Fgf9 from dermal $\hat{I}^{3}\hat{I}'$ T cells induces hair follicle neogen

Nature Medicine 19, 916-923 DOI: 10.1038/nm.3181

Citation Report

#	Article	IF	CITATIONS
2	Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.	13.7	946
4	Isolation and Characterization of Cutaneous Epithelial Stem Cells. Methods in Molecular Biology, 2013, 989, 61-69.	0.4	4
5	Environmental reprogramming and molecular profiling in reconstitution of human hair follicles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19658-19659.	3.3	4
6	Research Highlights: Î ^{3ĵ~} T cells regulate hair follicle neogenesis during adult wound healing. Regenerative Medicine, 2013, 8, 543-547.	0.8	0
7	Cutaneous Epithelial Stem Cells. , 2014, , 1581-1594.		0
8	Pharmacological Mobilization of Endogenous Stem Cells Significantly Promotes Skin Regeneration after Full-Thickness Excision: The Synergistic Activity of AMD3100 and Tacrolimus. Journal of Investigative Dermatology, 2014, 134, 2458-2468.	0.3	53
9	CD4+CD25+FoxP3+ Regulatory Tregs inhibit fibrocyte recruitment and fibrosis via suppression of FGF-9 production in the TGF-AZ²1 exposed murine lung. Frontiers in Pharmacology, 2014, 5, 80.	1.6	40
10	Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLoS Biology, 2014, 12, e1002002.	2.6	145
11	Regenerative medicine and hair loss: how hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia. Regenerative Medicine, 2014, 9, 101-111.	0.8	27
12	Mechanisms regulating skin immunity and inflammation. Nature Reviews Immunology, 2014, 14, 289-301.	10.6	652
13	Stem cell dynamics in the hair follicle niche. Seminars in Cell and Developmental Biology, 2014, 25-26, 34-42.	2.3	135
14	Epithelial Stem Cells in Adult Skin. Current Topics in Developmental Biology, 2014, 107, 109-131.	1.0	36
15	The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science, 2014, 346, 945-949.	6.0	328
16	Advances in skin grafting and treatment of cutaneous wounds. Science, 2014, 346, 941-945.	6.0	609
17	New Insights into Vertebrate Skin Regeneration. International Review of Cell and Molecular Biology, 2014, 310, 129-169.	1.6	63
18	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32, 795-803.	9.4	492
19	Emerging interactions between skin stem cells and their niches. Nature Medicine, 2014, 20, 847-856.	15.2	474
20	Progress towards cell-based burn wound treatments. Regenerative Medicine, 2014, 9, 201-218.	0.8	36

#	Article	IF	Citations
21	Understanding Melanocyte Stem Cells for Disease Modeling and Regenerative Medicine Applications. International Journal of Molecular Sciences, 2015, 16, 30458-30469.	1.8	28
22	Lack of Collagen VI Promotes Wound-Induced Hair Growth. Journal of Investigative Dermatology, 2015, 135, 2358-2367.	0.3	33
23	The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing. Journal of Experimental Medicine, 2015, 212, 1061-1080.	4.2	51
24	Skin and Skin Appendage Regeneration. , 2015, , 269-292.		8
25	Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023267-a023267.	2.9	422
26	Therapeutic efficacy of autologous plateletâ€rich plasma and polydeoxyribonucleotide on female pattern hair loss. Wound Repair and Regeneration, 2015, 23, 30-36.	1.5	59
27	Epigenetic control of skin and hair regeneration after wounding. Experimental Dermatology, 2015, 24, 167-170.	1.4	47
28	dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. Cell Stem Cell, 2015, 17, 139-151.	5.2	147
29	Principles and mechanisms of regeneration in the mouse model for woundâ€induced hair follicle neogenesis. Regeneration (Oxford, England), 2015, 2, 169-181.	6.3	57
30	Switching roles: the functional plasticity of adult tissue stem cells. EMBO Journal, 2015, 34, 1164-1179.	3.5	77
31	Stem Cell Heterogeneity and Plasticity in Epithelia. Cell Stem Cell, 2015, 16, 465-476.	5.2	144
32	Expression of bioactive recombinant human fibroblast growth factor 9 in oil bodies of Arabidopsis thaliana. Protein Expression and Purification, 2015, 116, 127-132.	0.6	18
33	Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Science Advances, 2015, 1, e1500973.	4.7	183
34	Inhibition of Wnt/βâ€catenin pathway promotes regenerative repair of cutaneous and cartilage injury. FASEB Journal, 2015, 29, 4881-4892.	0.2	44
35	Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis, 2015, 11, 95-104.	0.4	68
36	Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends in Cell Biology, 2015, 25, 221-233.	3.6	129
37	CD133 Expression Correlates with Membrane Beta-Catenin and E-Cadherin Loss from Human Hair Follicle Placodes during Morphogenesis. Journal of Investigative Dermatology, 2015, 135, 45-55.	0.3	29
38	Reflections on how wound healingâ€promoting effects of the hair follicle can be translated into clinical practice. Experimental Dermatology, 2015, 24, 91-94.	1.4	46

IF ARTICLE CITATIONS Biomaterials for dermal substitutes., 2016, , 227-252. 1 39 Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12. 41 Skin Wound Healing., 2016, , 345-368. 4 Whole-genome sequencing of eight goat populations for the detection of selection signatures 132 underlying production and adaptive traits. Scientific Reports, 2016, 6, 38932. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. American Journal of Physiology -43 1.3 75 Lung Cellular and Molecular Physiology, 2016, 310, L615-L629. Cellular Senescence and Vascular Disease: Novel Routes to Better Understanding and Therapy. Canadian Journal of Cardiology, 2016, 32, 612-623. 0.8 Conversion of Human Gastric Epithelial Cells to Multipotent Endodermal Progenitors using Defined 45 5.2 71 Small Molecules. Cell Stem Cell, 2016, 19, 449-461. Pigmentation of regenerated hairs after wounding. Journal of Dermatological Science, 2016, 84, 80-87. 1.0 19 46 IL-17-producing $\hat{I}^{3}\hat{I}$ T cells enhance bone regeneration. Nature Communications, 2016, 7, 10928. 47 5.8 271 Epidermal Notch1 recruits RORÎ³+ group 3 innate lymphoid cells to orchestrate normal skin repair. 5.8 Nature Communications, 2016, 7, 11394. Scarless wound healing: finding the right cells and signals. Cell and Tissue Research, 2016, 365, 49 1.5 155 483-493. Inhibition of Î²-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during 1.2 114 wound healing. Development (Cambridge), 2016, 143, 2522-35. Interleukin-6 Null Mice Paradoxically Display Increased STAT3 Activity and Wound-Induced Hair 51 0.3 20 Neogenesis. Journal of Investigative Dermatology, 2016, 136, 1051-1053. Hardwiring Stem Cell Communication through Tissue Structure. Cell, 2016, 164, 1212-1225. 13.5 Management of androgenetic alopecia: a comparative clinical study between plasma rich in growth 53 0.3 13 factors and topical minoxidil. European Journal of Plastic Surgery, 2016, 39, 173-180. Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752. 54 434 Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. 55 6.3 150 Regeneration (Oxford, England), 2017, 4, 39-53. The Effect of Plasma Rich in Growth Factors on Pattern Hair Loss: A Pilot Study. Dermatologic Surgery, 2017, 43, 658-670.

#	Article	IF	CITATIONS
57	Targeting of CXXC5 by a Competing PeptideÂStimulates Hair Regrowth and Wound-Induced Hair Neogenesis. Journal of Investigative Dermatology, 2017, 137, 2260-2269.	0.3	42
58	Fibroblast Growth Factors in Epithelial Homeostasis and Repair. , 2017, , 187-209.		0
59	Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nature Communications, 2017, 8, 14091.	5.8	166
60	Cell plasticity in epithelial homeostasis and tumorigenesis. Nature Cell Biology, 2017, 19, 1133-1141.	4.6	170
61	Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation. Stem Cells, 2017, 35, 2323-2330.	1.4	52
62	Regulatory T cells in skin. Immunology, 2017, 152, 372-381.	2.0	115
63	Choroidal Î ³ δT cells in protection against retinal pigment epithelium and retinal injury. FASEB Journal, 2017, 31, 4903-4916.	0.2	19
64	Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization. Structure, 2017, 25, 1325-1336.e3.	1.6	25
66	Fibroblast growth factors: key players in regeneration and tissue repair. Development (Cambridge), 2017, 144, 4047-4060.	1.2	174
67	The Epithelial Stem Cell Niche in Skin. , 2017, , 127-143.		9
68	Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis. Biomolecules, 2017, 7, 74.	1.8	24
69	Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of $\hat{I}^3\hat{I}T$ -cells. ELife, 2017, 6, .	2.8	60
70	Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biology, 2017, 15, e2002117.	2.6	109
71	Minimizing Skin Scarring through Biomaterial Design. Journal of Functional Biomaterials, 2017, 8, 3.	1.8	16
72	Regulatory TÂcells are required for normal and activinâ€promoted wound repair in mice. European Journal of Immunology, 2018, 48, 1001-1013.	1.6	30
73	β-Catenin–Dependent Wnt Signaling: A Pathway in Acute Cutaneous Wounding [RETRACTED]. Plastic and Reconstructive Surgery, 2018, 141, 669-678.	0.7	17
74	Msx2 Supports Epidermal CompetencyÂduring Wound-Induced HairÂFollicle Neogenesis. Journal of Investigative Dermatology, 2018, 138, 2041-2050.	0.3	23
75	Wound Regeneration Deficit in Rats Correlates with Low Morphogenetic Potential and Distinct Transcriptome ProfileÂof Epidermis. Journal of Investigative Dermatology, 2018, 138, 1409-1419.	0.3	24

ARTICLE IF CITATIONS # Skin wound healing in humans and mice: Challenges in translational research. Journal of 1.0 292 76 Dermatological Science, 2018, 90, 3-12. Never too old to regenerate? Wound induced hair follicle neogenesis after secondary intention 9 healing in a geriatric patient. Journal of Tissue Viability, 2018, 27, 114-116. Scarless wound healing: Transitioning from fetal research to regenerative healing. Wiley 78 5.9 91 Interdisciplinary Reviews: Developmental Biology, 2018, 7, e309. Stimulation of mouse vibrissal follicle growth by recombinant human fibroblast growth factor 20. 1.1 Biotechnology Letters, 2018, 40, 1009-1014. Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair 80 5.7 71 regrowth. Biomaterials, 2018, 167, 69-79. Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions. Advances in Wound Care, 2018, 7, 29-45. 2.6 188 The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS 82 2.6 28 Biomaterials Science and Engineering, 2018, 4, 1193-1207. Stem cells, niches and scaffolds: Applications to burns and wound care. Advanced Drug Delivery 6.6 Reviews, 2018, 123, 82-106. Dermal fibroblast in cutaneous development and healing. Wiley Interdisciplinary Reviews: 84 5.9 128 Developmental Biology, 2018, 7, e307. Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound 5.8 healing. Nature Communications, 2018, 9, 4903. Repairing the lungs one breath at a time: How dedicated or facultative are you?. Genes and 2.7 47 86 Development, 2018, 32, 1461-1471. Embryonic-like regenerative phenomenon: wound-induced hair follicle neogenesis. Regenerative 87 0.8 Medićine, 2018, 13, 729-739. Oil body bound oleosin-rhFGF9 fusion protein expressed in safflower (Carthamus tinctorius L.) 88 1.7 14 stimulates hair growth and wound healing in mice. BMC Biotechnology, 2018, 18, 51. Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells International, 2018, 2018, 1-16. 89 1.2 54 M2 macrophages promote wound-induced hair neogenesis. Journal of Dermatological Science, 2018, 91, 90 1.0 38 250-255. ADM Scaffolds Generate a Pro-regenerative Microenvironment During Full-Thickness Cutaneous Wound Healing Through M2 Macrophage Polarization via Lamtor1. Frontiers in Physiology, 2018, 9, 657. 92 Fibroblasts and wound healing: an update. Regenerative Medicine, 2018, 13, 491-495. 0.8 160 Prevascularization of dermal substitutes with adipose tissue-derived microvascular fragments enhances early skin grafting. Scientific Reports, 2018, 8, 10977.

ARTICLE IF CITATIONS # Isolation and Characterization of Cutaneous Epithelial Stem Cells. Methods in Molecular Biology, 0.4 1 94 2018, 1879, 87-99. Interactions Between Epidermal Keratinocytes, Dendritic Epidermal T-Cells, and Hair Follicle Stem 0.4 Cells. Methods in Molecular Biology, 2018, 1879, 285-297. \hat{I}^2 -catenin activation in hair follicle dermal stem cells induces ectopic hair outgrowth and skin 96 17 1.5 fibrosis. Journal of Molecular Cell Biology, 2019, 11, 26-38. Scarless Wound Healing., 2019, , 65-92. <p>The regenerative potential of skin and the immune system</p>. Clinical, Cosmetic and 98 0.8 29 Investigational Dermatology, 2019, Volume 12, 519-532. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nature Communications, 2019, 10, 2811. 5.8 64 Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and 100 1.5 24 more effective treatment options. Expert Opinion on Therapeutic Targets, 2019, 23, 755-771. Dermal niche signaling and epidermal stem cells. Advances in Stem Cells and Their Niches, 2019, , 0.1 157-192. Immune cells and the epidermal stem cell niche. Advances in Stem Cells and Their Niches, 2019, 3, 102 0.1 0 193-218. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Frontiers in Cell and Developmental 1.8 Biology, 2019, 7, 68. The Role of Extracellular Vesicles in Cutaneous Remodeling and Hair Follicle Dynamics. International 104 1.8 48 Journal of Molecular Sciences, 2019, 20, 2758. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair 1.8 176 Follicle Development. Cells, 2019, 8, 466. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells, 2019, 8, 411. 106 1.8 63 Macroscale biomaterials strategies for local immunomodulation. Nature Reviews Materials, 2019, 4, 23.3 172 379-397. Choreographing Immunity in the Skin Epithelial Barrier. Immunity, 2019, 50, 552-565. 108 72 6.6 Eavesdropping on the conversation between immune cells and the skin epithelium. International Immunology, 2019, 31, 415-422. 109 1.8 The discovery and development of topical medicines for wound healing. Expert Opinion on Drug 110 2.565 Discovery, 2019, 14, 485-497. Hair growth control by innate immunocytes: Perifollicular macrophages revisited. Experimental 1.4 Dermatology, 2019, 28, 425-431.

		CITATION REPORT		
#	Article		IF	CITATIONS
112	Regenerative Scar-Free Skin Wound Healing. Tissue Engineering - Part B: Reviews, 201	∂, 25, 294-311.	2.5	132
113	Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte prog murine skin wounds. Nature Communications, 2019, 10, 650.	genitors in	5.8	345
114	Comparative regenerative biology of spiny (<i>Acomys cahirinus)</i> and laboratory (<	(i>Mus) Tj ETQq0 0 0 rgBT	Overlock	19,Tf 50 662

115	A multiscale hybrid mathematical model of epidermalâ€dermal interactions during skin wound healing. Experimental Dermatology, 2019, 28, 493-502.	1.4	16
116	Zooming in across the Skin: A Macro-to-Molecular Panorama. Advances in Experimental Medicine and Biology, 2019, 1247, 157-200.	0.8	8
117	Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems. Stem Cell Research and Therapy, 2019, 10, 403.	2.4	17
118	Distinct Patterns of Hair Graft Survival After Transplantation Into 2 Nonhealing Ulcers: Is Location Everything?. Dermatologic Surgery, 2019, 45, 557-565.	0.4	11
119	Are hair follicle stem cells promising candidates for wound healing?. Expert Opinion on Biological Therapy, 2019, 19, 119-128.	1.4	22
120	Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 2019, 21, 18-24.	4.6	250
121	Associations Between Immune Phenotype and Inflammation in Murine Models of Irritant Contact Dermatitis. Toxicological Sciences, 2019, 168, 179-189.	1.4	8
122	Insights into the regeneration of skin from <i>Acomys</i> , the spiny mouse. Experimental Dermatology, 2019, 28, 436-441.	1.4	23
123	The tension biology of wound healing. Experimental Dermatology, 2019, 28, 464-471.	1.4	116
124	Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Medicinal Research Reviews, 2020, 40, 9-26.	5.0	21
125	Through the lens of hair follicle neogenesis, a new focus on mechanisms of skin regeneration after wounding. Seminars in Cell and Developmental Biology, 2020, 100, 122-129.	2.3	36
126	Treatment of Full-Thickness Skin Wounds with Blood-Derived CD34 ⁺ Precursor Cells Enhances Healing with Hair Follicle Regeneration. Advances in Wound Care, 2020, 9, 264-276.	2.6	3
128	Immune cell regulation of the hair cycle. Experimental Dermatology, 2020, 29, 322-333.	1.4	29
129	Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 109-121.	2.3	18
130	Fibroblast growth factor receptor 3 activates a network of profibrotic signaling pathways to promote fibrosis in systemic sclerosis. Science Translational Medicine, 2020, 12, .	5.8	26

#	Article	IF	Citations
131	Altered FGF expression profile in human scalp-derived fibroblasts upon WNT activation: implication of their role to provide folliculogenetic microenvironment. Inflammation and Regeneration, 2020, 40, 35.	1.5	11
132	Pro-inflammatory Vδ1+T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. Journal of Dermatological Science, 2020, 100, 129-138.	1.0	23
133	Under pressure: Stem cell–niche interactions coordinate tissue adaptation to inflammation. Current Opinion in Cell Biology, 2020, 67, 64-70.	2.6	8
134	Epidermal Stem Cells in Hair Follicle Cycling and Skin Regeneration: A View From the Perspective of Inflammation. Frontiers in Cell and Developmental Biology, 2020, 8, 581697.	1.8	27
135	Two functionally distinct subsets of ILâ€17 producing γδT cells. Immunological Reviews, 2020, 298, 10-24.	2.8	23
136	Wound Induced Hair Neogenesis – A Novel Paradigm for Studying Regeneration and Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 582346.	1.8	10
137	Activation of TRPA1 nociceptor promotes systemic adult mammalian skin regeneration. Science Immunology, 2020, 5, .	5.6	28
138	Perforins Expression by Cutaneous Gamma Delta T Cells. Frontiers in Immunology, 2020, 11, 1839.	2.2	13
139	IL-36α Promoted Wound Induced Hair Follicle Neogenesis via Hair Follicle Stem/Progenitor Cell Proliferation. Frontiers in Cell and Developmental Biology, 2020, 8, 627.	1.8	12
140	Goat Genomic Resources: The Search for Genes Associated with Its Economic Traits. International Journal of Genomics, 2020, 2020, 1-13.	0.8	20
141	An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities. Frontiers in Cell and Developmental Biology, 2020, 8, 595178.	1.8	27
142	Immune modulation of hair follicle regeneration. Npj Regenerative Medicine, 2020, 5, 9.	2.5	57
143	PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Research and Therapy, 2020, 11, 144.	2.4	51
144	Zinc sulfide nanoparticles improve skin regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102263.	1.7	24
145	Model systems for regeneration: the spiny mouse, <i>Acomys cahirinus</i> . Development (Cambridge), 2020, 147, .	1.2	36
146	Scars or Regeneration?—Dermal Fibroblasts as Drivers of Diverse Skin Wound Responses. International Journal of Molecular Sciences, 2020, 21, 617.	1.8	76
147	Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy, 2020, 22, 247-260.	0.3	49
148	Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. Science Advances, 2020, 6, eaay3704.	4.7	58

#	Article	IF	CITATIONS
149	The Potential of a Hair Follicle Mesenchymal Stem Cell-Conditioned Medium for Wound Healing and Hair Follicle Regeneration. Applied Sciences (Switzerland), 2020, 10, 2646.	1.3	9
150	Overexpression of Fgf8 in the epidermis inhibits hair follicle development. Experimental Dermatology, 2021, 30, 494-502.	1.4	6
151	$\hat{I}^{3}\hat{I}^{-}$ T cells in tissue physiology and surveillance. Nature Reviews Immunology, 2021, 21, 221-232.	10.6	230
152	Singleâ€cell transcriptomic analysis of small and large wounds reveals the distinct spatial organization of regenerative fibroblasts. Experimental Dermatology, 2021, 30, 92-101.	1.4	42
153	Diverse cellular players orchestrate regeneration after wounding. Experimental Dermatology, 2021, 30, 605-612.	1.4	8
154	Regenerative Medicine and Hair Loss: Microneedling—Is the Pain Really Worth It?. International Society of Hair Restoration Surgery, 2021, 31, 18-20.	0.1	0
155	Approaches for Regenerative Healing of Cutaneous Wound with an Emphasis on Strategies Activating the Wnt/β-Catenin Pathway. Advances in Wound Care, 2022, 11, 70-86.	2.6	22
156	Maintenance of Barrier Tissue Integrity by Unconventional Lymphocytes. Frontiers in Immunology, 2021, 12, 670471.	2.2	10
158	Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nature Communications, 2021, 12, 2595.	5.8	40
159	Bacteria induce skin regeneration via IL- $1^{\hat{1}^2}$ signaling. Cell Host and Microbe, 2021, 29, 777-791.e6.	5.1	78
160	Expression and function of FGF9 in the hypertrophied ligamentum flavum of lumbar spinal stenosis patients. Spine Journal, 2021, 21, 1010-1020.	0.6	8
161	Wound healing with topical BRAF inhibitor therapy in a diabetic model suggests tissue regenerative effects. PLoS ONE, 2021, 16, e0252597.	1.1	4
163	The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biological Reviews, 2021, 96, 2573-2583.	4.7	4
164	Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Reports, 2021, 22, e50882.	2.0	10
165	Dissecting the complexity of Î ³ δT-cell subsets in skin homeostasis, inflammation, and malignancy. Journal of Allergy and Clinical Immunology, 2021, 147, 2030-2042.	1.5	38
166	The Role of T Lymphocytes in Cutaneous Scarring. Advances in Wound Care, 2022, 11, 121-131.	2.6	15
167	Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Advances in Wound Care, 2022, 11, 479-495.	2.6	21
168	Transcriptome analysis of the bursa of Fabricius and thymus of laying ducks reveals immune gene expression changes underlying the impacts of stocking densities. British Poultry Science, 2021, 62, 820-826.	0.8	3

		CITATION REPORT		
#	Article		IF	CITATIONS
169	Isolation and Quantification of Mouse $\hat{I}^3\hat{I}T$ cells in vitro and in vivo. Bio-protocol, 2021	, 11, e4148.	0.2	0
170	Effect of lentivirus-mediated miR-182 targeting FGF9 on hallux valgus. International Jou Medical Sciences, 2021, 18, 902-910.	urnal of	1.1	3
171	Gamma-Delta T Cells in the Skin. , 2017, , 51-66.			1
172	Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Remodeling in the Infarcted Diabetic Heart. PLoS ONE, 2015, 10, e0120739.	Adverse Cardiac	1.1	44
173	Lef1 expression in fibroblasts maintains developmental potential in adult skin to regen ELife, 2020, 9, .	erate wounds.	2.8	94
174	Invited Commentary on "Skin Changes in Intergender Hand Transplantâ€. Annals o 2021, Publish Ahead of Print, .	f Plastic Surgery,	0.5	0
175	Building and Maintaining the Skin. Cold Spring Harbor Perspectives in Biology, 2022, 1	4, a040840.	2.3	30
176	A Beginner's Introduction to Skin Stem Cells and Wound Healing. International Jou Sciences, 2021, 22, 11030.	ırnal of Molecular	1.8	15
177	Neutrophil extracellular traps impair regeneration. Journal of Cellular and Molecular Me 25, 10008-10019.	dicine, 2021,	1.6	8
178	γδT Cells. , 2016, , 95-111.			0
179	Cutaneous Fibrosis and Normal Wound Healing. , 2017, , 577-600.			0
184	Unraveling Immune-Epithelial Interactions in Skin Homeostasis and Injury. Yale Journal Medicine, 2020, 93, 133-143.	of Biology and	0.2	6
186	May the best wound WIHN: the hallmarks of wound-induced hair neogenesis. Current Genetics and Development, 2022, 72, 53-60.	Opinion in	1.5	9
187	Twist2-Driven Chromatin Remodeling Governs the Postnatal Maturation of Dermal Fibre Electronic Journal, 0, , .	roblasts. SSRN	0.4	0
188	Tissue regeneration: Fetal to adult transition. , 2022, , 77-100.			2
189	Interleukin-25-Mediated-IL-17RB Upregulation Promotes Cutaneous Wound Healing in Improving Endothelial Cell Functions. Frontiers in Immunology, 2022, 13, 809755.	Diabetic Mice by	2.2	11
190	GDNF neurotrophic factor signalling determines the fate of dermal fibroblasts in woun neogenesis and skin regeneration. Experimental Dermatology, 2022, 31, 577-581.	dâ€induced hair	1.4	3
191	Pharmacological regulation of tissue fibrosis by targeting the mechanical contraction of myofibroblasts. Fundamental Research, 2022, 2, 37-47.	of	1.6	2

#	Article	IF	CITATIONS
192	Quercetin promotes cutaneous wound healing in mice through Wnt/β-catenin signaling pathway. Journal of Ethnopharmacology, 2022, 290, 115066.	2.0	43
193	Role of peptide growth factors in the rhythm of change hair. Vestnik Dermatologii I Venerologii, 2015, 91, 54-61.	0.2	0
194	New developments in the biology of fibroblast growth factors. WIREs Mechanisms of Disease, 2022, 14, e1549.	1.5	52
195	Immune Cells in Cutaneous Wound Healing: A Review of Functional Data from Animal Models. International Journal of Molecular Sciences, 2022, 23, 2444.	1.8	10
196	Thymic stromal lymphopoietin controls hair growth. Stem Cell Reports, 2022, 17, 649-663.	2.3	4
198	Role of distinct fibroblast lineages and immune cells in dermal repair following UV radiation-induced tissue damage. ELife, 2021, 10, .	2.8	9
199	Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science Translational Medicine, 2022, 14, eabm6586.	5.8	37
200	Epithelial-Mesenchymal Interaction in Hair Regeneration and Skin Wound Healing. Frontiers in Medicine, 2022, 9, 863786.	1.2	6
201	Reprograming the immune niche for skin tissue regeneration – From cellular mechanisms to biomaterials applications. Advanced Drug Delivery Reviews, 2022, 185, 114298.	6.6	19
202	Reawakening GDNF's regenerative past in mice and humans. Regenerative Therapy, 2022, 20, 78-85.	1.4	2
206	ТіÐμ Modern treatment of androgenetic alopecia. Vestnik Dermatologii I Venerologii, 2017, 93, 21-30.	0.2	0
207	Twist2-driven chromatin remodeling governs the postnatal maturation of dermal fibroblasts. Cell Reports, 2022, 39, 110821.	2.9	12
211	Toward Understanding Wound Immunology for High-Fidelity Skin Regeneration. Cold Spring Harbor Perspectives in Biology, 0, , a041241.	2.3	1
212	Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041238.	2.3	7
214	Role of Wnt Signaling in Mouse Fetal Skin Wound Healing. Biomedicines, 2022, 10, 1536.	1.4	3
215	THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nature Cell Biology, 2022, 24, 1049-1063.	4.6	12
216	Cell Population Dynamics in Wound-Induced Hair Follicle Neogenesis Model. Life, 2022, 12, 1058.	1.1	0
217	Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	10

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
218	Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell, 2022, 29, 1161-2	1180.	5.2	116
219	The Emergent Power of Human Cellular vs Mouse Models in Translational Hair Research Translational Medicine, 2022, 11, 1021-1028.	n. Stem Cells	1.6	2
220	Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). International Journal Sciences, 2022, 23, 9467.	of Molecular	1.8	2
221	Wound-Induced Hair Neogenesis Model. Journal of Investigative Dermatology, 2022, 1	42, 2565-2569.	0.3	8
222	Engineering Immunomodulatory Biomaterials to Drive Skin Wounds toward Regenerat Cold Spring Harbor Perspectives in Biology, 2023, 15, a041242.	ive Healing.	2.3	3
223	Wound-Induced Hair Neogenesis: A Portal to the Development of New Therapies for Ha Wound Regeneration. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041239.	air Loss and	2.3	4
224	Topological Distribution of Wound Stiffness Modulates Wound-Induced Hair Follicle N Pharmaceutics, 2022, 14, 1926.	eogenesis.	2.0	4
225	Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast gr 18. Annals of Translational Medicine, 2022, 10, 1104-1104.	owth factor	0.7	1
226	Does noncontact phased-array ultrasound promote hair regrowth?. Journal of Dermatc Science, 2022, , .	logical	1.0	0
227	The role of unconventional T cells in maintaining tissue homeostasis. Seminars in Immi 61-64, 101656.	unology, 2022,	2.7	2
228	Selection signatures for fiber production in commercial species: A review. Animal Gene 3-23.	tics, 2023, 54,	0.6	9
229	Roles of candidate genes in the adaptation of goats to heat stress: A review. Small Rur 2023, 218, 106878.	ninant Research,	0.6	9
230	Wnt/β-catenin signaling activator restores hair regeneration suppressed by diabetes m Reports, 2022, 55, 559-564.	nellitus. BMB	1.1	3
231	Bioinspired Strategies for Wound Regeneration. Cold Spring Harbor Perspectives in Bio a041240.	ology, 2023, 15,	2.3	1
232	Pyruvate Kinase M2 Promotes Hair Regeneration by Connecting Metabolic and Wnt/Î ^{2.} Pharmaceutics, 2022, 14, 2774.	Catenin Signaling.	2.0	2
233	Landmark native breed of the Orenburg goats: progress in its breeding and genetics ar prospects. Animal Biotechnology, 2023, 34, 5139-5154.	nd future	0.7	0
234	Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte H and glutamine metabolism. Science Advances, 2023, 9, .	llF-1α signaling	4.7	13
235	Developmentally programmed early-age skin localization of iNKT cells supports local tis development and homeostasis. Nature Immunology, 2023, 24, 225-238.	ssue	7.0	5

	Сіта	CITATION REPORT	
#	Article	IF	CITATIONS
236	Microneedle system for tissue engineering and regenerative medicine. Exploration, 2023, 3, .	5.4	37
237	Distinctive role of inflammation in tissue repair and regeneration. Archives of Pharmacal Research, 2023, 46, 78-89.	2.7	4
238	Mechanical stimuli-induced CCL2 restores adult mouse cells to regenerate hair follicles. Molecular Therapy - Nucleic Acids, 2023, 32, 94-110.	2.3	0
239	CXXC5 Mediates DHT-Induced Androgenetic Alopecia via PGD2. Cells, 2023, 12, 555.	1.8	5
240	The idiosyncratic genome of Korean long-tailed chicken as a valuable genetic resource. IScience, 2023, 26, 106236.	1.9	0
241	Duo-role Platelet-rich Plasma: temperature-induced fibrin gel and growth factors' reservoir for microneedles to promote hair regrowth. Journal of Advanced Research, 2024, 55, 89-102.	4.4	3
255	Immune cell interactions with the stem cell niche. Advances in Stem Cells and Their Niches, 2023, , 59-90.	0.1	0
262	Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Experimental and Molecular Medicine, 2024, 56, 110-117.	3.2	2
263	Bioreactor and engineering. , 2024, , 687-785.		0
265	Genetic markers for improving herd management, selection criteria for improvement of goats. , 2024, , 145-150.		Ο
272	Approaches to Study Wound-Induced Hair Neogenesis (WIHN). Methods in Molecular Biology, 2024, , .	0.4	0