Chimeric Antigen Receptorâ€"Modified T Cells for Acut

New England Journal of Medicine 368, 1509-1518

DOI: 10.1056/nejmoa1215134

Citation Report

#	Article	IF	CITATIONS
1	Histoire et anthropologie sensorielle. Anthropologie Et Sociétés, 0, 14, 13-24.	0.8	54
2	Pathology of Hematopoietic Stem Cell Transplantation. , 0, , 260-293.		O
3	Preclinical rationale for combining radiation therapy and immunotherapy beyond checkpoint inhibitors (i.e., CART). Translational Lung Cancer Research, 2007, 6, 159-168.	1.3	32
4	Gene Therapy Briefs. Human Gene Therapy, 2012, 23, 1027-1028.	1.4	2
5	Cellular immunotherapy for refractory hematological malignancies. Journal of Translational Medicine, 2013, 11, 150.	1.8	28
6	Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. Journal of Hematology and Oncology, 2013, 6, 47.	6.9	74
8	Gene-engineered T cells for cancer therapy. Nature Reviews Cancer, 2013, 13, 525-541.	12.8	425
9	Adoptive T Cell Transfer for Cancer Immunotherapy in the Era of Synthetic Biology. Immunity, 2013, 39, 49-60.	6.6	418
10	Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 2013, 39, 1-10.	6.6	4,815
11	A 50-Year Journey to Cure Childhood Acute Lymphoblastic Leukemia. Seminars in Hematology, 2013, 50, 185-196.	1.8	264
12	Regimen-Specific Effects of RNA-Modified Chimeric Antigen Receptor T Cells in Mice with Advanced Leukemia. Human Gene Therapy, 2013, 24, 717-727.	1.4	97
13	Perspective: Assembly line immunotherapy. Nature, 2013, 498, S17-S17.	13.7	38
14	Is cancer gene therapy an empty suit?. Lancet Oncology, The, 2013, 14, e447-e456.	5.1	48
15	At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. Journal of Leukocyte Biology, 2013, 94, 1141-1157.	1.5	56
16	Chimeric antigen receptors (CARs) from bench-to-bedside. Immunology Letters, 2013, 155, 40-42.	1.1	17
17	Immunosequencing: applications of immune repertoire deep sequencing. Current Opinion in Immunology, 2013, 25, 646-652.	2.4	192
18	Reassessing target antigens for adoptive T-cell therapy. Nature Biotechnology, 2013, 31, 999-1008.	9.4	181
19	Systems approaches to human autoimmune diseases. Current Opinion in Immunology, 2013, 25, 598-605.	2.4	15

#	Article	IF	CITATIONS
20	CAR T Cells for Acute Myeloid Leukemia: The LeY of the Land. Molecular Therapy, 2013, 21, 1983-1984.	3.7	8
21	Bulls, Bubbles, and Biotech. Human Gene Therapy, 2013, 24, 715-716.	1.4	6
22	Cancer immunotherapy: are we there yet?. Experimental Hematology and Oncology, 2013, 2, 33.	2.0	22
23	The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nature Reviews Clinical Oncology, 2013, 10, 588-598.	12.5	177
24	HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Review of Vaccines, 2013, 12, 1211-1217.	2.0	87
25	Repositioning therapeutic cancer vaccines in the dawning era of potent immune interventions. Expert Review of Vaccines, 2013, 12, 1219-1234.	2.0	8
26	Donating used CARs. Blood, 2013, 122, 4007-4009.	0.6	2
27	Immunotherapy of melanoma. European Journal of Cancer, Supplement, 2013, 11, 97-105.	2.2	53
28	A wise consistency: engineering biology for conformity, reliability, predictability. Current Opinion in Chemical Biology, 2013, 17, 893-901.	2.8	50
29	Cancer immunotherapy: accomplishments to date and future promise. Therapeutic Delivery, 2013, 4, 1307-1320.	1.2	106
30	Generation of Tumor Antigen-Specific T Cell Lines from Pediatric Patients with Acute Lymphoblastic Leukemia—Implications for Immunotherapy. Clinical Cancer Research, 2013, 19, 5079-5091.	3.2	81
31	Thrombotic Thrombocytopenic Purpura and Related Thrombotic Microangiopathies. , 2013, , 423-441.		0
32	Better Performance of CARs Deprived of the PD-1 Brake. Clinical Cancer Research, 2013, 19, 5546-5548.	3.2	11
33	RNA viruses and microRNAs: challenging discoveries for the 21st century. Physiological Genomics, 2013, 45, 1035-1048.	1.0	39
35	Koch Institute Symposium on Cancer Immunology and Immunotherapy. Cancer Immunology Research, 2013, 1, 217-222.	1.6	1
36	Immunotherapeutic strategies including transplantation: eradication of disease. Hematology American Society of Hematology Education Program, 2013, 2013, 151-157.	0.9	13
37	AACR Cancer Progress Report 2013. Clinical Cancer Research, 2013, 19, S1-S98.	3.2	55
38	New immune strategies for the treatment of acute lymphoblastic leukemia: antibodies and chimeric antigen receptors. Hematology American Society of Hematology Education Program, 2013, 2013, 131-137.	0.9	15

#	Article	IF	Citations
39	Reprogramming donor TÂcells for adoptive immunotherapy. Immunotherapy, 2013, 5, 1287-1289.	1.0	0
40	Advanced Targeted, Cell and Gene-Therapy Approaches for Pediatric Hematological Malignancies: Results and Future Perspectives. Frontiers in Oncology, 2013, 3, 106.	1.3	5
41	Dendritic Cell-Based Immunotherapy for Myeloid Leukemias. Frontiers in Immunology, 2013, 4, 496.	2.2	37
42	Adoptive Cell Therapies for Glioblastoma. Frontiers in Oncology, 2013, 3, 275.	1.3	47
43	Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model. Viruses, 2013, 5, 1702-1718.	1.5	13
44	Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells. Frontiers in Immunology, 2013, 4, 371.	2.2	115
45	An allogeneic NK cell line engineered to express chimeric antigen receptors. Oncolmmunology, 2013, 2, e27156.	2.1	4
46	Recent advances in acute lymphoblastic leukemia in children and adolescents. Current Opinion in Oncology, 2013, 25, S1-S13.	1.1	16
47	Extending the chimeric receptor-based T-cell targeting strategy to solid tumors. Oncolmmunology, 2013, 2, e26091.	2.1	8
48	Management of relapsed acute lymphoblastic leukemia in childhood with conventional and innovative approaches. Current Opinion in Oncology, 2013, 25, 707-715.	1.1	20
49	Targeted therapy with monoclonal antibodies in acute lymphoblastic leukemia. Current Opinion in Oncology, 2013, 25, 701-706.	1.1	24
50	Adoptive T-Cell Therapy for Cancer: Boutique Therapy or Treatment Modality?. Clinical Cancer Research, 2013, 19, 4550-4552.	3.2	32
51	Targeting T cells to tumor: exploiting the chimeric antibody receptor. Immunotherapy, 2013, 5, 927-929.	1.0	0
52	Design of a Phase I Clinical Trial to Evaluate Intratumoral Delivery of ErbB-Targeted Chimeric Antigen Receptor T-Cells in Locally Advanced or Recurrent Head and Neck Cancer. Human Gene Therapy Clinical Development, 2013, 24, 134-142.	3.2	112
53	T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2013, 2013, 348-353.	0.9	36
54	Young T Cells Age During a Redirected Anti-Tumor Attack: Chimeric Antigen Receptor-Provided Dual Costimulation is Half the Battle. Frontiers in Immunology, 2013, 4, 135.	2.2	11
55	Programmed Cell Death 1-Directed Immunotherapy for Enhancing T-Cell Function. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 239-247.	2.0	38
56	Gene Therapy Briefs. Human Gene Therapy, 2013, 24, 467-469.	1.4	0

#	Article	IF	Citations
57	Preclinical In Vivo Modeling of Cytokine Release Syndrome Induced by ErbB-Retargeted Human T Cells: Identifying a Window of Therapeutic Opportunity?. Journal of Immunology, 2013, 191, 4589-4598.	0.4	105
58	Synergistic Chemoimmunotherapy of Epithelial Ovarian Cancer Using ErbB-Retargeted T Cells Combined with Carboplatin. Journal of Immunology, 2013, 191, 2437-2445.	0.4	49
59	Combinational Targeting Offsets Antigen Escape and Enhances Effector Functions of Adoptively Transferred T Cells in Glioblastoma. Molecular Therapy, 2013, 21, 2087-2101.	3.7	300
60	Acute myeloid leukemia therapeutics. Oncolmmunology, 2013, 2, e27214.	2.1	9
61	Overcoming intrinsic inhibitory pathways to augment the antineoplastic activity of adoptively transferred T cells: Re-tuning your CAR before hitting a rocky road. Oncolmmunology, 2013, 2, e26492.	2.1	6
62	Of chimeric antigen receptors and antibodies: OX40 and 41BB costimulation sharpen up T cell-based immunotherapy of cancer. Immunotherapy, 2013, 5, 677-681.	1.0	20
63	Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood, 2013, 121, 5154-5157.	0.6	524
64	Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood, 2013, 122, 863-871.	0.6	932
65	CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122, 3461-3472.	0.6	306
66	Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122, 2965-2973.	0.6	470
67	Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood, 2013, 122, 4129-4139.	0.6	537
68	Risky business: target choice in adoptive cell therapy. Blood, 2013, 122, 3392-3394.	0.6	8
70	Evolutionary dynamics of cancer in response to targeted combination therapy. ELife, 2013, 2, e00747.	2.8	516
71	Genetically Modified T Cells to Target Glioblastoma. Frontiers in Oncology, 2013, 3, 322.	1.3	16
72	Cellular Immunotherapy: Using Alloreactivity to Induce Anti-Leukemic Responses without Prolonged Persistence of Donor Cells. Medical Sciences (Basel, Switzerland), 2013, 1, 37-48.	1.3	0
73	Chemokines as Cancer Vaccine Adjuvants. Vaccines, 2013, 1, 444-462.	2.1	31
74	EGFRvIII-Specific Chimeric Antigen Receptor T Cells Migrate to and Kill Tumor Deposits Infiltrating the Brain Parenchyma in an Invasive Xenograft Model of Glioblastoma. PLoS ONE, 2014, 9, e94281.	1.1	99
75	Identification of the Genomic Insertion Site of Pmel-1 TCR \hat{l}_{\pm} and \hat{l}^{2} Transgenes by Next-Generation Sequencing. PLoS ONE, 2014, 9, e96650.	1.1	24

#	ARTICLE	IF	Citations
76	PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models. PLoS ONE, 2014, 9, e109427.	1.1	64
77	Clinical Immunotherapy of B-Cell Malignancy Using CD19-Targeted CAR T-Cells. Current Gene Therapy, 2014, 14, 35-43.	0.9	34
78	Improving the safety of cell therapy products by suicide gene transfer. Frontiers in Pharmacology, 2014, 5, 254.	1.6	165
79	Oncolytic Adenoviruses in Cancer Treatment. Biomedicines, 2014, 2, 36-49.	1.4	32
80	Lentivirus-Induced Dendritic Cells (iDC) for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation. Biomedicines, 2014, 2, 229-246.	1.4	5
81	Harnessing immunosurveillance: current developments and future directions in cancer immunotherapy. ImmunoTargets and Therapy, 2014, 3, 151.	2.7	12
82	Identification of differently expressed genes in leukemia using multiple microarray datasets. Genetics and Molecular Research, 2014, 13, 10482-10489.	0.3	0
83	Antigen-based immunotherapy for the treatment of acute lymphoblastic leukemia: the emerging role of blinatumomab. ImmunoTargets and Therapy, 2014, 3, 79.	2.7	3
84	CENTRAL NERVOUS SYSTEM INVOLVEMENT IN ADULT ACUTE LYMPHOBLASTIC LEUKEMIA: DIAGNOSTIC TOOLS, PROPHYLAXIS AND THERAPY. Mediterranean Journal of Hematology and Infectious Diseases, 2014, 6, e2014075.	0.5	50
85	Adoptive Immunotherapy for Acute Myeloid Leukemia: From Allogeneic Hematopoietic Cell Transplantation to CAR T Cells. Journal of Leukemia (Los Angeles, Calif), 2014, 02, .	0.1	1
87	Immunotherapy for Glioma: From Illusion to Realistic Prospects?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , 51-59.	1.8	5
88	Preface: In 2013 Gene Therapy is a Nike; for 2014, Just Do It!. Current Gene Therapy, 2014, 14, 1-1.	0.9	3
89	T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. Journal of Biomedical Research, 2014, 28, 468.	0.7	66
90	Novel Treatments for Chronic Lymphocytic Leukemia and Moving Forward. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e317-e325.	1.8	17
91	The Leukemias: A Half-Century of Discovery. Journal of Clinical Oncology, 2014, 32, 3463-3469.	0.8	52
92	Interleukin-15 in the treatment of cancer. Expert Review of Clinical Immunology, 2014, 10, 1689-1701.	1.3	61
93	ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood, 2014, 124, 1070-1080.	0.6	268
94	Novel methods and approaches to acute lymphoblastic leukemia drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 1435-1446.	2.5	8

#	Article	IF	Citations
95	New Strategies in Ewing Sarcoma: Lost in Translation?. Clinical Cancer Research, 2014, 20, 3050-3056.	3.2	28
96	Immunotherapy in acute myeloid leukemia. Immunotherapy, 2014, 6, 95-106.	1.0	28
97	Hematopoietic stem cell transplantation and immunotherapy for pediatric acute myeloid leukemia: an open challenge. Expert Review of Hematology, 2014, 7, 291-300.	1.0	6
98	Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Molecular Cancer, 2014, 13, 219.	7.9	38
99	Therapeutic targeting of naturally presented myeloperoxidase-derived HLA peptide ligands on myeloid leukemia cells by TCR-transgenic T cells. Leukemia, 2014, 28, 2355-2366.	3.3	21
100	Adoptive Tâ€cell therapy: adverse events and safety switches. Clinical and Translational Immunology, 2014, 3, e17.	1.7	73
101	Boolean Immunotherapy: Reversal of Fortune. Molecular Therapy, 2014, 22, 1073-1074.	3.7	0
102	Keys to the CAR. Science-Business EXchange, 2014, 7, 725-725.	0.0	0
103	Current advances in T-cell-based cancer immunotherapy. Immunotherapy, 2014, 6, 1265-1278.	1.0	119
104	Gene-modified hematopoietic stem cells for cancer immunotherapy. Human Vaccines and Immunotherapeutics, 2014, 10, 982-985.	1.4	9
105	Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine Receptor. Molecular Therapy, 2014, 22, 1211-1220.	3.7	145
106	HSV-sr39TK Positron Emission Tomography and Suicide Gene Elimination of Human Hematopoietic Stem Cells and Their Progeny in Humanized Mice. Cancer Research, 2014, 74, 5173-5183.	0.4	30
107	Philadelphia chromosome-negative acute lymphoblastic leukemia: therapies under development. Future Oncology, 2014, 10, 2201-2212.	1.1	7
108	Systemic Inflammatory Response Syndrome After Administration of Unmodified T Lymphocytes. Molecular Therapy, 2014, 22, 1134-1138.	3.7	28
109	Overcoming tumor-mediated immunosuppression. Immunotherapy, 2014, 6, 973-988.	1.0	38
110	Retired self-proteins as vaccine targets for primary immunoprevention of adult-onset cancers. Expert Review of Vaccines, 2014, 13, 1447-1462.	2.0	13
111	The inducible caspase-9 suicide gene system as a $\tilde{A}^{\hat{\varphi}}$, $\tilde{A}^{\hat{\varphi}}$ safety switch $\tilde{A}^{\hat{\varphi}}$, $\tilde{A}^{\hat{\varphi}}$ to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Frontiers in Pharmacology, 2014, 5, 235.	1.6	280
112	Impact of the Prolymphangiogenic Crosstalk in the Tumor Microenvironment on Lymphatic Cancer Metastasis. BioMed Research International, 2014, 2014, 1-14.	0.9	22

#	Article	IF	CITATIONS
113	Interleukin-13 Receptor Alpha 2-Targeted Glioblastoma Immunotherapy. BioMed Research International, 2014, 2014, 1-8.	0.9	40
114	Cell Transfer Therapy for Cancer: Past, Present, and Future. Journal of Immunology Research, 2014, 2014, 1-9.	0.9	30
115	Antibody Therapy for Pediatric Leukemia. Frontiers in Oncology, 2014, 4, 82.	1.3	17
116	γδT Cell-Mediated Antibody-Dependent Cellular Cytotoxicity with CD19 Antibodies Assessed by an Impedance-Based Label-Free Real-Time Cytotoxicity Assay. Frontiers in Immunology, 2014, 5, 618.	2.2	46
117	New treatments for metastatic melanoma. Cmaj, 2014, 186, 754-760.	0.9	9
118	Targeting CD8 ⁺ T-cell tolerance for cancer immunotherapy. Immunotherapy, 2014, 6, 833-852.	1.0	41
119	Recent Advances in the Pathogenesis and Treatment of Chronic Lymphocytic Leukemia. Prilozi - Makedonska Akademija Na Naukite I Umetnostite Oddelenie Za Medicinski Nauki, 2014, 35, 105-120.	0.2	2
121	Engineering α-fetoprotein-based gene vaccines to prevent and treat hepatocellular carcinoma: review and future prospects. Immunotherapy, 2014, 6, 725-736.	1.0	15
122	Chimeric antigen receptor T-cell therapy for ALL. Hematology American Society of Hematology Education Program, 2014, 2014, 559-564.	0.9	58
123	Cytotoxic T lymphocytes for leukemia and lymphoma. Hematology American Society of Hematology Education Program, 2014, 2014, 565-569.	0.9	20
124	T Cell Receptor-Engineered T Cells to Treat Solid Tumors: T Cell Processing Toward Optimal T Cell Fitness. Human Gene Therapy Methods, 2014, 25, 345-357.	2.1	27
125	Engineering the Human Genome: Reflections on the Beginning. Human Gene Therapy, 2014, 25, 395-400.	1.4	0
126	Moving Receptor Redirected Adoptive Cell Therapy Toward Fine Tuning of Antitumor Responses. International Reviews of Immunology, 2014, 33, 402-416.	1.5	12
127	Declining childhood and adolescent cancer mortality: Great progress but still much to be done. Cancer, 2014, 120, 2388-2391.	2.0	27
128	Immunotherapy in pediatric malignancies: current status and future perspectives. Future Oncology, 2014, 10, 1659-1678.	1.1	11
129	Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy. Future Oncology, 2014, 10, 1779-1794.	1.1	12
130	Phase II Trial of the Anti-CD19 Bispecific T Cell–Engager Blinatumomab Shows Hematologic and Molecular Remissions in Patients With Relapsed or Refractory B-Precursor Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2014, 32, 4134-4140.	0.8	577
131	<scp>CAR</scp> T cells: driving the road from the laboratory to the clinic. Immunological Reviews, 2014, 257, 91-106.	2.8	96

#	Article	IF	CITATIONS
132	Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation. Immunological Reviews, 2014, 257, 165-180.	2.8	46
133	Exploiting the curative potential of adoptive Tâ€cell therapy for cancer. Immunological Reviews, 2014, 257, 56-71.	2.8	422
134	Progress and prospects for engineered <scp>T</scp> cell therapies. British Journal of Haematology, 2014, 166, 818-829.	1.2	14
135	Transplantation in Chronic Lymphocytic Leukemia. Hematology/Oncology Clinics of North America, 2014, 28, 1055-1071.	0.9	2
136	Salvage therapy with mitoxantrone, etoposide and cytarabine in relapsed or refractory acute lymphoblastic leukemia. Leukemia Research, 2014, 38, 1441-1445.	0.4	11
137	Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends in Immunology, 2014, 35, 581-590.	2.9	162
139	Design and implementation of adoptive therapy with chimeric antigen receptorâ€modified T cells. Immunological Reviews, 2014, 257, 127-144.	2.8	134
140	Advances in T-cell therapy for ALL. Best Practice and Research in Clinical Haematology, 2014, 27, 222-228.	0.7	15
141	The use of endogenous T cells for adoptive transfer. Immunological Reviews, 2014, 257, 250-263.	2.8	61
142	Hematopoietic stem cells for cancer immunotherapy. Immunological Reviews, 2014, 257, 237-249.	2.8	65
143	Human cellâ€based artificial antigenâ€presenting cells for cancer immunotherapy. Immunological Reviews, 2014, 257, 191-209.	2.8	96
144	Impact of minimal residual disease on outcomes after umbilical cord blood transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia: an analysis on behalf of Eurocord, Cord Blood Committee and the Acute Leukaemia working party of. British Journal of Haematology, 2014. 166. 749-757.	1.2	28
145	Humoral and Cellular Immunotherapy in ALL inÂChildren, Adolescents, and Young Adults. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, S6-S13.	0.2	8
146	Manufacture of Gene-Modified Human T-Cells with a Memory Stem/Central Memory Phenotype. Human Gene Therapy Methods, 2014, 25, 277-287.	2.1	54
147	Selected Comments submitted by panelists for the August 6, 2013 Public Workshop for the IOM RAC Review Committee. Human Gene Therapy, 2014, 25, 25-40.	1.4	0
148	Early death in acute promyelocytic leukemia (APL) in French centers: a multicenter study in 399 patients. Leukemia, 2014, 28, 2422-2424.	3.3	52
149	CD3ζ-based chimeric antigen receptors mediate T cell activation via <i>cis</i> - and <i>trans</i> -signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy. Clinical and Experimental Immunology, 2014, 175, 258-267.	1.1	57
151	Vaccines, new opportunities for a new society. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12288-12293.	3.3	237

#	Article	IF	Citations
152	Of <scp>CAR</scp> s and <scp>TRUCK</scp> s: chimeric antigen receptor (<scp>CAR</scp>) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological Reviews, 2014, 257, 83-90.	2.8	275
154	Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science Translational Medicine, 2014, 6, 261ra151.	5.8	432
155	Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells., 2014, 2, 25.		112
156	Adoptive Therapy With Chimeric Antigen Receptor–Modified T Cells of Defined Subset Composition. Cancer Journal (Sudbury, Mass), 2014, 20, 141-144.	1.0	91
157	From the Guest Editor. Cancer Journal (Sudbury, Mass), 2014, 20, 105-106.	1.0	4
158	Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies. Cancer Journal (Sudbury, Mass), 2014, 20, 119-122.	1.0	624
159	Hyperinflammation, rather than hemophagocytosis, is the common link between macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Current Opinion in Rheumatology, 2014, 26, 562-569.	2.0	90
160	Inflammation programs self-reactive CD8+ T cells to acquire T-box-mediated effector function but does not prevent deletional tolerance. Journal of Leukocyte Biology, 2014, 96, 397-410.	1.5	9
161	CD123 AML targeting by chimeric antigen receptors. Oncolmmunology, 2014, 3, e28835.	2.1	27
162	Toward Immunotherapy With Redirected T Cells in a Large Animal Model. Journal of Immunotherapy, 2014, 37, 407-415.	1.2	56
163	Hodgkin Lymphoma. Advances in Anatomic Pathology, 2014, 21, 12-25.	2.4	21
164	CD19-CAR Trials. Cancer Journal (Sudbury, Mass), 2014, 20, 112-118.	1.0	96
165	Toxicity management for patients receiving novel T-cell engaging therapies. Current Opinion in Pediatrics, 2014, 26, 43-49.	1.0	130
166	CAR T Cells for Solid Tumors. Cancer Journal (Sudbury, Mass), 2014, 20, 151-155.	1.0	170
167	Novel Approaches to Enhance the Specificity and Safety of Engineered T Cells. Cancer Journal (Sudbury, Mass), 2014, 20, 160-165.	1.0	35
168	4-1BB Chimeric Antigen Receptors. Cancer Journal (Sudbury, Mass), 2014, 20, 134-140.	1.0	48
169	Diverse Solid Tumors Expressing a Restricted Epitope of L1-CAM Can Be Targeted by Chimeric Antigen Receptor Redirected T Lymphocytes. Journal of Immunotherapy, 2014, 37, 93-104.	1.2	50
170	Perspectives for immunotherapy in glioblastoma treatment. Current Opinion in Oncology, 2014, 26, 608-614.	1.1	26

#	Article	IF	CITATIONS
171	Harnessing the immune system for cancer therapy. Current Opinion in Oncology, 2014, 26, 600-607.	1.1	25
172	Genetic Modification of T Cells. Cancer Journal (Sudbury, Mass), 2014, 20, 145-150.	1.0	12
173	Genetic Modification of T Cells Redirected toward CS1 Enhances Eradication of Myeloma Cells. Clinical Cancer Research, 2014, 20, 3989-4000.	3.2	103
174	Combination Immunotherapy after ASCT for Multiple Myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells. Clinical Cancer Research, 2014, 20, 1355-1365.	3.2	116
175	Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014, 124, 188-195.	0.6	2,080
176	Cancer Immunotherapy Using γÎÂT Cells: Dealing with Diversity. Frontiers in Immunology, 2014, 5, 601.	2.2	40
177	Profile of elotuzumab and its potential in the treatment of multiple myeloma. Blood and Lymphatic Cancer: Targets and Therapy, 2014, 2014, 15.	1.2	26
178	Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors. Pharmaceuticals, 2014, 7, 1049-1068.	1.7	21
179	Natural Killer Cells and Neuroblastoma: Tumor Recognition, Escape Mechanisms, and Possible Novel Immunotherapeutic Approaches. Frontiers in Immunology, 2014, 5, 56.	2.2	77
180	Highlights and summary of the 28th annual meeting of the Society for Immunotherapy of Cancer. , 2014, 2, 15.		1
181	Emerging new anticancer biological therapies in 2013 (haematological malignancies). Current Opinion in Oncology, 2014, 26, 363-370.	1.1	5
182	Genetics of Diffuse Large B-Cell Lymphoma. Cancer Journal (Sudbury, Mass), 2014, 20, 43-47.	1.0	4
183	The Emergence of T-Bodies/CAR T Cells. Cancer Journal (Sudbury, Mass), 2014, 20, 123-126.	1.0	41
184	CD19CAR T Cells. Cancer Journal (Sudbury, Mass), 2014, 20, 107-111.	1.0	3
185	CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia, 2014, 28, 917-927.	3.3	370
187	A personalized view on cancer immunotherapy. Cancer Letters, 2014, 352, 113-125.	3.2	63
188	Engineered T cells for cancer treatment. Cytotherapy, 2014, 16, 713-733.	0.3	18
189	Natural killer cells in the treatment of high-risk acute leukaemia. Seminars in Immunology, 2014, 26, 173-179.	2.7	85

#	Article	IF	CITATIONS
190	Adoptive Immunotherapy for Cancer or Viruses. Annual Review of Immunology, 2014, 32, 189-225.	9.5	240
191	Engineering T cells for cancer: our synthetic future. Immunological Reviews, 2014, 257, 7-13.	2.8	43
192	Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy, 2014, 16, 619-630.	0.3	90
193	Immunotoxins for leukemia. Blood, 2014, 123, 2470-2477.	0.6	102
194	Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochemistry International, 2014, 71, 1-7.	1.9	62
195	Driving CAR-Based T-Cell Therapy to Success. Current Hematologic Malignancy Reports, 2014, 9, 50-56.	1.2	26
196	Interleukin 12: still a promising candidate for tumor immunotherapy?. Cancer Immunology, Immunotherapy, 2014, 63, 419-435.	2.0	374
197	Chimeric antigen receptor modified T cell therapy for B cell malignancies. International Journal of Hematology, 2014, 99, 132-140.	0.7	34
198	Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice. BMC Cancer, 2014, 14, 30.	1.1	49
199	Immunotherapy: opportunities, risks and future perspectives. Cytotherapy, 2014, 16, S120-S129.	0.3	8
200	Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. Journal of Clinical Oncology, 2014, 32, 798-808.	0.8	433
201	A new era for the treatment of inflammatory autoimmune diseases by interleukin-6 blockade strategy. Seminars in Immunology, 2014, 26, 88-96.	2.7	144
202	B7-H4 as a potential target for immunotherapy for gynecologic cancers: A closer look. Gynecologic Oncology, 2014, 134, 181-189.	0.6	45
203	Allogeneic transplantation as anticancer immunotherapy. Current Opinion in Immunology, 2014, 27, 38-45.	2.4	22
204	Differential Role of Th1 and Th2 Cytokines in Autotoxicity Driven by CD19-Specific Second-Generation Chimeric Antigen Receptor T Cells in a Mouse Model. Journal of Immunology, 2014, 192, 3654-3665.	0.4	41
205	Immunotherapy for solid tumors—a review for surgeons. Journal of Surgical Research, 2014, 187, 525-535.	0.8	16
206	Enhancement of the T-cell Armamentarium as a Cell-Based Therapy for Prostate Cancer. Cancer Research, 2014, 74, 3390-3395.	0.4	2
207	Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia, 2014, 28, 1596-1605.	3.3	245

#	Article	IF	CITATIONS
208	Therapeutic targeting of CD19 in hematological malignancies: past, present, future and beyond. Leukemia and Lymphoma, 2014, 55, 999-1006.	0.6	45
209	Immunomodulation and Immune Reconstitution in Chronic Lymphocytic Leukemia. Seminars in Hematology, 2014, 51, 228-234.	1.8	43
210	Clinical utility of natural killer cells in cancer therapy and transplantation. Seminars in Immunology, 2014, 26, 161-172.	2.7	154
211	Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity without Severe Toxicity. Cancer Immunology Research, 2014, 2, 154-166.	1.6	448
212	Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347.	5.0	319
213	Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. International Journal of Hematology, 2014, 99, 361-371.	0.7	94
214	Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Letters, 2014, 343, 172-178.	3.2	130
215	Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: Is now the right time?. Clinical Immunology, 2014, 150, 51-63.	1.4	51
216	Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. International Journal of Hematology, 2014, 99, 123-131.	0.7	12
217	Impact of T cell selection methods in the success of clinical adoptive immunotherapy. Cellular and Molecular Life Sciences, 2014, 71, 1211-1224.	2.4	5
218	Novel targeted therapies in acute lymphoblastic leukemia. Leukemia and Lymphoma, 2014, 55, 737-748.	0.6	35
219	Mitigating the toxic effects of anticancer immunotherapy. Nature Reviews Clinical Oncology, 2014, 11, 91-99.	12.5	189
220	Immunotherapy for chronic lymphocytic leukemia in the era of BTK inhibitors. Leukemia, 2014, 28, 507-517.	3.3	21
221	Hematopoietic Cell Transplantation in Children with Cancer. Pediatric Oncology, 2014, , .	0.5	3
222	Impaired and imbalanced cellular immunological status assessed in advanced cancer patients and restoration of the T cell immune status by adoptive T-cell immunotherapy. International Immunopharmacology, 2014, 18, 90-97.	1.7	29
223	CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert Opinion on Biological Therapy, 2014, 14, 37-49.	1.4	20
224	Natural ligands and antibody-based fusion proteins: harnessing the immune system against cancer. Trends in Molecular Medicine, 2014, 20, 72-82.	3.5	20
225	Toward Synthetic Biology with Engineered T Cells: A Long Journey Just Begun. Human Gene Therapy, 2014, 25, 779-784.	1.4	8

#	Article	IF	CITATIONS
226	Chimeric Antigen Receptor T-cell Therapy to Target Hematologic Malignancies. Cancer Research, 2014, 74, 6383-6389.	0.4	38
227	Clinical potential of gene therapy: towards meeting the demand. Internal Medicine Journal, 2014, 44, 224-233.	0.5	10
228	Therapeutic targets for neuroblastomas. Expert Opinion on Therapeutic Targets, 2014, 18, 277-292.	1.5	43
229	Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology, 2014, 11, 693-703.	12.5	84
230	Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells. Clinical Immunology, 2014, 155, 160-175.	1.4	156
231	EGFRvIII mCAR-Modified T-Cell Therapy Cures Mice with Established Intracerebral Glioma and Generates Host Immunity against Tumor-Antigen Loss. Clinical Cancer Research, 2014, 20, 972-984.	3.2	254
232	Future Approaches in Immunotherapy. Seminars in Oncology, 2014, 41, S30-S40.	0.8	27
233	Successful engineering cancer immunotherapy. European Journal of Immunology, 2014, 44, 318-320.	1.6	2
234	From the Mouse Cage to Human Therapy: A Personal Perspective of the Emergence of T-bodies/Chimeric Antigen Receptor T Cells. Human Gene Therapy, 2014, 25, 773-778.	1.4	28
235	Treatment of aggressive lymphomas with anti-CD19 CAR T cells. Nature Reviews Clinical Oncology, 2014, 11, 685-686.	12.5	11
236	Design and development of therapies using chimeric antigen receptorâ€expressing T cells. Immunological Reviews, 2014, 257, 107-126.	2.8	418
237	T Lymphocytes Expressing a CD16 Signaling Receptor Exert Antibody-Dependent Cancer Cell Killing. Cancer Research, 2014, 74, 93-103.	0.4	171
238	Lymphodepletion followed by infusion of suicide gene-transduced donor lymphocytes to safely enhance their antitumor effect: a phase I/II study. Leukemia, 2014, 28, 2406-2410.	3.3	16
239	Immunotherapy advances for glioblastoma. Neuro-Oncology, 2014, 16, 1441-1458.	0.6	164
240	Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies. Cancer Immunology Research, 2014, 2, 112-120.	1.6	711
241	Gene-Modified Human $\hat{l}\pm/\hat{l}^2$ -T Cells Expressing a Chimeric CD16-CD3 \hat{l} ¶ Receptor as Adoptively Transferable Effector Cells for Anticancer Monoclonal Antibody Therapy. Cancer Immunology Research, 2014, 2, 249-262.	1.6	38
242	Acquired and intrinsic resistance in cancer immunotherapy. Molecular Oncology, 2014, 8, 1132-1139.	2.1	153
243	Tracking Cellular and Immune Therapies in Cancer. Advances in Cancer Research, 2014, 124, 257-296.	1.9	25

#	Article	IF	CITATIONS
244	Relapse post hematopoietic SCT remains the Achilles heel for the field. Bone Marrow Transplantation, 2014, 49, 997-998.	1.3	2
245	Nature of Tumor Control by Permanently and Transiently Modified GD2 Chimeric Antigen Receptor T Cells in Xenograft Models of Neuroblastoma. Cancer Immunology Research, 2014, 2, 1059-1070.	1.6	62
246	IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016295-a016295.	2.3	2,943
247	Serial Transfer of Single-Cell-Derived Immunocompetence Reveals Stemness of CD8+ Central Memory T Cells. Immunity, 2014, 41, 116-126.	6.6	290
248	Trial Watch. Oncolmmunology, 2014, 3, e28344.	2.1	31
249	A carbon nanotube–polymer composite for T-cell therapy. Nature Nanotechnology, 2014, 9, 639-647.	15.6	190
250	Foxp3+ T Cells Inhibit Antitumor Immune Memory Modulated by mTOR Inhibition. Cancer Research, 2014, 74, 2217-2228.	0.4	32
251	Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA Clinical, 2014, 1, 59-77.	4.1	34
252	Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome–positive acute lymphoblastic leukemia. Cytotherapy, 2014, 16, 1257-1269.	0.3	42
253	Current therapy and novel agents for relapsed or refractory acute lymphoblastic leukemia. Leukemia and Lymphoma, 2014, 55, 1715-1724.	0.6	22
254	Functional NK Cell Repertoires Are Maintained through IL-2RÎ \pm and Fas Ligand. Journal of Immunology, 2014, 192, 3889-3897.	0.4	20
255	Gene Therapy: Charting a Future Courseâ€"Summary of a National Institutes of Health Workshop, April 12, 2013. Human Gene Therapy, 2014, 25, 488-497.	1.4	12
256	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	13.9	4,444
258	Stem cell in alternative treatments for brain tumors: potential for gene delivery. Molecular and Cellular Therapies, 2014, 2, 24.	0.2	6
259	Adoptive T-cell therapy for Leukemia. Molecular and Cellular Therapies, 2014, 2, 25.	0.2	17
260	Shaping of an effective immune microenvironment to and by cancer cells. Cancer Immunology, Immunotherapy, 2014, 63, 991-997.	2.0	30
261	Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 224ra25.	5.8	2,069
262	Optimal Benefits for Hematopoietic Stem Cell Transplantation: A Consensus Opinion. Biology of Blood and Marrow Transplantation, 2014, 20, 1671-1676.	2.0	7

#	Article	IF	Citations
263	Engineered T cells for cancer therapy. Cancer Immunology, Immunotherapy, 2014, 63, 969-975.	2.0	105
264	Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10660-10665.	3.3	171
265	"Much ado to achieve nothing: prospects for curing HIV infection― Molecular and Cellular Therapies, 2014, 2, 9.	0.2	0
266	Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells. Blood, 2014, 123, 2343-2354.	0.6	396
267	Adoptive immunotherapy for cancer. Immunological Reviews, 2014, 257, 14-38.	2.8	119
268	Emerging drugs for acute lymphocytic leukemia. Expert Opinion on Emerging Drugs, 2014, 19, 37-50.	1.0	4
269	Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer. Expert Opinion on Biological Therapy, 2014, 14, 947-954.	1.4	22
270	Novel Antibody Therapy in Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2014, 9, 165-173.	1.2	9
271	Rise of iPSCs as a cell source for adoptive immunotherapy. Human Cell, 2014, 27, 47-50.	1.2	6
272	Tumor-Infiltrating Lymphocyte Therapy for Melanoma: Rationale and Issues for Further Clinical Development. BioDrugs, 2014, 28, 421-437.	2.2	21
273	Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia, 2014, 28, 658-665.	3.3	121
274	Kinetics of Tumor Destruction by Chimeric Antigen Receptor-modified T Cells. Molecular Therapy, 2014, 22, 623-633.	3.7	113
276	New frontiers in pediatric Allo-SCT. Bone Marrow Transplantation, 2014, 49, 1139-1145.	1.3	5
277	T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: Towards tumor-directed oligoclonal T cell therapy. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 378-386.	1.1	72
278	Back to the Future! The Evolving Role of Maintenance Therapy after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 154-163.	2.0	36
279	Reprint of: Back to the Future! The Evolving Role of Maintenance Therapy after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, S8-S17.	2.0	3
280	Cellular immunotherapy strategies for Ewing sarcoma. Immunotherapy, 2014, 6, 611-621.	1.0	10
281	Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood, 2014, 123, 3750-3759.	0.6	534

#	Article	IF	CITATIONS
282	Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, 2014, , .	0.8	14
283	Clinical Cancer Advances 2013: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology, Journal of Clinical Oncology, 2014, 32, 129-160.	0.8	74
284	Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 2014, 123, 2625-2635.	0.6	558
285	TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Therapy, 2014, 21, 539-548.	2.3	129
286	Clinical application of genetically modified T cells in cancer therapy. Clinical and Translational Immunology, 2014, 3, e16.	1.7	94
287	Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Therapy, 2014, 21, 337-342.	2.3	35
288	New frontiers in pediatric Allo-SCT: novel approaches for children and adolescents with ALL. Bone Marrow Transplantation, 2014, 49, 1259-1265.	1.3	18
289	T cells redirected to interleukin-13Rα2 with interleukin-13 mutein–chimeric antigen receptors have anti-glioma activity but alsoÂrecognize interleukin-13Rα1. Cytotherapy, 2014, 16, 1121-1131.	0.3	68
291	CARs Move To the Fast Lane. Molecular Therapy, 2014, 22, 477-478.	3.7	4
292	Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumor activity and resistance to oxidative stress and immunosuppressive factors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14001.	1.8	27
293	Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood, 2014, 124, 2824-2833.	0.6	229
294	Targeting cytokines in ALPS: it's FAShionable. Blood, 2014, 123, 1116-1118.	0.6	3
295	Fine-mapping of HLA associations with chronic lymphocytic leukemia in US populations. Blood, 2014, 124, 2657-2665.	0.6	33
296	Cancer Immunology, Success Without Sequencing. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 443-445.	2.3	0
297	Future of allogeneic hematopoietic stem cell transplantation for chemotherapy-resistant pediatric acute leukemia: potential advances. International Journal of Hematologic Oncology, 2014, 3, 319-323.	0.7	0
298	Engineered T cell therapies. Expert Reviews in Molecular Medicine, 2015, 17, e19.	1.6	5
299	Pathophysiology and epidemiology of hemophagocytic lymphohistiocytosis. Hematology American Society of Hematology Education Program, 2015, 2015, 177-182.	0.9	109
300	Knockdown of Tâ€bet expression in Martâ€1 _{27â€"35} â€specific <scp>T</scp> â€cellâ€receptorâ€eng human <scp>CD</scp> 4 ⁺ ÂCD25 ^{â°'} and <scp>CD</scp> 8 ⁺ T cells attenuates effector function. Immunology, 2015, 145, 124-135.	gineered 2.0	2

#	Article	IF	CITATIONS
301	Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discovery, 2015, 1, 15040.	3.1	50
303	Identification of CD34+ and CD34â^ leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia. Blood, 2015, 125, 967-980.	0.6	47
304	Therapeutic targeting of the BCR-associated protein CD79b in a TCR-based approach is hampered by aberrant expression of CD79b. Blood, 2015, 125, 949-958.	0.6	17
305	A drive through cellular therapy for CLL in 2015: allogeneic cell transplantation and CARs. Blood, 2015, 126, 478-485.	0.6	37
306	Acute Lymphoblastic Leukemia, Version 2.2015. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 1240-1279.	2.3	116
307	Role of Immune Therapies for Myeloma. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 1440-1447.	2.3	4
308	A Perspective of Immunotherapy for Breast Cancer: Lessons Learned and Forward Directions for All Cancers. Breast Cancer: Basic and Clinical Research, 2015, 9s2, BCBCR.S29425.	0.6	4
311	Creating Conditions for the Success of The French Industrial Advanced Therapy Sector. Therapie, 2015, 70, 83-94.	0.6	0
312	T Cell Immunotherapy for Immune Reconstitution and GVHD Prevention After Allogeneic Hematopoietic Stem Cell Transplantation. Current Stem Cell Reports, 2015, 1, 206-214.	0.7	0
313	Chimeric Antigen Receptors for Cancer: Progress and Challenges. Current Stem Cell Reports, 2015, 1, 187-196.	0.7	0
314	Erythrodermic Leukemia Cutis in a Patient With Pre-B-Cell Acute Lymphoblastic Leukemia. American Journal of Dermatopathology, 2015, 37, 650-652.	0.3	4
315	Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation. Journal of Translational Medicine, 2015, 13, 240.	1.8	16
316	New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer, 2015, 121, 2517-2528.	2.0	200
317	Treatment for metastatic melanoma: a new and evolving era. International Journal of Clinical Practice, 2015, 69, 273-280.	0.8	2
320	Chimeric antigen receptors and bispecific antibodies to retarget T cells in pediatric oncology. Pediatric Blood and Cancer, 2015, 62, 1326-1336.	0.8	10
321	Toward effective targeted therapy for the treatment of adult acute lymphoblastic leukemia. International Journal of Hematologic Oncology, 2015, 4, 1-4.	0.7	0
322	Smart CARs engineered for cancer immunotherapy. Current Opinion in Oncology, 2015, 27, 466-474.	1.1	63
323	Toxicities Associated With Adoptive T-Cell Transfer for Cancer. Cancer Journal (Sudbury, Mass), 2015, 21, 506-509.	1.0	38

#	Article	IF	CITATIONS
324	Evolution to plasmablastic lymphoma evades CD19â€directed chimeric antigen receptor T cells. British Journal of Haematology, 2015, 171, 205-209.	1.2	83
325	Immunotherapy in acute myeloid leukemia. Cancer, 2015, 121, 2689-2704.	2.0	30
326	Activated T cells armed with bispecific antibodies kill tumor targets. Current Opinion in Hematology, 2015, 22, 476-483.	1.2	17
327	Challenges and opportunities of allogeneic donor-derived CAR T cells. Current Opinion in Hematology, 2015, 22, 509-515.	1.2	81
328	CD19-Targeted T Cells for Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2015, 21, 470-474.	1.0	28
329	Cellular Therapies in Trauma and Critical Care Medicine. Shock, 2015, 44, 505-523.	1.0	35
330	Treatment of Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia in Adults: A Broader Range of Options, Improved Outcomes, and More Therapeutic Dilemmas. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e352-e359.	1.8	32
331	CD19 CAR Therapy for Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e360-e363.	1.8	45
332	CAR-T: The Current and the Future. Pancreatic Disorders & Therapy, 2015, 05, .	0.3	0
333	Adoptive T Cell Immunotherapy For Cancer. Rambam Maimonides Medical Journal, 2015, 6, e0004.	0.4	187
334	Cancer immunotherapy: harnessing the immune system to battle cancer. Journal of Clinical Investigation, 2015, 125, 3335-3337.	3.9	1,016
335	Potential therapeutic strategy for gastric cancer peritoneal metastasis by NKG2D ligands-specific T cells. OncoTargets and Therapy, 2015, 8, 3095.	1.0	14
336	Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget, 2015, 6, 44179-44190.	0.8	106
337	Stem Cell Therapy for Brain Tumors. International Journal of Translational Science, 2015, 2015, 67-106.	0.2	1
338	The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Frontiers in Immunology, 2015, 6, 578.	2.2	220
339	Seatbelts in CAR therapy: How Safe Are CARS?. Pharmaceuticals, 2015, 8, 230-249.	1.7	42
340	Natural Killer Cell Immunotherapy: From Bench to Bedside. Frontiers in Immunology, 2015, 6, 264.	2.2	29
341	Present and Future of Allogeneic Natural Killer Cell Therapy. Frontiers in Immunology, 2015, 6, 286.	2.2	70

#	Article	IF	CITATIONS
342	Lymphoma Immunotherapy: Current Status. Frontiers in Immunology, 2015, 6, 448.	2.2	36
343	Immunotherapy for hepatocellular carcinoma. Drug Discoveries and Therapeutics, 2015, 9, 363-371.	0.6	69
344	Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1) into Diverse Memory T-Cell Populations. PLoS ONE, 2015, 10, e0128151.	1.1	43
345	Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors. PLoS ONE, 2015, 10, e0144787.	1.1	92
346	Improving the safety of cell therapy with the TK-suicide gene. Frontiers in Pharmacology, 2015, 6, 95.	1.6	102
347	Mechanistic insights into the oncolytic activity of vesicular stomatitis virus in cancer immunotherapy. Oncolytic Virotherapy, 2015, 4, 157.	6.0	14
348	Harnessing the Microbiome to Enhance Cancer Immunotherapy. Journal of Immunology Research, 2015, 2015, 1-12.	0.9	54
349	Cellular and Antibody Based Approaches for Pediatric Cancer Immunotherapy. Journal of Immunology Research, 2015, 2015, 1-7.	0.9	15
351	Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget, 2015, 6, 27832-27846.	0.8	46
352	Cellular immunotherapy for hematological malignancies. Hematologie, 2015, 21, 237-246.	0.0	0
353	A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity. Oncotarget, 2015, 6, 21533-21546.	0.8	76
354	Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget, 2015, 6, 33961-33971.	0.8	113
355	Integrating Viral and Nonviral Vectors for Cystic Fibrosis Gene Therapy in the Airways. , 2015, , .		2
356	Umbilical cord blood graft engineering: challenges and opportunities. Bone Marrow Transplantation, 2015, 50, S55-S62.	1.3	24
357	Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. Journal of Experimental Medicine, 2015, 212, 1125-1137.	4.2	368
358	Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science Translational Medicine, 2015, 7, 275ra22.	5.8	369
359	How I treat adults with relapsed or refractory Philadelphia chromosome–negative acute lymphoblastic leukemia. Blood, 2015, 126, 589-596.	0.6	60
360	Individual Motile CD4+ T Cells Can Participate in Efficient Multikilling through Conjugation to Multiple Tumor Cells. Cancer Immunology Research, 2015, 3, 473-482.	1.6	85

#	Article	IF	CITATIONS
361	Risk factors and timing of relapse after allogeneic transplantation in pediatric ALL: for whom and when should interventions be tested?. Bone Marrow Transplantation, 2015, 50, 1173-1179.	1.3	59
362	Targeting Interleukin-2 to the Bone Marrow Stroma for Therapy of Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation. Cancer Immunology Research, 2015, 3, 547-556.	1.6	39
363	TRUCKs: the fourth generation of CARs. Expert Opinion on Biological Therapy, 2015, 15, 1145-1154.	1.4	473
364	Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Science Translational Medicine, 2015, 7, 288ra78.	5.8	104
365	A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy. Molecular Therapy, 2015, 23, 1507-1518.	3.7	89
366	Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Science Translational Medicine, 2015, 7, 291ra94.	5.8	242
367	Novel theranostic agents for next-generation personalized medicine: small molecules, nanoparticles, and engineered mammalian cells. Current Opinion in Chemical Biology, 2015, 28, 29-38.	2.8	61
368	Vaccines, Adjuvants, and Dendritic Cell Activatorsâ€"Current Status and Future Challenges. Seminars in Oncology, 2015, 42, 549-561.	0.8	37
369	The role of active vaccination in cancer immunotherapy: lessons from clinical trials. Current Opinion in Immunology, 2015, 35, 15-22.	2.4	33
370	A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status. Genome Medicine, 2015, 7, 49.	3.6	177
371	New Cell Sources for T Cell Engineering and Adoptive Immunotherapy. Cell Stem Cell, 2015, 16, 357-366.	5.2	134
372	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	0.6	110
373	CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood, 2015, 125, 4017-4023.	0.6	598
374	Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood, 2015, 125, 3996-4009.	0.6	410
375	Adolescent and young adult patients with cancer: a milieu of unique features. Nature Reviews Clinical Oncology, 2015, 12, 465-480.	12.5	99
376	T-Cell Immunotherapy for Cancer. , 2015, , 389-410.		0
377	Blinatumomab. Annals of Pharmacotherapy, 2015, 49, 1057-1067.	0.9	56
378	Novel approaches to pediatric leukemia treatment. Expert Review of Anticancer Therapy, 2015, 15, 811-828.	1.1	2

#	Article	IF	Citations
379	Adoptive Tâ€eell therapy for cancer: The era of engineered T cells. European Journal of Immunology, 2015, 45, 2457-2469.	1.6	75
380	Statistical Challenges in the Design of Late-Stage Cancer Immunotherapy Studies. Cancer Immunology Research, 2015, 3, 1292-1298.	1.6	38
382	Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine, 2015, 21, 1424-1435.	15.2	1,547
383	Tâ€cell receptor gene therapy — ready to go viral?. Molecular Oncology, 2015, 9, 2019-2042.	2.1	21
384	Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors., 2015, 3, 55.		60
385	IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nature Communications, 2015, 6, 6702.	5.8	79
386	Directed T-cell therapies for leukemia and lymphoma after hematopoietic stem cell transplant: beyond chimeric antigen receptors. International Journal of Hematologic Oncology, 2015, 4, 99-111.	0.7	0
387	Adoptive T-cell therapies for refractory/relapsed leukemia and lymphoma: current strategies and recent advances. Therapeutic Advances in Hematology, 2015, 6, 295-307.	1.1	16
388	Chimeric Antigen Receptor (CAR) T Cells. Cancer Drug Discovery and Development, 2015, , 259-280.	0.2	0
389	CD19-Targeted CAR T Cells: A New Tool in the Fight against B Cell Malignancies. Oncology Research and Treatment, 2015, 38, 683-690.	0.8	24
390	Therapeutic uses of anti-interleukin-6 receptor antibody. International Immunology, 2015, 27, 21-29.	1.8	146
391	Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncology, The, 2015, 16, 57-66.	5.1	1,031
392	Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunology, Immunotherapy, 2015, 64, 123-130.	2.0	51
393	Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91, 125-140.	6.6	190
394	Target Antigen Density Governs the Efficacy of Anti–CD20-CD28-CD3 ζ Chimeric Antigen Receptor–Modified Effector CD8+ T Cells. Journal of Immunology, 2015, 194, 911-920.	0.4	228
395	Chimerism-Based Pre-Emptive Immunotherapy with Fast Withdrawal of Immunosuppression and Donor Lymphocyte Infusions after Allogeneic Stem Cell Transplantation for Pediatric Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2015, 21, 729-737.	2.0	33
397	Targeting the tumor vasculature to enhance T cell activity. Current Opinion in Immunology, 2015, 33, 55-63.	2.4	237
398	Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Therapy, 2015, 22, 391-403.	2.3	97

#	Article	IF	CITATIONS
399	Using gene therapy to manipulate the immune system in the fight against B-cell leukemias. Expert Opinion on Biological Therapy, 2015, 15, 403-416.	1.4	3
400	Novel agents for the treatment of childhood acute leukemia. Therapeutic Advances in Hematology, 2015, 6, 61-79.	1.1	49
401	Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Therapy, 2015, 22, 79-84.	2,2	105
402	Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut, 2015, 64, 842-848.	6.1	155
403	Cancer stem cells, lymphangiogenesis, and lymphatic metastasis. Cancer Letters, 2015, 357, 438-447.	3.2	55
404	Monitoring of Minimal Residual Disease After Allogeneic Stem-Cell Transplantation in Relapsed Childhood Acute Lymphoblastic Leukemia Allows for the Identification of Impending Relapse: Results of the ALL-BFM-SCT 2003 Trial. Journal of Clinical Oncology, 2015, 33, 1275-1284.	0.8	110
405	Targeted Drug Delivery Systems: Strategies and Challenges. Advances in Delivery Science and Technology, 2015, , 3-38.	0.4	11
406	Immunogenic peptide discovery in cancer genomes. Current Opinion in Genetics and Development, 2015, 30, 7-16.	1.5	63
407	Allogeneic hematopoietic stem cell transplantation for adult patients with mixed phenotype acute leukemia: results of a matchedâ€pair analysis. European Journal of Haematology, 2015, 95, 455-460.	1.1	36
408	Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression. Molecular Therapy, 2015, 23, 769-778.	3.7	195
409	DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma. Cancer Immunology, Immunotherapy, 2015, 64, 409-418.	2.0	32
410	Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Molecular Immunology, 2015, 67, 46-57.	1.0	100
411	How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert Opinion on Biological Therapy, 2015, 15, 761-766.	1.4	24
412	Gene and cell therapy for pancreatic cancer. Expert Opinion on Biological Therapy, 2015, 15, 505-516.	1.4	18
413	Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies. ACS Biomaterials Science and Engineering, 2015, 1, 64-78.	2.6	151
414	Functional Tuning of CARs Reveals Signaling Threshold above Which CD8+ CTL Antitumor Potency Is Attenuated due to Cell Fas–FasL-Dependent AICD. Cancer Immunology Research, 2015, 3, 368-379.	1.6	144
415	Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor Tâcells specific for tumor antigen GD2. Cytotherapy, 2015, 17, 487-495.	0.3	90
416	CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia, 2015, 29, 1637-1647.	3.3	343

#	Article	IF	CITATIONS
417	Are All Chimeric Antigen Receptors Created Equal?. Journal of Clinical Oncology, 2015, 33, 651-653.	0.8	24
418	Biomarkers for glioma immunotherapy: the next generation. Journal of Neuro-Oncology, 2015, 123, 359-372.	1.4	23
419	CAR-T Cells Inflict Sequential Killing of Multiple Tumor Target Cells. Cancer Immunology Research, 2015, 3, 483-494.	1.6	103
420	Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Therapy, 2015, 22, 85-94.	2.2	83
421	< scp>CD $<$ /scp>19 chimeric antigen receptor T cell therapy for haematological malignancies. British Journal of Haematology, 2015, 169, 463-478.	1.2	54
422	The Pre-BCR to the Rescue: Therapeutic Targeting of Pre-B Cell ALL. Cancer Cell, 2015, 27, 321-323.	7.7	1
423	T Cell-Based Gene Therapy of Cancer. , 2015, , 281-304.		0
424	CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies?. Immunotherapy, 2015, 7, 545-561.	1.0	26
425	Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors. Immunotherapy, 2015, 7, 535-544.	1.0	52
426	Adoptive Cell Therapy—Tumor-Infiltrating Lymphocytes, T-Cell Receptors, and Chimeric Antigen Receptors. Seminars in Oncology, 2015, 42, 626-639.	0.8	76
427	Current practices and reform proposals for the regulation of advanced medicinal products in Canada. Regenerative Medicine, 2015, 10, 647-663.	0.8	14
428	CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Therapeutic Advances in Hematology, 2015, 6, 228-241.	1.1	89
430	Chimeric antigen receptor T cells: power tools to wipe out leukemia and lymphoma. Expert Review of Hematology, 2015, 8, 383-385.	1.0	7
431	Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression. Immunotherapy, 2015, 7, 499-512.	1.0	18
432	Advantages and applications of CAR-expressing natural killer cells. Frontiers in Pharmacology, 2015, 6, 21.	1.6	204
433	Synthetic Nanoparticles for Vaccines and Immunotherapy. Chemical Reviews, 2015, 115, 11109-11146.	23.0	623
435	Orchestrating an immune response against cancer with engineered immune cells expressing $\hat{l}\pm\hat{l}^2TCRs$, CARs, and innate immune receptors: an immunological and regulatory challenge. Cancer Immunology, Immunotherapy, 2015, 64, 893-902.	2.0	12
436	Engineering CAR-T cells: Design concepts. Trends in Immunology, 2015, 36, 494-502.	2.9	354

#	Article	IF	CITATIONS
437	CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Scientific Reports, 2015, 5, 11483.	1.6	270
438	Immunotherapy for multiple myeloma: Current status and future directions. Critical Reviews in Oncology/Hematology, 2015, 96, 399-412.	2.0	25
439	Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab on A Chip, 2015, 15, 3147-3153.	3.1	92
440	Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf―Adoptive T-cell Immunotherapies. Cancer Research, 2015, 75, 3853-3864.	0.4	474
441	Chimeric Antigen Receptor– and TCR-Modified T Cells Enter Main Street and Wall Street. Journal of Immunology, 2015, 195, 755-761.	0.4	147
442	Lentivirus-induced â€~Smart' dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Therapy, 2015, 22, 707-720.	2.3	37
443	T Cells Engineered With Chimeric Antigen Receptors Targeting NKG2D Ligands Display Lethal Toxicity in Mice. Molecular Therapy, 2015, 23, 1600-1610.	3.7	58
444	Impact of a New Fusion Receptor on PD-1–Mediated Immunosuppression in Adoptive T Cell Therapy. Journal of the National Cancer Institute, 2015, 107, .	3.0	96
445	<i>Ex vivo</i> expansion of human T cells for adoptive immunotherapy using the novel Xenoâ€free CTS Immune Cell Serum Replacement. Clinical and Translational Immunology, 2015, 4, e31.	1.7	48
446	Gene Therapy of Solid Cancers. Methods in Molecular Biology, 2015, , .	0.4	4
447	Immune Modulation in Hematologic Malignancies. Seminars in Oncology, 2015, 42, 617-625.	0.8	22
448	MODERN IMMUNOTHERAPY OF ADULT B-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA WITH MONOCLONAL ANTIBODIES AND CHIMERIC ANTIGEN RECEPTOR MODIFIED T CELLS. Mediterranean Journal of Hematology and Infectious Diseases, 2015, 7, e2015001.	0.5	7
449	The pharmacology of second-generation chimeric antigen receptors. Nature Reviews Drug Discovery, 2015, 14, 499-509.	21.5	411
450	Spatial and Functional Heterogeneities Shape Collective Behavior of Tumor-Immune Networks. PLoS Computational Biology, 2015, 11, e1004181.	1.5	35
451	Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncolmmunology, 2015, 4, e989771.	2.1	47
452	Chimeric Antigen Receptor Engineering: A Right Step in the Evolution of Adoptive Cellular Immunotherapy. International Reviews of Immunology, 2015, 34, 154-187.	1.5	62
453	Progress in the Treatment of Metastatic Pancreatic Cancer and the Search for Next Opportunities. Journal of Clinical Oncology, 2015, 33, 1779-1786.	0.8	66
454	ErbB-targeted CAR T-cell immunotherapy of cancer. Immunotherapy, 2015, 7, 229-241.	1.0	23

#	Article	IF	CITATIONS
455	CMV-specific T cells generated from $na\tilde{A}^-ve$ T cells recognize atypical epitopes and may be protective in vivo. Science Translational Medicine, 2015, 7, 285ra63.	5.8	93
456	Toxicities of Immunotherapy for the Practitioner. Journal of Clinical Oncology, 2015, 33, 2092-2099.	0.8	521
457	Allogeneic stem cell transplantation in multiple myeloma: immunotherapy and new drugs. Expert Opinion on Biological Therapy, 2015, 15, 857-872.	1.4	18
458	Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348, 62-68.	6.0	1,911
459	Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunology, Immunotherapy, 2015, 64, 817-829.	2.0	184
460	Re-defining response and treatment effects for neuro-oncology immunotherapy clinical trials. Journal of Neuro-Oncology, 2015, 123, 339-346.	1.4	10
461	Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood, 2015, 125, 3711-3719.	0.6	291
462	Targeting of folate receptor \hat{l}^2 on acute myeloid leukemia blasts with chimeric antigen receptor $\hat{a} \in \mathbb{R}$ expressing T cells. Blood, 2015, 125, 3466-3476.	0.6	148
463	From humble beginnings to success in the clinic: Chimeric antigen receptor-modified T-cells and implications for immunotherapy. Experimental Biology and Medicine, 2015, 240, 1087-1098.	1.1	52
464	Intracellular caspase-modulating chimeric antigen receptor. Drug Discovery Today, 2015, 20, 629-634.	3.2	0
465	Genetically modified T cells in cancer therapy: opportunities and challenges. DMM Disease Models and Mechanisms, 2015, 8, 337-350.	1.2	137
466	Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood, 2015, 125, 1107-1115.	0.6	137
467	Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor. Cancer Immunology Research, 2015, 3, 915-925.	1.6	61
468	Fever and the thermal regulation of immunity: the immune system feels the heat. Nature Reviews Immunology, 2015, 15, 335-349.	10.6	795
469	Anti-CD20/CD3 T cell–dependent bispecific antibody for the treatment of B cell malignancies. Science Translational Medicine, 2015, 7, 287ra70.	5.8	178
470	Immunotherapy for Acute Myeloid Leukemia. Seminars in Hematology, 2015, 52, 207-214.	1.8	44
471	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	0.8	778
472	Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2015, 62, 964-969.	0.8	129

#	Article	IF	CITATIONS
473	Generation of TCR-Engineered T Cells and Their Use To Control the Performance of T Cell Assays. Journal of Immunology, 2015, 194, 6177-6189.	0.4	9
474	Immunopathology and Immunotherapy of Lymphoblastic Leukaemia. , 2015, , 105-116.		0
475	Future of Therapy in Acute Lymphoblastic Leukemia (ALL)—Potential Role of Immune-Based Therapies. Current Hematologic Malignancy Reports, 2015, 10, 76-85.	1.2	7
476	Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma. Clinical Cancer Research, 2015, 21, 3241-3251.	3.2	83
477	4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 2015, 21, 581-590.	15.2	1,304
478	Synthetic immunity to break down the bottleneck of cancer immunotherapy. Science Bulletin, 2015, 60, 977-985.	4.3	4
479	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	3.7	88
480	⁸⁹ Zr-Oxine Complex PET Cell Imaging in Monitoring Cell-based Therapies. Radiology, 2015, 275, 490-500.	3.6	121
481	Adoptive Transfer of MAGE-A4 T-cell Receptor Gene-Transduced Lymphocytes in Patients with Recurrent Esophageal Cancer. Clinical Cancer Research, 2015, 21, 2268-2277.	3.2	139
482	BRAF and MEK Inhibition Variably Affect GD2-specific Chimeric Antigen Receptor (CAR) T-Cell Function In Vitro. Journal of Immunotherapy, 2015, 38, 12-23.	1.2	32
483	Redirection of Genetically Engineered CAR-T Cells Using Bifunctional Small Molecules. Journal of the American Chemical Society, 2015, 137, 2832-2835.	6.6	141
484	Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nature Reviews Clinical Oncology, 2015, 12, 319-334.	12.5	489
485	Improving access to novel agents for childhood leukemia. Cancer, 2015, 121, 1927-1936.	2.0	5
486	Mammalian synthetic biology: emerging medical applications. Journal of the Royal Society Interface, 2015, 12, 20141000.	1.5	53
487	CD19: A multifunctional immunological target molecule and its implications for Blineage acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2015, 62, 1144-1148.	0.8	23
488	CMVpp65 Vaccine Enhances the Antitumor Efficacy of Adoptively Transferred CD19-Redirected CMV-Specific T Cells. Clinical Cancer Research, 2015, 21, 2993-3002.	3.2	52
489	B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Therapy, 2015, 22, 675-684.	2.3	50
490	Thymic expression of a T-cell receptor targeting a tumor-associated antigen coexpressed in the thymus induces T-ALL. Blood, 2015, 125, 2958-2967.	0.6	11

#	Article	IF	CITATIONS
491	Complete Regression of Metastatic Cervical Cancer After Treatment With Human Papillomavirus–Targeted Tumor-Infiltrating T Cells. Journal of Clinical Oncology, 2015, 33, 1543-1550.	0.8	513
492	Improving the outcome for children with cancer: Development of targeted new agents. Ca-A Cancer Journal for Clinicians, 2015, 65, 212-220.	157.7	99
493	Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor–Modified T-cell Therapy for CEA+ Liver Metastases. Clinical Cancer Research, 2015, 21, 3149-3159.	3.2	324
494	The Journey from Discoveries in Fundamental Immunology to Cancer Immunotherapy. Cancer Cell, 2015, 27, 439-449.	7.7	194
495	Potency Analysis of Cellular Therapies. , 2015, , 41-58.		0
496	T cell engineering as therapy for cancer and HIV: our synthetic future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140374.	1.8	23
497	T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graft-versus-leukemia effect. Haematologica, 2015, 100, 709-719.	1.7	30
498	Remote control of therapeutic T cells through a small molecule–gated chimeric receptor. Science, 2015, 350, aab4077.	6.0	543
499	Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine, 2015, 7, 303ra139.	5.8	1,402
500	A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Annals of Oncology, 2015, 26, 2141-2149.	0.6	144
501	Adoptive immunotherapy: a new era for the treatment of cancer. Immunotherapy, 2015, 7, 469-471.	1.0	4
502	Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncology, The, 2015, 16, e534-e542.	5.1	582
503	Redirected T cells in cancer therapy. Expert Opinion on Biological Therapy, 2015, 15, 1667-1670.	1.4	2
504	lmmunotherapy for neuro-oncology: the critical rationale for combinatorial therapy. Neuro-Oncology, 2015, 17, vii32-vii40.	0.6	21
505	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	7.7	997
506	Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade. Cancer Immunology Research, 2015, 3, 1269-1278.	1.6	84
507	Targeting CD20+ Aggressive B-cell Non–Hodgkin Lymphoma by Anti-CD20 CAR mRNA-Modified Expanded Natural Killer Cells <i>In Vitro</i> and in NSG Mice. Cancer Immunology Research, 2015, 3, 333-344.	1.6	138
508	Mammalian Synthetic Gene Networks. , 2015, , .		0

#	Article	IF	Citations
510	Adoptive Immunotherapies After Allogeneic Hematopoietic Stem Cell Transplantation in Patients With Hematologic Malignancies. Transfusion Medicine Reviews, 2015, 29, 259-267.	0.9	1
511	Untouched GMP-Ready Purified Engineered Immune Cells to Treat Cancer. Clinical Cancer Research, 2015, 21, 3957-3968.	3.2	30
512	Strain-dependent Lethal Toxicity in NKG2D Ligand-targeted CAR T-cell Therapy. Molecular Therapy, 2015, 23, 1559-1561.	3.7	13
513	An Update on the Role of Immunotherapy and Vaccine Strategies for Primary Brain Tumors. Current Treatment Options in Oncology, 2015, 16, 54.	1.3	44
514	Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell, 2015, 28, 415-428.	7.7	641
515	Designing CAR T cells for glioblastoma. Oncolmmunology, 2015, 4, e1048956.	2.1	18
516	Adoptive T-Cell Immunotherapy. Current Topics in Microbiology and Immunology, 2015, 391, 427-454.	0.7	48
517	Case Report of a Fatal Serious Adverse Event Upon Administration of T Cells Transduced With a MART-1-specific T-cell Receptor. Molecular Therapy, 2015, 23, 1541-1550.	3.7	93
518	Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy. Oncolmmunology, 2015, 4, e1022302.	2.1	23
519	High-throughput pairing of T cell receptor \hat{l}_{\pm} and \hat{l}_{\pm}^2 sequences. Science Translational Medicine, 2015, 7, 301ra131.	5.8	209
520	Tolerance and efficacy of autologous or donor-derived T cells expressing CD19 chimeric antigen receptors in adult B-ALL with extramedullary leukemia. Oncolmmunology, 2015, 4, e1027469.	2.1	142
521	Retrospective Study of Allogeneic Hematopoietic Stem Cell Transplantation in Philadelphia Chromosome–Positive Leukemia: 25 Years' Experience at Gustave Roussy Cancer Campus. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, S129-S140.	0.2	2
522	Adoptive cell therapy for sarcoma. Immunotherapy, 2015, 7, 21-35.	1.0	12
523	Are BiTEs the "missing link―in cancer therapy?. Oncolmmunology, 2015, 4, e1008339.	2.1	59
524	Immunotherapeutic Strategies for Multiple Myeloma. , 2015, , 69-91.		0
525	Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy, 2015, 7, 861-882.	1.0	17
526	Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. New England Journal of Medicine, 2015, 373, 1040-1047.	13.9	511
527	Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies. Current Hematologic Malignancy Reports, 2015, 10, 395-404.	1.2	13

#	Article	IF	Citations
528	Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity. Cancer Research, 2015, 75, 3505-3518.	0.4	327
529	Clinical Evaluation of ErbB-Targeted CAR T-Cells, Following Intracavity Delivery in Patients with ErbB-Expressing Solid Tumors. Methods in Molecular Biology, 2015, 1317, 365-382.	0.4	32
530	Cancer targeted therapeutics: From molecules to drug delivery vehicles. Journal of Controlled Release, 2015, 219, 632-643.	4.8	89
531	Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy, 2015, 7, 1187-1199.	1.0	146
532	Blinatumomab for the treatment of acute lymphoblastic leukemia. Investigational New Drugs, 2015, 33, 1271-1279.	1.2	30
533	CAR Tâ€cell immunotherapy: The path from the byâ€road toÂthe freeway?. Molecular Oncology, 2015, 9, 1994-2018.	2.1	43
534	CAR-T cells are serial killers. Oncolmmunology, 2015, 4, e1053684.	2.1	14
535	Treatment of CD33-directed Chimeric Antigen Receptor-modified T Cells in One Patient With Relapsed and Refractory Acute Myeloid Leukemia. Molecular Therapy, 2015, 23, 184-191.	3.7	318
536	T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, The, 2015, 385, 517-528.	6.3	2,476
537	Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia. Haematologica, 2015, 100, 336-344.	1.7	84
538	Novel immunotherapies for hematologic malignancies. Immunological Reviews, 2015, 263, 90-105.	2.8	44
539	Going viral: chimeric antigen receptor Tâ€cell therapy for hematological malignancies. Immunological Reviews, 2015, 263, 68-89.	2.8	290
540	Hematopoietic Cell Transplantation and Cellular Therapeutics in the Treatment of Childhood Malignancies. Pediatric Clinics of North America, 2015, 62, 257-273.	0.9	9
541	Synthetic immunology: modulating the human immune system. Trends in Biotechnology, 2015, 33, 65-79.	4.9	41
542	Antibodyâ€based therapies in Bâ€cell lineage acute lymphoblastic leukaemia. European Journal of Haematology, 2015, 94, 99-108.	1.1	26
543	Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients With Cancer. Journal of Clinical Oncology, 2015, 33, 74-82.	0.8	571
544	Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor. Molecular Therapy, 2015, 23, 330-338.	3.7	274
545	One-Step Enzymatic Modification of the Cell Surface Redirects Cellular Cytotoxicity and Parasite Tropism. ACS Chemical Biology, 2015, 10, 460-465.	1.6	51

#	ARTICLE	IF	Citations
546	Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity. Leukemia, 2015, 29, 387-395.	3.3	51
547	Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Advanced Drug Delivery Reviews, 2015, 91, 38-51.	6.6	55
548	Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor. Journal of Clinical Oncology, 2015, 33, 540-549.	0.8	1,397
549	Will Post-Transplantation Cell Therapies for Pediatric Patients Become Standard of Care?. Biology of Blood and Marrow Transplantation, 2015, 21, 402-411.	2.0	8
550	The development of potential antibody-based therapies for myeloma. Blood Reviews, 2015, 29, 81-91.	2.8	33
551	Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia, 2015, 29, 1-10.	3.3	54
552	Engager T Cells: A New Class of Antigen-specific T Cells That Redirect Bystander T Cells. Molecular Therapy, 2015, 23, 171-178.	3.7	78
553	Chimeric antigen receptor T cells for ALL. Lancet, The, 2015, 385, 488-490.	6.3	19
554	Tocilizumab added to conventional therapy reverses both the cytokine profile and CD8+Granzyme+ T-cells/NK cells expansion in refractory hemophagocytic lymphohistiocytosis. Hematological Oncology, 2016, 34, 55-57.	0.8	18
555	Immunotherapy for acute lymphoblastic leukemia: from famine to feast. Blood Advances, 2016, 1, 265-269.	2.5	10
556	Targeting the latent reservoir to achieve functional HIV cure. F1000Research, 2016, 5, 1009.	0.8	26
557	IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget, 2016, 7, 16130-16145.	0.8	138
558	Tandem CAR T cells targeting HER2 and IL13R $\hat{l}\pm2$ mitigate tumor antigen escape. Journal of Clinical Investigation, 2016, 126, 3036-3052.	3.9	515
559	Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 298-308.	1.8	115
560	Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved <i>Sleeping Beauty</i> transposon platform. Oncotarget, 2016, 7, 51581-51597.	0.8	43
561	CAR T Cell Therapy: A Game Changer in Cancer Treatment. Journal of Immunology Research, 2016, 2016, 1-10.	0.9	122
562	Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors. PLoS ONE, 2016, 11, e0159477.	1.1	50
563	Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia. Drug Design, Development and Therapy, 2016, 10, 757.	2.0	19

#	Article	IF	CITATIONS
564	Construction of a new anti-CD19 chimeric antigen receptor and the anti-leukemia function study of the transduced T cells. Oncotarget, 2016, 7, 10638-10649.	0.8	34
565	Immunotherapy with natural killer cells: a possible approach for the treatment of Acute Myeloid Leukemia also in Brazil. Revista Da Associação Médica Brasileira, 2016, 62, 23-24.	0.3	1
566	Hematopoietic Stem Cell Transplantation. , 2016, , 577-604.		2
567	Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. Journal of Clinical Investigation, 2016, 126, 3814-3826.	3.9	472
568	The emerging role of immunotherapy in colorectal cancer. Annals of Translational Medicine, 2016, 4, 305-305.	0.7	63
569	CD133, Selectively Targeting the Root of Cancer. Toxins, 2016, 8, 165.	1.5	75
570	Starved and Asphyxiated: How Can CD8+ T Cells within a Tumor Microenvironment Prevent Tumor Progression. Frontiers in Immunology, 2016, 7, 32.	2.2	85
571	Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy. Frontiers in Immunology, 2016, 7, 176.	2.2	29
572	Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination. Frontiers in Immunology, 2016, 7, 345.	2.2	59
573	Recent Developments in Cellular Immunotherapy for HSCT-Associated Complications. Frontiers in Immunology, 2016, 7, 500.	2.2	44
574	T Cell Maturation Stage Prior to and During GMP Processing Informs on CAR T Cell Expansion in Patients. Frontiers in Immunology, 2016, 7, 648.	2.2	26
575	Genetic Modification of T Cells. Biomedicines, 2016, 4, 9.	1.4	36
576	Targeted Therapy of Hepatitis B Virus-Related Hepatocellular Carcinoma: Present and Future. Diseases (Basel, Switzerland), 2016, 4, 10.	1.0	11
577	An Optimized GD2-Targeting Retroviral Cassette for More Potent and Safer Cellular Therapy of Neuroblastoma and Other Cancers. PLoS ONE, 2016, 11, e0152196.	1.1	57
578	From the Guest Editor. Cancer Journal (Sudbury, Mass), 2016, 22, 1-2.	1.0	0
579	Combining a chimeric antigen receptor and a conventional Tâ€cell receptor to generate T cells expressing two additional receptors (<scp>TETAR</scp> s) for a multiâ€hit immunotherapy of melanoma. Experimental Dermatology, 2016, 25, 872-879.	1.4	27
580	Generating Peripheral Blood Derived Lymphocytes Reacting Against Autologous Primary AML Blasts. Journal of Immunotherapy, 2016, 39, 71-80.	1.2	6
581	Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101, 616-625.	1.7	136

#	Article	IF	CITATIONS
582	Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics, 2016, 68, 623-638.	1.2	23
583	International AIDS Society global scientific strategy: towards an HIV cure 2016. Nature Medicine, 2016, 22, 839-850.	15.2	395
584	Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor. Journal of Immunotherapy, 2016, 39, 205-217.	1.2	29
585	The Promise of Chimeric Antigen Receptor Engineered T Cells in the Treatment of Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2016, 22, 27-33.	1.0	9
586	Reduction of Minimal Residual Disease in Pediatric B-lineage Acute Lymphoblastic Leukemia by an Fc-optimized CD19 Antibody. Molecular Therapy, 2016, 24, 1634-1643.	3.7	18
587	Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angewandte Chemie, 2016, 128, 7646-7650.	1.6	7
588	Editorial: 21st Century Storm Chasers: Defining Macrophage Activation Syndrome. Arthritis and Rheumatology, 2016, 68, 557-560.	2.9	7
589	ADDENDUM: T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunology Research, 2016, 4, 639-641.	1.6	23
590	How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy. Journal of Cellular Physiology, 2016, 231, 2590-2598.	2.0	28
591	Engineering of synthetic gene circuits for (reâ€)balancing physiological processes in chronic diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 402-422.	6.6	24
592	Antiâ€ <scp>CD</scp> 19 chimeric antigen receptorâ€modified T cells for Bâ€cell malignancies: a systematic review of efficacy and safety in clinical trials. European Journal of Haematology, 2016, 96, 389-396.	1.1	45
593	Immunology of infusion reactions in the treatment of patients with acute lymphoblastic leukemia. Future Oncology, 2016, 12, 1609-1621.	1.1	24
594	Immunotherapeutic approaches for the treatment of childhood, adolescent and young adult nonâ∈Hodgkin lymphoma. British Journal of Haematology, 2016, 173, 597-616.	1.2	16
595	Recent advances and novel treatment paradigms in acute lymphocytic leukemia. Therapeutic Advances in Hematology, 2016, 7, 252-269.	1.1	23
596	Refining the Role of Hematopoietic Cell Transplantation for Acute Lymphoblastic Leukemia as Novel Therapies Emerge. Biology of Blood and Marrow Transplantation, 2016, 22, 2126-2133.	2.0	7
597	Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 2016, 8, 959-970.	1.0	521
598	Chimeric antigen receptorâ€engineered cytokineâ€induced killer cells overcome treatment resistance of preâ€Bâ€cell acute lymphoblastic leukemia and enhance survival. International Journal of Cancer, 2016, 139, 1799-1809.	2.3	51
599	Therapies on the horizon for childhood acute lymphoblastic leukemia. Current Opinion in Pediatrics, 2016, 28, 12-18.	1.0	16

#	Article	IF	CITATIONS
600	Plasma IFN- \hat{I}^3 and IL-6 levels correlate with peripheral T-cell numbers but not toxicity in RCC patients treated with CAR T-cells. Clinical Immunology, 2016, 169, 107-113.	1.4	10
601	Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps., 2016, 166, 30-39.		102
602	CD19â€Targeted chimeric antigen receptorâ€modified Tâ€cell immunotherapy for Bâ€cell malignancies. Clinical Pharmacology and Therapeutics, 2016, 100, 252-258.	2.3	62
603	Preclinical validation: LV/IL-12 transduction of patient leukemia cells for immunotherapy of AML. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16074.	1.8	17
604	A New Agent in the Strategy to Cure AIDS. Molecular Therapy, 2016, 24, 1894-1896.	3.7	1
605	The Toughest Nut to Crack: Will We Ever Have a Preventive and Effective HIV-1 Vaccine?. Molecular Therapy, 2016, 24, 1896-1897.	3.7	O
606	Selective inhibition of autoimmune exacerbation while preserving the anti-tumor clinical benefit using IL-6 blockade in a patient with advanced melanoma and Crohn's disease: a case report. Journal of Hematology and Oncology, 2016, 9, 81.	6.9	62
607	Cancer immunotherapy trials: leading a paradigm shift in drug development. , 2016, 4, 42.		35
608	Biochemistry of Oxidative Stress. , 2016, , .		5
609	Safe engineering of <scp>CAR</scp> T cells for adoptive cell therapy of cancer using longâ€term episomal geneÂtransfer. EMBO Molecular Medicine, 2016, 8, 702-711.	3.3	56
610	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia., 2016, 4, 90.		17
611	All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia. Clinical and Translational Immunology, 2016, 5, e116.	1.7	47
612	T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncolmmunology, 2016, 5, e1249090.	2.1	16
613	Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2016, 2016, 567-572.	0.9	158
614	T-Cell Therapy Enabling Adenoviruses Coding for IL2 and TNF \hat{l}_{\pm} Induce Systemic Immunomodulation in Mice With Spontaneous Melanoma. Journal of Immunotherapy, 2016, 39, 343-354.	1.2	21
615	Role of immune cells in pancreatic cancer from bench to clinical application. Medicine (United States), 2016, 95, e5541.	0.4	118
616	Treatment of CD20-directed Chimeric Antigen Receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase lla trial report. Signal Transduction and Targeted Therapy, 2016, 1, 16002.	7.1	110
617	Le point sur les CAR T-cells. Revue D'Oncologie Hématologie Pédiatrique, 2016, 4, 202-209.	0.1	1

#	Article	IF	CITATIONS
618	Combining Cell and Gene Therapy in an Effort to Eradicate HIV. AIDS Patient Care and STDs, 2016, 30, 534-538.	1.1	5
619	mRNA Cancer Vaccines. Recent Results in Cancer Research, 2016, 209, 61-85.	1.8	61
620	De-Risking Immunotherapy: Report of a Consensus Workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunology Research, 2016, 4, 279-288.	1.6	29
621	GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Molecular Therapy, 2016, 24, 1135-1149.	3.7	281
622	Chimeric antigen receptor-modified T cells strike back. International Immunology, 2016, 28, 355-363.	1.8	20
623	An analytical biomarker for treatment of patients with recurrent B-ALL after remission induced by infusion of anti-CD19 chimeric antigen receptor T (CAR-T) cells. Science China Life Sciences, 2016, 59, 379-385.	2.3	14
624	GIFT4 fusokine converts leukemic B cells into immune helper cells. Journal of Translational Medicine, 2016, 14, 106.	1.8	9
625	Scientific Achievements May Not Reach Everyone: Understanding Disparities in Acute Leukemia. Current Hematologic Malignancy Reports, 2016, 11, 265-270.	1.2	4
626	Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy. Methods in Molecular Biology, 2016, 1441, 215-230.	0.4	6
627	Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discovery Today, 2016, 21, 1472-1478.	3.2	63
628	Adoptive transfer of T cells transduced with a chimeric antigen receptor to treat relapsed or refractory acute leukemia: efficacy and feasibility of immunotherapy approaches. Science China Life Sciences, 2016, 59, 673-677.	2.3	6
629	All-trans retinoic acid and interferon-α increase CD38 expression on adult T-cell leukemia cells and sensitize them to T cells bearing anti-CD38 chimeric antigen receptors. Blood Cancer Journal, 2016, 6, e421-e421.	2.8	21
630	Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Research, 2016, 76, 2540-2551.	0.4	25
631	The Role of the Immune System and Immunoregulatory Mechanisms Relevant to Melanoma. , 2016, , 31-65.		0
632	Toward a world of theranostic medication: Programming biological sentinel systems for therapeutic intervention. Advanced Drug Delivery Reviews, 2016, 105, 66-76.	6.6	30
633	Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy, 2016, 18, 893-901.	0.3	104
634	Translational Implications for Off-the-shelf Immune Cells Expressing Chimeric Antigen Receptors. Molecular Therapy, 2016, 24, 1178-1186.	3.7	59
635	The Role of Surgical Pathology in Guiding Cancer Immunotherapy. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 313-341.	9.6	15

#	Article	IF	Citations
636	Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. Journal of Immunological Methods, 2016, 434, 1-8.	0.6	150
637	Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy. Clinical Cancer Research, 2016, 22, 1559-1564.	3.2	28
638	Immunotherapy in Chronic Lymphocytic Leukaemia (CLL). Current Hematologic Malignancy Reports, 2016, 11, 29-36.	1.2	23
639	Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunology Research, 2016, 4, 541-551.	1.6	153
640	T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunology Research, 2016, 4, 498-508.	1.6	456
641	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	7.7	811
642	The role of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukemia. Therapeutic Advances in Hematology, 2016, 7, 142-156.	1.1	47
643	CAR-T Cell Therapies From the Transfusion Medicine Perspective. Transfusion Medicine Reviews, 2016, 30, 139-145.	0.9	53
644	BCP-ALL blasts are not dependent on CD19 expression for leukaemic maintenance. Leukemia, 2016, 30, 1920-1923.	3.3	17
645	Armed T cells with CAR for cancer immunotherapy. Science China Life Sciences, 2016, 59, 331-332.	2.3	0
646	Understanding dendritic cell immunotherapy in ovarian cancer. Expert Review of Anticancer Therapy, 2016, 16, 643-652.	1.1	6
647	Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Therapy, 2016, 23, 615-626.	2.3	30
648	Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 2016, 27, v69-v82.	0.6	268
649	Emerging nanotechnologies for cancer immunotherapy. Experimental Biology and Medicine, 2016, 241, 1116-1126.	1.1	26
650	Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunology, Immunotherapy, 2016, 65, 631-649.	2.0	44
651	Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Reviews, 2016, 30, 341-348.	2.8	105
652	Medical management of side effects related to CART cell therapy in hematologic malignancies. Expert Review of Hematology, 2016, 9, 511-513.	1.0	43
653	CAR T Cell Therapy in Acute Lymphoblastic Leukemia and Potential for Chronic Lymphocytic Leukemia. Current Treatment Options in Oncology, 2016, 17, 28.	1.3	60

#	Article	IF	CITATIONS
654	Novel Therapeutic Strategies in Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2016, 11, 253-264.	1.2	17
655	Superior Therapeutic Index in Lymphoma Therapy: CD30+ CD34+ Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack. Molecular Therapy, 2016, 24, 1423-1434.	3.7	62
656	Natural Killer Cells. Methods in Molecular Biology, 2016, , .	0.4	2
657	Enhanced ADCC and NK Cell Activation of an Anticarcinoma Bispecific Antibody by Genetic Insertion of a Modified IL-15 Cross-linker. Molecular Therapy, 2016, 24, 1312-1322.	3.7	78
658	Induction of WT1-specific human CD8+ T cells from human HSCs in HLA class I Tg NOD/SCID/IL2rgKO mice. Blood, 2016, 127, 722-734.	0.6	39
659	Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood, 2016, 127, 1410-1416.	0.6	295
660	Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	0.6	381
661	Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood, 2016, 127, 1666-1675.	0.6	207
662	Phase 1 studies of central memory–derived CD19 CAR T–cell therapy following autologous HSCT in patients with B-cell NHL. Blood, 2016, 127, 2980-2990.	0.6	264
663	A genome editing primer for the hematologist. Blood, 2016, 127, 2525-2535.	0.6	23
664	Toxicities of chimeric antigen receptor T cells: recognition and management. Blood, 2016, 127, 3321-3330.	0.6	1,019
665	Adoptive immunotherapy against ovarian cancer. Journal of Ovarian Research, 2016, 9, 30.	1.3	33
666	Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics. Current Opinion in Pharmacology, 2016, 30, 93-105.	1.7	25
667	Progress and opportunities for immune therapeutics in osteosarcoma. Immunotherapy, 2016, 8, 1233-1244.	1.0	54
668	Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy, 2016, 18, 1393-1409.	0.3	79
669	The growing world of CAR T cell trials: a systematic review. Cancer Immunology, Immunotherapy, 2016, 65, 1433-1450.	2.0	101
670	Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy, 2016, 18, 1382-1392.	0.3	8
671	Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochemical Society Transactions, 2016, 44, 371-376.	1.6	5

#	Article	IF	CITATIONS
672	Development of chimeric antigen receptors for multiple myeloma. Biochemical Society Transactions, 2016, 44, 397-405.	1.6	5
673	Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochemical Society Transactions, 2016, 44, 951-959.	1.6	115
674	Catch me if you can: Leukemia Escape after CD19-Directed T Cell Immunotherapies. Computational and Structural Biotechnology Journal, 2016, 14, 357-362.	1.9	229
675	Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell, 2016, 167, 419-432.e16.	13.5	485
676	Rapid identification of cytokine release syndrome after haploidentical PBSC transplantation and successful therapy with tocilizumab. Bone Marrow Transplantation, 2016, 51, 1620-1621.	1.3	17
677	From Adoptive Immunity to CAR Therapy: An Evolutionary Perspective. , 2016, , 560-568.		1
678	Interleukin 12: Antitumor Activity and Immunotherapeutic Potential in Oncology. Springer Briefs in Immunology, 2016, , .	0.1	0
679	Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2016, 34, 4381-4389.	0.8	478
680	Novel therapeutic options in Acute Myeloid Leukemia. Leukemia Research Reports, 2016, 6, 39-49.	0.2	30
681	Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacological Reviews, 2016, 68, 1014-1025.	7.1	36
682	Chimeric Antigen Receptor T Cell Therapy Targeting CD19-Positive Leukemia and Lymphoma in the Context of Stem Cell Transplantation. Human Gene Therapy, 2016, 27, 758-771.	1.4	34
684	Past, present and forecast of transfusion medicine: What has changed and what is expected to change?. Presse Medicale, 2016, 45, e253-e272.	0.8	2
685	Treatment of Childhood Acute Lymphoblastic Leukemia: Prognostic Factors and Clinical Advances. Current Hematologic Malignancy Reports, 2016, 11, 385-394.	1.2	74
686	Inflammation and Metastasis., 2016,,.		4
687	<scp>CD</scp> 19â€ <scp>CAR</scp> engineered <scp>NK</scp> â€92 cells are sufficient to overcome <scp>NK</scp> cell resistance in Bâ€cell malignancies. Journal of Cellular and Molecular Medicine, 2016, 20, 1287-1294.	1.6	192
688	The immune system and cancer evasion strategies: therapeutic concepts. Journal of Internal Medicine, 2016, 279, 541-562.	2.7	212
689	<scp>CAR</scp> <scp>T</scp> â€ells merge into the fast lane of cancer care. American Journal of Hematology, 2016, 91, 146-150.	2.0	36
690	Deciphering CD137 (4â€1BB) signaling in Tâ€cell costimulation for translation into successful cancer immunotherapy. European Journal of Immunology, 2016, 46, 513-522.	1.6	104

#	Article	IF	CITATIONS
691	Current status of chimeric antigen receptor therapy for haematological malignancies. British Journal of Haematology, 2016, 172, 11-22.	1.2	70
692	Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Current Hematologic Malignancy Reports, 2016, 11, 368-384.	1.2	60
693	Seven great achievements in pediatric research in the past 40 y. Pediatric Research, 2016, 80, 330-337.	1.1	19
694	Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer Journal, 2016, 6, e458-e458.	2.8	181
696	Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L ⁺ T Cells for Manufacturing of Gene Therapy Medicinal Products. Human Gene Therapy, 2016, 27, 860-869.	1.4	47
697	Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes. Methods in Molecular Biology, 2016, 1458, 137-157.	0.4	8
698	Mouse models for pre-clinical drug testing in leukemia. Expert Opinion on Drug Discovery, 2016, 11, 1081-1091.	2.5	6
699	Cytokine Release Syndrome after Haploidentical Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 1736-1737.	2.0	19
700	Chimeric Antigen Receptor T Cells Guided by the Single-Chain Fv of a Broadly Neutralizing Antibody Specifically and Effectively Eradicate Virus Reactivated from Latency in CD4 ⁺ T Lymphocytes Isolated from HIV-1-Infected Individuals Receiving Suppressive Combined Antiretroviral Therapy. Journal of Virology, 2016, 90, 9712-9724.	1.5	83
701	Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 2016, 16, 566-581.	12.8	876
702	Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer Immunology Research, 2016, 4, 869-880.	1.6	258
703	Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Practice and Research in Clinical Haematology, 2016, 29, 15-29.	0.7	5
704	Tools and applications in synthetic biology. Advanced Drug Delivery Reviews, 2016, 105, 20-34.	6.6	46
705	Cancer Immunotherapy byÂCheckpoint Blockade. , 2016, , 561-580.		2
706	Adoptive Cellular Therapy With Synthetic T Cells as an "Instant Vaccine―for Cancer and Immunity. , 2016, , 581-596.		2
707	Improving the safety of T-Cell therapies using an inducible caspase-9 gene. Experimental Hematology, 2016, 44, 1013-1019.	0.2	50
708	The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. British Journal of Pharmacology, 2016, 173, 3041-3079.	2.7	71
709	Promising Novel Agents for Aggressive B-Cell Lymphoma. Hematology/Oncology Clinics of North America, 2016, 30, 1229-1237.	0.9	9

#	Article	IF	Citations
710	High-content molecular profiling of T-cell therapy in oncology. Molecular Therapy - Oncolytics, 2016, 3, 16009.	2.0	6
711	Dynamic imaging for CAR-T-cell therapy. Biochemical Society Transactions, 2016, 44, 386-390.	1.6	11
712	Targeting the tumour profile using broad spectrum chimaeric antigen receptor T-cells. Biochemical Society Transactions, 2016, 44, 391-396.	1.6	12
713	GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncolmmunology, 2016, 5, e1227897.	2.1	59
714	Immunotherapy and Novel Combinations in Oncology: Current Landscape, Challenges, and Opportunities. Clinical and Translational Science, 2016, 9, 89-104.	1.5	144
715	Cellular immunotherapy for malignant gliomas. Expert Opinion on Biological Therapy, 2016, 16, 1265-1275.	1.4	37
716	Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. Journal of Hematology and Oncology, 2016, 9, 56.	6.9	97
717	Feasibility and Safety of RNA-transfected CD20-specific Chimeric Antigen Receptor T Cells in Dogs with Spontaneous B Cell Lymphoma. Molecular Therapy, 2016, 24, 1602-1614.	3.7	101
718	Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy. Molecular Therapy, 2016, 24, 1987-1999.	3.7	38
719	At The Bedside: Clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. Journal of Leukocyte Biology, 2016, 100, 1265-1272.	1.5	40
720	In-silico discovery of cancer-specific peptide-HLA complexes for targeted therapy. BMC Bioinformatics, 2016, 17, 286.	1.2	15
721	Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells, Molecules, and Diseases, 2016, 62, 49-63.	0.6	34
722	Mechanisms of Acute Toxicity in NKG2D Chimeric Antigen Receptor T Cell–Treated Mice. Journal of Immunology, 2016, 197, 4674-4685.	0.4	50
725	Design of chimeric antigen receptors with integrated controllable transient functions. Scientific Reports, 2016, 6, 18950.	1.6	70
726	Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Therapy, 2016, 23, 373-381.	2.2	33
727	Clinical manufacturing of CAR T cells: foundation of a promising therapy. Molecular Therapy - Oncolytics, 2016, 3, 16015.	2.0	460
728	Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview. Cancer Research, 2016, 76, 6445-6451.	0.4	161
729	Chimeric antigen receptor T cell therapy in AML: How close are we?. Best Practice and Research in Clinical Haematology, 2016, 29, 329-333.	0.7	22

#	ARTICLE	IF	CITATIONS
730	Emerging role of immunotherapy in urothelial carcinomaâ€"Future directions and novel therapies. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 566-576.	0.8	7
731	Single agent blinatumumab as frontline therapy for an 85-year-old patient with B cell precursor acute lymphoblastic leukemia. Annals of Hematology, 2016, 95, 1895-1898.	0.8	2
732	Toxicity and management in CAR T-cell therapy. Molecular Therapy - Oncolytics, 2016, 3, 16011.	2.0	686
733	Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome. Oncolmmunology, 2016, 5, e1211218.	2.1	36
734	CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncolmmunology, 2016, 5, e1251539.	2.1	51
735	Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16034.	1.8	183
736	Clinical Trials with IL-12 in Cancer Immunotherapy. SpringerBriefs in Immunology, 2016, , 43-75.	0.1	1
737	Adult Acute Lymphoblastic Leukemia. Mayo Clinic Proceedings, 2016, 91, 1645-1666.	1.4	158
738	Cell and gene therapy strategies to eradicate HIV reservoirs. Current Opinion in HIV and AIDS, 2016, 11, 442-449.	1.5	21
740	Stereotactic Ablative Radiation Therapy Combined With Immunotherapy for Solid Tumors. Cancer Journal (Sudbury, Mass), 2016, 22, 257-266.	1.0	38
741	Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angewandte Chemie - International Edition, 2016, 55, 7520-7524.	7.2	92
742	Paediatric nonâ€Hodgkin lymphoma ―perspectives in translational biology. British Journal of Haematology, 2016, 173, 617-624.	1.2	9
743	Progress in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2016, , .	0.8	6
744	Harnessing the immune system in acute myeloid leukaemia. Critical Reviews in Oncology/Hematology, 2016, 103, 62-77.	2.0	90
745	Preserved Activity of CD20-Specific Chimeric Antigen Receptor–Expressing T Cells in the Presence of Rituximab. Cancer Immunology Research, 2016, 4, 509-519.	1.6	27
746	Biology and clinical application of CART cells for B cell malignancies. International Journal of Hematology, 2016, 104, 6-17.	0.7	68
747	Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity, 2016, 44, 1444-1454.	6.6	458
748	Clinical trials of CD19-targeted CAR-modified T cell therapy; a complex and varied landscape. Expert Review of Hematology, 2016, 9, 719-721.	1.0	21

#	Article	IF	Citations
750	A Tet-On Inducible System for Controlling CD19-Chimeric Antigen Receptor Expression upon Drug Administration. Cancer Immunology Research, 2016, 4, 658-668.	1.6	135
751	Immuno-pharmacodynamics for evaluating mechanism of action and developing immunotherapy combinations. Seminars in Oncology, 2016, 43, 501-513.	0.8	10
752	Forecasting Cytokine Storms with New Predictive Biomarkers. Cancer Discovery, 2016, 6, 579-580.	7.7	10
753	Prospects of chimeric antigen receptor T-cell and natural killer cell therapies in acute leukemias. Future Oncology, 2016, 12, 2179-2182.	1.1	1
754	Landscape of tumor-infiltrating T cell repertoire of human cancers. Nature Genetics, 2016, 48, 725-732.	9.4	288
755	The best of both worlds: reaping the benefits from mammalian and bacterial therapeutic circuits. Current Opinion in Chemical Biology, 2016, 34, 11-19.	2.8	12
756	Integration of Chinese Herbal Medicine Therapy Improves Survival of Patients With Chronic Lymphocytic Leukemia. Medicine (United States), 2016, 95, e3788.	0.4	16
758	Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies. Expert Opinion on Biological Therapy, 2016, 16, 1113-1123.	1.4	9
759	Adoptive Cellular Therapy (ACT) for Cancer Treatment. Advances in Experimental Medicine and Biology, 2016, 909, 169-239.	0.8	14
760	Chimeric antigen receptor-engineered T cells in CLL: the next chapter unfolds. , 2016, 4, 5.		7
761	Toll-like receptor agonist therapy can profoundly augment the antitumor activity of adoptively transferred CD8+ T cells without host preconditioning., 2016, 4, 6.		23
762	Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. , 2016, 4, 15.		67
763	Success and Failures of Combined Modalities in Glioblastoma Multiforme: Old Problems and New Directions. Seminars in Radiation Oncology, 2016, 26, 281-298.	1.0	23
764	Cellular Therapies: Gene Editing and Next-Gen CAR T Cells. , 2016, , 203-247.		1
765	Severe Cytokine-Release Syndrome after T Cell–Replete Peripheral Blood Haploidentical Donor Transplantation Is Associated with Poor Survival and Anti–IL-6 Therapy Is Safe and Well Tolerated. Biology of Blood and Marrow Transplantation, 2016, 22, 1851-1860.	2.0	135
766	Minimal residual disease assessed by multiâ€parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. British Journal of Haematology, 2016, 172, 392-400.	1.2	102
767	CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. Journal of Cellular Immunotherapy, 2016, 2, 28-35.	0.6	135
768	Progress and problems with the use of suicide genes for targeted cancer therapy. Advanced Drug Delivery Reviews, 2016, 99, 113-128.	6.6	141

#	Article	IF	CITATIONS
769	Novel technologies and emerging biomarkers for personalized cancer immunotherapy., 2016, 4, 3.		183
770	Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell, 2016, 164, 770-779.	13.5	737
771	Coexpressed Catalase Protects Chimeric Antigen Receptorâ€"Redirected T Cells as well as Bystander Cells from Oxidative Stressâ€"Induced Loss of Antitumor Activity. Journal of Immunology, 2016, 196, 759-766.	0.4	164
772	Targeted therapies for CLL: Practical issues with the changing treatment paradigm. Blood Reviews, 2016, 30, 233-244.	2.8	63
773	Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell, 2016, 164, 780-791.	13.5	679
774	Chimeric antigen receptor T cell treatment in hematologic malignancies. Transfusion and Apheresis Science, 2016, 54, 35-40.	0.5	3
775	Versatile strategy for controlling the specificity and activity of engineered T cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E450-8.	3.3	226
776	Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E459-68.	3.3	321
777	T Cell Fate at the Single-Cell Level. Annual Review of Immunology, 2016, 34, 65-92.	9.5	131
778	Novel immunotherapeutic approaches for the treatment of acute leukemia (myeloid and) Tj ETQq1 1 0.784314 r	gBT/Over	lock 10 Tf 50
779	ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. Journal of the National Cancer Institute, 2016, 108, .	3.0	282
780	Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity, 2016, 44, 698-711.	6.6	814
781	A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Research, 2016, 76, 1578-1590.	0.4	411
782	Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy, 2016, 8, 449-460.	1.0	67
783	Antigen Selection for Enhanced Affinity T-Cell Receptor–Based Cancer Therapies. Journal of Biomolecular Screening, 2016, 21, 769-785.	2.6	12
784	Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Science China Life Sciences, 2016, 59, 468-479.	2.3	222
785	Leveraging immunotherapy for the treatment of gynecologic cancers in the era of precision medicine. Gynecologic Oncology, 2016, 141, 86-94.	0.6	26
786	Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncolmmunology, 2016, 5, e1138199.	2.1	6

#	Article	IF	CITATIONS
787	Adoptive therapy with CAR redirected T cells for hematological malignancies. Science China Life Sciences, 2016, 59, 370-378.	2.3	7
788	The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing. Cellular Immunology, 2016, 304-305, 49-54.	1.4	28
789	Driving CAR T-cells forward. Nature Reviews Clinical Oncology, 2016, 13, 370-383.	12.5	492
790	Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity, 2016, 44, 380-390.	6.6	811
791	Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study. Journal of Clinical Oncology, 2016, 34, 1104-1111.	0.8	359
792	Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too?. Expert Opinion on Biological Therapy, 2016, 16, 655-674.	1.4	21
793	Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells. Seminars in Oncology, 2016, 43, 291-299.	0.8	13
794	Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. Journal of the National Cancer Institute, 2016, 108, .	3.0	212
795	Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics. Archives of Pharmacal Research, 2016, 39, 437-452.	2.7	22
796	Proteogenomic-based discovery of minor histocompatibility antigens with suitable features for immunotherapy of hematologic cancers. Leukemia, 2016, 30, 1344-1354.	3.3	75
797	Tumor Immunology. , 2016, , 329-339.		1
798	Reprint of: Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biology of Blood and Marrow Transplantation, 2016, 22, S9-S14.	2.0	O
799	High-affinity $FR\hat{1}^2$ -specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. Leukemia, 2016, 30, 1355-1364.	3.3	98
800	Quantification of Acute Lymphoblastic Leukemia Clonotypes in Leukapheresed Peripheral Blood Progenitor Cells Predicts Relapse Risk after Autologous Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 1030-1036.	2.0	11
801	The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 2016, 13, 273-290.	12.5	909
802	αβ-T Cells. , 2016, , 63-73.		O
803	NKT Cell-Based Immunotherapy. , 2016, , 75-86.		0
804	T cells targeting NY-ESO-1 demonstrate efficacy against disseminated neuroblastoma. Oncolmmunology, 2016, 5, e1040216.	2.1	37

#	Article	IF	CITATIONS
805	Individualized conditioning regimes in cord blood transplantation: Towards improved and predictable safety and efficacy. Expert Opinion on Biological Therapy, 2016, 16, 801-813.	1.4	12
806	Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Science China Life Sciences, 2016, 59, 386-397.	2.3	117
807	Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Current Opinion in Immunology, 2016, 40, 24-35.	2.4	70
808	Establishing guidelines for CAR-T cells: challenges and considerations. Science China Life Sciences, 2016, 59, 333-339.	2.3	6
809	Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Science China Life Sciences, 2016, 59, 340-348.	2.3	70
810	Improvement of overall survival after allogeneic hematopoietic stem cell transplantation for children and adolescents: a three-decade experience of a single institution. Bone Marrow Transplantation, 2016, 51, 267-272.	1.3	33
811	Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors. Trends in Pharmacological Sciences, 2016, 37, 220-230.	4.0	188
812	From noise to synthetic nucleoli: can synthetic biology achieve new insights?. Integrative Biology (United Kingdom), 2016, 8, 383-393.	0.6	4
813	T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G–opsonized target cells. Cytotherapy, 2016, 18, 278-290.	0.3	44
814	Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature Medicine, 2016, 22, 26-36.	15.2	296
815	Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Science Translational Medicine, 2016, 8, 320ra3.	5.8	224
816	Serial Activation of the Inducible Caspase 9 Safety Switch After Human Stem Cell Transplantation. Molecular Therapy, 2016, 24, 823-831.	3.7	30
817	Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. Nanoscale, 2016, 8, 3181-3206.	2.8	40
818	Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy. Annual Review of Pharmacology and Toxicology, 2016, 56, 59-83.	4.2	120
819	Stem cell transplantation in multiple myeloma and other plasma cell disorders (report from an EBMT) Tj ETQq0 0	0 ggBT /O	verlock 10 Ti
820	Chimeric antigen receptor T cell therapy: 25years in the making. Blood Reviews, 2016, 30, 157-167.	2.8	191
821	Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in Immunology, 2016, 28, 64-72.	2.7	52
822	Beginning of a novel frontier: T-cell-directed immune manipulation in lymphomas. Expert Review of Hematology, 2016, 9, 123-135.	1.0	2

#	Article	IF	CITATIONS
823	Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016, 13, 143-158.	12.5	753
824	Progress and challenges in viral vector manufacturing. Human Molecular Genetics, 2016, 25, R42-R52.	1.4	165
825	Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia, 2016, 30, 701-707.	3.3	85
826	Novel immunotherapies in lymphoid malignancies. Nature Reviews Clinical Oncology, 2016, 13, 25-40.	12.5	224
827	Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discovery, 2016, 6, 133-146.	7.7	359
828	Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biology of Blood and Marrow Transplantation, 2016, 22, 17-22.	2.0	16
829	Immunotherapy and tumor microenvironment. Cancer Letters, 2016, 370, 85-90.	3.2	242
830	Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia, 2016, 30, 492-500.	3.3	658
831	Synthetic Biologyâ€"Toward Therapeutic Solutions. Journal of Molecular Biology, 2016, 428, 945-962.	2.0	27
832	Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells. Immunopharmacology and Immunotoxicology, 2016, 38, 50-60.	1.1	8
833	Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Human Molecular Genetics, 2016, 25, R9-R17.	1.4	62
834	<i>In Situ</i> immunization by bispecific antibody targeted T cell therapy in breast cancer. Oncolmmunology, 2016, 5, e1055061.	2.1	9
835	Comparison of naÃ-ve and central memory derived CD8 ⁺ effector cell engraftment fitness and function following adoptive transfer. Oncolmmunology, 2016, 5, e1072671.	2.1	25
836	CAR-T Cell Therapy for Lymphoma. Annual Review of Medicine, 2016, 67, 165-183.	5.0	123
837	Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry Part B - Clinical Cytometry, 2016, 90, 47-53.	0.7	118
838	Natural killer cell adoptive immunotherapy: Coming of age. Clinical Immunology, 2017, 177, 3-11.	1.4	40
839	Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility. Clinical Cancer Research, 2017, 23, 466-477.	3.2	81
840	Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Science Translational Medicine, 2017, 9, .	5.8	263

#	Article	IF	CITATIONS
841	Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Molecular Therapy, 2017, 25, 249-258.	3.7	217
842	Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies. Drugs, 2017, 77, 237-245.	4.9	112
843	Masked Chimeric Antigen Receptor for Tumor-Specific Activation. Molecular Therapy, 2017, 25, 274-284.	3.7	77
844	Enhancement of PSMA-Directed CAR Adoptive Immunotherapy by PD-1/PD-L1 Blockade. Molecular Therapy - Oncolytics, 2017, 4, 41-54.	2.0	74
845	A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. Journal of Hematology and Oncology, 2017, 10, 1.	6.9	216
846	T memory stem cells in health and disease. Nature Medicine, 2017, 23, 18-27.	15.2	396
847	Chimaeric antigen receptor T-cell therapy for tumour immunotherapy. Bioscience Reports, 2017, 37, .	1.1	13
848	Timing and Utility of Relapse Surveillance after Allogeneic Hematopoietic Cell Transplantation in Children with Leukemia. Biology of Blood and Marrow Transplantation, 2017, 23, 696-700.	2.0	3
849	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	15.2	179
850	Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 740-745.	3.3	25
852	Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. Journal of Hematology and Oncology, 2017, 10, 35.	6.9	88
853	Identification of inhibitors of myeloid-derived suppressor cells activity through phenotypic chemical screening. Oncolmmunology, 2017, 6, e1258503.	2.1	12
854	Chimeric Antigen Receptor T Cells in Hematologic Malignancies. Pharmacotherapy, 2017, 37, 334-345.	1.2	52
855	Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. Journal of Hematology and Oncology, 2017, 10, 4.	6.9	160
856	TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood, 2017, 129, 1284-1295.	0.6	44
857	The combination of bortezomib with chemotherapy to treatÂrelapsed/refractory acute lymphoblastic leukaemia of childhood. British Journal of Haematology, 2017, 176, 629-636.	1.2	56
858	Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine, 2017, 9 , .	5.8	707
859	Vaccination to improve the persistence of CD19CAR gene-modified T cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia, 2017, 31, 1087-1095.	3.3	64

#	Article	IF	CITATIONS
860	CD19, from bench to bedside. Immunology Letters, 2017, 183, 86-95.	1.1	58
861	Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era. Arthritis and Rheumatology, 2017, 69, 1135-1143.	2.9	250
862	The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy. Molecular Therapy, 2017, 25, 314-320.	3.7	37
863	Immune Checkpoint Blockade Biology in Mouse Models of Glioblastoma. Journal of Cellular Biochemistry, 2017, 118, 2516-2527.	1.2	15
864	Targeting neoantigens to augment antitumour immunity. Nature Reviews Cancer, 2017, 17, 209-222.	12.8	724
865	T cell immunoengineering with advanced biomaterials. Integrative Biology (United Kingdom), 2017, 9, 211-222.	0.6	25
866	Early mixed chimerismâ€based preemptive immunotherapy in children undergoing allogeneic hematopoietic stem cell transplantation for acute leukemia. Pediatric Blood and Cancer, 2017, 64, e26464.	0.8	8
867	Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia, 2017, 31, 2191-2199.	3.3	166
868	The basics of CAR T design and challenges in immunotherapy of solid tumors â€" Ovarian cancer as a model. Human Vaccines and Immunotherapeutics, 2017, 13, 1548-1555.	1.4	12
869	T Cell–Associated Immunotherapy for Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 2017, 41, 609-622.	1.1	31
870	The role of radiation in treating glioblastoma: here to stay. Journal of Neuro-Oncology, 2017, 134, 479-485.	1.4	26
871	CARs in the Lead Against Multiple Myeloma. Current Hematologic Malignancy Reports, 2017, 12, 119-125.	1.2	34
872	Combination immunotherapy: a road map., 2017, 5, 16.		325
873	Autologous lymphapheresis for the production of chimeric antigen receptor TÂcells. Transfusion, 2017, 57, 1133-1141.	0.8	110
874	An oxygen sensitive self-decision making engineered CAR T-cell. Scientific Reports, 2017, 7, 39833.	1.6	159
875	Guanylate cyclase C as a target for prevention, detection, and therapy in colorectal cancer. Expert Review of Clinical Pharmacology, 2017, 10, 549-557.	1.3	28
876	The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Seminars in Cancer Biology, 2017, 45, 23-35.	4.3	32
877	The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Review of Clinical Immunology, 2017, 13, 535-551.	1.3	166

#	ARTICLE	IF	CITATIONS
878	Cardiovascular Complications Associated With Novel Cancer Immunotherapies. Current Treatment Options in Cardiovascular Medicine, 2017, 19, 36.	0.4	75
879	CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond. Trends in Molecular Medicine, 2017, 23, 430-450.	3.5	89
882	Regulatory T cells: tolerance induction in solid organ transplantation. Clinical and Experimental Immunology, 2017, 189, 197-210.	1.1	56
883	Childhood Acute Lymphoblastic Leukemia. , 2017, , .		2
884	Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein and Cell, 2017, 8, 573-589.	4.8	67
885	Human Effector Memory T Helper Cells Engage with Mouse Macrophages and Cause Graft-versus-Host–Like Pathology in Skin of Humanized Mice Used in a Nonclinical Immunization Study. American Journal of Pathology, 2017, 187, 1380-1398.	1.9	23
886	Innovative strategies for adverse karyotype acute myeloid leukemia. Current Opinion in Hematology, 2017, 24, 89-98.	1.2	2
887	Impact of senescenceâ€associated secretory phenotype and its potential as a therapeutic target for senescenceâ€associated diseases. Cancer Science, 2017, 108, 563-569.	1.7	236
888	In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Advanced Drug Delivery Reviews, 2017, 114, 240-255.	6.6	95
889	Immunotherapy of hepatocellular carcinoma using chimeric antigen receptors and bispecific antibodies. Cancer Letters, 2017, 399, 44-52.	3.2	44
890	Metabolic reprograming of anti-tumor immunity. Current Opinion in Immunology, 2017, 46, 14-22.	2.4	85
891	In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nature Nanotechnology, 2017, 12, 813-820.	15.6	504
892	Antigen Discovery and Therapeutic Targeting in Hematologic Malignancies. Cancer Journal (Sudbury,) Tj ETQq0 0	OrgBT/O	verlock 10 Tf
893	Targeting FLT3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia, 2017, 31, 1830-1834.	3.3	43
894	Immunotherapy is different: Implications for vaccine clinical trial design. Human Vaccines and Immunotherapeutics, 2017, 13, 2179-2184.	1.4	1
895	CAR T-cell therapy: Balance of efficacy and safety. Molecular Biology, 2017, 51, 237-250.	0.4	4
896	Monocyte lineage–derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy, 2017, 19, 867-880.	0.3	116
897	A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Molecular Therapy, 2017, 25, 1946-1958.	3.7	197

#	Article	IF	CITATIONS
898	Immunotherapy in hematologic malignancies: past, present, and future. Journal of Hematology and Oncology, 2017, 10, 94.	6.9	76
899	The swinging pendulum of cancer immunotherapy personalization. Personalized Medicine, 2017, 14, 259-270.	0.8	3
900	Minimal Residual Disease (MRD) Diagnostics: Methodology and Prognostic Significance. , 2017, , 139-162.		0
901	Current status of chimeric antigen receptor engineered T cell-based and immune checkpoint blockade-based cancer immunotherapies. Cancer Immunology, Immunotherapy, 2017, 66, 1113-1121.	2.0	29
902	Sunitinib Induces NK-κB-dependent NKG2D Ligand Expression in Nasopharyngeal Carcinoma and Hepatoma Cells. Journal of Immunotherapy, 2017, 40, 164-174.	1.2	16
903	Modular lentiviral vector system for chimeric antigen receptor design optimization. Russian Journal of Bioorganic Chemistry, 2017, 43, 107-114.	0.3	4
904	Clinical methods of cryopreservation for donor lymphocyte infusions vary in their ability to preserve functional Tâ€cell subpopulations. Transfusion, 2017, 57, 1555-1565.	0.8	28
905	Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein and Cell, 2017, 8, 896-925.	4.8	59
906	CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. Journal of Immunotherapy, 2017, 40, 187-195.	1.2	172
907	Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities. Annual Review of Immunology, 2017, 35, 229-253.	9.5	96
908	Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia?. Molecular Diagnosis and Therapy, 2017, 21, 481-492.	1.6	41
909	Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective. Molecular Therapy, 2017, 25, 1117-1124.	3.7	79
910	Ipilimumab-induced Guillain-Barr $ ilde{A}$ © Syndrome Presenting as Dysautonomia: An Unusual Presentation of a Rare Complication of Immunotherapy. Journal of Immunotherapy, 2017, 40, 196-199.	1.2	22
911	Gene Targeting Meets Cell-Based Therapy: Raising the Tail, or Merely a Whimper?. Clinical Cancer Research, 2017, 23, 327-329.	3.2	1
912	Toll-Like Receptor Agonists: Can They Exact a Toll on Human Immunodeficiency Virus Persistence?. Clinical Infectious Diseases, 2017, 64, 1696-1698.	2.9	4
913	Future directions in chimeric antigen receptor T cell therapy. Current Opinion in Pediatrics, 2017, 29, 27-33.	1.0	16
914	CD8 T Cells. , 2017, , 131-142.		0
915	Imaging Studies in Immunotherapy. , 2017, , 149-179.		1

#	Article	IF	CITATIONS
916	An ROR1 bi-specific T-cell engager provides effective targeting and cytotoxicity against a range of solid tumors. Oncolmmunology, 2017, 6, e1326437.	2.1	31
917	A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines., 2017, 5, 42.		196
918	Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 471-478.	0.2	34
919	Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model. Oncolmmunology, 2017, 6, e1342909.	2.1	22
920	Development of novel antigen receptors for CAR T-cell therapy directed toward solid malignancies. Translational Research, 2017, 187, 11-21.	2.2	21
921	Evolving adoptive cellular therapies in urological malignancies. Lancet Oncology, The, 2017, 18, e341-e353.	5.1	22
922	3D printed lattices as an activation and expansion platform for T cell therapy. Biomaterials, 2017, 140, 58-68.	5.7	32
923	Practical considerations for chimeric antigen receptor design and delivery. Expert Opinion on Biological Therapy, 2017, 17, 961-978.	1.4	10
924	Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective. Advances in Biochemical Engineering/Biotechnology, 2017, 165, 323-350.	0.6	13
925	Recent omics technologies and their emerging applications for personalised medicine. IET Systems Biology, 2017, 11, 87-98.	0.8	13
926	Clinical development of antiâ€ <scp>CD</scp> 19 chimeric antigen receptor Tâ€cell therapy for Bâ€cell nonâ€Hodgkin lymphoma. Cancer Science, 2017, 108, 1109-1118.	1.7	91
927	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Advanced Materials, 2017, 29, 1606036.	11.1	220
928	Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody–Activated Chimeric Antigen Receptor–Modified T Cells. Journal of Immunology, 2017, 199, 348-362.	0.4	41
929	Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Experimental Hematology and Oncology, 2017, 6, 10.	2.0	64
930	Taming the immune system through transfusion in oncology patients. Transfusion and Apheresis Science, 2017, 56, 310-316.	0.5	5
931	Hemophilia A inhibitor treatment: the promise of engineered T-cell therapy. Translational Research, 2017, 187, 44-52.	2.2	16
932	Novel therapy for childhood acute lymphoblastic leukemia. Expert Opinion on Pharmacotherapy, 2017, 18, 1081-1099.	0.9	24
933	Promising immunotherapies for esophageal cancer. Expert Opinion on Biological Therapy, 2017, 17, 723-733.	1.4	25

#	Article	IF	Citations
934	Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML. Advances in Experimental Medicine and Biology, 2017, 995, 73-95.	0.8	31
935	Development of CART cells designed to improve antitumor efficacy and safety. , 2017, 178, 83-91.		90
936	How do i participate in Tâ€eell immunotherapy?. Transfusion, 2017, 57, 1115-1121.	0.8	3
937	Antibody-Based Cancer Therapy. International Review of Cell and Molecular Biology, 2017, 331, 289-383.	1.6	41
938	Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Critical Care Medicine, 2017, 45, e124-e131.	0.4	357
939	CAR Tâ€cell therapy for pancreatic cancer. Journal of Surgical Oncology, 2017, 116, 63-74.	0.8	69
940	Modification of cytokine-induced killer cells with folate receptor alpha (FRα)-specific chimeric antigen receptors enhances their antitumor immunity toward FRα-positive ovarian cancers. Molecular Immunology, 2017, 85, 293-304.	1.0	25
941	Cancer Immunotherapy: Whence and Whither. Molecular Cancer Research, 2017, 15, 635-650.	1.5	30
942	Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells. Molecular Therapy - Methods and Clinical Development, 2017, 4, 192-203.	1.8	53
943	Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA+ Metastatic Colorectal Cancers. Molecular Therapy, 2017, 25, 1248-1258.	3.7	305
944	The role of anti-PD-1 and anti-PD-L1 agents in the treatment of diffuse large B-cell lymphoma: The future is now. Critical Reviews in Oncology/Hematology, 2017, 113, 52-62.	2.0	22
945	Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells. Journal of Translational Medicine, 2017, 15, 59.	1.8	61
947	Chimeric Antigen Receptors: A Paradigm Shift in Immunotherapy. Annual Review of Cancer Biology, 2017, 1, 447-466.	2.3	28
948	Murine Th17 cells utilize IL-2 receptor gamma chain cytokines but are resistant to cytokine withdrawal-induced apoptosis. Cancer Immunology, Immunotherapy, 2017, 66, 737-751.	2.0	7
950	Prevention of Allograft Rejection by Use of Regulatory T Cells With an MHC-Specific Chimeric Antigen Receptor. American Journal of Transplantation, 2017, 17, 917-930.	2.6	217
951	Immuno-Oncology: The Third Paradigm in Early Drug Development. Targeted Oncology, 2017, 12, 125-138.	1.7	22
952	Driving gene-engineered T cell immunotherapy of cancer. Cell Research, 2017, 27, 38-58.	5.7	232
953	Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Research, 2017, 27, 11-37.	5.7	185

#	Article	IF	CITATIONS
954	Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. American Journal of Transplantation, 2017, 17, 931-943.	2.6	244
955	Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors. Leukemia, 2017, 31, 777-787.	3.3	61
956	Potent Anti-leukemia Activities of Chimeric Antigen Receptor–Modified T Cells against CD19 in Chinese Patients with Relapsed/Refractory Acute Lymphocytic Leukemia. Clinical Cancer Research, 2017, 23, 3297-3306.	3.2	106
957	Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease. Gerontology, 2017, 63, 103-117.	1.4	11
958	Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 305-330.	9.6	54
959	Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies. Human Gene Therapy, 2017, 28, 231-241.	1.4	19
960	The promise of chimeric antigen receptor T cells (<scp>CART</scp> s) in leukaemia. British Journal of Haematology, 2017, 177, 13-26.	1.2	17
961	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	3.2	95
962	Clinical trials of CAR-T cells in China. Journal of Hematology and Oncology, 2017, 10, 166.	6.9	62
963	Anti-CD 19 and anti-CD 20 CAR-modified T cells for B-cell malignancies: a systematic review and meta-analysis. Immunotherapy, 2017, 9, 979-993.	1.0	21
964	Cytokine release syndrome: Who is at risk and how to treat. Best Practice and Research in Clinical Haematology, 2017, 30, 336-340.	0.7	84
965	Donorâ€derived <scp>CD</scp> 19â€targeted T cell infusion induces minimal residual diseaseâ€negative remission in relapsed Bâ€cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. British Journal of Haematology, 2017, 179, 598-605.	1.2	87
966	Gene Therapy with the Sleeping Beauty Transposon System. Trends in Genetics, 2017, 33, 852-870.	2.9	92
967	"MOR―engineering of antibodies in ALL. Blood, 2017, 130, 1487-1488.	0.6	5
968	Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Scientific Reports, 2017, 7, 14366.	1.6	115
969	Specific Adoptive Cellular Immunotherapy in Allogeneic Stem Cell Transplantation. Oncology Research and Treatment, 2017, 40, 691-696.	0.8	5
970	Gene editing in T cell therapy. Journal of Genetics and Genomics, 2017, 44, 415-422.	1.7	15
971	Acute lymphoblastic leukemia relapse after CD19-targeted chimeric antigen receptor T cell therapy. Journal of Leukocyte Biology, 2017, 102, 1347-1356.	1.5	40

#	Article	IF	CITATIONS
972	Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective mechanisms. Cellular Immunology, 2017, 322, 1-14.	1.4	114
973	Specifically differentiated T cell subset promotes tumor immunity over fatal immunity. Journal of Experimental Medicine, 2017, 214, 3577-3596.	4.2	42
974	Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Current Research in Translational Medicine, 2017, 65, 93-102.	1.2	85
975	CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia. Immunotherapy, 2017, 9, 1115-1125.	1.0	31
976	Coccidioidomycosis, immunoglobulin deficiency: safety challenges with CAR T cells therapy for relapsed lymphoma. Immunotherapy, 2017, 9, 1061-1066.	1.0	9
977	Redirecting T cells with Chimeric Antigen Receptor (CAR) for the treatment of childhood acute lymphoblastic leukemia. Journal of Autoimmunity, 2017, 85, 141-152.	3.0	14
978	Combination Therapy with Bispecific Antibodies and PD-1 Blockade Enhances the Antitumor Potency of T Cells. Cancer Research, 2017, 77, 5384-5394.	0.4	60
979	RNA-transfection of \hat{I}^3/\hat{I}^7 T cells with a chimeric antigen receptor or an $\hat{I}\pm/\hat{I}^2$ T-cell receptor: a safer alternative to genetically engineered $\hat{I}\pm/\hat{I}^2$ T cells for the immunotherapy of melanoma. BMC Cancer, 2017, 17, 551.	1.1	87
980	CD28 and 41BB Costimulation Enhances the Effector Function of CD19-Specific Engager T Cells. Cancer Immunology Research, 2017, 5, 860-870.	1.6	29
981	Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma. New England Journal of Medicine, 2017, 377, 783-784.	13.9	170
982	Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunology Letters, 2017, 190, 201-205.	1.1	7
983	Automated Manufacturing of Potent CD20-Directed Chimeric Antigen Receptor T Cells for Clinical Use. Human Gene Therapy, 2017, 28, 914-925.	1.4	89
984	Overcoming barriers of car T-cell therapy in patients with mesothelin-expressing cancers. Immunotherapy, 2017, 9, 767-780.	1.0	12
985	Enhanced Cancer Immunotherapy by Chimeric Antigen Receptor–Modified T Cells Engineered to Secrete Checkpoint Inhibitors. Clinical Cancer Research, 2017, 23, 6982-6992.	3.2	238
986	Immunotherapy of cancer: targeting cancer during active disease or during dormancy?. Immunotherapy, 2017, 9, 943-949.	1.0	6
988	Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Therapy, 2017, 24, 674-679.	2.3	23
989	Gene Modified T Cell Therapies for Hematological Malignancies. Hematology/Oncology Clinics of North America, 2017, 31, 913-926.	0.9	4
990	Engineering Synthetic Signaling Pathways with Programmable dCas9-Based Chimeric Receptors. Cell Reports, 2017, 20, 2639-2653.	2.9	64

#	Article	IF	CITATIONS
991	Hematopoietic Stem Cell Approaches to Cancer. Hematology/Oncology Clinics of North America, 2017, 31, 897-912.	0.9	15
992	Therapeutic potential of SGN-CD19B, a PBD-based anti-CD19 drug conjugate, for treatment of B-cell malignancies. Blood, 2017, 130, 2018-2026.	0.6	23
993	Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood, 2017, 130, 2295-2306.	0.6	774
994	Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood, 2017, 130, 2317-2325.	0.6	273
995	Immuno-oncology Trial Endpoints: Capturing Clinically Meaningful Activity. Clinical Cancer Research, 2017, 23, 4959-4969.	3.2	115
996	Safety and persistence of WT1-specific T-cell receptor geneâ^'transduced lymphocytes in patients with AML and MDS. Blood, 2017, 130, 1985-1994.	0.6	127
997	Redirecting Killer Tâ€Cells through Incorporation of Azido Sugars for Tethering Ligands. ChemBioChem, 2017, 18, 2082-2086.	1.3	4
998	Immunotherapy in Colorectal Cancer: Where Are We Now?. Current Colorectal Cancer Reports, 2017, 13, 353-361.	1.0	4
999	Assessment of selected media supplements to improve F/HN lentiviral vector production yields. Scientific Reports, 2017, 7, 10198.	1.6	15
1000	Treating breast cancer with cell-based approaches: an overview. Expert Opinion on Biological Therapy, 2017, 17, 1255-1264.	1.4	4
1001	Adnectin-Based Design of Chimeric Antigen Receptor for T Cell Engineering. Molecular Therapy, 2017, 25, 2466-2476.	3.7	54
1002	A Novel Target Antigen for the Treatment of Acute Myeloid Leukemia by CAR T Cells. Molecular Therapy, 2017, 25, 1997-1998.	3.7	2
1003	Reconstructing the immune system with lentiviral vectors. Virus Genes, 2017, 53, 723-732.	0.7	20
1004	Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6623-E6631.	3.3	99
1005	Building blocks for institutional preparation of CTL019 delivery. Cytotherapy, 2017, 19, 1015-1024.	0.3	61
1006	New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Translational Research, 2017, 187, 83-92.	2.2	13
1007	Editorial: Teaching old CAR-T cells new tricks. Journal of Leukocyte Biology, 2017, 102, 188-190.	1.5	0
1008	The what, when and how of CAR T cell therapy for ALL. Best Practice and Research in Clinical Haematology, 2017, 30, 275-281.	0.7	18

#	ARTICLE	IF	Citations
1009	Opportunities and challenges in the immunological therapy of pediatric malignancy: a concise snapshot. European Journal of Pediatrics, 2017, 176, 1163-1172.	1.3	11
1010	Immunotherapy of cancers comes of age. Expert Review of Clinical Immunology, 2017, 13, 1001-1015.	1.3	84
1011	NK-92 cell, another ideal carrier for chimeric antigen receptor. Immunotherapy, 2017, 9, 753-765.	1.0	16
1012	A Milestone for CAR T Cells. New England Journal of Medicine, 2017, 377, 2593-2596.	13.9	52
1013	Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. New England Journal of Medicine, 2017, 377, 2545-2554.	13.9	1,390
1014	Checkpoint inhibition in pediatric hematologic malignancies. Pediatric Hematology and Oncology, 2017, 34, 379-394.	0.3	23
1015	CD20-CD19 Bispecific CAR T Cells for the Treatment of B-Cell Malignancies. Human Gene Therapy, 2017, 28, 1147-1157.	1.4	74
1016	CAR emissions: cytokines tell the story. Blood, 2017, 130, 2238-2240.	0.6	10
1017	CART trials are going ahead. Science China Life Sciences, 2017, 60, 1276-1279.	2.3	3
1019	Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open, 2017, 7, e017075.	0.8	43
1020	Young donor white blood cell immunotherapy induces extensive tumor necrosis in advanced-stage solid tumors. Heliyon, 2017, 3, e00438.	1.4	9
1021	TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Science Translational Medicine, 2017, 9, .	5.8	136
1022	How to build an allogeneic hematopoietic cell transplant unit in 2016: Proposal for a practical framework. Current Research in Translational Medicine, 2017, 65, 149-154.	1.2	8
1023	The activated conformation of integrin \hat{l}^2 7 is a novel multiple myeloma \hat{a} e"specific target for CAR T cell therapy. Nature Medicine, 2017, 23, 1436-1443.	15.2	105
1024	Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 2017, 5, 1152-1161.	1.6	309
1025	Complications of Emerging Oncology Therapies Requiring Treatment in the Pediatric Intensive Care Unit. Current Pediatrics Reports, 2017, 5, 220-227.	1.7	O
1026	New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Review of Anticancer Therapy, 2017, 17, 725-736.	1.1	34
1027	5T4-specific chimeric antigen receptor modification promotes the immune efficacy of cytokine-induced killer cells against nasopharyngeal carcinoma stem cell-like cells. Scientific Reports, 2017, 7, 4859.	1.6	27

#	ARTICLE	IF	CITATIONS
1028	Adult cancer-related hemophagocytic lymphohistiocytosis – a challenging diagnosis: a case report. Journal of Medical Case Reports, 2017, 11, 172.	0.4	2
1029	Chimeric antigen receptor T-cells for B-cell malignancies. Translational Research, 2017, 187, 59-82.	2.2	22
1030	A Fusion Receptor as a Safety Switch, Detection, and Purification Biomarker for Adoptive Transferred T Cells. Molecular Therapy, 2017, 25, 2270-2279.	3.7	9
1031	The why, what, and how of the new FACT standards for immune effector cells. , 2017, 5, 36.		44
1032	Chimeric antigen receptor T cells for the treatment of cancer and the future of preclinical models for predicting their toxicities. Immunotherapy, 2017, 9, 669-680.	1.0	10
1033	Immunotherapy in adult acute leukemia. Leukemia Research, 2017, 60, 63-73.	0.4	16
1034	Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Molecular Therapy, 2017, 25, 2189-2201.	3.7	264
1035	Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Molecular Therapy, 2017, 25, 2202-2213.	3.7	109
1036	Emerging role of immunotherapy in precursor B-cell acute lymphoblastic leukemia. Expert Review of Hematology, 2017, 10, 783-799.	1.0	7
1037	Treatment of Human B-Cell Lymphomas Using Minicircle DNA Vector Expressing Anti-CD3/CD20 in a Mouse Model. Human Gene Therapy, 2017, 28, 216-225.	1.4	24
1038	â€~Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic TÂlymphocytes. Experimental Hematology, 2017, 47, 2-12.	0.2	22
1039	Emerging biological therapies to treat acute lymphoblastic leukemia. Expert Opinion on Emerging Drugs, 2017, 22, 107-121.	1.0	18
1040	Cancer Precision Medicine: From Cancer Screening to Drug Selection and Personalized Immunotherapy. Trends in Pharmacological Sciences, 2017, 38, 15-24.	4.0	70
1041	Non-Hodgkin Lymphoma. Pediatric Oncology, 2017, , 69-117.	0.5	2
1042	Genetically Engineered Macrophages: A Potential Platform for Cancer Immunotherapy. Human Gene Therapy, 2017, 28, 200-215.	1.4	51
1043	Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical Cancer Research, 2017, 23, 2255-2266.	3.2	694
1044	Redirecting T Cells to Glypican-3 with 4-1BB Zeta Chimeric Antigen Receptors Results in Th1 Polarization and Potent Antitumor Activity. Human Gene Therapy, 2017, 28, 437-448.	1.4	72
1045	Plasmablastic Richter transformation as a resistance mechanism for chronic lymphocytic leukaemia treated with <scp>BCR</scp> signalling inhibitors. British Journal of Haematology, 2017, 177, 324-328.	1.2	12

#	Article	IF	CITATIONS
1046	Treatment of relapse after allogeneic stem cell transplantation in children and adolescents with ALL: the Frankfurt experience. Bone Marrow Transplantation, 2017, 52, 201-208.	1.3	25
1047	Natural killer cells in malignant hematology: A primer for the non-immunologist. Blood Reviews, 2017, 31, 1-10.	2.8	34
1048	Follicle-Stimulating Hormone Receptor Is Expressed by Most Ovarian Cancer Subtypes and Is a Safe and Effective Immunotherapeutic Target. Clinical Cancer Research, 2017, 23, 441-453.	3.2	77
1049	Selective effect of cytokine-induced killer cells on survival of patients with early-stage melanoma. Cancer Immunology, Immunotherapy, 2017, 66, 299-308.	2.0	11
1050	Current Trends and Alternative Scenarios in EBV Research. Methods in Molecular Biology, 2017, 1532, 1-32.	0.4	8
1051	Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy, 2017, 19, 235-249.	0.3	142
1052	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
1053	Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse. Biology of Blood and Marrow Transplantation, 2017, 23, 235-246.	2.0	76
1054	CAR T-cells for cancer therapy. Biotechnology and Genetic Engineering Reviews, 2017, 33, 190-226.	2.4	28
1055	T Lymphocytes with Modified Specificity in the Therapy of Malignant Diseases. Molecular Biology, 2017, 51, 874-886.	0.4	2
1056	New Approaches in CAR-T Cell Immunotherapy for Breast Cancer. Advances in Experimental Medicine and Biology, 2017, 1026, 371-381.	0.8	31
1057	Immune Checkpoint Blockade in Breast Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, 1026, 383-402.	0.8	24
1058	Engineering Antibodies as Drugs: Principles and Practice. Molecular Biology, 2017, 51, 772-781.	0.4	2
1059	CAR T-Cell Therapy Effects: Review of Procedures and Patient Education. Clinical Journal of Oncology Nursing, 2017, 21, .	0.3	4
1060	The Role of Tumor Microenvironment in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2017, 1036, 51-64.	0.8	124
1061	Update on the Renal Effects of Anticancer Agents. Journal of Onco-Nephrology, 2017, 1, 170-178.	0.3	1
1062	Cancer Immunotherapy with Chimeric Antigen Receptor (CAR) T Cells. Journal of Onco-Nephrology, 2017, 1, 151-155.	0.3	4
1063	Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies. Japanese Journal of Clinical Immunology, 2017, 40, 68-77.	0.0	22

#	Article	IF	CITATIONS
1064	CAR-T cell therapy in combination with allogeneic stem cell transplantation. Journal of Hematopoietic Cell Transplantation, 2017, 6, 1-7.	0.1	1
1065	Hematopoietic cell transplants for BCR/ABL negative acute lymphocytic leukemia., 0,, 298-308.		0
1066	Hematopoietic cell transplants for Hodgkin lymphoma. , 0, , 361-371.		0
1067	Hematopoietic cell transplants for central nervous system lymphomas. , 0, , 436-444.		0
1068	Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. Journal of Clinical Investigation, 2017, 127, 2176-2191.	3.9	241
1069	Targeted breast cancer therapy by harnessing the inherent blood group antigen immune system. Oncotarget, 2017, 8, 15034-15046.	0.8	7
1070	Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Advances, 2017, 1, 1551-1564.	2.5	21
1071	Incorporation of nonchemotherapeutic agents in pediatric acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program, 2017, 2017, 259-264.	0.9	1
1072	Maternal Immunization: New Perspectives on Its Application Against Non-Infectious Related Diseases in Newborns. Vaccines, 2017, 5, 20.	2.1	6
1073	The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma. Theranostics, 2017, 7, 3732-3744.	4.6	60
1074	Cancer immunology and melanoma immunotherapy. Anais Brasileiros De Dermatologia, 2017, 92, 830-835.	0.5	8
1075	Advances in the treatment of newly diagnosed primary central nervous system lymphomas. Blood Research, 2017, 52, 159.	0.5	20
1076	Natural Killer Cells: Angels and Devils for Immunotherapy. International Journal of Molecular Sciences, 2017, 18, 1868.	1.8	59
1077	Immunotherapy for Pediatric Brain Tumors. Brain Sciences, 2017, 7, 137.	1.1	24
1078	Immune-Mediated Therapies for Liver Cancer. Genes, 2017, 8, 76.	1.0	20
1079	Cancer Immunotherapy: Historical Perspective of a Clinical Revolution and Emerging Preclinical Animal Models. Frontiers in Immunology, 2017, 8, 829.	2.2	159
1080	Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Frontiers in Immunology, 2017, 8, 1444.	2.2	62
1081	From IgG Fusion Proteins to Engineered-Specific Human Regulatory T Cells: A Life of Tolerance. Frontiers in Immunology, 2017, 8, 1576.	2.2	8

#	Article	IF	CITATIONS
1082	Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Frontiers in Immunology, 2017, 8, 1655.	2.2	22
1083	Resources for Interpreting Variants in Precision Genomic Oncology Applications. Frontiers in Oncology, 2017, 7, 214.	1.3	18
1084	Allograft for Myeloma: Examining Pieces of the Jigsaw Puzzle. Frontiers in Oncology, 2017, 7, 287.	1.3	12
1085	Targeting i>O / i>-Acetyl-GD2 Ganglioside for Cancer Immunotherapy. Journal of Immunology Research, 2017, 2017, 1-16.	0.9	25
1086	Integrating a 19F MRI Tracer Agent into the Clinical Scale Manufacturing of a T-Cell Immunotherapy. Contrast Media and Molecular Imaging, 2017, 2017, 1-7.	0.4	10
1087	FLAG-tagged CD19-specific CAR-T cells eliminate CD19-bearing solid tumor cells i in vitro i and i in vivo i. Frontiers in Bioscience - Landmark, 2017, 22, 1644-1654.	3.0	16
1088	Hematopoietic cell transplants for children with acute lymphoblastic leukemia., 0,, 291-297.		0
1089	CSPG4: a prototype oncoantigen for translational immunotherapy studies. Journal of Translational Medicine, 2017, 15, 151.	1.8	51
1090	Novel immunotherapies for adult patients with B-lineage acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2017, 10, 150.	6.9	79
1091	Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 151.	6.9	88
1092	Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response., 2017, 5, 85.		102
1093	Perspective on the dynamics of cancer. Theoretical Biology and Medical Modelling, 2017, 14, 18.	2.1	13
1094	Prospect of Immunotherapy for Glioblastoma: Tumor Vaccine, Immune Checkpoint Inhibitors and Combination Therapy. Neurologia Medico-Chirurgica, 2017, 57, 321-330.	1.0	16
1095	Interleukin-6 Inhibition in Inflammatory Diseases: Results Achieved and Tasks to Accomplish. Journal of Scleroderma and Related Disorders, 2017, 2, S20-S28.	1.0	1
1097	A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017, 8, 17002-17011.	0.8	319
1098	New Horizons in Nephrology: Update in Onco-Nephrology. Journal of Onco-Nephrology, 2017, 1, 147-150.	0.3	2
1099	Immunotherapy for Brain Tumors. Journal of Clinical Oncology, 2017, 35, 2450-2456.	0.8	112
1100	The role of novel immunotherapies in non-Hodgkin lymphoma. Translational Cancer Research, 2017, 6, 93-103.	0.4	26

#	Article	IF	CITATIONS
1101	Current Perspectives on Emerging CAR-Treg Cell Therapy: Based on Treg Cell Therapy in Clinical Trials and the Recent Approval of CAR-T Cell Therapy. The Journal of the Korean Society for Transplantation, 2017, 31, 157.	0.2	0
1102	Immunotherapy for malignant pleural mesothelioma: current status and future directions. Translational Lung Cancer Research, 2017, 6, 315-324.	1.3	30
1103	Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Advances, 2017, 1, 2348-2360.	2.5	117
1104	Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunology Research, 2018, 6, 467-480.	1.6	76
1105	Establishment of a Quantitative Polymerase Chain Reaction Assay for Monitoring Chimeric Antigen Receptor T Cells in Peripheral Blood. Transplantation Proceedings, 2018, 50, 104-109.	0.3	16
1106	Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells. Nature Communications, 2018, 9, 785.	5.8	29
1107	Expression of <scp>MAGE</scp> â€A and <scp>NY</scp> â€ <scp>ESO</scp> â€1 cancer/testis antigens is enriched in tripleâ€negative invasive breast cancers. Histopathology, 2018, 73, 68-80.	1.6	34
1108	The Evolution and Future of CAR T Cells for Bâ€Cell Acute Lymphoblastic Leukemia. Clinical Pharmacology and Therapeutics, 2018, 103, 591-598.	2.3	28
1109	T-bet promotes potent antitumor activity of CD4+ CAR T cells. Cancer Gene Therapy, 2018, 25, 117-128.	2.2	29
1110	Mass Spectrometry Based Immunopeptidomics for the Discovery of Cancer Neoantigens. Methods in Molecular Biology, 2018, 1719, 209-221.	0.4	46
1111	T-cell Immunotherapies and the Role of Nonclinical Assessment: The Balance between Efficacy and Pathology. Toxicologic Pathology, 2018, 46, 131-146.	0.9	12
1112	Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. Journal of Hematology and Oncology, 2018, 11, 22.	6.9	176
1113	Targeting Neoantigens for Personalised Immunotherapy. BioDrugs, 2018, 32, 99-109.	2.2	11
1114	Chimeric Antigen Receptorâ€T Cell Therapy. HemaSphere, 2018, 2, e18.	1.2	30
1115	Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Scientific Reports, 2018, 8, 3846.	1.6	39
1116	Quarter Century of Anti-HIV CAR T Cells. Current HIV/AIDS Reports, 2018, 15, 147-154.	1.1	34
1117	Building a CAR Garage: Preparing for the Delivery of Commercial CAR T Cell Products at Memorial Sloan Kettering Cancer Center. Biology of Blood and Marrow Transplantation, 2018, 24, 1135-1141.	2.0	60
1118	Peptidomics. Methods in Molecular Biology, 2018, , .	0.4	5

#	Article	IF	CITATIONS
1119	Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discovery Today, 2018, 23, 1175-1182.	3.2	142
1120	MYCN is a novel oncogenic target in adult B―ALL that activates the Wnt∫î²â€€atenin pathway by suppressing DKK 3. Journal of Cellular and Molecular Medicine, 2018, 22, 3627-3637.	1.6	20
1121	Update in Pediatric Oncology: Section A-New Developments in the Treatment of Pediatric Acute Lymphoblastic Leukemia., 2018,, 461-483.		0
1122	Oncolytic viruses as engineering platforms for combination immunotherapy. Nature Reviews Cancer, 2018, 18, 419-432.	12.8	288
1123	Introduction of Genetically Modified CD3ζ Improves Proliferation and Persistence of Antigen-Specific CTLs. Cancer Immunology Research, 2018, 6, 733-744.	1.6	14
1124	Mass spectrometry analysis reveals differences in the host cell protein species found in pseudotyped lentiviral vectors. Biologicals, 2018, 52, 59-66.	0.5	13
1125	Beginning the CAR T cell therapy revolution in the US and EU. Current Research in Translational Medicine, 2018, 66, 62-64.	1.2	24
1126	An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Scientific Reports, 2018, 8, 5035.	1.6	63
1127	The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharmaceutica Sinica B, 2018, 8, 539-551.	5.7	141
1128	Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Scientific Reports, 2018, 8, 5549.	1.6	29
1129	FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist, 2018, 23, 943-947.	1.9	631
1130	Potent antiâ€leukemia activities of humanized CD19â€targeted Chimeric antigen receptor T (CARâ€T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. American Journal of Hematology, 2018, 93, 851-858.	2.0	138
1131	Treatment of acute lymphoblastic leukaemia with the second generation of <scp>CD</scp> 19 <scp>CAR</scp> â€T containing either <scp>CD</scp> 28 or 4â€T <scp>BB</scp> . British Journal of Haematology, 2018, 181, 360-371.	1.2	60
1132	Preclinical Efficacy and Safety of CD19CAR Cytokine-Induced Killer Cells Transfected with Sleeping Beauty Transposon for the Treatment of Acute Lymphoblastic Leukemia. Human Gene Therapy, 2018, 29, 602-613.	1.4	35
1133	Pleural cavity cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. Medicine (United States), 2018, 97, e9992.	0.4	6
1135	A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 2018, 53, 164-181.	3.3	262
1136	Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 200-215.	3.3	32
1137	Regulation of T cell proliferation with drug-responsive microRNA switches. Nucleic Acids Research, 2018, 46, 1541-1552.	6.5	31

#	Article	IF	CITATIONS
1138	A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nature Medicine, 2018, 24, 352-359.	15.2	349
1139	InÂVivo Expansion and Antitumor Activity of Coinfused CD28- and 4-1BB-Engineered CAR-T Cells in Patients with B Cell Leukemia. Molecular Therapy, 2018, 26, 976-985.	3.7	64
1140	Synthetic Immunobiotics: A Future Success Story in Small Molecule-Based Immunotherapy?. ACS Infectious Diseases, 2018, 4, 664-672.	1.8	7
1141	Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit 'ALL'. Nature Reviews Clinical Oncology, 2018, 15, 218-218.	12.5	93
1142	Inhibitors in Nonsevere Hemophilia A: What Is Known and Searching for the Unknown. Seminars in Thrombosis and Hemostasis, 2018, 44, 568-577.	1.5	9
1143	CD19-specific chimeric antigen receptor-modified (CAR)-T cell therapy for the treatment of chronic lymphocytic leukemia in the ibrutinib era. Immunotherapy, 2018, 10, 251-254.	1.0	5
1144	Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses InÂVivo. Cell Stem Cell, 2018, 22, 501-513.e7.	5.2	125
1145	IL-2 and Beyond in Cancer Immunotherapy. Journal of Interferon and Cytokine Research, 2018, 38, 45-68.	0.5	83
1146	Chimeric antigen receptor T-cell therapy for cancer: a basic research-oriented perspective. Immunotherapy, 2018, 10, 221-234.	1.0	7
1147	CAR T-cell Therapy: Cures for ALL and More?. , 0, , 417-448.		0
1148	Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapiesâ€"the German Cancer Consortium approach. Cancer Immunology, Immunotherapy, 2018, 67, 513-523.	2.0	11
1149	Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 439-448.	13.9	3,680
1150	Current status and progress of lymphoma management in China. International Journal of Hematology, 2018, 107, 405-412.	0.7	26
1151	Desensitized chimeric antigen receptor T cells selectively recognize target cells with enhanced antigen expression. Nature Communications, 2018, 9, 468.	5.8	27
1152	Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	10
1153	Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 992-997.	3.3	181
1154	PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia, 2018, 32, 1157-1167.	3.3	144
1155	Reprint of: Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biology of Blood and Marrow Transplantation, 2018, 24, S15-S19.	2.0	12

#	Article	IF	Citations
1156	Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death and Disease, 2018, 9, 177.	2.7	77
1157	Convergent pathways of the hyperferritinemic syndromes. International Immunology, 2018, 30, 195-203.	1.8	50
1161	Posttransplant chimeric antigen receptor therapy. Blood, 2018, 131, 1045-1052.	0.6	67
1162	A novel Epstein–Barr virus-latent membrane protein-1-specific T-cell receptor for TCR gene therapy. British Journal of Cancer, 2018, 118, 534-545.	2.9	33
1163	Glycan-directed CAR-T cells. Glycobiology, 2018, 28, 656-669.	1.3	74
1164	Pre―and postâ€transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia. British Journal of Haematology, 2018, 180, 680-693.	1.2	44
1165	Use of cord blood derived T-cells in cancer immunotherapy: milestones achieved and future perspectives. Expert Review of Hematology, 2018, 11, 209-218.	1.0	5
1166	ImmunoMap: A Bioinformatics Tool for T-cell Repertoire Analysis. Cancer Immunology Research, 2018, 6, 151-162.	1.6	42
1167	Improved Expansion and InÂVivo Function of Patient T Cells by a Serum-free Medium. Molecular Therapy - Methods and Clinical Development, 2018, 8, 65-74.	1.8	37
1168	Comparison of T Cell Activities Mediated by Human TCRs and CARs That Use the Same Recognition Domains. Journal of Immunology, 2018, 200, 1088-1100.	0.4	119
1169	An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood, 2018, 131, 746-758.	0.6	131
1170	Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood, 2018, 131, 1350-1359.	0.6	158
1171	Cancer immunotherapy: A need for peripheral immunodynamic monitoring. American Journal of Reproductive Immunology, 2018, 79, e12793.	1.2	5
1172	Toward Engineered Cells as Transformational and Broadly Available Medicines for the Treatment of Cancer., 2018,, 695-717.		0
1173	Cholesterol Esterification Enzyme Inhibition Enhances Antitumor Effects of Human Chimeric Antigen Receptors Modified T Cells. Journal of Immunotherapy, 2018, 41, 45-52.	1.2	23
1174	Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood, 2018, 131, 1442-1455.	0.6	288
1175	Reprogramming T-cells for adoptive immunotherapy of ovarian cancer. Expert Opinion on Biological Therapy, 2018, 18, 359-367.	1.4	5
1176	<i>In vivo</i> antitumor function of tumor antigenâ€specific CTLs generated in the presence of OX40 coâ€stimulation <i>in vitro</i> International Journal of Cancer, 2018, 142, 2335-2343.	2.3	8

#	Article	IF	CITATIONS
1177	Comprehensive analysis of the clinical immuno-oncology landscape. Annals of Oncology, 2018, 29, 84-91.	0.6	422
1178	Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncolmmunology, 2018, 7, e1395997.	2.1	108
1179	Haploidentical Hematopoietic Cell Transplantation in Children with Neoplastic Disorders. , 2018, , 195-215.		0
1180	Interleukin-6: designing specific therapeutics for a complex cytokine. Nature Reviews Drug Discovery, 2018, 17, 395-412.	21.5	440
1181	A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2018, 11, 25.	6.9	80
1182	Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. Journal of Hematology and Oncology, 2018, 11, 31.	6.9	256
1183	Accurate control of dual-receptor-engineered T cell activity through a bifunctional anti-angiogenic peptide. Journal of Hematology and Oncology, 2018, 11, 44.	6.9	32
1184	Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. , 2018, 6, 30.		97
1185	Peripheral Blood Grafts for T Cell–Replete Haploidentical Transplantation Increase the Incidence and Severity of Cytokine Release Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 1664-1670.	2.0	36
1186	Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell, 2018, 173, 1426-1438.e11.	13.5	454
1187	Personal history of infections and immunotherapy: Unexpected links and possible therapeutic opportunities. Oncolmmunology, 2018, 7, e1466019.	2.1	4
1188	IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. American Journal of Pathology, 2018, 188, 1625-1639.	1.9	46
1189	MAGE-A antigens as targets for cancer immunotherapy. Cancer Treatment Reviews, 2018, 67, 54-62.	3.4	51
1190	Biomarkers in chimeric antigen receptor T-cell therapy. Biomarkers in Medicine, 2018, 12, 415-418.	0.6	14
1191	Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus–Driven Production of a Bispecific T-cell Engager. Cancer Immunology Research, 2018, 6, 605-616.	1.6	199
1192	Nonlytic Lymphocytes Engineered to Express Virus-SpecificÂT-Cell Receptors Limit HBV Infection byÂActivatingÂAPOBEC3. Gastroenterology, 2018, 155, 180-193.e6.	0.6	66
1193	Toxicities associated with immunotherapies for hematologic malignancies. Best Practice and Research in Clinical Haematology, 2018, 31, 158-165.	0.7	14
1194	Outcome of children with multiply relapsed B-cell acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia & amp; lymphoma study. Leukemia, 2018, 32, 2316-2325.	3.3	88

#	Article	IF	CITATIONS
1195	CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications. Human Gene Therapy, 2018, 29, 559-568.	1.4	90
1196	Diagnosis and Treatment of Childhood Acute Lymphoblastic Leukemia. , 2018, , 307-335.		0
1197	Spatial and Chemical Surface Guidance of NK Cell Cytotoxic Activity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11486-11494.	4.0	12
1198	CAR T cell immunotherapy for human cancer. Science, 2018, 359, 1361-1365.	6.0	1,968
1199	Alternative Sources of Hematopoietic Stem Cells and Their Clinical Applications. , 2018, , 1179-1192.		0
1200	Gene therapy clinical trials worldwide to 2017: An update. Journal of Gene Medicine, 2018, 20, e3015.	1.4	612
1201	Concepts for Immunotherapies in Gliomas. Seminars in Neurology, 2018, 38, 062-072.	0.5	26
1202	Immunobiology of Acute Leukemia. , 2018, , 237-279.		3
1203	Non-Hodgkin Lymphoma of Childhood. , 2018, , 975-998.		0
1204	Chimeric Antigen Receptor T Cell Therapy and the Kidney. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 796-798.	2.2	42
1205	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	11.1	127
1206	Ordinary Differential Equation Models for Adoptive Immunotherapy. Bulletin of Mathematical Biology, 2018, 80, 1059-1083.	0.9	30
1207	Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment. Protein and Cell, 2018, 9, 516-526.	4.8	46
1208	Continuing challenges and current issues in acute lymphoblastic leukemia. Leukemia and Lymphoma, 2018, 59, 526-541.	0.6	33
1209	A review of CD19-targeted immunotherapies for relapsed or refractory acute lymphoblastic leukemia. Journal of Oncology Pharmacy Practice, 2018, 24, 453-467.	0.5	14
1210	Advances in adult acute lymphoblastic leukemia therapy. Leukemia and Lymphoma, 2018, 59, 1033-1050.	0.6	58
1211	Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia, 2018, 32, 520-531.	3.3	525
1212	Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood, 2018, 131, 108-120.	0.6	73

#	Article	IF	CITATIONS
1213	Modified T-cells (using TCR and CTAs), chimeric antigen receptor (CAR) and other molecular tools in recent gene therapy. Egyptian Journal of Medical Human Genetics, 2018, 19, 153-157.	0.5	1
1214	Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms. Clinical Cancer Research, 2018, 24, 370-382.	3.2	57
1215	Tocilizumab for severe cytokineâ€release syndrome after haploidentical donor transplantation in a patient with refractory Epsteinâ€Barr virusâ€positive diffuse large Bâ€cell lymphoma. Hematological Oncology, 2018, 36, 324-327.	0.8	11
1216	Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biology of Blood and Marrow Transplantation, 2018, 24, 27-31.	2.0	49
1217	Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncolmmunology, 2018, 7, e1378843.	2.1	88
1218	mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncolmmunology, 2018, 7, e1368604.	2.1	88
1219	Interleukin-armed chimeric antigen receptor-modified T cells for cancer immunotherapy. Gene Therapy, 2018, 25, 192-197.	2.3	15
1220	Chimeric antigen receptor T-cell therapy â€" assessment and management of toxicities. Nature Reviews Clinical Oncology, 2018, 15, 47-62.	12.5	1,659
1221	Early recovery of circulating immature B cells in Bâ€lymphoblastic leukemia patients after CD19 targeted CAR T cell therapy: A pitfall for minimal residual disease detection. Cytometry Part B - Clinical Cytometry, 2018, 94, 434-443.	0.7	14
1222	Neurological Complications of Immune-Based Therapies. , 2018, , 335-344.		0
1223	Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Molecular Therapy, 2018, 26, 31-44.	3.7	217
1224	Cellular Immunotherapy for Hematologic Malignancies: Beyond Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 433-442.	2.0	15
1225	Preclinical Optimization of a CD20-specific Chimeric Antigen Receptor Vector and Culture Conditions. Journal of Immunotherapy, 2018, 41, 19-31.	1,2	23
1226	Immunotherapy for Pediatric Malignancies. , 2018, , .		0
1227	NKG2D-Based CAR T Cells and Radiotherapy Exert Synergistic Efficacy in Glioblastoma. Cancer Research, 2018, 78, 1031-1043.	0.4	193
1228	High-throughput sequencing of the immune repertoire in oncology: Applications for clinical diagnosis, monitoring, and immunotherapies. Cancer Letters, 2018, 416, 42-56.	3.2	26
1229	Immunotherapies for malignant glioma. Oncogene, 2018, 37, 1121-1141.	2.6	108
1230	New developments in immunotherapy for pediatric solid tumors. Current Opinion in Pediatrics, 2018, 30, 30-39.	1.0	16

#	Article	IF	CITATIONS
1231	Outcome of relapse after allogeneic <scp>HSCT</scp> in children with <scp>ALL</scp> enrolled in the <scp>ALL</scp> â€ <scp>SCT</scp> 2003/2007 trial. British Journal of Haematology, 2018, 180, 82-89.	1.2	50
1232	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45
1233	Anticancer cellular immunotherapies derived from umbilical cord blood. Expert Opinion on Biological Therapy, 2018, 18, 121-134.	1.4	18
1234	Cellular Therapy. Current Cancer Research, 2018, , 133-184.	0.2	0
1235	Redirecting T cells to glypican-3 with 28.41BB.ζ and 28.ζ-41BBL CARs for hepatocellular carcinoma treatment. Protein and Cell, 2018, 9, 664-669.	4.8	4
1236	CAR T-Cell Therapies in Glioblastoma: A First Look. Clinical Cancer Research, 2018, 24, 535-540.	3.2	103
1237	Chimeric antigen receptor transduced T cells: Tuning up for the next generation. International Journal of Cancer, 2018, 142, 1738-1747.	2.3	49
1238	Targeting and suppression of HER3-positive breast cancer by T lymphocytes expressing a heregulin chimeric antigen receptor. Cancer Immunology, Immunotherapy, 2018, 67, 393-401.	2.0	15
1239	Recurrent urinary tract infections and low secretory IgA following CD19â€directed CAR Tâ€eell therapy for relapsed acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2018, 65, e26739.	0.8	2
1240	Interleukin (IL-6) Immunotherapy. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028456.	2.3	223
1241	Toll-like receptor 2 costimulation potentiates the antitumor efficacy of CAR T Cells. Leukemia, 2018, 32, 801-808.	3.3	77
1242	Immunotherapy for thoracic malignancies. Indian Journal of Thoracic and Cardiovascular Surgery, 2018, 34, 54-64.	0.2	0
1243	Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR Journal, 2018, 59, 276-285.	1.8	5
1244	Dawn of chimeric antigen receptor T cell therapy in non-Hodgkin Lymphoma. Advances in Cell and Gene Therapy, 2018, 1, e23.	0.6	1
1245	Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3, .	2.3	191
1246	Immunomodulation in hepatocellular cancer. Journal of Gastrointestinal Oncology, 2018, 9, 208-219.	0.6	22
1247	Shining light on advanced NSCLC in 2017: combining immune checkpoint inhibitors. Journal of Thoracic Disease, 2018, 10, S1534-S1546.	0.6	7
1249	Chimeric Antigen Receptor T-Cell Therapy: A Beacon of Hope in the Fight Against Cancer. Cureus, 2018, 10, e3486.	0.2	8

#	Article	IF	CITATIONS
1250	CAR-T cell therapy, a door is open to find innumerable possibilities of treatments for cancer patients. Turkish Journal of Haematology, 2018, 35, 217-228.	0.2	9
1251	Strategies targeting cellular senescence. Journal of Clinical Investigation, 2018, 128, 1247-1254.	3.9	153
1252	CAR-T cells et leucémies aiguës lymphoblastiques de l'enfant et de l'adulte. Bulletin De L'Academie Nationale De Medecine, 2018, 202, 1441-1451.	0.0	1
1257	Precision medicine in pediatric oncology. Molecular and Cellular Pediatrics, 2018, 5, 6.	1.0	37
1258	Cytokine release syndrome and neurotoxicity after <scp>CD</scp> 19 chimeric antigen receptorâ€modified (<scp>CAR</scp> â€) T cell therapy. British Journal of Haematology, 2018, 183, 364-374.	1.2	131
1259	Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	0
1260	Characteristics and Therapeutic Targeting of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia. Advances in Experimental Medicine and Biology, 2018, 1100, 127-139.	0.8	5
1261	The adverse kidney effects of cancer immunotherapies. Journal of Onco-Nephrology, 2018, 2, 56-68.	0.3	2
1262	The application of prostate specific membrane antigen in CART†cell therapy for treatment of prostate carcinoma (Review). Oncology Reports, 2018, 40, 3136-3143.	1.2	5
1264	A Review on Electroporation-Based Intracellular Delivery. Molecules, 2018, 23, 3044.	1.7	170
1265	A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discovery, 2018, 4, 62.	3.1	83
1266	The Two-Faced Cytokine IL-6 in Host Defense and Diseases. International Journal of Molecular Sciences, 2018, 19, 3528.	1.8	143
1267	CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Frontiers in Immunology, 2018, 9, 2460.	2.2	101
1268	T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Theranostics, 2018, 8, 6070-6087.	4.6	28
1269	Adoptive Cell Transfer: Is it a Promising Immunotherapy for Colorectal Cancer?. Theranostics, 2018, 8, 5784-5800.	4.6	42
1270	A Spheroid Killing Assay by CAR T Cells. Journal of Visualized Experiments, 2018, , .	0.2	17
1271	Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Molecular Therapy - Oncolytics, 2018, 11, 127-137.	2.0	191
1272	Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens. Journal of Immunology Research, 2018, 2018, 1-9.	0.9	75

#	Article	IF	Citations
1273	Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. , 2018 , 6 , 137 .		182
1274	CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Design, Development and Therapy, 2018, Volume 12, 3885-3898.	2.0	78
1275	Universal CARs, universal T cells, and universal CAR T cells. Journal of Hematology and Oncology, 2018, 11, 132.	6.9	184
1276	Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight, $2018, 3, .$	2.3	110
1277	Getting the most from your CAR target. Blood, 2018, 132, 1467-1468.	0.6	1
1278	Glypicans as Cancer Therapeutic Targets. Trends in Cancer, 2018, 4, 741-754.	3.8	101
1279	The potential of CAR T therapy for relapsed or refractory pediatric and young adult B-cell ALL. Therapeutics and Clinical Risk Management, 2018, Volume 14, 1573-1584.	0.9	16
1280	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	15.2	459
1281	Bispecific Antibodies for the Treatment of Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2018, 13, 417-425.	1.2	64
1282	Hematopoietic Stem Cell Transplantation in the Era of Engineered Cell Therapy. Current Hematologic Malignancy Reports, 2018, 13, 484-493.	1.2	7
1283	A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell, 2018, 175, 313-326.	13.5	985
1284	The promise and challenges of chimeric antigen receptor T cells in relapsed B-cell acute lymphoblastic leukemia. Annals of Translational Medicine, 2018, 6, 235-235.	0.7	6
1285	Cytokine release syndrome. Journal of Oncological Science, 2018, 4, 134-141.	0.1	11
1286	Tisagenlecleucel-T for the treatment of acute lymphocytic leukemia. Expert Opinion on Biological Therapy, 2018, 18, 1095-1106.	1.4	6
1287	Cryopreservation of Human Adipose-Derived Stem Cells for Use in Ex Vivo Regional Gene Therapy for Bone Repair. Human Gene Therapy Methods, 2018, 29, 269-277.	2.1	10
1288	In situ administration of cytokine combinations induces tumor regression in mice. EBioMedicine, 2018, 37, 38-46.	2.7	10
1289	Chimeric Antigen Receptors Based on Low Affinity Mutants of Fc $\hat{l}\mu$ RI Re-direct T Cell Specificity to Cells Expressing Membrane IgE. Frontiers in Immunology, 2018, 9, 2231.	2.2	16
1290	Anti-CD19 Chimeric Antigen Receptor T Cell Therapies: Harnessing the Power of the Immune System to Fight Diffuse Large B Cell Lymphoma. Current Hematologic Malignancy Reports, 2018, 13, 534-542.	1.2	14

#	ARTICLE	IF	CITATIONS
1291	Divining T-cell targets for cancer immunotherapy. Blood, 2018, 132, 1861-1863.	0.6	1
1292	Engineering CAR-T Cells for Improved Function Against Solid Tumors. Frontiers in Immunology, 2018, 9, 2493.	2.2	67
1293	Optimizing regulatory T cells for therapeutic application in human organ transplantation. Current Opinion in Organ Transplantation, 2018, 23, 516-523.	0.8	6
1294	InÂVivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas. Molecular Therapy, 2018, 26, 2727-2737.	3.7	180
1296	Adoptive cell transfer: new perspective treatment in veterinary oncology. Acta Veterinaria Scandinavica, 2018, 60, 60.	0.5	11
1297	Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Frontiers in Immunology, 2018, 9, 2486.	2.2	169
1298	Acoustic mechanogenetics. Current Opinion in Biomedical Engineering, 2018, 7, 64-70.	1.8	17
1300	Switchable control over in vivo CAR T expansion, B cell depletion, and induction of memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10898-E10906.	3.3	73
1301	CAR-T immunotherapy: how will it change treatment for acute lymphoblastic leukemia and beyond?. Expert Opinion on Orphan Drugs, 2018, 6, 563-566.	0.5	4
1302	Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight, 2018, 3, .	2.3	150
1303	Activating PAX gene family paralogs to complement PAX5 leukemia driver mutations. PLoS Genetics, 2018, 14, e1007642.	1.5	3
1304	Neurotoxicity after CTL019 in a pediatric and young adult cohort. Annals of Neurology, 2018, 84, 537-546.	2.8	82
1305	An RNA toolbox for cancer immunotherapy. Nature Reviews Drug Discovery, 2018, 17, 751-767.	21.5	171
1306	The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death and Disease, 2018, 9, 897.	2.7	90
1307	The development of CAR design for tumor CAR-T cell therapy. Oncotarget, 2018, 9, 13991-14004.	0.8	31
1308	Flow Cytometric Monitoring for Residual Disease in B Lymphoblastic Leukemia Post T Cell Engaging Targeted Therapies. Current Protocols in Cytometry, 2018, 86, e44.	3.7	27
1309	Nivolumab-induced cytokine-release syndrome in relapsed/refractory Hodgkin's lymphoma: a case report and literature review. Immunotherapy, 2018, 10, 913-917.	1.0	24
1310	Chimeric Antigen Receptor T Cells: Extending Translation from Liquid to Solid Tumors. Human Gene Therapy, 2018, 29, 1083-1097.	1.4	11

#	Article	IF	Citations
1311	Are CAR T cells better than antibody or HCT therapy in B-ALL?. Hematology American Society of Hematology Education Program, 2018, 2018, 16-24.	0.9	21
1312	No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Hematology American Society of Hematology Education Program, 2018, 2018, 25-34.	0.9	29
1313	No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Blood Advances, 2018, 2, 3393-3403.	2.5	41
1314	Cell-Based Therapies. , 2018, , 175-191.		1
1315	Chimeric antigen receptor-engineered T-cell therapy for liver cancer. Hepatobiliary and Pancreatic Diseases International, 2018, 17, 301-309.	0.6	59
1316	Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nature Medicine, 2018, 24, 739-748.	15.2	947
1317	Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System. Cellular Physiology and Biochemistry, 2018, 47, 441-457.	1.1	11
1319	Evolution of CLL treatment — from chemoimmunotherapy to targeted and individualized therapy. Nature Reviews Clinical Oncology, 2018, 15, 510-527.	12.5	114
1320	Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Therapy, 2018, 25, 176-191.	2.3	54
1321	Adoptive cell transfer using autologous tumor infiltrating lymphocytes in gynecologic malignancies. Gynecologic Oncology, 2018, 150, 361-369.	0.6	28
1322	Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS Nano, 2018, 12, 6563-6576.	7.3	24
1323	Diagnosis and management of pulmonary toxicity associated with cancer immunotherapy. Lancet Respiratory Medicine, the, 2018, 6, 472-478.	5.2	64
1324	Cardiac Profile of Chimeric Antigen Receptor T Cell Therapy in Children: A Single-Institution Experience. Biology of Blood and Marrow Transplantation, 2018, 24, 1590-1595.	2.0	100
1325	Predicting Dangerous Rides in CAR T Cells: Bridging the Gap between Mice and Humans. Molecular Therapy, 2018, 26, 1401-1403.	3.7	14
1327	Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science, 2018, 361, 156-162.	6.0	343
1328	Selective Cell Capture and Release Using Antibody-Immobilized Polymer-Grafted Surface. Kobunshi Ronbunshu, 2018, 75, 155-163.	0.2	2
1329	Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment. Cancer Research, 2018, 78, 5011-5022.	0.4	224
1330	Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. Journal of Immunology Research, 2018, 2018, 1-10.	0.9	102

#	Article	IF	CITATIONS
1331	Rituximab Induced Pulmonary Edema Managed with Extracorporeal Life Support. Case Reports in Critical Care, 2018, 2018, 1-4.	0.2	1
1332	Pediatric Cancer Immunotherapy: Opportunities and Challenges. Paediatric Drugs, 2018, 20, 395-408.	1.3	76
1333	Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell, 2018, 23, 181-192.e5.	5.2	634
1334	Immunotherapies: Exploiting the Immune System for Cancer Treatment. Journal of Immunology Research, 2018, 2018, 1-16.	0.9	89
1335	Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 2018, 379, 64-73.	13.9	1,488
1336	Nephrotoxicity of Cancer Immunotherapies: Past, Present and Future. Journal of the American Society of Nephrology: JASN, 2018, 29, 2039-2052.	3.0	121
1337	Automated Expansion of Primary Human T Cells in Scalable and Cellâ€Friendly Hydrogel Microtubes for Adoptive Immunotherapy. Advanced Healthcare Materials, 2018, 7, e1701297.	3.9	19
1338	Neurologic Complications of Systemic Anticancer Therapy. Neurologic Clinics, 2018, 36, 627-651.	0.8	5
1339	Second allogeneic hematopoietic cell transplantation enables long-term disease-free survival in relapsed acute leukemia. Annals of Hematology, 2018, 97, 2491-2500.	0.8	25
1340	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	2.2	155
1341	The promise of CAR T-cell therapy in aggressive B-cell lymphoma. Best Practice and Research in Clinical Haematology, 2018, 31, 293-298.	0.7	44
1342	Integration Mapping of piggyBac-Mediated CD19 Chimeric Antigen Receptor T Cells Analyzed by Novel Tagmentation-Assisted PCR. EBioMedicine, 2018, 34, 18-26.	2.7	30
1343	Cancer immunotherapy with CAR-T cells – behold the future. Clinical Medicine, 2018, 18, 324-328.	0.8	32
1344	Novel Therapies in Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2018, 13, 289-299.	1.2	41
1345	Cathepsin G Is Expressed by Acute Lymphoblastic Leukemia and Is a Potential Immunotherapeutic Target. Frontiers in Immunology, 2017, 8, 1975.	2.2	18
1346	Current Status of Gene Engineering Cell Therapeutics. Frontiers in Immunology, 2018, 9, 153.	2.2	32
1347	Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2018, 9, 239.	2.2	35
1348	Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Frontiers in Immunology, 2018, 9, 283.	2.2	213

#	Article	IF	CITATIONS
1349	Characterizing the Role of Monocytes in T Cell Cancer Immunotherapy Using a 3D Microfluidic Model. Frontiers in Immunology, 2018, 9, 416.	2.2	91
1350	Overcoming Resistance of Human Non-Hodgkin's Lymphoma to CD19-CAR CTL Therapy by Celecoxib and Histone Deacetylase Inhibitors. Cancers, 2018, 10, 200.	1.7	36
1351	Advances on chimeric antigen receptor-modified T-cell therapy for oncotherapy. Molecular Cancer, 2018, 17, 91.	7.9	60
1352	CART cells are prone to Fas- and DR5-mediated cell death. , 2018, 6, 71.		53
1353	Current Strategies to Enhance Anti-Tumour Immunity. Biomedicines, 2018, 6, 37.	1.4	11
1354	CAR T Cells with Enhanced Sensitivity to B Cell Maturation Antigen for the Targeting of B Cell Non-Hodgkin's Lymphoma and Multiple Myeloma. Molecular Therapy, 2018, 26, 1906-1920.	3.7	38
1355	Versatile CAR T-cells for cancer immunotherapy. Wspolczesna Onkologia, 2018, 2018, 73-80.	0.7	13
1356	Bioprocesses for Cell Therapies. , 2018, , 899-930.		5
1357	CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment. Cancer Discovery, 2018, 8, 924-934.	7.7	173
1358	New Immunotherapies in Oncology Treatment and Their Side Effect Profiles. Journal of the American Board of Family Medicine, 2018, 31, 620-627.	0.8	7
1359	Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mammalian Genome, 2018, 29, 739-756.	1.0	33
1360	Vaccine Therapy of High-Grade Gliomas. Progress in Neurological Surgery, 2018, 32, 101-111.	1.3	4
1361	Influence of Retronectin-Mediated T-Cell Activation on Expansion and Phenotype of CD19-Specific Chimeric Antigen Receptor T Cells. Human Gene Therapy, 2018, 29, 1167-1182.	1.4	19
1362	Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight, 2018, 3, .	2.3	412
1363	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	1.6	189
1364	Safety Strategies of Genetically Engineered T Cells in Cancer Immunotherapy. Current Pharmaceutical Design, 2018, 24, 78-83.	0.9	7
1365	Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Experimental Hematology, 2018, 66, 5-16.	0.2	5
1366	Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice. Medical Oncology, 2018, 35, 84.	1.2	7

#	Article	IF	CITATIONS
1367	Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood, 2018, 131, 2630-2639.	0.6	9
1368	Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Molecular Cancer, 2018, 17, 7.	7.9	63
1369	Enhanced clinical-scale manufacturing of TCR transduced T-cells using closed culture system modules. Journal of Translational Medicine, 2018, 16, 13.	1.8	35
1370	Anti-GD2/4-1BB chimeric antigen receptor T cell therapy for the treatment of Chinese melanoma patients. Journal of Hematology and Oncology, 2018, 11, 1.	6.9	196
1371	CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. Journal of Hematology and Oncology, 2018, 11, 7.	6.9	124
1372	Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. Journal of Hematology and Oncology, 2018, 11, 35.	6.9	302
1373	CD19 CAR-T cell therapy for relapsed/refractory acute lymphoblastic leukemia: factors affecting toxicities and long-term efficacies. Journal of Hematology and Oncology, 2018, 11, 41.	6.9	44
1374	Adoptive T cell therapy: points to consider. Current Opinion in Immunology, 2018, 51, 197-203.	2.4	41
1375	Human CD19-Targeted Mouse T Cells Induce B Cell Aplasia and Toxicity in Human CD19 Transgenic Mice. Molecular Therapy, 2018, 26, 1423-1434.	3.7	37
1377	CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. , 2018, 6, 34.		85
1378	Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opinion on Biological Therapy, 2018, 18, 653-664.	1.4	26
1379	Therapeutic Vaccines for Genitourinary Malignancies. Vaccines, 2018, 6, 55.	2.1	9
1380	Nanobody Based Dual Specific CARs. International Journal of Molecular Sciences, 2018, 19, 403.	1.8	88
1381	Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells. OncoTargets and Therapy, 2018, Volume 11, 1767-1776.	1.0	26
1382	CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Molecular and Cellular Biology, 2018, 38, .	1.1	55
1383	Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Frontiers in Immunology, 2018, 9, 1717.	2.2	51
1384	Tisagenlecleucel for the treatment of B-cell acute lymphoblastic leukemia. Expert Review of Anticancer Therapy, 2018, 18, 959-971.	1.1	19
1385	A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Molecular Therapy, 2018, 26, 2487-2495.	3.7	72

#	Article	IF	CITATIONS
1386	Donor-derived CAR-T Cells Serve as a Reduced-intensity Conditioning Regimen for Haploidentical Stem Cell Transplantation in Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia: Case Report and Review of the Literature. Journal of Immunotherapy, 2018, 41, 306-311.	1.2	25
1387	Development of MGD007, a gpA33 x CD3-Bispecific DART Protein for T-Cell Immunotherapy of Metastatic Colorectal Cancer. Molecular Cancer Therapeutics, 2018, 17, 1761-1772.	1.9	61
1388	CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.	15.2	1,030
1389	Cancer immunotherapy: broadening the scope of targetable tumours. Open Biology, 2018, 8, .	1.5	162
1390	Exosomes in Cancer Immunotherapy. , 2018, , 313-324.		0
1391	Apoptosis of CD19+ chimeric antigen receptor T cells after treatment with chemotherapeutic agents. Molecular Medicine Reports, 2018, 18, 179-183.	1.1	0
1392	Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2018, 2, 377-391.	11.6	267
1393	New Treatment Modalities for the Management of Peritoneal Metastases. , 2018, , 469-506.		4
1394	Locoregional and Palliative Therapies for Patients with Unresectable Peritoneal Metastases. , 2018, , 527-559.		1
1395	Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design. PLoS ONE, 2018, 13, e0197349.	1.1	60
1396	Extramedullary relapse and discordant CD19 expression between bone marrow and extramedullary sites in relapsed acute lymphoblastic leukemia after blinatumomab treatment. Current Problems in Cancer, 2019, 43, 222-227.	1.0	22
1397	Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 45-63.	12.5	178
1398	Prevention and treatment of relapse after stem cell transplantation by cellular therapies. Bone Marrow Transplantation, 2019, 54, 26-34.	1.3	14
1399	Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia, 2019, 33, 64-74.	3.3	212
1400	Hemophagocytic lymphohistiocytosis in adults. Leukemia and Lymphoma, 2019, 60, 19-28.	0.6	31
1401	Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Human Gene Therapy, 2019, 30, 168-178.	1.4	81
1402	Using CRISPR/Cas9 to Knock Out GM-CSF in CAR-T Cells. Journal of Visualized Experiments, 2019, , .	0.2	24
1403	SOHO State of the Art Updates and Next Questions: T-Cell–Directed Immune Therapies for Multiple Myeloma: Chimeric Antigen Receptor–Modified T Cells and Bispecific T-Cell–Engaging Agents. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 537-544.	0.2	18

#	Article	IF	CITATIONS
1404	Cancer immunotherapy: Adoptive cell therapies, cytokine-related toxicities, and the kidneys. Journal of Onco-Nephrology, 2019, 3, 131-143.	0.3	0
1405	Conjugated CAR T cell one step beyond conventional CAR T cell for a promising cancer immunotherapy. Cellular Immunology, 2019, 345, 103963.	1.4	9
1406	Individual Patient Data Meta-Analysis from 16 Trials for Safety Factors in Cytokine Release Syndrome After CAR-T Therapy in Patients with Non-Hodgkin Lymphoma (NHL) and Acute Lymphoblastic Leukemia. Advances in Therapy, 2019, 36, 2881-2894.	1.3	8
1407	Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplantation, 2019, 54, 785-788.	1.3	7 5
1408	Updates and rationale of clinical trials in multiple myeloma. Advances in Cell and Gene Therapy, 2019, 2, e59.	0.6	0
1409	Development of adaptive immune effector therapies in solid tumors. Annals of Oncology, 2019, 30, 1740-1750.	0.6	35
1410	Chimeric antigen receptor T-cell therapy for the treatment of aggressive B-cell non-Hodgkin lymphomas: efficacy, toxicity, and comparative chimeric antigen receptor products. Expert Opinion on Biological Therapy, 2019, 19, 1157-1164.	1.4	14
1411	TREM1/Dap12-based CAR-T cells show potent antitumor activity. Immunotherapy, 2019, 11, 1043-1055.	1.0	24
1412	Pharmacotherapy in Pediatric Hematopoietic Cell Transplantation. Handbook of Experimental Pharmacology, 2019, 261, 471-489.	0.9	1
1413	Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Molecular Cancer, 2019, 18, 125.	7.9	201
1414	Special delivery: Engineered endothelial cells for pulmonary arterial hypertension. Respirology, 2019, 24, 1042-1043.	1.3	1
1415	Humanized CD19-specific chimeric antigen-receptor T-cells in 2 adults with newly diagnosed B-cell acute lymphoblastic leukemia. Leukemia, 2019, 33, 2751-2753.	3.3	12
1416	Antiâ€CD19 chimeric antigen receptorâ€modified Tâ€cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory Bâ€cell acute lymphoblastic leukemia: An openâ€label pragmatic clinical trial. American Journal of Hematology, 2019, 94, 1113-1122.	2.0	97
1417	T cells expressing NKG2D chimeric antigen receptors efficiently eliminate glioblastoma and cancer stem cells., 2019, 7, 171.		60
1418	A long way to the battlefront: CAR T cell therapy against solid cancers. Journal of Cancer, 2019, 10, 3112-3123.	1.2	26
1419	Primary central nervous system lymphoma: Novel precision therapies. Critical Reviews in Oncology/Hematology, 2019, 141, 139-145.	2.0	9
1420	At the end of the beginning: immunotherapies as living drugs. Nature Immunology, 2019, 20, 955-962.	7.0	4
1421	Treatment with Humanized Selective CD19CAR-T Cells Shows Efficacy in Highly Treated B-ALL Patients Who Have Relapsed after Receiving Murine-Based CD19CAR-T Therapies. Clinical Cancer Research, 2019, 25, 5595-5607.	3.2	38

#	Article	IF	Citations
1422	Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Science Advances, 2019, 5, eaaw5096.	4.7	87
1423	Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies, 2019, 8, 41.	1.2	90
1424	Multi-Specific CAR Targeting to Prevent Antigen Escape. Current Hematologic Malignancy Reports, 2019, 14, 451-459.	1.2	13
1425	Genomics-Guided Immunotherapy for Precision Medicine in Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2019, 34, 487-497.	0.7	20
1426	An oligo-His-tag of a targeting module does not influence its biodistribution and the retargeting capabilities of UniCAR T cells. Scientific Reports, 2019, 9, 10547.	1.6	14
1427	Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986269.	1.4	75
1428	Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncology, The, 2019, 20, e443-e451.	5.1	66
1429	Adoptive CD8+ T cell therapy against cancer: Challenges and opportunities. Cancer Letters, 2019, 462, 23-32.	3.2	87
1430	Cellular therapy: Immuneâ€related complications. Immunological Reviews, 2019, 290, 114-126.	2.8	55
1431	Immunobiology of chimeric antigen receptor T cells and novel designs. Immunological Reviews, 2019, 290, 100-113.	2.8	16
1432	Genomic modeling of hepatitis B virus integration frequency in the human genome. PLoS ONE, 2019, 14, e0220376.	1.1	34
1433	CAR T cells take centre stage. Clinical and Translational Immunology, 2019, 8, e01068.	1.7	1
1434	Cancer Immunoediting and Hijacking of the Immune System. Learning Materials in Biosciences, 2019, , 117-139.	0.2	0
1435	NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nature Communications, 2019, 10, 2839.	5.8	114
1436	Delivery Methods for Treatment of Genetic Disorders. , 2019, , 447-461.		0
1437	Induced Pluripotent Stem Cell-Derived T Cells for Cancer Immunotherapy. Surgical Oncology Clinics of North America, 2019, 28, 489-504.	0.6	7
1438	Future Research Goals in Immunotherapy. Surgical Oncology Clinics of North America, 2019, 28, 505-518.	0.6	2
1439	Graft Engineering and Adoptive Immunotherapy: New Approaches to Promote Immune Tolerance After Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2019, 10, 1342.	2.2	33

#	Article	IF	CITATIONS
1440	Application of immune repertoire sequencing in cancer immunotherapy. International Immunopharmacology, 2019, 74, 105688.	1.7	7
1441	Engineering switchable and programmable universal CARs for CAR T therapy. Journal of Hematology and Oncology, 2019, 12, 69.	6.9	65
1442	An AND-Gated Drug and Photoactivatable Cre- <i>loxP</i> System for Spatiotemporal Control in Cell-Based Therapeutics. ACS Synthetic Biology, 2019, 8, 2359-2371.	1.9	26
1443	Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Seminars in Immunology, 2019, 42, 101306.	2.7	17
1444	Immunotherapy for pediatric brain tumors: past and present. Neuro-Oncology, 2019, 21, 1226-1238.	0.6	32
1445	Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma. , 2019, 7, 276.		101
1446	MLL-Rearranged Acute Leukemia with $t(4;11)(q21;q23)$ â \in "Current Treatment Options. Is There a Role for CAR-T Cell Therapy?. Cells, 2019, 8, 1341.	1.8	49
1447	Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental Medicine and Biology, 2019, , .	0.8	O
1448	Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Frontiers in Immunology, 2019, 10, 2664.	2.2	214
1449	Recent updates on CAR T clinical trials for multiple myeloma. Molecular Cancer, 2019, 18, 154.	7.9	71
1450	Preclinical development of T-cell receptor-engineered T-cell therapy targeting the 5T4 tumor antigen on renal cell carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 1979-1993.	2.0	17
1451	Evidence of longâ€lasting anti D19 activity of engrafted CD19 chimeric antigen receptor–modified T cells in a phase I study targeting pediatrics with acute lymphoblastic leukemia. Hematological Oncology, 2019, 37, 601-608.	0.8	36
1452	Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Medicina Intensiva (English Edition), 2019, 43, 480-488.	0.1	1
1453	CD3 bispecific antibody–induced cytokine release is dispensable for cytotoxic T cell activity. Science Translational Medicine, 2019, 11, .	5.8	117
1454	Chimeric antigen receptor modified T cell (CAR-T) co-expressed with ICOSL-41BB promote CAR-T proliferation and tumor rejection. Biomedicine and Pharmacotherapy, 2019, 118, 109333.	2.5	16
1455	B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma. Molecular Therapy - Oncolytics, 2019, 14, 279-287.	2.0	120
1456	Clinical lessons learned from the first leg of the CART cell journey. Nature Medicine, 2019, 25, 1341-1355.	15.2	400
1457	A Distinct Subset of Highly Proliferative and Lentiviral Vector (LV)-Transducible NK Cells Define a Readily Engineered Subset for Adoptive Cellular Therapy. Frontiers in Immunology, 2019, 10, 2001.	2.2	51

#	Article	IF	CITATIONS
1458	Genetically engineered T cells for cancer immunotherapy. Signal Transduction and Targeted Therapy, 2019, 4, 35.	7.1	153
1459	Debate: Transplant is Still Necessary in the Era of Targeted Cellular Therapy for ALL. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, S55-S59.	0.2	O
1460	Immunotherapeutic Challenges for Pediatric Cancers. Molecular Therapy - Oncolytics, 2019, 15, 38-48.	2.0	26
1461	\hat{I}^3 -Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood, 2019, 134, 1585-1597.	0.6	209
1462	Cell-based therapy for idiopathic pulmonary fibrosis. Stem Cell Investigation, 2019, 6, 22-22.	1.3	24
1463	Management of cytokine release syndrome related to CAR-T cell therapy. Frontiers of Medicine, 2019, 13, 610-617.	1.5	83
1464	Defining precision cellular immunotherapyâ€"seeking biomarkers to predict and optimize outcomes of T cell therapies in cancer. Precision Cancer Medicine, 2019, 2, 25-25.	1.8	1
1465	Current Perspectives in Cancer Immunotherapy. Cancers, 2019, 11, 1472.	1.7	149
1466	CAR-T Engineering: Optimizing Signal Transduction and Effector Mechanisms. BioDrugs, 2019, 33, 647-659.	2.2	20
1467	New Insights into Immunotherapy Strategies for Treating Autoimmune Diabetes. International Journal of Molecular Sciences, 2019, 20, 4789.	1.8	24
1468	Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 2019, 35, 150923.	0.7	241
1470	Development of an IL-6 point-of-care assay: utility for real-time monitoring and management of cytokine release syndrome and sepsis. Bioanalysis, 2019, 11, 1777-1785.	0.6	25
1471	CAR Talk: How Cancer-Specific CAR T Cells Can Instruct How to Build CAR T Cells to Cure HIV. Frontiers in Immunology, 2019, 10, 2310.	2.2	26
1472	Industry's Giant Leap Into Cellular Therapy: Catalyzing Chimeric Antigen Receptor T Cell (CAR-T) Immunotherapy. Current Hematologic Malignancy Reports, 2019, 14, 47-55.	1.2	12
1473	Cytokine Release Syndrome With the Novel Treatments of Acute Lymphoblastic Leukemia: Pathophysiology, Prevention, and Treatment. Current Oncology Reports, 2019, 21, 4.	1.8	26
1474	Engineering and Design of Chimeric Antigen Receptors. Molecular Therapy - Methods and Clinical Development, 2019, 12, 145-156.	1.8	281
1475	Targeting the niche: depleting haemopoietic stem cells with targeted therapy. Bone Marrow Transplantation, 2019, 54, 961-968.	1.3	9
1476	B-cell depleting immunotherapies: therapeutic opportunities and toxicities. Expert Review of Clinical Immunology, 2019, 15, 497-509.	1.3	3

#	Article	IF	Citations
1477	Chimeric antigen receptor T cell targeting B cell maturation antigen immunotherapy is promising for multiple myeloma. Annals of Hematology, 2019, 98, 813-822.	0.8	26
1479	Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination. Oncolmmunology, 2019, 8, e1565236.	2.1	7
1480	Dendritic Cell-Targeted pH-Responsive Extracellular Vesicles for Anticancer Vaccination. Pharmaceutics, 2019, 11, 54.	2.0	27
1481	Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells, 2019, 8, 103.	1.8	37
1482	Immunotherapy in pediatric B-cell acute lymphoblastic leukemia. Human Immunology, 2019, 80, 400-408.	1.2	22
1483	Transcriptome and Regulatory Network Analyses of CD19-CAR-T Immunotherapy for B-ALL. Genomics, Proteomics and Bioinformatics, 2019, 17, 190-200.	3.0	33
1484	Immune precision medicine for cancer: a novel insight based on the efficiency of immune effector cells. Cancer Communications, 2019, 39, 1-16.	3.7	49
1485	Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today, 2019, 27, 28-47.	6.2	34
1486	Mesothelin-targeted CAR-T cells for adoptive cell therapy of solid tumors. Archives of Medical Science, 2019, 17, 1213-1220.	0.4	2
1487	CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Seminars in Cell and Developmental Biology, 2019, 96, 32-43.	2.3	9
1488	Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia, 2019, 33, 2254-2265.	3.3	70
1489	Target selection for CAR-T therapy. Journal of Hematology and Oncology, 2019, 12, 62.	6.9	118
1490	Longitudinal immunosequencing in healthy people reveals persistent T cell receptors rich in highly public receptors. BMC Immunology, 2019, 20, 19.	0.9	42
1491	Chimeric Antigen Receptor (CAR) T-Cell Therapy in the Pediatric Critical Care., 2019, , 1-13.		1
1492	Molecular and Cell Biology of Cancer. Learning Materials in Biosciences, 2019, , .	0.2	3
1493	CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering. Biotechnology Advances, 2019, 37, 107411.	6.0	12
1494	Recent perspective on CAR and Fcî ³ -CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochemical Pharmacology, 2019, 166, 335-346.	2.0	20
1495	Supercharging adoptive T cell therapy to overcome solid tumor–induced immunosuppression. Science Translational Medicine, 2019, 11, .	5.8	100

#	Article	IF	CITATIONS
1496	Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. Journal of Autoimmunity, 2019, 103, 102289.	3.0	115
1497	Pediatric Cardio-Oncology: Development of Cancer Treatment-Related Cardiotoxicity and the Therapeutic Approach to Affected Patients. Current Treatment Options in Oncology, 2019, 20, 56.	1.3	17
1498	Development of CAR-T cells for long-term eradication and surveillance of HIV-1 reservoir. Current Opinion in Virology, 2019, 38, 21-30.	2.6	28
1499	The road map of cancer precision medicine with the innovation of advanced cancer detection technology and personalized immunotherapy. Japanese Journal of Clinical Oncology, 2019, 49, 596-603.	0.6	10
1500	Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3–Targeted Chimeric Antigen Receptor–Engineered T Cells in Hepatocellular Carcinoma. Journal of Immunology, 2019, 203, 198-207.	0.4	95
1501	IL12 Abrogates Calcineurin-Dependent Immune Evasion during Leukemia Progression. Cancer Research, 2019, 79, 3702-3713.	0.4	7
1502	The efficacy of anti-CD19 chimeric antigen receptor T cells for B-cell malignancies. Cytotherapy, 2019, 21, 769-781.	0.3	17
1503	Cancer Treatment-Related Lung Injury. , 2019, , 1-26.		0
1504	EBV-positive primary CNS lymphoma restricted to the conus medullaris in an immunocompetent host. Neurology: Clinical Practice, 2019, 9, 456-458.	0.8	0
1505	Prognostic impact of cytogenetic abnormalities in adult patients with Philadelphia chromosome-negative ALL who underwent an allogeneic transplant. Bone Marrow Transplantation, 2019, 54, 2020-2026.	1.3	3
1506	T cell immunotherapy enhanced by designer biomaterials. Biomaterials, 2019, 217, 119265.	5.7	40
1507	Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Letters, 2019, 460, 1-9.	3.2	156
1508	Treatment of patients with relapsed or refractory CD19+ lymphoid disease with T lymphocytes transduced by RV-SFG.CD19.CD28.4-1BBzeta retroviral vector: a unicentre phase I/II clinical trial protocol. BMJ Open, 2019, 9, e026644.	0.8	27
1509	Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells, 2019, 8, 472.	1.8	122
1510	Combined Antitumor Effects of Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma. Molecular Therapy, 2019, 27, 1483-1494.	3.7	100
1511	Derivation of mimetic $\hat{I}^3\hat{I}$ T cells endowed with cancer recognition receptors from reprogrammed $\hat{I}^3\hat{I}$ T cell. PLoS ONE, 2019, 14, e0216815.	1.1	22
1512	Modulation of Target Antigen Density Improves CAR T-cell Functionality and Persistence. Clinical Cancer Research, 2019, 25, 5329-5341.	3.2	130
1513	The promise of Immuno-oncology: implications for defining the value of cancer treatment. , 2019, 7, 129.		66

#	Article	IF	CITATIONS
1514	Hypoxia Selectively Impairs CAR-T Cells In Vitro. Cancers, 2019, 11, 602.	1.7	55
1515	The UniCAR system: A modular CAR T cell approach to improve the safety of CAR T cells. Immunology Letters, 2019, 211, 13-22.	1.1	77
1516	Can Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Predict Chimeric Antigen Receptor T Cell Adverse Effects?. Biology of Blood and Marrow Transplantation, 2019, 25, e187-e188.	2.0	1
1517	Integrated cancer tissue engineering models for precision medicine. PLoS ONE, 2019, 14, e0216564.	1.1	57
1518	Study on the Prognostic Value of Aberrant Antigen in Patients With Acute B Lymphocytic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e349-e358.	0.2	8
1519	The Discovery of Biomarkers in Cancer Immunotherapy. Computational and Structural Biotechnology Journal, 2019, 17, 484-497.	1.9	31
1520	A Metabolism Toolbox for CAR T Therapy. Frontiers in Oncology, 2019, 9, 322.	1.3	54
1521	Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 168.	3.5	46
1522	CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Advanced Drug Delivery Reviews, 2019, 141, 41-46.	6.6	29
1523	Perspectives on the Use of a Medium-Dose Etoposide, Cyclophosphamide, and Total Body Irradiation Conditioning Regimen in Allogeneic Hematopoietic Stem Cell Transplantation: The Japanese Experience from 1993 to Present. Journal of Clinical Medicine, 2019, 8, 569.	1.0	6
1524	Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Annals of Hematology, 2019, 98, 1721-1732.	0.8	77
1526	The nephrotoxicity of new immunotherapies. Expert Review of Clinical Pharmacology, 2019, 12, 513-521.	1.3	12
1527	<p>Chimeric antigen receptor (CAR) T-cell therapy as a treatment option for patients with B-cell lymphomas: perspectives on the therapeutic potential of Axicabtagene ciloleucel</p> . Cancer Management and Research, 2019, Volume 11, 2393-2404.	0.9	14
1528	Unintended consequences of evolution of the Common Terminology Criteria for Adverse Events. Pediatric Blood and Cancer, 2019, 66, e27747.	0.8	40
1529	Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 162.	3.5	116
1530	Targeting Interleukin-6 Signaling in Clinic. Immunity, 2019, 50, 1007-1023.	6.6	570
1531	Inotuzumab ozogamicin in clinical development for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Biomarker Research, 2019, 7, 9.	2.8	19
1532	Oblayed remission following sequential infusion of humanized CD19- and CD22-modified CAR-T cells in a patient with relapsed/refractory acute lymphoblastic leukemia and prior exposure to murine-derived CD19-directed CAR-T cells (p) Delayed CD19- and CD22-modified CAR-T cell	1.0	14

#	Article	IF	CITATIONS
1533	When CAR Meets Stem Cells. International Journal of Molecular Sciences, 2019, 20, 1825.	1.8	7
1534	Aptamerâ€Engineered Natural Killer Cells for Cellâ€Specific Adaptive Immunotherapy. Small, 2019, 15, e1900903.	5.2	58
1535	Hypersensitivity to monoclonal antibodies used for cancer and inflammatory or connective tissue diseases. Annals of Allergy, Asthma and Immunology, 2019, 123, 35-41.	0.5	21
1536	Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal of Molecular Sciences, 2019, 20, 1283.	1.8	296
1537	Theranostic CAR T cell targeting: A brief review. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 533-540.	0.5	20
1538	Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain, 2019, 142, 1334-1348.	3.7	166
1539	Engineering advanced cancer therapies with synthetic biology. Nature Reviews Cancer, 2019, 19, 187-195.	12.8	46
1540	Mechanisms of resistance to CAR T cell therapy. Nature Reviews Clinical Oncology, 2019, 16, 372-385.	12.5	518
1541	Meeting the Challenge of Targeting Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 16.	1.8	109
1542	In Vitro Tumor Cell Rechallenge For Predictive Evaluation of Chimeric Antigen Receptor T Cell Antitumor Function. Journal of Visualized Experiments, 2019, , .	0.2	19
1543	Tisagenlecleucel Modelâ€Based Cellular Kinetic Analysis of Chimeric Antigen Receptor–T Cells. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 285-295.	1.3	83
1544	Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells. Cytotherapy, 2019, 21, 566-578.	0.3	23
1545	Multi Targeted CAR-T Cell Therapies for B-Cell Malignancies. Frontiers in Oncology, 2019, 9, 146.	1.3	123
1546	The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Frontiers in Oncology, 2019, 9, 176.	1.3	64
1547	Relapsed Bâ€acute lymphoblastic leukemia with aberrant myeloperoxidase expression following CAR Tâ€cell therapy: A diagnostic challenge. American Journal of Hematology, 2019, 94, 1049-1051.	2.0	11
1548	Targeting immune cells for cancer therapy. Redox Biology, 2019, 25, 101174.	3.9	151
1549	<p>Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy</p> . Therapeutics and Clinical Risk Management, 2019, Volume 15, 323-335.	0.9	110
1551	Development of an Interleukin-12 Fusion Protein That Is Activated by Cleavage with Matrix Metalloproteinase 9. Journal of Interferon and Cytokine Research, 2019, 39, 233-245.	0.5	21

#	Article	IF	CITATIONS
1552	Accelerating chimeric antigen receptor therapy in chronic lymphocytic leukemia: The development and challenges of chimeric antigen receptor Tâ€eell therapy for chronic lymphocytic leukemia. American Journal of Hematology, 2019, 94, S10-S17.	2.0	22
1553	CAR T Cell Immunotherapy in Human and Veterinary Oncology: Changing the Odds Against Hematological Malignancies. AAPS Journal, 2019, 21, 50.	2.2	13
1554	Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype. Cytotherapy, 2019, 21, 593-602.	0.3	30
1555	Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfusion Medicine and Hemotherapy, 2019, 46, 15-24.	0.7	107
1556	T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. Frontiers in Physics, 2019, 7, .	1.0	44
1557	Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. Journal of Experimental Medicine, 2019, 216, 1038-1049.	4.2	109
1558	Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerging Topics in Life Sciences, 2019, 3, 261-275.	1.1	2
1559	Between Innate and Adaptive Immune Responses: NKG2A, NKG2C, and CD8+ T Cell Recognition of HLA-E Restricted Self-Peptides Acquired in the Absence of HLA-Ia. International Journal of Molecular Sciences, 2019, 20, 1454.	1.8	6
1560	Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Review of Hematology, 2019, 12, 195-205.	1.0	63
1561	Engineering for Success: Approaches to Improve Chimeric Antigen Receptor TÂCell Therapy for Solid Tumors. Drugs, 2019, 79, 401-415.	4.9	17
1562	Order of administration of combination cytokine therapies can decouple toxicity from efficacy in syngeneic mouse tumor models. Oncolmmunology, 2019, 8, e1558678.	2.1	10
1563	Fueling Cancer Immunotherapy With Common Gamma Chain Cytokines. Frontiers in Immunology, 2019, 10, 263.	2.2	69
1564	Immunotherapy for Neuroblastoma. , 2019, , 147-173.		4
1565	Anti-CD19 chimeric antigen receptors T cells for the treatment of relapsed or refractory E2A-PBX1 positive acute lymphoblastic leukemia: report of three cases. Leukemia and Lymphoma, 2019, 60, 1454-1461.	0.6	8
1566	A strategy for generating cancer-specific monoclonal antibodies to aberrantO-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology, 2019, 29, 307-319.	1.3	17
1567	Case report: Impact of <scp>BITE </scp> on <scp>CAR </scp> †Cell expansion. Advances in Cell and Gene Therapy, 2019, 2, e50.	0.6	7
1568	A Novel Form of 4-1BBL Prevents Cancer Development via Nonspecific Activation of CD4+ T and Natural Killer Cells. Cancer Research, 2019, 79, 783-794.	0.4	14
1569	Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. Journal of Hematology and Oncology, 2019, 12, 17.	6.9	80

#	ARTICLE	IF	CITATIONS
1570	Febrile Hypotensive Reactions Following ABVD Chemotherapy in Patients With EBV-associated Classical Hodgkin Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e123-e128.	0.2	1
1571	Clinical trial update on bispecific antibodies, antibody-drug conjugates, and antibody-containing regimens for acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2019, 12, 15.	6.9	38
1572	Chimeric Antigen Receptor T-Cells: The Future is Now. Journal of Clinical Medicine, 2019, 8, 207.	1.0	20
1573	Two-Dimensional Regulation of CAR-T Cell Therapy with Orthogonal Switches. Molecular Therapy - Oncolytics, 2019, 12, 124-137.	2.0	62
1574	CAR T-Cell Associated Neurotoxicity: Mechanisms, Clinicopathologic Correlates, and Future Directions. Journal of the National Cancer Institute, 2019, 111, 646-654.	3.0	126
1575	Granulocyte–macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. Journal of Biological Chemistry, 2019, 294, 5430-5437.	1.6	114
1576	Peptide Super-Agonist Enhances T-Cell Responses to Melanoma. Frontiers in Immunology, 2019, 10, 319.	2.2	18
1577	Hematopoietic Stem Cell Transplant and Cellular Therapy. , 2019, , 109-158.		1
1578	Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood, 2019, 133, 2212-2221.	0.6	207
1579	Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Frontiers in Oncology, 2019, 9, 51.	1.3	117
1580	Chimeric antigen receptor T cells for acute lymphoblastic leukemia. American Journal of Hematology, 2019, 94, S24-S27.	2.0	32
1581	Toxicities of CD19 CARâ€₹ cell immunotherapy. American Journal of Hematology, 2019, 94, S42-S49.	2.0	102
1582	Engineered T Cell Therapies from a Drug Development Viewpoint. Engineering, 2019, 5, 140-149.	3.2	8
1583	Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfusion Medicine Reviews, 2019, 33, 98-110.	0.9	124
1584	CAR-NK cell therapeutics for hematologic malignancies: hope is on the horizon. Blood Science, 2019, 1, 156-160.	0.4	3
1585	Prognostic and Therapeutic Implications of Lymphocytes in Hematological Disorders and Solid Malignancies. , 0, , .		0
1586	Mechanisms of and approaches to overcoming resistance to immunotherapy. Hematology American Society of Hematology Education Program, 2019, 2019, 226-232.	0.9	23
1587	Construction of chimeric antigen receptor‑modified T cells targeting EpCAM and assessment of their anti‑tumor effect on cancer cells. Molecular Medicine Reports, 2019, 20, 2355-2364.	1.1	14

#	Article	IF	CITATIONS
1590	Pediatric Acute Lymphoblastic Leukemia: Recent Advances for a Promising Future., 0,,.		3
1591	Ourable Molecular Remission in a Lymphoid BP-CML Patient Harboring T315I Mutation Treated with Anti-CD19 CAR-T Therapy OncoTargets and Therapy Volume 12, 10989-10995.	1.0	6
1592	Clinical care of chimeric antigen receptor T-cell patients and managing immune-related adverse effects in the ambulatory and hospitalized setting: a review. Future Oncology, 2019, 15, 4235-4246.	1.1	5
1593	EVOLVING ROLE OF CAR T-CELL IN CANCER IMMUNOTHERAPY. International Journal of Current Pharmaceutical Research, 0, , 19-27.	0.2	0
1594	Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood, 2019, 134, 2149-2158.	0.6	194
1595	The CNS can be a safe space for CARs. Blood, 2019, 134, 845-846.	0.6	3
1596	The earlier the better: timely mitigation of CRS. Blood, 2019, 134, 2119-2120.	0.6	8
1597	More precisely defining risk peri-HCT in pediatric ALL: pre- vs post-MRD measures, serial positivity, and risk modeling. Blood Advances, 2019, 3, 3393-3405.	2.5	81
1599	Immunotherapy for Diabetogenic Pancreatitis and Pancreatic Cancer: An Update., 2019,, 215-236.		0
1600	The Advances and Challenges of CAR-NK Cells for Tumor Immunotherapy. E3S Web of Conferences, 2019, 131, 01001.	0.2	0
1601	CD19 and CD70 Dual-Target Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Relapsed and Refractory Primary Central Nervous System Diffuse Large B-Cell Lymphoma. Frontiers in Oncology, 2019, 9, 1350.	1.3	47
1602	Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. Journal of Hematology and Oncology, 2019, 12, 141.	6.9	78
1603	Delivery strategies of cancer immunotherapy: recent advances and future perspectives. Journal of Hematology and Oncology, 2019, 12, 126.	6.9	96
1604	Cardiovascular Toxicities in Pediatric Cancer Survivors. Cardiology Clinics, 2019, 37, 533-544.	0.9	17
1605	Single variable domains from the T cell receptor \hat{l}^2 chain function as mono- and bifunctional CARs and TCRs. Scientific Reports, 2019, 9, 17291.	1.6	18
1606	<p>Cytokine Release Syndrome: Current Perspectives</p> . ImmunoTargets and Therapy, 2019, Volume 8, 43-52.	2.7	116
1607	Current Progress in CAR-T Cell Therapy for Solid Tumors. International Journal of Biological Sciences, 2019, 15, 2548-2560.	2.6	252
1608	Chimeric Antigen Receptor T Cells for B-Cell Acute Lymphoblastic Leukemia. Cancer Journal (Sudbury,) Tj ETQq1	1 0.78431 1.0	4 rgBT /Ov <mark>er</mark>

#	Article	IF	CITATIONS
1609	Escape From ALL-CARTaz. Cancer Journal (Sudbury, Mass), 2019, 25, 217-222.	1.0	20
1610	Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer and Metastasis Reviews, 2019, 38, 595-610.	2.7	65
1611	Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25229-25235.	3.3	16
1612	CAR T Cells: A Snapshot on the Growing Options to Design a CAR. HemaSphere, 2019, 3, e172.	1.2	34
1613	Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 6223.	1.8	88
1614	In situ thermal ablation augments antitumor efficacy of adoptive T cell therapy. International Journal of Hyperthermia, 2019, 36, 22-36.	1.1	14
1615	Current status and hurdles for CAR-T cell immune therapy. Blood Science, 2019, 1, 148-155.	0.4	5
1616	Chimeric Antigen Receptor-modified Donor Lymphocyte Infusion Improves the Survival of Acute Lymphoblastic Leukemia Patients With Relapsed Diseases After Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Immunotherapy, 2019, 42, 81-88.	1.2	12
1617	Mechanisms of failure of chimeric antigen receptor T-cell therapy. Current Opinion in Hematology, 2019, 26, 427-433.	1.2	30
1618	Next Generation of Cancer Treatments: Chimeric Antigen Receptor T-Cell Therapy and Its Related Toxicities: A Review for Perioperative Physicians. Anesthesia and Analgesia, 2019, 129, 434-441.	1.1	11
1619	Chimeric Antigen Receptor Tâ€Cell Therapy Clinical Results in Pediatric and Young Adult Bâ€ALL. HemaSphere, 2019, 3, e279.	1.2	20
1620	T-Cell Receptor–Based Immunotherapy for Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2019, 25, 179-190.	1.0	28
1621	Functionally Defective T Cells After Chemotherapy of B-Cell Malignancies Can Be Activated by the Tetravalent Bispecific CD19/CD3 Antibody AFM11. Journal of Immunotherapy, 2019, 42, 180-188.	1.2	17
1622	Understanding the Mechanisms of Resistance to CAR T-Cell Therapy in Malignancies. Frontiers in Oncology, 2019, 9, 1237.	1.3	106
1623	Immunotherapies for pediatric cancer: current landscape and future perspectives. Cancer and Metastasis Reviews, 2019, 38, 573-594.	2.7	20
1624	What is the Role of Hematopoietic Cell Transplantation (HCT) for Pediatric Acute Lymphoblastic Leukemia (ALL) in the Age of Chimeric Antigen Receptor T-Cell (CART) Therapy?. Journal of Pediatric Hematology/Oncology, 2019, 41, 337-344.	0.3	16
1625	Manufacturing Chimeric Antigen Receptor (CAR) T Cells for Adoptive Immunotherapy. Journal of Visualized Experiments, 2019, , .	0.2	1
1626	Effect and changes in PDâ€'1 expression of CD19 CARâ€'Ti¿½cells from Ti¿½cells highly expressing PDâ€'1 comb with reducedâ€'dose PDâ€'1 inhibitor. Oncology Reports, 2019, 41, 3455-3463.	ined 1.2	15

#	Article	IF	CITATIONS
1627	Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Drugs in Context, 2019, 8, 1-14.	1.0	29
1629	Will CAR T cell therapy have a role in AML? Promises and pitfalls. Seminars in Hematology, 2019, 56, 155-163.	1.8	45
1630	Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine, 2019, 39, 173-181.	2.7	47
1631	Cytokine Release Syndrome with Chimeric Antigen Receptor T Cell Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, e123-e127.	2.0	220
1632	Haematological problems in the intensive care unit. Anaesthesia and Intensive Care Medicine, 2019, 20, 19-24.	0.1	0
1633	ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biology of Blood and Marrow Transplantation, 2019, 25, 625-638.	2.0	1,741
1634	DNAX-activating protein 10 co-stimulation enhances the anti-tumor efficacy of chimeric antigen receptor T cells. Oncolmmunology, 2019, 8, e1509173.	2.1	23
1635	Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 199-224.	3.3	53
1636	Immunotherapy Using Chimeric Antigen Receptor-Engineered T Cells: A Novel Cellular Therapy with Important Implications for the Clinical Laboratory. Clinical Chemistry, 2019, 65, 519-529.	1.5	4
1637	Cancer Immunotherapy: Beyond Checkpoint Blockade. Annual Review of Cancer Biology, 2019, 3, 55-75.	2.3	102
1638	Preventing Lck Activation in CAR T Cells Confers Treg Resistance but Requires 4-1BB Signaling for Them to Persist and Treat Solid Tumors in Nonlymphodepleted Hosts. Clinical Cancer Research, 2019, 25, 358-368.	3.2	51
1639	GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood, 2019, 133, 697-709.	0.6	408
1640	Adoptive cellular therapies: the current landscape. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 449-461.	1.4	261
1641	Safety and Tolerability of Adoptive Cell Therapy in Cancer. Drug Safety, 2019, 42, 315-334.	1.4	57
1642	Toward the development of true "offâ€theâ€shelfâ€synthetic Tâ€cell immunotherapy. Cancer Science, 2019, 110, 16-22.	1.7	29
1643	Lymphocytes in Cellular Therapy: Functional Regulation of CAR T Cells. Frontiers in Immunology, 2018, 9, 3180.	2.2	46
1644	Development of a Novel Anti-CD19 Chimeric Antigen Receptor: A Paradigm for an Affordable CAR T Cell Production at Academic Institutions. Molecular Therapy - Methods and Clinical Development, 2019, 12, 134-144.	1.8	77
1645	Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 2019, 18, 175-196.	21.5	1,562

#	Article	IF	CITATIONS
1646	Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy, 2019, 11, 201-213.	1.0	108
1647	Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 317.	1.8	88
1648	T-cell receptor gene-modified cells: past promises, present methodologies and future challenges. Cytotherapy, 2019, 21, 341-357.	0.3	10
1649	Autologous CD19-directed chimeric antigen receptor-T cell is an effective and safe treatment to refractory or relapsed diffuse large B-cell lymphoma. Cancer Gene Therapy, 2019, 26, 248-255.	2.2	17
1650	Immunotherapy in pancreatic cancer: New hope or mission impossible?. Cancer Letters, 2019, 445, 57-64.	3.2	26
1651	Therapeutic Targets for Bone and Soft-Tissue Sarcomas. International Journal of Molecular Sciences, 2019, 20, 170.	1.8	52
1652	2B4 (CD244, SLAMF4) and CS1 (CD319, SLAMF7) in systemic lupus erythematosus and cancer. Clinical Immunology, 2019, 204, 50-56.	1.4	14
1653	Construction and functional characterization of a fully human anti D19 chimeric antigen receptor (huCAR)â€expressing primary human TÂcells. Journal of Cellular Physiology, 2019, 234, 9207-9215.	2.0	37
1654	Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Seminars in Immunopathology, 2019, 41, 59-68.	2.8	115
1655	Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Human Vaccines and Immunotherapeutics, 2019, 15, 594-602.	1.4	23
1656	Predictive and therapeutic biomarkers in chimeric antigen receptor Tâ€eell therapy: A clinical perspective. Journal of Cellular Physiology, 2019, 234, 5827-5841.	2.0	21
1657	Plasma Exchange Can Be an Alternative Therapeutic Modality for Severe Cytokine Release Syndrome after Chimeric Antigen Receptor-T Cell Infusion: A Case Report. Clinical Cancer Research, 2019, 25, 29-34.	3.2	35
1659	Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171.	9.5	263
1660	Basic Procedures for Detection and Cytotoxicity of Chimeric Antigen Receptors. Methods in Molecular Biology, 2019, 1904, 299-306.	0.4	1
1661	Inflammatory and Infectious Syndromes Associated With Cancer Immunotherapies. Clinical Infectious Diseases, 2019, 69, 909-920.	2.9	57
1662	Functional Improvement of Chimeric Antigen Receptor Through Intrinsic Interleukin-15Rα Signaling. Current Gene Therapy, 2019, 19, 40-53.	0.9	36
1663	Cell-based immunotherapy approaches for multiple myeloma. British Journal of Cancer, 2019, 120, 38-44.	2.9	30
1664	CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor–Engineered T Cells. Cancer Research, 2019, 79, 663-675.	0.4	62

#	Article	IF	CITATIONS
1665	Gene Therapy for Neoplastic Hematology in Transplant Setting. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 245-264.	0.0	0
1666	Most Recent Clinical Advances in CAR T Cell and Gene Therapy 2017/2018. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 3-24.	0.0	0
1667	Chimeric Antigen Receptor T Cells: Antigen Selection, CAR Development, and Data in Neoplastic Hematology. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 27-53.	0.0	0
1668	Chimeric Antigen Receptor T Cells for Leukemias in Children: Methods, Data, and Challenges. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 55-73.	0.0	0
1669	T Cell Receptors-Gene-Modified T Cells for Cancer: Methods, Data, and Challenges. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy, 2019, , 109-133.	0.0	0
1670	Haemophagocytic lymphohistiocytosis complicating pembrolizumab treatment for metastatic breast cancer in a patient with the <i>PRF1A91V</i> gene polymorphism. Journal of Medical Genetics, 2019, 56, 39-42.	1.5	25
1671	American Society for Blood and Marrow Transplantation Pharmacy Special Interest Group Survey on Chimeric Antigen Receptor T Cell Therapy Administrative, Logistic, and Toxicity Management Practices in the United States. Biology of Blood and Marrow Transplantation, 2019, 25, 26-33.	2.0	55
1672	Thrombotic Thrombocytopenic Purpura and Related Thrombotic Microangiopathies. , 2019, , 448-472.		1
1673	Defining potency of CAR ⁺ T cells: Fast and furious or slow and steady. Oncolmmunology, 2019, 8, e1051298.	2.1	4
1674	Steering CAR T cells to distinguish friend from foe. Oncolmmunology, 2019, 8, e1271857.	2.1	21
1675	Gene therapy for neurological disorders: challenges and recent advancements. Journal of Drug Targeting, 2020, 28, 111-128.	2.1	46
1676	Childhood Leukemia. , 2020, , 1748-1764.e4.		6
1677	Flow Cytometric Minimal Residual Disease Analysis in Acute Leukemia: Current Status. Indian Journal of Hematology and Blood Transfusion, 2020, 36, 3-15.	0.3	5
1678	Cancer Immunology. , 2020, , 84-96.e5.		0
1679	Anti-CD19 chimeric antigen receptor T-cells induce durable remission in relapsed Philadelphia chromosome-positive ALL with T315I mutation. Leukemia and Lymphoma, 2020, 61, 429-436.	0.6	11
1680	Minicircle DNA-Engineered CAR T Cells Suppressed Tumor Growth in Mice. Molecular Cancer Therapeutics, 2020, 19, 178-186.	1.9	11
1681	Assessment of a multi-cytokine profile by a novel biochip-based assay allows correlation of cytokine profiles with clinical outcomes in adult recipients of umbilical cord blood transplantation. Bone Marrow Transplantation, 2020, 55, 1821-1823.	1.3	1
1682	The Role of Protein Engineering in Biomedical Applications of Mammalian Synthetic Biology. Small, 2020, 16, e1903093.	5.2	12

#	Article	IF	CITATIONS
1683	Advances of functional nanomaterials for cancer immunotherapeutic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1574.	3.3	10
1684	Challenging the indiscriminate use of temozolomide in pediatric highâ€grade gliomas: A review of past, current, and emerging therapies. Pediatric Blood and Cancer, 2020, 67, e28011.	0.8	17
1685	The Quantification of Minimal Residual Disease Pre―and Postâ€Unmanipulated Haploidentical Allograft by Multiparameter Flow Cytometry in Pediatric Acute Lymphoblastic Leukemia. Cytometry Part B - Clinical Cytometry, 2020, 98, 75-87.	0.7	18
1686	Immunotherapeutic options for management of relapsed or refractory B-cell acute lymphoblastic leukemia: how to select newly approved agents?. Leukemia and Lymphoma, 2020, 61, 7-17.	0.6	6
1687	The treatment of adolescents and young adults with acute lymphoblastic leukemia. Leukemia and Lymphoma, 2020, 61, 18-26.	0.6	5
1689	Current Immunotherapeutic Strategies in Cancer. Recent Results in Cancer Research, 2020, , .	1.8	4
1690	New Approaches on Cancer Immunotherapy. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036863.	2.9	17
1691	Cell transferâ€based immunotherapies in cancer: A review. IUBMB Life, 2020, 72, 790-800.	1.5	12
1692	Sequential treatment with aT19 cells generates memory CAR-T cells and prolongs the lifespan of Raji-B-NDG mice. Cancer Letters, 2020, 469, 162-172.	3.2	7
1693	A Universal Platform for Highâ€Efficiency "Engineering―Living Cells: Integration of Cell Capture, Intracellular Delivery of Biomolecules, and Cell Harvesting Functions. Advanced Functional Materials, 2020, 30, 1906362.	7.8	34
1695	Feasibility of real-time in vivo 89Zr-DFO-labeled CAR T-cell trafficking using PET imaging. PLoS ONE, 2020, 15, e0223814.	1.1	32
1696	ILâ€18Râ€dependent and independent pathways account for ILâ€18â€enhanced antitumor ability of CARâ€T cells FASEB Journal, 2020, 34, 1768-1782.	0.2	15
1697	Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nature Communications, 2020, 11, 219.	5.8	167
1698	Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Science China Life Sciences, 2020, 63, 180-205.	2.3	40
1700	Current challenges and emerging opportunities of CAR-T cell therapies. Journal of Controlled Release, 2020, 319, 246-261.	4.8	78
1701	PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomedicine and Pharmacotherapy, 2020, 121, 109625.	2.5	92
1702	Important aspects of Tâ€cell collection by apheresis for manufacturing chimeric antigen receptor T cells. Advances in Cell and Gene Therapy, 2020, 3, e75.	0.6	6
1703	Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics, 2020, 10, 1281-1295.	4.6	138

#	Article	IF	CITATIONS
1704	Immuno-Oncology. Methods in Pharmacology and Toxicology, 2020, , .	0.1	4
1705	Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nature Cell Biology, 2020, 22, 7-17.	4.6	86
1706	Current advances in chimeric antigen receptor T-cell therapy for refractory/relapsed multiple myeloma. Journal of Zhejiang University: Science B, 2020, 21, 29-41.	1.3	17
1707	Optimizing CAR-T Cell Manufacturing Processes during Pivotal Clinical Trials. Molecular Therapy - Methods and Clinical Development, 2020, 16, 136-144.	1.8	89
1708	Adverse kidney effects of immunotherapies. , 2020, , 166-182.e3.		0
1709	Mechanisms of resistance to CAR T cell therapies. Seminars in Cancer Biology, 2020, 65, 91-98.	4.3	31
1710	Production of CAR-T Cells for Clinical Applications. , 2020, , 51-62.		0
1711	Challenges and Opportunities to Improve CAR T-Cell Therapy. , 2020, , 63-80.		1
1712	Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology, 2020, 20, 158-172.	10.6	383
1713	<scp>PTPN</scp> 2 phosphatase deletion in T cells promotes antiâ€tumour immunity and <scp>CAR</scp> Tâ€cell efficacy in solid tumours. EMBO Journal, 2020, 39, e103637.	3.5	79
1714	CD19 CAR T Cells for the Treatment of Pediatric Pre-B Cell Acute Lymphoblastic Leukemia. Paediatric Drugs, 2020, 22, 1-11.	1.3	10
1715	MUC1 as a target for CARâ€₹ therapy in head and neck squamous cell carinoma. Cancer Medicine, 2020, 9, 640-652.	1.3	51
1716	Role of CAR-T cell therapy in B-cell acute lymphoblastic leukemia. Memo - Magazine of European Medical Oncology, 2020, 13, 36-42.	0.3	3
1717	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.4	2
1718	Promising approaches in cancer immunotherapy. Immunobiology, 2020, 225, 151875.	0.8	49
1719	Sustained Therapeutic Efficacy of Humanized Anti-CD19 Chimeric Antigen Receptor T Cells in Relapsed/Refractory Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2020, 26, 1606-1615.	3.2	49
1720	Special Considerations for ICU Management of Patients Receiving CAR Therapy., 2020,, 65-81.		0
1721	Hematologic and Non-CRS Toxicities. , 2020, , 107-112.		2

#	Article	IF	CITATIONS
1722	Clinical trial design in neurofibromatosis type 1 as a model for other tumor predisposition syndromes. Neuro-Oncology Advances, 2020, 2, i134-i140.	0.4	5
1723	Resident Memory T Cells and Their Effect on Cancer. Vaccines, 2020, 8, 562.	2.1	13
1724	A Hydrogel-Integrated Culture Device to Interrogate T Cell Activation with Physicochemical Cues. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47355-47367.	4.0	27
1725	Chimeric antigen receptor T-cell therapy for acute lymphocytic leukaemia: where are we in 2020?. Lancet Haematology,the, 2020, 7, e778-e779.	2.2	3
1726	Augmenting the Effectiveness of CAR-T Cells by Enhanced Self-Delivery of PD-1-Neutralizing scFv. Frontiers in Cell and Developmental Biology, 2020, 8, 803.	1.8	30
1727	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	13.5	269
1728	CAR T Cell Therapy for Solid Tumors: Bright Future or Dark Reality?. Molecular Therapy, 2020, 28, 2320-2339.	3.7	194
1729	Chimeric antigen receptor T cell therapy for pediatric and young adult B cell acute lymphoblastic leukemia. Expert Review of Clinical Immunology, 2020, 16, 1029-1042.	1.3	8
1730	Chimeric Antigen Receptor T-Cells in B-Acute Lymphoblastic Leukemia: State of the Art and Future Directions. Frontiers in Oncology, 2020, 10, 1594.	1.3	46
1731	A Concise Review of Neurologic Complications Associated with Chimeric Antigen Receptor T-cell Immunotherapy. Neurologic Clinics, 2020, 38, 953-963.	0.8	14
1732	Application of Chimeric Antigen Receptor T Cells in the Treatment of Hematological Malignancies. BioMed Research International, 2020, 2020, 1-9.	0.9	9
1733	Precision medicine in acute lymphoblastic leukemia. Frontiers of Medicine, 2020, 14, 689-700.	1.5	74
1734	Real world experience of approved chimeric antigen receptor T-cell therapies outside of clinical trials. Current Research in Translational Medicine, 2020, 68, 159-170.	1.2	24
1735	Point mutation in <i> CD19 </i> > facilitates immune escape of B cell lymphoma from CAR-T cell therapy. , 2020, 8, e001150.		47
1736	Tisagenlecleucel in Children and Young Adults: Reverse Translational Research by Using Real-World Safety Data. Pharmaceuticals, 2020, 13, 258.	1.7	6
1737	Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Cytotherapy, 2020, 22, 755-761.	0.3	33
1738	Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Medical Oncology, 2020, 37, 100.	1.2	32
1739	Thromboinflammation response to tocilizumab in COVIDâ€19. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 1262-1268.	1.0	3

#	Article	IF	CITATIONS
1740	Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial. Cytotherapy, 2020, 22, 573-580.	0.3	77
1741	Successful application of anti-CD19 CAR-T therapy with IL-6 knocking down to patients with central nervous system B-cell acute lymphocytic leukemia. Translational Oncology, 2020, 13, 100838.	1.7	15
1742	Immunotherapy for Metastatic Prostate Cancer: Current and Emerging Treatment Options. Urologic Clinics of North America, 2020, 47, 487-510.	0.8	10
1743	Bispecific antibodies in acute lymphoblastic leukemia therapy. Expert Review of Hematology, 2020, 13, 1211-1233.	1.0	4
1744	Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf―CAR T and CAR NK Cells. Frontiers in Immunology, 2020, 11, 1965.	2,2	85
1745	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma., 2020, 8, e000734.		27
1746	Use of subcutaneous tocilizumab to prepare intravenous solutions for COVID-19 emergency shortage: Comparative analytical study of physicochemical quality attributes. Journal of Pharmaceutical Analysis, 2020, 10, 532-545.	2.4	9
1747	Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics, 2020, 10, 7622-7634.	4.6	96
1748	Immunotherapy with CAR-T cells in paediatric haematology-oncology. Anales De PediatrÃa (English) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
1749	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	5.8	103
1750	How to Combine the Two Landmark Treatment Methods—Allogeneic Hematopoietic Stem Cell Transplantation and Chimeric Antigen Receptor T Cell Therapy Together to Cure High-Risk B Cell Acute Lymphoblastic Leukemia?. Frontiers in Immunology, 2020, 11, 611710.	2.2	14
1751	Gene Modified CAR-T Cellular Therapy for Hematologic Malignancies. International Journal of Molecular Sciences, 2020, 21, 8655.	1.8	13
1752	Precision Approaches in the Management of Colorectal Cancer: Current Evidence and Latest Advancements towards Individualizing the Treatment. Cancers, 2020, 12, 3481.	1.7	9
1753	Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Science Translational Medicine, 2020, 12 , .	5.8	85
1754	In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nature Communications, 2020, 11, 6080.	5.8	176
1755	Cytokine Storm. New England Journal of Medicine, 2020, 383, 2255-2273.	13.9	1,911
1756	Chimeric antigen receptor T cell therapies for acute myeloid leukemia. Frontiers of Medicine, 2020, 14, 701-710.	1.5	2
1757	Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. Journal of Hematology and Oncology, 2020, 13, 164.	6.9	88

#	Article	IF	CITATIONS
1758	Controlling Cytokine Storm Is Vital in COVID-19. Frontiers in Immunology, 2020, 11, 570993.	2.2	120
1759	Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. Journal of Translational Medicine, 2020, 18, 428.	1.8	51
1760	A Novel Siglec-4 Derived Spacer Improves the Functionality of CAR T Cells Against Membrane-Proximal Epitopes. Frontiers in Immunology, 2020, 11, 1704.	2.2	21
1761	A Distinct Transcriptional Program in Human CAR T Cells Bearing the 4-1BB Signaling Domain Revealed by scRNA-Seq. Molecular Therapy, 2020, 28, 2577-2592.	3.7	58
1762	Clinical Predictors of Neurotoxicity After Chimeric Antigen Receptor T-Cell Therapy. JAMA Neurology, 2020, 77, 1536.	4.5	68
1763	Accurate In-Vivo Quantification of CD19 CAR-T Cells after Treatment with Axicabtagene Ciloleucel (Axi-Cel) and Tisagenlecleucel (Tisa-Cel) Using Digital PCR. Cancers, 2020, 12, 1970.	1.7	23
1764	Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B-cell malignancies. Journal of Controlled Release, 2020, 326, 455-467.	4.8	54
1765	ISSUE HIGHLIGHTS ―July 2020. Cytometry Part B - Clinical Cytometry, 2020, 98, 295-298.	0.7	2
1766	Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Frontiers in Immunology, 2020, 11, 1424.	2.2	60
1767	Enhancing chimeric antigen receptor Tâ€cell immunotherapy against cancer using a nanoemulsionâ€based vaccine targeting crossâ€presenting dendritic cells. Clinical and Translational Immunology, 2020, 9, e1157.	1.7	23
1768	The model of cytokine release syndrome in CAR T-cell treatment for B-cell non-Hodgkin lymphoma. Signal Transduction and Targeted Therapy, 2020, 5, 134.	7.1	84
1769	Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell, 2020, 38, 473-488.	7.7	342
1770	To Toci or Not to Toci for Coronavirus Disease 2019 (COVID-19): Is That Still the Question?. Clinical Infectious Diseases, 2020, 73, e455-e457.	2.9	1
1771	The Possibilities of Immunotherapy for Children with Primary Immunodeficiencies Associated with Cancers. Biomolecules, 2020, 10, 1112.	1.8	2
1772	Commercial <scp>antiâ€CD19 CAR</scp> T cell therapy for patients with relapsed/refractory aggressive B cell lymphoma in a European center. American Journal of Hematology, 2020, 95, 1324-1333.	2.0	89
1773	A brief review concerning Chimeric Antigen Receptors T cell therapy. Journal of Cancer, 2020, 11, 5424-5431.	1.2	4
1774	The immune system as a target for therapy of SARS-CoV-2: A systematic review of the current immunotherapies for COVID-19. Life Sciences, 2020, 258, 118185.	2.0	70
1775	Is pregnancy an immunological contributor to severe or controlled COVIDâ€19 disease?. American Journal of Reproductive Immunology, 2020, 84, e13317.	1.2	31

#	Article	IF	CITATIONS
1776	Improving CAR T-cells: The next generation. Seminars in Hematology, 2020, 57, 115-121.	1.8	13
1777	Chimeric Antigen Receptor T Cells: Clinical Applications, Advances and Challenges. , 2020, , 319-333.		1
1779	Manufacturing and Management of CAR T-Cell Therapy in "COVID-19's Time― Central Versus Point of Care Proposals. Frontiers in Immunology, 2020, 11, 573179.	2.2	12
1780	The many faces of the anti-COVID immune response. Journal of Experimental Medicine, 2020, 217, .	4.2	437
1781	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	2.5	30
1782	Regeneration of Tumor-Antigen-Specific Cytotoxic T Lymphocytes from iPSCs Transduced with Exogenous TCR Genes. Molecular Therapy - Methods and Clinical Development, 2020, 19, 250-260.	1.8	11
1783	Lack of tocilizumab effect on mortality in COVID19 patients. Scientific Reports, 2020, 10, 17100.	1.6	13
1784	Mitigating the risk of cytokine release syndrome in a Phase I trial of CD20/CD3 bispecific antibody mosunetuzumab in NHL: impact of translational system modeling. Npj Systems Biology and Applications, 2020, 6, 28.	1.4	61
1785	Secondary donor-derived humanized CD19-modified CAR-T cells induce remission in relapsed/refractory mixed phenotype acute leukemia after allogeneic hematopoietic stem cell transplantation: a case report. Biomarker Research, 2020, 8, 36.	2.8	9
1786	Xuebijing injection in the treatment of COVID-19: a retrospective case-control study. Annals of Palliative Medicine, 2020, 9, 3235-3248.	0.5	36
1787	Cellular immunotherapy in breast cancer: The quest for consistent biomarkers. Cancer Treatment Reviews, 2020, 90, 102089.	3.4	27
1788	Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology. Cells, 2020, 9, 2102.	1.8	56
1789	The impacts of BCR-ABL1 mutations in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia who underwent allogeneic hematopoietic cell transplantation. Annals of Hematology, 2020, 99, 2393-2404.	0.8	5
1790	A Critical Role of CD40 and CD70 Signaling in Conventional Type 1 Dendritic Cells in Expansion and Antitumor Efficacy of Adoptively Transferred Tumor-Specific T Cells. Journal of Immunology, 2020, 205, 1867-1877.	0.4	19
1791	The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy. Cell Communication and Signaling, 2020, 18, 134.	2.7	28
1792	Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment?. Frontiers in Microbiology, 2020, 11, 1818.	1.5	81
1793	Neurotoxicity and Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy: Insights Into Mechanisms and Novel Therapies. Frontiers in Immunology, 2020, 11, 1973.	2.2	148
1794	Podoplanin as an Attractive Target of CAR T Cell Therapy. Cells, 2020, 9, 1971.	1.8	8

#	Article	IF	CITATIONS
1795	Immunotherapy use in kidney transplant recipients: Immune checkpoint inhibitors and CAR-T cell therapy. Journal of Onco-Nephrology, 2020, 4, 165-170.	0.3	0
1796	CD19-CAR-T Cells Bearing a KIR/PD-1-Based Inhibitory CAR Eradicate CD19+HLA-C1â^' Malignant B Cells While Sparing CD19+HLA-C1+ Healthy B Cells. Cancers, 2020, 12, 2612.	1.7	22
1797	Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2020, 13, 122.	6.9	44
1798	Engineering CAR T Cells to Target the HIV Reservoir. Frontiers in Cellular and Infection Microbiology, 2020, 10, 410.	1.8	29
1799	Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. , 2020, 8, e001159.		55
1800	CAR T Cell Therapy for Pediatric Brain Tumors. Frontiers in Oncology, 2020, 10, 1582.	1.3	37
1801	Bispecific Chimeric Antigen Receptor T Cell Therapy for B Cell Malignancies and Multiple Myeloma. Cancers, 2020, 12, 2523.	1.7	27
1802	CSPG4-Specific CAR.CIK Lymphocytes as a Novel Therapy for the Treatment of Multiple Soft-Tissue Sarcoma Histotypes. Clinical Cancer Research, 2020, 26, 6321-6334.	3.2	24
1803	Humanized Rodent Models for Cancer Research. Frontiers in Oncology, 2020, 10, 1696.	1.3	68
1804	Decitabine-Mediated Epigenetic Reprograming Enhances Anti-leukemia Efficacy of CD123-Targeted Chimeric Antigen Receptor T-Cells. Frontiers in Immunology, 2020, 11, 1787.	2.2	45
1805	IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22351-22356.	3.3	215
1806	Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells, 2020, 9, 1896.	1.8	73
1807	Orbital extramedullary leukemia relapse in a pediatric patient post ART cell therapyâ€"Case report. Pediatric Transplantation, 2021, 25, e13852.	0.5	1
1808	Potential of Chimeric Antigen Receptor T-Cells in Cancer Therapy. Advances in Experimental Medicine and Biology, 2020, 1326, 39-46.	0.8	3
1809	Pre-sensitization of Malignant B Cells Through Venetoclax Significantly Improves the Cytotoxic Efficacy of CD19.CAR-T Cells. Frontiers in Immunology, 2020, 11, 608167.	2.2	23
1810	An IMiD-inducible degron provides reversible regulation for chimeric antigen receptor expression and activity. Cell Chemical Biology, 2021, 28, 802-812.e6.	2.5	25
1811	Paving the Way Towards Universal Chimeric Antigen Receptor Therapy in Cancer Treatment: Current Landscape and Progress. Frontiers in Immunology, 2020, 11, 604915.	2.2	9
1812	Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. Journal of Hematology and Oncology, 2020, 13, 168.	6.9	114

#	Article	IF	CITATIONS
1813	Engineering better chimeric antigen receptor T cells. Experimental Hematology and Oncology, 2020, 9, 34.	2.0	64
1814	Injectable Porous Microchips with Oxygen Reservoirs and an Immune-Niche Enhance the Efficacy of CAR T Cell Therapy in Solid Tumors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56712-56722.	4.0	17
1815	The Application of CAR-T Cells in Haematological Malignancies. Archivum Immunologiae Et Therapiae Experimentalis, 2020, 68, 34.	1.0	19
1816	Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. Journal of Experimental and Clinical Cancer Research, 2020, 39, 231.	3.5	66
1817	Challenges and strategies of clinical application of CAR-T therapy in the treatment of tumorsâ€"a narrative review. Annals of Translational Medicine, 2020, 8, 1093-1093.	0.7	8
1818	Human Immune System Mice With Autologous Tumor for Modeling Cancer Immunotherapies. Frontiers in Immunology, 2020, 11, 591669.	2.2	6
1819	Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Advances, 2020, 4, 5414-5424.	2.5	263
1820	Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers, 2020, 12, 3234.	1.7	39
1821	Highways to hell: Mechanism-based management of cytokine storm syndromes. Journal of Allergy and Clinical Immunology, 2020, 146, 949-959.	1.5	39
1822	Immune Therapy for Central Nervous System Metastasis. Neurosurgery Clinics of North America, 2020, 31, 627-639.	0.8	0
1823	Receptor signaling, transcriptional, and metabolic regulation of T cell exhaustion. Oncolmmunology, 2020, 9, 1747349.	2.1	11
1824	<p>Immunotherapy for Medulloblastoma: Current Perspectives</p> . ImmunoTargets and Therapy, 2020, Volume 9, 57-77.	2.7	33
1825	A cellular antidote to specifically deplete anti-CD19 chimeric antigen receptor–positive cells. Blood, 2020, 135, 505-509.	0.6	25
1826	Gene modification strategies for next-generation CAR T cells against solid cancers. Journal of Hematology and Oncology, 2020, 13, 54.	6.9	98
1827	Biomarkers in individualized management of chimeric antigen receptor T cell therapy. Biomarker Research, 2020, 8, 13.	2.8	23
1828	Oncologic Emergencies: Immune-Based Cancer Therapies and Complications. Western Journal of Emergency Medicine, 2020, 21, 566-580.	0.6	13
1829	A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 2020, 20, 651-668.	10.6	2,160
1830	Classification of diffuse lowerâ€grade glioma based on immunological profiling. Molecular Oncology, 2020, 14, 2081-2095.	2.1	48

#	Article	IF	CITATIONS
1831	Chimeric antigen receptor therapy in hematological malignancies: antigenic targets and their clinical research progress. Annals of Hematology, 2020, 99, 1681-1699.	0.8	5
1832	EGFRâ€targeted CARâ€T cells are potent and specific in suppressing tripleâ€negative breast cancer both <i>in vitro</i> and <i>in vivo</i> . Clinical and Translational Immunology, 2020, 9, e01135.	1.7	48
1833	Adult immuno-oncology: using past failures to inform the future. Neuro-Oncology, 2020, 22, 1249-1261.	0.6	19
1834	Successful treatment of acute B lymphoblastic leukemia relapse in the skin and testicle by anti-CD19 CAR-T with IL-6 knocking down: a case report. Biomarker Research, 2020, 8, 12.	2.8	9
1835	Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, 2020, , .	0.8	4
1836	Management of Chimeric Antigen Receptor (CAR) T-Cell Toxicities: A Review and Guideline for Emergency Providers. Journal of Emergency Medicine, 2020, 59, 61-74.	0.3	5
1837	Continuous renal replacement therapy in cytokine release syndrome following immunotherapy or cellular therapies?., 2020, 8, e000742.		15
1838	Mesothelial cells regulate immune responses in health and disease: role for immunotherapy in malignant mesothelioma. Current Opinion in Immunology, 2020, 64, 88-109.	2.4	14
1839	The BiTE (bispecific Tâ€cell engager) platform: Development and future potential of a targeted immunoâ€oncology therapy across tumor types. Cancer, 2020, 126, 3192-3201.	2.0	116
1840	CAR T cell therapy: newer approaches to counter resistance and cost. Heliyon, 2020, 6, e03779.	1.4	19
1841	Identification of a moderate affinity CD22 binding peptide and <i>in vitro</i> optimization of peptide-targeted nanoparticles for selective uptake by CD22+ B-cell malignancies. Nanoscale, 2020, 12, 11672-11683.	2.8	10
1842	Characterization of novel dual tandem CD19/BCMA chimeric antigen receptor T cells to potentially treat multiple myeloma. Biomarker Research, 2020, 8, 14.	2.8	21
1843	The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Research, 2020, 30, 507-519.	5.7	480
1844	Chimeric Antigen Receptor T Cell Therapy Comes to Clinical Practice. Current Oncology, 2020, 27, 115-123.	0.9	26
1845	CAR T-cell immunotherapy of B-cell malignancy: the story so far. , 2020, 8, 251513552092716.	1.4	30
1847	Pre-clinical assessment of chimeric antigen receptor t cell therapy targeting CD19+ B cell malignancy. Annals of Translational Medicine, 2020, 8, 584-584.	0.7	7
1848	The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Frontiers in Immunology, 2020, 11, 888.	2.2	45
1849	CAR-T Cell Therapies: An Overview of Clinical Studies Supporting Their Approved Use against Acute Lymphoblastic Leukemia and Large B-Cell Lymphomas. International Journal of Molecular Sciences, 2020, 21, 3906.	1.8	50

#	Article	IF	CITATIONS
1850	Targeting CD79b for Chimeric Antigen Receptor T-Cell Therapy of B-Cell Lymphomas. Targeted Oncology, 2020, 15, 365-375.	1.7	14
1851	Colorectal cysts as a validating tool for CAR therapy. BMC Biotechnology, 2020, 20, 30.	1.7	3
1852	Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomarker Research, 2020, 8, 18.	2.8	51
1853	Cancer immunotherapy using T-cell receptor engineered T cell. Annals of Blood, 2020, 5, 5-5.	0.4	4
1854	Treating central nervous system lymphoma in the era of precision medicine. Expert Review of Precision Medicine and Drug Development, 2020, 5, 275-281.	0.4	1
1855	A Comprehensive Review of Tocilizumab in COVIDâ€19 Acute Respiratory Distress Syndrome. Journal of Clinical Pharmacology, 2020, 60, 1131-1146.	1.0	65
1856	Potential Role of Anti-interleukin (IL)-6 Drugs in the Treatment of COVID-19: Rationale, Clinical Evidence and Risks. BioDrugs, 2020, 34, 415-422.	2.2	50
1857	Improving long-term survival in diffuse intrinsic pontine glioma. Expert Review of Neurotherapeutics, 2020, 20, 647-658.	1.4	5
1858	IL6 Fuels Durable Memory for Th17 Cell–Mediated Responses to Tumors. Cancer Research, 2020, 80, 3920-3932.	0.4	16
1859	Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Frontiers in Immunology, 2020, 11, 369.	2.2	291
1860	Inhibition of Cholesterol Esterification Enzyme Enhances the Potency of Human Chimeric Antigen Receptor T Cells against Pancreatic Carcinoma. Molecular Therapy - Oncolytics, 2020, 16, 262-271.	2.0	12
1861	Self-Assembled Multivalent Aptamer Nanoparticles with Potential CAR-like Characteristics Could Activate T Cells and Inhibit Melanoma Growth. Molecular Therapy - Oncolytics, 2020, 17, 9-20.	2.0	27
1862	Advances in Developing CAR T-Cell Therapy for HIV Cure. Frontiers in Immunology, 2020, 11, 361.	2.2	42
1863	Novel stimulation strategy with autologous tumor cells to generate T cell receptorâ€engineered T cells in esophageal squamous cell carcinoma. Thoracic Cancer, 2020, 11, 1117-1118.	0.8	0
1864	Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. Journal of the American Chemical Society, 2020, 142, 6554-6568.	6.6	36
1865	Tumor Microenvironment. Cancer Treatment and Research, 2020, , .	0.2	12
1866	T cell-engaging therapies â€" BiTEs and beyond. Nature Reviews Clinical Oncology, 2020, 17, 418-434.	12.5	296
1867	Global hotspots and future prospects of chimeric antigen receptor T-cell therapy in cancer research: a bibliometric analysis. Future Oncology, 2020, 16, 597-612.	1.1	10

#	Article	IF	Citations
1868	Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents, 2020, 55, 105954.	1.1	1,442
1870	High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2019, 10, 3123.	2.2	67
1871	Mechanisms of Leukemia Immune Evasion and Their Role in Relapse After Haploidentical Hematopoietic Cell Transplantation. Frontiers in Immunology, 2020, 11, 147.	2.2	39
1872	An effective peptide vaccine strategy circumventing clonal MHC heterogeneity of murine myeloid leukaemia. British Journal of Cancer, 2020, 123, 919-931.	2.9	0
1873	Neurological Complications of CAR T Cell Therapy. Current Oncology Reports, 2020, 22, 83.	1.8	16
1874	Advances in Supportive Care for Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2020, 15, 276-293.	1.2	8
1875	Countermeasures to Coronavirus Disease 2019: Are Immunomodulators Rational Treatment Options—A Critical Review of the Evidence. Open Forum Infectious Diseases, 2020, 7, ofaa219.	0.4	10
1876	Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. Nanomaterials, 2020, 10, 1274.	1.9	26
1877	Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone, 2020, 138, 115524.	1.4	16
1878	How I treat relapsed acute lymphoblastic leukemia in the pediatric population. Blood, 2020, 136, 1803-1812.	0.6	90
1879	Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy. Neuro-Oncology, 2020, 22, 1425-1438.	0.6	37
1880	Cytokine Storms: Understanding COVID-19. Immunity, 2020, 53, 19-25.	6.6	514
1881	Fasten the seat belt: Increasing safety of CAR Tâ€cell therapy. Experimental Dermatology, 2020, 29, 1039-1045.	1.4	4
1882	EGFRvIII-specific CAR-T cells produced by piggyBac transposon exhibit efficient growth suppression against hepatocellular carcinoma. International Journal of Medical Sciences, 2020, 17, 1406-1414.	1.1	11
1883	Engineering Circulating Tumor Cells as Novel Cancer Theranostics. Theranostics, 2020, 10, 7925-7937.	4.6	11
1884	Overexpression of Mesothelin in Pancreatic Ductal Adenocarcinoma (PDAC). International Journal of Medical Sciences, 2020, 17, 422-427.	1.1	33
1886	Assessment and management of cytokine release syndrome and neurotoxicity following CD19 CAR-T cell therapy. Expert Opinion on Biological Therapy, 2020, 20, 653-664.	1.4	39
1887	Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Research, 2020, 80, 1615-1623.	0.4	120

#	Article	IF	CITATIONS
1888	Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. Advanced Science, 2020, 7, 1903164.	5.6	22
1889	Advances in the development of chimeric antigen receptor-T-cell therapy in B-cell acute lymphoblastic leukemia. Chinese Medical Journal, 2020, 133, 474-482.	0.9	9
1890	Controlling Cytokine Release Syndrome to Harness the Full Potential of CAR-Based Cellular Therapy. Frontiers in Oncology, 2020, 9, 1529.	1.3	23
1891	Generation and Validation of an Antibody to Canine CD19 for Diagnostic and Future Therapeutic Purposes. Veterinary Pathology, 2020, 57, 241-252.	0.8	21
1892	Extracorporeal cytokine removal in severe CAR-T cell associated cytokine release syndrome. Journal of Critical Care, 2020, 57, 124-129.	1.0	25
1893	CD28/4-1BB CD123 CAR T cells in blastic plasmacytoid dendritic cell neoplasm. Leukemia, 2020, 34, 3228-3241.	3.3	27
1894	Head and Neck Dystonia Following Chimericâ€Antigen Receptor T ell Immunotherapy: A Case Report. Laryngoscope, 2020, 130, E863-E864.	1.1	2
1895	CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncology, The, 2020, 21, e168-e178.	5.1	204
1896	Antibody-mediated delivery of viral epitopes to tumors harnesses CMV-specific T cells for cancer therapy. Nature Biotechnology, 2020, 38, 420-425.	9.4	48
1897	Cellular Immunotherapy in Lymphoma: Beyond CART Cells. Current Treatment Options in Oncology, 2020, 21, 21.	1.3	6
1898	Implications of T cell receptor biology on the development of new T cell therapies for cancer. Immunotherapy, 2020, 12, 89-103.	1.0	9
1899	A review of cancer immunotherapy toxicity. Ca-A Cancer Journal for Clinicians, 2020, 70, 86-104.	157.7	753
1900	Acute Kidney Injury and Electrolyte Abnormalities After Chimeric Antigen Receptor T-Cell (CAR-T) Therapy for Diffuse Large B-Cell Lymphoma. American Journal of Kidney Diseases, 2020, 76, 63-71.	2.1	74
1901	Use of chimeric antigen receptor NK-92Âcells to target mesothelin in ovarian cancer. Biochemical and Biophysical Research Communications, 2020, 524, 96-102.	1.0	57
1902	Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer. Cellular Immunology, 2020, 348, 104041.	1.4	52
1903	Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review. Cancers, 2020, 12, 192.	1.7	30
1904	Management of toxicities associated with novel immunotherapy agents in acute lymphoblastic leukemia. Therapeutic Advances in Hematology, 2020, 11, 204062071989989.	1.1	31
1905	Finding the Keys to the CAR: Identifying Novel Target Antigens for T Cell Redirection Immunotherapies. International Journal of Molecular Sciences, 2020, 21, 515.	1.8	49

#	ARTICLE	IF	CITATIONS
1906	Top 10 Challenges in Cancer Immunotherapy. Immunity, 2020, 52, 17-35.	6.6	1,177
1907	The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy, 2020, 22, 57-69.	0.3	70
1908	Factor VIII: Perspectives on Immunogenicity and Tolerogenic Strategies. Frontiers in Immunology, 2019, 10, 3078.	2.2	17
1909	The Cardiovascular Complications of Chimeric Antigen Receptor T Cell Therapy. Current Hematologic Malignancy Reports, 2020, 15, 130-132.	1.2	29
1910	Long Non-coding RNAs: Emerging Roles in the Immunosuppressive Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 48.	1.3	63
1911	The incidence of cytokine release syndrome and neurotoxicity of CD19 chimeric antigen receptor–T cell therapy in the patient with acute lymphoblastic leukemia and lymphoma. Cytotherapy, 2020, 22, 214-226.	0.3	29
1912	New directions in chimeric antigen receptor T cell [CARâ€T] therapy and related flow cytometry. Cytometry Part B - Clinical Cytometry, 2020, 98, 299-327.	0.7	28
1913	A Chemical Switch System to Modulate Chimeric Antigen Receptor T Cell Activity through Proteolysis-Targeting Chimaera Technology. ACS Synthetic Biology, 2020, 9, 987-992.	1.9	37
1914	COVID-19 for the Cardiologist. JACC Basic To Translational Science, 2020, 5, 518-536.	1.9	256
1915	Biomanufacturing for regenerative medicine. , 2020, , 1469-1480.		1
1916	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	13.5	247
1917	Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?. Journal of Autoimmunity, 2020, 111, 102452.	3.0	606
1918	Enhancing CAR T cell efficacy: the next step toward a clinical revolution?. Expert Review of Hematology, 2020, 13, 533-543.	1.0	10
1919	Car-T Treatment for Hematological Malignancies. Journal of Investigative Medicine, 2020, 68, 956-964.	0.7	20
1920	Talkin' Toxins: From Coley's to Modern Cancer Immunotherapy. Toxins, 2020, 12, 241.	1.5	47
1921	Translating IL-6 biology into effective treatments. Nature Reviews Rheumatology, 2020, 16, 335-345.	3.5	369
1922	Aptamer technology: a new approach to treat lymphoma?. Blood Science, 2020, 2, 11-15.	0.4	3
1923	Dissecting the Tumor–Immune Landscape in Chimeric Antigen Receptor T-cell Therapy: Key Challenges and Opportunities for a Systems Immunology Approach. Clinical Cancer Research, 2020, 26, 3505-3513.	3.2	18

#	Article	IF	CITATIONS
1924	The novel multi-cytokine inhibitor TO-207 specifically inhibits pro-inflammatory cytokine secretion in monocytes without affecting the killing ability of CAR T cells. PLoS ONE, 2020, 15, e0231896.	1.1	11
1925	Paving the Way toward Successful Multiple Myeloma Treatment: Chimeric Antigen Receptor T-Cell Therapy. Cells, 2020, 9, 983.	1.8	10
1926	A case report of fulminant cytokine release syndrome complicated by dermatomyositis after the combination therapy with immune checkpoint inhibitors. Medicine (United States), 2020, 99, e19741.	0.4	19
1927	Cytokine release syndrome in severe COVID-19. Science, 2020, 368, 473-474.	6.0	1,579
1928	Optimization of T-cell Receptor–Modified T Cells for Cancer Therapy. Cancer Immunology Research, 2020, 8, 743-755.	1.6	16
1929	Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135, 713-723.	0.6	123
1930	A bispecific approach to improving CAR T cells in AML. Blood, 2020, 135, 703-704.	0.6	7
1931	Chimeric antigen receptor–T cells with cytokine neutralizing capacity. Blood Advances, 2020, 4, 1419-1431.	2.5	27
1932	A general view of CD33 ⁺ leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Research, 2020, 55, 10-16.	0.5	21
1933	CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia, 2021, 35, 75-89.	3.3	107
1934	Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes. Blood Reviews, 2021, 45, 100707.	2.8	137
1935	A multidisciplinary consensus on the morphological and functional responses to immunotherapy treatment. Clinical and Translational Oncology, 2021, 23, 434-449.	1.2	6
1936	Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia, 2021, 35, 752-763.	3.3	52
1937	Coronavirus Disease 2019 (COVID-19) Pharmacologic Treatments for Children: Research Priorities and Approach to Pediatric Studies. Clinical Infectious Diseases, 2021, 72, 1067-1073.	2.9	4
1938	Developing cell therapies as drug products. British Journal of Pharmacology, 2021, 178, 262-279.	2.7	6
1939	CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharmaceutica Sinica B, 2021, 11, 1129-1147.	5 .7	47
1940	Biomarkers for predicting the outcome of various cancer immunotherapies. Critical Reviews in Oncology/Hematology, 2021, 157, 103161.	2.0	10
1941	Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Molecular Therapy, 2021, 29, 505-520.	3.7	48

#	Article	IF	CITATIONS
1942	Tisagenlecleucel in Acute Lymphoblastic Leukemia: A Review of the Literature and Practical Considerations. Annals of Pharmacotherapy, 2021, 55, 466-479.	0.9	6
1943	TGFÎ 2 biology in cancer progression and immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 9-34.	12.5	420
1944	Axicabtagene Ciloleucel: Clinical Data for the Use of CAR T-cell Therapy in Relapsed and Refractory Large B-cell Lymphoma. Annals of Pharmacotherapy, 2021, 55, 390-405.	0.9	13
1945	Challenges and Opportunities in Cancer Drug Resistance. Chemical Reviews, 2021, 121, 3297-3351.	23.0	203
1946	Clinical development of CAR T cell therapy in China: 2020 update. Cellular and Molecular Immunology, 2021, 18, 792-804.	4.8	50
1947	Leveraging Heterogeneity in Systemic Lupus Erythematosus for New Therapies. Trends in Molecular Medicine, 2021, 27, 152-171.	3.5	34
1948	Philadelphia chromosome-positive acute lymphoblastic leukemia: a case report. Annals of Palliative Medicine, 2021, 10, 742-748.	0.5	2
1949	Tocilizumab combined with favipiravir in the treatment of COVID-19: A multicenter trial in a small sample size. Biomedicine and Pharmacotherapy, 2021, 133, 110825.	2.5	81
1951	Chimeric Antigen Receptor T-cell Therapy for Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 21-34.	0.2	4
1952	Processing laboratory considerations for multi-center cellular therapy clinical trials: a report from the Consortium for Pediatric Cellular Immunotherapy. Cytotherapy, 2021, 23, 157-164.	0.3	3
1953	Recent Advances in Hyperthermia Therapyâ€Based Synergistic Immunotherapy. Advanced Materials, 2021, 33, e2004788.	11.1	233
1954	Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet, The, 2021, 397, 1010-1022.	6.3	196
1955	Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11, 316-329.	4.6	314
1956	Toxicities Associated with Immunotherapy and Approach to Cardiotoxicity with Novel Cancer Therapies. Critical Care Clinics, 2021, 37, 47-67.	1.0	5
1957	The toxicity of cell therapy: Mechanism, manifestations, and challenges. Journal of Applied Toxicology, 2021, 41, 659-667.	1.4	7
1958	Axicabtagene Ciloleucel CAR T-cell therapy for relapsed/refractory secondary CNS non-Hodgkin lymphoma: comparable outcomes and toxicities, but shorter remissions may warrant alternative consolidative strategies?. Bone Marrow Transplantation, 2021, 56, 974-977.	1.3	39
1959	The Peptide Vaccine of the Future. Molecular and Cellular Proteomics, 2021, 20, 100022.	2.5	94
1960	Cancer Grand Challenges: Embarking on a New Era of Discovery. Cancer Discovery, 2021, 11, 23-27.	7.7	15

#	Article	IF	CITATIONS
1961	Engineering precision therapies: lessons and motivations from the clinic. Synthetic Biology, 2021, 6, ysaa024.	1.2	5
1962	GD2-specific chimeric antigen receptor-modified T cells targeting retinoblastoma – assessing tumor and T cell interaction. Translational Oncology, 2021, 14, 100971.	1.7	19
1963	Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Annals of Oncology, 2021, 32, 34-48.	0.6	231
1964	Photoswitchable CAR-T Cell Function InÂVitro and InÂVivo via a Cleavable Mediator. Cell Chemical Biology, 2021, 28, 60-69.e7.	2.5	17
1965	Production of a novel bispecific protein ULBP1 \tilde{A} —CD19-scFv targeting the NKG2D receptor and CD19 to promote the activation of NK cells. Protein Expression and Purification, 2021, 178, 105783.	0.6	1
1966	The Cerebroventricular Environment Modifies CAR T Cells for Potent Activity against Both Central Nervous System and Systemic Lymphoma. Cancer Immunology Research, 2021, 9, 75-88.	1.6	24
1967	Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood, 2021, 137, 751-762.	0.6	183
1968	CD33â€Targeted Therapies: Beating the Disease or Beaten to Death?. Journal of Clinical Pharmacology, 2021, 61, 7-17.	1.0	17
1969	Coronavirus Disease-2019 Treatment Strategies Targeting Interleukin-6 Signaling and Herbal Medicine. OMICS A Journal of Integrative Biology, 2021, 25, 13-22.	1.0	16
1970	Targeting and killing glioblastoma with monoclonal antibody to $\langle i \rangle O \langle i \rangle$ -acetyl GD2 ganglioside. Oncotarget, 0, 7, 41172-41185.	0.8	40
1971	Current Progress in CAR-T Cell Therapy for Hematological Malignancies. Journal of Cancer, 2021, 12, 326-334.	1.2	102
1972	Recent advances in acute lymphoblastic leukemia. Journal of Hematopoietic Cell Transplantation, 2021, 10, 72-80.	0.1	0
1973	Generation of CAR-T Cells by Lentiviral Transduction. Methods in Molecular Biology, 2021, 2312, 3-14.	0.4	6
1974	Enhancing co-stimulation of CAR T cells to improve treatment outcomes in solid cancers. Immunotherapy Advances, 2021, 1 , .	1.2	7
1975	Allogeneic CAR Cell Therapyâ€"More Than a Pipe Dream. Frontiers in Immunology, 2020, 11, 618427.	2.2	64
1976	Relapse After Hematopoietic Cell Transplantation. , 2021, , 711-721.		0
1977	Development and functional characterization of novel fully human anti D19 chimeric antigen receptors for Tâ€eell therapy. Journal of Cellular Physiology, 2021, 236, 5832-5847.	2.0	2
1978	Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. Journal of Neuroinflammation, 2021, 18, 32.	3.1	62

#	ARTICLE	IF	CITATIONS
1979	Current status of immunotherapy in acute myeloid leukemia. E3S Web of Conferences, 2021, 271, 03025.	0.2	0
1980	Practical guidelines for monitoring and management of coagulopathy following tisagenlecleucel CAR T-cell therapy. Blood Advances, 2021, 5, 593-601.	2.5	28
1981	Neurologic complications associated with CAR T-cell therapy. , 2021, , 381-388.		0
1982	Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers, 2021, 13, 477.	1.7	34
1983	Preclinical development of CD126 CAR-T cells with broad antitumor activity. Blood Cancer Journal, 2021, 11, 3.	2.8	16
1984	Potency analysis of cellular therapies: the role of molecular assays. , 2021, , 49-70.		0
1985	Culturing adequate CAR-T cells from less peripheral blood to treat B-cell malignancies. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	5
1986	Auswirkungen von Chemotherapeutika auf zirkulierende Leukozytenpopulationen: Mögliche Implikationen für den Erfolg von CAR-T-Zell-Therapien. Karger Kompass Onkologie, 2021, 8, 116-127.	0.0	0
1987	"Cerberus―T Cells: A Glucocorticoid-Resistant, Multi-Pathogen Specific T Cell Product to Fight Infections in Severely Immunocompromised Patients. Frontiers in Immunology, 2020, 11, 608701.	2.2	7
1988	Mutated GMâ€CSFâ€based CARâ€T cells targeting CD116/CD131 complexes exhibit enhanced antiâ€tumor effectagainst acute myeloid leukaemia. Clinical and Translational Immunology, 2021, 10, e1282.	ts 1.7	15
1989	Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Theranostics, 2021, 11, 6800-6817.	4.6	21
1990	Generating CAR T cells from tumor-infiltrating lymphocytes. , 2021, 9, 251513552110171.	1.4	6
1991	Highâ€throughput sequencing of immunoglobulin heavy chain for minimal residual disease detection in Bâ€lymphoblastic leukemia. International Journal of Laboratory Hematology, 2021, 43, 724-731.	0.7	1
1993	T cells selectively filter oscillatory signals on the minutes timescale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
1994	Single-cell profiling identifies pre-existing CD19-negative subclones in a B-ALL patient with CD19-negative relapse after CAR-T therapy. Nature Communications, 2021, 12, 865.	5.8	81
1995	Elucidating the Pivotal Role of Immune Players in the Management of COVID-19: Focus on Mesenchymal Stem Cells and Inflammation. Current Stem Cell Research and Therapy, 2021, 16, 189-198.	0.6	1
1996	Antiâ€tumor efficacy of human antiâ€câ€met CARâ€T cells against papillary renal cell carcinoma in an orthotopic model. Cancer Science, 2021, 112, 1417-1428.	1.7	21
1997	Distribution of chimeric antigen receptor-modified T cells against CD19 in B-cell malignancies. BMC Cancer, 2021, 21, 198.	1.1	7

#	Article	IF	CITATIONS
2000	How I Manage: Pathophysiology and Management of Toxicity of Chimeric Antigen Receptor T-Cell Therapies. Journal of Clinical Oncology, 2021, 39, 456-466.	0.8	21
2003	Engineering advanced logic and distributed computing in human CAR immune cells. Nature Communications, 2021, 12, 792.	5.8	68
2004	A Review of Clinical Outcomes of CAR T-Cell Therapies for B-Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 2021, 22, 2150.	1.8	60
2005	Immunogenicity of CAR T cells in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 379-393.	12.5	128
2006	CRS-related coagulopathy in BCMA targeted CAR-T therapy: a retrospective analysis in a phase I/II clinical trial. Bone Marrow Transplantation, 2021, 56, 1642-1650.	1.3	14
2007	Xenograft models for pediatric cancer therapies. Faculty Reviews, 2021, 10, 11.	1.7	2
2008	Targeting CAR to the Peptide-MHC Complex Reveals Distinct Signaling Compared to That of TCR in a Jurkat T Cell Model. Cancers, 2021, 13, 867.	1.7	9
2009	Challenges and Clinical Strategies of CAR T-Cell Therapy for Acute Lymphoblastic Leukemia: Overview and Developments. Frontiers in Immunology, 2020, 11, 569117.	2.2	26
2010	Biomechanics of T Cell Dysfunctions in Chronic Diseases. Frontiers in Immunology, 2021, 12, 600829.	2.2	11
2011	Recent developments in cancer research: Expectations for a new remedy. Annals of Gastroenterological Surgery, 2021, 5, 419-426.	1.2	12
2012	Preclinical and clinical advances in dualâ€ŧarget chimeric antigen receptor therapy for hematological malignancies. Cancer Science, 2021, 112, 1357-1368.	1.7	19
2014	Insulin's other life: an autoantigen in type 1 diabetes. Immunology and Cell Biology, 2021, 99, 448-460.	1.0	3
2015	Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers, 2021, 13, 564.	1.7	46
2016	A recent update on the clinical trials and effectiveness of drugs used in COVID-19, MERS and SARS Coronaviruses Anti-Infective Agents, 2021, 19, .	0.1	0
2017	Interleukin-6 Trajectory and Secondary Infections in Mechanically Ventilated Patients With Coronavirus Disease 2019 Acute Respiratory Distress Syndrome Treated With Interleukin-6 Receptor Blocker., 2021, 3, e0343.		8
2018	Targeted multi-epitope switching enables straightforward positive/negative selection of CAR T cells. Gene Therapy, 2021, 28, 602-612.	2.3	9
2019	Biomarkers for Chimeric Antigen Receptor T Cell Therapy in Acute Lymphoblastic Leukemia: Prospects for Personalized Management and Prognostic Prediction. Frontiers in Immunology, 2021, 12, 627764.	2.2	28
2020	IL-6: from arthritis to CAR-T-cell therapy and COVID-19. International Immunology, 2021, 33, 515-519.	1.8	17

#	Article	IF	CITATIONS
2021	CD19 Chimeric Antigen Receptor-Exosome Targets CD19 Positive B-lineage Acute Lymphocytic Leukemia and Induces Cytotoxicity. Cancers, 2021, 13, 1401.	1.7	30
2022	CAR T cells targeting CD13 controllably induce eradication of acute myeloid leukemia with a single domain antibody switch. Leukemia, 2021, 35, 3309-3313.	3.3	6
2023	Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases (Basel, Switzerland), 2021, 9, 20.	1.0	19
2024	Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. International Journal of Molecular Sciences, 2021, 22, 2912.	1.8	54
2025	Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers, 2021, 13, 1481.	1.7	20
2026	Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. Journal of Clinical Oncology, 2021, 39, 920-930.	0.8	110
2027	Genetic Mechanism of Leukemia Relapse Following CD19 Chimeric Antigen Receptor T Cell Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2021, , .	0.7	1
2028	Cytokine Release Syndrome Biology and Management. Cancer Journal (Sudbury, Mass), 2021, 27, 119-125.	1.0	25
2029	Development of a CD8 co-receptor independent T-cell receptor specific for tumor-associated antigen MAGE-A4 for next generation T-cell-based immunotherapy., 2021, 9, e002035.		20
2030	The Transferrin Receptor-Directed CAR for the Therapy of Hematologic Malignancies. Frontiers in Immunology, 2021, 12, 652924.	2.2	6
2031	Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death and Disease, 2021, 12, 299.	2.7	25
2032	Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes, 2021, 12, 445.	1.0	43
2033	Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nature Communications, 2021, 12, 1999.	5.8	140
2034	InÂvivo CART cell imaging: Paving the way for success in CART cell therapy. Molecular Therapy - Oncolytics, 2021, 20, 625-633.	2.0	14
2035	Immune checkpoint inhibitor–associated myocarditis: manifestations and mechanisms. Journal of Clinical Investigation, 2021, 131, .	3.9	84
2036	Chimeric Antigen Receptor–Modified Immune Effector Cell Therapies. Cancer Journal (Sudbury, Mass), 2021, 27, 90-91.	1.0	0
2037	Biomarkers for Predicting Cytokine Release Syndrome following CD19-Targeted CAR T Cell Therapy. Journal of Immunology, 2021, 206, 1561-1568.	0.4	36
2038	Any closer to successful therapy of multiple myeloma? CAR-T cell is a good reason for optimism. Stem Cell Research and Therapy, 2021, 12, 217.	2.4	14

#	Article	IF	CITATIONS
2039	Immunotherapy perspectives in the new era of B-cell editing. Blood Advances, 2021, 5, 1770-1779.	2.5	6
2040	Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Human Vaccines and Immunotherapeutics, 2021, 17, 1882-1896.	1.4	10
2041	T-cell-based Immunotherapies for Haematological Cancers, Part B: A SWOT Analysis of Adoptive Cell Therapies. Anticancer Research, 2021, 41, 1143-1156.	0.5	11
2042	Neurotoxicity Biology and Management. Cancer Journal (Sudbury, Mass), 2021, 27, 126-133.	1.0	7
2043	Improving and Maintaining Responses in Pediatric B–Cell Acute Lymphoblastic Leukemia Chimeric Antigen Receptor–T Cell Therapy. Cancer Journal (Sudbury, Mass), 2021, 27, 151-158.	1.0	0
2044	CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cellular Oncology (Dordrecht), 2021, 44, 495-523.	2.1	32
2045	Clinical Utility of Droplet Digital PCR to Monitor BCR-ABL1 Transcripts of Patients With Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia Post-chimeric Antigen Receptor19/22 T-Cell Cocktail Therapy. Frontiers in Oncology, 2021, 11, 646499.	1.3	3
2046	Detection of <scp>CARâ€₹19</scp> cells in peripheral blood and cerebrospinal fluid: An assay applicable to routine diagnostic laboratories. Cytometry Part B - Clinical Cytometry, 2021, 100, 622-631.	0.7	6
2047	Pharmacologic Control of CAR T Cells. International Journal of Molecular Sciences, 2021, 22, 4320.	1.8	9
2048	Absence of "Cytokine Storm―in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Infectious Disease Reports, 2021, 13, 377-387.	1.5	3
2049	Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics, 2021, 13, 520.	2.0	25
2050	CAR-T cell persistence in the treatment of leukemia and lymphoma. Leukemia and Lymphoma, 2021, 62, 2587-2599.	0.6	13
2051	RNA Dysregulation: An Expanding Source of Cancer Immunotherapy Targets. Trends in Pharmacological Sciences, 2021, 42, 268-282.	4.0	39
2052	Recent progress in the treatment of cancer in children. Ca-A Cancer Journal for Clinicians, 2021, 71, 315-332.	157.7	43
2053	Recent advances in breast cancer immunotherapy: The promising impact of nanomedicines. Life Sciences, 2021, 271, 119110.	2.0	25
2054	Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.	1.2	4
2055	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	15.2	88
2056	CD19 CAR-T cell treatment conferred sustained remission in B-ALL patients with minimal residual disease. Cancer Immunology, Immunotherapy, 2021, 70, 3501-3511.	2.0	12

#	Article	IF	CITATIONS
2057	Potent antitumor effect of T cells armed with antiâ€GD2 bispecific antibody. Pediatric Blood and Cancer, 2021, 68, e28971.	0.8	8
2058	Development of Antigen-specific Chimeric Antigen Receptor KHYG-1 Cells for Glioblastoma. Anticancer Research, 2021, 41, 1811-1819.	0.5	6
2059	Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or victim?. Immunology Letters, 2021, 232, 48-59.	1.1	2
2060	The evolving role of allogeneic haematopoietic cell transplantation in the era of chimaeric antigen receptor Tâ€cell therapy. British Journal of Haematology, 2021, 193, 1060-1075.	1.2	13
2061	Therapies of Hematological Malignancies: An Overview of the Potential Targets and Their Inhibitors. Current Chemical Biology, 2021, 15, 19-49.	0.2	2
2062	Role of TCF†in differentiation, exhaustion, and memory of CD8 ⁺ T cells: A review. FASEB Journal, 2021, 35, e21549.	0.2	24
2064	Modular Organization of Engulfment Receptors and Proximal Signaling Networks: Avenues to Reprogram Phagocytosis. Frontiers in Immunology, 2021, 12, 661974.	2.2	2
2065	Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers, 2021, 13, 2225.	1.7	21
2066	Neurological complications of cancer immunotherapy (CAR T cells). Journal of the Neurological Sciences, 2021, 424, 117405.	0.3	10
2067	Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release., 2021, 9, e002222.		24
2068	Updates in Childhood Leukemia. Advances in Oncology, 2021, 1, 169-180.	0.1	0
2069	A Novel off-the-Shelf Trastuzumab-Armed NK Cell Therapy (ACE1702) Using Antibody-Cell-Conjugation Technology. Cancers, 2021, 13, 2724.	1.7	19
2070	B-cell targeted therapies in pemphigus. Italian Journal of Dermatology and Venereology, 2021, 156, .	0.1	1
2072	Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with <i>piggyBac </i> -modified CD19 CAR T cells. Blood, 2021, 138, 1504-1509.	0.6	86
2073	Coronavirus Disease 2019 in Kidney Transplant Recipients: Single-Center Experience and Case-Control Study. Transplantation Proceedings, 2021, 53, 1187-1193.	0.3	8
2074	Obstacles and Coping Strategies of CAR-T Cell Immunotherapy in Solid Tumors. Frontiers in Immunology, 2021, 12, 687822.	2.2	33
2075	Mechanisms of Cardiovascular Toxicities Associated With Immunotherapies. Circulation Research, 2021, 128, 1780-1801.	2.0	48
2076	Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer and Metastasis Reviews, 2021, 40, 519-536.	2.7	56

#	Article	IF	CITATIONS
2077	Therapeutic Potential of TNF \hat{l}_{\pm} and IL1 \hat{l}_{\pm}^2 Blockade for CRS/ICANS in CAR-T Therapy via Ameliorating Endothelial Activation. Frontiers in Immunology, 2021, 12, 623610.	2,2	21
2078	Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nature Reviews Immunology, 2022, 22, 85-96.	10.6	315
2079	A Prospective Investigation of Bispecific CD19/22 CAR T Cell Therapy in Patients With Relapsed or Refractory B Cell Non-Hodgkin Lymphoma. Frontiers in Oncology, 2021, 11, 664421.	1.3	20
2080	Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based Therapeutics. Frontiers in Oncology, 2021, 11, 672262.	1.3	11
2081	Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. Journal of Clinical Oncology, 2021, 39, 1650-1659.	0.8	173
2082	Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers, 2021, 13, 2816.	1.7	8
2083	Identification and Validation of T-cell Receptors Targeting <i>RAS</i> Hotspot Mutations in Human Cancers for Use in Cell-based Immunotherapy. Clinical Cancer Research, 2021, 27, 5084-5095.	3.2	26
2084	CRISPR–Cas9 can cause chromothripsis. Nature Genetics, 2021, 53, 768-769.	9.4	7
2085	Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Frontiers in Oncology, 2021, 11, 631037.	1.3	10
2086	Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Frontiers in Immunology, 2021, 12, 651545.	2.2	17
2087	Adverse Events and Side Effects of Chimeric Antigen Receptor (CAR) T Cell Therapy in Patients with Hematologic Malignancies. Trends in Medical Sciences, 2021, 1 , .	0.1	1
2088	Tisagenlecleucel for treatment of children and young adults with relapsed/refractory Bâ€cell acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2021, 68, e29123.	0.8	15
2089	Remote controlling of CAR-T cells and toxicity management: Molecular switches and next generation CARs. Translational Oncology, 2021, 14, 101070.	1.7	17
2090	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	5. 7	70
2091	Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment. Medical Immunology (Russia), 2021, 23, 483-496.	0.1	1
2092	COVID-19 Pathology on Various Organs and Regenerative Medicine and Stem Cell-Based Interventions. Frontiers in Cell and Developmental Biology, 2021, 9, 675310.	1.8	4
2093	Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation. ACS Nano, 2021, 15, 12888-12898.	7.3	36
2094	Distributed sensor and actuator networks for closed-loop bioelectronic medicine. Materials Today, 2021, 46, 125-135.	8.3	19

#	Article	IF	CITATIONS
2095	Current Status of CAR T Cell Therapy for Leukemias. Current Treatment Options in Oncology, 2021, 22, 62.	1.3	15
2096	AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer Journal, 2021, 11, 119.	2.8	46
2097	Advancing to the era of cancer immunotherapy. Cancer Communications, 2021, 41, 803-829.	3.7	90
2098	CAR-based cell therapy: evaluation with bibliometrics and patent analysis. Human Vaccines and Immunotherapeutics, 2021, 17, 4374-4382.	1.4	2
2099	New targets for CAR T therapy in hematologic malignancies. Best Practice and Research in Clinical Haematology, 2021, 34, 101277.	0.7	9
2100	Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Applied Nano Materials, 2021, 4, 6441-6470.	2.4	56
2101	Development of humanized mouse with patientâ€derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Science, 2021, 112, 2592-2606.	1.7	25
2102	P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nature Communications, 2021, 12, 3615.	5. 8	25
2103	Interleukins in cancer: from biology to therapy. Nature Reviews Cancer, 2021, 21, 481-499.	12.8	318
2104	Investigational immunotherapy targeting CD19 for the treatment of acute lymphoblastic leukemia. Expert Opinion on Investigational Drugs, 2021, 30, 773-784.	1.9	8
2105	Efficacy and Safety of Axicabtagene Ciloleucel and Tisagenlecleucel Administration in Lymphoma Patients With Secondary CNS Involvement: A Systematic Review. Frontiers in Immunology, 2021, 12, 693200.	2.2	8
2106	The role of NFAT2/miR-20a-5p signaling pathway in the regulation of CD8+ naÃ-ve T cells activation and differentiation. Immunobiology, 2021, 226, 152111.	0.8	2
2107	Cellâ€Based Bioâ€Hybrid Delivery System for Disease Treatments. Advanced NanoBiomed Research, 2021, 1, 2000052.	1.7	6
2108	Prevention of type 1 diabetes: where we are and where we are going. Minerva Pediatrics, 2022, 73, .	0.2	1
2109	Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
2110	CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Research and Therapy, 2021, 12, 374.	2.4	33
2111	Primary central nervous system lymphoma: clinicopathological and genomic insights for therapeutic development. Brain Tumor Pathology, 2021, 38, 173-182.	1.1	7
2112	Optimization of lymphapheresis for manufacturing autologous CAR-T cells. International Journal of Hematology, 2021, 114, 449-458.	0.7	6

#	Article	IF	CITATIONS
2113	Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells., 2021, 9, e002475.		6
2114	Nearâ€Infraredâ€Light Remoteâ€Controlled Activation of Cancer Immunotherapy Using Photothermal Conjugated Polymer Nanoparticles. Advanced Materials, 2021, 33, e2102570.	11.1	58
2115	Acute lymphoblastic leukemia in infants: A quarter century of nationwide efforts in Japan. Pediatrics International, 2022, 64, .	0.2	5
2116	Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Experimental and Molecular Medicine, 2021, 53, 1116-1123.	3.2	116
2117	Rapamycin Pretreatment Rescues the Bone Marrow AML Cell Elimination Capacity of CAR-T Cells. Clinical Cancer Research, 2021, 27, 6026-6038.	3.2	25
2118	Graft-versus-Host Disease Prophylaxis with Post-Transplantation Bendamustine in Patients with Refractory Acute Leukemia: A Dose-Ranging Study. Transplantation and Cellular Therapy, 2021, 27, 601.e1-601.e7.	0.6	3
2119	Secondary Dysgammaglobulinemia in Children with Hematological Malignancies Treated with Targeted Therapies. Paediatric Drugs, 2021, 23, 445-455.	1.3	1
2120	Development of a Clinically Relevant Reporter for Chimeric Antigen Receptor T-cell Expansion, Trafficking, and Toxicity. Cancer Immunology Research, 2021, 9, 1035-1046.	1.6	14
2121	Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. International Journal of Molecular Sciences, 2021, 22, 7652.	1.8	33
2122	Mechanistic understanding of innate and adaptive immune responses in SARS-CoV-2 infection. Molecular Immunology, 2021, 135, 268-275.	1.0	15
2123	The era of gene therapy: From preclinical development to clinical application. Drug Discovery Today, 2021, 26, 1602-1619.	3.2	26
2124	Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. Journal of Hematology and Oncology, 2021, 14, 113.	6.9	32
2125	Cytokine release syndrome after haploidentical hematopoietic cell transplantation: an international multicenter analysis. Bone Marrow Transplantation, 2021, 56, 2763-2770.	1.3	25
2126	The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 255.	7.1	355
2127	CD19 CAR T cells for adults with relapsed or refractory acute lymphoblastic leukaemia. Lancet, The, 2021, 398, 466-467.	6.3	12
2128	PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers, 2021, 13, 4040.	1.7	21
2129	A broad and systematic approach to identify B cell malignancy-targeting TCRs for multi-antigen-based TÂcell therapy. Molecular Therapy, 2022, 30, 564-578.	3.7	10
2130	Comparison of CPFA and Tocilizumab Treatments in Cytokine Release Syndrome Developing in Covid-19 Disease. Harran Üniversitesi Tıp Fakültesi Dergisi, 2021, 18, 311-317.	0.1	0

#	Article	IF	CITATIONS
2131	Hypermethylation of CD19 promoter enables antigen-negative escape to CART-19 in vivo and in vitro. , 2021, 9, e002352.		14
2132	Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Research and Therapy, 2021, 12, 465.	2.4	69
2133	Combined 4-1BB and ICOS co-stimulation improves anti-tumor efficacy and persistence of dual anti-CD19/CD20 chimeric antigen receptor T cells. Cytotherapy, 2021, 23, 715-723.	0.3	11
2134	Kidney Transplant T Cell–Mediated Rejection Occurring After Anti-CD19 CAR T-Cell Therapy for Refractory Aggressive Burkitt-like Lymphoma With 11q Aberration: A Case Report. American Journal of Kidney Diseases, 2022, 79, 760-764.	2.1	15
2135	Engineering-enhanced CAR T cells for improved cancer therapy. Nature Cancer, 2021, 2, 780-793.	5.7	60
2136	Thrombopoietin-based CAR-T cells demonstrate in vitro and in vivo cytotoxicity to MPL positive acute myelogenous leukemia and hematopoietic stem cells. Gene Therapy, 2022, 29, 1-12.	2.3	7
2137	Targeted Therapy in Pediatric AML: An Evolving Landscape. Paediatric Drugs, 2021, 23, 485-497.	1.3	6
2138	Soluble trivalent engagers redirect cytolytic TÂcell activity toward tumor endothelial marker 1. Cell Reports Medicine, 2021, 2, 100362.	3.3	9
2139	Chimeric Antigen Receptor-T Cells: A Pharmaceutical Scope. Frontiers in Pharmacology, 2021, 12, 720692.	1.6	20
2140	Factors associated with treatment response to CD19 CAR-T therapy among a large cohort of B cell acute lymphoblastic leukemia. Cancer Immunology, Immunotherapy, 2022, 71, 689-703.	2.0	22
2141	Scalable Manufacturing of CAR T Cells for Cancer Immunotherapy. Blood Cancer Discovery, 2021, 2, 408-422.	2.6	84
2142	Chimeric antigen receptor T-cell therapy for breast cancer. Future Oncology, 2021, 17, 2961-2979.	1.1	0
2143	Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. International Immunology, 2021, 33, 551-562.	1.8	20
2144	CAR T cells: Building on the CD19 paradigm. European Journal of Immunology, 2021, 51, 2151-2163.	1.6	43
2145	Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia., 2021, 9, e002287.		24
2146	Quality Is King: Fundamental Insights into Tumor Antigenicity from Virus-Associated Merkel Cell Carcinoma. Journal of Investigative Dermatology, 2021, 141, 1897-1905.	0.3	6
2147	Formulation Considerations for Autologous T Cell Drug Products. Pharmaceutics, 2021, 13, 1317.	2.0	4
2148	Production and Application of CAR T Cells: Current and Future Role of Europe. Frontiers in Medicine, 2021, 8, 713401.	1.2	15

#	Article	IF	Citations
2149	Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunologic Research, 2021, 69, 471-486.	1.3	8
2150	Intensive monitoring of minimal residual disease and chimerism after allogeneic hematopoietic stem cell transplantation for acute leukemia in children. Bone Marrow Transplantation, 2021, 56, 2981-2989.	1.3	3
2151	Management of chimeric antigen receptor T-cell induced cytokine release syndrome: Current and emerging approaches. Journal of Oncology Pharmacy Practice, 2022, 28, 107815522110392.	0.5	1
2152	Efficacy and safety of humanized CD19 CARâ€'T as a salvage therapy for recurrent CNSL of Bâ€'ALL following murine CD19 CARâ€'T cell therapy. Oncology Letters, 2021, 22, 788.	0.8	4
2153	Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance?. European Journal of Immunology, 2021, 51, 2373-2386.	1.6	6
2154	Development of CMV-CD19 bi-specific CAR T cells with post-infusion in vivo boost using an anti-CMV vaccine. International Journal of Hematology, 2021, 114, 544-553.	0.7	6
2156	Haematological problems in the intensive care unit. Anaesthesia and Intensive Care Medicine, 2021, , .	0.1	0
2157	Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3044-3055.	0.8	94
2159	Composite CD79A/CD40 co-stimulatory endodomain enhances CD19CAR-T cell proliferation and survival. Molecular Therapy, 2021, 29, 2677-2690.	3.7	17
2160	Novel myeloperoxidase-derived HLA-A2-restricted peptides as therapeutic targets against myeloid leukemia. Cytotherapy, 2021, 23, 793-798.	0.3	1
2161	Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. National Science Review, 2022, 9, nwab172.	4.6	57
2162	Targeting pediatric leukemia-propagating cells with anti-CD200 antibody therapy. Blood Advances, 2021, 5, 3694-3708.	2.5	4
2163	Cell subsets and cytokine dynamics in cerebrospinal fluid after CAR-T cell therapy for B-cell acute lymphoblastic leukemia with central nervous system involvement. Bone Marrow Transplantation, 2021, 56, 3088-3090.	1.3	5
2164	Self-driving armored CAR-T cells overcome a suppressive milieu and eradicate CD19+ Raji lymphoma in preclinical models. Molecular Therapy, 2021, 29, 2691-2706.	3.7	18
2165	Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 1079-1109.	2.3	96
2166	Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Engineering and Regenerative Medicine, 2022, 19, 263-280.	1.6	11
2167	Interleukin-6 blockade for prophylaxis and management of immune-related adverse events in cancer immunotherapy. European Journal of Cancer, 2021, 157, 214-224.	1.3	62
2168	Delivery strategies for ex vivo and in vivo T-cell reprogramming. , 2022, , 31-62.		0

#	Article	IF	CITATIONS
2169	Role of microbiome in cancer immunotherapy. , 2022, , 321-352.		1
2170	T-cell engaging bispecific antibody therapy. , 2022, , 267-319.		2
2171	Nucleic acid biomarker technology for cancer immunotherapy. , 2022, , 331-356.		0
2172	Improving the safety of iPSC-derived TÂcell therapy. , 2022, , 95-115.		3
2173	Adoptive Cell Therapy., 2021,, 419-427.		0
2174	Senescence and Apoptosis: Architects of Mammalian Development. Frontiers in Cell and Developmental Biology, 2020, 8, 620089.	1.8	23
2175	CAR-NK cell immunotherapy: Development and challenges toward an off-the-shelf product. , 2021, , 213-230.		2
2176	Experimental Animal Models of Coronavirus Infections: Strengths and Limitations. Immune Network, 2021, 21, e12.	1.6	12
2177	Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. International Journal of Biological Sciences, 2021, 17, 3850-3861.	2.6	33
2178	Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Metastatic Prostate Cancer: A Comprehensive Review. International Journal of Molecular Sciences, 2021, 22, 640.	1.8	13
2180	Application Prospects for New Immune Checkpoints in Cervical Cancer. Advances in Clinical Medicine, 2021, 11, 3418-3425.	0.0	0
2181	Avidityâ€Based Selection of Tissueâ€Specific CARâ€T Cells from a Combinatorial Cellular Library of CARs. Advanced Science, 2021, 8, 2003091.	5.6	8
2183	Beyond the storm â€" subacute toxicities and late effects in children receiving CAR T cells. Nature Reviews Clinical Oncology, 2021, 18, 363-378.	12.5	37
2184	Advances in pluripotent stem cell-derived natural killer cells for cancer immunotherapy. , 2021, , $165-181$.		0
2185	Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81. Science, 2021, 371, 300-305.	6.0	43
2186	T Cell Reprogramming Against Cancer. Methods in Molecular Biology, 2020, 2097, 3-44.	0.4	20
2187	Chimeric Antigen Receptor (CAR) T Cell Therapy for Cancer. Challenges and Opportunities: An Overview. Methods in Molecular Biology, 2021, 2174, 219-244.	0.4	7
2188	Engineered Cell-Based Therapies: A Vanguard of Design-Driven Medicine. Advances in Experimental Medicine and Biology, 2014, 844, 369-391.	0.8	4

#	Article	IF	CITATIONS
2189	3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery. Methods in Molecular Biology, 2020, 2050, 69-77.	0.4	3
2190	Cytokines in Cytokine Storm Syndrome. , 2019, , 197-207.		3
2191	Advances and Challenges of CAR T Cells in Clinical Trials. Recent Results in Cancer Research, 2020, 214, 93-128.	1.8	10
2192	CAR-T cell and Personalized Medicine. Advances in Experimental Medicine and Biology, 2019, 1168, 131-145.	0.8	9
2193	CAR T Cell Therapy Progress and Challenges for Solid Tumors. Cancer Treatment and Research, 2020, 180, 297-326.	0.2	23
2194	Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. Advances in Experimental Medicine and Biology, 2020, 1257, 109-131.	0.8	7
2195	Chimeric Antigen Receptor (CAR) Redirected T Cells. Learning Materials in Biosciences, 2021, , 251-302.	0.2	1
2196	Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2021, 1287, 201-222.	0.8	17
2197	Genetically Modified T-Cell Therapy for Osteosarcoma. Advances in Experimental Medicine and Biology, 2014, 804, 323-340.	0.8	16
2198	From Basic Immunology to New Therapies for Cancer Patients. , 2014, , 3-11.		3
2199	Retroviral Vectors for Cancer Gene Therapy. Recent Results in Cancer Research, 2016, 209, 17-35.	1.8	24
2200	Cancer Treatment-Related Lung Injury. , 2020, , 531-556.		4
2201	LeukÃ m ien und Lymphome. , 2018, , 267-357.		1
2202	IL-6: A New Era for the Treatment of Autoimmune Inflammatory Diseases., 2015,, 131-147.		14
2203	Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. Journal of Cancer Research and Clinical Oncology, 2020, 146, 2007-2016.	1.2	13
2204	Novel Therapies in the Treatment of Adult Acute Lymphoblastic Leukemia. Current Hematologic Malignancy Reports, 2020, 15, 294-304.	1.2	17
2205	Evolving Role of Immunotherapy in Metastatic Castration Refractory Prostate Cancer. Drugs, 2021, 81, 191-206.	4.9	11
2206	Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Medicina Intensiva, 2019, 43, 480-488.	0.4	16

#	Article	IF	CITATIONS
2207	The magic bullet as cancer therapeuticâ€"has nanotechnology failed to find its mark?. Progress in Biomedical Engineering, 2020, 2, 042004.	2.8	5
2208	Combination Therapy With Chemotherapy, Donor Lymphocyte Infusion With Concurrent Blinatumomab in Relapsed/Refractory Acute Precursor B-Lymphoblastic Leukemia. Journal of Pediatric Hematology/Oncology, 2021, 43, e280-e283.	0.3	2
2211	Programmed Cell Death 1-Directed Immunotherapy for Enhancing T-Cell Function. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 239-247.	2.0	38
2212	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of lymphoma., 2020, 8, e001235.		11
2213	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events., 2020, 8, e001511.		138
2214	Antitumor Effects of CAR T Cells Redirected to the EDB Splice Variant of Fibronectin. Cancer Immunology Research, 2021, 9, 279-290.	1.6	24
2215	Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in T regulatory cells. JCI Insight, 2019, 4, .	2.3	58
2216	Comparison of CAR-T19 and autologous stem cell transplantation for refractory/relapsed non-Hodgkin's lymphoma. JCI Insight, 2019, 4, .	2.3	14
2217	Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. JCI Insight, 2020, 5, .	2.3	51
2218	A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti–IL-6R treatment. JCI Insight, 2016, 1, e88181.	2.3	43
2219	Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight, 2016, 1, e90064.	2.3	70
2220	Chimeric antigen receptor–induced BCL11B suppression propagates NK-like cell development. Journal of Clinical Investigation, 2019, 129, 5108-5122.	3.9	16
2221	BCMA CAR T cells: the winding path to success. Journal of Clinical Investigation, 2019, 129, 2175-2177.	3.9	11
2222	State of the art in CAR T cell therapy for CD19+ B cell malignancies. Journal of Clinical Investigation, 2020, 130, 1586-1594.	3.9	74
2223	IL-12p70–producing patient DC vaccine elicits Tc1-polarized immunity. Journal of Clinical Investigation, 2013, 123, 3383-3394.	3.9	137
2224	Radiation and immunotherapy: a synergistic combination. Journal of Clinical Investigation, 2013, 123, 2756-2763.	3.9	226
2225	CAR therapy: the CD19 paradigm. Journal of Clinical Investigation, 2015, 125, 3392-3400.	3.9	187
2226	Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. Journal of Clinical Investigation, 2016, 126, 3130-3144.	3.9	773

#	Article	IF	CITATIONS
2227	CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. Journal of Clinical Investigation, 2016, 126, 2341-2355.	3.9	127
2228	Clinical responses with T lymphocytes targeting malignancy-associated \hat{I}^{e} light chains. Journal of Clinical Investigation, 2016, 126, 2588-2596.	3.9	241
2229	Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. Journal of Clinical Investigation, 2016, 126, 3363-3376.	3.9	399
2230	Driving an improved CAR for cancer immunotherapy. Journal of Clinical Investigation, 2016, 126, 2795-2798.	3.9	13
2231	Evolution of Lung Cancer in the Context of Immunotherapy. Clinical Medicine Insights: Oncology, 2020, 14, 117955492097969.	0.6	6
2232	CAR T-Cell Therapy: Pediatric Patients With Relapsed and Refractory Acute Lymphoblastic Leukemia. Clinical Journal of Oncology Nursing, 2017, 21, 22-28.	0.3	13
2233	Bibliometric Analysis of Tumor Immunotherapy Studies. Medical Science Monitor, 2018, 24, 3405-3414.	0.5	34
2234	Recent advances in T-cell engineering for use in immunotherapy. F1000Research, 2016, 5, 2344.	0.8	14
2235	Enhanced Cytotoxicity of Natural Killer Cells following the Acquisition of Chimeric Antigen Receptors through Trogocytosis. PLoS ONE, 2014, 9, e109352.	1.1	30
2236	Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia. PLoS ONE, 2016, 11, e0165210.	1.1	16
2237	Novel Therapies in AML: Reason for Hope or Just Hype?. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e341-e351.	1.8	10
2238	T lymphocytes against solid malignancies: winning ways to defeat tumours. Cell Stress, 2018, 2, 200-212.	1.4	22
2239	Pancreatic Cancer: An Emphasis on Current Perspectives in Immunotherapy. Critical Reviews in Oncogenesis, 2019, 24, 105-118.	0.2	8
2240	The war against cancer: Suicide gene therapy. Advances in Modern Oncology Research, 2016, 2, 139.	0.1	4
2241	Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. Cell & Gene Therapy Insights, 2018, 4, 405-429.	0.1	14
2242	A CD22-reactive TCR from the T-cell allorepertoire for the treatment of acute lymphoblastic leukemia by TCR gene transfer. Oncotarget, 2016, 7, 71536-71547.	0.8	7
2243	Generation of CD20-specific TCRs for TCR gene therapy of CD20low B-cell malignancies insusceptible to CD20-targeting antibodies. Oncotarget, 2016, 7, 77021-77037.	0.8	24
2244	Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy. Oncotarget, 2017, 8, 86987-87001.	0.8	18

#	Article	IF	CITATIONS
2245	Generation and characterization of ErbB2-CAR-engineered cytokine-induced killer cells for the treatment of high-risk soft tissue sarcoma in children. Oncotarget, 2017, 8, 66137-66153.	0.8	34
2246	An HSV-2 based oncolytic virus can function as an attractant to guide migration of adoptively transferred T cells to tumor sites. Oncotarget, 2015, 6, 902-914.	0.8	31
2247	Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget, 2015, 6, 28911-28928.	0.8	45
2248	A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget, 2016, 7, 34582-34598.	0.8	13
2249	Spotlight on Tocilizumab in the Treatment of CAR-T-Cell-Induced Cytokine Release Syndrome: Clinical Evidence to Date. Therapeutics and Clinical Risk Management, 2020, 16, 705-714.	0.9	40
2250	Adoptive Immunotherapy for B-cell Malignancies Using CD19-Targeted Chimeric Antigen Receptor T-Cells: A Systematic Review of Efficacy and Safety. Current Medicinal Chemistry, 2019, 26, 3068-3079.	1.2	11
2251	Vaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia. Current Cancer Drug Targets, 2020, 20, 473-489.	0.8	4
2252	Relationship between IL-6 and COVID-19: to be considered during treatment. Future Virology, 2020, 15, 817-822.	0.9	45
2253	Engineering chimeric antigen receptor-natural killer cells for cancer immunotherapy. Immunotherapy, 2020, 12, 653-664.	1.0	8
2254	Chimeric antigen receptor T cells immunotherapy: challenges and opportunities in hematological malignancies. Immunotherapy, 2020, 12, 1341-1357.	1.0	3
2255	A brief history of CAR-T cells: from laboratory to the bedside. Acta Haematologica Polonica, 2020, 51, 2-5.	0.1	32
2256	Adoptive immunotherapy with CAR modified T cells in cancer current landscape and future perspectives. Frontiers in Bioscience - Landmark, 2019, 24, 1284-1315.	3.0	12
2257	CART Cell Toxicities: New Insight into Mechanisms and Management. Clinical Hematology International, 2020, 2, 149.	0.7	19
2258	Engineering Chimeric Antigen Receptors. Acta Naturae, 2017, 9, 6-14.	1.7	16
2259	Molecular Approaches to Safe and Controlled Engineered T-cell Therapy. Acta Naturae, 2018, 10, 16-23.	1.7	4
2260	Genetically engineered CAR T-immune cells for cancer therapy: recent clinical developments, challenges, and future directions. Journal of Applied Biomedicine, 2019, 17, 11-11.	0.6	5
2261	CAR T-cell Therapy as a Modern Method for the Treatment of Oncological Diseases. Bulletin of Science and Practice, 2019, 5, 121-127.	0.0	2
2262	Chimeric Antigen Receptor T Cells Targeting NKG2D-Ligands Show Robust Efficacy Against Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 2020, 11, 580328.	2.2	29

#	Article	IF	CITATIONS
2263	Is There a Link Between the Pathogenic Human Coronavirus Envelope Protein and Immunopathology? A Review of the Literature. Frontiers in Microbiology, 2020, 11, 2086.	1.5	50
2264	Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia. Frontiers in Oncology, 2014, 4, 55.	1.3	35
2265	Why Immunotherapy Fails in Multiple Myeloma. Hemato, 2021, 2, 1-42.	0.2	5
2266	Potentiality of immunotherapy against hepatocellular carcinoma. World Journal of Gastroenterology, 2015, 21, 10314.	1.4	32
2267	Exploring the food-gut axis in immunotherapy response of cancer patients. World Journal of Gastroenterology, 2020, 26, 4919-4932.	1.4	17
2273	CAR T‑cell therapy for gastric cancer: Potential and perspective (Review). International Journal of Oncology, 2020, 56, 889-899.	1.4	5
2274	Impact of the immune system and immunotherapy in colorectal cancer. Journal of Gastrointestinal Oncology, 2015, 6, 208-23.	0.6	142
2275	The past, present and future of immunotherapy against tumor. Translational Lung Cancer Research, 2015, 4, 253-64.	1.3	34
2276	Advances in paediatric cancer treatment. Translational Pediatrics, 2014, 3, 156-82.	0.5	45
2277	Cell Based Immunotherapy: As a Promising Futuristic Solution for Effective Cancer Therapy. Single Cell Biology, 2015, 04, .	0.2	1
2278	Dynamic Duo: Synergy between Cancer Radiation Therapy and Immunotherapy. Immunotherapy (Los) Tj ETQq0 0	OrgBT /O	verlock 10 Tf
2279	Molecular therapeutics in pancreas cancer. World Journal of Gastrointestinal Oncology, 2016, 8, 366.	0.8	18
2280	Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World Journal of Hepatology, 2015, 7, 980.	0.8	35
2281	Chimeric Antigen Receptor T Cell (Car T Cell) Therapy In Hematology. Turkish Journal of Haematology, 2015, 32, 285-294.	0.2	8
2282	Current approach to relapsed acute lymphoblastic leukemia in children. World Journal of Hematology, 2014, 3, 49.	0.1	7
2283	A primer on tumour immunology and prostate cancer immunotherapy. Canadian Urological Association Journal, 2016, 10, 60.	0.3	10
2284	The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors. Chinese Journal of Cancer, 2014, 33, 421-433.	4.9	9
2285	Cancer immunotherapy in clinical practice��the past, present, and future. Chinese Journal of Cancer, 2014, 33, 445-457.	4.9	38

#	Article	IF	CITATIONS
2286	Ending medical reversal: improving outcomes, saving lives. Choice Reviews, 2016, 53, 53-3096-53-3096.	0.4	15
2287	Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 81-112.	2.3	102
2288	A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. ELife, 2020, 9 , .	2.8	41
2289	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
2291	Whole-Body Matter., 2021,, 317-363.		0
2292	Cytokine release syndrome after haploidentical hematopoietic stem cell transplantation with antithymocyte globulin: risk factors analysis and poor impact on outcomes for non-remisssion patients. Hematology, 2021, 26, 809-817.	0.7	3
2293	Chimeric Antigen Receptor (CAR) T Cell Therapy for B-Acute Lymphoblastic Leukemia (B-ALL). Cancer Treatment and Research, 2021, 181, 179-196.	0.2	2
2294	Multivariate Analysis of Immune Reconstitution and Relapse Risk Scoring in Children Receiving Allogeneic Stem Cell Transplantation for Acute Leukemias. Transplantation Direct, 2021, 7, e774.	0.8	2
2295	An overview of multiplexed analyses of CAR T-cell therapies: insights and potential. Expert Review of Proteomics, 2021, 18, 767-780.	1.3	2
2296	Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nature Nanotechnology, 2021, 16, 1413-1423.	15.6	44
2297	CAR T-cell therapy and critical care. Wiener Klinische Wochenschrift, 2021, 133, 1318-1325.	1.0	18
2298	Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduction and Targeted Therapy, 2021, 6, 367.	7.1	31
2299	Regeneration of antigen-specific T cells by using induced pluripotent stem cell (iPSC) technology. International Immunology, 2021, 33, 827-833.	1.8	15
2300	Dual-antigen targeted iPSC-derived chimeric antigen receptor-T cell therapy for refractory lymphoma. Molecular Therapy, 2022, 30, 534-549.	3.7	20
2301	Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nature Nanotechnology, 2021, 16, 1424-1434.	15.6	78
2302	The immunologic aspects of cytokine release syndrome and graft versus host disease following CAR T cell therapy. International Reviews of Immunology, 2022, 41, 649-668.	1.5	7
2303	PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR TAcells. Molecular Therapy, 2022, 30, 579-592.	3.7	29
2304	CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. International Immunopharmacology, 2021, 101, 108260.	1.7	3

#	Article	IF	CITATIONS
2305	The triumvirate of NF- $\hat{\mathbb{I}}^{\mathbb{Q}}$ B, inflammation and cytokine storm in COVID-19. International Immunopharmacology, 2021, 101, 108255.	1.7	55
2306	Cancer Immunotherapy: Vaccines. , 2014, , 347-370.		0
2308	CS1-Specific Chimeric Antigen Receptor (CAR)-Engineered NK Cells and T Cells Enhance In Vitro and In Vivo Anti-Tumor Activity Against Human Multiple Myeloma. Blood, 2013, 122, 14-14.	0.6	2
2309	Tumor Associated Immune Dysfunction: Immune Cells Involved and Suggested Therapies. Annual Research & Review in Biology, 2014, 4, 4190-4201.	0.4	0
2310	The Express Drivers: Chimeric Antigen Receptor-Redirected T Cells Make It to the Clinic., 2014, , 127-135.		0
2313	T Cell Immunotherapy: From Synthetic Biology to Clinical Practice. , 2015, , 217-230.		0
2314	Adoptive Immunotherapy. , 2015, , 1-4.		0
2315	CAR T Cells in Acute Lymphoblastic Leukemia. , 2015, 12, .		0
2316	Immunotherapy for Pediatric Solid Tumors. , 2015, , 47-67.		0
2317	Adoptive Immunotherapy., 2015,, 111-114.		0
2318	Harnessing Stem Cell-Like Memory T Cells for Adoptive Cell Transfer Therapy of Cancer. Cancer Drug Discovery and Development, 2015, , 183-209.	0.2	4
2319	Réanimation des patients d'onco-hématologie : nouvelles thérapeutiques, nouvelles complications, nouveaux contrats d'admission. Bulletin De L'Academie Nationale De Medecine, 2015, 199, 293-312.	0.0	0
2320	T Cell Tuning for Tumour Therapy: Enhancing Effector Function and Memory Potential of Therapeutic T cells. Current Gene Therapy, 2015, 15, 289-299.	0.9	0
2323	Immunopharmacologic Approaches to Treat Cancer. , 2016, , 397-425.		0
2324	Mature Cell Activation. , 2016, , 91-94.		0
2325	Whole-Body Matter. , 2016, , 305-346.		0
2326	Tumor Immunology and Immunotherapy in Cancer Patients. , 2016, , 425-442.		2
2327	Molecular Basis for Tumor Immunityâ~†., 2016, , .		0

#	Article	IF	Citations
2328	Anti-CD19 Chimeric Antigen Receptor-Modified T Cells for Multiple Myeloma. Journal of Blood Disorders $\&$ Transfusion, 2016, 07, .	0.1	0
2329	CD8 T Cells. , 2016, , 1-12.		0
2330	Immunotherapy for B-acute Lymphoblastic Leukemia by Focusing on Monoclonal Antibody and CAR-T-cell Application. UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi, 2016, 26, 227-238.	0.1	0
2331	Cellular Therapy. , 2017, , 239-254.		0
2332	Genetically-engineered T cells to treat viral hepatitis-associated liver cancer: is it possible?. AIMS Allergy and Immunology, 2017, 1, 43-49.	0.3	0
2333	Moderne Immuntherapien in der Onkologie. Der Merkurstab, 2017, 70, 384-391.	0.0	3
2334	Ask the Hematologist: Getting CAR-T onto the Road. , 2017, 14, .		0
2336	Immunotherapy in ALL: from Bench to Bedside. Egyptian Journal of Hematology and Bone Marrow Transplantation, 2017, 4, 39-48.	0.0	0
2338	Adoptive T Cell Therapies for Children's Cancers. , 2018, , 161-174.		0
2339	Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2018, 11, 1-9.	0.1	7
2340	Immuntherapie. , 2018, , 191-198.		0
2342	Building a better mousetrap in the immunologic treatment of acute myeloid leukemia. Annals of Research Hospitals, 0, 2, 13-13.	0.0	0
2343	CAR-T Cell Immune Therapy: Engineering T Cells to Treat Cancer. Ecoproduction, 2019, , 101-115.	0.8	0
2344	CAR T Cells: Precision Cancer Immunotherapy. Indonesian Biomedical Journal, 2018, 10, 203-16.	0.2	0
2345	From Aminopterin to Tisagenlecleucel: Childhood Acute Lymphoblastic Leukemia at the Forefront of Cancer Breakthroughs. , 2019, 16, .		0
2346	Principles of Immuno-Oncology. , 2019, , 113-120.		0
2347	IL-6 Blockade in Cytokine Storm Syndromes. , 2019, , 561-568.		3
2348	Anticancer Immunotherapy: Prospects and Challenges. , 2019, , 189-228.		0

#	ARTICLE	IF	CITATIONS
2349	CD8+ T Cell Biology in Cytokine Storm Syndromes. , 2019, , 141-161.		1
2350	Dodging the bullet: therapeutic resistance mechanisms in pediatric cancers. , 2019, 2, 428-446.		3
2351	Cytokine Release Syndrome: An Overview on its Features and Management. Journal of Pure and Applied Microbiology, 2019, 13, 133-140.	0.3	0
2352	The future is now: beyond first line systemic therapy in hepatocellular carcinoma. Translational Cancer Research, 2019, 8, S261-S274.	0.4	5
2355	Relevant nursing measures for the adverse reactions associated with chimeric antigen receptor T cells (CAR-T) immunotherapy: a systematic review of case reports < sup > †< /sup > . Frontiers of Nursing, 2019, 6, 87-95.	0.1	0
2361	Chimeric Antigen Receptor (CAR) T-Cell Therapy in the Pediatric Critical Care., 2020,, 2035-2047.		0
2362	Novel Agents in Primary Central Nervous System Lymphoma. , 2020, , 119-135.		0
2363	CAR-T Cells for Cancer Treatment: Current Design and Next Frontiers. Methods in Molecular Biology, 2020, 2086, 1-10.	0.4	4
2364	Cancer Treatment-Related Lung Injury. , 2020, , 1-27.		0
2365	Immunotherapy in the Management of Colorectal Cancer Liver Metastasis., 2020,, 269-282.		0
2366	BASICS OF CAR-T CELL THERAPY AND ITS FUTURE DEVELOPMENT. Japanese Journal of Transfusion and Cell Therapy, 2019, 65, 851-857.	0.1	0
2367	The Current Use of Biomedical Cell Products for Cancer Treatment. BIOpreparations Prevention Diagnosis Treatment, 2019, 19, 206-214.	0.2	2
2368	Gastrointestinal Toxicities of Immunotherapy. , 2020, , 201-222.		0
2369	CAR-T cell therapy for Acute Lymphoblastic Leukemia. Journal of Hematopoietic Cell Transplantation, 2020, 9, 93-99.	0.1	0
2370	Chimeric Antigen Receptor T-Cell Immunotherapy for Cancer., 2020,,.		1
2371	SÃndrome de neurotoxicidad asociada a células inmunoefectoras: un enfoque terapéutico en el paciente crÃtico. Medicina Intensiva, 2022, 46, 201-212.	0.4	2
2373	Biological Therapies in the Treatment of Cancer—Update and New Directions. International Journal of Molecular Sciences, 2021, 22, 11694.	1.8	17
2374	Community-acquired methicillin-resistant Staphylococcus aureus provoked cytokine storm causing severe infection on BALB/c mice. Molecular Immunology, 2021, 140, 167-174.	1.0	4

#	Article	IF	CITATIONS
2375	CAR-T Cell Clinical Trials Experience – Past, Present and Future. , 2020, , 303-375.		0
2376	Efficient Transduction of T-Lymphocytes by Lentiviral Particles in Oncoimmunological Studies. Klinicheskaya Onkogematologiya/Clinical Oncohematology, 2020, 13, 295-306.	0.1	1
2377	Imunoterapia dirigida com células T-CAR para tratamento de leucemia linfoide aguda. Research, Society and Development, 2020, 9, e72891110372.	0.0	1
2378	Immunotherapy approaches targeting neuroblastoma. Current Opinion in Pediatrics, 2021, 33, 19-25.	1.0	10
2379	Pulmonary Toxicities of Immunotherapy. , 2020, , 243-252.		0
2380	The Quest for the Next-Generation of Tumor Targets: Discovery and Prioritization in the Genomics Era. Methods in Pharmacology and Toxicology, 2020, , 239-253.	0.1	0
2381	Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Advances, 2021, 11, 35472-35488.	1.7	12
2383	Chimeric antigen receptor T-cell therapy in hematopoietic and nonhematopoietic malignancies. Biomedical and Biotechnology Research Journal, 2020, 4, 179.	0.3	0
2384	iPSC-derived Rejuvenated T-cell Therapy for Extranodal NK/T-cell Lymphoma, Nasal Type. Juntendo Medical Journal, 2020, 66, 200-205.	0.1	0
2385	Hemophagocytic Lymphohistiocytosis and Other Culture Negative Sepsis-Like Syndromes in the ICU. , 2020, , 591-598.		0
2386	Infections following CAR-T cells therapy: current state-of-the-art review and recommendations. Acta Haematologica Polonica, 2020, 51 , 11 - 16 .	0.1	7
2387	Immunotherapy in Pediatric Hematologic Malignant Neoplasms. Clinical Pediatric Hematology-Oncology, 2020, 27, 14-21.	0.0	0
2388	Noninvasive Tracking of Natural Killer Cells Using Gold Nanoparticles. ACS Omega, 2021, 6, 28507-28514.	1.6	5
2389	Unleashing TNF cytotoxicity to enhance cancer immunotherapy. Trends in Immunology, 2021, 42, 1128-1142.	2.9	28
2390	Tunable control of CAR T cell activity through tetracycline mediated disruption of protein–protein interaction. Scientific Reports, 2021, 11, 21902.	1.6	12
2391	Cluster of differentiation 19 chimeric antigen receptor T‑cell therapy in pediatric acute lymphoblastic leukemia (Review). Oncology Letters, 2020, 20, 36.	0.8	2
2392	A phase I study of CAR‑T bridging HSCT in patients with acute CD19 ⁺ relapse/refractory B‑cell leukemia. Oncology Letters, 2020, 20, 20.	0.8	10
2393	T-Cell Immunotherapy: From Synthetic Biology to Clinical Practice. , 2021, , 199-218.		0

#	Article	IF	CITATIONS
2394	Clinical and Radiologic Improvement Following Tocilizumab Administration in Patients With SARS-CoV-2. Clinical Pulmonary Medicine, 2020, 27, 154-156.	0.3	0
2397	Late Effects After Treatment of Acute Lymphoblastic Leukemia in Childhood and Adolescence. , 2021, , 169-182.		0
2398	A Primer on Chimeric Antigen Receptor T-cell Therapy: What Does It Mean for Pathologists?. Archives of Pathology and Laboratory Medicine, 2021, 145, 704-716.	1.2	1
2399	Adoptive immunotherapy for acute leukemia: New insights in chimeric antigen receptors. World Journal of Stem Cells, 2015, 7, 1022-38.	1.3	5
2400	Tailoring the Treatment of Melanoma: Implications for Personalized Medicine. Yale Journal of Biology and Medicine, 2015, 88, 389-95.	0.2	3
2401	Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. American Journal of Cancer Research, 2016, 6, 600-14.	1.4	11
2402	CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin's Lymphomas. American Journal of Cancer Research, 2016, 6, 403-24.	1.4	18
2404	Chimeric antigen receptor (CAR)-directed adoptive immunotherapy: a new era in targeted cancer therapy. Stem Cell Investigation, 2014, 1, 2.	1.3	9
2405	Are chimeric antigen receptor T cells ready for prime time?. Clinical Advances in Hematology and Oncology, 2016, 14, 17-9.	0.3	2
2406	Engineering Chimeric Antigen Receptors. Acta Naturae, 2017, 9, 6-14.	1.7	6
2407	CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clinical Advances in Hematology and Oncology, 2016, 14, 802-808.	0.3	71
2408	Combination of celecoxib (Celebrex) and CD19 CAR-redirected CTL immunotherapy for the treatment of B-cell non-Hodgkin's lymphomas. American Journal of Clinical and Experimental Immunology, 2017, 6, 27-42.	0.2	2
2410	Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. American Journal of Cancer Research, 2018, 8, 106-119.	1.4	18
2411	B-cell lymphoblastic leukemia in a 30-year-old male with back pain and thrombocytopenia. Carle Selected Papers, 2017, 60, 42.	0.0	0
2412	Molecular Approaches to Safe and Controlled Engineered T-cell Therapy. Acta Naturae, 2018, 10, 16-23.	1.7	8
2413	Chimeric-Antigen-Receptor (CAR) T Cells and the Factors Influencing their Therapeutic Efficacy. Journal of Immunology Research and Therapy, 2017, 2, 100-113.	1.0	1
2414	A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. American Journal of Cancer Research, 2019, 9, 64-78.	1.4	46
2415	Target selection of CART cell therapy in accordance with the TME for solid tumors. American Journal of Cancer Research, 2019, 9, 228-241.	1.4	23

#	Article	IF	CITATIONS
2417	PiggyBac transposon system with polymeric gene carrier transfected into human T cells. American Journal of Translational Research (discontinued), 2019, 11, 7126-7136.	0.0	5
2418	GD2 chimeric antigen receptor modified T cells in synergy with sub-toxic level of doxorubicin targeting osteosarcomas. American Journal of Cancer Research, 2020, 10, 674-687.	1.4	14
2433	Fueling chimeric antigen receptor T cells with cytokines. American Journal of Cancer Research, 2020, 10, 4038-4055.	1.4	5
2434	MUC1-Tn-targeting chimeric antigen receptor-modified $\hat{V^{3}9V^{2}}$ T cells with enhanced antigen-specific anti-tumor activity. American Journal of Cancer Research, 2021, 11, 79-91.	1.4	2
2438	Relationship between Wnt/ \hat{l}^2 -Catenin Signaling Pathway and Epithelial Mesenchymal Transformation Phenotype in Multiple Myeloma. Advances in Clinical Medicine, 2021, 11, 5053-5057.	0.0	0
2439	Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Current Research in Translational Medicine, 2022, 70, 103320.	1.2	9
2440	Cancer Vaccine in Solid Tumors: Where We Stand. Indian Journal of Medical and Paediatric Oncology, 2021, 42, 319-324.	0.1	0
2441	Cardiac Relapse of Acute Lymphoblastic Leukemia Following Hematopoietic Stem Cell Transplantation: A Case Report and Review of Literature. Cancers, 2021, 13, 5814.	1.7	3
2442	Arming T cells to infiltrate pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1243-1245.	11.6	3
2443	Hypoxia as a driver of resistance to immunotherapy. Drug Resistance Updates, 2021, 59, 100787.	6.5	94
2444	Chimeric Antigen Receptor T Cell Therapy followed by Unrelated Cord Blood Transplantation for the Treatment of Relapsed/Refractory B Cell Acute Lymphoblastic Leukemia in Children and Young Adults: Superior Survival but Relatively High Post-Transplantation Relapse. Transplantation and Cellular Therapy, 2022, 28, 71.e1-71.e8.	0.6	6
2445	CARâ€Tâ€OPENIA: Chimeric antigen receptor Tâ€cell therapyâ€associated cytopenias. EJHaem, 2022, 3, 32-38.	0.4	16
2446	c-Met-Specific Chimeric Antigen Receptor T Cells Demonstrate Anti-Tumor Effect in c-Met Positive Gastric Cancer. Cancers, 2021, 13, 5738.	1.7	22
2447	Cytopenias After CD19 Chimeric Antigen Receptor T-Cells (CAR-T) Therapy for Diffuse Large B-Cell Lymphomas or Transformed Follicular Lymphoma: A Single Institution Experience. Cancer Management and Research, 2021, Volume 13, 8901-8906.	0.9	12
2448	Cancer Microbiology. Journal of the National Cancer Institute, 2022, 114, 651-663.	3.0	4
2450	Commercialization of Investigational Cell Therapy Products. , 2022, , 161-178.		0
2451	Effects of second transplantation with T-cell-replete haploidentical graft using low-dose anti-thymocyte globulin on long-term overall survival in pediatric patients with relapse of leukemia after first allogeneic transplantation. International Journal of Hematology, 2021, , 1.	0.7	1
2452	Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. International Journal of Molecular Sciences, 2021, 22, 13009.	1.8	34

#	Article	IF	CITATIONS
2453	Blinatumomab Nonresponse and High-Disease Burden Are Associated With Inferior Outcomes After CD19-CAR for B-ALL. Journal of Clinical Oncology, 2022, 40, 932-944.	0.8	93
2454	Characteristics of Human Peripheral Blood γδT Cells Expanded With Zoledronate. Anticancer Research, 2021, 41, 6031-6038.	0.5	1
2455	A Double-Edged Sword Role of Cytokines in Prostate Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 688489.	1.3	11
2456	Targeting T cell metabolism for immunotherapy. Journal of Leukocyte Biology, 2021, 110, 1081-1090.	1.5	3
2457	CAR Treg: A new approach in the treatment of autoimmune diseases. International Immunopharmacology, 2022, 102, 108409.	1.7	12
2458	A Phase I/IIa Randomized Trial Evaluating the Safety and Efficacy of SNK01 Plus Pembrolizumab in Patients with Stage IV Non-Small Cell Lung Cancer. Cancer Research and Treatment, 2021, , .	1.3	5
2459	Next-Generation Sequencing of Minimal Residual Disease for Predicting Relapse after Tisagenlecleucel in Children and Young Adults with Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2022, 3, 66-81.	2.6	70
2460	Senescence in chronic wounds and potential targeted therapies. Burns and Trauma, 2022, 10, tkab045.	2.3	16
2461	An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond!. Advances in Experimental Medicine and Biology, 2021, 1342, 273-295.	0.8	1
2463	Mechanisms of Resistance and Relapse After CAR-T Cell Therapy. Cancer Drug Discovery and Development, 2022, , 207-219.	0.2	1
2464	Harnessing Antitumor CD4+ T Cells for Cancer Immunotherapy. Cancers, 2022, 14, 260.	1.7	26
2465	Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Therapy, 2022, 29, 1080-1096.	2.2	52
2466	Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacological Research, 2022, 175, 106036.	3.1	31
2467	An impedimetric immunosensor for the selective detection of CD34+ T-cells in human serum. Sensors and Actuators B: Chemical, 2022, 356, 131306.	4.0	8
2469	Additional possibilities of chimeric antigen receptor T-cells in B-cell lymphoma: combination therapy. Translational Cancer Research, 2020, 9, 7310-7322.	0.4	2
2470	CAR-T cells, from principle to clinical applications. Bulletin Du Cancer, 2021, 108, S4-S17.	0.6	15
2471	Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CARÂT-cell therapy. Blood, 2022, 139, 2173-2185.	0.6	39
2472	Benefits of Chimeric Antigen Receptor T-Cell Therapy for B-Cell Lymphoma. Frontiers in Genetics, 2021, 12, 815679.	1.1	4

#	Article	IF	CITATIONS
2473	CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia. Leukemia, 2022, 36, 1015-1024.	3.3	15
2475	Chimeric Antigen Receptor T-Cell Therapy in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia: Curative Treatment Option or Bridge to Transplant?. Frontiers in Pediatrics, 2021, 9, 784024.	0.9	13
2476	Targeting memory T cell metabolism to improve immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	61
2478	Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Reviews in Medical Virology, 2022, 32, e2325.	3.9	6
2479	Efficacy of Combination Therapy with the JAK Inhibitor Baricitinib in the Treatment of COVID-19. SN Comprehensive Clinical Medicine, 2022, 4, 42.	0.3	5
2480	Targeting Protein Tyrosine Phosphatase 22 Does Not Enhance the Efficacy of Chimeric Antigen Receptor T Cells in Solid Tumors. Molecular and Cellular Biology, 2022, 42, MCB0044921.	1.1	8
2481	Chimeric Antigens Receptor T Cell Therapy Improve the Prognosis of Pediatric Acute Lymphoblastic Leukemia With Persistent/Recurrent Minimal Residual Disease in First Complete Remission. Frontiers in Immunology, 2021, 12, 731435.	2.2	4
2482	Current State of Pediatric Cardio-Oncology: A Review. Children, 2022, 9, 127.	0.6	3
2483	Challenges and future directions. , 2022, , 139-201.		0
2484	Advances in Allogeneic Cancer Cell Therapy and Future Perspectives on "Off-the-Shelf―T Cell Therapy Using iPSC Technology and Gene Editing. Cells, 2022, 11, 269.	1.8	10
2485	Impact of cytokine storm on severity of COVID-19 disease in a private hospital in West Jakarta prior to vaccination. PLoS ONE, 2022, 17, e0262438.	1.1	14
2486	Resistance and recurrence of malignancies after CAR-T cell therapy. Experimental Cell Research, 2022, 410, 112971.	1.2	4
2487	Large-scale manufacturing and characterization of CMV-CD19CAR T cells., 2022, 10, e003461.		9
2488	IL-6/IFN- \hat{l}^3 double knockdown CAR-T cells reduce the release of multiple cytokines from PBMCs in vitro. Human Vaccines and Immunotherapeutics, 2022, 18, 1-14.	1.4	12
2489	TCR-T Immunotherapy: The Challenges and Solutions. Frontiers in Oncology, 2021, 11, 794183.	1.3	36
2490	Genetic Predisposition and Inflammatory Inhibitors in COVID-19: Where Do We Stand?. Biomedicines, 2022, 10, 242.	1.4	14
2491	New Approaches for Treatment of Advanced Extranodal NK/T-Cell Lymphoma. Cancer Management and Research, 2022, Volume 14, 401-407.	0.9	1
2492	Engineering autonomous closed-loop designer cells for disease therapy. IScience, 2022, 25, 103834.	1.9	3

#	ARTICLE	IF	CITATIONS
2493	High plasma IL-6 levels following haploidentical allogeneic hematopoietic stem cell transplantation post-transplant cyclophosphamide as predictor of early death and worse outcome. Transplant Immunology, 2022, 71, 101543.	0.6	1
2494	Invited Commentary: Novel Cellular Immunotherapy (CAR T-Cell) in the Reading Room. Radiographics, 2022, 42, E21-E22.	1.4	0
2495	Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Annals of the New York Academy of Sciences, 2022, 1510, 18-35.	1.8	3
2496	Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Cancers, 2022, 14, 571.	1.7	12
2497	CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. Journal of Leukocyte Biology, 2022, 112, 901-911.	1.5	22
2498	IL-6 Revisited: From Rheumatoid Arthritis to CAR T Cell Therapy and COVID-19. Annual Review of Immunology, 2022, 40, 323-348.	9.5	50
2499	Targeting High-Risk Neuroblastoma Patient-Derived Xenografts with Oncolytic Virotherapy. Cancers, 2022, 14, 762.	1.7	7
2500	Extensive myelitis with eosinophilic meningitis after Chimeric antigen receptor T cells therapy. EJHaem, 2022, 3, 533-536.	0.4	2
2501	Allogeneic transplant compared to pediatric-inspired therapy for Philadelphia chromosome-negative adolescent and adult ALL in first complete remission. Bone Marrow Transplantation, 2022, , .	1.3	3
2502	A Model Perspective Explanation of the Long-Term Sustainability of a Fully Human BCMA-Targeting CAR (CT103A) T-Cell Immunotherapy. Frontiers in Pharmacology, 2022, 13, 803693.	1.6	6
2503	Strategies for manufacturing cell therapy products aligned with patient needs. Methods in Cell Biology, 2022, 167, 203-226.	0.5	1
2505	B-cell maturation antigen targeting strategies in multiple myeloma treatment, advantages and disadvantages. Journal of Translational Medicine, 2022, 20, 82.	1.8	7
2506	Discovery and characterization of a monoclonal antibody targeting a conformational epitope of IL-6/IL-6RÎ \pm to inhibit IL-6/ IL-6RÎ \pm /gp130 hexameric signaling complex formation. MAbs, 2022, 14, 2029675.	2.6	3
2507	T-SIGn tumor reengineering therapy and CAR T cells synergize in combination therapy to clear human lung tumor xenografts and lung metastases in NSG mice. Oncolmmunology, 2022, 11, 2029070.	2.1	5
2508	Natural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers, 2022, 14, 843.	1.7	16
2509	The Past, Present, and Future of Clinically Applied Chimeric Antigen Receptor-T-Cell Therapy. Pharmaceuticals, 2022, 15, 207.	1.7	5
2510	Recent advance in nanomaterials for cancer immunotherapy. Chemical Engineering Journal, 2022, 435, 134145.	6.6	16
2511	T cell receptor (TCR) signaling in health and disease. Signal Transduction and Targeted Therapy, 2021, 6, 412.	7.1	127

#	Article	IF	Citations
2513	Chimeric antigen receptor T cells derived from CD7 nanobody exhibit robust antitumor potential against CD7-positive malignancies. American Journal of Cancer Research, 2021, 11, 5263-5281.	1.4	0
2514	Central Nervous System Lymphoma: Novel Therapies. Current Treatment Options in Oncology, 2022, 23, 117-136.	1.3	4
2515	Neurologic complications of immune modulatory therapy. , 2022, , 537-551.		0
2516	Development of Glypican-2 Targeting Single-Domain Antibody CAR T Cells for Neuroblastoma. Methods in Molecular Biology, 2022, 2446, 451-468.	0.4	1
2517	CAR-T Cell Therapy for Breast Cancer: From Basic Research to Clinical Application. International Journal of Biological Sciences, 2022, 18, 2609-2626.	2.6	40
2518	Neurologic complications in the treatment of childhood malignancies. , 2022, , 433-462.		0
2520	Renal outcomes after chimeric antigen receptor T-cell therapy: a single-center perspective. Nephrology Dialysis Transplantation, 2022, 37, 1777-1779.	0.4	2
2521	Emerging CAR T Cell Strategies for the Treatment of AML. Cancers, 2022, 14, 1241.	1.7	24
2522	Prospect of Prostate Cancer Treatment: Armed CAR-T or Combination Therapy. Cancers, 2022, 14, 967.	1.7	5
2523	Immune effector cell-associated neurotoxicity syndrome: A therapeutic approach in the critically ill. Medicina Intensiva (English Edition), 2022, , .	0.1	2
2524	Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines, 2022, 10, 427.	1.4	6
2525	Immunotherapy Associated Neurotoxicity in Pediatric Oncology. Frontiers in Oncology, 2022, 12, 836452.	1.3	5
2526	A novel TanCAR targeting IL13Rî \pm 2 and EphA2 for enhanced glioblastoma therapy. Molecular Therapy - Oncolytics, 2022, 24, 729-741.	2.0	20
2527	Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy., 2022, 10, e004035.		17
2528	Overall survival benefits provided by lenalidomide maintenance after chimeric antigen receptor T cell therapy in patients with refractory/relapsed diffuse large B-cell lymphoma. Annals of Translational Medicine, 2022, 10, 298-298.	0.7	7
2529	A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Frontiers in Immunology, 2022, 13, 840956.	2.2	30
2530	CAR19/22 T cell cocktail therapy for B-ALL relapsed after allogeneic hematopoietic stem cell transplantation. Cytotherapy, 2022, 24, 841-849.	0.3	12
2531	Strategies for Manipulating T Cells in Cancer Immunotherapy. Biomolecules and Therapeutics, 2022, , .	1.1	0

#	Article	IF	CITATIONS
2532	Enhancement of CD70-specific CAR T treatment by IFN- \hat{I}^3 released from oHSV-1-infected glioblastoma. Cancer Immunology, Immunotherapy, 2022, 71, 2433-2448.	2.0	11
2533	Emerging Strategies in TCR-Engineered T Cells. Frontiers in Immunology, 2022, 13, 850358.	2.2	20
2534	Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nature Cancer, 2022, 3, 581-594.	5.7	30
2535	Donor memory-like NK cells persist and induce remissions in pediatric patients with relapsed AML after transplant. Blood, 2022, 139, 1670-1683.	0.6	57
2536	Short and Long-Term Toxicity in Pediatric Cancer Treatment: Central Nervous System Damage. Cancers, 2022, 14, 1540.	1.7	11
2537	Lenalidomide enhances CD23.CAR T cell therapy in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2022, 63, 1566-1579.	0.6	11
2538	Bibliometric Analysis of Chimeric Antigen Receptor-Based Immunotherapy in Cancers From 2001 to 2021. Frontiers in Immunology, 2022, 13, 822004.	2.2	17
2539	Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines, 2022, 10, 457.	2.1	2
2540	CD4 ⁺ chimeric antigen receptor T cells in for the long journey. Immunology and Cell Biology, 2022, 100, 304-307.	1.0	3
2541	T cells expressing CD5/CD7 bispecific chimeric antigen receptors with fully human heavy-chain-only domains mitigate tumor antigen escape. Signal Transduction and Targeted Therapy, 2022, 7, 85.	7.1	26
2542	A decade of CAR T cell evolution. Nature Cancer, 2022, 3, 270-271.	5.7	12
2543	Update for Advance CAR-T Therapy in Solid Tumors, Clinical Application in Peritoneal Carcinomatosis From Colorectal Cancer and Future Prospects. Frontiers in Immunology, 2022, 13, 841425.	2.2	10
2544	Design and Evaluation of TIM-3-CD28 Checkpoint Fusion Proteins to Improve Anti-CD19 CAR T-Cell Function. Frontiers in Immunology, 2022, 13, 845499.	2.2	8
2545	A chimeric switch-receptor PD1-DAP10-41BB augments NK92-cell activation and killing for human lung Cancer H1299 Cell. Biochemical and Biophysical Research Communications, 2022, 600, 94-100.	1.0	2
2546	Anakinra utilization in refractory pediatric CAR T-cell associated toxicities. Blood Advances, 2022, 6, 3398-3403.	2.5	17
2547	The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Frontiers in Immunology, 2022, 13, 832394.	2.2	56
2548	Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130113.	1.1	6
2549	Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine, 2022, 153, 155850.	1.4	30

#	Article	IF	CITATIONS
2550	Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. Journal of Experimental and Clinical Cancer Research, 2021, 40, 367.	3.5	72
2551	Role of Intrahepatic Regional Immunity in Post-Transplant Cancer Recurrence. Engineering, 2022, 10, 57-64.	3.2	4
2552	CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Frontiers of Medicine, 2021, 15, 783-804.	1.5	3
2553	CRISPRi-mediated knock-down of PRDM1/BLIMP1 programs central memory differentiation in <i>ex vivo</i> -expanded human T cells. BioImpacts, 2021, , .	0.7	0
2554	Preclinical efficacy and safety evaluation of interleukin-6-knockdown CAR-T cells targeting at CD19. Annals of Translational Medicine, 2021, 9, 1713-1713.	0.7	5
2556	Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers, 2021, 13, 6246.	1.7	9
2557	Blockade or Deletion of IFN \hat{I}^3 Reduces Macrophage Activation without Compromising CAR T-cell Function in Hematologic Malignancies. Blood Cancer Discovery, 2022, 3, 136-153.	2.6	46
2558	Photodynamic and Photothermal Therapy of Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 787780.	1.3	13
2560	Research Progress of Different Inflammatory Factors in Osteoporosis. Advances in Clinical Medicine, 2022, 12, 2590-2604.	0.0	0
2561	Cytokine profile, ferritin and multi-visceral involvement characterize macrophage activation syndrome during adult-onset Still's disease. Rheumatology, 2022, 62, 321-329.	0.9	15
2562	Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR TÂcells. Molecular Therapy - Methods and Clinical Development, 2022, 25, 311-330.	1.8	33
2563	B7-H3 Specific CAR T Cells for the Naturally Occurring, Spontaneous Canine Sarcoma Model. Molecular Cancer Therapeutics, 2022, 21, 999-1009.	1.9	8
2564	Haematology laboratory parameters to assess efficacy of <scp>CD19</scp> â€; <scp>CD22</scp> â€; <scp>CD33</scp> â€; and <scp>CD123</scp> â€directed <scp>c</scp> himeric antigen receptor <scp>Tâ€cell</scp> therapy in haematological malignancies. International Journal of Laboratory Hematology, 2022, , .	0.7	1
2565	Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines, 2022, 10, 614.	2.1	10
2566	Axicabtagene Ciloleucel in Patients Ineligible for ZUMA-1 Because of CNS Involvement and/or HIV: A Multicenter Experience. Journal of Immunotherapy, 2022, 45, 254-262.	1.2	6
2567	Engineered cellular immunotherapies in cancer and beyond. Nature Medicine, 2022, 28, 678-689.	15.2	106
2599	CARâ€T cell therapy in paediatric acute lymphoblastic leukaemia – past, present and future. British Journal of Haematology, 2020, 191, 617-626.	1,2	5
2600	Allogeneic double-negative CAR-T cells inhibit tumor growth without off-tumor toxicities. Science Immunology, 2022, 7, eabl3642.	5.6	22

#	Article	IF	CITATIONS
2618	Cytokine storm and stem cell activation in unveiling potential targets for diagnosis and therapy. , $2022, , 59-70.$		0
2619	Immune escape mechanisms and therapeutic approaches in cancer: the cancer-immunity cycle. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592210962.	1.4	21
2620	Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. Cancer Treatment and Research, 2022, 183, 161-184.	0.2	2
2621	Impact of Consolidative Unrelated Cord Blood Transplantation on Clinical Outcomes of Patients With Relapsed/Refractory Acute B Lymphoblastic Leukemia Entering Remission Following CD19 Chimeric Antigen Receptor T Cells. Frontiers in Immunology, 2022, 13, 879030.	2.2	1
2622	Scaling up and scaling out: Advances and challenges in manufacturing engineered T cell therapies. International Reviews of Immunology, 2022, 41, 638-648.	1.5	5
2623	Bioorthogonal Equipping CAR-T Cells with Hyaluronidase and Checkpoint Blocking Antibody for Enhanced Solid Tumor Immunotherapy. ACS Central Science, 2022, 8, 603-614.	5.3	24
2625	Role of Metabolism in Adoptive T Cell Therapy: Strategies and Challenges. Antioxidants and Redox Signaling, 2022, 37, 1303-1324.	2.5	1
2626	Computational design of immunogenic peptide constructs comprising multiple human leukocyte antigen restricted dengue virus envelope epitopes. Journal of Molecular Recognition, 2022, 35, e2961.	1.1	5
2627	CD123 and More: How to Target the Cell Surface of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers, 2022, 14, 2287.	1.7	6
2628	Approval of brexucabtagene autoleucel for adults with relapsed and refractory acute lymphocytic leukemia. Blood, 2022, 140, 11-15.	0.6	23
2629	Olfactory Receptor OR2H1 Is an Effective Target for CAR T Cells in Human Epithelial Tumors. Molecular Cancer Therapeutics, 2022, 21, 1184-1194.	1.9	12
2630	Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Frontiers in Immunology, 2022, 13, .	2.2	11
2632	Induced CAR-Macrophages as a Novel Therapeutic Cell Type for Cancer Immune Cell Therapies. Cells, 2022, 11, 1652.	1.8	19
2633	Relative hypercoagulation induced by suppressed fibrinolysis after tisagenlecleucel infusion in malignant lymphoma. Blood Advances, 2022, 6, 4216-4223.	2.5	4
2634	The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Experimental Hematology and Oncology, 2022, 11, 30.	2.0	8
2635	A single local delivery of paclitaxel and nucleic acids via an immunoactive polymer eliminates tumors and induces antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	10
2636	Overcoming resistance to antiâ€CD19 CAR Tâ€cell therapy in Bâ€cell malignancies. Hematological Oncology, 2022, 40, 821-834.	0.8	3
2637	Exhaustion of CAR T cells: potential causes and solutions. Journal of Translational Medicine, 2022, 20,	1.8	32

#	Article	IF	CITATIONS
2638	A novel multimeric <scp>sCD19</scp> â€streptavidin fusion protein for functional detection and selective expansion of <scp>CD19</scp> â€targeted <scp>CARâ€T</scp> cells. Cancer Medicine, 2022, 11, 2978-2989.	1.3	2
2639	NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood, 2022, 140, 2261-2275.	0.6	7
2640	CARâ€T Therapy in Clinical Practice: Technical Advances and Current Challenges. Advanced Biology, 2022, 6, .	1.4	2
2641	Next Generation Natural Killer Cells for Cancer Immunotherapy. Frontiers in Immunology, 2022, 13, .	2.2	14
2643	Untangling the Knots of Regulatory T Cell Therapy in Solid Organ Transplantation. Frontiers in Immunology, 2022, 13, .	2.2	6
2644	Reforming the Chimeric Antigen Receptor by Peptide Towards Optimized CAR T Cells With Enhanced Anti-Cancer Potency and Safety. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
2646	The third-generation anti-CD30 CAR T-cells specifically homing to the tumor and mediating powerful antitumor activity. Scientific Reports, 2022, 12, .	1.6	10
2647	Immunotherapy for Pediatric Acute Lymphoblastic Leukemia: Recent Advances and Future Perspectives. Frontiers in Immunology, $0,13,.$	2.2	3
2648	The establishment of polypeptide PSMAâ€targeted chimeric antigen receptorâ€engineered natural killer cells for castrationâ€resistant prostate cancer and the induction of ferroptosisâ€related cell death. Cancer Communications, 2022, 42, 768-783.	3.7	12
2649	Efficacy and safety of CD19 CAR-T cell therapy for acute lymphoblastic leukemia patients relapsed after allogeneic hematopoietic stem cell transplantation. International Journal of Hematology, 2022, 116, 315-329.	0.7	3
2651	Review: Sustainable Clinical Development of CAR-T Cells $\hat{a} \in$ Switching From Viral Transduction Towards CRISPR-Cas Gene Editing. Frontiers in Immunology, 0, 13, .	2.2	20
2652	Synthetic Immunotherapy: Programming Immune Cells with Novel and Sophisticated Logic Capabilities. Transplantation and Cellular Therapy, 2022, 28, 560-571.	0.6	4
2653	Intratumoural administration of an NKT cell agonist with CpG promotes NKT cell infiltration associated with an enhanced antitumour response and abscopal effect. OncoImmunology, 2022, 11 , .	2.1	7
2654	Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	33
2655	Application of Monoclonal Antibody Drugs in Treatment of COVID-19: a Review. BioNanoScience, 2022, 12, 1436-1454.	1.5	2
2656	Battle Blood., 2022,, 6-17.		0
2657	Cell-based drug delivery systems and their in vivo fate. Advanced Drug Delivery Reviews, 2022, 187, 114394.	6.6	28
2658	Development of STEAP1 targeting chimeric antigen receptor for adoptive cell therapy against cancer. Molecular Therapy - Oncolytics, 2022, 26, 189-206.	2.0	11

#	Article	IF	CITATIONS
2659	DAP10 integration in CAR-T cells enhances the killing of heterogeneous tumors by harnessing endogenous NKG2D. Molecular Therapy - Oncolytics, 2022, 26, 15-26.	2.0	3
2661	Induction of a cytokine storm involves suppression of the <scp>Osteopontinâ€dependent TH1</scp> response. Immunology, 2022, 167, 165-180.	2.0	2
2662	A TCR-like CAR Promotes Sensitive Antigen Recognition and Controlled T-cell Expansion Upon mRNA Vaccination. Cancer Research Communications, 2022, 2, 827-841.	0.7	5
2663	Regulatory Programs of B-cell Activation and Germinal Center Reaction Allow B-ALL Escape from CD19 CAR T-cell Therapy. Cancer Immunology Research, 2022, 10, 1055-1068.	1.6	3
2664	Stage 4 Cytokine Release Syndrome Caused by the First Dose of Nivolumab and Ipilimumab Combination Therapy in a Patient with Metastatic Melanoma Successfully Treated with Methylprednisolone, Tocilizumab, and Etanercept. Case Reports in Oncology, 2022, 15, 648-653.	0.3	7
2665	Umbilical Cord Blood as a Source of Less Differentiated T Cells to Produce CD123 CAR-T Cells. Cancers, 2022, 14, 3168.	1.7	8
2666	Expanding anti-CD38 immunotherapy for lymphoid malignancies. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	15
2667	Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
2668	Tumor immunotherapy: Mechanisms and clinical applications. , 2022, 1, .		2
2669	Advances in MUC1-Mediated Breast Cancer Immunotherapy. Biomolecules, 2022, 12, 952.	1.8	4
2670	Microscale Thermophoresis as a Tool to Study Protein Interactions and Their Implication in Human Diseases. International Journal of Molecular Sciences, 2022, 23, 7672.	1.8	8
2671	Post-Marketing Surveillance of CAR-T-Cell Therapies: Analysis of the FDA Adverse Event Reporting System (FAERS) Database. Drug Safety, 2022, 45, 891-908.	1.4	18
2672	A novel antibody-TCR (AbTCR) T-cell therapy is safe and effective against CD19-positive relapsed/refractory B-cell lymphoma. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2757-2769.	1.2	4
2673	Highlights of clinical and laboratory parameters among severe COVID-19 patients treated with tocilizumab: a retrospective observational study. Sao Paulo Medical Journal, 0, , .	0.4	1
2674	Bacteria-like tumor vaccines progressively initiate cascade reaction for precise antigen delivery and induction of anti-tumor cellular immune response. Chemical Engineering Journal, 2022, , 138136.	6.6	2
2675	Interleukin Inhibitors in Cytokine Release Syndrome and Neurotoxicity Secondary to CAR-T Therapy. Diseases (Basel, Switzerland), 2022, 10, 41.	1.0	6
2676	Barriers and Opportunities for CAR T-Cell Targeting of Solid Tumors. Immunological Investigations, 2022, 51, 2215-2225.	1.0	5
2677	CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Frontiers in Immunology, $0,13,.$	2.2	48

#	Article	IF	CITATIONS
2678	Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Î" combination therapy against glioblastoma. Molecular Therapy - Oncolytics, 2022, 26, 265-274.	2.0	30
2679	Mechanisms of immune effector <scp>cellâ€associated</scp> neurotoxicity syndrome after <scp>CARâ€₹</scp> treatment. WIREs Mechanisms of Disease, 2022, 14, .	1.5	5
2680	Recombinant jurkat cells (HMGN2-T cells) secrete cytokines and inhibit the growth of tumor cells. Journal of Molecular Histology, 0 , , .	1.0	0
2681	Four-year follow-up of LCAR-B38M in relapsed or refractory multiple myeloma: a phaseÂ1, single-arm, open-label, multicenter study in China (LEGEND-2). Journal of Hematology and Oncology, 2022, 15, .	6.9	47
2682	CAR T-Cell Therapy Predictive Response Markers in Diffuse Large B-Cell Lymphoma and Therapeutic Options After CART19 Failure. Frontiers in Immunology, 0, 13, .	2.2	8
2683	Therapeutic Strategies to Enhance Tumor Antigenicity: Making the Tumor Detectable by the Immune System. Biomedicines, 2022, 10, 1842.	1.4	5
2684	Severe infections in recipients of cancer immunotherapy: what intensivists need to know. Current Opinion in Critical Care, 2022, 28, 540-550.	1.6	5
2685	Humanized CD19-directed CAR-T Cell Therapy in Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia With CNSL or Neurological Comorbidity. Journal of Immunotherapy, 0, Publish Ahead of Print, .	1.2	0
2686	Size-dependent activation of CAR-T cells. Science Immunology, 2022, 7, .	5.6	36
2687	A Computational Model of Cytokine Release Syndrome during CAR Tâ€Cell Therapy. Advanced Therapeutics, 2022, 5, .	1.6	1
2688	Engineered IL13 variants direct specificity of IL13R $\hat{1}\pm2$ -targeted CAR T cell therapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
2689	Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells., 2022, 10, e004479.		5
2690	Approved gene therapies in Australia: coming to a store near you. Internal Medicine Journal, 2022, 52, 1313-1321.	0.5	3
2691	CAR T cells targeting the ganglioside NGcGM3 control ovarian tumors in the absence of toxicity against healthy tissues. Frontiers in Immunology, $0,13,.$	2.2	2
2692	A bibliometric and scientific knowledge-map study of the chimeric antigen receptor (CAR) natural killer (NK) cell-related research from 2010 to 2022. Frontiers in Immunology, 0, 13, .	2,2	3
2693	Application of nanotechnology in CAR-T-cell immunotherapy. Chinese Chemical Letters, 2023, 34, 107747.	4.8	5
2694	Road testing new CAR design strategies in multiple myeloma. Frontiers in Immunology, 0, 13, .	2.2	3
2695	CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies. Frontiers in Immunology, $0,13,.$	2.2	10

#	Article	IF	CITATIONS
2696	Combined IFN- \hat{l}^3 and JAK inhibition to treat hemophagocytic lymphohistiocytosis in mice. Journal of Allergy and Clinical Immunology, 2023, 151, 247-259.e7.	1.5	9
2697	Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. International Immunopharmacology, 2022, 111, 109130.	1.7	47
2698	Ligand Identification for Orphan MHC-Agnostic T-Cell Receptors by Whole Genome CRISPR–Cas9 Screening. Methods in Molecular Biology, 2022, , 3-14.	0.4	0
2699	Relapse Mechanism and Treatment Strategy After Chimeric Antigen Receptor T-Cell Therapy in Treating B-Cell Hematological Malignancies. Technology in Cancer Research and Treatment, 2022, 21, 153303382211184.	0.8	2
2700	Potency monitoring of CAR T cells. Methods in Cell Biology, 2023, , 173-189.	0.5	1
2701	Intracellular Cardiac Signaling Pathways Altered by Cancer Therapies. , 2022, , 111-173.		0
2702	Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. BMJ, The, 0, , e068956.	3.0	4
2703	Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. Journal of Translational Medicine, 2022, 20, .	1.8	10
2704	Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Frontiers in Medicine, 0, 9, .	1,2	10
2705	Novel cellular immunotherapies for hematological malignancies: recent updates from the 2021 ASH annual meeting. Experimental Hematology and Oncology, 2022, 11, .	2.0	8
2706	PD-1 inhibitor therapy causes multisystem immune adverse reactions: a case report and literature review. Frontiers in Oncology, 0, 12, .	1.3	4
2707	Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Frontiers in Immunology, 0, 13, .	2.2	7
2708	Paving the road to make chimeric antigen receptorâ€Tâ€cell therapy effective against solid tumors. Cancer Science, 2022, 113, 4020-4029.	1.7	2
2709	Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Research and Therapy, 2022, 13, .	2.4	11
2710	TCRvÎ ² -CART therapy mediates high-precision targeting of malignant T-cell clones. Blood Advances, 2023, 7, 1885-1898.	2.5	4
2711	Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules, 2022, 12, 1303.	1.8	11
2712	New therapeutic modalities in the treatment of childhood acute lymphoblastic leukemia. Cesko-Slovenska Pediatrie, 2022, 77, 265-271.	0.0	0
2713	Advances in CAR T-cell therapy in bile duct, pancreatic, and gastric cancers. Frontiers in Immunology, 0, 13, .	2.2	2

#	Article	IF	CITATIONS
2714	Basics of immunooncology and immunotherapy in oncology. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 129-139.	0.1	1
2715	The breakthrough and the future: CD20 chimeric antigen receptor Tâ€cell therapy for hematologic malignancies. Immunomedicine, 2022, 2, .	0.7	4
2716	Hematologic cytopenia post CAR T cell therapy: Etiology, potential mechanisms and perspective. Cancer Letters, 2022, 550, 215920.	3.2	11
2717	Establishment of a Cellular Therapy Registry in Japan, a platform for data sharing for research, industry, and regulatory use. Journal of Illusion, 2022, 11, 193-198.	0.0	1
2718	Cytokine release syndrome after CAR T-cell therapy: a review of the literature and our experience. Anesteziologie A Intenzivni Medicina, 2022, 33, 90-96.	0.1	0
2719	Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25Âyears. Journal of Biomedical Science, 2022, 29, .	2.6	8
2720	Clinical application of cellâ€based therapies opportunities and challenges. Clinical and Translational Discovery, 2022, 2, .	0.2	0
2722	Acute kidney injury after CAR-T cell infusion. Bulletin Du Cancer, 2022, , .	0.6	1
2723	Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation. Advanced Science, 2022, 9, .	5.6	20
2724	Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy. Nature Communications, 2022, 13 , .	5. 8	5
2725	Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer. Nature Communications, 2022, 13, .	5.8	31
2726	Toxicity and efficacy of CAR T-cell therapy in primary and secondary CNS lymphoma: a meta-analysis of 128 patients. Blood Advances, 2023, 7, 32-39.	2.5	32
2727	Characterization of Leukemic Resistance to CD19-Targeted CAR T-cell Therapy through Deep Genomic Sequencing. Cancer Immunology Research, 2023, 11, 13-19.	1.6	3
2728	Relapse after CAR-T cell therapy in B-cell malignancies: challenges and future approaches. Journal of Zhejiang University: Science B, 2022, 23, 793-811.	1.3	9
2729	Cytokine Stormâ€"Definition, Causes, and Implications. International Journal of Molecular Sciences, 2022, 23, 11740.	1.8	61
2730	CSPG4 expression in soft tissue sarcomas is associated with poor prognosis and low cytotoxic immune response. Journal of Translational Medicine, 2022, 20, .	1.8	3
2731	The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Frontiers in Immunology, 0, 13 , .	2.2	17
2732	Central nervous system involvement in childhood acute lymphoblastic leukemia: challenges and solutions. Leukemia, 2022, 36, 2751-2768.	3.3	21

#	Article	IF	CITATIONS
2733	Detection of Low-Frequency Epitope-Specific T Cells in Blood of Healthy Individuals according to an Optimized In Vitro Amplification System. Journal of Immunology, 2022, 209, 2239-2247.	0.4	1
2734	Administration of granulocyte-macrophage colony-stimulating factor enhanced chimeric antigen receptor T-cell expansion and cellular immunity recovery without inducing cytokine release syndrome. Frontiers in Medicine, 0, 9, .	1.2	1
2735	Toxicities following CAR-T therapy for hematological malignancies. Cancer Treatment Reviews, 2022, 111, 102479.	3.4	13
2736	CAR T Cell Immunotherapy That Revolutionary Breakthrough in Human Oncology Treatment: A Review. Pharmacology & Pharmacy, 2022, 13, 483-515.	0.2	0
2737	Cellular Cancer Immunotherapy Development and Manufacturing in the Clinic. Clinical Cancer Research, 2023, 29, 843-857.	3.2	4
2738	Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. Journal of Hematology and Oncology, 2022, 15, .	6.9	37
2739	Impact of poverty and neighborhood opportunity on outcomes for children treated with CD19-directed CAR T-cell therapy. Blood, 2023, 141, 609-619.	0.6	6
2740	Switchable targeting of solid tumors by BsCAR T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
2741	The IAP antagonist birinapant enhances chimeric antigen receptor TÂcell therapy for glioblastoma by overcoming antigen heterogeneity. Molecular Therapy - Oncolytics, 2022, 27, 288-304.	2.0	9
2742	In vivo gene immunotherapy for cancer. Science Translational Medicine, 2022, 14, .	5.8	5
2744	Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. Journal of Clinical Oncology, 2023, 41, 1670-1683.	0.8	35
2745	Cytokine Release Syndrome in the Pediatric Population and Implications for Intensive Care Management. Critical Care Clinics, 2022, , .	1.0	0
2746	Advances of Electroporation-Related Therapies and the Synergy with Immunotherapy in Cancer Treatment. Vaccines, 2022, 10, 1942.	2.1	7
2747	Gene and Cell Therapy: How to Build a BioDrug. Pediatric Oncology, 2022, , 51-88.	0.5	0
2748	Novel biomimetic mesoporous silica nanoparticle system possessing targetability and immune synergy facilitates effective solid tumor immuno-chemotherapy., 2023, 144, 213229.		5
2749	Engineering receptors in the secretory pathway for orthogonal signalling control. Nature Communications, 2022, 13, .	5.8	4
2750	CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Frontiers in Immunology, 0, 13, .	2,2	24
2751	How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL. Blood, 2023, 141, 1251-1264.	0.6	14

#	Article	IF	CITATIONS
2752	Cutting-Edge Developments in Oncology Research. Indian Journal of Medical and Paediatric Oncology, 2022, 43, 451-457.	0.1	0
2753	Programming multicellular assembly with synthetic cell adhesion molecules. Nature, 2023, 614, 144-152.	13.7	43
2754	Optimal Timing of Blinatumomab for the Treatment of B-Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2022, , .	0.2	0
2755	Computational model of CAR T-cell immunotherapy dissects and predicts leukemia patient responses at remission, resistance, and relapse., 2022, 10, e005360.		9
2756	Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Frontiers in Immunology, 0, 13, .	2.2	6
2757	Engineering chimeric antigen receptor T cells for solid tumour therapy. Clinical and Translational Medicine, 2022, 12, .	1.7	13
2758	Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell, 2022, 40, 1470-1487.e7.	7.7	11
2759	Imaging of pediatric hematopoietic stem cell transplant recipients: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatric Blood and Cancer, 2023, 70, .	0.8	0
2760	CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117.	1.7	7
2761	Genetically edited T-cell membrane coated AlEgen nanoparticles effectively prevents glioblastoma recurrence. Biomaterials, 2023, 293, 121981.	5.7	11
2762	Chimeric antigen receptor T-cell therapy for multiple myeloma. Frontiers in Immunology, $0,13,.$	2.2	4
2763	Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: a path moving forward or a dead end?. Journal of Cancer Research and Clinical Oncology, 2023, 149, 2709-2734.	1.2	6
2764	Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma. Cells, 2022, 11, 4085.	1.8	1
2765	Cancer immunotherapy with CAR T cells: well-trodden paths and journey along lesser-known routes. Radiology and Oncology, 2022, 56, 409-419.	0.6	2
2766	CD318 is a target of chimeric antigen receptor T cells for the treatment of colorectal cancer. Clinical and Experimental Medicine, 2023, 23, 2409-2419.	1.9	2
2767	Chimeric antigen receptor T cells as adjuvant therapy for unresectable adenocarcinoma. Science Advances, 2023, 9, .	4.7	17
2768	Contribution of natural killer cells in innate immunity against colorectal cancer. Frontiers in Oncology, 0, 12, .	1.3	5
2769	A stem cell epigenome is associated with primary nonresponse to CD19 CART cells in pediatric acute lymphoblastic leukemia. Blood Advances, 2023, 7, 4218-4232.	2.5	5

#	Article	IF	CITATIONS
2770	Controlling therapeutic protein expression via inhalation of a butter flavor molecule. Nucleic Acids Research, 2023, 51, e28-e28.	6.5	7
2771	Mapping the interplay between NK cells and HIV: therapeutic implications. Journal of Leukocyte Biology, 2023, 113, 109-138.	1.5	1
2772	Is CD19-directed chimeric antigen receptor T cell therapy a smart strategy to combat central nervous system lymphoma?. Frontiers in Oncology, 0, 12 , .	1.3	2
2773	PRECLINICAL MOUSE MODELS IN ADOPTIVE CELL THERAPIES OF CANCER. Slovenian Veterinary Research, 2022, 59, .	0.0	0
2774	Tumor-infiltrating lymphocytes: Prognostic considerations and current trials as adoptive cell therapy. , 2023, , 403-426.		0
2775	Allogeneic CAR T Cells Targeting DLL3 Are Efficacious and Safe in Preclinical Models of Small Cell Lung Cancer. Clinical Cancer Research, 2023, 29, 971-985.	3.2	6
2776	Cancer immunotherapy via nucleic acid aptamers. , 2023, , 317-346.		0
2777	Cellular and Vaccine-Based Immunotherapy for Hematologic Malignancies. , 2023, , .		0
2778	CD19 CAR T cells are an effective therapy for posttransplant relapse in patients with B-lineage ALL: real-world data from Germany. Blood Advances, 2023, 7, 2436-2448.	2.5	8
2779	Introduction on Cancer Immunotherapy. , 2023, , 1-27.		0
2780	Immunotherapies in rare cancers. Molecular Cancer, 2023, 22, .	7.9	15
2781	Immunotherapy of B cell lymphoma with CD22-redirected CAR NK-92 cells. Central-European Journal of Immunology, 0, , .	0.4	0
2782	Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Molecular Cancer, 2023, 22, .	7.9	14
2783	Long-term response to autologous anti-CD19 chimeric antigen receptor T cells in relapsed or refractory B cell acute lymphoblastic leukemia: a systematic review and meta-analysis. Cancer Gene Therapy, 2023, 30, 845-854.	2.2	12
2784	Failure of ALL recognition by CAR T cells: a review of CD 19-negative relapses after anti-CD 19 CAR-T treatment in B-ALL. Frontiers in Immunology, 0, 14 , .	2.2	6
2785	Mechano-modulation of T cells for cancer immunotherapy. Biomaterials, 2023, 297, 122101.	5.7	5
2786	CAR T-cell therapy: Reprogramming patient's immune cell to treat cancer. Cellular Signalling, 2023, 105, 110638.	1.7	1
2787	Overcoming Immunodeficiency in Chronic Lymphocytic Leukaemia: Current Knowledge and Perspectives. European Medical Journal Hematology, 0, , 70-79.	0.0	0

#	Article	IF	CITATIONS
2788	Additive efficacy of a bispecific anti–TNF/IL-6 nanobody compound in translational models of rheumatoid arthritis. Science Translational Medicine, 2023, 15, .	5.8	7
2789	Immunohistochemical Detection of 5T4 in Renal Cell Carcinoma. Applied Immunohistochemistry and Molecular Morphology, 2023, 31, 135-144.	0.6	1
2790	Development of a TGFβâ€"IL-2/15 Switch Receptor for Use in Adoptive Cell Therapy. Biomedicines, 2023, 11, 459.	1.4	4
2791	CAR-T-Derived Extracellular Vesicles: A Promising Development of CAR-T Anti-Tumor Therapy. Cancers, 2023, 15, 1052.	1.7	4
2792	Comparison of the efficacy of second and third generation lentiviral vector transduced CAR CD19 T cells for use in the treatment of acute lymphoblastic leukemia both in vitro and in vivo models. PLoS ONE, 2023, 18, e0281735.	1.1	0
2793	Hemophagocytic lymphohistiocytosis and disseminated intravascular coagulation are underestimated, but fatal adverse events in chimeric antigen receptor T-cell therapy. Haematologica, 0, , .	1.7	1
2794	Immunotherapy associated central nervous system complications in primary brain tumors. Frontiers in Oncology, 0, 13 , .	1.3	2
2795	Anti-ROR1 CAR-T cells: Architecture and performance. Frontiers in Medicine, 0, 10, .	1.2	0
2796	Immunotherapy of Cancer: Towards a New Era. European Medical Journal Oncology, 0, , 76-82.	0.0	0
2797	Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products. Cytotherapy, 2023, 25, 670-682.	0.3	1
2798	Challenges and optimal strategies of CAR T therapy for hematological malignancies. Chinese Medical Journal, 2023, 136, 269-279.	0.9	2
2799	Pediatric Acute Lymphoblastic Leukemia Emerging Therapies—From Pathway to Target. International Journal of Molecular Sciences, 2023, 24, 4661.	1.8	4
2800	Chimeric antigen receptor T cells therapy in solid tumors. Clinical and Translational Oncology, 2023, 25, 2279-2296.	1.2	2
2801	Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplantation and Cellular Therapy, 2023, 29, 438.e1-438.e16.	0.6	36
2802	Anti-CD19 CAR T-cell consolidation therapy combined with CD19+ feeding T cells and TKI for Ph+ acute lymphoblastic leukemia. Blood Advances, 2023, 7, 4913-4925.	2.5	3
2803	What Is Cytokine Storm?. Lessons From the ICU, 2023, , 35-54.	0.1	0
2805	Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. ELife, 0, 12, .	2.8	3
2806	A Review of CAR-T Therapy in Pediatric and Young Adult B-Lineage Acute Leukemia: Clinical Perspectives in Singapore. OncoTargets and Therapy, 0, Volume 16, 165-176.	1.0	0

#	Article	IF	CITATIONS
2808	Combined disruption of T cell inflammatory regulators Regnase-1 and Roquin-1 enhances antitumor activity of engineered human T cells. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	19
2809	Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells, 2023, 12, 915.	1.8	6
2811	Opportunities for CAR-T Cell Immunotherapy in HIV Cure. Viruses, 2023, 15, 789.	1.5	4
2812	A Guide to Flow Cytometry: Components, Basic Principles, Experimental Design, and Cancer Research Applications. Current Protocols, 2023, 3, .	1.3	4
2813	Remote control of cellular immunotherapy. , 2023, 1, 440-455.		4
2814	Non-viral TRAC-knocked-in CD19KICAR-T and gp350KICAR-T cells tested against Burkitt lymphomas with type 1 or 2 EBV infection: In vivo cellular dynamics and potency. Frontiers in Immunology, 0, 14, .	2.2	4
2815	Rabies virus glycoprotein 29 (RVG29) promotes CAR-T immunotherapy for glioma. Translational Research, 2023, 259, 1-12.	2.2	2
2816	Predictive short/long-term efficacy biomarkers and resistance mechanisms of CD19-directed CAR-T immunotherapy in relapsed/refractory B-cell lymphomas. Frontiers in Immunology, 0, 14, .	2.2	1
2817	Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers, 2023, 15, 1987.	1.7	18
2818	CAR T Cell Therapy: A Versatile Living Drug. International Journal of Molecular Sciences, 2023, 24, 6300.	1.8	10
2819	How do we improve the translation of new evidence into the practice of hematopoietic cell transplantation and cellular therapy?. Blood Reviews, 2023, , 101079.	2.8	0
2820	Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Frontiers in Pharmacology, 0, 14 , .	1.6	9
2821	The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Current Issues in Molecular Biology, 2023, 45, 3359-3374.	1.0	0
2822	T Cell Based Immunotherapy for Cancer: Approaches and Strategies. Vaccines, 2023, 11, 835.	2.1	9
2823	Identifying highly active anti-CCR4 CAR T cells for the treatment of T-cell lymphoma. Blood Advances, 2023, 7, 3416-3430.	2.5	6
2824	Gene Targets of CAR-T Cell Therapy for Glioblastoma. Cancers, 2023, 15, 2351.	1.7	4
2825	T Cells Expressing a Modified Fcî³RI Exert Antibody-Dependent Cytotoxicity and Overcome the Limitations of CAR T-cell Therapy against Solid Tumors. Cancer Immunology Research, 2023, 11, 792-809.	1.6	0
2826	CD19/CD22 bispecific chimeric antigen receptor‑NK‑92 cells are developed and evaluated. Oncology Letters, 2023, 25, .	0.8	0

#	Article	IF	CITATIONS
2827	A perspective of immunotherapy for acute myeloid leukemia: Current advances and challenges. Frontiers in Pharmacology, 0, 14 , .	1.6	0
2828	Specific Activation of T Cells by an ACE2-Based CAR-Like Receptor upon Recognition of SARS-CoV-2 Spike Protein. International Journal of Molecular Sciences, 2023, 24, 7641.	1.8	4
2829	Long-term sequelae after immunotherapeutic approaches in haematological malignancies—what do we know?. Lancet Haematology,the, 2023, 10, e395-e396.	2.2	0
2843	Tumor antigenicity and cancer as non-self. , 2024, , 91-114.e6.		0
2844	Novel Immunotherapeutic Approaches for the Treatment of Glioblastoma. BioDrugs, 2023, 37, 489-503.	2.2	1
2850	CAR T-Cell Therapy and Critical Care Considerations. , 2023, , 427-435.		0
2854	Chimeric Antigen Receptor T-Cell Therapy in Acute Lymphoblastic Leukemia., 2024,, 233-245.		0
2855	Cytokine Release Syndrome Following CD19 Directed Chimeric Antigen Receptor T-Cell Therapy. , 2024, , 509-524.		0
2857	Process and General Management of Patients Undergoing Chimeric Antigen Receptor Therapies. , 2024, , 115-122.		0
2877	CAR T therapy beyond cancer: the evolution of a living drug. Nature, 2023, 619, 707-715.	13.7	40
2877	CAR T therapy beyond cancer: the evolution of a living drug. Nature, 2023, 619, 707-715. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	40
	Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal		
2885	Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduction and Targeted Therapy, 2023, 8, . Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Frontiers in	7.1	5
2885 2913	Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduction and Targeted Therapy, 2023, 8, . Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Frontiers in Immunology, 0, 14, . Unleashing the Potential of Natural Killer Cells in Immunotherapy for Glioblastoma and Brain	7.1	5
2885 2913 2927	Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduction and Targeted Therapy, 2023, 8, . Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Frontiers in Immunology, 0, 14, . Unleashing the Potential of Natural Killer Cells in Immunotherapy for Glioblastoma and Brain Tumors. , 2023, , .	7.1	5 0 0
2885 2913 2927 2933	Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduction and Targeted Therapy, 2023, 8, . Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Frontiers in Immunology, 0, 14, . Unleashing the Potential of Natural Killer Cells in Immunotherapy for Glioblastoma and Brain Tumors. , 2023, , . Pediatric Cardio-Oncology. , 2023, , 1-18.	7.1	5 0 0
2885 2913 2927 2933 2937	Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduction and Targeted Therapy, 2023, 8, . Editorial: Translation of genetically engineered T cells in cancer immunotherapy. Frontiers in Immunology, 0, 14, . Unleashing the Potential of Natural Killer Cells in Immunotherapy for Glioblastoma and Brain Tumors. , 2023, , . Pediatric Cardio-Oncology. , 2023, , 1-18. ĵĵ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5 0 0 0

#	Article	IF	CITATIONS
2973	Engineered CAR-T cells: An immunotherapeutic approach for cancer treatment and beyond. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	0
2992	Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Annals of Hematology, 0, , .	0.8	O
2993	New Developments in the Treatment of Pediatric Acute Lymphoblastic Leukemia., 2023,, 605-628.		0
3003	Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	O
3019	Development of Immune Cell Therapy Using T Cells Generated from Pluripotent Stem Cells. Advances in Experimental Medicine and Biology, 2024, , 207-217.	0.8	0