Experimental investigation of temperature distribution

Applied Energy 105, 155-160

DOI: 10.1016/j.apenergy.2012.12.062

Citation Report

#	Article	IF	CITATIONS
1	Performance of a biohydrogen solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38, 13781-13791.	7.1	9
2	Thermal management oriented steady state analysis and optimization of a kW scale solid oxide fuel cell stand-alone system for maximum system efficiency. International Journal of Hydrogen Energy, 2013, 38, 12404-12417.	7.1	48
3	Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold. Applied Energy, 2013, 112, 1100-1107.	10.1	59
4	Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas. International Journal of Hydrogen Energy, 2013, 38, 10068-10080.	7.1	42
5	Electrochemical Performance of Planar Solid Oxide Fuel Cell (SOFC) Stacks: From Repeat Unit to Module. Energy Technology, 2014, 2, 692-697.	3.8	13
6	Artificial neural network model of a short stack solid oxide fuel cell based on experimental data. Journal of Power Sources, 2014, 246, 581-586.	7.8	64
7	Fuel cell–gas turbine hybrid system design part II: Dynamics and control. Journal of Power Sources, 2014, 254, 126-136.	7.8	55
8	A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Applied Energy, 2014, 135, 539-547.	10.1	97
9	Correlating variability of modeling parameters with non-isothermal stack performance: Monte Carlo simulation of a portable 3D planar solid oxide fuel cell stack. Applied Energy, 2014, 136, 560-575.	10.1	17
10	Modeling of chemical–mechanical couplings in anode-supported solid oxide fuel cells and reliability analysis. RSC Advances, 2014, 4, 15782-15796.	3.6	6
11	Cell integrated thin-film multi-junction thermocouple array for in-situ temperature monitoring of solid oxide fuel cells. , $2015, \ldots$		3
12	Partialâ€Load Analysis of a Temperatureâ€Controlled Solidâ€Oxide Fuel Cell–Gas Turbine (SOFC–GT) Hybrid Power Plant. Energy Technology, 2015, 3, 601-617.	3.8	3
13	Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation. Energies, 2015, 8, 1896-1916.	3.1	12
14	In-situ Young's moduli of the constitutive layers in a solid oxide fuel cell. Journal of Power Sources, 2015, 273, 522-529.	7.8	8
15	An experimental investigation of solid oxide fuel cell performance at variable operating conditions. Thermal Science, 2016, 20, 1421-1433.	1.1	8
16	Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode. Sensors, 2016, 16, 1329.	3.8	17
17	Processes Involving in the Temperature Variations in Solid Oxide Fuel Cells In-Situ Analyzed through Electrode-Segmentation Method. Journal of the Electrochemical Society, 2016, 163, F216-F224.	2.9	12
18	Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture. Journal of Power Sources, 2016, 315, 70-78.	7.8	21

#	ARTICLE	IF	CITATIONS
19	Transfer function development for SOFC/GT hybrid systems control using cold air bypass. Applied Energy, 2016, 165, 695-706.	10.1	44
20	A study of short stack with large area solid oxide fuel cells by aqueous tape casting. International Journal of Hydrogen Energy, 2016, 41, 18203-18206.	7.1	7
21	Investigation of thermal control for different SOFC flow geometries. Applied Energy, 2016, 178, 43-55.	10.1	68
22	Thermal Management-Oriented Multivariable Robust Control of a kW-Scale Solid Oxide Fuel Cell Stand-Alone System. IEEE Transactions on Energy Conversion, 2016, 31, 596-605.	5.2	56
23	CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack. Applied Thermal Engineering, 2017, 124, 286-293.	6.0	33
24	Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series. Jom, 2017, 69, 247-253.	1.9	4
25	Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations. Scientific Reports, 2017, 7, 9360.	3.3	84
26	Robust model design for evaluation of power characteristics of the cleaner energy system. Renewable Energy, 2017, 112, 302-313.	8.9	53
27	Highly thermal integrated heat pipe-solid oxide fuel cell. Applied Energy, 2018, 216, 613-619.	10.1	40
28	Improvement on durability and thermal cycle performance for solid oxide fuel cell stack with external manifold structure. Energy, 2018, 149, 903-913.	8.8	22
29	Numerical simulation and analysis of thermal stress distributions for a planar solid oxide fuel cell stack with external manifold structure. International Journal of Hydrogen Energy, 2018, 43, 20900-20910.	7.1	24
30	In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples. Applied Energy, 2018, 230, 551-562.	10.1	26
31	Designing graded catalytic domain to homogenize temperature distribution while dry reforming of CH4. International Journal of Hydrogen Energy, 2018, 43, 17431-17443.	7.1	13
32	Investigation of selfâ€adaptive thermal control design in passive direct methanol fuel cell. Energy Storage, 2019, 1, e64.	4.3	7
33	3D multiphysics modeling aided APU development for vehicle applications: A thermo-structural investigation. International Journal of Hydrogen Energy, 2019, 44, 12094-12107.	7.1	6
34	Reacting flow coupling with thermal impacts in a single solid oxide fuel cell. International Journal of Hydrogen Energy, 2019, 44, 8425-8438.	7.1	23
35	Benefits from heat pipe integration in H2/H2O fed SOFC systems. Applied Energy, 2019, 241, 472-482.	10.1	21
36	Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance. Applied Energy, 2019, 235, 625-640.	10.1	15

3

#	ARTICLE	IF	CITATIONS
37	Two-dimensional temperature distribution estimation for a cross-flow planar solid oxide fuel cell stack. International Journal of Hydrogen Energy, 2020, 45, 2257-2278.	7.1	22
38	Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes. Applied Energy, 2020, 259, 114130.	10.1	26
39	Feasibility study on saturated water cooled solid oxide fuel cell stack. Applied Energy, 2020, 279, 115803.	10.1	17
40	A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks. Applied Energy, 2020, 280, 115899.	10.1	103
41	Developing a virtual hydrogen sensor for detecting fuel starvation in solid oxide fuel cells using different machine learning algorithms. International Journal of Hydrogen Energy, 2020, 45, 27730-27744.	7.1	10
42	Modeling of thermal impacts in a single direct methane steam reforming solid oxide fuel cell. Journal of Power Sources, 2020, 472, 228605.	7.8	14
43	Thermoelectrical-based fuel adaptability analysis of solid oxide fuel cell system and fuel conversion rate prediction. Energy Conversion and Management, 2020, 222, 113264.	9.2	17
44	Experimental investigation of temperature distribution of planar solid oxide fuel cell: Effects of gas flow, power generation, and direct internal reforming. International Journal of Hydrogen Energy, 2020, 45, 25227-25239.	7.1	21
45	In-situ temperature monitoring directly from cathode surface of an operating solid oxide fuel cell. Applied Energy, 2020, 280, 116013.	10.1	10
46	Measurement of transient temperature distribution behavior of a planar solid oxide fuel cell: Effect of instantaneous switching of power generation and direct internal reforming. Journal of Power Sources, 2021, 482, 229070.	7.8	17
47	High spatial resolution temperature profile measurements of solid-oxide fuel cells. Applied Energy, 2021, 288, 116633.	10.1	10
48	Simulation and Sensitivity Analysis for Various Geometries and Optimization of Solid Oxide Fuel Cells: A Review. Eng, 2021, 2, 386-415.	2.4	3
49	A novel interconnect design for thermal management of a commercial-scale planar solid oxide fuel cell stack. Energy Conversion and Management, 2021, 246, 114682.	9.2	17
50	MULTI-JUNCTION THERMOCOUPLE ARRAY FOR IN-SITU TEMPERATURE MONITORING OF SOFC: SIMULATION. International Journal of Research in Engineering and Technology, 2015, 04, 330-338.	0.1	0
51	Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors. Progress in Energy and Combustion Science, 2022, 88, 100966.	31.2	108
52	Investigation of the effect of ion transition type on performance in solid oxide fuel cells fueled hydrogen and coal gas. International Journal of Hydrogen Energy, 2022, 47, 3409-3415.	7.1	9
53	Interface Evolution of Solid Oxide Cells between the Electrode and the Interconnect Rib Induced with Applied Current. Energy Technology, 2022, 10, 2100833.	3.8	0
54	Grid-shape electrical circuit assembled with resistance temperature detectors for multipoint temperature measurement of solid oxide fuel cells. Journal of Power Sources, 2022, 530, 231293.	7.8	1

#	Article	IF	CITATIONS
55	Spatially resolved electrochemical performance and temperature distribution of a segmented solid oxide fuel cell under various hydrogen dilution ratios and electrical loadings. Journal of Power Sources, 2022, 536, 231477.	7.8	5
56	External temperature field test and leakage fault diagnosis for SOFC stacks. International Journal of Hydrogen Energy, 2023, 48, 2788-2800.	7.1	1
57	Micro solid oxide fuel cell thermal dynamics: Incorporation of experimental measurements and model-based estimations for a multidimensional thermal analysis. Energy Conversion and Management, 2023, 277, 116650.	9.2	3
58	Optimizing the homogeneity and efficiency of a solid oxide electrolysis cell based on multiphysics simulation and data-driven surrogate model. Journal of Power Sources, 2023, 562, 232760.	7.8	7
59	Degradation behavior under alternating constant-current/constant-voltage discharge for flat-tube solid oxide fuel cells inside stack. International Journal of Hydrogen Energy, 2023, 48, 17654-17663.	7.1	1
60	Design and research of a novel solid oxide fuel cell with thermal energy storage for load tracking. Energy Conversion and Management, 2023, 294, 117560.	9.2	1
61	Thermodynamics and electrochemical performance of co- and counter-flow planar solid oxide fuel cells under an adiabatic operation environment. International Journal of Hydrogen Energy, 2024, 50, 181-199.	7.1	0
62	Analysis on temperature uniformity in methane-rich internal reforming solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, 2024, 57, 769-788.	7.1	1
63	Understanding performance difference in the scale-up of flat-chip solid oxide fuel cell: An experimental and numerical study. Sustainable Energy Technologies and Assessments, 2024, 63, 103649.	2.7	0