Climate-driven chlorophyll-a changes in a turbid estuar implications for management

Remote Sensing of Environment 130, 11-24 DOI: 10.1016/j.rse.2012.11.011

Citation Report

#	Article	IF	CITATIONS
1	Neural network approach for the derivation of chlorophyll concentration from ocean color. Proceedings of SPIE, 2013, , .	0.8	8
2	Deriving ocean color products using neural networks. Remote Sensing of Environment, 2013, 134, 78-91.	4.6	70
3	Climate-driven chlorophyll-a changes in a turbid estuary: Observations from satellites and implications for management. Remote Sensing of Environment, 2013, 130, 11-24.	4.6	70
4	Long-term distribution patterns of remotely sensed water quality parameters in Chesapeake Bay. Estuarine, Coastal and Shelf Science, 2013, 128, 93-103.	0.9	44
5	A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: A case study for Tampa Bay. Optics Express, 2013, 21, 18849.	1.7	27
6	On the Accuracy of SeaWiFS Ocean Color Data Products on the West Florida Shelf. Journal of Coastal Research, 2013, 29, 1257.	0.1	26
7	Performance of the MODIS FLH algorithm in estuarine waters: a multi-year (2003–2010) analysis from Tampa Bay, Florida (USA). International Journal of Remote Sensing, 2013, 34, 6467-6483.	1.3	15
8	Evaluation of Satellite Retrievals of Ocean Chlorophyll-a in the California Current. Remote Sensing, 2014, 6, 8524-8540.	1.8	41
9	MERIS observations of chlorophyll-a dynamics in Erhai Lake between 2003 and 2009. International Journal of Remote Sensing, 2014, 35, 8309-8322.	1.3	16
10	Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sensing of Environment, 2014, 140, 365-377.	4.6	88
11	Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries. Remote Sensing of Environment, 2014, 155, 289-302.	4.6	39
12	Ocean Color Continuity From VIIRS Measurements Over Tampa Bay. IEEE Geoscience and Remote Sensing Letters, 2014, 11, 945-949.	1.4	21
13	A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations. Remote Sensing of Environment, 2014, 154, 298-317.	4.6	110
14	Harbour dredging and fish mortality in an aquaculture zone: assessment of changes in suspended particulate matter using multi-sensor remote-sensing data. International Journal of Remote Sensing, 2014, 35, 4383-4398.	1.3	6
15	An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for Near Real-Time Applications and Forecasting Models. Remote Sensing, 2014, 6, 10694-10715.	1.8	59
16	Seasonal changes of the microplankton community along a tropical estuary. Regional Studies in Marine Science, 2015, 2, 189-202.	0.4	17
17	Long-Term Distribution Patterns of Chlorophyll-a Concentration in China's Largest Freshwater Lake: MERIS Full-Resolution Observations with a Practical Approach. Remote Sensing, 2015, 7, 275-299.	1.8	77
18	VIIRS Observations of a <italic>Karenia brevis</italic> Bloom in the Northeastern Gulf of Mexico in the Absence of a Fluorescence Band. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 2213-2217	1.4	22

#	Article	IF	CITATIONS
19	Toward connecting subtropical algal blooms to freshwater nutrient sources using a long-term, spatially distributed, in situ chlorophyll-a record. Catena, 2015, 133, 119-127.	2.2	8
20	Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: Freshly produced from algal scums?. Journal of Hazardous Materials, 2015, 299, 222-230.	6.5	73
21	On the relationship between landscape ecological patterns and water quality across gradient zones of rapid urbanization in coastal China. Ecological Modelling, 2015, 318, 100-108.	1.2	48
22	Estimating phycocyanin pigment concentration in productive inland waters using Landsat measurements: A case study in Lake Dianchi. Optics Express, 2015, 23, 3055.	1.7	48
23	MOD2SEA: A Coupled Atmosphere-Hydro-Optical Model for the Retrieval of Chlorophyll-a from Remote Sensing Observations in Complex Turbid Waters. Remote Sensing, 2016, 8, 722.	1.8	17
24	Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS. Sensors, 2016, 16, 1749.	2.1	7
25	Interannual and seasonal variation of chlorophyll-a off the Yellow River Mouth (1997–2012): Dominance of river inputs and coastal dynamics. Estuarine, Coastal and Shelf Science, 2016, 183, 402-412.	0.9	19
26	Short-term changes of remote sensing reflectancein a shallow-water environment: observations from repeated airborne hyperspectral measurements. International Journal of Remote Sensing, 2016, 37, 1620-1638.	1.3	9
27	Tampa Bay estuary: Monitoring long-term recovery through regional partnerships. Regional Studies in Marine Science, 2016, 4, 1-11.	0.4	26
28	Atmospheric correction of hyperspectral airborne GCAS measurements over the Louisiana Shelf using a cloud shadow approach. International Journal of Remote Sensing, 2017, 38, 1162-1179.	1.3	4
29	Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Scientific Reports, 2017, 7, 40326.	1.6	139
30	A semianalytical <scp>MERIS</scp> greenâ€red band algorithm for identifying phytoplankton bloom types in the <scp>E</scp> ast <scp>C</scp> hina <scp>S</scp> ea. Journal of Geophysical Research: Oceans, 2017, 122, 1772-1788.	1.0	10
31	Satellite Remote Sensing for Coastal Management: A Review of Successful Applications. Environmental Management, 2017, 60, 323-339.	1.2	72
32	Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Science of the Total Environment, 2017, 599-600, 1705-1717.	3.9	73
33	VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico. Harmful Algae, 2017, 66, 40-46.	2.2	14
34	Recovering low quality MODIS-Terra data over highly turbid waters through noise reduction and regional vicarious calibration adjustment: A case study in Taihu Lake. Remote Sensing of Environment, 2017, 197, 72-84.	4.6	30
35	Determination of phytoplankton abundances (Chlorophyll- a) in the optically complex inland water - The Baltic Sea. Science of the Total Environment, 2017, 601-602, 1060-1074.	3.9	12
36	Can MODIS Land Reflectance Products be Used for Estuarine and Inland Waters?. Water Resources Research, 2018, 54, 3583-3601.	1.7	20

CITATION REPORT

#	Article	IF	Citations
37	Spatiotemporal dynamics of chlorophyll-a in a large reservoir as derived from Landsat 8 OLI data: understanding its driving and restrictive factors. Environmental Science and Pollution Research, 2018, 25, 1359-1374.	2.7	42
38	Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper. Estuarine, Coastal and Shelf Science, 2018, 200, 181-193.	0.9	2
39	Galveston Bay and Coastal Ocean Opticalâ€Geochemical Response to Hurricane Harvey From VIIRS Ocean Color. Geophysical Research Letters, 2018, 45, 10579-10589.	1.5	22
40	Remote Sensing of Lakes' Water Environment. , 2018, , 249-277.		5
41	An estuarine-tuned quasi-analytical algorithm (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey. Biogeosciences, 2018, 15, 4065-4086.	1.3	22
42	Analysis of the effective observation of ocean color satellites of the Yellow and East China Seas. Remote Sensing Letters, 2018, 9, 656-665.	0.6	1
43	Impacts of 40 years of land cover change on water quality in Tampa Bay, Florida. Cogent Geoscience, 2018, 4, 1422956.	0.6	6
44	Spatio-temporal variability of red-green chlorophyll-a index from MODIS data – Case study: Chabahar Bay, SE of Iran. Continental Shelf Research, 2019, 184, 1-9.	0.9	4
45	Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions—A Review. Remote Sensing, 2019, 11, 1985.	1.8	20
46	Quantifying Spatiotemporal Dynamics of the Column-Integrated Algal Biomass in Nonbloom Conditions Based on OLCI Data: A Case Study of Lake Dianchi, China. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7447-7459.	2.7	13
47	Teleconnection between phytoplankton dynamics in north temperate lakes and global climatic oscillation by time-frequency analysis. Water Research, 2019, 154, 267-276.	5.3	33
48	Quantifying the trophic status of lakes using total light absorption of optically active components. Environmental Pollution, 2019, 245, 684-693.	3.7	47
49	A soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu Lake. International Journal of Applied Earth Observation and Geoinformation, 2019, 74, 138-149.	1.4	25
50	Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use. Journal of Cleaner Production, 2020, 247, 119134.	4.6	34
51	Long-term chlorophyll-a dynamics in tropical coastal waters of the western Bay of Bengal. Environmental Science and Pollution Research, 2020, 27, 6411-6419.	2.7	15
52	Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy. Water Research, 2020, 171, 115403.	5.3	54
53	Mapping spatio-temporal dynamics of main water parameters and understanding their relationships with driving factors using GF-1 images in a clear reservoir. Environmental Science and Pollution Research, 2020, 27, 33929-33950.	2.7	16
54	Tracking historical chlorophyll- <i>a</i> change in the guanting reservoir, Northern China, based on landsat series inter-sensor normalization. International Journal of Remote Sensing, 2021, 42, 3918-3937.	1.3	6

CITATION REPORT

#	Article	IF	CITATIONS
55	Analysis of the Monthly and Spring-Neap Tidal Variability of Satellite Chlorophyll-a and Total Suspended Matter in a Turbid Coastal Ocean Using the DINEOF Method. Remote Sensing, 2021, 13, 632.	1.8	13
56	Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China. Science of the Total Environment, 2021, 771, 144811.	3.9	17
57	Improving Chlorophyll-A Estimation From Sentinel-2 (MSI) in the Barents Sea Using Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5529-5549.	2.3	9
58	Temporal and spatial distribution of algal blooms in Lake Chaohu, 2000-2015. Hupo Kexue/Journal of Lake Sciences, 2017, 29, 276-284.	0.3	17
59	Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches. Korean Journal of Remote Sensing, 2016, 32, 221-234.	0.4	7
60	An operational algorithm to estimate chlorophyll-a concentrations in Lake Chaohu from MODIS imagery. Hupo Kexue/Journal of Lake Sciences, 2015, 27, 1140-1150.	0.3	2
61	A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective. Remote Sensing, 2021, 13, 4347.	1.8	28
62	Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. Water Research, 2021, 207, 117786.	5.3	15
63	Trophic State Assessment of a Freshwater Himalayan Lake Using Landsat 8 OLI Satellite Imagery: A Case Study of Wular Lake, Jammu and Kashmir (India). Earth and Space Science, 2022, 9, .	1.1	6
64	Remote sensing of chlorophyll-a concentrations in coastal oceans of the Greater Bay Area in China: Algorithm development and long-term changes. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102922.	0.9	3
65	What water color parameters could be mapped using MODIS land reflectance products: A global evaluation over coastal and inland waters. Earth-Science Reviews, 2022, 232, 104154.	4.0	15
66	Remote sensing of tropical riverine water quality using sentinel-2 MSI and field observations. Ecological Indicators, 2022, 144, 109472.	2.6	9
67	Seagrass distribution, areal cover, and changes (1990–2021) in coastal waters off West-Central Florida, USA. Estuarine, Coastal and Shelf Science, 2022, 279, 108134.	0.9	4
68	Long-Term Dynamics of Chlorophyll-a Concentration and Its Response to Human and Natural Factors in Lake Taihu Based on MODIS Data. Sustainability, 2022, 14, 16874.	1.6	3

CITATION REPORT