Superpixel Classification Based Optic Disc and Optic Cu Screening

IEEE Transactions on Medical Imaging 32, 1019-1032

DOI: 10.1109/tmi.2013.2247770

Citation Report

#	Article	IF	CITATIONS
1	Integrating research, clinical practice and translation: The singapore experience., 2013, 2013, 7148-51.		2
2	Improved automated optic cup segmentation based on detection of blood vessel bends in retinal fundus images., 2014, 2014, 126-9.		10
3	Automatic segmentation of optic disc using modified multi-level thresholding. , 2014, , .		4
4	A survey on computer aided diagnosis for ocular diseases. BMC Medical Informatics and Decision Making, 2014, 14, 80.	1.5	71
5	Regularity Preserved Superpixels and Supervoxels. IEEE Transactions on Multimedia, 2014, 16, 1165-1175.	5.2	44
6	Assessment of Disc Damage Likelihood Scale (DDLS) for Automated Glaucoma Diagnosis. Procedia Computer Science, 2014, 36, 490-497.	1.2	6
7	Multi-scale superpixel classification for optic cup localization. , 2014, , .		O
8	Glaucoma Progression Detection Using Structural Retinal Nerve Fiber Layer Measurements and Functional Visual Field Points. IEEE Transactions on Biomedical Engineering, 2014, 61, 1143-1154.	2.5	84
9	Performance evaluation of simple linear iterative clustering algorithm on medical image processing. Bio-Medical Materials and Engineering, 2014, 24, 3231-3238.	0.4	8
10	Graph based lumen segmentation in optical coherence tomography images. , 2015, , .		7
11	Detection of optic disc and cup from color retinal images for automated diagnosis of glaucoma. , 2015, , .		18
12	Automatic Computer-Aided Diagnosis of Retinal Nerve Fiber Layer Defects Using Fundus Photographs in Optic Neuropathy., 2015, 56, 2872.		21
13	Automated segmentation of optic disc in SD-OCT images and cup-to-disc ratios quantification by patch searching-based neural canal opening detection. Optics Express, 2015, 23, 31216.	1.7	22
14	Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey. Journal of Ophthalmology, 2015, 2015, 1-28.	0.6	151
15	Optic Disc Segmentation by Balloon Snake with Texture from Color Fundus Image. International Journal of Biomedical Imaging, 2015, 2015, 1-14.	3.0	6
16	An augmented reality assistance platform for eye laser surgery. , 2015, 2015, 4326-9.		3
17	Detecting optic disk based on structured learning. , 2015, , .		2
18	Automatic optic cup segmentation algorithm for retinal fundus images based on random forest classifier. , 2015, , .		8

#	Article	IF	CITATIONS
19	On analyzing various density functions of local binary patterns for optic disc segmentation., 2015,,.		10
20	Integrated Optic Disc and Cup Segmentation with Deep Learning. , 2015, , .		52
21	Automatic Optic Disc Detection in OCT Slices via Low-Rank Reconstruction. IEEE Transactions on Biomedical Engineering, 2015, 62, 1151-1158.	2.5	27
22	Retinal Area Detector From Scanning Laser Ophthalmoscope (SLO) Images for Diagnosing Retinal Diseases. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1472-1482.	3.9	16
24	Sparse Dissimilarity-Constrained Coding for Glaucoma Screening. IEEE Transactions on Biomedical Engineering, 2015, 62, 1395-1403.	2.5	72
25	Robust multi-scale superpixel classification for optic cup localization. Computerized Medical Imaging and Graphics, 2015, 40, 182-193.	3.5	39
26	Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach. IEEE Transactions on Medical Imaging, 2015, 34, 1854-1866.	5.4	62
27	Computer-Aided Diagnostics and Pattern Recognition: Automated Glaucoma Detection. , 2015, , 93-104.		7
28	Automatic glaucoma detection using adaptive threshold based technique in fundus image. , 2015, , .		22
29	A field of experts model for optic cup and disc segmentation from retinal fundus images. , 2015, , .		8
30	Using deep learning for robustness to parapapillary atrophy in optic disc segmentation. , 2015, , .		23
31	Optic disc segmentation using the sliding band filter. Computers in Biology and Medicine, 2015, 56, 1-12.	3.9	92
32	Discriminative Clustering and Feature Selection for Brain MRI Segmentation. IEEE Signal Processing Letters, 2015, 22, 573-577.	2.1	108
34	Localization and segmentation of optic disc in retinal images using Circular Hough transform and Grow Cut algorithm. PeerJ, 2016, 4, e2003.	0.9	87
35	Glaucoma detection through optic disc and cup segmentation using K-mean clustering. , $2016, , .$		36
36	Automatic glaucoma assessment from angio-OCT images. , 2016, , .		7
37	Automatic Ocular Disease Screening and Monitoring Using a Hybrid Cloud System. , 2016, , .		6
38	Glaucomatous image classification: A review. , 2016, , .		2

#	Article	IF	Citations
39	Construction of retinal vascular trees via curvature orientation prior., 2016,,.		2
40	An error-controlled method for superpixel segmentation. , 2016, , .		0
41	Glaucoma diagnosis by means of optic cup feature analysis in color fundus images. , 2016, , .		7
42	An unsupervised modified spatial fuzzy C-mean method for segmentation of brain MR image. , 2016, , .		7
43	A review on automatic analysis techniques for color fundus photographs. Computational and Structural Biotechnology Journal, 2016, 14, 371-384.	1,9	47
44	Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm. IEEE Transactions on Image Processing, 2016, 25, 5933-5942.	6.0	281
45	Automated detection of glaucoma using structural and non structural features. SpringerPlus, 2016, 5, 1519.	1.2	80
46	Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey. IEEE Access, 2016, 4, 4327-4354.	2.6	71
47	A supervised learning framework for pancreatic islet segmentation with multiâ€scale colorâ€texture features and rolling guidance filters. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 893-902.	1.1	5
48	HFS: Hierarchical Feature Selection forÂEfficient Image Segmentation. Lecture Notes in Computer Science, 2016, , 867-882.	1.0	36
49	Integrating holistic and local deep features for glaucoma classification., 2016, 2016, 1328-1331.		45
50	Segmentation of optic disc and optic cup in retinal fundus images using shape regression. , 2016, 2016, 3260-3264.		13
51	Optic cup characterization through sparse representation and dictionary learning. , 2016, , .		0
52	Comprehensive eye evaluation algorithm. Proceedings of SPIE, 2016, , .	0.8	0
53	Human Visual System-Based Fundus Image Quality Assessment of Portable Fundus Camera Photographs. IEEE Transactions on Medical Imaging, 2016, 35, 1046-1055.	5.4	71
54	Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Computer Methods and Programs in Biomedicine, 2016, 124, 108-120.	2.6	164
55	A Simple Algorithm of Superpixel Segmentation with Boundary Constraint. IEEE Transactions on Circuits and Systems for Video Technology, 2016, , 1-1.	5.6	26
56	Simultaneous macula detection and optic disc boundary segmentation in retinal fundus images. , 2016, , .		4

#	ARTICLE	IF	CITATIONS
57	Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1562-1574.	3.9	93
58	A multiple attributes convolution kernel with reproducing property. Pattern Analysis and Applications, 2017, 20, 485-494.	3.1	9
59	Computer Vision Techniques Applied for Diagnostic Analysis of Retinal OCT Images: A Review. Archives of Computational Methods in Engineering, 2017, 24, 449-465.	6.0	15
60	Adaptive Superpixel Generation for Polarimetric SAR Images With Local Iterative Clustering and SIRV Model. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3115-3131.	2.7	57
61	Superpixel segmentation: A benchmark. Signal Processing: Image Communication, 2017, 56, 28-39.	1.8	110
62	A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes. Medical Image Analysis, 2017, 39, 206-217.	7.0	28
63	3D-Brain Segmentation Using Deep Neural Network and Gaussian Mixture Model., 2017,,.		19
64	Optic disc and cup segmentation by automatic thresholding with morphological operation for glaucoma evaluation. Signal, Image and Video Processing, 2017, 11, 945-952.	1.7	28
65	Automated retinal optic disc detection using pixel based multi fractal analysis., 2017,,.		1
66	A review of feature-based retinal image analysis. Expert Review of Ophthalmology, 2017, 12, 207-220.	0.3	24
67	Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomedical Signal Processing and Control, 2017, 36, 39-49.	3.5	86
69	Joint Optic Disc and Cup Segmentation Using Fully Convolutional and Adversarial Networks. Lecture Notes in Computer Science, 2017, , 168-176.	1.0	63
70	Optic Disc Detection via Deep Learning in Fundus Images. Lecture Notes in Computer Science, 2017, , 134-141.	1.0	13
71	Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation. Lecture Notes in Computer Science, 2017, , 713-722.	1.0	20
72	Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Computers in Biology and Medicine, 2017, 88, 142-149.	3.9	106
73	Joint optic disc and cup boundary extraction from monocular fundus images. Computer Methods and Programs in Biomedicine, 2017, 147, 51-61.	2.6	46
74	Optic disc segmentation based on variational model with multiple energies. Pattern Recognition, 2017, 64, 226-235.	5.1	43
75	Optic cup segmentation from fundus images for glaucoma diagnosis. Bioengineered, 2017, 8, 21-28.	1.4	14

#	ARTICLE	IF	CITATIONS
76	Ant Colony Optimization-based method for optic cup segmentation in retinal images. Applied Soft Computing Journal, 2017, 52, 409-417.	4.1	48
77	Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics, 2017, 55, 28-41.	3.5	278
78	Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Applied Soft Computing Journal, 2017, 52, 937-951.	4.1	48
79	A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images. Computerized Medical Imaging and Graphics, 2017, 55, 78-86.	3.5	76
80	Glaucoma classification from retina optical coherence tomography angiogram., 2017, 2017, 596-599.		5
81	Automatic optic cup segmentation using KÃ¥sa's circle fitting technique. , 2017, , .		3
82	Investigation of primary glaucoma by CDR in fundus images. , 2017, , .		2
83	Automatic glaucoma screening hybrid cloud system with pattern classification algorithms. , 2017, , .		3
84	Design & Des		2
85	Retinal area detection by using laser ophthalmoscope(LO)images to diagnose retinal diseases. , 2017, , .		0
86	Automatic localization of optic disc based on deep learning in fundus images. , 2017, , .		17
87	Quadratic divergence regularized SVM for optic disc segmentation. Biomedical Optics Express, 2017, 8, 2687.	1.5	16
88	Similarity regularized sparse group lasso for cup to disc ratio computation. Biomedical Optics Express, 2017, 8, 3763.	1.5	21
89	Estimation of field of view on human fundus image. , 2017, , .		1
90	An Automatic Image Processing System for Glaucoma Screening. International Journal of Biomedical Imaging, 2017, 2017, 1-19.	3.0	21
91	Boundary Segmentation of Optic Disc in Fundus Images. , 2017, , .		0
92	Robust Image Segmentation Based on Superpixels and Gauss-Markov Measure Fields. , 2017, , .		3
93	Scene Classification Based on the Sparse Homogeneous–Heterogeneous Topic Feature Model. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 2689-2703.	2.7	51

#	Article	IF	CITATIONS
94	Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images. Biocybernetics and Biomedical Engineering, 2018, 38, 329-341.	3.3	62
95	Convex Formulation for Multiband Image Classification With Superpixel-Based Spatial Regularization. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 2704-2721.	2.7	12
96	Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. IEEE Transactions on Medical Imaging, 2018, 37, 1597-1605.	5.4	606
97	Automated Quality Assessment of Fundus Images via Analysis of Illumination, Naturalness and Structure. IEEE Access, 2018, 6, 806-817.	2.6	30
98	Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control, 2018, 42, 162-189.	3.5	96
99	Evolution of optic nerve photography for glaucoma screening: a review. Clinical and Experimental Ophthalmology, 2018, 46, 169-176.	1.3	39
100	Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Computing and Applications, 2018, 29, 159-180.	3.2	17
101	Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidimensional Systems and Signal Processing, 2018, 29, 979-998.	1.7	33
102	Survey of Classification Approaches for Glaucoma Diagnosis from Retinal Images. Advances in Intelligent Systems and Computing, 2018, , 91-99.	0.5	4
103	Learning supervised descent directions for optic disc segmentation. Neurocomputing, 2018, 275, 350-357.	3.5	21
104	A pixel processing approach for retinal vessel extraction using modified Gabor functions. Progress in Artificial Intelligence, 2018, 7, 1-14.	1.5	3
105	An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. International Journal of Medical Informatics, 2018, 110, 52-70.	1.6	33
106	Segmentation of Optic Disc in Fundus Images Using an Active Contour. Journal of Electronic Commerce in Organizations, 2018, 16, 97-111.	0.6	3
107	Full-Automatic Optic Disc Boundary Extraction Based on Modified Local Binary Fitting Model in Retinal Image. , 2018, , .		0
108	Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation. Healthcare Informatics Research, 2018, 24, 335.	1.0	18
109	Segmentation of the Optic Nerve Head Based on Deep Learning to Determine its Hemoglobin Content in Normal and Glaucomatous Subjects. Journal of Clinical & Experimental Ophthalmology, 2018, 09, .	0.1	4
110	Comparative Analysis of Cluster Based Superpixel Segmentation Techniques. , 2018, , .		2
111	Optic Disc Segmentation using Vessel In-painting and Random Walk Algorithm. , 2018, , .		2

#	Article	IF	CITATIONS
112	Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection. , 2018, 2018, 862-865.		14
113	Automatic Measurement of Cup-to-Disc Ratio for Retinal Images. Lecture Notes in Computer Science, 2018, , 453-465.	1.0	1
114	Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks. , 2018, 2018, 5954-5957.		20
115	A Semiautomatic Superpixel Based Approach to Cup-to-Disc Ratio Measurement. , 2018, , .		2
116	Automatic Segmentation of Optic Disc by Gradient Minimization Based Approach., 2018,,.		7
117	The Role of Color and Texture Features in Glaucoma Detection. , 2018, , .		3
118	Yanbao: A Mobile App Using the Measurement of Clinical Parameters for Glaucoma Screening. IEEE Access, 2018, 6, 77414-77428.	2.6	35
119	Glaucoma Screening Through Level Set for Optic Disc Segmentation and Textural Features for Classification. , 2018, , .		0
120	An efficient optic cup segmentation method decreasing the influences of blood vessels. BioMedical Engineering OnLine, 2018, 17, 130.	1.3	9
121	Uniqueness-Driven Saliency Analysis forÂAutomated Lesion Detection withÂApplications to Retinal Diseases. Lecture Notes in Computer Science, 2018, , 109-118.	1.0	17
122	Localizing Optic Disc and Cup for Glaucoma Screening via Deep Object Detection Networks. Lecture Notes in Computer Science, 2018, , 236-244.	1.0	13
123	High-Performance Optic Disc Segmentation Using Convolutional Neural Networks. , 2018, , .		12
124	A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening., 2018, 2018, 5942-5945.		7
125	DeepDisc: Optic Disc Segmentation Based on Atrous Convolution and Spatial Pyramid Pooling. Lecture Notes in Computer Science, 2018, , 253-260.	1.0	12
126	Combining Multiple Deep Features for Glaucoma Classification. , 2018, , .		16
127	Automatic Localization of Optic Disc using Modified U-Net. , 2018, , .		5
128	A Multi-Anatomical Retinal Structure Segmentation System for Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-23.	2.2	22
129	Automatic individual identification of Saimaa ringed seals. IET Computer Vision, 2018, 12, 146-152.	1.3	18

#	ARTICLE	IF	CITATIONS
130	Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image. IEEE Transactions on Medical Imaging, 2018, 37, 2493-2501.	5.4	264
131	Segmentation Techniques for Computer-Aided Diagnosis of Glaucoma: A Review. Advances in Intelligent Systems and Computing, 2018, , 163-173.	0.5	0
132	Retinal vascular segmentation using superpixelâ€based line operator and its application to vascular topology estimation. Medical Physics, 2018, 45, 3132-3146.	1.6	11
133	Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis. IEEE Transactions on Medical Imaging, 2018, 37, 2536-2546.	5.4	45
134	Automatic detection of peripapillary atrophy in retinal fundus images using statistical features. Biomedical Signal Processing and Control, 2018, 45, 151-159.	3.5	18
135	Sparse Range-Constrained Learning and Its Application for Medical Image Grading. IEEE Transactions on Medical Imaging, 2018, 37, 2729-2738.	5.4	12
136	Optic cup and optic disc analysis for glaucoma screening using pulse-coupled neural networks and line profile analysis. , 2018 , , .		1
137	Computer-aided diagnosis of glaucoma using fundus images: A review. Computer Methods and Programs in Biomedicine, 2018, 165, 1-12.	2.6	106
138	Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis. Symmetry, 2018, 10, 87.	1.1	131
139	A mobile computer aided system for optic nerve head detection. Computer Methods and Programs in Biomedicine, 2018, 162, 139-148.	2.6	16
140	Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images. Healthcare Informatics Research, 2018, 24, 53.	1.0	43
141	Polar Space Contour Detection for Automated Optic Cup Segmentation. , 2018, , .		1
142	Retinal vascular topology estimation via dominant sets clustering. , 2018, , .		4
143	Segmentation of Optic Disc from Fundus Images. , 2018, , .		7
144	RACE-Net: A Recurrent Neural Network for Biomedical Image Segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1151-1162.	3.9	49
145	Automated retinal lesion detection via image saliency analysis. Medical Physics, 2019, 46, 4531-4544.	1.6	10
146	Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning. , 2019, , .		22
147	Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning â€. Applied Sciences (Switzerland), 2019, 9, 3064.	1.3	25

#	Article	IF	CITATIONS
148	Image Processing Based Automated Glaucoma Detection Techniques and Role of De-Noising: A Technical Survey., 2019,, 359-375.		5
149	A hybrid method for blood vessel segmentation in images. Biocybernetics and Biomedical Engineering, 2019, 39, 814-824.	3.3	15
150	Segmentation of Optic Disc and Cup-to-Disc Ratio Quantification Based on OCT Scans. Biological and Medical Physics Series, 2019, , 193-209.	0.3	0
151	Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis. Medical and Biological Engineering and Computing, 2019, 57, 2055-2067.	1.6	10
152	Research on the Method of Color Fundus Image Optic Cup Segmentation Based on Deep Learning. Symmetry, 2019, 11, 933.	1.1	8
153	Joint optic disc and cup segmentation using semi-supervised conditional GANs. Computers in Biology and Medicine, 2019, 115, 103485.	3.9	44
154	Glaucoma screening pipeline based on clinical measurements and hidden features. IET Image Processing, 2019, 13, 2213-2223.	1.4	9
155	Automatic segmentation of optic disc and cup for CDR calculation. Optoelectronics Letters, 2019, 15, 381-385.	0.4	1
156	Glaucoma detection using image processing techniques: A literature review. Computerized Medical Imaging and Graphics, 2019, 78, 101657.	3.5	37
157	Automated Glaucoma Screening from Retinal Fundus Image Using Deep Learning. , 2019, 2019, 904-907.		27
158	Research on Denoising of Finger Vein Image Based on Deep Convolutional Neural Network. , 2019, , .		3
159	Accurate Optic Disc and Cup Segmentation from Retinal Images Using a Multi-Feature Based Approach for Glaucoma Assessment. Symmetry, 2019, 11, 1267.	1.1	7
160	Accurate and Efficient Segmentation of Optic Disc and Optic Cup in Retinal Images Integrating Multi-View Information. IEEE Access, 2019, 7, 148183-148197.	2.6	19
161	Mixed Maximum Loss Design for Optic Disc and Optic Cup Segmentation with Deep Learning from Imbalanced Samples. Sensors, 2019, 19, 4401.	2.1	20
162	An hybrid feature space from texture information and transfer learning for glaucoma classification. Journal of Visual Communication and Image Representation, 2019, 64, 102597.	1.7	33
163	Optic Disc Segmentation Using Cascaded Multiresolution Convolutional Neural Networks. , 2019, , .		9
164	A Structure Tensor Based Voronoi Decomposition Technique for Optic Cup Segmentation. , 2019, , .		5
165	Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Computerized Medical Imaging and Graphics, 2019, 77, 101643.	3.5	44

#	Article	IF	CITATIONS
166	An automated eye disease prediction system using bag of visual words and support vector machine. Journal of Intelligent and Fuzzy Systems, 2019, 36, 4025-4036.	0.8	7
167	A spatial-aware joint optic disc and cup segmentation method. Neurocomputing, 2019, 359, 285-297.	3.5	32
168	Optic Disc and Cup Segmentation Based on Deep Convolutional Generative Adversarial Networks. IEEE Access, 2019, 7, 64483-64493.	2.6	51
169	Optic Disc and Cup Segmentation Based on Deep Learning. , 2019, , .		13
170	Hyperspectral Image Classification With Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7307-7316.	2.7	25
171	Weighted superpixel segmentation. Visual Computer, 2019, 35, 985-996.	2.5	7
172	Automatic Segmentation of Optic Disc Using Affine Snakes in Gradient Vector Field., 2019,,.		6
173	CNNs for automatic glaucoma assessment using fundus images: an extensive validation. BioMedical Engineering OnLine, 2019, 18, 29.	1.3	194
174	Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Systems With Applications, 2019, 127, 308-322.	4.4	58
175	Adaptive high-precision superpixel segmentation. Multimedia Tools and Applications, 2019, 78, 12353-12371.	2.6	5
176	CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2281-2292.	5.4	1,266
177	3D unsupervised modified spatial fuzzy c-means method for segmentation of 3D brain MR image. Pattern Analysis and Applications, 2019, 22, 1561-1571.	3.1	9
178	Automatic Optic Disc Segmentation Based on Modified Local Image Fitting Model with Shape Prior Information. Journal of Healthcare Engineering, 2019, 2019, 1-10.	1.1	10
179	Automated Framework for Screening of Glaucoma Through Cloud Computing. Journal of Medical Systems, 2019, 43, 136.	2.2	10
180	Robust optic disc and cup segmentation with deep learning for glaucoma detection. Computerized Medical Imaging and Graphics, 2019, 74, 61-71.	3.5	128
181	A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomedical Signal Processing and Control, 2019, 51, 82-89.	3.5	81
182	Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization. Applied Sciences (Switzerland), 2019, 9, 350.	1.3	23
183	An Enhanced Region-Based Model for Segmentation Images with Intensity Inhomogeneity. Communications in Computer and Information Science, 2019, , 165-176.	0.4	0

#	Article	IF	CITATIONS
184	Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1417-1426.	3.9	49
185	Optic disc segmentation in fundus images using adversarial training. IET Image Processing, 2019, 13, 375-381.	1.4	16
186	Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation. IEEE Transactions on Medical Imaging, 2019, 38, 2485-2495.	5.4	180
187	AUTOMATED GLAUCOMA DETECTION USING CENTER SLICE OF HIGHER ORDER STATISTICS. Journal of Mechanics in Medicine and Biology, 2019, 19, 1940011.	0.3	26
188	Multi-Class Peripapillary Atrophy for Detecting Glaucoma in Retinal Fundus Image., 2019,,.		2
189	Automatic Glaucoma Diagnosis in Digital Fundus images using Convolutional Neural Network. , 2019, , .		5
190	Structure-preserving guided retinal image filtering for optic disc analysis., 2019,, 199-221.		5
191	Automated glaucoma detection using quasiâ€bivariate variational mode decomposition from fundus images. IET Image Processing, 2019, 13, 2401-2408.	1.4	48
192	Automatic Segmentation of Optic Disc and Cup in Retinal Fundus Images Using Improved Two-Layer Level Set Method. Mathematical Problems in Engineering, 2019, 2019, 1-10.	0.6	3
193	Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-16.	0.7	24
194	Automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms. Medical and Biological Engineering and Computing, 2019, 57, 653-665.	1.6	35
195	Retinal Fundus Image for Glaucoma Detection: A Review and Study. Journal of Intelligent Systems, 2019, 28, 43-56.	1.2	19
196	Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors. Pattern Recognition Letters, 2020, 137, 3-11.	2.6	52
197	Automated detection of Glaucoma using deep learning convolution network (G-net). Multimedia Tools and Applications, 2020, 79, 15531-15553.	2.6	65
198	JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation. IEEE Transactions on Biomedical Engineering, 2020, 67, 335-343.	2.5	75
199	Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1104-1113.	3.9	52
200	Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering. IEEE Transactions on Medical Imaging, 2020, 39, 341-356.	5.4	46
201	A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Transactions on Medical Imaging, 2020, 39, 413-424.	5.4	153

#	Article	IF	CITATIONS
202	Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Medical Image Analysis, 2020, 60, 101593.	7.0	21
203	Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1405-1412.	3.9	67
204	Robust segmentation of optic disc and optic cup using statistical Kurtosis test. International Journal of Imaging Systems and Technology, 2020, 30, 527-543.	2.7	4
205	An Approach to Detecting Diabetic Retinopathy Based on Integrated Shallow Convolutional Neural Networks. IEEE Access, 2020, 8, 178552-178562.	2.6	36
206	Artificial intelligence and deep learning in glaucoma: Current state and future prospects. Progress in Brain Research, 2020, 257, 37-64.	0.9	18
207	A Hybrid Deep Learning Approach for Diagnosis of the Erythemato-Squamous Disease. , 2020, , .		8
208	Joint disc and cup segmentation based on recurrent fully convolutional network. PLoS ONE, 2020, 15, e0238983.	1.1	16
209	Automatic glaucoma screening using optic nerve head measurements and random forest classifier on fundus images. Physical and Engineering Sciences in Medicine, 2020, 43, 1265-1277.	1.3	5
210	Glaucoma Detection: Joint Segmentation and Classification Framework via Deep Ensemble Network. , 2020, , .		4
211	Optic disc and optic cup segmentation based on anatomy guided cascade network. Computer Methods and Programs in Biomedicine, 2020, 197, 105717.	2.6	29
212	DoFE: Domain-Oriented Feature Embedding for Generalizable Fundus Image Segmentation on Unseen Datasets. IEEE Transactions on Medical Imaging, 2020, 39, 4237-4248.	5.4	59
213	Machine Learning Techniques for Ophthalmic Data Processing: A Review. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3338-3350.	3.9	38
214	A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma. SN Applied Sciences, 2020, 2, 1.	1.5	14
215	An optic disk semantic segmentation method based on weakly supervised learning. , 2020, , .		2
216	Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science and Technology, 2020, 9, 55.	1.1	49
217	Probability distribution guided optic disc and cup segmentation from fundus images. , 2020, 2020, 1976-1979.		3
218	Automatic Glaucoma Detection from Stereo Fundus Images. , 2020, 2020, 1540-1543.		0
219	Automated glaucoma screening method based on image segmentation and feature extraction. Medical and Biological Engineering and Computing, 2020, 58, 2567-2586.	1.6	35

#	Article	IF	CITATIONS
220	Detection of Glaucoma Disease using Image Processing, Soft Computing and Deep Learning Approaches. , 2020, , .		7
221	Multi-Label Classification of Fundus Images With EfficientNet. IEEE Access, 2020, 8, 212499-212508.	2.6	76
222	Robust retinal optic disc and optic cup segmentation via stationary wavelet transform and maximum vessel pixel sum. IET Image Processing, 2020, 14, 592-602.	1.4	9
223	CDED-Net: Joint Segmentation of Optic Disc and Optic Cup for Glaucoma Screening. IEEE Access, 2020, 8, 102733-102747.	2.6	44
224	Channel and Spatial Attention Regression Network for Cup-to-Disc Ratio Estimation. Electronics (Switzerland), 2020, 9, 909.	1.8	3
225	Automated Classification of Glaucoma Stages Using Flexible Analytic Wavelet Transform From Retinal Fundus Images. IEEE Sensors Journal, 2020, 20, 12885-12894.	2.4	49
226	Multi-Path Recurrent U-Net Segmentation of Retinal Fundus Image. Applied Sciences (Switzerland), 2020, 10, 3777.	1.3	24
227	Coronary angiography video segmentation method for assisting cardiovascular disease interventional treatment. BMC Medical Imaging, 2020, 20, 65.	1.4	14
228	Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks. Journal of Medical Systems, 2020, 44, 96.	2.2	14
229	A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Translational Vision Science and Technology, 2020, 9, 33.	1.1	11
230	Deep Guidance Network for Biomedical Image Segmentation. IEEE Access, 2020, 8, 116106-116116.	2.6	75
231	Weakly Supervised and Semi-Supervised Semantic Segmentation for Optic Disc of Fundus Image. Symmetry, 2020, 12, 145.	1.1	14
232	Offline computer-aided diagnosis for Glaucoma detection using fundus images targeted at mobile devices. Computer Methods and Programs in Biomedicine, 2020, 192, 105341.	2.6	61
233	Deep Learning in Medical Image Analysis. Advances in Experimental Medicine and Biology, 2020, , .	0.8	33
234	Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Applied Soft Computing Journal, 2020, 92, 106328.	4.1	52
235	Fundus retinal image analyses for screening and diagnosing diabetic retinopathy, macular edema, and glaucoma disorders. , 2020, , 59-111.		25
236	CTumorGAN: a unified framework for automatic computed tomography tumor segmentation. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2248-2268.	3.3	33
237	A Superpixel Boundary Optimization (SBO) Framework Based on Information Measure Function. IEEE Access, 2020, 8, 64783-64798.	2.6	0

#	Article	IF	CITATIONS
238	Machine learning applied to retinal image processing for glaucoma detection: review and perspective. BioMedical Engineering OnLine, 2020, 19, 20.	1.3	49
239	Simple and fast image superpixels generation with color and boundary probability. Visual Computer, 2021, 37, 1061-1074.	2.5	6
240	Optic Disk and Cup Segmentation Through Fuzzy Broad Learning System for Glaucoma Screening. IEEE Transactions on Industrial Informatics, 2021, 17, 2476-2487.	7.2	38
241	Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 523-534.	7.2	240
242	Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms. Neural Computing and Applications, 2021, 33, 1903-1921.	3.2	4
243	Automatic MR image segmentation using maximization of mutual information. Microsystem Technologies, 2021, 27, 341-351.	1.2	0
244	Automated segmentation and classifcation of retinal features for glaucoma diagnosis. Biomedical Signal Processing and Control, 2021, 63, 102244.	3.5	31
245	Artificial intelligence (AI) impacting diagnosis of glaucoma and understanding the regulatory aspects of AI-based software as medical device. Computerized Medical Imaging and Graphics, 2021, 87, 101818.	3.5	21
246	IOSUDA: an unsupervised domain adaptation with input and output space alignment for joint optic disc and cup segmentation. Applied Intelligence, 2021, 51, 3880-3898.	3.3	14
247	Atlas-based score for automatic glaucoma risk stratification. Computerized Medical Imaging and Graphics, 2021, 87, 101797.	3.5	1
248	MES-Net: a new network for retinal image segmentation. Multimedia Tools and Applications, 2021, 80, 14767-14788.	2.6	11
249	Deep Neural Network With Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation. IEEE Transactions on Medical Imaging, 2021, 40, 3369-3378.	5.4	19
250	Retinal Image Analysis for Glaucoma Detection Using Transfer Learning. Lecture Notes in Electrical Engineering, 2021, , 235-244.	0.3	3
251	Artificial Intelligence and Glaucoma. Current Practices in Ophthalmology, 2021, , 75-89.	0.1	0
252	Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment for Joint Optic Disc and Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 90-102.	3.9	23
253	Glaucoma Detection using Tetragonal Local Octa Patterns and SVM from Retinal Images. International Arab Journal of Information Technology, 2021, 18, .	0.5	2
255	Detection of glaucoma using retinal fundus images: A comprehensive review. Mathematical Biosciences and Engineering, 2021, 18, 2033-2076.	1.0	46
256	Fine-tuning Convolutional Neural Networks: a comprehensive guide and benchmark analysis for Glaucoma Screening., 2021,,.		4

#	Article	IF	CITATIONS
257	Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation. Symmetry, 2021, 13, 365.	1.1	11
258	A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 6187-6198.	2.7	34
259	GlaucoNet: Patch-Based Residual Deep Learning Network for Optic Disc and Cup Segmentation Towards Glaucoma Assessment. SN Computer Science, 2021, 2, 1.	2.3	9
260	Retinal image classification by glaucoma based on ANFIS classifier. Materials Today: Proceedings, 2021, ,	0.9	1
261	Automated Classification of Glaucoma Using DWT and HOG Features with Extreme Learning Machine. , 2021, , .		4
263	Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture. Biocybernetics and Biomedical Engineering, 2021, 41, 819-832.	3.3	32
264	A robust framework for glaucoma detection using CLAHE and EfficientNet. Visual Computer, 2022, 38, 2315-2328.	2.5	21
265	Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 905-914.	1.7	10
266	EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection. Journal of Imaging, 2021, 7, 92.	1.7	8
267	Phase quantized polar transformative with cellular automaton for early glaucoma detection. Ain Shams Engineering Journal, 2021, 12, 4145-4155.	3.5	6
268	Screening the Condition of Diabetic Retinopathy in Infected Retinal Images. Journal of Physics: Conference Series, 2021, 1916, 012038.	0.3	0
269	Glaucoma detection using novel perceptron based convolutional multi-layer neural network classification. Multidimensional Systems and Signal Processing, 2021, 32, 1217-1235.	1.7	8
270	ECNet: An evolutionary convolutional network for automated glaucoma detection using fundus images. Biomedical Signal Processing and Control, 2021, 67, 102559.	3.5	36
271	Screening of Glaucoma disease from retinal vessel images using semantic segmentation. Computers and Electrical Engineering, 2021, 91, 107036.	3.0	21
272	Accelerated superpixel image segmentation with a parallelized DBSCAN algorithm. Journal of Real-Time Image Processing, 0, , 1 .	2.2	6
273	Analyzing the Condition of Gear Module Using Internet of Things. Journal of Physics: Conference Series, 2021, 1916, 012181.	0.3	0
274	A Fast and Accurate Method for Glaucoma Screening from Smartphone-Captured Fundus Images. Irbm, 2022, 43, 279-289.	3.7	14
275	Glaucoma screening using an attention-guided stereo ensemble network. Methods, 2022, 202, 14-21.	1.9	15

#	ARTICLE	IF	CITATIONS
276	GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Computing and Applications, 2021, 33, 14991-15025.	3.2	21
277	Multi-Modal Retinal Image Classification With Modality-Specific Attention Network. IEEE Transactions on Medical Imaging, 2021, 40, 1591-1602.	5.4	43
278	Retinal Nerve Fiber Layer Defect Detection using Machine Learning on Optic Disc Photograph., 2021,,.		1
279	Clinically Verified Hybrid Deep Learning System for Retinal Ganglion Cells Aware Grading of Glaucomatous Progression. IEEE Transactions on Biomedical Engineering, 2021, 68, 2140-2151.	2.5	20
280	Automated glaucoma detection from fundus images using wavelet-based denoising and machine learning. Concurrent Engineering Research and Applications, 2022, 30, 103-115.	2.0	18
281	Segmentation of Glaucoma Disease based on Modified Kernel Fuzzy C-Means Algorithm., 2021, , .		O
282	MHSU-Net: A more versatile neural network for medical image segmentation. Computer Methods and Programs in Biomedicine, 2021, 208, 106230.	2.6	11
283	Rotation-Oriented Collaborative Self-Supervised Learning for Retinal Disease Diagnosis. IEEE Transactions on Medical Imaging, 2021, 40, 2284-2294.	5. 4	41
284	Watershed Segmentation with CAFIS and RCNN Classification for Pulmonary Nodule Detection. IETE Journal of Research, 2023, 69, 5052-5063.	1.8	3
285	A study on the use of Edge TPUs for eye fundus image segmentation. Engineering Applications of Artificial Intelligence, 2021, 104, 104384.	4.3	23
286	NENet: Nested EfficientNet and adversarial learning for joint optic disc and cup segmentation. Medical Image Analysis, 2021, 74, 102253.	7. O	24
287	Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening. Neural Computing and Applications, 2023, 35, 16129-16142.	3.2	9
288	Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis. Journal of Medical Internet Research, 2021, 23, e27414.	2.1	13
289	GDCSeg-Net: general optic disc and cup segmentation network for multi-device fundus images. Biomedical Optics Express, 2021, 12, 6529.	1.5	12
290	Towards better semantic consistency of 2D medical image segmentation. Journal of Visual Communication and Image Representation, 2021, 80, 103311.	1.7	3
291	Unsupervised Anomaly Detection for Glaucoma Diagnosis. Wireless Communications and Mobile Computing, 2021, 2021, 1-14.	0.8	2
292	Deep level set learning for optic disc and cup segmentation. Neurocomputing, 2021, 464, 330-341.	3.5	8
293	Automated segmentation algorithm with deep learning framework for early detection of glaucoma. Concurrency Computation Practice and Experience, 2021, 33, e6181.	1.4	4

#	Article	IF	CITATIONS
294	ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation. Sensors, 2021, 21, 268.	2.1	46
295	Depth Mapping Hybrid Deep Learning Method for Optic Disc and Cup Segmentation on Stereoscopic Ocular Fundus. Lecture Notes in Computer Science, 2021, , 495-506.	1.0	1
296	The Use of U-Net Lite and Extreme Gradient Boost (XGB) for Glaucoma Detection. IEEE Access, 2021, 9, 47411-47424.	2.6	16
297	Glaucoma Detection Based on Deep Learning Network in Fundus Image. Advances in Computer Vision and Pattern Recognition, 2019, , 119-137.	0.9	21
298	Intermediate Goals in Deep Learning for Retinal Image Analysis. Lecture Notes in Computer Science, 2019, , 276-281.	1.0	2
299	PM-Net: Pyramid Multi-label Network for Joint Optic Disc and Cup Segmentation. Lecture Notes in Computer Science, 2019, , 129-137.	1.0	19
300	ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 442-450.	1.0	115
301	Attention Guided Network for Retinal Image Segmentation. Lecture Notes in Computer Science, 2019, , 797-805.	1.0	102
302	Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis. Advances in Experimental Medicine and Biology, 2020, 1213, 121-132.	0.8	6
303	Retinal Image Segmentation with a Structure-Texture Demixing Network. Lecture Notes in Computer Science, 2020, , 765-774.	1.0	7
304	Boosting Convolutional Filters with Entropy Sampling for Optic Cup and Disc Image Segmentation from Fundus Images. Lecture Notes in Computer Science, 2015, , 136-143.	1.0	37
306	Comparative Analysis on Optic Cup and Optic Disc Segmentation for Glaucoma Diagnosis. Smart Innovation, Systems and Technologies, 2016, , 219-223.	0.5	2
307	Automatic Glaucoma Diagnosis in Digital Fundus Images Using Deep CNNs. Algorithms for Intelligent Systems, 2020, , 37-52.	0.5	7
308	Computerized retinal image analysis - a survey. Multimedia Tools and Applications, 2020, 79, 22389-22421.	2.6	22
309	Classified optic disc localization algorithm based on verification model. Computers and Graphics, 2018, 70, 281-287.	1.4	21
310	Graphâ€based saliency and ensembles of convolutional neural networks for glaucoma detection. IET Image Processing, 2021, 15, 797-804.	1.4	20
311	Glaucoma Detection using Fuzzy C-means Optic Cup Segmentation and Feature Classification. , 2019, , .		6
312	Visualizing and Understanding Inherent Image Features in CNN-based Glaucoma Detection. , 2020, , .		5

#	Article	IF	CITATIONS
313	Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise. Journal of Electronic Imaging, 2017, 26, 1 .	0.5	11
314	Weakly supervised semantic segmentation for optic disc of fundus image. Journal of Electronic Imaging, 2019, 28, 1.	0.5	1
315	Statistical atlas-based descriptor for an early detection of optic disc abnormalities. Journal of Medical Imaging, 2018, 5, 1.	0.8	3
316	3D GGO candidate extraction in lung CT images using multilevel thresholding on supervoxels. , 2018, , .		1
317	Retinal fundus images for glaucoma analysis: the RIGA dataset. , 2018, , .		70
318	Optic disc segmentation in fundus images using deep learning. , 2019, , .		3
319	Automated fundus image quality assessment and segmentation of optic disc using convolutional neural networks. International Journal of Electrical and Computer Engineering, 2020, 10, 816.	0.5	5
320	Fundus Image Classification Using Wavelet Based Features in Detection of Glaucoma. Biomedical and Pharmacology Journal, 2018, 11, 795-805.	0.2	13
321	Segmentation and Localization of Optic Disc using Feature Match and Medial Axis Detection in Retinal Images. Biomedical and Pharmacology Journal, 2015, 8, 391-397.	0.2	3
322	Blood vessel segmentation of fundus images via cross-modality dictionary learning. Applied Optics, 2018, 57, 7287.	0.9	5
323	Region-segmentation strategy for Bruch's membrane opening detection in spectral domain optical coherence tomography images. Biomedical Optics Express, 2019, 10, 526.	1.5	7
324	Deriving external forces via convolutional neural networks for biomedical image segmentation. Biomedical Optics Express, 2019, 10, 3800.	1.5	23
325	A Polar Map Based Approach Using Retinal Fundus Images for Glaucoma Detection. , 0, , .		4
326	Computer-aided Diagnosis of Glaucoma Using Fundus Images. , 0, , .		1
327	Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images. Journal of Electrical Engineering and Technology, 2015, 10, 1899-1909.	1.2	13
328	Contrast based circular approximation for accurate and robust optic disc segmentation in retinal images. PeerJ, 2017, 5, e3763.	0.9	15
329	Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content. Peerl, 2019, 7, e7119.	0.9	8
331	Localization of Optic Disc in Fundus Images Based on Yolov3. , 2021, , .		0

#	Article	IF	Citations
332	A Multi-feature Fusion Method for Optic Cup Segmentation. Lecture Notes in Electrical Engineering, 2022, , 40-48.	0.3	0
333	Superpixel Based Retinal Area Detection in SLO Images. Lecture Notes in Computer Science, 2014, , 254-261.	1.0	0
334	ANN Glaucoma Detection using Cup-to-Disk Ratio and Neuroretinal Rim. International Journal of Computer Applications, 2015, 111, 8-14.	0.2	2
335	AN IMAGE-PROCESSING TECHNIQUE FOR GLAUCOMA DETECTION ON THE BASIS OF OPHTHALMIC IMAGES. International Journal of Computing, 0 , $165-171$.	1.5	0
336	Obtaining Consensus Annotations For Retinal Image Segmentation Using Random Forest And Graph Cuts. , 0, , .		2
337	Segmentation of Optic Disc and Optic Cup to Calculate CDR using Kekre's LUV Color Space for Detecting Glaucoma. International Journal of Computer Applications, 2015, 127, 7-11.	0.2	0
339	CDR Assessment with Superpixel Segmentation an Effort towards Automatic Glaucoma Detection. International Journal of Engineering Research and Applications, 2017, 07, 14-18.	0.1	0
340	Design and Development of Glaucoma Detection System. International Journal for Research in Applied Science and Engineering Technology, 2018, 6, 2703-2706.	0.1	0
341	Computerized assessment of glaucoma severity based on color fundus images. , 2019, , .		1
343	Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images. International Journal of Electrical and Computer Engineering Systems, 2020, 11, 111-120.	0.5	2
344	Glaucoma Detection and Segmentation as Computer Aided Design: A review and study., 2020,,.		1
345	A Survey on Classification and Prediction of Glaucoma and AMD Based on OCT and Fundus Images. EAI/Springer Innovations in Communication and Computing, 2021, , 729-739.	0.9	0
346	Computer Aided Design Diagnosis for Glaucoma Detection in Retinal Images by Spatial Fuzzy C Means with Level Set Segmentation. Journal of Computational and Theoretical Nanoscience, 2020, 17, 5590-5597.	0.4	0
347	Glaucoma Assessment from Fundus Images with Fundus to OCT Feature Space Mapping. ACM Transactions on Computing for Healthcare, 2022, 3, 1-15.	3.3	3
348	Multi-level Light U-Net and Atrous Spatial Pyramid Pooling for Optic Disc Segmentation on Fundus Image. Lecture Notes in Computer Science, 2020, , 104-113.	1.0	1
349	Optic Disc and Optic Cup Segmentation Using Polar Coordinate and Encoder-Decoder Architecture. Communications in Computer and Information Science, 2021, , 117-126.	0.4	1
350	Learning Calibrated Medical Image Segmentation via Multi-rater Agreement Modeling., 2021,,.		62
352	LEARNING-BASED SEGMENTATION OF OPTIC DISC IN RETINAL IMAGES USING CLUSTERING TREES AND LOCAL MODE FILTERING. , 2020, , .		О

#	ARTICLE	IF	CITATIONS
354	Blood Vessel and Optic Disc Segmentation Based on a Metaheuristic Method. Intelligent Systems Reference Library, 2021, , 207-228.	1.0	0
355	ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation. Computer Methods and Programs in Biomedicine, 2022, 213, 106530.	2.6	8
356	Brain Tumor Detection Using Various Deep Learning Algorithms. , 2021, , .		8
357	Localization Method of Optic Disc in Retinal Image Based on Texture Feature and Shape Feature. , 2021, , .		O
358	Optic Disc Segmentation Based on Phase-fusion PSPNet. , 2021, , .		2
360	Data-Driven Deep Supervision for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2022, 41, 1560-1574.	5.4	19
361	Medical image segmentation using deep learning: A survey. IET Image Processing, 2022, 16, 1243-1267.	1.4	166
362	Review of Machine Learning Applications Using Retinal Fundus Images. Diagnostics, 2022, 12, 134.	1.3	18
364	A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging. Electronics (Switzerland), 2022, 11, 26.	1.8	44
366	Tumor detection using spatial hybrid clustering (SHCM) from brain MRI scans., 2022, , 149-159.		О
367	An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. Journal of Digital Imaging, 2022, 35, 638-653.	1.6	3
368	Evaluations of Deep Learning Approaches for Glaucoma Screening Using Retinal Images from Mobile Device. Sensors, 2022, 22, 1449.	2.1	10
369	Optic disc detection based on fully convolutional neural network and structured matrix decomposition. Multimedia Tools and Applications, 2022, 81, 10797-10817.	2.6	5
370	Weak label based Bayesian U-Net for optic disc segmentation in fundus images. Artificial Intelligence in Medicine, 2022, 126, 102261.	3.8	27
371	Automated optic disk detection in fundus images using a combination of deep learning and local histogram matching. , 2022, , .		1
372	An enhancive Watershed transformation approach to segment Optic Disk from Smartphone Fundus Images., 2021,,.		O
373	A Precise Method to Evaluate 360 Degree Measures of Optic Cup and Disc Morphology in an African American Cohort and Its Genetic Applications. Genes, 2021, 12, 1961.	1.0	0
374	Application of conditional GAN models in optic disc/optic cup segmentation of retinal fundus images. , 2021, , .		0

#	Article	IF	Citations
376	An Efficient Model for Detection and Classification of Internal Eye Diseases using Deep Learning. , 2021, , .		8
377	Compact Scattering Features for Glaucoma Detection. Journal of Physics: Conference Series, 2022, 2253, 012031.	0.3	1
378	Joint optic disk and cup segmentation for glaucoma screening using a region-based deep learning network. Eye, 2022, , .	1.1	3
379	Classification of Glaucoma in Retinal Images Using EfficientnetB4 Deep Learning Model. Computer Systems Science and Engineering, 2022, 43, 1041-1055.	1.9	6
380	Identifying Those at Risk of Glaucoma: A Deep Learning Approach for Optic Disc and Cup Segmentation and Their Boundary Analysis. Diagnostics, 2022, 12, 1063.	1.3	9
381	Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images. Journal of Digital Imaging, 2022, 35, 1283-1292.	1.6	4
382	Deep sparse autoencoder integrated with threeâ€stage framework for glaucoma diagnosis. International Journal of Intelligent Systems, 2022, 37, 7944-7967.	3.3	2
383	Classification of Glaucoma Based on Elephant-Herding Optimization Algorithm and Deep Belief Network. Electronics (Switzerland), 2022, 11, 1763.	1.8	17
384	Graph deep network for optic disc and optic cup segmentation for glaucoma disease using retinal imaging. Physical and Engineering Sciences in Medicine, 2022, 45, 847-858.	1.3	3
385	FSOU-Net: Feature supplement and optimization U-Net for 2D medical image segmentation. Technology and Health Care, 2023, 31, 181-195.	0.5	2
386	Computerized Framework Used to Detect Glaucoma: A Review. , 2022, , .		0
387	An expert system for early glaucoma pathology detection. , 2022, , .		0
388	A CNN-Transformer Hybrid Network for Joint Optic Cup and Optic Disc Segmentation in Fundus Images. , 2022, , .		2
389	Deep learning based classification network for diagnosis of glaucoma in two dimensional retinal fundus images. International Journal of Health Sciences, 0, , 6957-6980.	0.0	0
390	Multi-task deep learning for glaucoma detection from color fundus images. Scientific Reports, 2022, 12, .	1.6	11
391	Automated screening of glaucoma stages from retinal fundus images using <scp>BPS</scp> and <scp>LBP</scp> based <scp>GLCM</scp> features. International Journal of Imaging Systems and Technology, 2023, 33, 246-261.	2.7	7
392	Correlation-based feature selection using bio-inspired algorithms and optimized KELM classifier for glaucoma diagnosis. Applied Soft Computing Journal, 2022, 128, 109432.	4.1	12
393	Automated Optic Disc Segmentation Using Basis Splines-Based Active Contour. IEEE Access, 2022, 10, 88152-88163.	2.6	4

#	Article	IF	CITATIONS
394	Feature Modulating Two-Stream Deep Convolutional Neural Network forÂGlaucoma Detection inÂFundus Images. Communications in Computer and Information Science, 2022, , 171-180.	0.4	3
395	Retinal Fundus Image Segmentation Based on Channel-Attention Guided Network., 2022,,.		1
396	Hybrid muddy electric fish and grasshopper optimization algorithm (MEF-GOA) based CNN for detection and severity differentiation of glaucoma in retinal fundus image. Journal of Intelligent and Fuzzy Systems, 2023, 44, 2285-2303.	0.8	1
399	Multi-Label Retinal Disease Classification Using Transformers. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 2739-2750.	3.9	7
400	High Quality Superpixel Generation Through Regional Decomposition. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33, 1802-1815.	5.6	3
401	A Generic Pixel Pitch Calibration Method for Fundus Camera via Automated ROI Extraction. Sensors, 2022, 22, 8565.	2.1	7
402	Unsupervised Domain Adaptation with Shape Constraint and Triple Attention for Joint Optic Disc and Cup Segmentation. Sensors, 2022, 22, 8748.	2.1	0
403	RSAP-Net: joint optic disc and cup segmentation with a residual spatial attention path module and MSRCR-PT pre-processing algorithm. BMC Bioinformatics, 2022, 23, .	1.2	2
404	Superpixel-Based Optic Nerve Head Segmentation Method of Fundus Images for Glaucoma Assessment. Diagnostics, 2022, 12, 3210.	1.3	2
405	Contour Offset Map: A New Component Designed for Smooth and Robust Optic Disc/Cup Contour Detection. , 2022, , .		0
406	Improved sub-category exploration and attention hybrid network for weakly supervised semantic segmentation. Neural Computing and Applications, 2023, 35, 10573-10587.	3.2	2
407	Reconstruction-Driven Dynamic Refinement Based Unsupervised Domain Adaptation for Joint Optic Disc and Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 3537-3548.	3.9	2
408	Robust multi-view approaches for retinal layer segmentation in glaucoma patients via transfer learning. Quantitative Imaging in Medicine and Surgery, 2023, 13, 2846-2859.	1.1	3
409	Wavelet image scattering based glaucoma detection. BMC Biomedical Engineering, 2023, 5, .	1.7	4
410	PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation. Neurocomputing, 2023, 538, 126183.	3.5	5
411	Towards an extended EfficientNet-based U-Net framework for joint optic disc and cup segmentation in the fundus image. Biomedical Signal Processing and Control, 2023, 85, 104906.	3.5	9
412	A Neural Network for Automated Image Quality Assessment of Optic Disc Photographs. Journal of Clinical Medicine, 2023, 12, 1217.	1.0	2
413	ODMNet: Automated Glaucoma Detection and Classification Model Using Heuristically-Aided Optimized DenseNet and MobileNet Transfer Learning. Cybernetics and Systems, 2024, 55, 245-277.	1.6	2

#	Article	IF	Citations
414	WSNet: Towards An Effective Method for Wound Image Segmentation., 2023,,.		1
415	GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images. IEEE Transactions on Medical Imaging, 2023, 42, 1875-1884.	5.4	1
416	Segmentation of Optic Nerve Head Using Two-stage Snakes in Generalized Gradient Vector Field. , 2022, , .		1
417	Detection and diagnosis of diseases by feature extraction and analysis on fundus images using deep learning techniques., 2023,, 211-227.		1
418	EARDS: EfficientNet and attention-based residual depth-wise separable convolution for joint OD and OC segmentation. Frontiers in Neuroscience, 0 , 17 , .	1.4	3
419	Short Analysis of Machine Learning and Deep Learning Techniques used for Glaucoma Detection. , 2023, , .		0
420	Hyphema Eye Disease Prediction with Deep Learning. , 2022, , .		1
421	Semantic Segmentation for Various Applications: Research Contribution and Comprehensive Review. , 0, , .		1
430	Optimization of Deep Neural Network Model for Embedded Applications: A Case Study of Retinal Vessels Segmentation. , 2023, , .		0
432	Machine Learning based Segmentation and Classification Algorithms for Glaucoma Detection. , 2023, , .		0
433	Interpretable Diagnosis of Glaucoma Based on Attention Mechanism and Embedded Class Activation Map. , 2023, , .		0
437	Glaucoma Assessment Using Super Pixel Classification. Advances in Computational Intelligence and Robotics Book Series, 2023, , 310-331.	0.4	0
439	GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification. , 2023, , .		1
442	New Deep Learning Models for Medical Imaging: Deep Belief Network, GAN, Autoencoder. , 2023, , .		0
443	Diffusion models in bioinformatics and computational biology. , 2024, 2, 136-154.		3
446	Deep Learning Unveiled: Investigating Retina Eye Segmentation for Glaucoma Diagnosis. Smart Innovation, Systems and Technologies, 2024, , 335-350.	0.5	0
447	Early glaucoma screening Decision Tree using in-depth clinical analysis of the optic nerve head. , 2023, , .		0
451	Glaucoma Optic Disk Localization and Classification using AlexNet, VGGNet 19, and ResNet 101-based model., 2023,,.		0

ARTICLE lF CITATIONS

 $\label{thm:condition} \textbf{Automatic Optic Cup Segmentation Using Affine Snakes in Gradient Vector Field.}\ , 2023, , .$ 453