Measurements of Energetic Particle Radiation in Transi Laboratory

Science 340, 1080-1084 DOI: 10.1126/science.1235989

Citation Report

#	Article	IF	CITATIONS
1	Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics, 2013, 9, 1134-1156.	1.4	61
2	The effects of radiation on angiogenesis. Vascular Cell, 2013, 5, 19.	0.2	37
3	Two distinct types of the inhibition of vasculogenesis by different species of charged particles. Vascular Cell, 2013, 5, 16.	0.2	31
4	Acute and Fractionated Exposure to High-LET ⁵⁶ Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis. Radiation Research, 2013, 180, 658-667.	0.7	59
5	Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for 'Fast Transit' Human Missions to Mars. , 2013, , .		8
6	Relative contributions of galactic cosmic rays and lunar proton "albedo―to dose and dose rates near the Moon. Space Weather, 2013, 11, 643-650.	1.3	26
7	Interplanetary Disturbances Affecting Space Weather. Proceedings of the International Astronomical Union, 2013, 8, 297-306.	0.0	2
8	Dose spectra from energetic particles and neutrons. Space Weather, 2013, 11, 547-556.	1.3	3
9	How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars. PLoS ONE, 2013, 8, e74988.	1.1	183
10	Spacecraft data nail down radiation risk for humans going to Mars. Nature, 2013, , .	13.7	0
11	Space Radiation Risks for Astronauts on Multiple International Space Station Missions. PLoS ONE, 2014, 9, e96099.	1.1	152
12	Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation. PLoS ONE, 2014, 9, e110269.	1.1	60
13	Stepping Stone. , 0, , 392-431.		0
14	The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment. Journal of Applied Physiology, 2014, 116, 1593-1604.	1.2	15
15	GCR environmental models I: Sensitivity analysis for GCR environments. Space Weather, 2014, 12, 217-224.	1.3	38
16	Influence of dust loading on atmospheric ionizing radiation on Mars. Journal of Geophysical Research: Space Physics, 2014, 119, 452-461.	0.8	21
17	Cosmic Rays: Hurdles on the Road to Mars. Nuclear Physics News, 2014, 24, 32-34.	0.1	2

#	Article	IF	CITATIONS
19	Increased dietary iron and radiation in rats promote oxidative stress, induce localized and systemic immune system responses, and alter colon mucosal environment. FASEB Journal, 2014, 28, 1486-1498.	0.2	14
20	Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?. Space Weather, 2014, 12, 622-632.	1.3	55
21	Comparison of Martian surface ionizing radiation measurements from MSLâ€RAD with Badhwarâ€O'Neill 2011/HZETRN model calculations. Journal of Geophysical Research E: Planets, 2014, 119, 1311-1321.	1.5	42
22	Diurnal variations of energetic particle radiation at the surface of Mars as observed by the Mars Science Laboratory Radiation Assessment Detector. Journal of Geophysical Research E: Planets, 2014, 119, 1345-1358.	1.5	44
23	Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life, 2014, 4, 491-510.	1.1	258
24	Positron Lifetime Studies of Irradiated Ultra-High Molecular Weight Polyethylene and Composites Made of Martian Regolith. Materials Science Forum, 0, 783-786, 1585-1590.	0.3	2
25	Analysis of the charged particle radiation effect for a CubeSat transiting from Earth to Mars. Current Applied Physics, 2014, 14, 575-581.	1.1	4
26	GCR environmental models II: Uncertainty propagation methods for GCR environments. Space Weather, 2014, 12, 225-232.	1.3	12
27	Variation of Proton Flux Profiles with the Observer's Latitude in Simulated Gradual SEP Events. Solar Physics, 2014, 289, 1745-1762.	1.0	15
28	Individual Differences in Attentional Deficits and Dopaminergic Protein Levels following Exposure to Proton Radiation. Radiation Research, 2014, 181, 258-271.	0.7	90
29	The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair, 2014, 17, 64-73.	1.3	52
30	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	6.0	475
31	Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO. Acta Astronautica, 2014, 104, 565-573.	1.7	30
32	Space radiation accelerator experiments – The role of neutrons and light ions. Life Sciences in Space Research, 2014, 3, 90-94.	1.2	29
33	²⁸ Silicon Radiation Impairs Neuronal Output in CA1 Neurons of Mouse Ventral Hippocampus without Altering Dendritic Excitability. Radiation Research, 2014, 181, 407-415.	0.7	30
34	Development of a Metabolomic Radiation Signature in Urine from Patients Undergoing Total Body Irradiation. Radiation Research, 2014, 181, 350.	0.7	76
35	56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo. Life Sciences in Space Research, 2014, 2, 70-79.	1.2	33
36	A Magnesium Diboride Superconducting Toroid for Astroparticle Shielding. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.1	16

#	Article	IF	CITATIONS
37	Verification of shielding effect by the water-filled materials for space radiation in the International Space Station using passive dosimeters. Advances in Space Research, 2014, 53, 1-7.	1.2	44
38	Space radiation protection: Destination Mars. Life Sciences in Space Research, 2014, 1, 2-9.	1.2	144
39	New challenges in high-energy particle radiobiology. British Journal of Radiology, 2014, 87, 20130626.	1.0	108
40	Space radiation effects on plant and mammalian cells. Acta Astronautica, 2014, 104, 419-431.	1.7	78
41	Space radiation risks to the central nervous system. Life Sciences in Space Research, 2014, 2, 54-69.	1.2	210
42	Effects of Fe particle irradiation on human endothelial barrier structure and function. Life Sciences in Space Research, 2014, 2, 29-37.	1.2	11
43	GCR environmental models III: GCR model validation and propagated uncertainties in effective dose. Space Weather, 2014, 12, 233-245.	1.3	18
44	Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module. Space Weather, 2014, 12, 112-119.	1.3	8
45	Space Radiation Superconducting Shields. Journal of Physics: Conference Series, 2014, 507, 032033.	0.3	10
46	Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars. Journal of Geophysical Research E: Planets, 2014, 119, 468-479.	1.5	64
47	Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss. Life Sciences in Space Research, 2015, 7, 53-56.	1.2	4
48	Designing an upgrade of the Medley setup for light-ion production and fission cross-section measurements. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 794, 141-150.	0.7	2
49	Space Radiation Dosimetry to Evaluate the Effect of Polyethylene Shielding in the Russian Segment of the International Space Station. Physics Procedia, 2015, 80, 25-35.	1.2	16
50	Comparison of the Effectiveness of Exposure to Low-LET Helium Particles (⁴ He) and Gamma Rays (¹³⁷ Cs) on the Disruption of Cognitive Performance. Radiation Research, 2015, 184, 266-272.	0.7	25
51	Nanomaterials for radiation shielding. MRS Bulletin, 2015, 40, 836-841.	1.7	118
52	Realâ€ŧime prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather, 2015, 13, 807-819.	1.3	30
53	Positron kinetics in an idealized PET environment. Scientific Reports, 2015, 5, 12674.	1.6	23
54	MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST <i>MSL</i> MARTIAN YEAR: 2012–2014. Astrophysical Journal, 2015, 810, 24.	1.6	43

#	Article	IF	CITATIONS
56	Variations of dose rate observed by MSL/RAD in transit to Mars. Astronomy and Astrophysics, 2015, 577, A58.	2.1	35
57	Space radiation and cardiovascular disease risk. World Journal of Cardiology, 2015, 7, 882.	0.5	75
58	Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration. Frontiers in Oncology, 2015, 5, 273.	1.3	22
59	Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators. Frontiers in Oncology, 2015, 5, 122.	1.3	46
60	Radiation survey in the International Space Station. Journal of Space Weather and Space Climate, 2015, 5, A37.	1.1	19
61	Medical Concerns with Space Radiation and Radiobiological Effects. , 2015, , 259-293.		3
62	Recommendations to mitigate against human health risks incurred due to energetic particle irradiation beyond low earth orbit/BLEO. Acta Astronautica, 2015, 109, 182-193.	1.7	20
63	Relative Effectiveness at 1 Gy after Acute and Fractionated Exposures of Heavy Ions with Different Linear Energy Transfer for Lung Tumorigenesis. Radiation Research, 2015, 183, 233-239.	0.7	34
64	Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes. ACS Nano, 2015, 9, 11942-11950.	7.3	111
65	MSL-RAD radiation environment measurements. Radiation Protection Dosimetry, 2015, 166, 290-294.	0.4	18
66	Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue. Journal of Interferon and Cytokine Research, 2015, 35, 480-487.	0.5	43
67	Selling space colonization and immortality: A psychosocial, anthropological critique of the rush to colonize Mars. Acta Astronautica, 2015, 113, 89-104.	1.7	29
68	Radiation environment at aviation altitudes and in space. Radiation Protection Dosimetry, 2015, 164, 477-483.	0.4	17
69	Space radiation-associated lung injury in a murine model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L416-L428.	1.3	36
70	What happens to your brain on the way to Mars. Science Advances, 2015, 1, .	4.7	179
71	EMMI—Electric solar wind sail facilitated Manned Mars Initiative. Acta Astronautica, 2015, 113, 22-28.	1.7	12
72	Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory. Life Sciences in Space Research, 2015, 5, 6-12.	1.2	34
73	Proton Radiation Alters Intrinsic and Synaptic Properties of CA1 Pyramidal Neurons of the Mouse Hippocampus. Radiation Research, 2015, 183, 208.	0.7	64

ARTICLE IF CITATIONS # Review of NASA Approach to Space Radiation Risk Assessments for Mars Exploration. Health Physics, 0.3 80 74 2015, 108, 131-142. Evaluation of the Application of Carbon Nanotubes for Radiation Shielding., 2015, , . 77 Your Brain on Mars. Radiation Research, 2015, 184, 1-2. 0.7 6 Concepts and challenges in cancer risk prediction for the space radiation environment. Life Sciences in Space Research, 2015, 6, 92-103. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway. Journal of 79 1.2 21 Cancer, 2016, 7, 174-183. Cultivation of Staphylococcus epidermidis in the Human Spaceflight Environment Leads to Alterations in the Frequency and Spectrum of Spontaneous Rifampicin-Resistance Mutations in the rpoB Gene. Frontiers in Microbiology, 2016, 7, 999. 1.5 The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection. Frontiers in 81 1.3 34 Oncology, 2016, 6, 65. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space 1.3 Missions. Frontiers in Oncology, 2016, 6, 97. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal 83 1.1 26 Network Integrity and Survival. PLoS ONE, 2016, 11, e0155260. Changes in the distribution and function of leukocytes after whole-body iron ion irradiation. Journal 84 0.8 of Radiation Research, 2016, 57, 477-491. Space Radiation and Human Exposures, A Primer. Radiation Research, 2016, 185, 349-358. 85 135 0.7 THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS. 1.6 86 Astrophysical Journal, 2016, 817, 14. DOSIS & amp; DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the 87 1.1 49 International Space Station (ISS). Journal of Space Weather and Space Climate, 2016, 6, A39. Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation. Radiation Research, 2016, 186, 614-623. The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. 89 1.1 70 Journal of Space Weather and Space Climate, 2016, 6, A13. Dried plum diet protects from bone loss caused by ionizing radiation. Scientific Reports, 2016, 6, 21343. Radiation impacts on human health during spaceflight beyond Low Earth Orbit. Reach, 2016, 2-4, 1-7. 91 0.4 5 Extreme solar event of AD775: Potential radiation exposure to crews in deep space. Acta Astronautica, 2016, 123, 116-120.

#	Article	IF	CITATIONS
93	Cosmic ray dose monitoring using RadFET sensors of the Rosetta instruments SESAME and COSIMA. Acta Astronautica, 2016, 125, 22-29.	1.7	7
94	Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation. Life Sciences in Space Research, 2016, 8, 52-67.	1.2	55
95	Exposure to 12 C particles alters the normal dynamics of brain monoamine metabolism and behaviour in rats. Physica Medica, 2016, 32, 1088-1094.	0.4	11
96	Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD). Life Sciences in Space Research, 2016, 10, 29-37.	1.2	23
97	Hibernation for space travel: Impact on radioprotection. Life Sciences in Space Research, 2016, 11, 1-9.	1.2	57
98	⁵⁶ Fe irradiation-induced cognitive deficits through oxidative stress in mice. Toxicology Research, 2016, 5, 1672-1679.	0.9	10
99	Reducing Mission Costs by Extending Crew Stay for Initial Crewed Missions to the Moon and Mars. , 2016, , .		0
100	Radiation environment onboard spacecraft at LEO and in deep space. , 2016, , .		7
101	Aquarius, a reusable water-based interplanetary human spaceflight transport. Acta Astronautica, 2016, 128, 160-179.	1.7	9
102	MULTI-VIEWPOINT OBSERVATIONS OF A WIDELY DISTRIBUTED SOLAR ENERGETIC PARTICLE EVENT: THE ROLE OF EUV WAVES AND WHITE-LIGHT SHOCK SIGNATURES. Astrophysical Journal, 2016, 821, 31.	1.6	26
103	Simulating the Lunar Environment: Partial Weightbearing and High-LET Radiation-Induce Bone Loss and Increase Sclerostin-Positive Osteocytes. Radiation Research, 2016, 186, 254-263.	0.7	23
104	Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Scientific Reports, 2016, 6, 29901.	1.6	144
105	High Energy Particle Radiation-associated Oncogenic Transformation in Normal Mice: Insight into the Connection between Activation of Oncotargets and Oncogene Addiction. Scientific Reports, 2016, 6, 37623.	1.6	11
106	Risk of defeats in the central nervous system during deep space missions. Neuroscience and Biobehavioral Reviews, 2016, 71, 621-632.	2.9	35
107	Segmental interpolating spectra for solar particle events and in situ validation. Space Weather, 2016, 14, 742-753.	1.3	5
108	Calibration and Characterization of the Radiation Assessment Detector (RAD) on Curiosity. Space Science Reviews, 2016, 201, 201-233.	3.7	30
109	Cosmic radiation exposure and persistent cognitive dysfunction. Scientific Reports, 2016, 6, 34774.	1.6	167
110	Large gradual solar energetic particle events. Living Reviews in Solar Physics, 2016, 13, 3.	7.8	308

#	Article	IF	CITATIONS
111	Interactions of protons with furan molecules studied by collision-induced emission spectroscopy at the incident energy range of 50–1000 eV. European Physical Journal D, 2016, 70, 1.	0.6	10
112	Mars ain't the kind of place to raise your kid: ethical implications of pregnancy on missions to colonize other planets. Life Sciences, Society and Policy, 2016, 12, 10.	3.1	7
113	Monte Carlo simulations for the space radiation superconducting shield project (SR2S). Life Sciences in Space Research, 2016, 8, 22-29.	1.2	26
114	Venturing into new realms? Microorganisms in space. FEMS Microbiology Reviews, 2016, 40, 722-737.	3.9	75
115	Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sciences in Space Research, 2016, 8, 38-51.	1.2	112
116	Martian Superoxide and Peroxide O ₂ Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications. Astrobiology, 2016, 16, 126-142.	1.5	5
117	Danger! Radiation!. Science and Fiction, 2016, , 187-210.	0.0	0
119	Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. Life Sciences in Space Research, 2017, 12, 24-31.	1.2	34
120	Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement. Journal of Geophysical Research E: Planets, 2017, 122, 329-341.	1.5	26
121	Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system. Life Sciences in Space Research, 2017, 12, 51-60.	1.2	20
122	Using spectral shape and predictor fluence to evaluate temporal dependence of exposures from solar particle events. Space Weather, 2017, 15, 374-391.	1.3	3
123	Irradiation effects on antibody performance in the frame of biochip-based instruments development for space exploration. International Journal of Astrobiology, 2017, 16, 82-90.	0.9	12
124	Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnology Advances, 2017, 35, 905-932.	6.0	48
125	Cosmic-ray interaction data for designing biological experiments in space. Life Sciences in Space Research, 2017, 13, 51-59.	1.2	13
126	Comparison of novel active semiconductor pixel detectorwith passive radiation detectors during the NASA Orion ExplorationÂFlight Test 1 (EFT-1). Radiation Measurements, 2017, 106, 290-297.	0.7	9
127	The DOSIS and DOSIS 3D project on-board the ISS $\hat{a} \in \mathbb{C}$ Current status and scientific overview. , 2017, , .		3
128	Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiation Research, 2017, 188, 191-203.	0.7	25
129	Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice. Life Sciences in Space Research, 2017, 13, 45-50.	1.2	16

#	Article	IF	CITATIONS
130	Non-Targeted Effects Models Predict Significantly Higher Mars Mission Cancer Risk than Targeted Effects Models. Scientific Reports, 2017, 7, 1832.	1.6	66
131	Stable, Reliable, and Bit-Interleaving 12T SRAM for Space Applications: A Device Circuit Co-Design. IEEE Transactions on Semiconductor Manufacturing, 2017, 30, 276-284.	1.4	50
132	Thick-target yields of secondary ions and neutrons for validation of radiation transport codes. , 2017, , .		4
133	Evaluation of HZETRN on the Martian surface: Sensitivity tests and model results. Life Sciences in Space Research, 2017, 14, 29-35.	1.2	14
134	NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit. Radiation Research, 2017, 187, 42-49.	0.7	0
135	High Energies and Radiation Effects. Lecture Notes in Physics, 2017, , 103-111.	0.3	0
136	Radiation and Radical Chemistry of Ionic Liquids for Energy Applications. ACS Symposium Series, 2017, , 251-272.	0.5	7
137	Proton Radiation Studies on Conjugated Polymer Thin Films. MRS Advances, 2017, 2, 2967-2972.	0.5	0
138	The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. Life Sciences in Space Research, 2017, 14, 18-28.	1.2	57
140	Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements. Life Sciences in Space Research, 2017, 14, 36-42.	1.2	9
141	Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit. Life Sciences in Space Research, 2017, 15, 69-78.	1.2	29
142	Interplanetary coronal mass ejection observed at STEREOâ€A, Mars, comet 67P/Churyumovâ€Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9ÂAU. Journal of Geophysical Research: Space Physics, 2017, 122, 7865-7890.	0.8	87
143	Novel Indications for Commonly Used Medications as Radiation Protectants in Spaceflight. Aerospace Medicine and Human Performance, 2017, 88, 665-676.	0.2	30
144	Triboelectric nanogenerator for Mars environment. Nano Energy, 2017, 39, 238-244.	8.2	49
145	DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016. Journal of Space Weather and Space Climate, 2017, 7, A8.	1.1	44
146	Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond. Space Science Reviews, 2017, 209, 83-181.	3.7	54
147	In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia, 2017, 31, 1398-1407.	3.3	28
148	Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Scientific Reports, 2017, 7, 18022.	1.6	264

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
149	A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles. Journal of Astrophysics and Astronomy, 2017, 38, 1.	0.4	0
150	Radiation neurobiology of long-term spaceflights. Biology Bulletin Reviews, 2017, 7, 443-468.	0.3	3
151	Personalized Medicine in Space Flight, Part II. , 2017, , 673-693.		1
152	Impact of Particle Irradiation on the Immune System: From the Clinic to Mars. Frontiers in Immunology, 2017, 8, 177.	2.2	52
153	Editorial: Charged Particles in Oncology. Frontiers in Oncology, 2017, 7, 301.	1.3	7
154	Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System. International Journal of Molecular Sciences, 2017, 18, 2117.	1.8	19
155	Modeling the effectiveness of shielding in the earth-moon-mars radiation environment using PREDICCS: five solar events in 2012. Journal of Space Weather and Space Climate, 2017, 7, A16.	1.1	5
156	MMR Deficiency Does Not Sensitize or Compromise the Function of Hematopoietic Stem Cells to Low and High LET Radiation. Stem Cells Translational Medicine, 2018, 7, 513-520.	1.6	4
157	Radiation: A Primer. SpringerBriefs in Space Development, 2018, , 1-14.	0.1	0
159	Solar Particle Events and Human Deep Space Exploration: Measurements and Considerations. , 2018, , 433-451.		9
160	Effects of ¹ H + ¹⁶ O Charged Particle Irradiation on Short-Term Memory and Hippocampal Physiology in a Murine Model. Radiation Research, 2018, 189, 53-63.	0.7	26
161	Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. Life Sciences in Space Research, 2018, 16, 101-107.	1.2	18
162	Charged particles radiation measurements with Liulin-MO dosimeter of FREND instrument aboard ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars orbit. Icarus, 2018, 303, 53-66.	1.1	28
163	Late effects of 1 H irradiation on hippocampal physiology. Life Sciences in Space Research, 2018, 17, 51-62.	1.2	19
164	Detecting Upward Directed Charged Particle Fluxes in the Mars Science Laboratory Radiation Assessment Detector. Earth and Space Science, 2018, 5, 2-18.	1.1	6
165	Biomedical Consequences of Exposure to Space Radiation. SpringerBriefs in Space Development, 2018, , 15-27.	0.1	1
166	Whole-Body Oxygen (¹⁶ O) Ion-Exposure-Induced Impairments in Social Odor Recognition Memory in Rats are Dose and Time Dependent. Radiation Research, 2018, 189, 292-299.	0.7	28
167	The effect of carbon irradiation is associated with greater oxidative stress in mouse intestine and colon relative to γ-rays. Free Radical Research, 2018, 52, 556-567.	1.5	13

#	Article	IF	CITATIONS
168	Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nature Reviews Cardiology, 2018, 15, 167-180.	6.1	161
169	COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECRAFT USING PHITS. Radiation Protection Dosimetry, 2018, 180, 146-149.	0.4	17
170	Analysis of the intellectual structure of human space exploration research using a bibliometric approach: Focus on human related factors. Acta Astronautica, 2018, 143, 169-182.	1.7	14
171	Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit. Astronomy and Astrophysics, 2018, 611, A79.	2.1	29
172	Space Radiation Effects on Crew During and After Deep Space Missions. Current Pathobiology Reports, 2018, 6, 167-175.	1.6	7
173	Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget, 2018, 9, 14692-14722.	0.8	62
174	Fine Resolution Epithermal Neutron Detector (FREND) Onboard the ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	33
175	"The Smartphone's Guide to the Galaxy― In Situ Analysis in Space. Biosensors, 2018, 8, 96.	2.3	14
176	Peripheral T Cells as a Biomarker for Oxygen-Ion-Radiation-Induced Social Impairments. Radiation Research, 2018, 190, 186.	0.7	27
177	Space Weather on the Surface of Mars: Impact of the September 2017 Events. Space Weather, 2018, 16, 1702-1708.	1.3	22
178	Alterations in synaptic density and myelination in response to exposure to high-energy charged particles. Journal of Comparative Neurology, 2018, 526, 2845-2855.	0.9	23
179	Analysis of the Radiation Hazard Observed by RAD on the Surface of Mars During the September 2017 Solar Particle Event. Geophysical Research Letters, 2018, 45, 5845-5851.	1.5	29
180	The effect of simulated space radiation on the <i>N</i> â€glycosylation of human immunoglobulin G1. Electrophoresis, 2018, 39, 2872-2876.	1.3	4
181	The Solar Particle Event on 10 September 2017 as observed onboard the International Space Station (ISS). Space Weather, 2018, 16, 1173-1189.	1.3	26
182	The Role of the Nuclear Factor κB Pathway in the Cellular Response to Low and High Linear Energy Transfer Radiation. International Journal of Molecular Sciences, 2018, 19, 2220.	1.8	11
183	Space Pharmacology: How Space Affects Pharmacology. , 2018, , 1-13.		4
184	Multi-spacecraft observations and transport simulations of solar energetic particles for the May 17th 2012 event. Astronomy and Astrophysics, 2018, 612, A116.	2.1	16
185	Spaceflight environment. , 2018, , 87-138.		11

#	Article	IF	CITATIONS
186	Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. International Journal of Molecular Sciences, 2018, 19, 1247.	1.8	23
187	Apoptosis Induction by Iron Radiation via Inhibition of Autophagy in Trp53+/- Mouse Testes: Is Chronic Restraint-Induced Stress a Modifying Factor?. International Journal of Biological Sciences, 2018, 14, 1109-1121.	2.6	16
188	A water-filled garment to protect astronauts during interplanetary missions tested on board the ISS. Life Sciences in Space Research, 2018, 18, 1-11.	1.2	18
189	Landing Area Selection Based on Closed Environment Avoidance from a Single Image During Optical Coarse Hazard Detection. Earth, Moon and Planets, 2018, 121, 73-104.	0.3	3
190	Female mice are protected from space radiation-induced maladaptive responses. Brain, Behavior, and Immunity, 2018, 74, 106-120.	2.0	98
191	A Simplified Ab Initio Cosmic-ray Modulation Model with Simulated Time Dependence and Predictive Capability. Astrophysical Journal, 2018, 859, 107.	1.6	40
192	Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Scientific Reports, 2019, 9, 12118.	1.6	49
193	A Review on Graphene Polymer Nanocomposites in Harsh Operating Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 17106-17129.	1.8	31
194	A review of radiation shielding needs and concepts for space voyages beyond Earth's magnetic influence. Progress in Aerospace Sciences, 2019, 110, 100553.	6.3	27
195	Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector. Life Sciences in Space Research, 2019, 22, 89-97.	1.2	13
196	A Semi-Autonomous Method to Detect Cosmic Rays in Raman Hyperspectral Data Sets. Applied Spectroscopy, 2019, 73, 1019-1027.	1.2	18
197	Effects of exposure to 12C and 4He particles on cognitive performance of intact and ovariectomized female rats. Life Sciences in Space Research, 2019, 22, 47-54.	1.2	12
198	Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. Npj Microgravity, 2019, 5, 15.	1.9	37
199	Positive impact of low-dose, high-energy radiation on bone in partial- and/or full-weightbearing mice. Npj Microgravity, 2019, 5, 13.	1.9	5
200	Design and dosimetry of a facility to study health effects following exposures to fission neutrons at low dose rates for long durations. International Journal of Radiation Biology, 2021, 97, 1063-1076.	1.0	16
201	Environmentally Robust Memristor Enabled by Leadâ€Free Double Perovskite for Highâ€Performance Information Storage. Small, 2019, 15, e1905731.	5.2	123
202	Particle Acceleration at the Pileup Collision of the Twin Shock. Astrophysical Journal, 2019, 885, 66.	1.6	4
203	Fractionated and Acute Proton Radiation Show Differential Intestinal Tumorigenesis and DNA Damage and Repair Pathway Response in ApcMin/+ Mice. International Journal of Radiation Oncology Biology Physics, 2019, 105, 525-536.	0.4	4

#	Article	IF	CITATIONS
204	The Oxygen Release Instrument: Space Mission Reactive Oxygen Species Measurements for Habitability Characterization, Biosignature Preservation Potential Assessment, and Evaluation of Human Health Hazards. Life, 2019, 9, 70.	1.1	0
205	Expression Profile of Cell Cycle-Related Genes in Human Fibroblasts Exposed Simultaneously to Radiation and Simulated Microgravity. International Journal of Molecular Sciences, 2019, 20, 4791.	1.8	21
206	Why Human Enhancement is Necessary for Successful Human Deep-space Missions. New Bioethics, 2019, 25, 295-317.	0.5	12
207	Hibernation and Radioprotection: Gene Expression in the Liver and Testicle of Rats Irradiated under Synthetic Torpor. International Journal of Molecular Sciences, 2019, 20, 352.	1.8	26
208	Short and Long-Term Changes in Social Odor Recognition and Plasma Cytokine Levels Following Oxygen (16O) Ion Radiation Exposure. International Journal of Molecular Sciences, 2019, 20, 339.	1.8	18
209	5.2.5â€∫Calibration of Detectors that Have Flown on Mir, ISS, Lunar Reconnaissance Orbiter, the Orion Spacecraft and the Mars Science Laboratory. Radioisotopes, 2019, 68, 433-441.	0.1	0
210	Update on Galactic Cosmic Ray Integral Flux Measurements in Lunar Orbit With CRaTER. Space Weather, 2019, 17, 1011.	1.3	8
211	Radiation Risks and Countermeasures for Humans on Deep Space Missions. , 2019, , .		8
212	Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions (160). Life Sciences in Space Research, 2019, 22, 8-15.	1.2	13
213	Research plans in Europe for radiation health hazard assessment in exploratory space missions. Life Sciences in Space Research, 2019, 21, 73-82.	1.2	47
214	Risks of cognitive detriments after low dose heavy ion and proton exposures. International Journal of Radiation Biology, 2019, 95, 985-998.	1.0	51
215	Current status of space radiobiological studies in China. Life Sciences in Space Research, 2019, 22, 1-7.	1.2	9
216	Radiation-Induced DNA Damage Cooperates with Heterozygosity of TP53 and PTEN to Generate High-Grade Gliomas. Cancer Research, 2019, 79, 3749-3761.	0.4	23
217	Mitochondrial proteomics reveals the mechanism of spermatogenic cells apoptosis induced by carbon ion radiation in zebrafish. Journal of Cellular Physiology, 2019, 234, 22439-22449.	2.0	5
218	Galactic Cosmic Ray induced absorbed dose rate in deep space – Accounting for detector size, shape, material, as well as for the solar modulation. Journal of Space Weather and Space Climate, 2019, 9, A14.	1.1	12
219	Personalized Nutrition: Translating the Science of NutriGenomics Into Practice: Proceedings From the 2018 American College of Nutrition Meeting. Journal of the American College of Nutrition, 2019, 38, 287-301.	1.1	27
220	Comparison of Measured and Predicted Values of Absorbed Doses from Galactic Cosmic Rays. Cosmic Research, 2019, 57, 44-47.	0.2	2
221	Late Effects of 16O-Particle Radiation on Female Social and Cognitive Behavior and Hippocampal Physiology. Radiation Research, 2019, 191, 278.	0.7	25

#	Article	IF	CITATIONS
222	The Million Person Study relevance to space exploration and Mars. International Journal of Radiation Biology, 2022, 98, 551-559.	1.0	24
223	Behavioral effects of space radiation: A comprehensive review of animal studies. Life Sciences in Space Research, 2019, 21, 1-21.	1.2	70
224	Epigenetic modification by galactic cosmic radiation as a risk factor for lung cancer: real world data issues. Translational Lung Cancer Research, 2019, 8, 116-116.	1.3	1
225	A Lunar Microbial Survival Model for Predicting the Forward Contamination of the Moon. Astrobiology, 2019, 19, 730-756.	1.5	18
226	Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know?. Astrobiology, 2019, 19, 951-974.	1.5	24
227	Why space colonization will be fully automated. Technological Forecasting and Social Change, 2019, 143, 162-171.	6.2	25
228	Applied nuclear physics at the new high-energy particle accelerator facilities. Physics Reports, 2019, 800, 1-37.	10.3	46
229	Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Frontiers in Physiology, 2019, 10, 179.	1.3	61
230	Tracking and Validating ICMEs Propagating Toward Mars Using STEREO Heliospheric Imagers Combined With Forbush Decreases Detected by MSL/RAD. Space Weather, 2019, 17, 586-598.	1.3	9
231	Radiation Tolerance of Nanopore Sequencing Technology for Life Detection on Mars and Europa. Scientific Reports, 2019, 9, 5370.	1.6	23
232	First results from the LUCID-Timepix spacecraft payload onboard the TechDemoSat-1 satellite in Low Earth Orbit. Advances in Space Research, 2019, 63, 1523-1540.	1.2	15
233	Comparisons of Highâ€Linear Energy Transfer Spectra on the ISS and in Deep Space. Space Weather, 2019, 17, 396-418.	1.3	13
234	LGM2605 Reduces Space Radiation-Induced NLRP3 Inflammasome Activation and Damage in In Vitro Lung Vascular Networks. International Journal of Molecular Sciences, 2019, 20, 176.	1.8	16
235	A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Therapeutic Hypothermia and Temperature Management, 2019, 9, 13-47.	0.3	55
236	Cardiovascular effects of space radiation: implications for future human deep space exploration. European Journal of Preventive Cardiology, 2019, 26, 1707-1714.	0.8	11
237	Charge Transfer, Complexes Formation and Furan Fragmentation Induced by Collisions with Low-Energy Helium Cations. International Journal of Molecular Sciences, 2019, 20, 6022.	1.8	6
238	The German Aerospace Center M-42 radiation detector—A new development for applications in mixed radiation fields. Review of Scientific Instruments, 2019, 90, 125115.	0.6	11
239	Increased Chromosome Aberrations in Cells Exposed Simultaneously to Simulated Microgravity and Radiation. International Journal of Molecular Sciences, 2019, 20, 43.	1.8	30

#	Article	IF	CITATIONS
240	Nuclear interactions and medicine. European Physical Journal Plus, 2019, 134, 1.	1.2	0
241	Pharmacogenomics in Spaceflight. , 2019, , 1-39.		3
242	Silicon equivalent gas in silicon equivalent proportional counter - Monte Carlo simulations. Radiation Physics and Chemistry, 2020, 167, 108259.	1.4	1
243	Cancer and circulatory disease risks for a human mission to Mars: Private mission considerations. Acta Astronautica, 2020, 166, 529-536.	1.7	16
244	Ethical Challenges in Human Space Missions: A Space Refuge, Scientific Value, and Human Gene Editing for Space. Science and Engineering Ethics, 2020, 26, 1209-1227.	1.7	11
245	Correct modeling results are needed to inform mission planning and shield design. Life Sciences in Space Research, 2020, 25, 143-147.	1.2	2
246	Ethical issues of human enhancements for space missions to Mars and beyond. Futures, 2020, 115, 102489.	1.4	16
247	The 20th Gray lecture 2019: health and heavy ions. British Journal of Radiology, 2020, 93, 20200172.	1.0	16
248	The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart and Vasculature, 2020, 30, 100595.	0.6	30
249	Collision-induced luminescence spectra of pyridine bombarded by 1000ÂeV He+ cations. Results in Physics, 2020, 18, 103244.	2.0	2
250	Updated deterministic radiation transport for future deep space missions. Life Sciences in Space Research, 2020, 27, 6-18.	1.2	15
251	Effect of low-dose fast neutrons on the protein components of peripheral blood mononuclear cells of whole-body irradiated Wistar rats. Environmental Science and Pollution Research, 2020, 27, 40443-40455.	2.7	12
252	Neutron radiation shielding composites for deep space exploration: An introduction. , 2020, , 263-285.		3
253	Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell, 2020, 183, 1162-1184.	13.5	185
254	Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells. Npj Microgravity, 2020, 6, 34.	1.9	12
255	Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain?. British Journal of Radiology, 2020, 93, 20200245.	1.0	6
256	Relative Biological Effectiveness of High LET Particles on the Reproductive System and Fetal Development. Life, 2020, 10, 298.	1.1	6
257	Immunological Changes During Space Travel: A Ground-Based Evaluation of the Impact of Neutron Dose Rate on Plasma Cytokine Levels in Human Whole Blood Cultures. Frontiers in Physics, 2020, 8, .	1.0	1

#	Article	IF	CITATIONS
258	Warning Time Analysis From SEP Simulations of a Twoâ€Tier REleASE System Applied to Mars Exploration. Space Weather, 2020, 18, e2019SW002354.	1.3	10
259	Space Pharmacology: How Space Affects Pharmacology. , 2020, , 519-531.		0
261	Calculation of dose distribution in a realistic brain structure and the indication of space radiation influence on human brains. Life Sciences in Space Research, 2020, 27, 33-48.	1.2	5
262	Benchmarking risk predictions and uncertainties in the NSCR model of GCR cancer risks with revised low let risk coefficients. Life Sciences in Space Research, 2020, 27, 64-73.	1.2	13
263	Life Support Systems for Humans in Space. , 2020, , .		9
264	Hybrid Active-Passive Space Radiation Simulation Concept for GSI and the Future FAIR Facility. Frontiers in Physics, 2020, 8, .	1.0	16
265	Effects of Six Sequential Charged Particle Beams on Behavioral and Cognitive Performance in B6D2F1 Female and Male Mice. Frontiers in Physiology, 2020, 11, 959.	1.3	23
266	Trajectory Design of Perseus: A CubeSat Mission Concept to Phobos. Aerospace, 2020, 7, 179.	1.1	4
267	NASA's first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. PLoS Biology, 2020, 18, e3000669.	2.6	144
268	Why Personalized Medicine Is the Frontier of Medicine and Performance for Humans in Space. New Space, 2020, 8, 63-76.	0.4	9
269	Investigation of shielding material properties for effective space radiation protection. Life Sciences in Space Research, 2020, 26, 69-76.	1.2	57
270	Unloading-Induced Cortical Bone Loss is Exacerbated by Low-Dose Irradiation During a Simulated Deep Space Exploration Mission. Calcified Tissue International, 2020, 107, 170-179.	1.5	15
272	Galactic Cosmic Ray Shielding Using Spherical Field-Reversed Array of Superconducting Coils. Journal of Spacecraft and Rockets, 2020, 57, 1222-1231.	1.3	7
273	Space weather: Variability in the Sun-Earth connection. , 2020, , 61-85.		0
274	The case for biotech on Mars. Nature Biotechnology, 2020, 38, 401-407.	9.4	53
275	Effects of single-dose protons or oxygen ions on function and structure of the cardiovascular system in male Long Evans rats. Life Sciences in Space Research, 2020, 26, 62-68.	1.2	8
276	Mars neutron radiation environment from HEND/Odyssey and DAN/MSL observations. Planetary and Space Science, 2020, 184, 104866.	0.9	9
277	Protons Show Greater Relative Biological Effectiveness for Mammary Tumorigenesis with Higher ERα- and HER2-Positive Tumors Relative to γ-rays in APCMin/+ Mice. International Journal of Radiation Oncology Biology Physics, 2020, 107, 202-211.	0.4	1

#	Article	IF	CITATIONS
278	A Solid-State Microdosimeter for Dose and Radiation Quality Monitoring for Astronauts in Space. IEEE Transactions on Nuclear Science, 2020, 67, 169-174.	1.2	9
279	Shielding effectiveness: A weighted figure of merit for space radiation shielding. Applied Radiation and Isotopes, 2020, 161, 109141.	0.7	12
280	Aspergillus niger Spores Are Highly Resistant to Space Radiation. Frontiers in Microbiology, 2020, 11, 560.	1.5	47
281	Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion– and γ-ray–induced tumors. Science Advances, 2020, 6, eaax5940.	4.7	26
282	Space Radiation Biology for "Living in Space― BioMed Research International, 2020, 2020, 1-25.	0.9	75
283	Simultaneous exposure to chronic irradiation and simulated microgravity differentially alters immune cell phenotype in mouse thymus and spleen. Life Sciences in Space Research, 2021, 28, 66-73.	1.2	12
284	Improved radiation shielding analysis considering vector calculus. International Journal of Energy Research, 2021, 45, 11904-11915.	2.2	0
285	Analysis of Coronal Mass Ejection Flux Rope Signatures Using 3DCORE and Approximate Bayesian Computation. Astrophysical Journal, Supplement Series, 2021, 252, 9.	3.0	24
286	Space Radiation Shielding. , 2021, , 353-375.		4
287	High Energies and Radiation Effects. Lecture Notes in Physics, 2021, , 135-149.	0.3	0
287 289	High Energies and Radiation Effects. Lecture Notes in Physics, 2021, , 135-149. Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 2021, 28, 22-25.	0.3	0 8
	Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space		
289	Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 2021, 28, 22-25.	1.2	8
289 290	Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 2021, 28, 22-25. Design and Realization of China Tianwen-1 Energetic Particle Analyzer. Space Science Reviews, 2021, 217, 1. Prediction of Leakage Current and Depletion Voltage in Silicon Detectors Under Extraterrestrial	1.2 3.7	8
289 290 291	Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 2021, 28, 22-25. Design and Realization of China Tianwen-1 Energetic Particle Analyzer. Space Science Reviews, 2021, 217, 1. Prediction of Leakage Current and Depletion Voltage in Silicon Detectors Under Extraterrestrial Radiation Conditions. Frontiers in Physics, 2021, 9, . Electronic energy loss and straggling in low energy H ⁺ and H ₂ ⁺	1.2 3.7 1.0	8 5 0
289 290 291 292	Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 2021, 28, 22-25. Design and Realization of China Tianwen-1 Energetic Particle Analyzer. Space Science Reviews, 2021, 217, 1. Prediction of Leakage Current and Depletion Voltage in Silicon Detectors Under Extraterrestrial Radiation Conditions. Frontiers in Physics, 2021, 9, . Electronic energy loss and straggling in low energy H ⁺ and H ₂ ⁺ interaction with silicon films. Radiation Effects and Defects in Solids, 2021, 176, 73-91.	1.2 3.7 1.0	8 5 0 7
289 290 291 292 293	Impact of galactic cosmic ray simulation on nutritional content of foods. Life Sciences in Space Research, 2021, 28, 22-25. Design and Realization of China Tianwen-1 Energetic Particle Analyzer. Space Science Reviews, 2021, 217, 1. Prediction of Leakage Current and Depletion Voltage in Silicon Detectors Under Extraterrestrial Radiation Conditions. Frontiers in Physics, 2021, 9, . Electronic energy loss and straggling in low energy H ⁺ and H ₂ ⁺ interaction with silicon films. Radiation Effects and Defects in Solids, 2021, 176, 73-91. The RadMap Telescope on the International Space Station., 2021,,. The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars	1.2 3.7 1.0 0.4	8 5 0 7 1

#	Article	IF	CITATIONS
297	The Particle Radiobiology of Multipotent Mesenchymal Stromal Cells: A Key to Mitigating Radiation-Induced Tissue Toxicities in Cancer Treatment and Beyond?. Frontiers in Oncology, 2021, 11, 616831.	1.3	1
299	The Potential of Physical Exercise to Mitigate Radiation Damage—A Systematic Review. Frontiers in Medicine, 2021, 8, 585483.	1.2	3
300	CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport. Space Weather, 2021, 19, e2020SW002654.	1.3	18
301	Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiology of Disease, 2021, 151, 105252.	2.1	20
302	The connection between space weather and Single Event Upsets in polar low earth orbit satellites. Advances in Space Research, 2021, 67, 3237-3249.	1.2	2
303	Space missions: psychological and psychopathological issues. CNS Spectrums, 2022, 27, 536-540.	0.7	9
304	Observations of neutron radiation environment during Odyssey cruise to Mars. Life Sciences in Space Research, 2021, 29, 53-62.	1.2	3
305	Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures. Npj Microgravity, 2021, 7, 15.	1.9	2
306	Comparison between PHITS and GEANT4 Simulations of the Heavy Ion Beams at the BEVALAC at LBNL and the Booster Accelerator at BNL. Life Sciences in Space Research, 2021, 29, 38-45.	1.2	5
307	China's Mars Exploration Mission and Science Investigation. Space Science Reviews, 2021, 217, 1.	3.7	66
308	An easy-to-use function to assess deep space radiation in human brains. Scientific Reports, 2021, 11, 11687.	1.6	5
309	Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station. Science Advances, 2021, 7, .	4.7	18
310	Transcriptomic analysis links hepatocellular carcinoma (HCC) in HZE ion irradiated mice to a human HCC subtype with favorable outcomes. Scientific Reports, 2021, 11, 14052.	1.6	3
311	Ad Astra – telomeres in space!. International Journal of Radiation Biology, 2022, 98, 395-403.	1.0	5
313	What can space radiation protection learn from radiation oncology?. Life Sciences in Space Research, 2021, 30, 82-95.	1.2	8
314	Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life, 2021, 11, 829.	1.1	13
315	Parametric scaling of a magnetic field-reversed conducting coil assembly for radiation shielding. Advances in Space Research, 2021, 68, 4100-4112.	1.2	4
316	Space Radiation Dosimetry at the Exposure Facility of the International Space Station for the Tanpopo Mission. Astrobiology, 2021, 21, 1473-1478.	1.5	15

#	Article	IF	CITATIONS
317	Acute, Low-Dose Neutron Exposures Adversely Impact Central Nervous System Function. International Journal of Molecular Sciences, 2021, 22, 9020.	1.8	6
318	Biologically-Based and Physiochemical Life Support and In Situ Resource Utilization for Exploration of the Solar System—Reviewing the Current State and Defining Future Development Needs. Life, 2021, 11, 844.	1.1	10
319	Commissioning of a bubble chamber for space radiation dosimetry. CEAS Space Journal, 0, , 1.	1.1	0
320	Repairable Polymer Solid Electrolyte Gated MoS ₂ Field Effect Devices with Large Radiation Tolerance. Advanced Electronic Materials, 2022, 8, 2100619.	2.6	3
321	Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	27
322	Identification of novel biomarkers of heavy ion exposure: Proteins, miRNAs and tRNA-derived fragments in serum. Acta Astronautica, 2021, 186, 329-336.	1.7	4
323	Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation. Frontiers in Systems Neuroscience, 2021, 15, 713131.	1.2	6
324	A Multiâ€Purpose Heliophysics L4 Mission. Space Weather, 2021, 19, e2021SW002777.	1.3	15
325	Degradation mechanism of Schottky P-GaN gate stack in GaN power devices under neutron irradiation. Applied Physics Letters, 2021, 119, .	1.5	6
326	Beating 1 Sievert: Optimal Radiation Shielding of Astronauts on a Mission to Mars. Space Weather, 2021, 19, e2021SW002749.	1.3	20
327	The use and validation of the Convection-Diffusion approximation in cosmic-rays modulation studies. Advances in Space Research, 2021, 68, 2974-2987.	1.2	1
328	Applicability of composite materials for space radiation shielding of spacecraft. Life Sciences in Space Research, 2021, 31, 71-79.	1.2	24
329	Bone Loss. , 2021, , 117-128.		1
330	Space Radiation-Induced Carcinogenesis. , 2021, , 347-352.		0
331	Spaceflight Metabolism and Nutritional Support. , 2019, , 413-439.		7
332	High-Resolution Electron Energy Loss Spectroscopy: Absolute Cross Section Measurements for Low Energy Electron Scattering from Biomolecules. Bioanalysis, 2019, , 3-42.	0.1	2
333	Countermeasures. , 2020, , 199-242.		1
334	Space Radiation Shielding. , 2019, , 1-17.		6

#	Article		CITATIONS
335	Bone Loss. , 2020, , 1-10.		1
336	Solar Energetic Particles and Space Weather: Science and Applications. Astrophysics and Space Science Library, 2018, , 1-26.	1.0	18
337	Risk estimation of the low-dose fast neutrons on the molecular structure of the lipids of peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 2020, 533, 1048-1053.	1.0	11
338	Noninvasive Brain Stimulation & Space Exploration: Opportunities and Challenges. Neuroscience and Biobehavioral Reviews, 2020, 119, 294-319.	2.9	23
339	Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Scientific Reports, 2016, 6, 31853.	1.6	16
340	Long term variations of galactic cosmic radiation on board the International Space Station, on the Moon and on the surface of Mars. Journal of Space Weather and Space Climate, 0, , .	1.1	13
341	Radiation dose and its protection in the Moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube. Journal of Radiological Protection, 2020, 40, 947-961.	0.6	19
342	Estimation of the Astronaut's Doses inside the Spacecraft Habitable Module in Deep Space. Physics of Particles and Nuclei, 2020, 51, 988-993.	0.2	2
343	Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes. PLoS ONE, 2014, 9, e111362.	1.1	5
344	Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints. PLoS ONE, 2016, 11, e0153998.	1.1	35
345	Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice. PLoS ONE, 2017, 12, e0189466.	1.1	11
346	Role of High-Linear Energy Transfer Radiobiology in Space Radiation Exposure Risks. International Journal of Particle Therapy, 2018, 5, 151-159.	0.9	23
347	New Concerns for Neurocognitive Function during Deep Space Exposures to Chronic, Low Dose-Rate, Neutron Radiation. ENeuro, 2019, 6, ENEURO.0094-19.2019.	0.9	80
348	The Protective Effect of Estrogen Against Radiation Cataractogenesis is Dependent Upon the Type of Radiation. Radiation Research, 2020, 194, 557-565.	0.7	3
349	Intestinal stem cells acquire premature senescence and senescence associated secretory phenotype concurrent with persistent DNA damage after heavy ion radiation in mice. Aging, 2019, 11, 4145-4158.	1.4	27
350	Aerospace dermatology. Indian Journal of Dermatology, 2017, 62, 79.	0.1	11
351	Effects of Age on the Disruption of Cognitive Performance by Exposure to Space Radiation. Journal of Behavioral and Brain Science, 2014, 04, 297-307.	0.2	25
352	A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. International Journal of Radiation Biology, 2022, 98, 795-821.	1.0	26

#	Article	IF	CITATIONS
353	Platelets in Wound Healing: What Happens in Space?. Frontiers in Bioengineering and Biotechnology, 2021, 9, 716184.	2.0	24
354	Comparative Analysis of the Effect of Carbon- and Titanium-Ions Irradiation on Morpho-Anatomical and Biochemical Traits of Dolichos melanophthalmus DC. Seedlings Aimed to Space Exploration. Plants, 2021, 10, 2272.	1.6	9
355	Medical and Radiobiological Effects from Space Radiation. , 2014, , 1-30.		0
356	Medical Concerns with Space Radiation and Radiobiological Effects. , 2015, , 1-30.		0
358	Proton radiation effects of conjugated polymer thin films. Radiation Effects and Defects in Solids, 2017, 172, 355-363.	0.4	2
359	Exploration of Our Solar System. , 2018, , 243-309.		0
360	Radiation Dosimetry and Detection. SpringerBriefs in Space Development, 2018, , 49-61.	0.1	0
361	Computer-Assisted formulas predicting radiation-exposure-induced-cancer risk in interplanetary travelers: Radiation safety for astronauts in space flight to mars. Journal of Medical Sciences (Taiwan), 2018, 38, 150.	0.1	1
363	Logistics of Reproduction in Space. , 2019, , 1-16.		2
364	Space-Radiation Induced Carcinogenesis. , 2019, , 1-5.		0
365	Bone Loss. , 2019, , 1-9.		0
366	Spaceflight Pharmacology. , 2019, , 815-840.		4
367	Radiation and Radiation Disorders. , 2019, , 39-108.		2
368	RADIATION EXPOSURE DURING THE ORBITAL AND INTERPLANETARY SPACEFLIGHTS: MONITORING AND PROTECTION. Ekologiya Cheloveka (Human Ecology), 2019, 26, 4-9.	0.2	4
369	MISSION TO MARS: RADIATION SAFETY OR RADIATION DISASTER? SPACE TRANSIT AND MARS RADIATION EXPOSURE RISKS – THE POTENTIAL SHIELDING EFFECT OF AN INTRAVEHICULAR GRAPHENE SPACE SUIT AND A STORM SHELTER DURING SPACE TRAVEL. Journal of the Australasian Society of Aerospace Medicine, 2020, 11, 1-9.	0.1	0
370	Stress and Radiation Responsiveness. , 2020, , 373-404.		2
371	Space Radiation Shielding. , 2020, , 1-17.		1
373	The MIDAS dosimeter/particle monitor of charged particles and neutrons for space environment.	0.7	0

	CITATIO	on Report	
#	Article	IF	CITATIONS
374	Radiation in Space: The Physics. SpringerBriefs in Space Life Sciences, 2020, , 7-43.	0.1	1
375	Space-Radiation Induced Carcinogenesis. , 2020, , 1-5.		0
376	Space Physiology and Psychology. , 2020, , 25-74.		0
377	Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Frontiers in Public Health, 2021, 9, 733337.	1.3	7
378	Evolution of the Scientific Instrumentation for In Situ Mars Exploration. , 0, , .		2
379	Effect of Gender on the Radiation Sensitivity of Murine Blood Cells. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2014, 2, 25-31.	0.3	6
380	In situ resource utilisation: The potential for space biomining. Minerals Engineering, 2022, 176, 107288.	1.8	13
381	Extracellular vesicles-derived microRNAs expression as biomarkers for neurological radiation injury: Risk assessment for space exploration. Life Sciences in Space Research, 2022, 32, 54-62.	1.2	6
382	Effects of a 33-ion sequential beam galactic cosmic ray analog on male mouse behavior and evaluation of CDDO-EA as a radiation countermeasure. Behavioural Brain Research, 2022, 419, 113677.		9
383	Combined Effects of Proton Radiation and Simulated Microgravity on the Cell Viability and ALP Activity of Murine Osteoblast Cells. Frontiers in Public Health, 2021, 9, 759236.	1.3	4
384	Biological Protection in Deep Space Missions. Journal of Biomedical Physics and Engineering, 2021, 11, 663-674.	0.5	10
385	Long term food stability for extended space missions: a review. Life Sciences in Space Research, 2022, 32, 79-95.	1.2	11
386	A Review on Human Interplanetary Exploration Challenges. , 2022, , .		4
387	Response of Arabidopsis thaliana and Mizuna Mustard Seeds to Simulated Space Radiation Exposures. Life, 2022, 12, 144.	1.1	7
388	The smallest space miners: principles of space biomining. Extremophiles, 2022, 26, 7.	0.9	26
389	A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover. Science Robotics, 2022, 7, eabj6660.	9.9	25
390	Experimental and Simulation Study on Shielding Performance of Developed Hydrogenous Composites. Space: Science & Technology, 2022, 2022, .	1.0	4
391	Radiation Effects on Methamphetamine Pharmacokinetics and Pharmacodynamics in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 2022, 47, 319.	0.6	0

		CITATION RE	PORT	
#	Article		IF	Citations
392	The crewed journey to Mars and its implications for the human microbiome. Microbiome	, 2022, 10, 26.	4.9	14
393	Dose Limits and Countermeasures for Mitigating Radiation Risk in Moon and Mars Explo Physics, 2022, 4, 172-184.	ration.	0.5	5
394	Effect of Gender on the Radiation Sensitivity of Murine Blood Cells. Gravitational and Spa Publication of the American Society for Gravitational and Space Research, 2014, 2, 25-3		0.3	20
396	Pharmacogenomics in Spaceflight. , 2022, , 389-427.			2
397	Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Ma Landing Site. Astrobiology, 2022, , .	rs 2020	1.5	1
398	The Effects of Space Radiation and Microgravity on Ocular Structures. Türk Oftalmolo 52, 57-63.	ji Dergisi, 2022,	0.4	4
399	Predictions and Possible Solutions for the Sustainability of Mars Settlement. Studia Hum 22-31.	iana, 2022, 11,	0.1	1
401	Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosi After Eight Years of Surface Operations. Space Science Reviews, 2022, 218, 14.	ty Rover	3.7	25
402	Thick shielding against galactic cosmic radiation: A Monte Carlo study with focus on the secondary neutrons. Life Sciences in Space Research, 2022, 33, 58-68.	role of	1.2	16
403	Neutral Dissociation of Pyridine Evoked by Irradiation of Ionized Atomic and Molecular H Beams. International Journal of Molecular Sciences, 2022, 23, 205.	ydrogen	1.8	1
404	Dose-Rate Effects of Protons and Light lons for DNA Damage Induction, Survival and Tra in Apparently Normal Primary Human Fibroblasts. Radiation Research, 2021, 197, .	nsformation	0.7	2
405	Comparative analysis among materials for passive shielding in a manned Mars mission. A and Space Science, 2021, 366, 1.	strophysics	0.5	13
406	Cardiovascular risk in high-hazard occupations: the role of occupational cardiology. Euro Journal of Preventive Cardiology, 2022, 29, 702-713.	pean	0.8	4
407	Enhanced Effects of Chronic Restraint-Induced Psychological Stress on Total Body Fe-Irradiation-Induced Hematopoietic Toxicity in Trp53-Heterozygous Mice. Life, 2022, 1	2, 565.	1.1	0
408	The Martian surface radiation environment at solar minimum measured with MSL/RAD. Io 393, 115035.	carus, 2023,	1.1	2
417	Effectiveness of Martian regolith as a radiation shield. Planetary and Space Science, 202.	2, 218, 105517.	0.9	6
418	Design of a set of habitat units and the corresponding surrounding cluster for long-term missions in the pre-terraforming era on Mars. Icarus, 2022, 385, 115119.	scientific	1.1	5
419	Future of life in the Solar System and beyond. , 2022, , 255-283.			1

#	Article	IF	CITATIONS
420	Heavy-Ion-Induced Lung Tumors: Dose- & amp; LET-Dependence. Life, 2022, 12, 907.	1.1	0
421	The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions. Atmosphere, 2022, 13, 926.	1.0	4
422	Accelerating space radiation countermeasure development through drug repurposing. Life Sciences in Space Research, 2022, 35, 30-35.	1.2	3
423	Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. International Journal of Molecular Sciences, 2022, 23, 7465.	1.8	7
424	Routine omics collection is a golden opportunity for European human research in space and analog environments. Patterns, 2022, , 100550.	3.1	3
425	First Report of a Solar Energetic Particle Event Observed by China's Tianwen-1 Mission in Transit to Mars. Astrophysical Journal Letters, 2022, 934, L15.	3.0	2
426	Quantitative proteomic analytic approaches to identify metabolic changes in the medial prefrontal cortex of rats exposed to space radiation. Frontiers in Physiology, 0, 13, .	1.3	3
427	Comparison of biological measurement and physical estimates of space radiation in the International Space Station. Heliyon, 2022, 8, e10266.	1.4	4
428	The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. Life, 2022, 12, 1176.	1.1	4
429	Considerations for practical dose equivalent assessment of space radiation and exposure risk reduction in deep space. Scientific Reports, 2022, 12, .	1.6	3
431	Evolving radiological protection guidelines for exploration-class missions. Life Sciences in Space Research, 2023, 36, 70-77.	1.2	2
432	Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation. Life, 2022, 12, 1306.	1.1	1
433	Carcinogenesis induced by space radiation: A systematic review. Neoplasia, 2022, 32, 100828.	2.3	9
434	Conceptual design and research on the thermal performance of a martian human base. Acta Astronautica, 2022, 200, 524-538.	1.7	4
435	Spacecraft Scale Magnetospheric Protection from Galactic Cosmic Radiation. , 2022, , .		0
436	Predominant contribution of the dose received from constituent heavy-ions in the induction of gastrointestinal tumorigenesis after simulated space radiation exposure. Radiation and Environmental Biophysics, 2022, 61, 631-637.	0.6	2
437	Radiation environment in exploration-class space missions and plants' responses relevant for cultivation in Bioregenerative Life Support Systems. Frontiers in Plant Science, 0, 13, .	1.7	6
438	Synthetic torpor protects rats from exposure to accelerated heavy ions. Scientific Reports, 2022, 12, .	1.6	4

		CITATION F	Report	
#	Article		IF	CITATIONS
439	Contemporary review of dermatologic conditions in space flight and future implications long-duration exploration missions. Life Sciences in Space Research, 2022, , .	for	1.2	0
440	Radiation dose rate effects: what is new and what is needed?. Radiation and Environmen 2022, 61, 507-543.	tal Biophysics,	0.6	20
441	Critical Mars Mission Elements. , 2023, , 203-323.			0
442	Central Nervous System Neoplasms in Microgravity. , 2022, , 107-121.			1
443	The Effects of Combined Exposure to Simulated Microgravity, Ionizing Radiation, and Co In Vitro Wound Healing Process. Cells, 2023, 12, 246.	rtisol on the	1.8	5
444	More efficient induction of genotoxicity by high-LET Fe-particle radiation than low-LET X- at low doses. Radiation Medicine and Protection, 2023, 4, 11-18.	ray radiation	0.4	1
445	Radiation-Tolerant Proton Detector Based on the MAPbBr ₃ Single Crystal. A Electronic Materials, 2023, 5, 381-387.	CS Applied	2.0	1
446	Results from the Radiation Assessment Detector on the International Space Station: Part Charged Particle Detector. Life Sciences in Space Research, 2023, , .	: 1, the	1.2	1
447	Towards sustainable human space exploration—priorities for radiation research to quar mitigate radiation risks. Npj Microgravity, 2023, 9, .	itify and	1.9	12
449	Impacts of natural irradiation on sedimentary organic matter–A review. Organic Geoch 180, 104602.	emistry, 2023,	0.9	2
450	Biomarkers for biosensors to monitor space-induced cardiovascular ageing. Frontiers in S	iensors, 0, 4,	1.7	1
451	A Novel Magnetic Configuration for Space Radiation Active Shielding. Kongjian Kexue Xu 920.	ebao, 2021, 41,	0.2	0
452	ON THE COMPUTER COMPUTATION OF THE 'PROBACENT'-PROBABILITY EQUATION APP BIOMEDICAL-PHENOMENA RESEARCH: A REVIEW OF THE 'PROBACENT' FORMULA. , 202			0
453	Gallosilicate glass and fiber for radiation detection. Journal of the American Ceramic Soci 106, 3438-3445.	ety, 2023,	1.9	1
454	The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Un Positive Effects That Astronauts May Encounter. Biology, 2023, 12, 400.	nexpectedly	1.3	1
455	Observation of the radiation environment and solar energetic particle events in Mars orb 2018- June 2022. Life Sciences in Space Research, 2023, 39, 106-118.	it in May	1.2	3
456	Astronaut Radiation Dose Calculation With a New Galactic Cosmic Ray Model and the AN Space Weather, 2023, 21, .	MSâ€02 Data.	1.3	3
457	Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocyte in Public Health, 0, 11, .	es. Frontiers	1.3	2

	Сітат	tion Report	
#	Article	IF	CITATIONS
461	Development of Polymer Composites in Radiation Shielding Applications: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 2191-2239.	1.9	3
470	Human Health Risks Relevant to Deep Space Mars Exploration Missions. , 2023, , 487-542.		0
474	Space Radiobiology. , 2023, , 503-569.		0
478	Strahlenschutz in speziellen TÄ ¤ gkeitsbereichen. , 2019, , 353-445.		0
480	Strahlungswirkung. , 2019, , 67-108.		0
481	Die Eroberung des Alls. , 2023, , 183-210.		0
493	A review on radiation shielding materials based on low-strength chemical wastes and nanomaterials. , 2024, , 227-250.		1
497	Growth methodologies of boron nitride nanotubes and their neutron shielding applications: a review. Nanoscale, 2024, 16, 3817-3837.	2.8	0