Introduction to Industrial Control Networks

IEEE Communications Surveys and Tutorials 15, 860-880 DOI: 10.1109/surv.2012.071812.00124

Citation Report

IF

	A
#	ARTICLE

CITATIONS

1	Teeter-totter in testing. , 2013, , .		1
2	Development environment for monitoring, data acquisition and simulation of PLC controlled applications. , 2013, , .		0
3	A Wireless Sensors and Controllers Network in automation a laboratory-scale implementation for students training. , 2014, , .		3
4	The Benefits of Soft Sensor and Multi-Rate Control for the Implementation of Wireless Networked Control Systems. Sensors, 2014, 14, 24441-24461.	2.1	30
5	A Security Test and Evaluation Model for Electric Industrial Control Systems. Applied Mechanics and Materials, 2014, 519-520, 1385-1389.	0.2	0
6	A Laboratory Infrastructure for the Evaluation of the Use of Multi-Agent Technologies in Industrial SCADA Systems. Applied Mechanics and Materials, 0, 656, 432-441.	0.2	0
7	Overview of the industrial Ethernet. , 2014, , .		0
8	SCADA software used in dispatch centre for photovoltaic parks. , 2014, , .		1
9	A connection pattern-based approach to detect network traffic anomalies in critical infrastructures. , 2014, , .		20
10	Positioning infrastructure for industrial automation systems based on UWB wireless communication. , 2014, , .		12
10	Positioning infrastructure for industrial automation systems based on UWB wireless communication. , 2014, , . A soft sensor for energy efficient application of wireless networked control systems. , 2014, , .		12 2
10 11 12	Positioning infrastructure for industrial automation systems based on UWB wireless communication., 2014, , . A soft sensor for energy efficient application of wireless networked control systems., 2014, , . Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks. Journal of Applied Mathematics, 2014, 2014, 1-7.	0.4	12 2 11
10 11 12 13	Positioning infrastructure for industrial automation systems based on UWB wireless communication., 2014, , . A soft sensor for energy efficient application of wireless networked control systems., 2014, , . Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks. Journal of Applied Mathematics, 2014, 2014, 1-7. Simulating and modelling the impact of security constructs on latency for open loop control., 2014, , .	0.4	12 2 11 6
10 11 12 13 14	Positioning infrastructure for industrial automation systems based on UWB wireless Communication., 2014, , . A soft sensor for energy efficient application of wireless networked control systems., 2014, , . Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks. Journal of Applied Mathematics, 2014, 2014, 1-7. Simulating and modelling the impact of security constructs on latency for open loop control., 2014, , . Precise latency measurement of unidirectional-data-flow network equipment., 2014, .	0.4	12 2 11 6 2
10 11 12 13 14 15	Positioning infrastructure for industrial automation systems based on UWB wireless communication., 2014,,. A soft sensor for energy efficient application of wireless networked control systems., 2014,,. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks. Journal of Applied Mathematics, 2014, 2014, 1-7. Simulating and modelling the impact of security constructs on latency for open loop control., 2014,,. Precise latency measurement of unidirectional-data-flow network equipment., 2014,,. Cyber threats and defence approaches in SCADA systems., 2014,,.	0.4	12 2 11 6 2 13
10 11 12 13 14 15 16	Positioning infrastructure for industrial automation systems based on UWB wireless communication., 2014, ,. A soft sensor for energy efficient application of wireless networked control systems., 2014, ,. Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks. Journal of Applied Mathematics, 2014, 2014, 1-7. Simulating and modelling the impact of security constructs on latency for open loop control., 2014, ,. Precise latency measurement of unidirectional-data-flow network equipment., 2014, ,. Cyber threats and defence approaches in SCADA systems., 2014, ,. An Integrated WSAN and SCADA System for Monitoring a Critical Infrastructure. IEEE Transactions on Industrial Informatics, 2014, 10, 1755-1764.	0.4	12 2 11 6 2 13 36
 10 11 12 13 14 15 16 17 	Positioning infrastructure for industrial automation systems based on UWB wireless Communication., 2014, , . A soft sensor for energy efficient application of wireless networked control systems., 2014, , . Whitelists Based Multiple Filtering Techniques in SCADA Sensor Networks. Journal of Applied Mathematics, 2014, 2014, 1-7. Simulating and modelling the impact of security constructs on latency for open loop control., 2014, , . Precise latency measurement of unidirectional-data-flow network equipment., 2014, , . Cyber threats and defence approaches in SCADA systems., 2014, , . An Integrated WSAN and SCADA System for Monitoring a Critical Infrastructure. IEEE Transactions on Industrial Informatics, 2014, 10, 1755-1764. Effect of PLC and SCADA in boosting the working of elevator system., 2014, , .	0.4	12 2 11 6 2 13 36

#	Article	IF	CITATIONS
19	Supporting firm real-time traffic in fault-tolerant real-time systems based on cyclic scheduling — The WICKPro protocol. , 2015, , .		1
20	Prototyping and Experimental Comparison of IR-UWB Based High Precision Localization Technologies. , 2015, , .		18
21	Data-Based Statistical Models of Data Networks. , 2015, , .		0
22	Packet scheduling attacks on shipboard networked control systems. , 2015, , .		4
23	Software-defined radio based measurement platform for wireless networks. , 2015, 2015, 7-12.		3
24	A framework for testing stealthy attacks in energy grids. , 2015, , .		2
25	Near field communication interface for a packet-based serial data transmission using a dual interface EEPROM. , 2015, , .		1
26	A Conceptual Model for Operational Control in Smart Manufacturing Systems. IFAC-PapersOnLine, 2015, 48, 1865-1869.	0.5	8
27	A robust opportunistic routing for high complex decentralized controlled distribution center. , 2015, , .		0
28	A study on the architecture of manufacturing internet of things. International Journal of Modelling, Identification and Control, 2015, 23, 8.	0.2	10
29	MiniCPS., 2015,,.		70
30	Distributed processing system for gas odorization. , 2015, , .		0
31	Cyber security password policy for industrial control networks. , 2015, , .		5
32	A clustering-based approach to detect cyber attacks in process control systems. , 2015, , .		38
33	Mixed time synchronization method for industrial Wireless Control Networks. , 2015, , .		0
34	Analysis of Industrial Control Systems Traffic Based on Time Series. , 2015, , .		4
35	Information technologies and web interfaces as a platform for identification of remote dynamic objects. , 2015, , .		0
36	Communication in Cyber-Physical Systems. , 2015, , .		5

#	Article	IF	CITATIONS
37	An Algorithm for the Automatic Detection of Islanded Areas Inside an Active Network. IEEE Transactions on Smart Grid, 2015, 6, 3020-3028.	6.2	11
38	A system dynamics approach for assessing the impact of cyber attacks on critical infrastructures. International Journal of Critical Infrastructure Protection, 2015, 10, 3-17.	2.9	90
39	An overview of oil drilling and production monitoring system using SCADA automation in Oil and Natural Gas Corporation Ltd , 2015, , .		2
40	Practical challenges of IR-UWB based ranging in harsh industrial environments. , 2015, , .		15
41	Innovating the industrial measurement and control network of an oil refinery. , 2015, , .		0
42	Protocol description and optimization scheduling for multi-fieldbus integration system. ISA Transactions, 2015, 59, 457-470.	3.1	4
43	Basics of Control Systems. , 2015, , 103-110.		1
44	Introduction to cyber physical systems. , 2016, , 1-8.		2
45	Typical cyber physical systems. , 2016, , 37-48.		0
46	Soft real-time traffic communication in loaded Wireless Mesh Networks. , 2016, , .		1
47	Multiobjective Topology Optimization Based on Mapping Matrix and NSGA-II for Switched Industrial Internet of Things. IEEE Internet of Things Journal, 2016, 3, 1235-1245.	5.5	24
47 48	Multiobjective Topology Optimization Based on Mapping Matrix and NSGA-II for Switched Industrial Internet of Things. IEEE Internet of Things Journal, 2016, 3, 1235-1245. Multi-agent approach to distributed processing big sensor data based on fog computing model for the monitoring of the urban infrastructure systems. , 2016, , .	5.5	24 9
47 48 49	Multiobjective Topology Optimization Based on Mapping Matrix and NSGA-II for Switched Industrial Internet of Things. IEEE Internet of Things Journal, 2016, 3, 1235-1245. Multi-agent approach to distributed processing big sensor data based on fog computing model for the monitoring of the urban infrastructure systems. , 2016, , . Retransmission scheduling in 802.15.4e LLDN - a reinforcement learning approach with relayers. , 2016, , .	5.5	24 9 3
47 48 49 50	Multiobjective Topology Optimization Based on Mapping Matrix and NSGA-II for Switched Industrial Internet of Things. IEEE Internet of Things Journal, 2016, 3, 1235-1245. Multi-agent approach to distributed processing big sensor data based on fog computing model for the monitoring of the urban infrastructure systems., 2016,,. Retransmission scheduling in 802.15.4e LLDN - a reinforcement learning approach with relayers., 2016,,. Key Factors in Industrial Control System Security., 2016,,.	5.5	24 9 3 8
47 48 49 50 51	Multiobjective Topology Optimization Based on Mapping Matrix and NSGA-II for Switched Industrial Internet of Things. IEEE Internet of Things Journal, 2016, 3, 1235-1245. Multi-agent approach to distributed processing big sensor data based on fog computing model for the monitoring of the urban infrastructure systems., 2016, , . Retransmission scheduling in 802.15.4e LLDN - a reinforcement learning approach with relayers., 2016, , . Key Factors in Industrial Control System Security., 2016, , . Communication with CNC machine through DNC interface., 2016, , .	5.5	24 9 3 3 2
47 48 49 50 51 51	Multiobjective Topology Optimization Based on Mapping Matrix and NSCA-II for Switched Industrial Multi-agent approach to distributed processing big sensor data based on fog computing model for the monitoring of the urban infrastructure systems., 2016,,. Retransmission scheduling in 802.15.4e LLDN - a reinforcement learning approach with relayers., 2016,,. Key Factors in Industrial Control System Security., 2016,,. Communication with CNC machine through DNC interface., 2016,,. Communication analysis in CAN networks under EFT injection., 2016,,.	5.5	24 9 3 3 2 5
47 48 49 50 51 51 52	Multiobjective Topology Optimization Based on Mapping Matrix and NSCA-II for Switched Industrial Multi-agent approach to distributed processing big sensor data based on fog computing model for the monitoring of the urban infrastructure systems., 2016,, Retransmission scheduling in 802.15.4e LLDN - a reinforcement learning approach with relayers., 2016,, Key Factors in Industrial Control System Security., 2016,, Communication with CNC machine through DNC interface., 2016,, Right on Time Distributed Shared Memory., 2016,,	5.5	24 9 3 3 2 5 2

ARTICLE IF CITATIONS # Cluster-Based Maximum Consensus Time Synchronization in IWSNs., 2016, , . 2 55 Towards High-Interaction Virtual ICS Honeypots-in-a-Box., 2016, , . 39 Delay-aware and reliability-aware contention-free MF–TDMA protocol for automated RFID monitoring 57 4.3 45 in industrial IoT. Journal of Industrial Information Integration, 2016, 3, 8-19. Green industrial networking: recent advances, taxonomy, and open research challenges. , 2016, 54, 38-45. Radio channel characterization at 5.85 GHz for wireless M2M communication of industrial robots., 59 41 2016,,. Next generation real-time networks based on IT technologies., 2016, , . Software defined networking as a mitigation strategy for data communications in power systems 61 8 critical infrastructure., 2016, , . Industrial monitoring and control approach for dynamic and distributed intelligent systems., 2016,,. 63 An adaptive error control approach for reliable industrial automation networks., 2016, , . 1 A novel framework to provide reliable and timely communication for industrial control applications 64 using wireless token passing approach., 2016, , . Comparative Examination on Architecture and Protocol of Industrial Wireless Sensor Network 24.8 143 65 Standards. IEEE Communications Surveys and Tutorials, 2016, 18, 2197-2219. A token-ring-like real-time response algorithm of Modbus/TCP message based on Î4C/OS-II. AEU -1.7 International Journal of Electronics and Communications, 2016, 70, 179-185. Enabling multi-layer cyber-security assessment of Industrial Control Systems through 67 9 Hardware-In-The-Loop testbeds., 2016,,. The Effect of Communications on Networked Monitoring and Control of Manufacturing Processes. 1.0 Procedia CIRP, 2016, 41, 723-728. Cyber-Security-Aware Network Design of Industrial Control Systems. IEEE Systems Journal, 2017, 11, 69 2.9 42 1373-1384. An intelligent multi-agent based improved approach for conventional and renewable power generation operation and control. Journal of Renewable and Sustainable Energy, 2017, 9, . Implementation and Evaluation of Wireless Networked Control Systems using Modbus. IEEE Latin 71 1.2 7 America Transactions, 2017, 15, 206-212. The convergence computing model for big sensor data mining and knowledge discovery. 6.1 38 Human-centric Computing and Information Sciences, 2017, 7, .

#	Article	IF	CITATIONS
73	EFT Fault Impact Analysis on Performance of Critical Tasks in Intravehicular Networks. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1415-1423.	1.4	10
74	Towards Formal Security Analysis of Industrial Control Systems. , 2017, , .		24
75	Portable equipment for acquiring data from new types of gas sensors. , 2017, , .		0
76	Machine Learning for Cyber Physical Systems. , 2017, , .		2
77	Security of SCADA systems against cyber–physical attacks. IEEE Aerospace and Electronic Systems Magazine, 2017, 32, 28-45.	2.3	84
78	uSOP: A Microprocessor-Based Service-Oriented Platform for Control and Monitoring. IEEE Transactions on Nuclear Science, 2017, 64, 1185-1190.	1.2	5
79	Feature extraction and feature selection for classifying cyber traffic threats. Journal of Defense Modeling and Simulation, 2017, 14, 217-231.	1.2	7
80	Anomaly Detection in Industrial Networks using Machine Learning: A Roadmap. , 2017, , 65-72.		27
81	Enabling distributed manufacturing resources through SOA: The REST approach. Robotics and Computer-Integrated Manufacturing, 2017, 46, 156-165.	6.1	22
82	Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 2017, 56, 122-140.	3.4	396
83	Incorporation of timing properties into adaptive error control method for timely and reliable communication in industrial automation networks. Systems Science and Control Engineering, 2017, 5, 350-360.	1.8	1
84	The industrial control system cyber defence triage process. Computers and Security, 2017, 70, 467-481.	4.0	38
85	Streaming Machine Generated Data to Enable a Third-Party Ecosystem of Digital Manufacturing Apps. Procedia Manufacturing, 2017, 10, 1020-1030.	1.9	11
86	Guaranteed timely delivery of control packets for reliable industrial wireless networks in industry 4.0 Era. , 2017, , .		4
87	Building a Web of Things with Avatars. , 2017, , 151-180.		4
88	Innovative control of assembly systems and lines. CIRP Annals - Manufacturing Technology, 2017, 66, 707-730.	1.7	86
89	Reliable communication framework for time-critical wireless industrial control networks. , 2017, , .		1
90	Makespan minimization of Time-Triggered traffic on a TTEthernet network. , 2017, , .		4

#	Article	IF	CITATIONS
91	Legacy-Compliant Data Authentication for Industrial Control System Traffic. Lecture Notes in Computer Science, 2017, , 665-685.	1.0	19
92	A logic-based framework for the security analysis of Industrial Control Systems. Automatic Control and Computer Sciences, 2017, 51, 114-123.	0.4	8
93	Communications for Cyber-Physical Systems. Springer Series in Wireless Technology, 2017, , 347-372.	1.1	8
94	Enabling Resilient Microgrid Through Programmable Network. IEEE Transactions on Smart Grid, 2017, 8, 2826-2836.	6.2	60
95	Ensuring Data Integrity of OPF Module and Energy Database by Detecting Changes in Power Flow Patterns in Smart Grids. IEEE Transactions on Industrial Informatics, 2017, 13, 3299-3311.	7.2	35
96	Cyber security in production networks $\hat{a} \in \raimeq$ An empirical study about the current status. , 2017, , .		1
97	A multi-service adaptive wireless communication protocol for industrial networks. , 2017, , .		0
98	WaterJam: An Experimental Case Study of Jamming Attacks on a Water Treatment System. , 2017, , .		8
99	Evaluation of multipath communication protocols for reliable internet-based cyber-physical systems. , 2017, , .		2
100	Towards a time redundancy mechanism for critical frames in time-sensitive networking. , 2017, , .		16
101	Access Control in Water Distribution Networks: A Case Study. , 2017, , .		7
102	Token passing techniques to support real time communications on WTPN used for industrial control applications. , 2017, , .		Ο
103	Two decades of SCADA exploitation: A brief history. , 2017, , .		41
104	Control and Optimization of Batch Chemical Processes. , 2017, , 441-503.		3
105	A tiered security analysis of Industrial Control System Devices. , 2017, , .		3
106	Industrial wireless: Problem space, success considerations, technologies, and future direction. , 2017,		12
107	Relayer-Enabled Retransmission Scheduling in 802.15.4e LLDN—Exploring a Reinforcement Learning Approach. Journal of Sensor and Actuator Networks, 2017, 6, 6.	2.3	9
108	An SVM-Based Method for Classification of External Interference in Industrial Wireless Sensor and Actuator Networks, 2017, 6, 9.	2.3	27

#	Article	IF	CITATIONS
109	Cluster-Based Maximum Consensus Time Synchronization for Industrial Wireless Sensor Networks. Sensors, 2017, 17, 141.	2.1	28
110	Web based control and data acquisition system for industrial application monitoring. , 2017, , .		4
111	Identification of ICS Security Risks toward the Analysis of Packet Interaction Characteristics Using State Sequence Matching Based on SF-FSM. Security and Communication Networks, 2017, 2017, 1-17.	1.0	5
112	Towards Large-Scale, Heterogeneous Anomaly Detection Systems in Industrial Networks: A Survey of Current Trends. Security and Communication Networks, 2017, 2017, 1-17.	1.0	13
113	A Novel RNN-GBRBM Based Feature Decoder for Anomaly Detection Technology in Industrial Control Network. IEICE Transactions on Information and Systems, 2017, E100.D, 1780-1789.	0.4	5
114	Unicast QoS Routing Algorithms for SDN: A Comprehensive Survey and Performance Evaluation. IEEE Communications Surveys and Tutorials, 2018, 20, 388-415.	24.8	121
115	Flexible real-time transmission scheduling for wireless networks with non-deterministic workloads. Ad Hoc Networks, 2018, 73, 65-79.	3.4	6
116	lloT Cybersecurity Risk Modeling for SCADA Systems. IEEE Internet of Things Journal, 2018, 5, 4486-4495.	5.5	91
117	Designing Safe and Secure Industrial Control Systems: A Tutorial Review. IEEE Design and Test, 2018, 35, 73-88.	1.1	10
118	Multidisciplinary and Historical Perspectives for Developing Intelligent and Resource-Efficient Systems. IEEE Access, 2018, 6, 17464-17499.	2.6	18
119	EtherCAT Tutorial: An Introduction for Real-Time Hardware Communication on Windows [Tutorial]. IEEE Robotics and Automation Magazine, 2018, 25, 22-122.	2.2	34
120	Using Industrial Internet of Things to Support Energy Efficiency and Management: Case of PID Controller. Lecture Notes in Networks and Systems, 2018, , 44-55.	0.5	1
121	Software Defined Networking Opportunities for Intelligent Security Enhancement of Industrial Control Systems. Advances in Intelligent Systems and Computing, 2018, , 577-586.	0.5	3
122	Beyond 5G Wireless IRT for Industry 4.0: Design Principles and Spectrum Aspects. , 2018, , .		50
123	Separation of processing and coordination in computer systems. , 2018, , .		1
124	Distributed Control Systems for a Wastewater Treatment Plant: Architectures and Advanced Control Solutions. , 2018, , .		4
125	Ascertainment of Energy Consumption Information in the Age of Industrial Big Data. Procedia CIRP, 2018, 72, 202-208.	1.0	11
126	A Methodology to Enhance Industrial Control System Security. Procedia Computer Science, 2018, 126, 2117-2126.	1.2	7

#	Article	IF	CITATIONS
127	Development of embedded computational tool for simulation of industrial processes. , 2018, , .		0
128	Using Android Devices as Mobile Extensible HMIs. , 2018, , .		3
129	Industrial Wireless Systems Guidelines: Practical Considerations and Deployment Life Cycle. IEEE Industrial Electronics Magazine, 2018, 12, 6-17.	2.3	38
130	Process-Aware Model based IDSs for Industrial Control Systems Cybersecurity: Approaches, Limits and Further Research. , 2018, , .		15
131	Networked Electric Drives in the Industry 4.0. , 2018, , .		2
132	Utilizing Blockchain Technology in Industrial Manufacturing with the help of Network Simulation. , 2018, , .		9
133	Empirical Analysis of the Communication in Industrial Environment Based on G3-Power Line Communication and Influences from Electrical Grid. Electronics (Switzerland), 2018, 7, 194.	1.8	12
134	A distributed control system for processes in food industry: Architecture and implementation. , 2018, ,		3
135	Vulnerability Analysis of Network Scanning on SCADA Systems. Security and Communication Networks, 2018, 2018, 1-21.	1.0	53
136	Development of an HMI using JAVA for monitoring and control of automated systems applied in distributed control systems. , 2018, , .		0
137	Distributed hybrid-triggered Hâ^ž filter design for sensor networked systems with output saturations. Neurocomputing, 2018, 315, 261-271.	3.5	25
138	Integration of Sensor and Actuator Networks and the SCADA System to Promote the Migration of the Legacy Flexible Manufacturing System towards the Industry 4.0 Concept. Journal of Sensor and Actuator Networks, 2018, 7, 23.	2.3	43
139	Protocol for Energy-Efficiency in Networked Control Systems Based on WSN. Sensors, 2018, 18, 2590.	2.1	5
140	FPGA Implementation of Pattern Matching for Industrial Control Systems. , 2018, , .		2
141	Role of Intelligence Inputs in Defending Against Cyber Warfare and Cyberterrorism. Decision Analysis, 2018, 15, 174-193.	1.2	7
142	Reanalyzing a simplified Markov model for the low-density P2P wireless sensor and actuator networks. Telecommunication Systems, 2019, 70, 159-169.	1.6	7
143	Near real-time data aggregation using foreign data wrappers from a network of sensors. , 2019, , .		1
144	Industrial control systems (ics) security in power transmission network. , 2019, , .		3

#	Article	IF	CITATIONS
145	SCTM: A Multi-View Detecting Approach Against Industrial Control Systems Attacks. , 2019, , .		2
146	Adaptive Network-Device Cooperative Diversity for Ultra-Reliable and Low-Latency Wireless Control. , 2019, , .		1
147	Real-time networks and protocols for factory automation and process control systems [scanning the issue]. Proceedings of the IEEE, 2019, 107, 939-943.	16.4	10
148	On the Violation of Hard Deadlines in Networked Control Systems. , 2019, , .		0
149	Integration of open source hardware Arduino platform in automation systems applied to Smart Grids/Micro-Grids. Sustainable Energy Technologies and Assessments, 2019, 36, 100557.	1.7	33
150	Honeynet Construction Based on Intrusion Detection. , 2019, , .		8
151	Dynamically Optimizing End-to-End Latency for Time-Triggered Networks. , 2019, , .		3
152	On the Design of a Wireless MES Solution for the Factories of the Future. , 2019, , .		4
153	Enabling Digital Grid for Industrial Revolution: Self-Healing Cyber Resilient Platform. IEEE Network, 2019, 33, 219-225.	4.9	8
154	Utilizing SDN Infrastructure to provide Smart Services from the Factory to the Cloud. , 2019, , .		5
155	A Survey on Information and Communication Technologies for Industry 4.0: State-of-the-Art, Taxonomies, Perspectives, and Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 3467-3501.	24.8	216
156	Increasing Metrological Reliability of Measuring Channels for Distributed Automated Control Systems. , 2019, , .		1
157	Experimental in-depth study of the dynamics of an indoor industrial low power lossy network. Ad Hoc Networks, 2019, 93, 101914.	3.4	5
158	A network application model with operational process feature. Journal of the Franklin Institute, 2019, 356, 6678-6696.	1.9	3
159	An Enhanced Reconfiguration for Deterministic Transmission in Time-Triggered Networks. IEEE/ACM Transactions on Networking, 2019, 27, 1124-1137.	2.6	29
160	Special Issue on Smart Production. KI - Kunstliche Intelligenz, 2019, 33, 111-116.	2.2	1
161	Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proceedings of the IEEE, 2019, 107, 944-961.	16.4	236
162	Design and Realization of Testbeds for Security Research in the Industrial Internet of Things. Advanced Sciences and Technologies for Security Applications, 2019, , 287-310.	0.4	3

#	Article	IF	CITATIONS
163	Travel Route Planning with Optimal Coverage in Difficult Wireless Sensor Network Environment. Sensors, 2019, 19, 1838.	2.1	15
164	Internet-mediated automation of a cascade control system-an Engineering laboratory experiment. International Journal of Electrical Engineering and Education, 2022, 59, 112-129.	0.4	2
165	<italic>RT-ByzCast</italic> : Byzantine-Resilient Real-Time Reliable Broadcast. IEEE Transactions on Computers, 2019, 68, 440-454.	2.4	7
166	A Study on the Improvement of Parallel Operation Characteristics of DC/DC Converter Using Improved Full-Duplex Communication Hardware. Applied Sciences (Switzerland), 2019, 9, 5346.	1.3	0
167	Using Side-Channels to Detect Abnormal Behavior in Industrial Control Systems. , 2019, , .		0
168	An Efficient Configuration Scheme of OPC UA TSN in Industrial Internet. , 2019, , .		9
169	A Hybrid Method for Secure and Reliable Transmission on Industrial Automation and Control Networks in Industry 4.0. , 2019, , .		1
170	Securing Wireless Scada Systems in Rural American Power Grids. , 2019, , .		1
171	Virtual Process Using LabVIEW in Combination with Modbus TCP for Fieldbus Control System. , 2019, , .		2
173	Assembly 4.0: Wheel Hub Nut Assembly Using a Cobot. IFAC-PapersOnLine, 2019, 52, 1632-1637.	0.5	21
174	Closed loop process control for precision farming: An Agriculture 4.0 perspective. , 2019, , .		8
175	Design and Implementation of Runtime Verification Framework for Cyber-Physical Production Systems. Journal of Engineering (United States), 2019, 2019, 1-11.	0.5	10
176	Design and Implementation of an Electrical Tamper Detection System. , 2019, , .		6
177	An Overview on Industrial Control Networks. Computer Communications and Networks, 2019, , 3-16.	0.8	5
178	Performance evaluation of industrial Ethernet protocols for networked control application. Control Engineering Practice, 2019, 84, 208-217.	3.2	22
179	Wireless Sensor Networks for Industrial Applications. Computer Communications and Networks, 2019, , 127-140.	0.8	15
180	The Tactile Internet for Industries: A Review. Proceedings of the IEEE, 2019, 107, 414-435.	16.4	122
181	Channel measurement campaigns for wireless industrial automation. Automatisierungstechnik, 2019, 67, 7-28.	0.4	17

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
182	Time-Triggered Switch-Memory-Switch Architecture for Time-Sensitive Networking Switches. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 185-198.	1.9	20
183	Model-Based Adaptation of Mixed-Criticality Multiservice Systems for Extreme Physical Environments. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 1386-1399.	1.9	2
184	Detecting stealthy attacks on industrial control systems using a permutation entropy-based method. Future Generation Computer Systems, 2020, 108, 1230-1240.	4.9	21
185	Dynamic modulation scaling enabled multi-hop topology control for time critical wireless sensor networks. Wireless Networks, 2020, 26, 1203-1226.	2.0	6
186	Identity-based encryption with authorized equivalence test for cloud-assisted IoT. Cluster Computing, 2020, 23, 1085-1101.	3.5	18
187	Neural Network-Based Model Predictive Control of a Paste Thickener Over an Industrial Internet Platform. IEEE Transactions on Industrial Informatics, 2020, 16, 2859-2867.	7.2	43
189	A Flattened-Priority Framework for Mixed-Criticality Systems. IEEE Transactions on Industrial Electronics, 2020, 67, 9862-9872.	5.2	0
190	Cybersecurity Analysis for the Communication Protocol in Smart Grids. , 2020, , .		4
191	Towards 6G in-X Subnetworks With Sub-Millisecond Communication Cycles and Extreme Reliability. IEEE Access, 2020, 8, 110172-110188.	2.6	45
192	Decepti-SCADA: A cyber deception framework for active defense of networked critical infrastructures. Internet of Things (Netherlands), 2020, 12, 100320.	4.9	12
193	Analysis of distributed control systems using timed automata with guards and dioid algebra. , 2020, , .		0
194	Worst-Case Delay Slicing for Time-Sensitive Applications in Softwarized Industrial Networks. , 2020, , .		2
195	Response time evaluation of industrial-scale distributed control systems by discrete event systems formalisms. International Journal of Control, 2022, 95, 419-431.	1.2	4
196	Behavioural Intrusion Detection in Water Distribution Systems Using Neural Networks. IEEE Access, 2020, 8, 190403-190416.	2.6	12
197	A resource-efficient priority scheduler for time-sensitive networking switches. CCF Transactions on Networking, 2020, 3, 21-34.	1.0	3
198	The Development of a Security Evaluation Model Focused on Information Leakage Protection for Sustainable Growth. Sustainability, 2020, 12, 10639.	1.6	9
199	Cyber threats for operational technologies. International Journal of System of Systems Engineering, 2020, 10, 128.	0.4	5
200	Anomaly detection for industrial control operations with optimized ABC–SVM and weighted function code correlation analysis. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 1383-1396.	3.3	3

#	Article	IF	Citations
201	Six Key Features of Machine Type Communication in 6G. , 2020, , .		108
202	A Review of Research Work on Network-Based SCADA Intrusion Detection Systems. IEEE Access, 2020, 8, 93083-93108.	2.6	54
203	Integrating IoT with LQR-PID controller for online surveillance and control of flow and pressure in fluid transportation system. Journal of Industrial Information Integration, 2020, 17, 100127.	4.3	41
205	Wireless Networked Control Systems With Coding-Free Data Transmission for Industrial IoT. IEEE Internet of Things Journal, 2020, 7, 1788-1801.	5.5	26
206	Factory Communications at the Dawn of the Fourth Industrial Revolution. Computer Standards and Interfaces, 2020, 71, 103433.	3.8	42
207	An Adaptive Fuzzy-PI Clock Servo Based on IEEE 1588 for Improving Time Synchronization Over Ethernet Networks. IEEE Access, 2020, 8, 61370-61383.	2.6	11
208	High-Performance Industrial Wireless: Achieving Reliable and Deterministic Connectivity Over IEEE 802.11 WLANs. IEEE Open Journal of the Industrial Electronics Society, 2020, 1, 28-37.	4.8	28
209	Major accidents triggered by malicious manipulations of the control system in process facilities. Safety Science, 2021, 134, 105043.	2.6	16
210	Scheduling Observers Over a Shared Channel With Hard Delivery Deadlines. IEEE Transactions on Communications, 2021, 69, 133-148.	4.9	3
211	Challenges and Opportunities in Securing the Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2021, 17, 2985-2996.	7.2	135
212	Towards a scalable implementation of digital twins - A generic method to acquire shopfloor data. Procedia CIRP, 2021, 96, 157-162.	1.0	13
213	Geographically Dispersed Supply Chains: A Strategy to Manage Cybersecurity in Industrial Networks Integration. , 2021, , 97-116.		2
214	Reaching self-stabilising distributed synchronisation with COTS Ethernet components: the WALDEN approach. Real-Time Systems, 2021, 57, 347-386.	1.1	3
215	Advanced Application of Centralized Control for a Scanning Mirror System Based on EtherCAT Fieldbus. International Journal of Control, Automation and Systems, 2021, 19, 1205-1214.	1.6	4
216	Supervisory Control and Data Acquisition. , 2021, , 1-3.		0
218	DAICS: A Deep Learning Solution for Anomaly Detection in Industrial Control Systems. IEEE Transactions on Emerging Topics in Computing, 2021, , 1-1.	3.2	15
219	CANintelliIDS: Detecting In-Vehicle Intrusion Attacks on a Controller Area Network Using CNN and Attention-Based GRU. IEEE Transactions on Network Science and Engineering, 2021, 8, 1456-1466.	4.1	142
220	Modeling Networked Telemetry. Computers, 2021, 10, 45.	2.1	0

#	Article	IF	CITATIONS
223	A Unified Architectural Approach for Cyberattack-Resilient Industrial Control Systems. Proceedings of the IEEE, 2021, 109, 517-541.	16.4	58
225	Internet of Things Meet Internet of Threats: New Concern Cyber Security Issues of Critical Cyber Infrastructure. Applied Sciences (Switzerland), 2021, 11, 4580.	1.3	41
226	Machine type communications: key drivers and enablers towards the 6G era. Eurasip Journal on Wireless Communications and Networking, 2021, 2021, .	1.5	42
227	Internet of Things and autonomous control for vertical cultivation walls towards smart food growing: A review. Urban Forestry and Urban Greening, 2021, 61, 127094.	2.3	32
228	An innovative industrial control system architecture for realâ€ŧime response, faultâ€ŧolerant operation and seamless plant integration. Journal of Engineering, 2021, 2021, 569.	0.6	1
230	Design of an IoT-PLC: A containerized programmable logical controller for the industry 4.0. Journal of Industrial Information Integration, 2022, 25, 100250.	4.3	25
231	Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques. Journal of Industrial Information Integration, 2022, 26, 100272.	4.3	28
232	An approach to simulate gas-solid flow systems with process controllers. Chemical Engineering Journal, 2022, 429, 132443.	6.6	13
233	Energy Internet. , 2022, , 92-110.		0
234	Challenges in Securing Industrial Control Systems Using Future Internet Technologies. , 2022, , 561-586.		1
235	Characteristic insights on industrial cyber security and popular defense mechanisms. China Communications, 2021, 18, 130-150.	2.0	12
236	Average Rate and Error Probability Analysis in Short Packet Communications Over RIS-Aided URLLC Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 10320-10334.	3.9	36
237	Introducing Cyber Security at the Design Stage of Public Infrastructures: A Procedure and Case Study. Advances in Intelligent Systems and Computing, 2016, , 75-94.	0.5	9
239	Application of Integrated IoT Framework to Water Pipeline Transportation System in Smart Cities. Advances in Intelligent Systems and Computing, 2021, , 571-579.	0.5	9
240	Security Analysis of MITM Attack on SCADA Network. Communications in Computer and Information Science, 2020, , 501-512.	0.4	6
241	Fogification of industrial robotic systems. , 2019, , .		12
242	Performance Analysis of CoS of Bridged WorldFIP and ATM Networks for Real Time Communication. Acta Physica Polonica A, 2016, 130, 412-416.	0.2	3
243	Towards an IIoT-Based Architecture for Baggage Handling Systems. Journal of Communications, 2017, , 475-481.	1.3	2

# 244	ARTICLE A SysML Extension for Security Analysis of Industrial Control Systems. , 2014, , .	IF	Citations
245	Automated Asset Discovery in Industrial Control Systems - Exploring the Problem. , 2015, , .		14
246	Do Shareholders Value Green Information Technology Announcements?. Journal of the Association for Information Systems, 2017, 18, 542-576.	2.4	27
247	Anomaly Detection in Industrial Control Networks Using Hybrid LDA - Autoencoder Based Models. , 2016, , .		1
248	Infrequent Pattern Identification in SCADA Systems Using Unsupervised Learning. Advances in Information Security, Privacy, and Ethics Book Series, 0, , 215-225.	0.4	4
249	Energy Internet. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 248-266.	0.4	5
250	Attribution of Cyber Attacks on Industrial Control Systems. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 2016, 3, 151158.	1.5	14
251	A Fuzzy AHP Approach for Security Risk Assessment in SCADA Networks. Advances in Electrical and Computer Engineering, 2019, 19, 69-74.	0.5	11
254	PLC and SCADA Laboratory Experiments for a Final Year Instrumentation Course. International Journal of Information and Education Technology, 2015, 5, 865-868.	0.9	2
255	Pasarela para usar transmisores HART desde una red DeviceNet. IngenierÃa, 2015, 20, .	0.1	0
256	Development of User Protocol Converter about Modbus and NMEA0183. The Journal of the Korean Institute of Information and Communication Engineering, 2015, 19, 2584-2589.	0.1	4
257	On the Conception of Intelligent Power Plants Based on Multiple Agent Systems. Lecture Notes in Computer Science, 2017, , 99-114.	1.0	1
258	A New Architecture Design of Industrial Networks. , 2017, , .		0
259	Simulation Study of Topological Structures and Node Coordinations for Deterministic WSN with TSCH. International Journal on Informatics Visualization, 2017, 1, 115-121.	0.5	1
260	ICS/SCADA System Security for CPS. Studies in Computational Intelligence, 2018, , 89-113.	0.7	6
261	SONICS: A Segmentation Method for Integrated ICS and Corporate System. Lecture Notes in Computer Science, 2018, , 231-250.	1.0	0
264	A Container-based IoT-oriented Programmable Logical Controller. , 2020, , .		0
265	Multi-drive control and condition monitoring in networked electric drives with EtherCAT. , 2020, , .		1

#	Article	IF	CITATIONS
266	Distributed Dynamic Channel Allocation in 6G in-X Subnetworks for Industrial Automation. , 2020, , .		10
267	A Cyber-Security Strategy for Internationally-dispersed Industrial Networks. , 2020, , .		1
268	Computer Based Control For Compensation of Power System Application. , 2020, , .		0
269	6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access, 2021, 9, 148191-148243.	2.6	157
270	AADS: A Noise-Robust Anomaly Detection Framework for Industrial Control Systems. Lecture Notes in Computer Science, 2020, , 53-70.	1.0	5
271	Cybersecurity. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 326-340.	0.4	0
272	Challenges in Securing Industrial Control Systems Using Future Internet Technologies. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 1-26.	0.4	3
273	Dynamic Adjusting ABC-SVM Anomaly Detection Based on Weighted Function Code Correlation. Lecture Notes in Computer Science, 2020, , 1-11.	1.0	0
274	Application of DCS for Level Control in Nonlinear System using Optimization and Robust Algorithms. Advances in Distributed Computing and Artificial Intelligence Journal, 2020, 9, .	1.1	2
275	Resilient sensor authentication in SCADA by integrating physical unclonable function and blockchain. Cluster Computing, 2022, 25, 1869-1883.	3.5	3
276	Gateway industrial ACL para Modbus TCP. The Academic Society Journal, 2020, , 158-166.	0.1	1
277	Topology Design and Optimization of Train Communication Network Based on Industrial Ethernet. IEEE Transactions on Vehicular Technology, 2022, 71, 844-855.	3.9	2
278	The enhanced resource modeling and real-time transmission technologies for Digital Twin based on QoS considerations. Robotics and Computer-Integrated Manufacturing, 2022, 75, 102284.	6.1	10
279	A Software Emulator for the Modelling and Control of an Activated Sludge Process in a Wastewater Treatment Plant. Processes, 2021, 9, 2054.	1.3	0
280	Protocols, Solutions, and Testbeds for Cyber-Attack Prevention in Industrial SCADA Systems. Studies in Big Data, 2022, , 355-380.	0.8	4
281	Malicious Anomaly Detection Approaches Robustness in Manufacturing ICSs. IFAC-PapersOnLine, 2021, 54, 146-151.	0.5	2
282	Software Solutions for Simulation, Monitoring and Data Acquisition in Wastewater Treatment Plants. , 2020, , .		0
283	Sistema inteligente de processamento e análise de vibrações em máquinas rotativas para Manutenção Preditiva Avançada em indústria 4.0. The Academic Society Journal, 2021, , 67-80.	0.1	1

		Citation Report		
#	ARTICLE	2021	IF	CITATIONS
204	Securing SCADA networks for small grids via a distributed evaluation of local sensor data.	, 2021, , .		5
285	Cybersecurity of Industrial Cyber-Physical Systems: A Review. ACM Computing Surveys, 202	22, 54, 1-35.	16.1	55
286	IT Availability Risks in Smart Factory Networks – Analyzing the Effects of IT Threats on Pro Processes Using Petri Nets. Information Systems Frontiers, 0, , 1.	oduction	4.1	5
288	Ambient intelligence governance review: from service-oriented to self-service. PeerJ Compu Science, 2022, 8, e788.	ter	2.7	3
289	Industrial Network Security. Journal of Control, Automation and Electrical Systems, 2022, 3	33, 1177-1187.	1.2	2
290	Sistema inteligente de processamento e análise de vibrações em máquinas rotativas p Preditiva Avançada em indústria 4.0. The Academic Society Journal, 2021, , 67-80.	ara Manutenção	0.1	1
291	Lights onÂPower Plant Control Networks. Lecture Notes in Computer Science, 2022, , 470-	-484.	1.0	3
293	Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond. Sensors, 2 2688.	2022, 22,	2.1	17
294	Research on Situational Awareness Technology of Industrial Control Network Based on Big Journal of Physics: Conference Series, 2022, 2216, 012079.	Data.	0.3	1
295	Extracting Function-Driven Tracing Characteristics for Optimized SVM Classification. Mobil Information Systems, 2021, 2021, 1-12.	e	0.4	1
296	Research and Evaluation of Intelligent Threat Detection Under Industrial Internet. , 2021, , .			0
297	Least Cost Automation Based Wireless Sensor Networks in Multi Node with Multi Process I Clustering for Vehicle Rim Manufacturing Industries. International Journal of Advanced Rese Science, Communication and Technology, 0, , 315-318.	Data earch in	0.0	0
298	Enhanced Interference Management for 6G in-X Subnetworks. IEEE Access, 2022, 10, 4578	34-45798.	2.6	7
299	Power Plant Automation Using SCADA in a Gas Insulated Substation. , 2022, , .			0
300	Looking at a Moving Target Defense of EthernetIP. , 2022, , .			0
301	Heterogeneous Network Access and Fusion in Smart Factory: A Survey. ACM Computing St 55, 1-31.	urveys, 2023,	16.1	4
302	Nested Lifecycles-Improving the Visibility of Product Lifespans in Smart Factories. , 2022, 2	,.		3
303	A Systematic Mapping Study and Empirical Comparison of Data-Driven Intrusion Detection in Industrial Control Networks. Archives of Computational Methods in Engineering, 2022, 2 5353-5380.	Techniques 29,	6.0	3

#	Article	IF	CITATIONS
304	Missed Opportunities. , 2022, , .		6
306	AC-LRTR: An Adaptive and Generic Low-Rank Tensor-Based Recovery for IIoT Network Traffic Factors Denoising. IEEE Access, 2022, 10, 69839-69850.	2.6	2
307	A Bilevel Decomposition Approach for Many Homogeneous Computing Tasks Scheduling in Software-Defined Industrial Networks. IEEE Transactions on Industrial Informatics, 2023, 19, 5752-5762.	7.2	0
309	Fuzzing of Embedded Systems: A Survey. ACM Computing Surveys, 2023, 55, 1-33.	16.1	12
310	Research on Attack Detection of Cyber Physical Systems Based on Improved Support Vector Machine. Mathematics, 2022, 10, 2713.	1.1	3
311	A Low-Cost Online Data Acquisition and Processing System for Industrial Pollutants' Monitoring. Advances in Multimedia, 2022, 2022, 1-13.	0.2	0
312	Application of Artificial Immune Systems in Advanced Manufacturing. Array, 2022, 15, 100238.	2.5	4
313	Coloured Petri Nets for Temporal Performance Evaluation of Distributed Control Systems—Application to a FIFO Queue. IEEE Robotics and Automation Letters, 2022, 7, 11268-11274.	3.3	3
314	A Comprehensive IT Infrastructure for an Enzymatic Product Development in a Digitalized Biotechnological Laboratory. Advances in Biochemical Engineering/Biotechnology, 2022, , 61-82.	0.6	3
315	CrossTest: a cross-domain physical testbed environment for cybersecurity performance evaluations. , 2022, , .		1
316	Automatic Synthesis of Containerized Industrial Cyber-Physical Systems: A Case Study. IEEE Transactions on Industrial Informatics, 2023, 19, 8262-8273.	7.2	1
317	A Route Planning for Idyllic Coverage in Sensor Networks with Efficient Area Coverage. Communications in Computer and Information Science, 2022, , 90-104.	0.4	Ο
318	Cyberattack Impact Reduction using Software-Defined Networking for Cyber-Physical Production Systems. , 2022, , .		1
319	Graph-based Information Modeling for ICPS. , 2022, , .		Ο
320	Ultra Wide Band communication for condition-based monitoring, a bridge between edge and cloud computing. Procedia Computer Science, 2023, 217, 1670-1677.	1.2	2
321	Practical Challenges of Attack Detection in Microgrids Using Machine Learning. Journal of Sensor and Actuator Networks, 2023, 12, 7.	2.3	7
322	Development of machine tool communication method and its edge middleware for cyber-physical manufacturing systems. International Journal of Computer Integrated Manufacturing, 2023, 36, 1009-1030.	2.9	1
323	A Review on Key Mechanisms of Time-Sensitive Networking. , 2022, , .		0

#	ARTICLE	IF	CITATIONS
324	Data-Driven Edge Offloading for Wireless Control Systems. IEEE Internet of Things Journal, 2023, 10, 10802-10816.	5.5	1
326	Tool andÂMethod forÂObtaining End-to-End Reliability Parameters ofÂWireless Industrial Networks. IFIP Advances in Information and Communication Technology, 2023, , 77-88.	0.5	0
327	High-Fidelity Cyber and Physical Simulation of Water Distribution Systems. II: Enabling Cyber-Physical Attack Localization. Journal of Water Resources Planning and Management - ASCE, 2023, 149, .	1.3	2
328	High-Fidelity Cyber and Physical Simulation of Water Distribution Systems. I: Models and Data. Journal of Water Resources Planning and Management - ASCE, 2023, 149, .	1.3	2
329	Petri Net-Based Attack Modeling for Industrial Control System Networks. Communications in Computer and Information Science, 2023, , 3-19.	0.4	0
330	PREIUD: An Industrial Control Protocols Reverse Engineering Tool Based on Unsupervised Learning and Deep Neural Network Methods. Symmetry, 2023, 15, 706.	1.1	5
331	Adaptive Packet Scheduling Algorithm for Time-Sensitive Service based on DTP and Reinforcement Learning. , 2022, , .		0
332	Hierarchical Computing Network Collaboration Architecture for Industrial Internet of Things. , 2023, , .		0
333	An implementation of virtual instruments for industries for the standardization. , 2023, , .		0
335	A Wireless Transceiver for Control Area Networks: Proof-of-Concept Implementation. , 2023, , .		0
336	White-Box Concealment Attacks Against Anomaly Detectors forÂCyber-Physical Systems. Lecture Notes in Computer Science, 2023, , 111-131.	1.0	0
338	Developing and Evaluating MQTT Connectivity for an Industrial Controller. , 2023, , .		1
341	Software principles and concepts applied in the implementation of cyber-physical systems for real-time advanced process control. , 2023, , .		0
342	Supporting vPLC Networking over TSN with Kubernetes in Industry 4.0. , 2023, , .		0
350	Monitoring and Control of Motor Drive Parameters Using Internet of Things Protocol for Industrial Automation. Lecture Notes in Electrical Engineering, 2024, , 93-101.	0.3	0
352	METRICS: A Methodology forÂEvaluating andÂTesting theÂResilience ofÂIndustrial Control Systems toÂCyberattacks. Lecture Notes in Computer Science, 2024, , 25-45.	1.0	0
353	NexGuard: Industrial Cyber-Physical System Défense Using Ensemble Feature Selection and Explainable Deep Learning Techniques. , 2023, , .		0

ARTICLE

IF CITATIONS