POWERDRESS and Diversified Expression of the MIR17 Cell Network

PLoS Genetics 9, e1003218 DOI: 10.1371/journal.pgen.1003218

Citation Report

#	Article	IF	CITATIONS
1	microRNA Biogenesis and Turnover in Plants. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 183-194.	2.0	21
2	Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. Plant Cell, 2013, 25, 2383-2399.	3.1	874
3	Heterochronic genes in plant evolution and development. Frontiers in Plant Science, 2013, 4, 381.	1.7	30
4	Profiling of MicroRNAs under Wound Treatment in <i>Aquilaria sinensis</i> to Identify Possible MicroRNAs Involved in Agarwood Formation. International Journal of Biological Sciences, 2014, 10, 500-510.	2.6	19
5	The <i>dicer-like1</i> Homolog <i>fuzzy tassel</i> Is Required for the Regulation of Meristem Determinacy in the Inflorescence and Vegetative Growth in Maize. Plant Cell, 2014, 26, 4702-4717.	3.1	35
6	The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in <i>Arabidopsis</i> . Annual Review of Plant Biology, 2014, 65, 473-503.	8.6	517
7	<i><scp>AUXIN RESPONSE FACTOR</scp> 3</i> integrates the functions of <i><scp>AGAMOUS</scp></i> and <i><scp>APETALA</scp>2</i> in floral meristem determinacy. Plant Journal, 2014, 80, 629-641.	2.8	115
8	MicroRNA-target Interactions: Important Signaling Modules Regulating Flowering Time in Diverse Plant Species. Critical Reviews in Plant Sciences, 2014, 33, 470-485.	2.7	29
9	New insights into priâ€ <scp>miRNA</scp> processing and accumulation in plants. Wiley Interdisciplinary Reviews RNA, 2015, 6, 533-545.	3.2	45
10	Pattern formation during early floral development. Current Opinion in Genetics and Development, 2015, 32, 16-23.	1.5	9
11	<scp>HOS</scp> 1 regulates Argonaute1 by promoting transcription of the micro <scp>RNA</scp> gene <i><scp>MIR</scp>168b</i> in Arabidopsis. Plant Journal, 2015, 81, 861-870.	2.8	24
12	Plant miRNAs: biogenesis, organization and origins. Functional and Integrative Genomics, 2015, 15, 523-531.	1.4	233
13	Discoveries and advances in plant and animal genomics. Functional and Integrative Genomics, 2015, 15, 121-129.	1.4	10
14	Epigenetic Mechanisms Are Critical for the Regulation of <i>WUSCHEL</i> Expression in Floral Meristems. Plant Physiology, 2015, 168, 1189-1196.	2.3	34
15	SQUINT promotes stem cell homeostasis and floral meristem termination in <i>Arabidopsis</i> through APETALA2 and CLAVATA signalling. Journal of Experimental Botany, 2015, 66, 6905-6916.	2.4	18
16	Mechanisms of microRNA turnover. Current Opinion in Plant Biology, 2015, 27, 199-206.	3.5	73
17	microRNA biogenesis, degradation and activity in plants. Cellular and Molecular Life Sciences, 2015, 72, 87-99.	2.4	113
18	POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. ELife, 2016, 5, .	2.8	143

#	Article	IF	CITATIONS
19	POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14858-14863.	3.3	111
20	Molecular mechanisms governing differential robustness of development and environmental responses in plants. Annals of Botany, 2016, 117, 795-809.	1.4	68
21	Key developmental transitions during flower morphogenesis and their regulation. Current Opinion in Genetics and Development, 2017, 45, 44-50.	1.5	26
22	The â€~how' and â€~where' of plant micro <scp>RNA</scp> s. New Phytologist, 2017, 216, 1002-1017.	3.5	409
23	Regulation of Development and Stress Response by miRNAs. Compendium of Plant Genomes, 2017, , 137-152.	0.3	0
24	Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 95-105.	0.9	75
25	<i><scp>APETALA</scp>2</i> antagonizes the transcriptional activity of <i><scp>AGAMOUS</scp></i> in regulating floral stem cells in <i>Arabidopsis thaliana</i> . New Phytologist, 2017, 215, 1197-1209.	3.5	53
26	Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Research, 2018, 46, 4966-4977.	6.5	81
27	Identification and Molecular Characterization of HOS15-interacting Proteins in Arabidopsis thaliana. Journal of Plant Biology, 2018, 61, 336-345.	0.9	22
28	miR172 downregulates the translation of cleistogamy 1 in barley. Annals of Botany, 2018, 122, 251-265.	1.4	25
29	OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 580.	1.7	30
30	Highly preserved roles of Brassica MIR172 in polyploid Brassicas: ectopic expression of variants of Brassica MIR172 accelerates floral transition. Molecular Genetics and Genomics, 2018, 293, 1121-1138.	1.0	16
31	Genetic variants in micro <scp>RNA</scp> biogenesis genes as novel indicators for secondary growth in <i>Populus</i> . New Phytologist, 2018, 219, 1263-1282.	3.5	8
32	Si vis pacem para bellum: A prospective in silico analysis of miRNA-based plant defenses against fungal infections. Plant Science, 2019, 288, 110241.	1.7	5
33	Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus. Plant Science, 2019, 284, 91-98.	1.7	25
34	MicroRNAs and Their Regulatory Roles in Plant–Environment Interactions. Annual Review of Plant Biology, 2019, 70, 489-525.	8.6	454
35	HDA9-PWR-HOS15 Is a Core Histone Deacetylase Complex Regulating Transcription and Development. Plant Physiology, 2019, 180, 342-355.	2.3	52
36	Paf1c defects challenge the robustness of flower meristem termination in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2019, 146, .	1.2	11

CITATION REPORT

	CITATION	on Report	
#	Article	IF	CITATIONS
37	SWR1 Chromatin Remodeling Complex: A Key Transcriptional Regulator in Plants. Cells, 2019, 8, 1621.	1.8	36
38	HOS15 Interacts with the Histone Deacetylase HDA9 and the Evening Complex to Epigenetically Regulate the Floral Activator <i>GIGANTEA</i> . Plant Cell, 2019, 31, 37-51.	3.1	65
39	Functions and mechanisms of plant histone deacetylases. Science China Life Sciences, 2020, 63, 206-216.	2.3	62
40	The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. Journal of Experimental Botany, 2020, 71, 6211-6225.	2.4	18
41	Identification and characterization of the stunted sterile (ss) mutant in rice. Genes and Genomics, 2020, 42, 869-882.	0.5	0
42	The Histone-Modifying Complex PWR/HOS15/HD2C Epigenetically Regulates Cold Tolerance. Plant Physiology, 2020, 184, 1097-1111.	2.3	32
43	Same Actor in Different Stages: Genes in Shoot Apical Meristem Maintenance and Floral Meristem Determinacy in Arabidopsis. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	18
44	PWR/HDA9/ABI4 Complex Epigenetically Regulates ABA Dependent Drought Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2020, 11, 623.	1.7	43
45	Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. Journal of Experimental Botany, 2020, 71, 1915-1927.	2.4	19
46	Dissection of the Arabidopsis <i>HUAâ€₽EP</i> gene activity reveals that ovule fate specification requires restriction of the floral Aâ€function. New Phytologist, 2020, 227, 1222-1234.	3.5	3
47	Systematic analyses of the MIR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition. PLoS Biology, 2021, 19, e3001043.	2.6	44
48	Recent advances in the regulation of plant miRNA biogenesis. RNA Biology, 2021, 18, 2087-2096.	1.5	68
49	HOS15-PWR chromatin remodeling complex positively regulates cold stress in Arabidopsis. Plant Signaling and Behavior, 2021, 16, 1893978.	1.2	10
50	Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Methods in Molecular Biology, 2014, 1110, 3-33.	0.4	29
51	POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007280.	1.5	99
52	Regulation of Plant miRNA Biogenesis. Proceedings of the Indian National Science Academy, 2017, 95, .	0.5	6
54	Polycomb proteins control floral determinacy by H3K27me3-mediated repression of pluripotency genes in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2022, 73, 2385-2402.	2.4	7
55	MicroRNA miR394 regulates flowering time in Arabidopsis thaliana. Plant Cell Reports, 2022, 41, 1375-1388.	2.8	9

CITATION REPORT

#	Article	IF	CITATIONS
56	Micro RNA mediated regulation of nutrient response in plants: the case of nitrogen. Plant Physiology Reports, 2022, 27, 345-357.	0.7	5
57	The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. Plant Physiology, 2022, 188, 1686-1708.	2.3	29
58	Integration of mRNA and miRNA Analysis Reveals the Molecular Mechanism of Cotton Response to Salt Stress. Frontiers in Plant Science, 2021, 12, 767984.	1.7	6
76	POWERDRESSÂpositively regulates systemic acquired resistance in Arabidopsis. Plant Cell Reports, 0, , .	2.8	0
77	Positional cloning and characterization reveal the role of a miRNA precursor gene <i>ZmLRT</i> in the regulation of lateral root number and drought tolerance in maize. Journal of Integrative Plant Biology, 2023, 65, 772-790.	4.1	7
78	Negative regulation of floral transition in Arabidopsis by HOS15-PWR-HDA9 complex. Frontiers in Plant Science, 0, 13, .	1.7	0
79	Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation. Plants, 2023, 12, 342.	1.6	14
80	A model worker: Multifaceted modulation of AUXIN RESPONSE FACTOR3 orchestrates plant reproductive phases. Frontiers in Plant Science, 0, 14, .	1.7	1
81	microRNA biogenesis and stabilization in plants. Fundamental Research, 2023, 3, 707-717.	1.6	3
82	Genetic Screens for Floral Mutants in Arabidopsis thaliana: Enhancers and Suppressors. Methods in Molecular Biology, 2023, , 131-162.	0.4	Ο