California foreshock sequences suggest aseismic trigger

Geophysical Research Letters 40, 2602-2607 DOI: 10.1002/grl.50444

Citation Report

#	Article	IF	CITATIONS
1	Lack of Spatiotemporal Localization of Foreshocks before the 1999 Mw 7.1 Duzce, Turkey, Earthquake. Bulletin of the Seismological Society of America, 2014, 104, 560-566.	1.1	29
2	Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 2015, 120, 4263-4277.	1.4	130
3	Foreshock and Aftershocks in Simple Earthquake Models. Physical Review Letters, 2015, 114, 088501.	2.9	11
4	Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California. Geophysical Journal International, 2015, 202, 514-528.	1.0	44
5	Artefacts of earthquake location errors and short-term incompleteness on seismicity clusters in southern California. Geophysical Journal International, 2015, 202, 1949-1968.	1.0	30
6	Measuring earthquake source parameters in the Mendocino triple junction region using a dense OBS array: Implications for fault strength variations. Earth and Planetary Science Letters, 2016, 453, 276-287.	1.8	17
7	Complex spatiotemporal evolution of the 2008 <i>M_w</i> 4.9 Mogul earthquake swarm (Reno, Nevada): Interplay of fluid and faulting. Journal of Geophysical Research: Solid Earth, 2016, 121, 8196-8216.	1.4	64
8	Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence. Geophysical Journal International, 2016, 205, 776-784.	1.0	41
9	Analysis of Foreshock Sequences in California and Implications for Earthquake Triggering. Pure and Applied Geophysics, 2016, 173, 133-152.	0.8	29
10	Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California. Pure and Applied Geophysics, 2017, 174, 2311-2330.	0.8	9
11	Statistical Features of Foreshocks in Instrumental and ETAS Catalogs. Pure and Applied Geophysics, 2017, 174, 1679-1697.	0.8	18
12	Nonâ€selfâ€similar source property for microforeshocks of the 2014 <i>M</i> _{<i>w</i>} 6.2 Northern Nagano, central Japan, earthquake. Geophysical Research Letters, 2017, 44, 5401-5410.	1.5	10
13	Possible precursory signals in damage zone foreshocks. Geophysical Research Letters, 2017, 44, 5411-5417.	1.5	28
14	Spatiotemporal Variation of Stress Drop During the 2008 Mogul, Nevada, Earthquake Swarm. Journal of Geophysical Research: Solid Earth, 2017, 122, 8163-8180.	1.4	52
15	The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks. Scientific Reports, 2017, 7, 4945.	1.6	68
16	A phase coherence approach to identifying co-located earthquakes and tremor. Geophysical Journal International, 0, , ggx012.	1.0	5
17	Matched-filter detection of the missing pre-mainshock events and aftershocks in the 2015 Gorkha, Nepal earthquake sequence. Tectonophysics, 2017, 714-715, 71-81.	0.9	7
18	Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California. Pageoph Topical Volumes, 2018, , 117-136.	0.2	0

#	Article	IF	CITATIONS
19	Temporal Correlation Between Seismic Moment and Injection Volume for an Induced Earthquake Sequence in Central Oklahoma. Journal of Geophysical Research: Solid Earth, 2018, 123, 3047-3064.	1.4	24
20	Temporal Variability of Ground Shaking and Stress Drop in Central Italy: A Hint for Fault Healing?. Bulletin of the Seismological Society of America, 2018, 108, 1853-1863.	1.1	20
21	Coulomb Stress Transfer Influences Fault Reactivation in Areas of Wastewater Injection. Geophysical Research Letters, 2018, 45, 11,059.	1.5	12
22	Spatial and Temporal Variations in Earthquake Stress Drop on Gofar Transform Fault, East Pacific Rise: Implications for Fault Strength. Journal of Geophysical Research: Solid Earth, 2018, 123, 7722-7740.	1.4	24
23	Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma. Geophysical Journal International, 2018, 214, 1072-1087.	1.0	31
24	Pervasive Foreshock Activity Across Southern California. Geophysical Research Letters, 2019, 46, 8772-8781.	1.5	63
25	Earthquake Initiation From Laboratory Observations and Implications for Foreshocks. Journal of Geophysical Research: Solid Earth, 2019, 124, 12882-12904.	1.4	112
26	The Relevance of Foreshocks in Earthquake Triggering: A Statistical Study. Entropy, 2019, 21, 173.	1.1	16
27	Fluid Pressureâ€Triggered Foreshock Sequence of the 2008 Mogul Earthquake Sequence: Insights From Stress Inversion and Numerical Modeling. Journal of Geophysical Research: Solid Earth, 2019, 124, 3744-3765.	1.4	13
28	Seismotectonics. , 2019, , 278-336.		0
29	Earthquake prediction and hazard analysis. , 2019, , 337-380.		1
33	Brittle fracture of rock. , 2019, , 1-42.		0
34	Rock friction. , 2019, , 43-96.		2
35	Mechanics of earthquakes. , 2019, , 166-227.		1
36	The seismic cycle. , 2019, , 228-277.		1
39	Mechanics of faulting. , 2019, , 97-165.		4
40	Foreshocks and Mainshock Nucleation of the 1999 <i>M</i> _{<i>w</i>} 7.1 Hector Mine, California, Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 1569-1582.	1.4	58
41	Well Proximity Governing Stress Drop Variation and Seismic Attenuation Associated With Hydraulic Fracturing Induced Earthquakes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020103.	1.4	23

CITATION REPORT

#	Article	IF	CITATIONS
42	Seismic cycle before the main earthquake and the end of time after shocks in West Sumatra. Journal of Physics: Conference Series, 2020, 1481, 012035.	0.3	0
43	Absolute Location of 2019 Ridgecrest Seismicity Reveals a Shallow MwÂ7.1 Hypocenter, Migrating and Pulsing MwÂ7.1 Foreshocks, and Duplex MwÂ6.4 Ruptures. Bulletin of the Seismological Society of America, 2020, 110, 1845-1858.	1.1	29
44	Detailed Investigation of the Foreshock Sequence of the 2010 M _w 7.2 El Mayor ucapah Earthquake. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019076.	1.4	20
45	Coseismic Slip Distribution of the 24 January 2020 MwÂ6.7 Doganyol Earthquake and in Relation to the Foreshock and Aftershock Activities. Seismological Research Letters, 2021, 92, 127-139.	0.8	7
46	The generation of large earthquakes. Nature Reviews Earth & Environment, 2021, 2, 26-39.	12.2	79
47	The Imbricated Foreshock and Aftershock Activities of the Balsorano (Italy) MwÂ4.4 Normal Fault Earthquake and Implications for Earthquake Initiation. Seismological Research Letters, 2021, 92, 1926-1936.	0.8	9
48	Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake. Scientific Reports, 2021, 11, 2705.	1.6	6
49	Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200131.	1.6	56
50	Precursory Slow Slip and Foreshocks on Rough Faults. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020430.	1.4	70
51	Immediate Foreshocks Indicating Cascading Rupture Developments for 527ÂM 0.9 to 5.4 Ridgecrest Earthquakes. Geophysical Research Letters, 2021, 48, e2021GL095704.	1.5	16
53	How to Identify Foreshocks in Seismic Sequences to Predict Strong Earthquakes. Open Journal of Earthquake Research, 2017, 06, 55-71.	0.9	5
54	Spatioâ€Temporal Evolution of Earthquake Static Stress Drop Values in the 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022566.	1.4	10
55	From Seismic Quiescence to Surged Activity After Decades of Wastewater Disposal: A Case Study in Centralâ€West Alberta, Canada. Geophysical Research Letters, 2021, 48, e2021GL095074.	1.5	9
56	Frequencyâ€Magnitude Statistics of Laboratory Foreshocks Vary With Shear Velocity, Fault Slip Rate, and Shear Stress. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022175.	1.4	15
57	Tracking the Spatioâ€Temporal Evolution of Foreshocks Preceding the Mw 6.1 2009 L'Aquila Earthquake. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	14
58	Aseismic Slip and Cascade Triggering Process of Foreshocks Leading to the 2021 MwÂ6.1 Yangbi Earthquake. Seismological Research Letters, 2022, 93, 1413-1428.	0.8	11
59	Temporal Evolution of Radiated Energy to Seismic Moment Scaling During the Preparatory Phase of the Mw 6.1, 2009 L'Aquila Earthquake (Italy). Geophysical Research Letters, 2022, 49, .	1.5	10
62	<bold>2021</bold> å1´ä²ʿå⊷漾濞 <bold><italic&g< td=""><td>;t;M&</td><td>lt;/italic&am</td></italic&g<></bold>	; t;M &	lt;/italic&am

² SCIENTIA SINICA Terrae, 2022, 52, 2023-2038.

CITATION REPORT

#	Article	IF	CITATIONS
63	Testing Earthquake Nucleation Length Scale with Pawnee Aftershocks. Seismological Research Letters, 2022, 93, 2147-2160.	0.8	1
64	Stress drop variations of triggered earthquakes at Koyna–Warna, western India: A case study. Journal of Earth System Science, 2022, 131, 1.	0.6	1
65	Multistage Nucleation of the 2021 Yangbi M _S 6.4 Earthquake, Yunnan, China and Its Foreshocks. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	16
66	The cascading foreshock sequence of the Ms 6.4 Yangbi earthquake in Yunnan, China. Earth and Planetary Science Letters, 2022, 591, 117594.	1.8	20
67	Spatiotemporal Variability of Earthquake Source Parameters at Parkfield, California, and Their Relationship With the 2004 M6 Earthquake. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2
68	The seismogenic structures and migration characteristics of the 2021 Yangbi M6.4 Earthquake sequence in Yunnan, China. Science China Earth Sciences, 2022, 65, 1522-1537.	2.3	5
69	Seismological Characterization of the 2021 Yangbi Foreshockâ€Mainshock Sequence, Yunnan, China: More than a Triggered Cascade. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	15
71	Fluid injection-induced fault slip during unconventional energy development: A review. , 2022, 1, 100007.		12
72	Earthquake detection using a nodal array on the San Jacinto fault in California: Evidence for high foreshock rates preceding many events. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	1
73	Prevalence of Aseismic Slip Linking Fluid Injection to Natural and Anthropogenic Seismic Swarms. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	11
74	Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake. Applied Sciences (Switzerland), 2023, 13, 3019.	1.3	1
75	Spatioâ€Temporal Evolution of Aftershock and Repeater Source Properties After the 2016 Pedernales Earthquake (Ecuador). Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	Ο