Products, 2023, 205, 117430.	5.2	4
1419	Towards Less Plastic in Food Contact Materials: An In-Depth Overview of the Belgian Market. Foods, 2023, 12, 2737.	4.3	2
1420	Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. International Journal of Biological Macromolecules, 2023, 252, 126534.	7.5	3
1421	Biodegradation Control of Ocean-Degradable Plastics by Photo-Switching. , 2023, , 113-120.		0
1422	SYNTHESIS OF NANOCELLULOSE AS MECHANICAL REINFORCEMENT OF THERMOPLASTIC STARCH. Momento, 2023, , 55-66.	0.7	0
1423	Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications—A Review. Foods, 2023, 12, 3602.	4.3	0
1424	A Review on Novel Nanofiber-based Dermal Applications: Utilization of Polysaccharides. Nanoscience and Nanotechnology - Asia, 2023, 13, .	0.7	0
1425	Isolation and characterization of microcrystalline cellulose from an agro-waste tamarind (Tamarindus indica) seeds and its suitability investigation for biofilm formulation. International Journal of Biological Macromolecules, 2024, 254, 127687.	7.5	3
1426	Biodegradable nanofibrillated microcellular PBS/PLA foams for selective oil absorption. International Journal of Biological Macromolecules, 2024, 254, 127844.	7.5	0
1427	Development of sodium alginate–aloe vera hydrogel films enriched with organic fibers: study of the physical, mechanical, and barrier properties for food-packaging applications. , 2023, 1, 863-873.		0
1428	Development and characterization of sustainable active pectin films: The role of choline chloride/glycerol-based natural deep eutectic solvent and lavender extracts. Heliyon, 2023, 9, e21756.	3.2	0
1429	Poly(lactic acid) and Its Blends for Packaging Application: A Review. Clean Technologies, 2023, 5, 1304-1343.	4.2	2
1430	Integration of wood-based components – Cellulose nanofibrils and tannic acid - into a poly(vinyl) Tj ETQq1 1 0. Macromolecules, 2024, 256, 128495.	784314 rg 7.5	gBT /Overloci 1
1431	Preparation of PCL/lecithin/bacteriocin CAMT6 antimicrobial and antioxidant nanofiber films using emulsion electrospinning: Characteristics and application in chilled salmon preservation. Food Research International, 2024, 175, 113747.	6.2	1
1432	Investigation of physicochemical and biological properties of bacterial cellulose & zein-reinforced edible nanocomposites based on flaxseed mucilage containing Origanum vulgare L. essential oil. International Journal of Biological Macromolecules, 2024, 254, 127733.	7.5	0

#	Article	IF	CITATIONS
1433	Carboxymethylcellulose/Agar-Based Multifunctional Films Incorporated with Zn-Doped SnO ₂ Nanoparticles for Active Food Packaging Application. ACS Applied Bio Materials, 2023, 6, 4728-4739.	4.6	1
1434	Nanocrystalline cellulose from lactic acid hydrolysis of pepper waste (Piper nigrum L.): Response surface methodology optimization and application in bio-composite. Journal of Materials Research and Technology, 2023, 27, 6344-6357.	5.8	0
1435	Non-conventional starch nanoparticles: Novel avenues towards improving sustainability of the food packaging sector. Trends in Food Science and Technology, 2024, 143, 104273.	15.1	0
1436	Modification and Characterization of Starchâ€Based Foodâ€Packaging Material by Cold Plasma as a Green Approach. Starch/Staerke, 0, , .	2.1	0
1437	Needleless Electrospinning: Concepts and Applications in the Food Industry. Food Engineering Reviews, 0, , .	5.9	0
1438	An Overview of the Impact of Nanotechnology on Economy and Business. , 2023, , 201-216.		0
1439	Wettability, Drug Delivery, Biodegradability, and Mechanical Strength of Chitosan–Gelatin Polymer Hydrogels Treated with Atmospheric Pressure DBD Plasma. High Energy Chemistry, 2023, 57, 541-556.	0.9	0
1440	TEMPO-oxidized cellulose nanofiber reinforced starch film with pH-responsive weakening and rapid marine-degradability. Polymer Degradation and Stability, 2024, 219, 110618.	5.8	0
1441	Synergistic Effect of Bio-Nanocarbon Embedded Polymer Nanocomposite and its Applications. , 2023, , 1-34.		0
1442	Improved dispersibility of nanofibrillated cellulose via simple microwave-assisted esterification. Nanocomposites, 2023, 9, 171-182.	4.2	0
1443	Edible packaging reinforced with nutrients-based nanomaterials. , 2024, , 247-268.		0
1444	Design and synthesis of Ag NPs/Cellulose nanofiber-starch nano-bio composites for packaging applications. Journal of Applied Hematology, 0, , .	0.3	0
1445	Preparation of enhanced visible light-responsive photocatalytic paper containing Ag/N-TiO2 aerogel for detoxification of environmental pollutants. Cellulose, 2024, 31, 1827-1841.	4.9	0
1446	Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. International Journal of Biological Macromolecules, 2024, 259, 129287.	7.5	0
1447	Sustainable Bioplastics Derived from Renewable Nanofillers for Food Packaging. , 2024, , 1-29.		0
1448	Sequestration of pesticide residues using biofabricated nanomaterials: challenges and future prospects. , 2024, , 301-314.		0
1449	Nanostructured materials for the development of bio-based plastics for food applications. , 2024, , 23-50.		0
1450	Biodegradable and biobased plastic materials based on starch. , 2024, , 311-334.		0

#	Article	IF	CITATIONS
1451	Nanotechnology in food packaging with implications for sustainable outlook and safety concerns. Food Bioscience, 2024, 58, 103625.	4.4	0
1452	Antimicrobial nanoparticles in active food packaging applications. , 2024, , 21-32.		0
1453	Recent trends in synthesis and application of nanomaterials for agri-food industries. , 2024, , 253-282.		0
1454	Role and application of nanostructures in food preservation and it's use in active food packaging. , 2024, , 205-234.		0
1455	Application of starch as an active ingredient for the fabrication of nanocomposite in food packaging. , 2024, , 161-208.		0
1457	Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview. Polymers, 2024, 16, 314.	4.5	0
1458	Thermal and barrier properties of nanocomposite films for food packaging applications. , 2024, , 375-386.		0
1459	Nanocomposite films: Features and suitability for food packaging. , 2024, , 355-374.		0
1460	Formation of a Controllable Diffusion Barrier Layer on the Surface of Polydimethylsiloxane Films by Infrared Laser Irradiation. ACS Applied Materials & Interfaces, 2024, 16, 7983-7995.	8.0	0
1461	Polymer/organic nanoparticle composites for food packaging. , 2024, , 367-408.		0
1462	Polymer nanocomposite films and coatings for food packaging applications. , 2024, , 437-465.		0
1463	An outlook of fully green nanoscale food packaging. , 2024, , 83-103.		0
1464	Polymer–nano-chitin and polymer–nano-chitosan composites for food packaging. , 2024, , 137-156.		0
1465	An overview of the packaging industry. , 2024, , 1-30.		0
1466	Polymers and fillers used in the packaging industry. , 2024, , 31-48.		0
1467	Industrial applications of nanoceramics: from lab to real-time utilization in the food and bioprocessing industry. , 2024, , 37-49.		0
1468	Applications of biodegradable materials in food packaging: A review. AEJ - Alexandria Engineering Journal, 2024, 91, 70-83.	6.4	2
1469	Free-standing carboxymethyl cellulose film incorporating nanoformulated pomegranate extract for meat packaging. Carbohydrate Polymers, 2024, 332, 121915.	10.2	0

#	Article	IF	CITATIONS
1470	Innovations in Packaging to Monitor and Maintain the Quality of the Food Products. Journal of Packaging Technology and Research, 2024, 8, 15-50.	1.5	0
1471	Alkaline pretreatment and steam explosion process on coffee silverskin and incorporation of cellulose fibers in poly(butylene adipateâ€coâ€terephthalate). Journal of Applied Polymer Science, 2024, 141, .	2.6	0
1472	Investigation of film materials obtained from modified polyvinyl al-cohol-based solution systems. Vestnik Voronežskogo Gosudarstvennogo Universiteta inženernyh Tehnologij, 2023, 85, 226-236.	0.3	0
1473	Mechanical activation-enhanced metal-organic coordination strategy to fabricate high-performance starch/polyvinyl alcohol films by extrusion blowing. Carbohydrate Polymers, 2024, 333, 121982.	10.2	0
1474	Nanocomposites and their application in antimicrobial packaging. Frontiers in Chemistry, 0, 12, .	3.6	0
1475	Perspectives of Biodegradable Nanocoatings in Food Packaging. Advances in Chemical and Materials Engineering Book Series, 2024, , 116-172.	0.3	0
1476	Synthesis of full bioâ€based, fast degradable, and high strength copolyesters: Poly(butylene) Tj ETQqO O O rgBT /0	Overlock 1 2.6	0 Tf 50 502
1477	Application of Nanoparticles to Enhance the Microbial Quality and Shelf Life of Food Products. , 2024,		0

1477	, 75-102.		Ο
1478	Lightweight, Strong and High Heat-Resistant Poly(lactide acid) Foams via Microcellular Injection Molding with Self-Assembly Nucleating Agent. Chinese Journal of Polymer Science (English Edition), 2024, 42, 739-750.	3.8	0
1479	Bio-based gelatin–TiO2–purple basil extract nanocomposite films for monitoring fish freshness. Journal of Food Measurement and Characterization, 2024, 18, 2965-2976.	3.2	0
1480	Microcrystalline Cellulose-Based Eraser. ACS Sustainable Chemistry and Engineering, 2024, 12, 4887-4899.	6.7	0
1481	Chitosan-based nanomaterials: structure, characterization, and applications. , 2024, , 47-71.		0
1482	A data mining approach to analyze the role of biomacromolecules-based nanocomposites in sustainable packaging. International Journal of Biological Macromolecules, 2024, 265, 130850.	7.5	0
1483	Comprehensive review on developments in starch-based films along with active ingredients for sustainable food packaging. Sustainable Chemistry and Pharmacy, 2024, 39, 101534.	3.3	0
1484	Recent advances in clay minerals for groundwater pollution control and remediation. Environmental Science and Pollution Research, 2024, 31, 24724-24744.	5.3	0
1485	Sustainable strategies based on the social responsibility of the beverage industry companies for the circular supply chain. Engineering Applications of Artificial Intelligence, 2024, 133, 108253.	8.1	0
1486	Recent Advances in Nanoclay―and Grapheneâ€Based Thermoplastic Nanocomposites for Packaging Applications. Packaging Technology and Science, 0, , .	2.8	0
1487	Morphological Characteristics, Properties, and Applications of Polylactide/Poly(εâ€caprolactone) Blends and Their Composites—A Review. Macromolecular Materials and Engineering, 0, , .	3.6	0

#	Article	IF	CITATIONS
1488	Polymer Nanocomposites for Food Packaging Applications. , 2024, , 1-25.		0
1489	UV-resistant gellan gum film reinforced with chitosan nanoparticle for eco-friendly packaging. Emergent Materials, 0, , .	5.7	0
1490	Enhancement of thermoplastic starch for packaging applications: A review. AIP Conference Proceedings, 2023, , .	0.4	0