Genome-Wide Quantitative Enhancer Activity Maps Ide

Science 339, 1074-1077

DOI: 10.1126/science.1232542

Citation Report

#	Article	IF	CITATIONS
1	Enhanced dissection of the regulatory genome. Nature Methods, 2013, 10, 710-712.	9.0	2
2	A Common Set of DNA Regulatory Elements Shapes Drosophila Appendages. Developmental Cell, 2013, 27, 306-318.	3.1	133
3	Topology of mammalian developmental enhancers and their regulatory landscapes. Nature, 2013, 502, 499-506.	13.7	463
5	Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nature Methods, 2013, 10, 774-780.	9.0	55
6	The role of Dichaete in transcriptional regulation during Drosophila embryonic development. BMC Genomics, 2013, 14, 861.	1.2	31
7	Pathogenic variants in nonâ€proteinâ€coding sequences. Clinical Genetics, 2013, 84, 422-428.	1.0	31
8	Enhancing the hunt for enhancers. Nature Reviews Genetics, 2013, 14, 151-151.	7.7	2
9	Modification of Enhancer Chromatin: What, How, and Why?. Molecular Cell, 2013, 49, 825-837.	4.5	1,200
10	Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130018.	1.8	96
11	Many human accelerated regions are developmental enhancers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130025.	1.8	188
12	Massively parallel synthetic promoter assays reveal the in vivo effects of binding site variants. Genome Research, 2013, 23, 1908-1915.	2.4	99
13	Patient Individual Parameterization of Cardiac Ventricular Tachycardia Termination Algorithm. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.9	O
14	Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Research, 2013, 23, 800-811.	2.4	298
15	Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Research, 2013, 41, 7185-7199.	6.5	96
16	Regulatory Genomics – Decoding Drosophila Regulatory Sequences. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.9	0
17	DNA sequencing methods in human genetics and disease research. F1000prime Reports, 2013, 5, 34.	5.9	6
18	A Set of Structural Features Defines the Cis-Regulatory Modules of Antenna-Expressed Genes in Drosophila melanogaster. PLoS ONE, 2014, 9, e104342.	1.1	2
19	A Functional Insulator Screen Identifies NURF and dREAM Components to Be Required for Enhancer-Blocking. PLoS ONE, 2014, 9, e107765.	1.1	39

#	Article	IF	CITATIONS
20	High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. ELife, 2014, 3, e04094.	2.8	66
21	Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Research, 2014, 24, 1147-1156.	2.4	129
22	Variation in Vertebrate Cis-Regulatory Elements in Evolution and Disease. Transcription, 2014, 5, e28848.	1.7	16
23	Evidence for Deep Regulatory Similarities in Early Developmental Programs across Highly Diverged Insects. Genome Biology and Evolution, 2014, 6, 2301-2320.	1.1	37
24	Activation of Muscle Enhancers by MyoD and epigenetic modifiers. Journal of Cellular Biochemistry, 2014, 115, n/a-n/a.	1.2	15
25	Chromatin Properties of Regulatory DNA Probed by Manipulation of Transcription Factors. Journal of Computational Biology, 2014, 21, 569-577.	0.8	4
26	Diverse patterns of genomic targeting by transcriptional regulators in <i>Drosophila melanogaster</i> . Genome Research, 2014, 24, 1224-1235.	2.4	31
27	An improved predictive recognition model for Cys2-His2 zinc finger proteins. Nucleic Acids Research, 2014, 42, 4800-4812.	6.5	66
28	Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biology, 2014, 15, R82.	13.9	275
29	Transcriptional enhancers: from properties to genome-wide predictions. Nature Reviews Genetics, 2014, 15, 272-286.	7.7	1,136
30	FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nature Methods, 2014, 11, 559-565.	9.0	95
31	The grammar of transcriptional regulation. Human Genetics, 2014, 133, 701-711.	1.8	78
32	Hormone-Responsive Enhancer-Activity Maps Reveal Predictive Motifs, Indirect Repression, and Targeting of Closed Chromatin. Molecular Cell, 2014, 54, 180-192.	4.5	119
33	Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Human Genetics, 2014, 133, 815-845.	1.8	32
34	Enhancer Malfunction in Cancer. Molecular Cell, 2014, 53, 859-866.	4.5	156
35	Dissecting the Causal Genetic Mechanisms of Coronary Heart Disease. Current Atherosclerosis Reports, 2014, 16, 406.	2.0	11
36	Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide?. Trends in Parasitology, 2014, 30, 234-240.	1.5	7
37	Looping Back to Leap Forward: Transcription Enters a New Era. Cell, 2014, 157, 13-25.	13.5	423

#	Article	IF	CITATIONS
38	Function-based identification of mammalian enhancers using site-specific integration. Nature Methods, 2014, 11, 566-571.	9.0	71
39	Enhancer biology and enhanceropathies. Nature Structural and Molecular Biology, 2014, 21, 210-219.	3.6	259
40	Cis-regulatory variation: significance in biomedicine and evolution. Cell and Tissue Research, 2014, 356, 495-505.	1.5	6
41	Determining causality and consequence of expression quantitative trait loci. Human Genetics, 2014, 133, 727-735.	1.8	58
42	Functional and topological characteristics of mammalian regulatory domains. Genome Research, 2014, 24, 390-400.	2.4	402
43	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13
44	Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Research, 2014, 24, 639-650.	2.4	143
45	In search of the determinants of enhancer–promoter interaction specificity. Trends in Cell Biology, 2014, 24, 695-702.	3. 6	142
46	Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing. Development (Cambridge), 2014, 141, 1129-1139.	1.2	86
47	Nucleosome positioning and histone modifications define relationships between regulatory elements and nearby gene expression in breast epithelial cells. BMC Genomics, 2014, 15, 331.	1.2	40
48	Unmasking risk loci: <scp>DNA</scp> methylation illuminates the biology of cancer predisposition. BioEssays, 2014, 36, 184-190.	1.2	16
49	Enhancer Function: Mechanistic and Genome-Wide Insights Come Together. Molecular Cell, 2014, 55, 5-14.	4.5	199
50	Absence of a simple code: how transcription factors read the genome. Trends in Biochemical Sciences, 2014, 39, 381-399.	3.7	447
51	In pursuit of design principles of regulatory sequences. Nature Reviews Genetics, 2014, 15, 453-468.	7.7	196
52	Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution. Nature Genetics, 2014, 46, 685-692.	9.4	162
53	The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Current Opinion in Genetics and Development, 2014, 27, 74-82.	1.5	48
54	Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 2014, 217-218, 109-119.	1.7	429
55	Massively Parallel Reporter Assays in Cultured Mammalian Cells. Journal of Visualized Experiments, 2014, , .	0.2	46

#	Article	IF	CITATIONS
56	DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements. Epigenetics and Chromatin, 2015, 8, 8.	1.8	60
57	Advanced Applications of RNA Sequencing and Challenges. Bioinformatics and Biology Insights, 2015, 9s1, BBI.S28991.	1.0	178
58	Identification of epigenetic modifications that contribute to pathogenesis in therapy-related AML: Effective integration of genome-wide histone modification with transcriptional profiles. BMC Medical Genomics, 2015, 8, S6.	0.7	4
59	What Does It Take to Evolve an Enhancer? A Simulation-Based Study of Factors Influencing the Emergence of Combinatorial Regulation. Genome Biology and Evolution, 2015, 7, 1415-1431.	1.1	16
60	Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav056-bav056.	1.4	25
61	Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution. Genome Biology, 2015, 16, 156.	3.8	108
62	CBP binding outside of promoters and enhancers in Drosophila melanogaster. Epigenetics and Chromatin, 2015, 8, 48.	1.8	24
63	Mechanisms of mutational robustness in transcriptional regulation. Frontiers in Genetics, 2015, 6, 322.	1.1	89
64	A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0129357.	1.1	4
65	Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics and Chromatin, 2015, 8, 16.	1.8	100
66	Enhancers, enhancers – from their discovery to today's universe of transcription enhancers. Biological Chemistry, 2015, 396, 311-327.	1.2	82
67	The Drosophila Helicase Maleless (MLE) is Implicated in Functions Distinct From its Role in Dosage Compensation*. Molecular and Cellular Proteomics, 2015, 14, 1478-1488.	2.5	25
68	Transcriptional Enhancers: Bridging the Genome and Phenome. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 17-26.	2.0	28
69	Identifying transcriptional <i>cis</i> â€regulatory modules in animal genomes. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 59-84.	5.9	54
70	Genomic Perspectives of Transcriptional Regulation in Forebrain Development. Neuron, 2015, 85, 27-47.	3.8	136
71	Disturbing the histone code in leukemia: translocations and mutations affecting histone methyl transferases. Cancer Genetics, 2015, 208, 192-205.	0.2	15
72	Identification of altered cis-regulatory elements in human disease. Trends in Genetics, 2015, 31, 67-76.	2.9	99
73	Enhancer Trafficking: Free Throws and Three-Pointers. Developmental Cell, 2015, 32, 135-137.	3.1	0

#	Article	IF	CITATIONS
74	Long ncRNA expression associates with tissue-specific enhancers. Cell Cycle, 2015, 14, 253-260.	1.3	83
75	A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating <i>Drosophila</i> wing development. Genome Research, 2015, 25, 514-523.	2.4	45
76	Investigating the Transcriptional Control of Cardiovascular Development. Circulation Research, 2015, $116,700-714.$	2.0	77
77	Recent advances in functional assays of transcriptional enhancers. Genomics, 2015, 106, 137-139.	1.3	16
78	High throughput technologies for the functional discovery of mammalian enhancers: New approaches for understanding transcriptional regulatory network dynamics. Genomics, 2015, 106, 151-158.	1.3	31
79	STARR-seq â€" Principles and applications. Genomics, 2015, 106, 145-150.	1.3	76
80	Decoding enhancers using massively parallel reporter assays. Genomics, 2015, 106, 159-164.	1.3	208
81	Understanding how cis -regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics, 2015, 106, 165-170.	1.3	60
82	Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics, 2015, 106, 185-192.	1.3	63
83	Massively parallel quantification of the regulatory effects of noncoding genetic variation in a human cohort. Genome Research, 2015, 25, 1206-1214.	2.4	100
84	Lessons from modENCODE. Annual Review of Genomics and Human Genetics, 2015, 16, 31-53.	2.5	46
85	High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nature Communications, 2015, 6, 6905.	5.8	138
86	Unraveling the 3D genome: genomics tools for multiscale exploration. Trends in Genetics, 2015, 31, 357-372.	2.9	62
87	Transcription-controlling regulatory elements of the eukaryotic genome. Molecular Biology, 2015, 49, 185-194.	0.4	6
88	Genetics of congenital heart disease: Beyond half-measures. Trends in Cardiovascular Medicine, 2015, 25, 302-304.	2.3	4
89	A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nature Communications, 2015, 6, 6644.	5.8	88
90	The core promoter: At the heart of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1116-1131.	0.9	140
91	Identification of active transcriptional regulatory elements from GRO-seq data. Nature Methods, 2015, 12, 433-438.	9.0	198

#	Article	IF	CITATIONS
92	Enhancers: Holding Out for the Right Promoter. Current Biology, 2015, 25, R290-R293.	1.8	5
93	Genomic approaches for understanding the genetics of complex disease. Genome Research, 2015, 25, 1432-1441.	2.4	75
94	Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Research, 2015, 25, 1427-1431.	2.4	63
95	The identification of cis-regulatory elements: A review from a machine learning perspective. BioSystems, 2015, 138, 6-17.	0.9	51
96	groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics, 2015, 16, 222.	1.2	57
97	Genomic Views of Transcriptional Enhancers: Essential Determinants of Cellular Identity and Activity-Dependent Responses in the CNS. Journal of Neuroscience, 2015, 35, 13819-13826.	1.7	33
98	Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 550-573.	2.3	80
99	Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends in Immunology, 2015, 36, 507-518.	2.9	32
100	TRIP through the chromatin: A high throughput exploration of enhancer regulatory landscapes. Genomics, 2015, 106, 171-177.	1.3	1
101	Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature, 2015, 525, 543-547.	13.7	414
103	Insect Regulatory Genomics. True Bugs (Heteroptera) of the Neotropics, 2015, , 119-155.	1.2	1
104	Comparative Genomics of Transcription Factor Binding in Drosophila. True Bugs (Heteroptera) of the Neotropics, 2015, , 157-175.	1.2	0
105	Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature, 2015, 528, 147-151.	13.7	169
106	Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation. Nature, 2015, 518, 556-559.	13.7	402
107	Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. BioEssays, 2015, 37, 314-323.	1.2	92
108	Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays, 2015, 37, 213-226.	1.2	59
109	Computational schemes for the prediction and annotation of enhancers from epigenomic assays. Methods, 2015, 72, 86-94.	1.9	26
110	miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila. PLoS Pathogens, 2016, 12, e1006034.	2.1	66

#	Article	IF	Citations
111	Cloning and expression analysis of alcohol dehydrogenase (Adh) hybrid promoter isolated from Zea mays. African Journal of Biotechnology, 2016, 15, 2384-2393.	0.3	1
112	Applying CRISPR–Cas9 tools to identify and characterize transcriptional enhancers. Nature Reviews Molecular Cell Biology, 2016, 17, 597-604.	16.1	54
113	EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm. Scientific Reports, 2016, 6, 38433.	1.6	42
114	A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of <i>cis</i> -regulatory activity in neural cells. Nucleic Acids Research, 2017, 45, gkw942.	6.5	48
115	A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors. Cell Reports, 2016, 17, 1247-1254.	2.9	75
116	Frequent hypermethylation of orphan CpG islands with enhancer activity in cancer. BMC Medical Genomics, 2016, 9, 38.	0.7	23
117	Fast training on large genomics data using distributed Support Vector Machines. , 2016, , .		3
118	Progress and challenges in bioinformatics approaches for enhancer identification. Briefings in Bioinformatics, 2016, 17, 967-979.	3.2	81
119	Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Seminars in Cell and Developmental Biology, 2016, 57, 40-50.	2.3	11
120	Dynamic chromatin organization: Role in development and disease. International Journal of Biochemistry and Cell Biology, 2016, 76, 119-122.	1.2	4
121	Transcriptional Regulators Compete with Nucleosomes Post-replication. Cell, 2016, 165, 580-592.	13.5	139
122	Interactions between pluripotency factors specify <i>cis</i> regulation in embryonic stem cells. Genome Research, 2016, 26, 778-786.	2.4	46
123	Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality. Nucleic Acids Research, 2016, 44, 4037-4051.	6.5	26
124	The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Developmental Biology, 2016, 413, 128-144.	0.9	18
125	The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes. Advances in Genetics, 2016, 95, 195-216.	0.8	1
126	Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends in Cancer, 2016, 2, 585-605.	3.8	8
127	Extraordinary Cancer Epigenomics: Thinking Outside the Classical Coding and Promoter Box. Trends in Cancer, 2016, 2, 572-584.	3.8	22
128	Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science, 2016, 354, 769-773.	6.0	512

#	Article	IF	CITATIONS
129	Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, 2016, , .	0.2	2
130	Epigenetics, Enhancers, and Cancer. Energy Balance and Cancer, 2016, , 29-53.	0.2	1
131	Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions. Nature Biotechnology, 2016, 34, 1180-1190.	9.4	132
132	Complex <i>cis</i> -regulatory landscape of the insulin receptor gene underlies the broad expression of a central signaling regulator. Development (Cambridge), 2016, 143, 3591-3603.	1.2	20
133	A Survey of the Computational Methods for Enhancers and Enhancer-target Predictions. , 2016, , 3-27.		1
134	EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics, 2016, 32, 3543-3551.	1.8	148
135	Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. BioEssays, 2016, 38, 881-893.	1.2	39
136	Functional organization of an <i>Mbp</i> enhancer exposes striking transcriptional regulatory diversity within myelinating glia. Glia, 2016, 64, 175-194.	2.5	6
137	Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome. Cell, 2016, 166, 1269-1281.e19.	13.5	158
138	Strategies for targeting primate neural circuits with viral vectors. Journal of Neurophysiology, 2016, 116, 122-134.	0.9	34
139	Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Current Neurology and Neuroscience Reports, 2016, 16, 94.	2.0	4
140	Plant Enhancers: A Call for Discovery. Trends in Plant Science, 2016, 21, 974-987.	4.3	115
141	An Evolutionary Conserved Epigenetic Mark of Polycomb Response Elements Implemented by Trx/MLL/COMPASS. Molecular Cell, 2016, 63, 318-328.	4.5	60
142	The Newly Emerging View of the Genome. , 2016, , 3-26.		0
143	Identification and function of enhancers in the human genome. Human Molecular Genetics, 2016, 25, R190-R197.	1.4	26
144	Enhancers and their dynamics during hematopoietic differentiation and emerging strategies for therapeutic action. FEBS Letters, 2016, 590, 4084-4104.	1.3	7
145	Transcriptional Regulation: When 1+1â‰2., 2016,, 1-16.		0
146	Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discovery, 2016, 6, 1215-1229.	7.7	81

#	Article	IF	CITATIONS
147	Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia. Scientific Reports, 2016, 6, 35903.	1.6	71
148	Regulation of disease-associated gene expression in the 3D genome. Nature Reviews Molecular Cell Biology, 2016, 17, 771-782.	16.1	294
149	Identification of a Potential Regulatory Variant for Colorectal Cancer Risk Mapping to 3p21.31 in Chinese Population. Scientific Reports, 2016, 6, 25194.	1.6	5
150	Regulatory Enhancer–Core-Promoter Communication via Transcription Factors and Cofactors. Trends in Genetics, 2016, 32, 801-814.	2.9	153
151	Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations. BMC Genomics, 2016, 17, 206.	1.2	60
152	Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay. Cell, 2016, 165, 1519-1529.	13.5	378
153	Simultaneous Pathway Activity Inference and Gene Expression Analysis Using RNA Sequencing. Cell Systems, 2016, 2, 323-334.	2.9	26
154	High-throughput discovery of post-transcriptional cis-regulatory elements. BMC Genomics, 2016, 17, 177.	1.2	41
155	Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic. Genome Research, 2016, 26, 882-895.	2.4	70
156	High-throughput functional comparison of promoter and enhancer activities. Genome Research, 2016, 26, 1023-1033.	2.4	114
157	<i>LBH</i> Gene Transcription Regulation by the Interplay of an Enhancer Risk Allele and DNA Methylation in Rheumatoid Arthritis. Arthritis and Rheumatology, 2016, 68, 2637-2645.	2.9	41
158	High-throughput mapping of regulatory DNA. Nature Biotechnology, 2016, 34, 167-174.	9.4	217
159	Enhanced Identification of Transcriptional Enhancers Provides Mechanistic Insights into Diseases. Trends in Genetics, 2016, 32, 76-88.	2.9	87
160	Role of non-coding sequence variants in cancer. Nature Reviews Genetics, 2016, 17, 93-108.	7.7	420
161	Massively parallel <i>cis</i> -regulatory analysis in the mammalian central nervous system. Genome Research, 2016, 26, 238-255.	2.4	106
162	Enhancer scanning to locate regulatory regions in genomic loci. Nature Protocols, 2016, 11, 46-60.	5.5	14
163	From the Beauty of Genomic Landscapes to the Strength of Transcriptional Mechanisms. Cell, 2016, 165, 18-19.	13.5	1
164	From GWAS to function: lessons from blood cells. ISBT Science Series, 2016, 11, 211-219.	1.1	13

#	Article	IF	Citations
165	Decoding the nonâ€coding genome: elucidating genetic risk outside the coding genome. Genes, Brain and Behavior, 2016, 15, 187-204.	1.1	32
166	Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system. General and Comparative Endocrinology, 2016, 229, 112-118.	0.8	25
167	Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states. Nature Communications, 2016, 7, 10528.	5.8	18
168	Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophrenia Research, 2016, 177, 115-124.	1.1	22
169	Understanding Celiac Disease by Genomics. Trends in Genetics, 2016, 32, 295-308.	2.9	78
170	Epigenetics - A Different Way of Looking at Genetics. Epigenetics and Human Health, 2016, , .	0.2	0
171	Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. Journal of Human Genetics, 2016, 61, 13-19.	1.1	52
172	Towards genome-wide prediction and characterization of enhancers in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 131-139.	0.9	53
173	3D genomics imposes evolution of the domain model of eukaryotic genome organization. Chromosoma, 2017, 126, 59-69.	1.0	14
174	Temporal establishment of neural cell identity in vivo and in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2582-2589.	1.3	1
175	Single embryo-resolution quantitative analysis of reporters permits multiplex spatial cis -regulatory analysis. Developmental Biology, 2017, 422, 92-104.	0.9	4
176	DifferentÂenhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Research, 2017, 45, 1714-1730.	6.5	133
177	Regulatory elements in molecular networks. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1374.	6.6	23
178	Decoding transcriptional states in cancer. Current Opinion in Genetics and Development, 2017, 43, 82-92.	1.5	7
179	Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays. Molecular Cell, 2017, 65, 604-617.e6.	4.5	48
180	Plant Biotechnology: Principles and Applications. , 2017, , .		6
181	A CRISPR view of gene regulation. Current Opinion in Systems Biology, 2017, 1, 1-8.	1.3	16
182	Core promoters across the genome. Nature Biotechnology, 2017, 35, 123-124.	9.4	7

#	Article	IF	Citations
183	Gene Regulatory Elements, Major Drivers of Human Disease. Annual Review of Genomics and Human Genetics, 2017, 18, 45-63.	2.5	115
184	Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells. Molecular Cell, 2017, 66, 285-299.e5.	4.5	245
185	A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nature Methods, 2017, 14, 629-635.	9.0	217
186	Nuclear Receptor Function through Genomics: Lessons from the Glucocorticoid Receptor. Trends in Endocrinology and Metabolism, 2017, 28, 531-540.	3.1	37
187	Methylation of <i>avpr1a</i> in the cortex of wild prairie voles: effects of CpG position and polymorphism. Royal Society Open Science, 2017, 4, 160646.	1.1	16
188	Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. Journal of Biological Chemistry, 2017, 292, 12390-12397.	1.6	74
189	Genome-wide characterization of mammalian promoters with distal enhancer functions. Nature Genetics, 2017, 49, 1073-1081.	9.4	222
190	Mammalian Synthetic Biology: Engineering Biological Systems. Annual Review of Biomedical Engineering, 2017, 19, 249-277.	5.7	47
191	THAP1: Role in Mouse Embryonic Stem Cell Survival and Differentiation. Stem Cell Reports, 2017, 9, 92-107.	2.3	27
192	Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Experimental Biology and Medicine, 2017, 242, 1325-1334.	1.1	44
193	A new computational method to predict transcriptional activity of a DNA sequence from diverse datasets of massively parallel reporter assays. Nucleic Acids Research, 2017, 45, e124-e124.	6.5	1
194	CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nature Biotechnology, 2017, 35, 561-568.	9.4	362
195	Highâ€Throughput Assays to Assess the Functional Impact of Genetic Variants: A Road Towards Genomicâ€Driven Medicine. Clinical and Translational Science, 2017, 10, 67-77.	1.5	48
196	Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts. Molecular Cell, 2017, 66, 63-76.e6.	4.5	120
197	Plant Promoters: Characterization and Applications in Transgenic Technology., 2017,, 117-172.		5
198	Mining the Unknown: Assigning Function to Noncoding Single Nucleotide Polymorphisms. Trends in Genetics, 2017, 33, 34-45.	2.9	81
199	Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution. Nature Biotechnology, 2017, 35, 136-144.	9.4	78
200	Genome-wide mapping of autonomous promoter activity in human cells. Nature Biotechnology, 2017, 35, 145-153.	9.4	97

#	Article	IF	CITATIONS
201	Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity. Cell Systems, 2017, 5, 319-331.	2.9	54
202	<i>Nanog</i> Expression in Embryonic Stem Cells – An Ideal Model System to Dissect Enhancer Function. BioEssays, 2017, 39, 1700086.	1.2	16
203	Genome-wide open chromatin regions and their effects on the regulation of silk protein genes in Bombyx mori. Scientific Reports, 2017, 7, 12919.	1.6	13
204	Quantifying the regulatory effect size of <i>cis</i> -acting genetic variation using allelic fold change. Genome Research, 2017, 27, 1872-1884.	2.4	114
205	The three-dimensional genome: regulating gene expression during pluripotency and development. Development (Cambridge), 2017, 144, 3646-3658.	1.2	96
206	PAF1 complex component Leo1 helps recruit <i>Drosophila</i> Myc to promoters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9224-E9232.	3.3	27
207	Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Molecular Cell, 2017, 67, 411-422.e4.	4.5	168
208	Studying a novel ecdysone-dependent enhancer. Doklady Biochemistry and Biophysics, 2017, 474, 236-238.	0.3	3
209	Mechanisms of Type 2 Diabetes Risk Loci. Current Diabetes Reports, 2017, 17, 72.	1.7	39
210	The Current State of the Neuroanatomy Toolkit in the Fruit Fly Drosophila melanogaster. , 2017, , 3-39.		4
211	DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology, 2017, 158, 3212-3234.	1.4	17
212	Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35, 732-746.	9.4	79
213	A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies InÂVivo Rules for mRNA Degradation. Molecular Cell, 2017, 68, 1083-1094.e5.	4.5	87
214	Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nature Neuroscience, 2017, 20, 1661-1668.	7.1	122
215	Chromatin accessibility dynamics reveal novel functional enhancers in <i>C. elegans</i> . Genome Research, 2017, 27, 2096-2107.	2.4	142
216	Genetic engineering: Lassoing genomic libraries. Nature Biomedical Engineering, 2017, $1, \ldots$	11.6	1
217	Promoting transcription over long distances. Nature Genetics, 2017, 49, 972-973.	9.4	11
218	Transversions have larger regulatory effects than transitions. BMC Genomics, 2017, 18, 394.	1.2	83

#	Article	IF	CITATIONS
219	Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis. G3: Genes, Genomes, Genetics, 2017, 7, 2705-2718.	0.8	7
220	Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression. Journal of Molecular Biology, 2017, 429, 2093-2107.	2.0	12
221	A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Research, 2017, 27, 38-52.	2.4	244
222	Using GWAS to identify novel therapeutic targets for osteoporosis. Translational Research, 2017, 181, 15-26.	2.2	45
223	Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Research, 2017, 27, 246-258.	2.4	146
224	On the cause and mechanism of phenoptosis. Biochemistry (Moscow), 2017, 82, 1462-1479.	0.7	7
225	Functional assessment of human enhancer activities using whole-genome STARR-sequencing. Genome Biology, 2017, 18, 219.	3.8	94
226	Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm. ELife, 2017, 6, .	2.8	36
227	The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. ELife, 2017, 6, .	2.8	57
229	Accurate Promoter and Enhancer Identification in 127 ENCODE and Roadmap Epigenomics Cell Types and Tissues by GenoSTAN. PLoS ONE, 2017, 12, e0169249.	1.1	73
230	Systematic identification of regulatory variants associated with cancer risk. Genome Biology, 2017, 18, 194.	3.8	79
231	Short DNA sequence patterns accurately identify broadly active human enhancers. BMC Genomics, 2017, 18, 536.	1.2	21
232	Functional genomics and assays of regulatory activity detect mechanisms at loci for lipid traits and coronary artery disease. Current Opinion in Genetics and Development, 2018, 50, 52-59.	1.5	5
233	Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes and Development, 2018, 32, 202-223.	2.7	171
234	Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications, 2018, 9, 918.	5.8	250
235	Widespread Enhancer Activity from Core Promoters. Trends in Biochemical Sciences, 2018, 43, 452-468.	3.7	54
236	Enhancer talk. Epigenomics, 2018, 10, 483-498.	1.0	32
237	Systems biology of embryonic development: Prospects for a complete understanding of the <scp><i>Caenorhabditis elegans</i></scp> embryo. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e314.	5.9	7

#	ARTICLE	IF	CITATIONS
238	Widespread transcriptional pausing and elongation control at enhancers. Genes and Development, 2018, 32, 26-41.	2.7	269
239	The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes and Development, 2018, 32, 42-57.	2.7	201
240	Enhancer transcription: what, where, when, and why?. Genes and Development, 2018, 32, 1-3.	2.7	96
241	Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cellular and Molecular Life Sciences, 2018, 75, 1587-1612.	2.4	55
242	Nuclear receptors in cancer $\hat{a} \in \mathbb{R}^n$ uncovering new and evolving roles through genomic analysis. Nature Reviews Genetics, 2018, 19, 160-174.	7.7	74
243	Cancer transcriptome profiling at the juncture of clinical translation. Nature Reviews Genetics, 2018, 19, 93-109.	7.7	202
244	Persistence of Long-Range Contacts at Insulators. , 2018, , 171-185.		1
245	Complex Relationships between Chromatin Accessibility, Sequence Divergence, and Gene Expression in Arabidopsis thaliana. Molecular Biology and Evolution, 2018, 35, 837-854.	3.5	33
246	Identifying Novel Enhancer Elements with CRISPR-Based Screens. ACS Chemical Biology, 2018, 13, 326-332.	1.6	25
247	Transcription start site analysis reveals widespread divergent transcription in D. melanogaster and core promoter-encoded enhancer activities. Nucleic Acids Research, 2018, 46, 5455-5469.	6.5	40
248	A survey of recently emerged genome-wide computational enhancer predictor tools. Computational Biology and Chemistry, 2018, 74, 132-141.	1.1	29
249	Integrated omics approaches to characterize a nuclear receptor corepressor-associated histone deacetylase in mouse skeletal muscle. Molecular and Cellular Endocrinology, 2018, 471, 22-32.	1.6	12
250	Chromatin Conformation Links Distal Target Genes to CKD Loci. Journal of the American Society of Nephrology: JASN, 2018, 29, 462-476.	3.0	21
251	QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays. Bioinformatics, 2018, 34, 787-794.	1.8	28
252	Housekeeping and tissue-specific cis-regulatory elements: Recipes for specificity and recipes for activity. Transcription, 2018, 9, 177-181.	1.7	6
253	Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nature Ecology and Evolution, 2018, 2, 152-163.	3.4	131
254	Resolving systematic errors in widely used enhancer activity assays in human cells. Nature Methods, 2018, 15, 141-149.	9.0	147
255	Synthetic STARR-seq reveals how DNA shape and sequence modulate transcriptional output and noise. PLoS Genetics, 2018, 14, e1007793.	1.5	29

#	Article	IF	Citations
256	High-resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides in human. Nature Communications, 2018, 9, 5380.	5.8	117
257	Human genome-wide measurement of drug-responsive regulatory activity. Nature Communications, 2018, 9, 5317.	5.8	34
258	Genomeâ€Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease. , 2018, 9, 439-455.		12
260	Enhancer and superâ€enhancer: Positive regulators in gene transcription. Animal Models and Experimental Medicine, 2018, 1, 169-179.	1.3	49
261	High-throughput characterization of genetic effects on DNA–protein binding and gene transcription. Genome Research, 2018, 28, 1701-1708.	2.4	34
262	Determinants of promoter and enhancer transcription directionality in metazoans. Nature Communications, 2018, 9, 4472.	5.8	22
263	Epigenetics and Chromatin Remodeling. , 2018, , 557-591.		0
264	Genome-wide Rules of Nucleosome Phasing in Drosophila. Molecular Cell, 2018, 72, 661-672.e4.	4.5	31
265	The "computable egg― Myth or useful concept?. Current Opinion in Systems Biology, 2018, 11, 91-97.	1.3	2
266	Investigating enhancer evolution with massively parallel reporter assays. Genome Biology, 2018, 19, 114.	3.8	2
267	Decoding the non-coding genome: Opportunities and challenges of genomic and epigenomic consortium data. Current Opinion in Systems Biology, $2018, 11, 82-90$.	1.3	4
268	Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers. Epigenetics, 2018, 13, 910-922.	1.3	37
269	A massively parallel reporter assay reveals context-dependent activity of homeodomain binding sites in vivo. Genome Research, 2018, 28, 1520-1531.	2.4	30
270	The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm. Epigenetics and Chromatin, $2018, 11, 48$.	1.8	13
271	Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding. Genome Research, 2018, 28, 1272-1284.	2.4	102
272	High-throughput screening of prostate cancer risk loci by single nucleotide polymorphisms sequencing. Nature Communications, 2018, 9, 2022.	5.8	66
273	Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biology and Evolution, 2018, 10, 1533-1545.	1.1	14
274	Molecular and Cellular Biology of the Right Heart. , 2018, , 57-89.		1

#	ARTICLE	IF	CITATIONS
275	Eukaryotic core promoters and the functional basis of transcription initiation. Nature Reviews Molecular Cell Biology, 2018, 19, 621-637.	16.1	480
276	Transcription and Epigenetic Regulation. , 2018, , 3-30.		0
277	Epigenetic analysis of human postmortem brain tissue. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 237-261.	1.0	3
278	Dynamic interplay between enhancer–promoter topology and gene activity. Nature Genetics, 2018, 50, 1296-1303.	9.4	326
279	Functional characterization of enhancer evolution in the primate lineage. Genome Biology, 2018, 19, 99.	3.8	38
280	Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinformatics, 2018, 19, 202.	1.2	88
281	A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve. BMC Genomics, 2018, 19, 311.	1.2	3
282	Molecular Regulation of Histamine Synthesis. Frontiers in Immunology, 2018, 9, 1392.	2.2	77
283	Direct control of somatic stem cell proliferation factors by the <i>Drosophila</i> testis stem cell niche. Development (Cambridge), 2018, 145, .	1.2	12
284	A highâ€throughput method to identify transâ€activation domains within transcription factor sequences. EMBO Journal, 2018, 37, .	3.5	53
285	Evolutionary Changes in Transcriptional Regulation: Insights into Human Behavior and Neurological Conditions. Annual Review of Neuroscience, 2018, 41, 185-206.	5.0	18
286	Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells. Cell Stem Cell, 2018, 23, 276-288.e8.	5.2	151
287	Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster. BMC Genomics, 2018, 19, 157.	1.2	34
288	Enhancer Logic and Mechanics in Development and Disease. Trends in Cell Biology, 2018, 28, 608-630.	3.6	146
289	Nascent RNA sequencing analysis provides insights into enhancer-mediated gene regulation. BMC Genomics, 2018, 19, 633.	1.2	60
290	The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nature Genetics, 2018, 50, 1011-1020.	9.4	122
291	Transcriptional regulation by promoters with enhancer function. Transcription, 2018, 9, 307-314.	1.7	43
292	DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP. PLoS Computational Biology, 2018, 14, e1006090.	1.5	13

#	Article	IF	Citations
293	Nascent RNA analyses: tracking transcription and its regulation. Nature Reviews Genetics, 2019, 20, 705-723.	7.7	177
294	Genetic Variation in Long-Range Enhancers. Current Topics in Behavioral Neurosciences, 2019, 42, 35-50.	0.8	2
295	Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Frontiers in Cellular Neuroscience, 2019, 13, 352.	1.8	53
296	Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1464.	6.6	11
297	A 50 year history of technologies that drove discovery in eukaryotic transcription regulation. Nature Structural and Molecular Biology, 2019, 26, 777-782.	3.6	30
298	Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nature Communications, 2019, 10, 3477.	5.8	60
299	RAEdb: a database of enhancers identified by high-throughput reporter assays. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15
300	Novel mRNAs 3′ end-associated <i>cis</i> -regulatory elements with epigenomic signatures of mammalian enhancers in the <i>Arabidopsis</i> genome. Rna, 2019, 25, 1242-1258.	1.6	6
301	Computational Biology Solutions to Identify Enhancers-target Gene Pairs. Computational and Structural Biotechnology Journal, 2019, 17, 821-831.	1.9	29
302	Taking a STAP at Core Promoter–Transcriptional Cofactor Specificity. Biochemistry, 2019, 58, 3133-3135.	1.2	0
303	Robust Normalization of Luciferase Reporter Data. Methods and Protocols, 2019, 2, 62.	0.9	6
304	MAPCap allows high-resolution detection and differential expression analysis of transcription start sites. Nature Communications, 2019, 10, 3219.	5.8	16
305	LncRNAs as Chromatin Regulators in Cancer: From Molecular Function to Clinical Potential. Cancers, 2019, 11, 1524.	1.7	59
306	STARRâ€seq and UMlâ€STARRâ€seq: Assessing Enhancer Activities for Genomeâ€Wideâ€, Highâ€, and Lowâ€Con Candidate Libraries. Current Protocols in Molecular Biology, 2019, 128, e105.	n <u>pl</u> gxity	46
307	A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nature Communications, 2019, 10, 4907.	5.8	100
308	CRUP: a comprehensive framework to predict condition-specific regulatory units. Genome Biology, 2019, 20, 227.	3.8	26
309	What Do Neighbors Tell About You: The Local Context of Cis-Regulatory Modules Complicates Prediction of Regulatory Variants. Frontiers in Genetics, 2019, 10, 1078.	1.1	3
310	A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chemical Biology, 2019, 14, 2497-2511.	1.6	8

#	Article	IF	CITATIONS
311	Influence of genetic polymorphism on transcriptional enhancer activity in the malaria vector Anopheles coluzzii. Scientific Reports, 2019, 9, 15275.	1.6	10
312	Changes in chromatin accessibility ensure robust cell cycle exit in terminally differentiated cells. PLoS Biology, 2019, 17, e3000378.	2.6	41
313	GRAM: A GeneRAlized Model to predict the molecular effect of a non-coding variant in a cell-type specific manner. PLoS Genetics, 2019, 15, e1007860.	1.5	1
315	AML Subtype Is a Major Determinant of the Association between Prognostic Gene Expression Signatures and Their Clinical Significance. Cell Reports, 2019, 28, 2866-2877.e5.	2.9	10
316	Zebrafish: A Powerful Model for Understanding the Functional Relevance of Noncoding Region Mutations in Human Genetic Diseases. Biomedicines, 2019, 7, 71.	1.4	6
317	MicroRNA miR-1002 Enhances NMNAT-Mediated Stress Response by Modulating Alternative Splicing. IScience, 2019, 19, 1048-1064.	1.9	3
318	Evolution, Origin of Life, Concepts and Methods. , 2019, , .		4
319	Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Research, 2019, 47, 10597-10611.	6.5	39
320	Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics, 2019, 20, 40.	1.2	211
321	The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Forecasting with a Horizon Scan-like Exercise. Journal of Heredity, 2019, 110, 261-274.	1.0	9
322	Chromatin architecture reorganization during neuronal cell differentiation in <i>Drosophila</i> genome. Genome Research, 2019, 29, 613-625.	2.4	43
323	Genomic Enhancers in Brain Health and Disease. Genes, 2019, 10, 43.	1.0	53
324	Global Quantitative Mapping of Enhancers in Rice by STARR-seq. Genomics, Proteomics and Bioinformatics, 2019, 17, 140-153.	3.0	43
325	Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays. PLoS ONE, 2019, 14, e0218073.	1.1	61
326	Metaâ€analysis of massively parallel reporter assays enables prediction of regulatory function across cell types. Human Mutation, 2019, 40, 1299-1313.	1.1	15
327	Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nature Communications, 2019, 10, 2434.	5.8	71
328	Functional impacts of non-coding RNA processing on enhancer activity and target gene expression. Journal of Molecular Cell Biology, 2019, 11, 868-879.	1.5	15
329	Characterising the genetic basis of immune response variation to identify causal mechanisms underlying disease susceptibility. Hla, 2019, 94, 275-284.	0.4	5

#	Article	IF	CITATIONS
330	The RNA Polymerase II Core Promoter in <i>Drosophila</i> . Genetics, 2019, 212, 13-24.	1.2	62
331	Navigating the non-coding genome in heart development and Congenital Heart Disease. Differentiation, $2019,107,11\text{-}23.$	1.0	17
332	Transcriptional cofactors display specificity for distinct types of core promoters. Nature, 2019, 570, 122-126.	13.7	112
333	Long-range enhancer–promoter contacts in gene expression control. Nature Reviews Genetics, 2019, 20, 437-455.	7.7	735
334	Massively Parallel Assays and Quantitative Sequence–Function Relationships. Annual Review of Genomics and Human Genetics, 2019, 20, 99-127.	2.5	101
335	The evolution of Great Apes has shaped the functional enhancers' landscape in human embryonic stem cells. Stem Cell Research, 2019, 37, 101456.	0.3	28
336	Improved Prediction of Regulatory Element Using Hybrid Abelian Complexity Features with DNA Sequences. International Journal of Molecular Sciences, 2019, 20, 1704.	1.8	5
337	Development of a high efficient promoter finding method based on transient transfection. Gene: X, 2019, 2, 100008.	2.3	3
338	Defining the Genetic, Genomic, Cellular, and Diagnostic Architectures of Psychiatric Disorders. Cell, 2019, 177, 162-183.	13.5	331
339	Leveraging technological innovations to investigate evolutionary transitions to eusociality. Current Opinion in Insect Science, 2019, 34, 27-32.	2.2	2
340	United colours of chromatin? Developmental genome organisation in flies. Biochemical Society Transactions, 2019, 47, 691-700.	1.6	1
341	Multiplex cis-regulatory analysis. Methods in Cell Biology, 2019, 151, 159-176.	0.5	0
342	The anti-cancer drugs curaxins target spatial genome organization. Nature Communications, 2019, 10, 1441.	5.8	44
343	EnDisease: a manually curated database for enhancer-disease associations. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	11
344	Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Development Growth and Differentiation, 2019, 61, 343-352.	0.6	13
345	Genomic annotation of disease-associated variants reveals shared functional contexts. Diabetologia, 2019, 62, 735-743.	2.9	5
346	Blood disease–causing and –suppressing transcriptional enhancers: general principles and GATA2 mechanisms. Blood Advances, 2019, 3, 2045-2056.	2.5	22
347	Widespread long-range cis-regulatory elements in the maize genome. Nature Plants, 2019, 5, 1237-1249.	4.7	250

#	Article	IF	Citations
348	Ranking of non-coding pathogenic variants and putative essential regions of the human genome. Nature Communications, 2019, 10, 5241.	5.8	65
349	EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Research, 2020, 48, D58-D64.	6.5	142
350	RSAT variation-tools: An accessible and flexible framework to predict the impact of regulatory variants on transcription factor binding. Computational and Structural Biotechnology Journal, 2019, 17, 1415-1428.	1.9	9
351	Deciphering the Gene Regulatory Landscape Encoded in DNA Biophysical Features. IScience, 2019, 21, 638-649.	1.9	7
352	3D Genomics. Molecular Biology, 2019, 53, 802-812.	0.4	4
353	The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes. Molecular Cell, 2019, 76, 738-752.e7.	4.5	150
354	Functional genomic approaches to elucidate the role of enhancers during development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 12, e1467.	6.6	19
356	Gene activation by dCas9-CBP and the SAM system differ in target preference. Scientific Reports, 2019, 9, 18104.	1.6	18
357	Genome-wide identification of enhancer elements in the placenta. Placenta, 2019, 79, 72-77.	0.7	7
358	The Role of De Novo Noncoding Regulatory Mutations in Neurodevelopmental Disorders. Trends in Neurosciences, 2019, 42, 115-127.	4.2	56
359	The interdependence of gene-regulatory elements and the 3D genome. Journal of Cell Biology, 2019, 218, 12-26.	2.3	41
360	A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity. Nature Biotechnology, 2019, 37, 90-95.	9.4	66
361	REDfly: the transcriptional regulatory element database for <i>Drosophila</i> . Nucleic Acids Research, 2019, 47, D828-D834.	6.5	59
362	Post-GWAS in prostate cancer: from genetic association to biological contribution. Nature Reviews Cancer, 2019, 19, 46-59.	12.8	73
363	Shaping the nebulous enhancer in the era of high-throughput assays and genome editing. Briefings in Bioinformatics, 2020, 21, 836-850.	3.2	4
364	The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk. Schizophrenia Research, 2020, 217, 17-25.	1.1	31
365	Determinants of enhancer and promoter activities of regulatory elements. Nature Reviews Genetics, 2020, 21, 71-87.	7.7	464
366	Bayesian estimation of genetic regulatory effects in high-throughput reporter assays. Bioinformatics, 2020, 36, 331-338.	1.8	0

#	Article	IF	CITATIONS
367	The 3D Genome as a Target for Anticancer Therapy. Trends in Molecular Medicine, 2020, 26, 141-149.	3.5	28
368	New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Research, 2020, 48, D882-D889.	6.5	381
369	Charting the cis-regulome of activated B cells by coupling structural and functional genomics. Nature Immunology, 2020, 21, 210-220.	7.0	40
370	Gene regulatory networks STARR-ing B cells. Nature Immunology, 2020, 21, 110-112.	7.0	o
371	Deciphering Gene Regulation Using Massively Parallel Reporter Assays. Trends in Biochemical Sciences, 2020, 45, 90-91.	3.7	11
372	Regulatory genome variants in human susceptibility to infection. Human Genetics, 2020, 139, 759-768.	1.8	14
373	The untold story between enhancers and skeletal muscle development. Journal of Integrative Agriculture, 2020, 19, 2137-2149.	1.7	0
374	A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 2020, 17, 1083-1091.	9.0	111
375	Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics and Chromatin, 2020, 13, 43.	1.8	12
376	DropSynth 2.0: high-fidelity multiplexed gene synthesis in emulsions. Nucleic Acids Research, 2020, 48, e95-e95.	6.5	25
377	Behavior-related gene regulatory networks: A new level of organization in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23270-23279.	3.3	52
378	Fully interpretable deep learning model of transcriptional control. Bioinformatics, 2020, 36, i499-i507.	1.8	20
379	Evolution of Regulated Transcription. Cells, 2020, 9, 1675.	1.8	19
382	Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells, 2020, 9, 2480.	1.8	15
383	Comprehensive Mapping of Key Regulatory Networks that Drive Oncogene Expression. Cell Reports, 2020, 33, 108426.	2.9	14
384	A Mutation in the <i>Drosophila melanogaster eve </i> Stripe 2 Minimal Enhancer Is Buffered by Flanking Sequences. G3: Genes, Genomes, Genetics, 2020, 10, 4473-4482.	0.8	13
385	Mapping Regulatory Determinants in Plants. Frontiers in Genetics, 2020, 11, 591194.	1.1	15
386	The intersectional genetics landscape for humans. GigaScience, 2020, 9, .	3.3	1

#	Article	IF	CITATIONS
387	Total Functional Score of Enhancer Elements Identifies Lineage-Specific Enhancers That Drive Differentiation of Pancreatic Cells. Bioinformatics and Biology Insights, 2020, 14, 117793222093806.	1.0	4
388	Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular and Cellular Neurosciences, 2020, 107, 103532.	1.0	8
389	Perspectives on ENCODE. Nature, 2020, 583, 693-698.	13.7	123
390	Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nature Methods, 2020, 17, 807-814.	9.0	71
391	Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution data sets. Current Opinion in Systems Biology, 2020, 22, 8-15.	1.3	10
392	Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nature Communications, 2020, 11 , 5539 .	5.8	59
393	Establishment and function of chromatin modification at enhancers. Open Biology, 2020, 10, 200255.	1.5	13
394	How to study enhancers in non-traditional insect models. Journal of Experimental Biology, 2020, 223, .	0.8	5
395	Defining Essential Enhancers for Pluripotent Stem Cells Using a Features-Oriented CRISPR-Cas9 Screen. Cell Reports, 2020, 33, 108309.	2.9	6
396	Recently Evolved Enhancers Emerge with High Interindividual Variability and Less Frequently Associate with Disease. Cell Reports, 2020, 31, 107799.	2.9	7
397	Transcription imparts architecture, function and logic to enhancer units. Nature Genetics, 2020, 52, 1067-1075.	9.4	60
398	Seven myths of how transcription factors read the cis-regulatory code. Current Opinion in Systems Biology, 2020, 23, 22-31.	1.3	68
399	Revisiting 3D chromatin architecture in cancer development and progression. Nucleic Acids Research, 2020, 48, 10632-10647.	6.5	22
401	Transcriptional Enhancers in < i > Drosophila < /i > . Genetics, 2020, 216, 1-26.	1.2	31
402	STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biology, 2020, 21, 243.	3.8	48
403	STARRPeaker: uniform processing and accurate identification of STARR-seq active regions. Genome Biology, 2020, 21, 298.	3.8	36
404	Interplay of pericentromeric genome organization and chromatin landscape regulates the expression of Drosophila melanogaster heterochromatic genes. Epigenetics and Chromatin, 2020, 13, 41.	1.8	14
405	Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Experimental and Molecular Medicine, 2020, 52, 713-723.	3.2	44

#	Article	IF	CITATIONS
406	EpiRegio: analysis and retrieval of regulatory elements linked to genes. Nucleic Acids Research, 2020, 48, W193-W199.	6.5	26
407	Seq-ing answers: Current data integration approaches to uncover mechanisms of transcriptional regulation. Computational and Structural Biotechnology Journal, 2020, 18, 1330-1341.	1.9	16
408	Identification of Plant Enhancers and Their Constituent Elements by STARR-seq in Tobacco Leaves. Plant Cell, 2020, 32, 2120-2131.	3.1	53
409	Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Frontiers in Cell and Developmental Biology, 2020, 8, 347.	1.8	30
410	Integrative analysis of reference epigenomes in 20 rice varieties. Nature Communications, 2020, 11, 2658.	5.8	86
411	Unravelling the complex genetics of common kidney diseases: from variants to mechanisms. Nature Reviews Nephrology, 2020, 16, 628-640.	4.1	33
412	The Role of Liquid–Liquid Phase Separation in the Compartmentalization of Cell Nucleus and Spatial Genome Organization. Biochemistry (Moscow), 2020, 85, 643-650.	0.7	30
413	Machine learning and deep learning for the advancement of epigenomics., 2020,, 217-237.		0
414	Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity. BioEssays, 2020, 42, e1900188.	1.2	18
415	CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila. Nucleic Acids Research, 2020, 48, 4344-4356.	6.5	3
416	Evaluating Enhancer Function and Transcription. Annual Review of Biochemistry, 2020, 89, 213-234.	5.0	123
417	Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases. Molecular Cell, 2020, 79, 521-534.e15.	4.5	110
418	Functional Genomics of Healthy and Pathological Fetal Membranes. Frontiers in Physiology, 2020, 11, 687.	1.3	1
419	Gene regulatory networks controlling neuronal development. , 2020, , 699-730.		0
420	Atrial Fibrillation Is a Complex Trait. Circulation Research, 2020, 127, 244-246.	2.0	4
421	lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements. Nature Protocols, 2020, 15, 2387-2412.	5 . 5	65
422	Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circulation Research, 2020, 127, 34-50.	2.0	48
423	Dissecting the regulatory activity and sequence content of loci with exceptional numbers of transcription factor associations. Genome Research, 2020, 30, 939-950.	2.4	14

#	Article	IF	Citations
424	High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells. Nature Communications, 2020, 11, 714.	5.8	35
425	Candidate silencer elements for the human and mouse genomes. Nature Communications, 2020, 11, 1061.	5.8	107
426	Systematic identification of silencers in human cells. Nature Genetics, 2020, 52, 254-263.	9.4	119
427	GWAS in cancer: progress and challenges. Molecular Genetics and Genomics, 2020, 295, 537-561.	1.0	53
428	4See: A Flexible Browser to Explore 4C Data. Frontiers in Genetics, 2020, 10, 1372.	1.1	14
429	Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communications, 2020, 11, 485.	5 . 8	139
430	Towards a comprehensive catalogue of validated and target-linked human enhancers. Nature Reviews Genetics, 2020, 21, 292-310.	7.7	229
431	Mapping Alzheimer's Disease Variants to Their Target Genes Using Computational Analysis of Chromatin Configuration. Journal of Visualized Experiments, 2020, , .	0.2	4
432	Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells, 2020, 9, 246.	1.8	13
433	Enhancer-Driven Gene Expression (EDGE) enables the generation of cell type specific tools for the analysis of neural circuits. Neuroscience Research, 2020, 152, 78-86.	1.0	15
434	Widespread activation of developmental gene expression characterized by PRC1-dependent chromatin looping. Science Advances, 2020, 6, eaax4001.	4.7	72
435	The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Research, 2020, 48, 3476-3495.	6.5	8
436	Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding. Molecular Cell, 2020, 78, 539-553.e8.	4. 5	380
437	Cloning and functional identification of a Chilo suppressalis â€inducible promoter of rice gene, OsHPL2. Pest Management Science, 2020, 76, 3177-3187.	1.7	7
438	Identification of Functional Variant Enhancers Associated With Atrial Fibrillation. Circulation Research, 2020, 127, 229-243.	2.0	33
439	A statistical framework for predicting critical regions of p53-dependent enhancers. Briefings in Bioinformatics, 2021, 22, .	3.2	4
440	Insights into glucocorticoid responses derived from omics studies. , 2021, 218, 107674.		11
441	Massively Parallel Reporter Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts. Biological Psychiatry, 2021, 89, 76-89.	0.7	34

#	ARTICLE	IF	Citations
442	PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology, 2021, 46, 70-85.	2.8	15
443	The WNT/βâ€catenin dependent transcription: A tissueâ€specific business. WIREs Mechanisms of Disease, 2021, 13, e1511.	1.5	52
444	Polygenicity in Psychiatryâ€"Like It or Not, We Have to Understand It. Biological Psychiatry, 2021, 89, 2-4.	0.7	9
445	Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity InÂVivo. Molecular Cell, 2021, 81, 255-267.e6.	4.5	79
446	Super enhancersâ€"Functional cores under the 3D genome. Cell Proliferation, 2021, 54, e12970.	2.4	17
447	Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale. Genome, 2021, 64, 426-448.	0.9	12
449	Enhancer redundancy in development and disease. Nature Reviews Genetics, 2021, 22, 324-336.	7.7	128
450	Functional genomics of psychiatric disease risk using genome engineering. , 2021, , 711-734.		0
451	Massively Parallel Analysis of Regulatory RNA Sequences. Methods in Molecular Biology, 2021, 2218, 355-365.	0.4	3
452	Loss of 9p21 Regulatory Hub Promotes Kidney Cancer Progression by Upregulating HOXB13. Molecular Cancer Research, 2021, 19, 979-990.	1.5	12
453	Filtering the Junk: Assigning Function to the Mosquito Non-Coding Genome. Insects, 2021, 12, 186.	1.0	7
454	Detection of gene cis-regulatory element perturbations in single-cell transcriptomes. PLoS Computational Biology, 2021, 17, e1008789.	1.5	0
457	Androgen and glucocorticoid receptor direct distinct transcriptional programs by receptor-specific and shared DNA binding sites. Nucleic Acids Research, 2021, 49, 3856-3875.	6.5	17
458	Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. American Journal of Human Genetics, 2021, 108, 411-430.	2.6	20
459	An interdependent network of functional enhancers regulates transcription and EZH2 loading at the INK4a/ARF locus. Cell Reports, 2021, 34, 108898.	2.9	19
460	Heart Enhancers: Development and Disease Control at a Distance. Frontiers in Genetics, 2021, 12, 642975.	1.1	4
461	Localization of RNAs in the nucleus: <i>cis</i> - and <i>trans</i> - regulation. RNA Biology, 2021, 18, 2073-2086.	1.5	10
465	Computational prediction of CRISPR-impaired non-coding regulatory regions. Biological Chemistry, 2021, 402, 973-982.	1.2	1

#	ARTICLE	IF	Citations
468	Correcting signal biases and detecting regulatory elements in STARR-seq data. Genome Research, 2021, 31, 877-889.	2.4	11
469	Software Benchmarkâ€"Classification Tree Algorithms for Cell Atlases Annotation Using Single-Cell RNA-Sequencing Data. Microbiology Research, 2021, 12, 317-334.	0.8	1
470	At least two to tango: Choreographing chromatin through cooperative footprints. Molecular Cell, 2021, 81, 1591-1593.	4.5	0
471	Cooperative binding between distant transcription factors is a hallmark of active enhancers. Molecular Cell, 2021, 81, 1651-1665.e4.	4.5	39
473	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	1.2	9
476	Singleâ€cell dynamics of chromatin activity during cell lineage differentiation in <i>Caenorhabditis elegans</i> embryos. Molecular Systems Biology, 2021, 17, e10075.	3.2	5
477	Enhancers as potential targets for engineering salinity stress tolerance in crop plants. Physiologia Plantarum, 2021, 173, 1382-1391.	2.6	5
478	Genome-wide strand asymmetry in massively parallel reporter activity favors genic strands. Genome Research, 2021, 31, 866-876.	2.4	1
479	A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures. Diabetes, 2021, 70, 1581-1591.	0.3	7
480	Estrogen Receptor on the move: Cistromic plasticity and its implications in breast cancer. Molecular Aspects of Medicine, 2021, 78, 100939.	2.7	13
481	Beyond association: successes and challenges in linking non-coding genetic variation to functional consequences that modulate Alzheimer's disease risk. Molecular Neurodegeneration, 2021, 16, 27.	4.4	20
482	Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron, 2021, 109, 1449-1464.e13.	3.8	93
483	Functional mapping of androgen receptor enhancer activity. Genome Biology, 2021, 22, 149.	3.8	18
484	The two waves in single-cell 3D genomics. Seminars in Cell and Developmental Biology, 2021, 121, 143-143.	2.3	8
487	Evolution of mouse circadian enhancers from transposable elements. Genome Biology, 2021, 22, 193.	3.8	30
488	Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nature Plants, 2021, 7, 842-855.	4.7	78
490	Annotating the Insect Regulatory Genome. Insects, 2021, 12, 591.	1.0	4
491	Decoding the organization, dynamics, and function of the 4D genome. Developmental Cell, 2021, 56, 1562-1573.	3.1	15

#	Article	IF	CITATIONS
492	Methods of massive parallel reporter assays for investigation of enhancers. Vavilovskii Zhurnal Genetiki I Selektsii, 2021, 25, 344-355.	0.4	2
494	Sequence-based correction of barcode bias in massively parallel reporter assays. Genome Research, 2021, 31, 1638-1645.	2.4	3
495	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	2.6	6
498	How subtle changes in 3D structure can create large changes in transcription. ELife, 2021, 10, .	2.8	83
499	Inducible CRISPRa screen identifies putative enhancers. Journal of Genetics and Genomics, 2021, 48, 917-927.	1.7	13
500	Functional genomics and epigenomics of atrial fibrillation. Journal of Molecular and Cellular Cardiology, 2021, 157, 45-55.	0.9	3
501	m6A RNA methylation regulates promoter- proximal pausing of RNA polymerase II. Molecular Cell, 2021, 81, 3356-3367.e6.	4.5	47
502	Parallel Reporter Assays Identify Altered Regulatory Role of rs684232 in Leading to Prostate Cancer Predisposition. International Journal of Molecular Sciences, 2021, 22, 8792.	1.8	9
503	The non-coding genome in genetic brain disorders: new targets for therapy?. Essays in Biochemistry, 2021, 65, 671-683.	2.1	3
504	Transcriptional enhancers and their communication with gene promoters. Cellular and Molecular Life Sciences, 2021, 78, 6453-6485.	2.4	25
505	Genomic enhancers in cardiac development and disease. Nature Reviews Cardiology, 2022, 19, 7-25.	6.1	16
506	Enhancers in disease: molecular basis and emerging treatment strategies. Trends in Molecular Medicine, 2021, 27, 1060-1073.	3.5	84
507	20-hydroxyecdysone (20E) signaling regulates amnioserosa morphogenesis during <i>Drosophila</i> dorsal closure: EcR modulates gene expression in a complex with the AP-1 subunit, Jun. Biology Open, 2021, 10, .	0.6	13
508	Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Human Molecular Genetics, 2021, 30, R187-R197.	1.4	27
509	Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Non-coding RNA, 2021, 7, 47.	1.3	6
512	Deciphering enhancer sequence using thermodynamics-based models and convolutional neural networks. Nucleic Acids Research, 2021, 49, 10309-10327.	6.5	5
513	STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. Molecular Cell, 2021, 81, 4398-4412.e7.	4.5	16
514	Single-nuclei chromatin profiling of ventral midbrain reveals cell identity transcription factors and cell-type-specific gene regulatory variation. Epigenetics and Chromatin, 2021, 14, 43.	1.8	5

#	Article	IF	Citations
515	A signature of Neanderthal introgression on molecular mechanisms of environmental responses. PLoS Genetics, 2021, 17, e1009493.	1.5	5
516	Systematic analysis of binding of transcription factors to noncoding variants. Nature, 2021, 591, 147-151.	13.7	89
518	Epigenetics of muscle disorders. , 2021, , 279-308.		0
519	The Role of Nucleosomes in Epigenetic Gene Regulation. , 2019, , 87-117.		3
520	Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Current Topics in Developmental Biology, 2020, 139, 35-60.	1.0	8
521	Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell, 2021, 33, 832-845.	3.1	11
556	Recent advances in high-throughput approaches to dissect enhancer function. F1000Research, 2017, 6, 939.	0.8	44
557	Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biology, 2017, 15, e2002054.	2.6	80
558	Probing the canonicity of the Wnt/Wingless signaling pathway. PLoS Genetics, 2017, 13, e1006700.	1.5	39
559	Identification of a Potential Regulatory Variant for Colorectal Cancer Risk Mapping to Chromosome 5q31.1: A Post-GWAS Study. PLoS ONE, 2015, 10, e0138478.	1.1	9
560	Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation. PLoS ONE, 2016, 11, e0161997.	1.1	17
561	Identification of genomic enhancers through spatial integration of singleâ€eell transcriptomics and epigenomics. Molecular Systems Biology, 2020, 16, e9438.	3.2	60
562	The search for <i>cis</i> -regulatory driver mutations in cancer genomes. Oncotarget, 2015, 6, 32509-32525.	0.8	18
564	The Paf1 complex positively regulates enhancer activity in mouse embryonic stem cells. Life Science Alliance, 2021, 4, e202000792.	1.3	15
565	A Pretraining-Retraining Strategy of Deep Learning Improves Cell-Specific Enhancer Predictions. Frontiers in Genetics, 2019, 10, 1305.	1.1	11
566	Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. ELife, 2015, 4, .	2.8	146
567	Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells. ELife, 2017, 6, .	2.8	130
568	Landscape of histone modifications in a sponge reveals the origin of animal cis-regulatory complexity. ELife, 2017, 6, .	2.8	51

#	Article	IF	Citations
569	Genome-wide quantification of the effects of DNA methylation on human gene regulation. ELife, 2018, $7, .$	2.8	96
570	Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction. ELife, 2020, 9, .	2.8	7
571	Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross. ELife, 2020, 9, .	2.8	18
572	Genome-wide identification of hypoxia-induced enhancer regions. PeerJ, 2015, 3, e1527.	0.9	7
573	Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq. Nucleic Acids Research, 2021, 49, 12178-12195.	6.5	12
575	Integrative epigenomic and high-throughput functional enhancer profiling reveals determinants of enhancer heterogeneity in gastric cancer. Genome Medicine, 2021, 13, 158.	3.6	7
578	Genome-wide oscillations in G + C density and sequence conservation. Genome Research, 2021, 31, 2050-2057.	2.4	1
579	Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Medicine, 2021, 13, 162.	3.6	9
580	No Need to Stick Together to Be Connected: Multiple Types of Enhancers' Networking. Cancers, 2021, 13, 5201.	1.7	2
583	Parallel functional testing identifies enhancers active in early postnatal mouse brain. ELife, 2021, 10, .	2.8	19
584	The Control of Gene Expression in Macrophages. , 2014, , 519-543.		0
586	Lymphocyte Identity and Genomic Switches. Epigenetics and Human Health, 2016, , 41-52.	0.2	0
598	Organizational Properties of a Functional Mammalian Cis-Regulome. SSRN Electronic Journal, 0, , .	0.4	0
614	Methods to Detect and Associate Divergence in Cis-Regulatory Elements to Phenotypic Divergence., 2019, , 113-134.		1
636	Recent Advances in Genetic Engineering Tools for Metabolic Engineering. , 2020, , 93-109.		0
637	Eukaryotic Genome in Three Dimensions. , 2020, , 11-34.		0
638	Identification of cis-Elements for RNA Subcellular Localization Through REL-seq. Methods in Molecular Biology, 2020, 2161, 143-160.	0.4	1
641	An explainable artificial intelligence approach for decoding the enhancer histone modifications code and identification of novel enhancers in Drosophila. Genome Biology, 2021, 22, 308.	3.8	10

#	ARTICLE	IF	CITATIONS
642	Functional annotation of breast cancer risk loci: current progress and future directions. British Journal of Cancer, 2022, 126, 981-993.	2.9	6
648	Massively parallel DNA target capture using long adapter single stranded oligonucleotide (LASSO) probes assembled through a novel DNA recombinase mediated methodology. Biotechnology Journal, 2021, , 2100240.	1.8	2
650	Epromoters function as a hub to recruit key transcription factors required for the inflammatory response. Nature Communications, 2021, 12, 6660.	5.8	20
651	Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes. Nucleic Acids Research, 2021, 49, 12196-12210.	6.5	7
654	Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Molecular Cell, 2022, 82, 190-208.e17.	4.5	23
655	RNA Sequencing: A Potent Transcription Profiling Tool. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 891-905.	0.0	0
656	How to find genomic regions relevant for gene regulation. Medizinische Genetik, 2021, 33, 157-165.	0.1	0
658	Comprehensive Genomic Discovery of Non-Coding Transcriptional Enhancers in the African Malaria Vector Anopheles coluzzii. Frontiers in Genetics, 2021, 12, 785934.	1.1	2
659	Design and characterization of synthetic promoters. , 2022, , 11-21.		1
660	Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data. BioData Mining, 2022, $15,1.$	2.2	12
661	Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Research Reviews, 2022, 73, 101535.	5.0	14
663	Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annual Review of Immunology, 2022, 40, 387-411.	9.5	6
665	Molecular architecture of enhancer–promoter interaction. Current Opinion in Cell Biology, 2022, 74, 62-70.	2.6	17
668	Epigenome rewiring in human pluripotent stem cells. Trends in Cell Biology, 2022, 32, 259-271.	3.6	4
669	Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell, 2022, 34, 718-741.	3.1	125
670	Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations. Genome Research, 2022, 32, 409-424.	2.4	10
671	Sequence determinants of human gene regulatory elements. Nature Genetics, 2022, 54, 283-294.	9.4	87
672	Enhancer RNA: What we know and what we can achieve. Cell Proliferation, 2022, 55, e13202.	2.4	23

#	Article	IF	Citations
673	Largeâ€scale analysis of <i>Drosophila</i> core promoter function using synthetic promoters. Molecular Systems Biology, 2022, 18, e9816.	3.2	15
675	Integration of Count Difference and Curve Similarity in Negative Regulatory Element Detection. Frontiers in Genetics, 2022, 13, 818344.	1.1	2
676	Roles of transposable elements in the regulation of mammalian transcription. Nature Reviews Molecular Cell Biology, 2022, 23, 481-497.	16.1	135
680	Androgen Receptor-Mediated Transcription in Prostate Cancer. Cells, 2022, 11, 898.	1.8	14
682	AAV Deployment of Enhancer-Based Expression Constructs In Vivo in Mouse Brain. Journal of Visualized Experiments, 2022, , .	0.2	1
683	Regulating specificity in enhancer–promoter communication. Current Opinion in Cell Biology, 2022, 75, 102065.	2.6	32
684	Analysis of long and short enhancers in melanoma cell states. ELife, 2021, 10, .	2.8	18
685	Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biology, 2021, 22, 348.	3.8	3
686	Dinucleotide tagâ€based parallel reporter gene assay method enables efficient identification of regulatory mutations. Biotechnology Journal, 2022, 17, 2100341.	1.8	2
689	CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data. PLoS Computational Biology, 2021, 17, e1009670.	1.5	7
690	Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophrenia Research, 2022, , .	1.1	6
699	Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome. Molecular Cell, 2022, 82, 2519-2531.e6.	4.5	47
701	DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers. Nature Genetics, 2022, 54, 613-624.	9.4	97
702	Molecular and experimental tools to design synthetic enhancers. Current Opinion in Biotechnology, 2022, 76, 102728.	3.3	4
703	Computational and experimental methods for classifying variants of unknown clinical significance Cold Spring Harbor Molecular Case Studies, 2022, 8, .	0.7	7
708	Compatibility rules of human enhancer and promoter sequences. Nature, 2022, 607, 176-184.	13.7	67
709	ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data. Bioinformatics, 2022, 38, 3523-3531.	1.8	4
710	Functional Definition of Thyroid Hormone Response Elements Based on a Synthetic STARR-seq Screen. Endocrinology, 2022, 163, .	1.4	3

#	Article	IF	CITATIONS
711	Enhancer-gene specificity in development and disease. Development (Cambridge), 2022, 149, .	1.2	15
712	3Dâ€Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma. Genetics & Genomics Next, 2022, 3, .	0.8	1
713	Genome-wide identification of functional enhancers and their potential roles in pig breeding. Journal of Animal Science and Biotechnology, 2022, 13 , .	2.1	3
714	Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends in Genetics, 2022, 38, 1019-1047.	2.9	11
715	REDfly: An Integrated Knowledgebase for Insect Regulatory Genomics. Insects, 2022, 13, 618.	1.0	9
716	High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biology, 2022, 23, .	3.8	7
717	Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nature Reviews Genetics, 2022, 23, 728-740.	7.7	43
718	The role of single-cell genomics in human genetics. Journal of Medical Genetics, 2022, 59, 827-839.	1.5	11
719	ATAC-STARR-seq reveals transcription factor–bound activators and silencers within chromatin-accessible regions of the human genome. Genome Research, 2022, 32, 1529-1541.	2.4	14
722	Functional genomic assays to annotate enhancer–promoter interactions genome wide. Human Molecular Genetics, 2022, 31, R97-R104.	1.4	3
723	Epigenomic profiling of glucocorticoid responses identifies cis-regulatory disruptions impacting steroid resistance in childhood acute lymphoblastic leukemia. Leukemia, 2022, 36, 2374-2383.	3.3	7
725	Multi-layered transcriptional control of cranial neural crest development. Seminars in Cell and Developmental Biology, 2023, 138, 1-14.	2.3	3
727	Enhancers have more cofactor specificity than we think: A potential new way to classify enhancers based on their functional cofactor requirements. Molecular Cell, 2022, 82, 2922-2924.	4.5	0
729	<scp>Genomeâ€wide</scp> prediction of activating regulatory elements in rice by combining <scp>STARR</scp> â€seq with <scp>FACS</scp> . Plant Biotechnology Journal, 2022, 20, 2284-2297.	4.1	8
730	Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. ELife, $0,11,1$	2.8	9
732	Modeling chromatin state from sequence across angiosperms using recurrent convolutional neural networks. Plant Genome, 2022, 15, .	1.6	2
733	STARR-seq for high-throughput identification of plant enhancers. Trends in Plant Science, 2022, 27, 1296-1297.	4.3	2
734	Characterization of sequence determinants of enhancer function using natural genetic variation. ELife, $0,11,.$	2.8	7

#	Article	IF	CITATIONS
735	Typical Enhancers, Super-Enhancers, and Cancers. Cancers, 2022, 14, 4375.	1.7	9
736	High-throughput identification of RNA localization elements in neuronal cells. Nucleic Acids Research, 2022, 50, 10626-10642.	6.5	18
737	Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 2022, 31, R84-R96.	1.4	4
738	Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annual Review of Genetics, 2022, 56, 441-465.	3.2	18
739	A massively parallel reporter assay reveals focused and broadly encoded RNA localization signals in neurons. Nucleic Acids Research, 2022, 50, 10643-10664.	6.5	4
740	Diff-ATAC-STARR-Seq: A Method for Genome-Wide Functional Screening of Enhancer Activity <i>in Vivo</i> . Biological and Pharmaceutical Bulletin, 2022, 45, 1590-1595.	0.6	0
741	Accurate prediction of functional states of cis-regulatory modules reveals common epigenetic rules in humans and mice. BMC Biology, 2022, 20, .	1.7	5
742	Epigenetics of neural differentiation: Spotlight on enhancers. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
744	Identification of non-coding silencer elements and their regulation of gene expression. Nature Reviews Molecular Cell Biology, 2023, 24, 383-395.	16.1	23
745	Learning the histone codes with large genomic windows and three-dimensional chromatin interactions using transformer. Nature Communications, 2022, 13, .	5.8	9
746	Systematic discovery and functional dissection of enhancers needed for cancer cell fitness and proliferation. Cell Reports, 2022, 41, 111630.	2.9	10
748	Mod(mdg4) variants repress telomeric retrotransposon $\langle i \rangle$ HeT-A $\langle i \rangle$ by blocking subtelomeric enhancers. Nucleic Acids Research, 0, , .	6.5	2
751	Glucocorticoids unmask silent non-coding genetic risk variants for common diseases. Nucleic Acids Research, 2022, 50, 11635-11653.	6.5	3
754	Extensive androgen receptor enhancer heterogeneity in primary prostate cancers underlies transcriptional diversity and metastatic potential. Nature Communications, 2022, 13, .	5.8	8
756	Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell, 2022, 185, 4587-4603.e23.	13.5	29
757	Optimized high-throughput screening of non-coding variants identified from genome-wide association studies. Nucleic Acids Research, 2023, 51, e18-e18.	6.5	3
762	Strategies for activity analysis of single nucleotide polymorphisms associated with human diseases. Clinical Genetics, 2023, 103, 392-400.	1.0	3
764	Systematic identification and characterization of repressive domains in <i>Drosophila</i> transcription factors. EMBO Journal, 2023, 42, .	3.5	5

#	Article	IF	Citations
765	Whole-genome functional characterization of RE1 silencers using a modified massively parallel reporter assay. Cell Genomics, 2023, 3, 100234.	3.0	0
766	<i>cis</i> -Regulatory Elements in Plant Development, Adaptation, and Evolution. Annual Review of Plant Biology, 2023, 74, 111-137.	8.6	28
767	Recent Advances in Genetic Epidemiology of Colorectal Cancer in Chinese Population. , 2022, , 187-214.		0
768	Practical application of massively parallel reporter assay in biotechnology and medicine. Journal of Clinical Practice, 2023, 13, 74-87.	0.2	O
770	Current advances in primate genomics: novel approaches for understanding evolution and disease. Nature Reviews Genetics, 2023, 24, 314-331.	7.7	12
771	A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nature Genetics, 2023, 55, 346-354.	9.4	18
772	Reporter gene assays and chromatin-level assays define substantially non-overlapping sets of enhancer sequences. BMC Genomics, 2023, 24, .	1.2	4
773	A spatial genome aligner for resolving chromatin architectures from multiplexed DNA FISH. Nature Biotechnology, 2023, 41, 1004-1017.	9.4	9
774	Epigenetic regulation of cis-regulatory elements and transcription factors during development., $2023, 71-113$.		1
777	Considerations for the Use of Viral Vectors in Nonhuman Primates. Neuromethods, 2023, , 293-329.	0.2	0
778	In Vivo Dissection of Chamber-Selective Enhancers Reveals Estrogen-Related Receptor as a Regulator of Ventricular Cardiomyocyte Identity. Circulation, 2023, 147, 881-896.	1.6	10
779	Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. International Review of Cell and Molecular Biology, 2023, , 97-148.	1.6	0
780	Translating non-coding genetic associations into a better understanding of immune-mediated disease. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	0
781	Deciphering the multi-scale, quantitative cis-regulatory code. Molecular Cell, 2023, 83, 373-392.	4.5	65
782	Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.	7.7	21
783	Leveraging massively parallel reporter assays for evolutionary questions. Genome Biology, 2023, 24, .	3.8	10
784	Mini-review: Gene regulatory network benefits from three-dimensional chromatin conformation and structural biology. Computational and Structural Biotechnology Journal, 2023, 21, 1728-1737.	1.9	2
786	Prevalent use and evolution of exonic regulatory sequences in the human genome. Natural Sciences, 2023, 3, .	1.0	0

#	Article	IF	Citations
787	Massively parallel characterization of CRISPR activator efficacy in human induced pluripotent stem cells and neurons. Molecular Cell, 2023, 83, 1125-1139.e8.	4.5	9
788	Short tandem repeats are important contributors to silencer elements in T cells. Nucleic Acids Research, 2023, 51, 4845-4866.	6.5	2
791	Enhancers display constrained sequence flexibility and context-specific modulation of motif function. Genome Research, 2023, 33, 346-358.	2.4	4
792	Toward a comprehensive catalog of regulatory elements. Human Genetics, 2023, 142, 1091-1111.	1.8	4
793	Functional characterization of human genomic variation linked to polygenic diseases. Trends in Genetics, 2023, 39, 462-490.	2.9	5
794	Next-generation plasmids for transgenesis in zebrafish and beyond. Development (Cambridge), 2023, 150, .	1.2	6
795	Massively Parallel Reporter Assays for High-Throughput In Vivo Analysis of Cis-Regulatory Elements. Journal of Cardiovascular Development and Disease, 2023, 10, 144.	0.8	2
796	C ₄ gene induction during de-etiolation evolved through changes in cis to allow integration with ancestral C ₃ gene regulatory networks. Science Advances, 2023, 9, .	4.7	4
797	Defining the fine structure of promoter activity on a genome-wide scale with CISSECTOR. Nucleic Acids Research, $0, , .$	6.5	0
798	A comprehensive revisit of the machineâ€learning tools developed for the identification of enhancers in the human genome. Proteomics, 2023, 23, .	1.3	3
799	Esearch3D: propagating gene expression in chromatin networks to illuminate active enhancers. Nucleic Acids Research, 0 , , .	6.5	1
800	Challenges and advances towards the rational design of microalgal synthetic promoters in <i>Chlamydomonas reinhardtii</i> . Journal of Experimental Botany, 2023, 74, 3833-3850.	2.4	4
801	Broad compatibility between yeast UAS elements and core promoters and identification of promoter elements that determine cofactor specificity. Cell Reports, 2023, 42, 112387.	2.9	5
802	Dynamic changes in P300 enhancers and enhancer-promoter contacts control mouse cardiomyocyte maturation. Developmental Cell, 2023, 58, 898-914.e7.	3.1	3
803	A Suite of Constitutive Promoters for Tuning Gene Expression in Plants. ACS Synthetic Biology, 2023, 12, 1533-1545.	1.9	5
872	Hold out the genome: a roadmap to solving the cis-regulatory code. Nature, 2024, 625, 41-50.	13.7	1
896	3D organization of enhancers in MuSCs. Current Topics in Developmental Biology, 2024, , .	1.0	0