A decade of Predictions in Ungauged Basins (PUB)—a

Hydrological Sciences Journal 58, 1198-1255 DOI: 10.1080/02626667.2013.803183

Citation Report

#	Article	IF	CITATIONS
1	A review of 40 years of hydrological science and practice in southern Africa using the Pitman rainfall-runoff model. Journal of Hydrology, 2013, 501, 111-124.	2.3	51
2	"Panta Rhei—Everything Flowsâ€: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	1.2	569
3	A review of the Prediction in Ungauged Basins (PUB) decade in Canada. Canadian Water Resources Journal, 2013, 38, 253-262.	0.5	11
4	Local and global factors controlling waterâ€energy balances within the Budyko framework. Geophysical Research Letters, 2013, 40, 6123-6129.	1.5	214
5	A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 2013, 17, 1893-1912.	1.9	197
6	Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene. Hydrology and Earth System Sciences, 2013, 17, 5013-5039.	1.9	119
7	Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrology and Earth System Sciences, 2013, 17, 2263-2279.	1.9	93
8	Antecedent flow conditions and nitrate concentrations in the Mississippi River basin. Hydrology and Earth System Sciences, 2014, 18, 967-979.	1.9	13
9	Validating a spatially distributed hydrological model with soil morphology data. Hydrology and Earth System Sciences, 2014, 18, 3481-3498.	1.9	10
10	Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China. Hydrology and Earth System Sciences, 2014, 18, 1895-1915.	1.9	101
11	From Catchment to National Scale Rainfall-Runoff Modelling: Demonstration of a Hydrological Modelling Framework. Hydrology, 2014, 1, 63-88.	1.3	17
12	Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 2014, 18, 649-671.	1.9	83
13	PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrology and Earth System Sciences, 2014, 18, 855-873.	1.9	84
14	Multi-scale hydrometeorological observation and modelling for flash flood understanding. Hydrology and Earth System Sciences, 2014, 18, 3733-3761.	1.9	61
15	Flood design recipes vs. reality: can predictions for ungauged basins be trusted?. Natural Hazards and Earth System Sciences, 2014, 14, 1417-1428.	1.5	52
16	Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrology and Earth System Sciences, 2014, 18, 2735-2772.	1.9	423
17	Streamflow simulation methods for ungauged and poorly gauged watersheds. Natural Hazards and Earth System Sciences, 2014, 14, 1641-1661.	1.5	48
18	Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 2014, 18, 463-477.	1.9	208

ARTICLE IF CITATIONS # Regional water balance modelling using flow-duration curves with observational uncertainties. 19 1.9 42 Hydrology and Earth System Sciences, 2014, 18, 2993-3013. Complex networks for streamflow dynamics. Hydrology and Earth System Sciences, 2014, 18, 4565-4578. Using expert knowledge to increase realism in environmental system models can dramatically reduce 21 1.9 106 the need for calibration. Hydrology and Earth System Sciences, 2014, 18, 4839-4859. Improving streamflow predictions at ungauged locations with real-time updating: application of an EnKF-based state-parameter estimation strategy. Hydrology and Earth System Sciences, 2014, 18, 3923-3936. Catchment similarity concepts for understanding dynamic biogeochemical behaviour of river basins. 23 1.1 14 Hydrological Processes, 2014, 28, 1554-1560. On a PUB methodology from Chinese lessons. Hydrological Sciences Journal, 2014, 59, 2143-2157. 1.2 Simultaneously assimilating multivariate data sets into the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwestern China. Geoscientific Model Development, 2014, 7, 1467-1482. 25 1.3 53 How can a few streamflow measurements help to predict daily hydrographs at almost ungauged sites?. 1.2 26 Hydrological Sciences Journal, 2014, 59, 2126-2142. 27 Estimating Runoff Using Hydro-Geodetic Approaches. Surveys in Geophysics, 2014, 35, 1333-1359. 2.1 65 Challenges of Operational River Forecasting. Journal of Hydrometeorology, 2014, 15, 1692-1707. Toward a theoretical framework for integrated modeling of hydrological change. Wiley 30 2.8 14 Interdisciplinary Reviews: Water, 2014, 1, 427-438. Regionalization of hydrologic response in the Great Lakes basin: Considerations of temporal scales of 2.3 analysis. Journal of Hydrology, 2014, 519, 2224-2237. Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and 32 0.7 66 Atmospheric Water Balances*. Journal of Hydrometeorology, 2014, 15, 2111-2139. Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, 2014, 59, 1390-1402. 1.2 Improving the visibility of hydrological sciences from developing countries. Hydrological Sciences 34 1.2 6 Journal, 2014, 59, 1627-1635. Application of a linear regression model to assess the influence of urbanised areas and grazing pastures on the microbiological quality of rural streams. Environmental Monitoring and Assessment, 2014, 186, 7141-7155. Addressing sources of uncertainty in runoff projections for a data scarce catchment in the 36 1.7 18 Ecuadorian Andes. Climatic Change, 2014, 125, 221-235. Predicting hydrologic response through a hierarchical catchment knowledgebase: A Bayes empirical 19 Bayes approach. Water Resources Research, 2014, 50, 1189-1204.

#	Article	IF	CITATIONS
38	Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. Journal of Hydrology, 2014, 517, 1035-1048.	2.3	94
39	How can the uncertainty in the natural inflow regime propagate into the assessment of water resource systems?. Advances in Water Resources, 2014, 63, 131-142.	1.7	26
40	Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River. Water Resources Research, 2014, 50, 1174-1188.	1.7	65
41	Hydrological Forecasting. , 2014, , 405-444.		0
42	Seeking genericity in the selection of parameter sets: Impact on hydrological model efficiency. Water Resources Research, 2014, 50, 8356-8366.	1.7	22
43	Streamflow modelling by remote sensing: A contribution to digital Earth. IOP Conference Series: Earth and Environmental Science, 2014, 18, 012060.	0.2	5
44	Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters, 2014, 41, 7916-7923.	1.5	138
45	Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 2014, 50, 7445-7469.	1.7	170
46	Farewell, <i>HSJ</i> !—address from the retiring editor. Hydrological Sciences Journal, 2015, 60, 1463-1472.	1.2	1
47	Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. Water Resources Research, 2015, 51, 9425-9446.	1.7	71
48	Interception effects on stable isotope driven streamwater transit time estimates. Geophysical Research Letters, 2015, 42, 5299-5308.	1.5	29
49	Climatic and landscape controls on effective discharge. Geophysical Research Letters, 2015, 42, 8441-8447.	1.5	53
50	Hydrocomplexity: Addressing water security and emergent environmental risks. Water Resources Research, 2015, 51, 5827-5838.	1.7	42
51	Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures. Natural Hazards, 2015, 79, 1015-1038.	1.6	19
52	Application of satellite-derived rainfall for hydrological modelling in the data-scarce Black Volta trans-boundary basin. Hydrology Research, 2015, 46, 777-791.	1.1	28
53	Use of a parsimonious rainfall–runâ€off model for predicting hydrological response in ungauged basins. Hydrological Processes, 2015, 29, 1999-2013.	1.1	36
54	Analyzing the effects of excess rainfall properties on the scaling structure of peak discharges: Insights from a mesoscale river basin. Water Resources Research, 2015, 51, 3900-3921.	1.7	37
55	Hyper-resolution global hydrological modelling: what is next?. Hydrological Processes, 2015, 29, 310-320.	1.1	280

#	Article	IF	CITATIONS
56	The benefit of climatological and calibrated reforecast data for simulating hydrological droughts in Switzerland. Meteorological Applications, 2015, 22, 444-458.	0.9	12
57	Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments*. Journal of Hydrometeorology, 2015, 16, 1478-1501.	0.7	136
58	Frontiers in realâ€time ecohydrology – a paradigm shift in understanding complex environmental systems. Ecohydrology, 2015, 8, 529-537.	1.1	49
59	Climate change impacts on bedload transport in alpine drainage basins with hydropower exploitation. Earth Surface Processes and Landforms, 2015, 40, 1587-1599.	1.2	23
60	Which baseflow metrics should be used in assessing flow regimes of urban streams?. Hydrological Processes, 2015, 29, 4367-4378.	1.1	19
61	Observational uncertainties in hypothesis testing: investigating the hydrological functioning of a tropical catchment. Hydrological Processes, 2015, 29, 4863-4879.	1.1	18
62	A software package for predicting design-flood hydrographs in small and ungauged basins. Journal of Agricultural Engineering, 2015, 46, 74.	0.7	28
63	Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models. Hydrology and Earth System Sciences, 2015, 19, 105-123.	1.9	55
64	Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrology and Earth System Sciences, 2015, 19, 4559-4579.	1.9	81
65	Uncertainty in hydrological signatures. Hydrology and Earth System Sciences, 2015, 19, 3951-3968.	1.9	127
66	Motifs temporels de la qualité de l'eau. Analyse d'une décennie de données haute-fréquence mesurée dans un observatoire agro-hydrologique. Houille Blanche, 2015, 101, 5-11.	^{'S} 0.3	1
67	Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 2015, 19, 839-853.	1.9	107
68	Flood and drought hydrologic monitoring: the role of model parameter uncertainty. Hydrology and Earth System Sciences, 2015, 19, 3239-3251.	1.9	46
69	Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model. Hydrology and Earth System Sciences, 2015, 19, 3727-3753.	1.9	37
70	Virtual laboratories: new opportunities for collaborative water science. Hydrology and Earth System Sciences, 2015, 19, 2101-2117.	1.9	63
71	Assessing the simple dynamical systems approach in a Mediterranean context: application to the ArdÄ che catchment (France). Hydrology and Earth System Sciences, 2015, 19, 2427-2449.	1.9	20
72	Model Calibration Criteria for Estimating Ecological Flow Characteristics. Water (Switzerland), 2015, 7, 2358-2381.	1.2	44
73	Predicting the ungauged basin: model validation and realism assessment. Frontiers in Earth Science, 2015, 3, .	0.8	25

#	Article	IF	Citations
74	Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrology and Earth System Sciences, 2015, 19, 2079-2100.	1.9	72
75	Predicting Surface Runoff from Catchment to Large Region. Advances in Meteorology, 2015, 2015, 1-13.	0.6	22
76	Transferring global uncertainty estimates from gauged to ungauged catchments. Hydrology and Earth System Sciences, 2015, 19, 2535-2546.	1.9	28
77	Spatial evapotranspiration, rainfall and land use data in water accounting – Part 2: Reliability of water acounting results for policy decisions in the Awash Basin. Hydrology and Earth System Sciences, 2015, 19, 533-550.	1.9	21
78	Interpolation of daily raingauge data for hydrological modelling in data sparse regions using pattern information from satellite data. Hydrological Sciences Journal, 0, , 1-16.	1.2	13
79	Application of bivariate mapping for hydrological classification and analysis of temporal change and scale effects in Switzerland. Journal of Hydrology, 2015, 523, 804-821.	2.3	45
80	Performance of the COSERO precipitation–runoff model under non-stationary conditions in basins with different climates. Hydrological Sciences Journal, 2015, 60, 1374-1393.	1.2	42
81	Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins. Journal of Hydrology, 2015, 531, 1095-1107.	2.3	46
82	Streamflow variability and classification using false nearest neighbor method. Journal of Hydrology, 2015, 531, 706-715.	2.3	33
83	A recursive multi-scaling approach to regional flood frequency analysis. Journal of Hydrology, 2015, 529, 373-383.	2.3	16
84	Evaluation of Remotely Sensed Precipitation and Its Performance for Streamflow Simulations in Basins of the Southeast Tibetan Plateau. Journal of Hydrometeorology, 2015, 16, 2577-2594.	0.7	33
85	The transformation of frequency distributions of winter precipitation to spring streamflow probabilities in cold regions; case studies from the Canadian Prairies. Journal of Hydrology, 2015, 521, 395-409.	2.3	53
86	Impact of Calibration Objective on Hydrological Model Performance in Ungauged Watersheds. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	6
87	Using long time series of agricultural-derived nitrates for estimating catchment transit times. Journal of Hydrology, 2015, 522, 603-617.	2.3	35
88	Testing the robustness of the physically-based ECOMAG model with respect to changing conditions. Hydrological Sciences Journal, 2015, 60, 1266-1285.	1.2	27
89	A review of lowâ€cost spaceâ€borne data for flood modelling: topography, flood extent and water level. Hydrological Processes, 2015, 29, 3368-3387.	1.1	107
90	Dependence of model-based extreme flood estimation on the calibration period: case study of the Kamp River (Austria). Hydrological Sciences Journal, 2015, 60, 1424-1437.	1.2	14
91	The effect of forcing and landscape distribution on performance and consistency of model structures. Hydrological Processes, 2015, 29, 3727-3743.	1.1	41

#	Article	IF	CITATIONS
92	Analytical approach to quantile estimation in regional frequency analysis based on fuzzy framework. Journal of Hydrology, 2015, 524, 30-43.	2.3	19
93	Can a regionalized model parameterisation be improved with a limited number of runoff measurements?. Journal of Hydrology, 2015, 529, 49-61.	2.3	21
94	Simulation of river flow in the Thames over 120 years: Evidence of change in rainfall-runoff response?. Journal of Hydrology: Regional Studies, 2015, 4, 172-195.	1.0	14
95	Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST. Environmental Sciences: Processes and Impacts, 2015, 17, 1070-1081.	1.7	22
96	Predicting streamflow distributions and flow duration curves from landscape and climate. Advances in Water Resources, 2015, 83, 285-298.	1.7	53
97	Streamflow prediction in ungauged basins through geomorphology-based hydrograph transposition. Hydrology Research, 2015, 46, 291-302.	1.1	19
98	A review of aspects of hydrological sciences research in Africa over the past decade. Hydrological Sciences Journal, 0, , 1-15.	1.2	9
99	Comparing spatial and temporal transferability of hydrological model parameters. Journal of Hydrology, 2015, 525, 409-417.	2.3	75
100	Stream Flow Prediction in a Typical Ungauged Catchment Using GIUH Approach. Aquatic Procedia, 2015, 4, 993-1000.	0.9	11
101	Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, 2015, 60, 1184-1199.	1.2	105
102	Prediction in ungauged estuaries: An integrated theory. Water Resources Research, 2015, 51, 2464-2476.	1.7	57
103	A unified approach for processâ€based hydrologic modeling: 1. Modeling concept. Water Resources Research, 2015, 51, 2498-2514.	1.7	354
104	Editorial: Hydrogeomorphology – a long-term scientific interface. Hydrology Research, 2015, 46, 175-179.	1.1	7
105	Ensemble hydrological prediction of streamflow percentile at ungauged basins in Pakistan. Journal of Hydrology, 2015, 525, 130-137.	2.3	22
106	Hydrological modelling of temporally-varying catchments: facets of change and the value of information. Hydrological Sciences Journal, 2015, 60, 1438-1461.	1.2	29
107	Uncertain hydrological modelling: application of the Pitman model in the Great Ruaha River basin, Tanzania. Hydrological Sciences Journal, 0, , 1-15.	1.2	8
108	Monthly Runoff Regime Regionalization Through Dissimilarity-Based Methods. Water Resources Management, 2015, 29, 4735-4751.	1.9	8
109	Seasonal and Regional Patterns in Performance for a Baltic Sea Drainage Basin Hydrologic Model. Journal of the American Water Resources Association, 2015, 51, 550-566.	1.0	7

#	Article	IF	CITATIONS
110	Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research, 2015, 51, 5919-5928.	1.7	127
111	Global hydrology 2015: State, trends, and directions. Water Resources Research, 2015, 51, 4923-4947.	1.7	267
112	Effect of catchment characteristics on the relationship between past discharge and the power law recession coefficient. Journal of Hydrology, 2015, 528, 321-328.	2.3	30
113	Evaluation of Regionalization Methods for Hourly Continuous Streamflow Simulation Using Distributed Models in Boreal Catchments. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	11
114	Hydrological response to environment change in Himalayan watersheds: Assessment from integrated modeling approach. Journal of Mountain Science, 2015, 12, 972-982.	0.8	8
115	A fast mobile early warning system for water quality emergency risk in ungauged river basins. Environmental Modelling and Software, 2015, 73, 76-89.	1.9	29
116	Boundary work: Knowledge co-production for negotiating payment for watershed services in Indonesia. Ecosystem Services, 2015, 15, 45-62.	2.3	50
117	Entropy-based neural networks model for flow duration curves at ungauged sites. Journal of Hydrology, 2015, 529, 1007-1020.	2.3	45
118	Multi-site identification of a distributed hydrological nitrogen model using Bayesian uncertainty analysis. Journal of Hydrology, 2015, 529, 940-950.	2.3	28
119	Networks: a generic theory for hydrology?. Stochastic Environmental Research and Risk Assessment, 2015, 29, 761-771.	1.9	34
120	Combining regression and spatial proximity for catchment model regionalization: a comparative study. Hydrological Sciences Journal, 2015, 60, 1026-1043.	1.2	16
121	An integrated water balance model for assessing water scarcity in a data-sparse interfluve in eastern India. Hydrological Sciences Journal, 2015, 60, 1813-1827.	1.2	14
122	Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations. Hydrology and Earth System Sciences, 2016, 20, 2929-2945.	1.9	21
123	Socio-hydrological modelling: a review asking "why,ÂwhatÂandÂhow?". Hydrology and Earth System Sciences, 2016, 20, 443-478.	1.9	151
124	A novel permanent gauge-cam station for surface-flow observations on the Tiber River. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 241-251.	0.6	34
125	HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation. Hydrology and Earth System Sciences, 2016, 20, 1433-1445.	1.9	22
126	Spatial Combination Modeling Framework of Saturation-Excess and Infiltration-Excess Runoff for Semihumid Watersheds. Advances in Meteorology, 2016, 2016, 1-15.	0.6	15
127	Simultaneous calibration of hydrological models in geographical space. Hydrology and Earth System Sciences, 2016, 20, 2913-2928.	1.9	9

#	Article	IF	CITATIONS
128	Accounting for dependencies in regionalized signatures for predictions in ungauged catchments. Hydrology and Earth System Sciences, 2016, 20, 887-901.	1.9	17
129	The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?. Hydrology and Earth System Sciences, 2016, 20, 4775-4799.	1.9	61
130	Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model. Hydrology and Earth System Sciences, 2016, 20, 3361-3377.	1.9	33
131	Hydrometeorology and Hydroclimate. Advances in Meteorology, 2016, 2016, 1-4.	0.6	7
132	Discharge Estimation for an Ungauged Inland River in an Arid Area Related to Anthropogenic Activities: A Case Study of Heihe River Basin, Northwestern China. Advances in Meteorology, 2016, 2016, 1-11.	0.6	8
133	Towards systematic planning of small-scale hydrological intervention-based research. Hydrology and Earth System Sciences, 2016, 20, 4093-4115.	1.9	5
134	Is Catchment Classification Possible by Means of Multiple Model Structures? A Case Study Based on 99 Catchments in Germany. Hydrology, 2016, 3, 22.	1.3	6
135	Hydrological Climate Change Impact Assessment at Small and Large Scales: Key Messages from Recent Progress in Sweden. Climate, 2016, 4, 39.	1.2	46
136	Estimating catchment-scale groundwater dynamics from recession analysis – enhanced constraining of hydrological models. Hydrology and Earth System Sciences, 2016, 20, 4963-4981.	1.9	14
137	Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a highâ€elevation tropical ecosystem. Hydrological Processes, 2016, 30, 2930-2947.	1.1	45
138	Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding. Journal of Hydrology, 2016, 541, 158-172.	2.3	23
139	Assessment of droneâ€based surface flow observations. Hydrological Processes, 2016, 30, 1114-1130.	1.1	57
140	Diurnal dynamics of streamflow in an upland forested microâ€watershed during short precipitationâ€free periods is altered by tree sap flow. Hydrological Processes, 2016, 30, 2042-2049.	1.1	20
141	Assessment of a lumped coupled flowâ€isotope model in data scarce Boreal catchments. Hydrological Processes, 2016, 30, 3871-3884.	1.1	24
142	The assumption of uniform specific discharge: unsafe at any time?. Hydrological Processes, 2016, 30, 3978-3988.	1.1	31
143	Hydrological modelling, process understanding and uncertainty in a southern African context: lessons from the northern hemisphere. Hydrological Processes, 2016, 30, 2419-2431.	1.1	15
144	On characterizing the temporal dominance patterns of model parameters and processes. Hydrological Processes, 2016, 30, 2255-2270.	1.1	43
145	Suitability of North American Regional Reanalysis (NARR) output for hydrologic modelling and analysis in mountainous terrain. Hydrological Processes, 2016, 30, 2332-2347.	1.1	19

		CITATION R	EPORT	
#	Article		IF	CITATIONS
146	Predicting longâ€ŧerm streamflow variability in moist eucalypt forests using forest growth a sapwood area index. Water Resources Research, 2016, 52, 3052-3067.	models and	1.7	9
147	Clobalâ€scale regionalization of hydrologic model parameters. Water Resources Research, 3599-3622.	2016, 52,	1.7	241
148	Hydrologic Data Uncertainty—Evident and Ignored. , 2016, , .			0
149	Probabilistic prediction in ungauged basins (PUB) based on regional parameter estimation model averaging. Hydrology Research, 2016, 47, 1087-1103.	and Bayesian	1.1	12
150	Regionalisation of the parameters of the rainfall–runoff model PQRUT. Hydrology Resear 748-766.	ch, 2016, 47,	1.1	2
151	Particle tracers and image analysis for surface flow observations. Wiley Interdisciplinary Re Water, 2016, 3, 25-39.	views:	2.8	15
152	Meeting the public health challenge of protecting private wells: Proceedings and recomme from an expert panel workshop. Science of the Total Environment, 2016, 554-555, 113-11	ndations 8.	3.9	47
154	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrolog Journal, 0, , 1-18.	ical Sciences	1.2	53
155	Improving streamflow estimation in ungauged basins using a multi-modelling approach. Hy Sciences Journal, 2016, 61, 2668-2679.	[,] drological	1.2	35
156	Nonparametric catchment clustering using the data depth function. Hydrological Sciences 2016, 61, 2649-2667.	Journal,	1.2	21
157	Multi-model averaging for continuous streamflow prediction in ungauged basins. Hydrolog Sciences Journal, 2016, 61, 2443-2454.	ical	1.2	29
158	Adaptation of water resources systems to changing society and environment: a statement International Association of Hydrological Sciences. Hydrological Sciences Journal, 2016, 61	by the , 2803-2817.	1.2	57
159	Hydrological change modeling: Challenges and opportunities. Hydrological Processes, 2010 4966-4971.	5, 30,	1.1	21
160	Where are the limits of model predictive capabilities?. Hydrological Processes, 2016, 30, 49	956-4965.	1.1	13
161	A sub-field scale critical source area index for legacy phosphorus management using high red data. Agriculture, Ecosystems and Environment, 2016, 233, 238-252.	esolution	2.5	40
162	Surface flow measurements from drones. Journal of Hydrology, 2016, 540, 240-245.		2.3	99
163	Model swapping: A comparative performance signature for the prediction of flow duration ungauged basins. Journal of Hydrology, 2016, 541, 1030-1041.	curves in	2.3	10
164	Assessing Satellite and Groundâ€Based Potential Evapotranspiration for Hydrologic Applica Colorado River Basin. Journal of the American Water Resources Association, 2016, 52, 48-6	ations in the 6.	1.0	6

#	Article	IF	CITATIONS
165	Influence of soil and climate on root zone storage capacity. Water Resources Research, 2016, 52, 2009-2024.	1.7	62
166	Stream turbidity responses to storm events in a pristine rainforest watershed on the Coral Coast of southern Fiji. International Journal of Sediment Research, 2016, 31, 279-290.	1.8	10
167	Improving Budyko curveâ€based estimates of longâ€ŧerm water partitioning using hydrologic signatures from GRACE. Water Resources Research, 2016, 52, 5537-5554.	1.7	27
168	Transferring measured discharge time series: Largeâ€scale comparison of Topâ€kriging to geomorphologyâ€based inverse modeling. Water Resources Research, 2016, 52, 5555-5576.	1.7	16
169	Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resources Research, 2016, 52, 7779-7792.	1.7	87
170	Will it rise or will it fall? Managing the complex effects of urbanization on base flow. Freshwater Science, 2016, 35, 293-310.	0.9	114
171	Estimating a-priori kinematic wave model parameters based on regionalization for flash flood forecasting in the Conterminous United States. Journal of Hydrology, 2016, 541, 421-433.	2.3	41
172	Uncertainty in hydrological signatures for gauged and ungauged catchments. Water Resources Research, 2016, 52, 1847-1865.	1.7	104
173	How should a rainfallâ€runoff model be parameterized in an almost ungauged catchment? A methodology tested on 609 catchments. Water Resources Research, 2016, 52, 4765-4784.	1.7	30
174	Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change. Water Resources Research, 2016, 52, 8724-8743.	1.7	26
175	Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region. Water Resources Research, 2016, 52, 7999-8022.	1.7	25
176	On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum. Water Resources Research, 2016, 52, 8317-8342.	1.7	47
177	Hydrological Modeling and Characterization of the Khanpur Watershed, Pakistan. Journal - American Water Works Association, 2016, 108, E262-E268.	0.2	4
178	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	2.8	184
179	Comparison of the rise of water level in the typical catchments, Three Gorges Reservoir area. Journal of Mountain Science, 2016, 13, 715-724.	0.8	2
180	A regional parameter estimation scheme for a pan-European multi-basin model. Journal of Hydrology: Regional Studies, 2016, 6, 90-111.	1.0	88
181	On evaluating the robustness of spatial-proximity-based regionalization methods. Journal of Hydrology, 2016, 539, 196-203.	2.3	30
182	The role of flood hydrograph in the remobilization of large wood in a wide mountain river. Journal of Hydrology, 2016, 541, 330-343.	2.3	37

#	Article	IF	CITATIONS
183	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. Journal of Hydrology, 2016, 543, 59-66.	2.3	14
184	Hillslope runoff generation influenced by layered subsurface in a headwater catchment in Ore Mountains, Germany. Environmental Earth Sciences, 2016, 75, 1.	1.3	9
185	Classification of Drainage Basins Based on Readily Available Information. Water Resources Management, 2016, 30, 5559-5574.	1.9	7
186	Regionalisation of hydrological responses under land-use change and variable data quality. Hydrological Sciences Journal, 2016, 61, 302-320.	1.2	35
187	Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis. Hydrological Sciences Journal, 2016, 61, 2520-2539.	1.2	70
188	Advances in hydrological modelling with the Budyko framework. Progress in Physical Geography, 2016, 40, 409-430.	1.4	88
189	Flow monitoring with a camera: a case study on a flood event in the Tiber River. Environmental Monitoring and Assessment, 2016, 188, 118.	1.3	38
190	Analysis of continuous streamflow regionalization methods within a virtual setting. Hydrological Sciences Journal, 2016, 61, 2680-2693.	1.2	23
191	Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin. Journal of Hydrology, 2016, 533, 389-402.	2.3	37
192	Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy. Renewable Energy, 2016, 86, 543-553.	4.3	112
193	Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 2016, 61, 255-273.	1.2	189
194	Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: Application of the HEC-HMS model. Physics and Chemistry of the Earth, 2017, 100, 371-382.	1.2	61
195	Regional Statistical and Precipitation–Runoff Modelling for Ecological Applications: Prediction of Hourly Streamflow in Regulated Rivers and Ungauged Basins. River Research and Applications, 2017, 33, 233-248.	0.7	10
196	The Watershed Flow and Allocation Model: An NHDPlusâ€Based Watershed Modeling Approach for Multiple Scales and Conditions. Journal of the American Water Resources Association, 2017, 53, 6-29.	1.0	14
197	Surface flows from images: ten days of observations from the Tiber River gauge-cam station. Hydrology Research, 2017, 48, 646-655.	1.1	12
198	Regional water resources assessments using an uncertain modelling approach: The example of Swaziland. Journal of Hydrology: Regional Studies, 2017, 10, 47-60.	1.0	12
199	A comparison of simple and complex versions of the Xinanjiang hydrological model in predicting runoff in ungauged basins. Hydrology Research, 2017, 48, 1282-1295.	1.1	12
200	Progress in socioâ€hydrology: a metaâ€analysis of challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1193.	2.8	116

#	Article	IF	CITATIONS
201	Regionalization of runoff models derived by genetic programming. Journal of Hydrology, 2017, 547, 544-556.	2.3	22
202	Parameter sensitivity analysis and optimization for a satelliteâ€based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data. Journal of Geophysical Research D: Atmospheres, 2017, 122, 230-245.	1.2	43
203	Effect of uncertainty in Digital Surface Models on the extent of inundated areas. Hydrological Processes, 2017, 31, 1760-1775.	1.1	3
204	Snow hydrology in Mediterranean mountain regions: A review. Journal of Hydrology, 2017, 551, 374-396.	2.3	94
205	Regional watershed characterization and classification with river network analyses. Earth Surface Processes and Landforms, 2017, 42, 2068-2081.	1.2	11
206	The importance of aspect for modelling the hydrological response in a glacier catchment in Central Asia. Hydrological Processes, 2017, 31, 2842-2859.	1.1	44
207	Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China's Yangtze River basin. Journal of Hydrology, 2017, 550, 478-496.	2.3	79
208	Combining streamflow observations and hydrologic simulations for the retrospective estimation of daily streamflow for ungauged rivers in southern Quebec (Canada). Journal of Hydrology, 2017, 550, 294-306.	2.3	14
209	Processâ€based hydrological modelling: The potential of a bottomâ€up approach for runoff predictions in ungauged catchments. Hydrological Processes, 2017, 31, 2902-2920.	1.1	13
210	Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods. Energy, 2017, 127, 716-729.	4.5	48
211	Hyd <scp>R</scp> un: <scp>A MATLAB</scp> toolbox for rainfall–runoff analysis. Hydrological Processes, 2017, 31, 2670-2682.	1.1	50
212	Runoff evaluation for ungauged watersheds by SWAP model. 1. Application of artificial neural networks. Water Resources, 2017, 44, 169-179.	0.3	5
213	Use of auxiliary data of topography, snow and ice to improve model performance in a glacier-dominated catchment in Central Asia. Hydrology Research, 2017, 48, 1418-1437.	1.1	15
214	Prediction of flow duration curves for ungauged basins. Journal of Hydrology, 2017, 545, 383-394.	2.3	74
215	A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States. Water Resources Research, 2017, 53, 503-521.	1.7	23
216	Runoff prediction in a poorly gauged basin using isotope-calibrated models. Journal of Hydrology, 2017, 544, 567-574.	2.3	16
217	A simple analytical infiltration model for short-duration rainfall. Journal of Hydrology, 2017, 555, 141-154.	2.3	29
218	Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration?. Journal of Hydrology, 2017, 554, 613-622.	2.3	37

#	Article	IF	CITATIONS
219	Assessing a Regression-Based Regionalization Approach to Ungauged Sites with Various Hydrologic Models in a Forested Catchment in the Northeastern United States. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	13
220	Are Model Transferability And Complexity Antithetical? Insights From Validation of a Variableâ€Complexity Empirical Snow Model in Space and Time. Water Resources Research, 2017, 53, 8825-8850.	1.7	23
221	Analytical estimation of annual runoff distribution in ungauged seasonally dry basins based on a first order Taylor expansion of the Fu's equation. Advances in Water Resources, 2017, 109, 320-332.	1.7	7
222	Correcting bias in rainfall inputs to a semi-distributed hydrological model using downstream flow simulation errors. Hydrological Sciences Journal, 2017, 62, 2427-2439.	1.2	3
223	Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization. Journal of Hydrology, 2017, 555, 330-346.	2.3	44
224	The assessment of water resources in ungauged catchments in Rwanda. Journal of Hydrology: Regional Studies, 2017, 13, 274-289.	1.0	13
225	Fullâ€flowâ€regime storageâ€streamflow correlation patterns provide insights into hydrologic functioning over the continental <scp>U</scp> S. Water Resources Research, 2017, 53, 8064-8083.	1.7	37
226	Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology, 2017, 554, 420-433.	2.3	82
227	Impact of mesoscale spatial variability of climatic inputs and parameters on the hydrological response. Journal of Hydrology, 2017, 553, 13-25.	2.3	13
228	Processâ€based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resources Research, 2017, 53, 7247-7268.	1.7	36
229	Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. Journal of Hydrology: Regional Studies, 2017, 12, 136-149.	1.0	31
230	River runoff evaluation for ungauged watersheds by SWAP model. 2. Application of methods of physiographic similarity and spatial geostatistics. Water Resources, 2017, 44, 547-558.	0.3	9
231	From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment. Scientific Reports, 2017, 7, 3987.	1.6	41
232	Hydrological Signatures Based on Event Runoff Coefficients in Rural Catchments of the Iberian Peninsula. Soil Science, 2017, 182, 159-171.	0.9	8
233	Catchment Morphing (CM): A Novel Approach for Runoff Modeling in Ungauged Catchments. Water Resources Research, 2017, 53, 10899-10907.	1.7	8
234	Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform. Journal of Hydroinformatics, 2017, 19, 911-919.	1.1	7
235	The NorWeST Summer Stream Temperature Model and Scenarios for the Western U.S.: A Crowdâ€5ourced Database and New Geospatial Tools Foster a User Community and Predict Broad Climate Warming of Rivers and Streams. Water Resources Research, 2017, 53, 9181-9205.	1.7	187
236	Timeâ€variant Lagrangian transport formulation reduces aggregation bias of water and solute mean travel time in heterogeneous catchments. Geophysical Research Letters, 2017, 44, 4880-4888.	1.5	4

#	Article	IF	CITATIONS
237	Application of Landsat Imagery to Investigate Lake Area Variations and Relict Gull Habitat in Hongjian Lake, Ordos Plateau, China. Remote Sensing, 2017, 9, 1019.	1.8	18
238	Hydrology in a Coupled Human–Natural System: Research, Innovation, and Practices. Bulletin of the American Meteorological Society, 2017, 98, ES295-ES298.	1.7	5
239	The CAMELS data set: catchment attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences, 2017, 21, 5293-5313.	1.9	316
240	Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China. Remote Sensing, 2017, 9, 588.	1.8	10
241	Forecasting and Providing Warnings of Flash Floods for Ungauged Mountainous Areas Based on a Distributed Hydrological Model. Water (Switzerland), 2017, 9, 776.	1.2	24
242	Flood risk reduction and flow buffering as ecosystem services – PartÂ1: Theory on flow persistence, flashiness and base flow. Hydrology and Earth System Sciences, 2017, 21, 2321-2340.	1.9	27
243	Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrology and Earth System Sciences, 2017, 21, 3125-3144.	1.9	128
244	Physically based distributed hydrological model calibration based on a short period of streamflow data: case studies in four Chinese basins. Hydrology and Earth System Sciences, 2017, 21, 251-265.	1.9	37
245	Stream flow simulation and verification in ungauged zones by coupling hydrological and hydrodynamic models: a case study of the Poyang Lake ungauged zone. Hydrology and Earth System Sciences, 2017, 21, 5847-5861.	1.9	31
246	Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth System Sciences, 2017, 21, 2881-2903.	1.9	146
247	On the probability distribution of daily streamflow in the United States. Hydrology and Earth System Sciences, 2017, 21, 3093-3103.	1.9	61
248	Understanding hydrologic variability across Europe through catchment classification. Hydrology and Earth System Sciences, 2017, 21, 2863-2879.	1.9	97
249	Small river plumes off the northeastern coast of the Black Sea under average climatic and flooding discharge conditions. Ocean Science, 2017, 13, 465-482.	1.3	34
250	Unravelling abiotic and biotic controls on the seasonal water balance using data-driven dimensionless diagnostics. Hydrology and Earth System Sciences, 2017, 21, 2817-2841.	1.9	9
251	A comparative assessment of rainfall–runoff modelling against regional flow duration curves for ungauged catchments. Hydrology and Earth System Sciences, 2017, 21, 5647-5661.	1.9	10
252	Water Balance Dynamics during Ten Years of Ecological Development at Chicken Creek Catchment. Vadose Zone Journal, 2017, 16, 1-14.	1.3	9
253	An inter-comparison of similarity-based methods for organisation and classification of groundwater hydrographs. Journal of Hydrology, 2018, 559, 222-237.	2.3	29
254	Improving Streamflow Prediction Using Uncertainty Analysis and Bayesian Model Averaging. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	21

#	Article	IF	CITATIONS
255	Hydrograph separation using tracers and digital filters to quantify runoff components in a semiâ€arid mesoscale catchment. Hydrological Processes, 2018, 32, 1334-1350.	1.1	37
256	Synthetic design hydrographs for ungauged catchments: a comparison of regionalization methods. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1993-2023.	1.9	30
257	Conditioning a Hydrologic Model Using Patterns of Remotely Sensed Land Surface Temperature. Water Resources Research, 2018, 54, 2976-2998.	1.7	61
258	Regional variation of recession flow power″aw exponent. Hydrological Processes, 2018, 32, 866-872.	1.1	20
259	Monthly hydroclimatology of the continental United States. Advances in Water Resources, 2018, 114, 180-195.	1.7	9
260	Net rainfall estimation by the inversion of a geomorphology-based transfer function and discharge deconvolution. Hydrological Sciences Journal, 2018, 63, 285-301.	1.2	7
261	Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 2018, 63, 169-196.	1.2	151
262	Can climate variability information constrain a hydrological model for an ungauged Costa Rican catchment?. Hydrological Processes, 2018, 32, 830-846.	1.1	11
263	Improving predictions of hydrological low-flow indices in ungaged basins using machine learning. Environmental Modelling and Software, 2018, 101, 169-182.	1.9	74
264	Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatlandâ€Atmosphere Interface. Geophysical Research Letters, 2018, 45, 185-193.	1.5	8
265	Runoff prediction in ungauged catchments in Norway: comparison of regionalization approaches. Hydrology Research, 2018, 49, 487-505.	1.1	45
266	Typecasting catchments: Classification, directionality, and the pursuit of universality. Advances in Water Resources, 2018, 112, 245-253.	1.7	8
267	Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain). Science of the Total Environment, 2018, 625, 285-300.	3.9	41
268	Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models. Journal of Hydrology, 2018, 562, 1-16.	2.3	33
269	Recent advance in earth observation big data for hydrology. Big Earth Data, 2018, 2, 86-107.	2.0	35
270	Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties. Journal of Hydrology, 2018, 559, 327-346.	2.3	17
271	Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. Journal of Hydrology, 2018, 560, 407-423.	2.3	60
272	Recharge processes and vertical transfer investigated through long-term monitoring of dissolved gases in shallow groundwater. Journal of Hydrology, 2018, 560, 275-288.	2.3	8

#	Article	IF	CITATIONS
273	Parameter transferability within homogeneous regions and comparisons with predictions from a priori parameters in the eastern United States. Journal of Hydrology, 2018, 560, 24-38.	2.3	11
274	Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the <scp>EBA4SUB</scp> framework. Journal of Flood Risk Management, 2018, 11, .	1.6	50
275	Estimating the index flood with continuous hydrological models: an application in Great Britain. Hydrology Research, 2018, 49, 123-133.	1.1	25
276	Contrasting Hydrologic Response in the Cuesta Landscapes of Luxembourg. , 2018, , 73-87.		3
277	Partitioning multi-source uncertainties in simulating nitrogen loading in stream water using a coherent, stochastic framework: Application to a rice agricultural watershed in subtropical China. Science of the Total Environment, 2018, 618, 1298-1313.	3.9	10
278	Can floods in large river basins be predicted from floods observed in small subbasins?. Journal of Flood Risk Management, 2018, 11, 331-338.	1.6	2
279	Understanding the impacts of catchment characteristics on the shape of the storage capacity curve and its influence on flood flows. Hydrology Research, 2018, 49, 90-106.	1.1	16
280	Regionalization of annual runoff characteristics and its indication of co-dependence among hydro-climate–landscape factors in Jinghe River Basin, China. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1613-1630.	1.9	10
281	Improving hydrological simulations by incorporating GRACE data for model calibration. Journal of Hydrology, 2018, 557, 291-304.	2.3	61
282	Streamflow Hydrology Estimate Using Machine Learning (<scp>SHEM</scp>). Journal of the American Water Resources Association, 2018, 54, 55-68.	1.0	32
283	Integrating Field Experiments with Modeling to Evaluate the Freshwater Availability at Ungauged Sites: A Case Study of Pingtan Island (China). Water (Switzerland), 2018, 10, 740.	1.2	4
284	Improved Process Representation in the Simulation of the Hydrology of a Meso-Scale Semi-Arid Catchment. Water (Switzerland), 2018, 10, 1549.	1.2	5
285	Bias correction of simulated historical daily streamflow at ungauged locations by using independently estimated flow duration curves. Hydrology and Earth System Sciences, 2018, 22, 5741-5758.	1.9	20
286	Validating Rainfall-Runoff Modelling Using Satellite-Based and Reanalysis Precipitation Products in the Sre Pok Catchment, the Mekong River Basin. Geosciences (Switzerland), 2018, 8, 164.	1.0	15
287	eWaterCycle II. , 2018, , .		1
289	Applications of Open-Access Remotely Sensed Data for Flood Modelling and Mapping in Developing Regions. Hydrology, 2018, 5, 39.	1.3	25
290	HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community. Hydrology and Earth System Sciences, 2018, 22, 5639-5656.	1.9	169
291	Opportunities and Limits of Using Meteorological Reanalysis Data for Simulating Seasonal to Sub-Daily Water Temperature Dynamics in a Large Shallow Lake. Water (Switzerland), 2018, 10, 594.	1.2	17

#	Article	IF	CITATIONS
292	Ecosystem Development in the Constructed Catchment $\hat{a} {\in} \infty$ Chicken Creek $\hat{a} {\in} {\bullet}$, 0, , .		1
293	Uncertainty in water resources: introduction to the special column. Frontiers of Earth Science, 2018, 12, 649-652.	0.9	2
294	Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas. Natural Hazards and Earth System Sciences, 2018, 18, 2741-2768.	1.5	45
295	Runoff Predictions in Ungauged Arctic Basins Using Conceptual Models Forced by Reanalysis Data. Water Resources, 2018, 45, 1-7.	0.3	10
296	Quantify the Pore Water Velocity Distribution by a Celerity Function. Geofluids, 2018, 2018, 1-19.	0.3	2
297	Rainfall-runoff modelling using river-stage time series in the absence of reliable discharge information: a case study in the semi-arid Mara River basin. Hydrology and Earth System Sciences, 2018, 22, 5081-5095.	1.9	8
298	Combining Landsat observations with hydrological modelling for improved surface water monitoring of small lakes. Journal of Hydrology, 2018, 566, 109-121.	2.3	20
299	Spatially Distributed Conceptual Hydrological Model Building: A Generic Topâ€Down Approach Starting From Lumped Models. Water Resources Research, 2018, 54, 8064-8085.	1.7	25
300	A computer vision-based approach to fusing spatiotemporal data for hydrological modeling. Journal of Hydrology, 2018, 567, 25-40.	2.3	30
301	A Water Allocation Decision‣upport Model and Tool for Predictions in Ungauged Basins in Northeast British Columbia, Canada. Journal of the American Water Resources Association, 2018, 54, 676-693.	1.0	5
302	Constraining Conceptual Hydrological Models With Multiple Information Sources. Water Resources Research, 2018, 54, 8332-8362.	1.7	85
303	Infilling Missing Data in Hydrology: Solutions Using Satellite Radar Altimetry and Multiple Imputation for Data-Sparse Regions. Water (Switzerland), 2018, 10, 1483.	1.2	17
304	How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps. Hydrology and Earth System Sciences, 2018, 22, 4425-4447.	1.9	22
305	Flow Partitioning Modelling Using High-Resolution Isotopic and Electrical Conductivity Data. Water (Switzerland), 2018, 10, 904.	1.2	9
307	Satellite Remote Sensing of Hydrological Change. , 0, , 57-71.		1
308	Suitability of a lumped rainfall–runoff model for flashy tropical watersheds in New Caledonia. Hydrological Sciences Journal, 2018, 63, 1689-1706.	1.2	10
309	Geology controls streamflow dynamics. Journal of Hydrology, 2018, 566, 756-769.	2.3	52
310	A Ranking of Hydrological Signatures Based on Their Predictability in Space. Water Resources Research, 2018, 54, 8792-8812.	1.7	144

#	Article	IF	CITATIONS
311	Estimation of Lake Outflow from the Poorly Gauged Lake Tana (Ethiopia) Using Satellite Remote Sensing Data. Remote Sensing, 2018, 10, 1060.	1.8	11
312	Hillslope-storage Boussinesq model for simulating subsurface water storage dynamics in scantily-gauged catchments. Advances in Water Resources, 2018, 121, 219-234.	1.7	16
313	The use of Snyder synthetic hydrograph for simulation of overland flow in small ungauged and gauged catchments. Soil and Water Research, 2018, 13, 185-192.	0.7	5
314	Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws. Journal of Hydrology, 2018, 562, 492-501.	2.3	5
315	Estimating spatial catchment natural hydrological response characteristics in Swaziland. Physics and Chemistry of the Earth, 2018, 106, 29-36.	1.2	0
316	Calibrating a hydrological model in a regional river of the Qinghai–Tibet plateau using river water width determined from high spatial resolution satellite images. Remote Sensing of Environment, 2018, 214, 100-114.	4.6	33
317	Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India. Hydrology and Earth System Sciences, 2018, 22, 595-610.	1.9	11
318	Valuing scarce observation of rainfall variability with flexible semi-distributed hydrological modelling – Mountainous Mediterranean context. Science of the Total Environment, 2018, 643, 346-356.	3.9	18
319	From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science. Hydrology and Earth System Sciences, 2018, 22, 1665-1693.	1.9	68
320	Scaling properties reveal regulation of river flows in the Amazon through a "forest reservoirâ€. Hydrology and Earth System Sciences, 2018, 22, 1735-1748.	1.9	23
321	Development and assessment of rules to parameterise the ACRU model for design flood estimation. Water S A, 2018, 44, .	0.2	2
322	Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models. Landscape Ecology, 2018, 33, 1461-1480.	1.9	56
323	Flood Hazard Management in Public Mountain Recreation Areas vs. Ungauged Fluvial Basins. Case Study of the Caldera de Taburiente National Park, Canary Islands (Spain). Geosciences (Switzerland), 2018, 8, 6.	1.0	6
324	Assessing Impacts of Land Use Changes on the Hydrology of a Lowland Rainforest Catchment in Ghana, West Africa. Water (Switzerland), 2018, 10, 9.	1.2	21
325	Information Entropy Suggests Stronger Nonlinear Associations between Hydro-Meteorological Variables and ENSO. Entropy, 2018, 20, 38.	1.1	15
326	Water balance assessment of an ungauged area in Poyang Lake watershed using a spatially distributed runoff coefficient model. Journal of Hydroinformatics, 2018, 20, 1009-1024.	1.1	18
328	Identifying Key Water Resource Vulnerabilities in Data carce Transboundary River Basins. Water Resources Research, 2018, 54, 5264-5281.	1.7	13
329	How Does the Unique Spaceâ€Time Sampling of the SWOT Mission Influence River Discharge Series Characteristics?. Geophysical Research Letters, 2019, 46, 8154-8161.	1.5	14

#	Article	IF	CITATIONS
330	Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal, 2019, 64, 1297-1311.	1.2	42
331	Random Forest Ability in Regionalizing Hourly Hydrological Model Parameters. Water (Switzerland), 2019, 11, 1540.	1.2	31
332	Performance evaluation of satellite-based rainfall products on hydrological modeling for a transboundary catchment in northwest Africa. Theoretical and Applied Climatology, 2019, 138, 1695-1713.	1.3	4
333	Copula Theory as a Generalized Framework for Flowâ€Duration Curve Based Streamflow Estimates in Ungaged and Partially Gaged Catchments. Water Resources Research, 2019, 55, 9378-9397.	1.7	15
334	Processâ€Guided Deep Learning Predictions of Lake Water Temperature. Water Resources Research, 2019, 55, 9173-9190.	1.7	200
335	Streamflow Generation From Catchments of Contrasting Lithologies: The Role of Soil Properties, Topography, and Catchment Size. Water Resources Research, 2019, 55, 9234-9257.	1.7	26
336	Regional Flood Frequency Analysis for a Poorly Gauged Basin Using the Simulated Flood Data and L-Moment Method. Water (Switzerland), 2019, 11, 1717.	1.2	9
337	Contrasting Patterns in the Decrease of Spatial Variability With Increasing Catchment Area Between Stream Discharge and Water Chemistry. Water Resources Research, 2019, 55, 7419-7435.	1.7	9
339	The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis. Journal of Hydrology: Regional Studies, 2019, 25, 100620.	1.0	42
340	Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrology and Earth System Sciences, 2019, 23, 3219-3232.	1.9	11
341	On the use of mean monthly runoff to predict the flow–duration curve in ungauged catchments. Hydrological Sciences Journal, 2019, 64, 1573-1587.	1.2	11
342	Calibration of the US Geological Survey National Hydrologic Model in Ungauged Basins Using Statistical At-Site Streamflow Simulations. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	5
343	Improving Runoff Prediction Using Remotely Sensed Actual Evapotranspiration during Rainless Periods. Journal of Hydrologic Engineering - ASCE, 2019, 24, 04019050.	0.8	11
344	Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the Total Environment, 2019, 661, 393-406.	3.9	76
345	Parameter Estimation and Predictive Uncertainty Quantification in Hydrological Modelling. , 2019, , 481-522.		4
346	Assessing the impact of a multimetric calibration procedure on modelling performance in a headwater catchment in Mau Forest, Kenya. Journal of Hydrology: Regional Studies, 2019, 21, 80-91.	1.0	5
347	Evaluation of an instantaneous dryness index-based calibration-free continuous hydrological model in India. Hydrology Research, 2019, 50, 915-924.	1.1	3
348	PUB in Québec: A robust geomorphology-based deconvolution-reconvolution framework for the spatial transposition of hydrographs. Journal of Hydrology, 2019, 570, 378-392.	2.3	9

#	Article	IF	CITATIONS
349	Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling. Journal of Hydrology, 2019, 575, 671-689.	2.3	52
350	The benefits of spatial resolution increase in global simulations of the hydrological cycle evaluated for the Rhine and Mississippi basins. Hydrology and Earth System Sciences, 2019, 23, 1779-1800.	1.9	13
351	Quantifying Regional Fresh Submarine Groundwater Discharge With the Lumped Modeling Approach CoCaâ€RFSGD. Water Resources Research, 2019, 55, 5321-5341.	1.7	8
352	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	1.2	474
353	A Combined Method for Estimating Continuous Runoff by Parameter Transfer and Drainage Area Ratio Method in Ungauged Catchments. Water (Switzerland), 2019, 11, 1104.	1.2	15
354	Regionalization with hierarchical hydrologic similarity and ex situ data in the context of groundwater recharge estimation at ungauged watersheds. Hydrology and Earth System Sciences, 2019, 23, 2417-2438.	1.9	4
355	Using paired catchments to quantify the human influence on hydrological droughts. Hydrology and Earth System Sciences, 2019, 23, 1725-1739.	1.9	81
356	Streamflow prediction under extreme data scarcity: a step toward hydrologic process understanding within severely data-limited regions. Hydrological Sciences Journal, 2019, 64, 1038-1055.	1.2	10
357	Hierarchical Bayesian Model for Streamflow Estimation at Ungauged Sites via Spatial Scaling in the Great Lakes Basin. Journal of Water Resources Planning and Management - ASCE, 2019, 145, 04019030.	1.3	3
358	Assessing Hydrograph Similarity and Rare Runoff Dynamics by Cross Recurrence Plots. Water Resources Research, 2019, 55, 4704-4726.	1.7	14
359	Can a Calibration-Free Dynamic Rainfall‒Runoff Model Predict FDCs in Data-Scarce Regions? Comparing the IDW Model with the Dynamic Budyko Model in South India. Hydrology, 2019, 6, 32.	1.3	4
360	Gridded Flash Flood Risk Index Coupling Statistical Approaches and TOPLATS Land Surface Model for Mountainous Areas. Water (Switzerland), 2019, 11, 504.	1.2	8
361	What has Global Sensitivity Analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in earth system modelling. Earth-Science Reviews, 2019, 194, 1-18.	4.0	65
362	How to explain and predict the shape parameter of the generalized extreme value distribution of streamflow extremes using a big dataset. Journal of Hydrology, 2019, 574, 628-645.	2.3	44
364	Assessment of freshwater discharge into a coastal bay through multi-basin ensemble hydrological modelling. Science of the Total Environment, 2019, 669, 812-820.	3.9	7
365	Precipitation as a proxy for climate variables: application for hydrological modelling. Hydrological Sciences Journal, 2019, 64, 361-379.	1.2	7
366	Flow dynamics at the continental scale: Streamflow correlation and hydrological similarity. Hydrological Processes, 2019, 33, 627-646.	1.1	18
367	Complementary Vantage Points: Integrating Hydrology and Economics for Sociohydrologic Knowledge Generation. Water Resources Research, 2019, 55, 2549-2571.	1.7	33

~	~
CITATION	REDUBL
CHAILON	KLI OKI

#	Article	IF	CITATIONS
368	Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests. Water Resources Research, 2019, 55, 4364-4392.	1.7	57
369	Is There a Baseflow Budyko Curve?. Water Resources Research, 2019, 55, 2838-2855.	1.7	45
370	Highâ€Resolution Global Water Temperature Modeling. Water Resources Research, 2019, 55, 2760-2778.	1.7	70
371	The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. Journal of Environmental Management, 2019, 235, 489-499.	3.8	36
372	A simple topography-driven and calibration-free runoff generation module. Hydrology and Earth System Sciences, 2019, 23, 787-809.	1.9	37
373	Advances in Quantifying Streamflow Variability Across Continental Scales: 1. Identifying Natural and Anthropogenic Controlling Factors in the USA Using a Spatially Explicit Modeling Method. Water Resources Research, 2019, 55, 10893-10917.	1.7	7
374	Regionalization of a Rainfall-Runoff Model: Limitations and Potentials. Water (Switzerland), 2019, 11, 2257.	1.2	18
375	Simulations and Uncertainty of Historical and Projected Flow Duration Curves Using Dynamically Downscaled GCMs. , 2019, , .		0
376	Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 2019, 23, 5089-5110.	1.9	276
377	A Comparison of Methods for Calculating Monthly Flows on Small Catchments. IOP Conference Series: Earth and Environmental Science, 2019, 362, 012102.	0.2	0
378	Conceptual Models and Calibration Performance—Investigating Catchment Bias. Water (Switzerland), 2019, 11, 2424.	1.2	7
379	A Prior Estimation of the Spatial Distribution Parameter of Soil Moisture Storage Capacity Using Satellite-Based Root-Zone Soil Moisture Data. Remote Sensing, 2019, 11, 2580.	1.8	5
380	Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resources Research, 2019, 55, 11344-11354.	1.7	279
381	Watershed Reactive Transport. Reviews in Mineralogy and Geochemistry, 2019, 85, 381-418.	2.2	31
382	Advances in Quantifying Streamflow Variability Across Continental Scales: 2. Improved Model Regionalization and Prediction Uncertainties Using Hierarchical Bayesian Methods. Water Resources Research, 2019, 55, 11061-11087.	1.7	6
383	The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios. Sustainability, 2019, 11, 7083.	1.6	64
384	Estimation of uncertainty in flood forecasts—A comparison of methods. Journal of Flood Risk Management, 2019, 12, .	1.6	16
385	Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of Hydrology, 2019, 569, 612-626.	2.3	95

ARTICLE IF CITATIONS Value of a Limited Number of Discharge Observations for Improving Regionalization: A Largeâ€Sample 386 1.7 18 Study Across the United States. Water Resources Research, 2019, 55, 363-377. Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology, 2019, 570, 863-874. 2.3 Value of distributed water level and soil moisture data in the evaluation of a distributed hydrological model: Application to the PUMMA model in the Mercier catchment (6.6†km2) in France. 388 2.3 11 Journal of Hydrology, 2019, 569, 753-770. Investigating regionalization techniques for large-scale hydrological modelling. Journal of Hydrology, 2019, 570, 220-235. Modelling of river flow in ungauged catchment using remote sensing data: application of the empirical (SCS-CN), Artificial Neural Network (ANN) and Hydrological Model (HEC-HMS). Modeling 390 1.9 43 Earth Systems and Environment, 2019, 5, 257-273. Transferability of regionalization methods under changing climate. Journal of Hydrology, 2019, 568, 2.3 67-81. Weak relationships between landforms and hydro-climatologic processes: a case study in Haiti. 392 1.1 1 Hydrology Research, 2019, 50, 744-760. Surface Runoff and Drought Assessment Using Global Water Resources Datasets - from Oum Er Rbia 1.9 14 Basin to the Moroccan Country Scale. Water Resources Management, 2020, 34, 2117-2133. Combining a rainfall–runoff model and a regionalization approach for flood and water resource 394 1.2 16 assessment in the western Po Valley, Italy. Hydrological Sciences Journal, 2020, 65, 348-370. Fuels treatment and wildfire effects on runoff from Sierra Nevada mixedâ€conifer forests. 1.1 Ecohydrology, 2020, 13, e2151. Predicting the temporal transferability of model parameters through a hydrological signature 396 3 0.9 analysis. Frontiers of Earth Science, 2020, 14, 110-123. Flood hydrograph prediction in a semiarid mountain catchment: The role of catchment subdivision. 1.6 Journal of Flood Risk Management, 2020, 13, e12568. Combining clustering and classification for the regionalization of environmental model parameters: Application to floodplain mapping in data-scarce regions. Environmental Modelling and Software, 398 1.9 13 2020, 125, 104613. Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges. Hydrological Sciences Journal, 2020, 65, 712-725. 399 1.2 Wetlands and lowâ€gradient topography are associated with longer hydrologic transit times in 400 1.1 15 Precambrian Shield headwater catchments. Hydrological Processes, 2020, 34, 598-614. Dependence of regionalization methods on the complexity of hydrological models in multiple climatic 53 regions. Journal of Hydrology, 2020, 582, 124357. Analysis of Problems Related to the Calculation of Flood Frequency Using Rainfall-Runoff Models: A 402 1.6 6 Case Study in Poland. Sustainability, 2020, 12, 7187. Combining SWAT Model and Regionalization Approach to Estimate Soil Erosion under Limited Data Availability Conditions. Eurasian Soil Science, 2020, 53, 1280-1292.

#	Article	IF	CITATIONS
404	Is hillslope-based catchment decomposition approach superior to hydrologic response unit (HRU) for stream-aquifer interaction modelling: Inference from two process-based coupled models. Journal of Hydrology, 2020, 591, 125588.	2.3	11
405	Pore water isotope fingerprints to understand the spatiotemporal groundwater recharge variability in ungauged watersheds. Vadose Zone Journal, 2020, 19, e20066.	1.3	8
406	An end-user-friendly hydrological Web Service for hydrograph prediction in ungauged basins. Hydrological Sciences Journal, 2020, , 1-9.	1.2	8
407	The importance of short lag-time in the runoff forecasting model based on long short-term memory. Journal of Hydrology, 2020, 589, 125359.	2.3	58
408	Global Fully Distributed Parameter Regionalization Based on Observed Streamflow From 4,229 Headwater Catchments. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031485.	1.2	44
409	Global river water warming due to climate change and anthropogenic heat emission. Global and Planetary Change, 2020, 193, 103289.	1.6	51
410	Using Remote Sensing Dataâ€Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments. Water Resources Research, 2020, 56, e2020WR028205.	1.7	45
411	Evaluating a finer resolution global hydrological model's simulation of discharge in four West-African river basins. Modeling Earth Systems and Environment, 2020, 7, 2167.	1.9	3
412	Hydrologic Model Evaluation and Assessment of Projected Climate Change Impacts Using Bias-Corrected Stream Flows. Water (Switzerland), 2020, 12, 2312.	1.2	3
413	Impacts of Data Quantity and Quality on Model Calibration: Implications for Model Parameterization in Data-Scarce Catchments. Water (Switzerland), 2020, 12, 2352.	1.2	7
414	General Assessment of the Operational Utility of National Water Model Reservoir Inflows for the Bureau of Reclamation Facilities. Water (Switzerland), 2020, 12, 2897.	1.2	6
415	Application of the RSPARROW Modeling Tool to Estimate Total Nitrogen Sources to Streams and Evaluate Source Reduction Management Scenarios in the Grande River Basin, Brazil. Water (Switzerland), 2020, 12, 2911.	1.2	6
416	Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation. Hydrology and Earth System Sciences, 2020, 24, 535-559.	1.9	75
417	Using hydrological and climatic catchment clusters to explore drivers of catchment behavior. Hydrology and Earth System Sciences, 2020, 24, 1081-1100.	1.9	46
418	Informing hydrological models of poorly gauged river catchments – A parameter regionalization and calibration approach. Journal of Hydrology, 2020, 587, 124999.	2.3	15
419	Comparative hydrogeology – reference analysis of groundwater dynamics from neighbouring observation wells. Hydrological Sciences Journal, 2020, 65, 1685-1706.	1.2	18
420	Improving AI System Awareness of Geoscience Knowledge: Symbiotic Integration of Physical Approaches and Deep Learning. Geophysical Research Letters, 2020, 47, e2020GL088229.	1.5	93
421	Streamflow prediction in ungauged basins: benchmarking the efficiency of deep learning. E3S Web of Conferences, 2020, 163, 01001.	0.2	7

#	Article	IF	CITATIONS
422	Estimating annual runoff in response to forest change: A statistical method based on random forest. Journal of Hydrology, 2020, 589, 125168.	2.3	47
423	Structure and Dynamics of Plumes Generated by Small Rivers. , 0, , .		9
424	Flow alteration by diversion hydropower in tributaries to the Salween river: a comparative analysis of two streamflow prediction methodologies. International Journal of River Basin Management, 2022, 20, 33-43.	1.5	11
425	Modeling seasonal water yield for landscape management: Applications in Peru and Myanmar. Journal of Environmental Management, 2020, 270, 110792.	3.8	27
426	Satellite-derived river width and its spatiotemporal patterns in China during 1990–2015. Remote Sensing of Environment, 2020, 247, 111918.	4.6	25
427	Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA. Hydrology, 2020, 7, 29.	1.3	Ο
428	Evaluation of a Distributed Streamflow Forecast Model at Multiple Watershed Scales. Water (Switzerland), 2020, 12, 1279.	1.2	3
429	The Impact of Reforestation Induced Land Cover Change (1990–2017) on Flood Peak Discharge Using HEC-HMS Hydrological Model and Satellite Observations: A Study in Two Mountain Basins, China. Water (Switzerland), 2020, 12, 1347.	1.2	19
430	HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds. Hydrology and Earth System Sciences, 2020, 24, 1975-1984.	1.9	20
431	A Comparison of Factors Driving Flood Losses in Households Affected by Different Flood Types. Water Resources Research, 2020, 56, e2019WR025943.	1.7	19
432	Editorial – Towards FAIR and SQUARE hydrological data. Hydrological Sciences Journal, 2020, 65, 681-682.	1.2	22
433	Understanding dominant controls on streamflow spatial variability to set up a semi-distributed hydrological model: the case study of the Thur catchment. Hydrology and Earth System Sciences, 2020, 24, 1319-1345.	1.9	20
434	Enhancing Physical Similarity Approach to Predict Runoff in Ungauged Watersheds in Sub-Tropical Regions. Water (Switzerland), 2020, 12, 528.	1.2	38
435	Machine learning based identification of dominant controls on runoff dynamics. Hydrological Processes, 2020, 34, 2450-2465.	1.1	21
436	Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 2020, 143, 103667.	1.7	62
437	Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region. Hydrology and Earth System Sciences, 2020, 24, 3331-3359.	1.9	16
438	Benchmarking large-scale evapotranspiration estimates: A perspective from a calibration-free complementary relationship approach and FLUXCOM. Journal of Hydrology, 2020, 590, 125221.	2.3	27
439	Topographic and climatic influence on seasonal snow cover: Implications for the hydrology of ungauged Himalayan basins, India. Journal of Hydrology, 2020, 585, 124716.	2.3	29

#	Article	IF	CITATIONS
440	Surface water as a cause of land degradation from dryland salinity. Hydrology and Earth System Sciences, 2020, 24, 717-734.	1.9	6
441	Efficient approach for impact analysis of land cover changes on hydrological extremes by means of a lumped conceptual model. Journal of Hydrology: Regional Studies, 2020, 28, 100666.	1.0	3
442	Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets. Water Resources Research, 2020, 56, e2019WR026085.	1.7	93
443	Using Natural Experiments and Counterfactuals for Causal Assessment: River Salinity and the Ganges Water Agreement. Water Resources Research, 2020, 56, e2019WR026166.	1.7	10
444	Hydrological signatures describing the translation of climate seasonality into streamflow seasonality. Hydrology and Earth System Sciences, 2020, 24, 561-580.	1.9	20
445	Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank. Hydrology and Earth System Sciences, 2020, 24, 887-917.	1.9	10
446	Streamflow prediction in "geopolitically ungauged―basins using satellite observations and regionalization at subcontinental scale. Journal of Hydrology, 2020, 588, 125016.	2.3	16
447	Nonâ€linear quickflow response as indicators of runoff generation mechanisms. Hydrological Processes, 2020, 34, 2949-2964.	1.1	20
448	Independent variable selection for regression modeling of the flow duration curve for ungauged basins in the United States. Journal of Hydrology, 2020, 587, 124975.	2.3	15
449	Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	2.8	90
450	Toward Discharge Estimation for Water Resources Management with a Semidistributed Model and Local Ensemble Kalman Filter Data Assimilation. Journal of Hydrologic Engineering - ASCE, 2021, 26, 05020047.	0.8	1
451	A review of hydrologic signatures and their applications. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	2.8	55
452	Streamflow naturalization methods: a review. Hydrological Sciences Journal, 2021, 66, 12-36.	1.2	23
453	A novel framework to determine the usefulness of satellite-based soil moisture data in streamflow prediction using dynamic Budyko model. Journal of Hydrology, 2021, 595, 125849.	2.3	4
454	What Role Does Hydrological Science Play in the Age of Machine Learning?. Water Resources Research, 2021, 57, e2020WR028091.	1.7	196
455	Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrological Sciences Journal, 2022, 67, 2534-2551.	1.2	33
456	Toward catchment hydroâ€biogeochemical theories. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1495.	2.8	65
457	Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. Journal of Hydrology, 2021, 595, 125664.	2.3	55

#	Article	IF	CITATIONS
458	Application of Xin'anjiang Model in the flow prediction of ungauged small- and medium-sized catchments in the middle and lower reaches of the Yangtze River Basin. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 581-594.	0.3	0
459	Spatial and Statistical Variability Analyses of Satellite-Based Climatic Data in Mereb-Gash Basin. Water Resources, 2021, 48, 146-157.	0.3	11
460	The role and value of distributed precipitation data in hydrological models. Hydrology and Earth System Sciences, 2021, 25, 147-167.	1.9	16
461	Reanalysis dataset-based hydrologic predictions for ungauged basins. E3S Web of Conferences, 2021, 264, 01001.	0.2	3
462	Stepwise prediction of runoff using proxy data in a small agricultural catchment. Journal of Hydrology and Hydromechanics, 2021, 69, 65-75.	0.7	4
463	Predicting mean annual and mean monthly streamflow in Colorado ungauged basins. River Research and Applications, 2021, 37, 569-578.	0.7	7
464	Improving the flood forecasting capability of the Xinanjiang model for small- and medium-sized ungauged catchments in South China. Natural Hazards, 2021, 106, 2077-2109.	1.6	17
465	Evaluating Wind Fields for Use in Basinâ€Scale Distributed Snow Models. Water Resources Research, 2021, 57, e2020WR028536.	1.7	7
466	Simple Catchments and Where to Find Them: The Storage-Discharge Relationship as a Proxy for Catchment Complexity. Frontiers in Water, 2021, 3, .	1.0	4
467	Usefulness of Global Root Zone Soil Moisture Product for Streamflow Prediction of Ungauged Basins. Remote Sensing, 2021, 13, 756.	1.8	6
468	Shyft v4.8: a framework for uncertainty assessment and distributed hydrologic modeling for operational hydrology. Geoscientific Model Development, 2021, 14, 821-842.	1.3	1
469	Improving flood hazard datasets using a low-complexity, probabilistic floodplain mapping approach. PLoS ONE, 2021, 16, e0248683.	1.1	17
470	Challenges in modeling and predicting floods and droughts: A review. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1520.	2.8	96
471	Fuzzy Ensemble Clustering Approach to Address Regionalization Uncertainties in Flood Frequency Analysis. Water Resources Research, 2021, 57, e2020WR028412.	1.7	6
472	Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: case study of Nzoia hydrologic basin. Complex & Intelligent Systems, 2022, 8, 213-236.	4.0	49
473	Gauging the Ungauged: Regionalization of Flow Indices at Grid Level. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	4
474	Climate change/variability and hydrological modelling studies in Zimbabwe: a review of progress and knowledge gaps. SN Applied Sciences, 2021, 3, 549.	1.5	9
475	Unpacking some of the linkages between uncertainties in observational data and the simulation of different hydrological processes using the Pitman model in the data scarce Zambezi River basin. Hydrological Processes, 2021, 35, e14141.	1.1	3

#	Article	IF	CITATIONS
476	Leveraging River Network Topology and Regionalization to Expand SWOT-Derived River Discharge Time Series in the Mississippi River Basin. Remote Sensing, 2021, 13, 1590.	1.8	3
477	Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environmental Modelling and Software, 2021, 138, 104982.	1.9	64
478	Testing the Efficiency of Parameter Disaggregation for Distributed Rainfall-Runoff Modelling. Water (Switzerland), 2021, 13, 972.	1.2	4
479	A Unique Approach on How to Work Around the Common Uncertainties of Local Field Data in the PERSiST Hydrological Model. Water (Switzerland), 2021, 13, 1143.	1.2	1
480	Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S PLoS ONE, 2021, 16, e0248489.	1.1	13
481	A Global Flood Risk Modeling Framework Built With Climate Models and Machine Learning. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002221.	1.3	9
482	Similarity-based approaches in hydrogeology: proposal of a new concept for data-scarce groundwater resource characterization and prediction. Hydrogeology Journal, 2021, 29, 1693.	0.9	8
484	The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments. Hydrology and Earth System Sciences, 2021, 25, 2869-2894.	1.9	7
486	The construction of the flow duration curve and the regionalization parameters analysis in the northwest of China. Journal of Water and Climate Change, 2021, 12, 2639-2653.	1.2	3
487	Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States. Hydrology, 2021, 8, 78.	1.3	3
488	Evaluation of bench terracing model parameters transferability for runoff and sediment yield on catchment modelling. Journal of African Earth Sciences, 2021, 178, 104177.	0.9	8
489	Uncertainty analysis in parameter regionalization for streamflow prediction in ungauged semi-arid catchments. Hydrological Sciences Journal, 0, , 1-19.	1.2	5
490	On the contribution of remote sensing-based calibration to model hydrological and hydraulic processes in tropical regions. Journal of Hydrology, 2021, 597, 126184.	2.3	18
492	Gauging ungauged catchments – Active learning for the timing of point discharge observations in combination with continuous water level measurements. Journal of Hydrology, 2021, 598, 126448.	2.3	12
493	Data-Driven Approach for Rainfall-Runoff Modelling Using Equilibrium Optimizer Coupled Extreme Learning Machine and Deep Neural Network. Applied Sciences (Switzerland), 2021, 11, 6238.	1.3	20
494	Geomorphological Controls on Groundwater Transit Times: A Synthetic Analysis at the Hillslope Scale. Water Resources Research, 2021, 57, e2020WR029463.	1.7	3
495	Mitigating Prediction Error of Deep Learning Streamflow Models in Large Dataâ€ S parse Regions With Ensemble Modeling and Soft Data. Geophysical Research Letters, 2021, 48, e2021GL092999.	1.5	32
496	Causes of dependence between extreme floods. Environmental Research Letters, 2021, 16, 084002.	2.2	5

#	Article	IF	CITATIONS
497	Uncertainty Analysis of Reservoir Operation Based on Stochastic Optimization Approach Using the Generalized Likelihood Uncertainty Estimation Method. Water Resources Management, 2021, 35, 3179-3201.	1.9	12
498	A Hydrologic Functional Approach for Improving Largeâ€Sample Hydrology Performance in Poorly Gauged Regions. Water Resources Research, 2021, 57, e2021WR030263.	1.7	8
499	Synergistic Calibration of a Hydrological Model Using Discharge and Remotely Sensed Soil Moisture in the Paraná River Basin. Remote Sensing, 2021, 13, 3256.	1.8	4
501	Addressing hydrological modeling in watersheds under land cover change with deep learning. Advances in Water Resources, 2021, 154, 103965.	1.7	15
502	Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0. Geoscientific Model Development, 2021, 14, 4865-4890.	1.3	4
503	Daily streamflow prediction in ungauged basins: an analysis of common regionalization methods over the African continent. Hydrological Sciences Journal, 2021, 66, 1695-1711.	1.2	7
505	Towards Predicting Flood Event Peak Discharge in Ungauged Basins by Learning Universal Hydrological Behaviors with Machine Learning. Journal of Hydrometeorology, 2021, , .	0.7	2
506	On doing hydrology with dragons: Realizing the value of perceptual models and knowledge accumulation. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1550.	2.8	26
507	Estimating surface runoff and groundwater recharge in an urban catchment using a water balance approach. Hydrogeology Journal, 2021, 29, 2411-2428.	0.9	13
508	Regionalization for Ungauged Catchments — Lessons Learned From a Comparative Largeâ€6ample Study. Water Resources Research, 2021, 57, e2021WR030437.	1.7	18
509	Preface: Linking landscape organisation and hydrological functioning: from hypotheses and observations to concepts, models and understanding. Hydrology and Earth System Sciences, 2021, 25, 5277-5285.	1.9	3
510	Distributional Regression Forests Approach to Regional Frequency Analysis with Partial Duration Series. Water Resources Research, 2021, 57, e2021WR029909.	1.7	1
512	Hydrological Similarity-Based Parameter Regionalization under Different Climate and Underlying Surfaces in Ungauged Basins. Water (Switzerland), 2021, 13, 2508.	1.2	7
513	Towards more realistic runoff projections by removing limits on simulated soil moisture deficit. Journal of Hydrology, 2021, 600, 126505.	2.3	8
514	A water-level based calibration of rainfall-runoff models constrained by regionalized discharge indices. Journal of Hydrology, 2021, , 126937.	2.3	3
515	Impact of the number of donor catchments and the efficiency threshold on regionalization performance of hydrological models. Journal of Hydrology, 2021, 601, 126680.	2.3	14
516	Estimating the Aquifer's Renewable Water to Mitigate the Challenges of Upcoming Megadrought Events. Water Resources Management, 2021, 35, 4927-4942.	1.9	1
517	Using multiple objective calibrations to explore uncertainty in extreme event modeling. Canadian Journal of Civil Engineering, 2021, 48, 1386-1397.	0.7	0

#	Article	IF	CITATIONS
518	Development of a three-axis accelerometer and large-scale particle image velocimetry (LSPIV) to enhance surface velocity measurements in rivers. Computers and Geosciences, 2021, 155, 104866.	2.0	7
519	Is a simple model based on two mixing reservoirs able to reproduce the intra-annual dynamics of DOC and NO3 stream concentrations in an agricultural headwater catchment?. Science of the Total Environment, 2021, 794, 148715.	3.9	6
520	The probability distribution of daily streamflow in perennial rivers of Angola. Journal of Hydrology, 2021, 603, 126869.	2.3	4
521	A step toward global-scale applicability and transferability of flow duration curve studies: A flow duration curve review (2000–2020). Journal of Hydrology, 2021, 603, 126984.	2.3	9
522	Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China. Science of the Total Environment, 2022, 802, 149831.	3.9	17
523	Explanation and Probabilistic Prediction of Hydrological Signatures with Statistical Boosting Algorithms. Remote Sensing, 2021, 13, 333.	1.8	10
524	DEM-based river cross-section extraction and 1-D streamflow simulation for eco-hydrological modeling: a case study in upstream Hiikawa River, Japan. Hydrological Research Letters, 2021, 15, 71-76.	0.3	5
525	Parameter Estimation and Predictive Uncertainty Quantification in Hydrological Modelling. , 2018, , 1-42.		9
526	Assessing development and climate variability impacts on water resources in the Zambezi River basin: Initial model calibration, uncertainty issues and performance. Journal of Hydrology: Regional Studies, 2020, 32, 100765.	1.0	5
528	An Integrated Approach for Flood Inundation Modeling on Large Scales. World Scientific Series on Asia-Pacific Weather and Climate, 2018, , 133-155.	0.2	6
529	Method of Prediction the Stream Flows in Poorly Gauged and Ungauged Basins. Journal of Ecological Engineering, 2019, 20, 180-187.	0.5	3
530	The role of station density for predicting daily runoff by top-kriging interpolation in Austria. Journal of Hydrology and Hydromechanics, 2015, 63, 228-234.	0.7	27
531	Advances and challenges in the water sciences in Brazil: a community synthesis of the XXIII Brazilian Water Resources Symposium. Revista Brasileira De Recursos Hidricos, 0, 25, .	0.5	5
532	Hydrological modelling for ungauged basins of arid and semi-arid regions: review. Vestnik MGSU, 2019, , 1023-1036.	0.2	7
533	Statistical and spatial variability of climate data in the Mareb-Gash river basin in Eritrea. Vestnik MGSU, 2020, , 85-99.	0.2	4
534	Assessment of applicability of mike 11-nam hydrological module forÂrainfall runoff modelling in a poorly studied river basin. Vestnik MGSU, 2020, , 1030-1046.	0.2	9
535	Satellite-Based Evapotranspiration in Hydrological Model Calibration. Remote Sensing, 2020, 12, 428.	1.8	34
536	Monthly Flow Duration Curve Model for Ungauged River Basins. Water (Switzerland), 2020, 12, 338.	1.2	21

#	Article	IF	CITATIONS
537	A Comparative Study of Statistical Methods for Daily Streamflow Estimation at Ungauged Basins in Turkey. Water (Switzerland), 2020, 12, 459.	1.2	22
538	Regional frequency analysis using spatial data extension method : I. An empirical investigation of regional flood frequency analysis. Journal of Korea Water Resources Association, 2016, 49, 439-450.	0.3	5
539	Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth System Science Data, 2019, 11, 1483-1499.	3.7	79
540	GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth System Science Data, 2019, 11, 1655-1674.	3.7	144
541	Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 2020, 13, 3267-3298.	1.3	60
543	Towards observation-based gridded runoff estimates for Europe. Hydrology and Earth System Sciences, 2015, 19, 2859-2879.	1.9	36
545	Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios. Hydrology and Earth System Sciences, 2020, 24, 4503-4521.	1.9	4
546	Importance of the informative content in the study area when regionalising rainfall-runoff model parameters: the role of nested catchments and gauging station density. Hydrology and Earth System Sciences, 2020, 24, 5149-5171.	1.9	20
547	Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa. Hydrology and Earth System Sciences, 2020, 24, 5379-5406.	1.9	48
570	IAHS: a brief history of hydrology. History of Geo- and Space Sciences, 2019, 10, 109-118.	0.1	12
572	Prediction of streamflow from the set of basins flowing into a coastal bay. Proceedings of the International Association of Hydrological Sciences, 0, 365, 55-60.	1.0	4
573	Panta Rhei, the new science decade of IAHS. Proceedings of the International Association of Hydrological Sciences, 0, 366, 20-22.	1.0	2
574	Scientific and practical tools for dealing with water resource estimations for the future. Proceedings of the International Association of Hydrological Sciences, 0, 371, 23-28.	1.0	3
575	Predictions in ungauged basins – where do we stand?. Proceedings of the International Association of Hydrological Sciences, 0, 373, 57-60.	1.0	15
576	Effect of the Evapotranspiration of Thornthwaite and of Penman-Monteith in the Estimation of Monthly Streamflows Based on a Monthly Water Balance Model. , 0, , .		1
577	Hydrological data sources and analysis for the determination of environmental water requirements in mountainous areas. , 2021, , 51-98.		0
578	Understanding Catchments' Hydrologic Response Similarity of Upper Blue Nile (Abay) basin through catchment classification. Modeling Earth Systems and Environment, 2022, 8, 3305-3323.	1.9	3
579	Rainfall spatial variability in the application of catchment morphing for ungauged catchments. Hydrology Research, 0, , .	1.1	0

ARTICLE IF CITATIONS Implementing a Proxy-Basin Strategy to Assess the Transposability of a Hydrological Model in 580 0 1.6 Geographically Similar Catchments. Sustainability, 2021, 13, 11393. Evaluation of Catchments' Similarity by Penalization in the Context of Engineering Tasksâ€"A Case Study 581 1.2 of Four Slovakian Catchments. Water (Świtzerland), 2021, 13, 2894. Panta Rhei: an evolving scientific decade with a focus on water systems. Proceedings of the 585 1.0 2 International Association of Hydrological Sciences, 0, 364, 279-284. Valuing knowledge on temporal dynamics from long-term monitored basins for neighbouring sites. 588 Proceedings of the International Association of Hydrological Sciences, 0, 366, 179-180. Review and Assessment of Interaction between Watershed Hydrology and Society System. Journal of 590 0.1 3 Water Resources Research, 2016, 05, 1-15. RUNOFF CALCULATIONS FOR UNGAUGED RIVER BASINS OF THE RUSSIAN ARCTIC REGION., 2017, ... 595 Frontiers in Hydrology and Water Resources Research. Suimon Mizu Shigen Gakkaishi, 2018, 31, 509-540. 0.1 1 Comparing spatial and temporal scales of hydrologic model parameter transfer: A guide to four 2.3 climates of Iran. Journal of Hydrology, 2021, 603, 127099. Classification of catchments for nitrogen using Artificial Neural Network Pattern Recognition and 598 3.9 7 spatial data. Science of the Total Environment, 2022, 809, 151139. Accounting for the Effects of Climate Variability in Regional Flood Frequency Estimates in Western 599 Nigeria. Journal of Water Resource and Protection, 2020, 12, 690-713. Floods. World Water Resources, 2021, , 153-171. 600 0.4 1 Catchment-Scale Natural Water Balance in Chile. World Water Resources, 2021, , 189-208. 601 0.4 Design and Field Implementation of a Low-Cost, Open-Hardware Platform for Hydrological 603 1.2 5 Monitoring. Water (Switzerland), 2021, 13, 3099. RUNOFF CALCULATIONS FOR UNGAUGED RIVER BASINS OF THE RUSSIAN ARCTIC REGION., 2017, ... 606 Impacts of precipitation and topographic conditions on the model simulation in the north of China. 607 1.0 4 Water Science and Technology: Water Supply, 2021, 21, 1025-1035. Assessing the potential value of the regionalised input constraint indices for constraining hydrological model simulations in the Congo River Basin. Advances in Water Resources, 2022, 159, 608 104093 Effect of Low-Impact Development Scenarios on Pluvial Flood Susceptibility in a Scantily Gauged 609 0.8 5 Urban–Peri-Urban Catchment. Journal of Hydrologic Engineering - ASCE, 2022, 27, . Predictability of flow metrics calculated using a distributed hydrologic model across ecoregions and 1.1 stream classes: implications for developing flowâ€ecology relationships. Ecohydrology, 0, , e2387.

#	Article	IF	Citations
611	Preface: Hydrology of Large River Basins in Africa. Proceedings of the International Association of Hydrological Sciences, 0, 384, 1-4.	1.0	1
612	Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. Journal of Hydrology, 2022, 604, 127249.	2.3	53
613	GRQA: Global River Water Quality Archive. Earth System Science Data, 2021, 13, 5483-5507.	3.7	22
614	On the selection of precipitation products for the regionalisation of hydrological model parameters. Hydrology and Earth System Sciences, 2021, 25, 5805-5837.	1.9	17
615	Automatic Spatial Rainfall Estimation on Limited Coverage Areas. , 2021, , .		0
616	Explore Spatioâ€Temporal Learning of Large Sample Hydrology Using Graph Neural Networks. Water Resources Research, 2021, 57, e2021WR030394.	1.7	27
617	The uncertainties of synthetic unit hydrographs applied for basins with different runoff generation processes. Revista Brasileira De Recursos Hidricos, 0, 26, .	0.5	1
618	Systematic visual analysis of groundwater hydrographs: potential benefits and challenges. Hydrogeology Journal, 2022, 30, 359-378.	0.9	7
619	Two decades of ensemble flood forecasting: a state-of-the-art on past developments, present applications and future opportunities. Hydrological Sciences Journal, 2022, 67, 477-493.	1.2	15
620	The role of abiotic variables in an emerging global amphibian fungal disease in mountains. Science of the Total Environment, 2022, 815, 152735.	3.9	8
621	Des observations participatives pour mieux caractériser les inondations, ressources en eau, et leurs impacts. Sciences Eaux & Territoires, 2021, Nº 35, 84-89.	0.1	0
622	Modelling river flow in cold and ungauged regions: a review of the purposes, methods, and challenges. Environmental Reviews, 2022, 30, 159-173.	2.1	11
623	Impact of Flash Flood Events on the Coastal Waters Around Madeira Island: The "Land Mass Effect― Frontiers in Marine Science, 2022, 8, .	1.2	5
624	Dependence of rainfall-runoff model transferability on climate conditions in Iran. Hydrological Sciences Journal, 2022, 67, 564-587.	1.2	5
625	Regionalization of hydrological model parameters using gradient boosting machine. Hydrology and Earth System Sciences, 2022, 26, 505-524.	1.9	14
626	Integrated framework for rapid climate stress testing on a monthly timestep. Environmental Modelling and Software, 2022, 150, 105339.	1.9	5
627	Inference of Parameters for a Global Hydrological Model: Identifiability and Predictive Uncertainties of Climateâ€Based Parameters. Water Resources Research, 2022, 58, .	1.7	12
628	A study on availability of ground observations and its impacts on bias correction of satellite precipitation products and hydrologic simulation efficiency. Journal of Hydrology, 2022, 610, 127595.	2.3	20

#	Article	IF	CITATIONS
629	Exploring the effect of catchment morphology on streamflow characteristics with virtual experiments. Journal of Hydrology, 2022, , 127606.	2.3	0
630	Baseline geographic information on wildfire-watershed risk in Canada: needs, gaps, and opportunities. Canadian Water Resources Journal, 2022, 47, 1-18.	0.5	3
631	Using SWAT Model and Field Data to Determine Potential of NASA-POWER Data for Modelling Rainfall-Runoff in Incalaue River Basin. Computational Water Energy and Environmental Engineering, 2022, 11, 65-83.	0.4	4
632	Looking at the Statistical Texture Approach Applied to Weather Radar Rainfall Fields. Journal of Geographic Information System, 2022, 14, 29-39.	0.3	1
633	Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine. Hydrology and Earth System Sciences, 2022, 26, 1043-1061.	1.9	6
634	Using multi-event hydrologic and hydraulic signatures from water level sensors to diagnose locations of uncertainty in integrated urban drainage models used in living digital twins. Water Science and Technology, 2022, 85, 1981-1998.	1.2	5
635	Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica. Hydrology and Earth System Sciences, 2022, 26, 975-999.	1.9	12
637	Exploring the Potential of Long Shortâ€Term Memory Networks for Improving Understanding of Continental―and Regionalâ€5cale Snowpack Dynamics. Water Resources Research, 2022, 58, .	1.7	3
638	An Exploration of Bayesian Identification of Dominant Hydrological Mechanisms in Ungauged Catchments. Water Resources Research, 2022, 58, .	1.7	5
639	Strength and Memory of Precipitation's Control Over Streamflow Across the Conterminous United States. Water Resources Research, 2022, 58, .	1.7	3
640	Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions. Hydrology and Earth System Sciences, 2022, 26, 1319-1340.	1.9	1
641	Improved Cartosat-1 Based DEM for Flood Inundation Modeling in the Delta Region of Mahanadi River Basin, India. Journal of the Indian Society of Remote Sensing, 0, , 1.	1.2	3
642	Time to Update the Splitâ€Sample Approach in Hydrological Model Calibration. Water Resources Research, 2022, 58, .	1.7	57
643	Modeling the Hydrologic Influence of Subsurface Tile Drainage Using the National Water Model. Water Resources Research, 2022, 58, .	1.7	9
644	Using Sporadic Streamflow Measurements to Improve and Evaluate a Streamflow Model in Ungauged Basins in Wisconsin. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	0
645	The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites. Hydrology and Earth System Sciences, 2022, 26, 1779-1799.	1.9	2
646	Advancing flood warning procedures in ungauged basins with machine learning. Journal of Hydrology, 2022, 609, 127736.	2.3	10
647	Interdecadal variation in sediment yield from a forested mountain basin: The role of hydroclimatic variability, anthropogenic disturbances, and geomorphic connectivity. Science of the Total Environment, 2022, 826, 153876.	3.9	1

#	Article	IF	CITATIONS
648	Análisis de la precipitación y la evaporación en el Orinoco colombiano según los modelos climáticos regionales del experimento CORDEX-CORE. Tecno Lógicas, 2021, 24, e2144.	0.1	0
649	Prediction of flood quantiles at ungauged catchments for the contiguous USA using Artificial Neural Networks. Hydrology Research, 2022, 53, 107-123.	1.1	10
650	On the Calibration of Spatially Distributed Hydrologic Models for Poorly Gauged Basins: Exploiting Information from Streamflow Signatures and Remote Sensing-Based Evapotranspiration Data. Water (Switzerland), 2022, 14, 1252.	1.2	3
651	Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surveys in Geophysics, 2023, 44, 43-93.	2.1	38
652	Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme. Natural Hazards and Earth System Sciences, 2022, 22, 1325-1334.	1.5	8
653	Evaluating performance dependency of a geomorphologic instantaneous unit hydrograph-based hydrological model on DEM resolution. Water Science and Engineering, 2022, 15, 179-188.	1.4	4
654	Evaluation of InVEST's Water Ecosystem Service Models in a Brazilian Subtropical Basin. Water (Switzerland), 2022, 14, 1559.	1.2	13
655	Adaptive large-scale particle image velocimetry method for physical model experiments of flood propagation with complex flow patterns. Measurement: Journal of the International Measurement Confederation, 2022, 198, 111309.	2.5	2
656	Time Series Features for Supporting Hydrometeorological Explorations and Predictions in Ungauged Locations Using Large Datasets. Water (Switzerland), 2022, 14, 1657.	1.2	10
657	Large Scale Evaluation of Relationships Between Hydrologic Signatures and Processes. Water Resources Research, 2022, 58, .	1.7	8
658	Regionalization methods in ungauged catchments for flow prediction: review and its recent developments. Arabian Journal of Geosciences, 2022, 15, .	0.6	2
659	Discussion of "Estimation of Exceedance Probability of Scour on Bridges Using Reliability Principles― by Manuel Contreras-Jara, Tomás Echaveguren, Alondra Chamorro, and Jose Vargas-Baecheler. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	Ο
660	Multi-Variable SWAT Model Calibration Using Satellite-Based Evapotranspiration Data and Streamflow. Hydrology, 2022, 9, 112.	1.3	4
661	A Novel Interannual Rainfall Runoff Equation Derived from Ol'Dekop's Model Using Artificial Neural Networks. Sensors, 2022, 22, 4349.	2.1	0
662	<scp>Spatioâ€ŧemporal</scp> discretization uncertainty of distributed hydrological models. Hydrological Processes, 2022, 36, .	1.1	2
663	Assessment of upbasin dam impacts on streamflow at Chiang Saen gauging station during the period 1960–2020 in the context of statistical studies. River Research and Applications, 2022, 38, 1237-1253.	0.7	1
664	Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient. Hydrology and Earth System Sciences, 2022, 26, 3419-3445.	1.9	8
665	Dispersal of a small wave-protected river plume from drifter observations. Regional Studies in Marine Science, 2022, 55, 102513.	0.4	0

#	Article	IF	CITATIONS
666	Analysing the capability of a catchment's spectral signature to regionalize hydrological parameters. Hydrological Processes, 2022, 36, .	1.1	1
667	Implication of Partial Duration Series on Regional Flood Frequency Analysis. International Journal of River Basin Management, 0, , 1-45.	1.5	1
668	Leveraging Preâ€Storm Soil Moisture Estimates for Enhanced Land Surface Model Calibration in Ungauged Hydrologic Basins. Water Resources Research, 2022, 58, .	1.7	3
669	Hydrological model preselection with a filter sequence for the national flood forecasting system in Kenya. Journal of Flood Risk Management, 0, , .	1.6	2
670	Evaluating hydrologic region assignment techniques for ungaged basins in Alaska, <scp>USA</scp> . River Research and Applications, 0, , .	0.7	1
671	Flood forecasting with machine learning models in an operational framework. Hydrology and Earth System Sciences, 2022, 26, 4013-4032.	1.9	49
672	Elaborating rating curves for implementation of the MGB hydrological model in a river basin, Amazon region, Brazil. Sustainable Water Resources Management, 2022, 8, .	1.0	0
673	Improved data splitting methods for data-driven hydrological model development based on a large number of catchment samples. Journal of Hydrology, 2022, 613, 128340.	2.3	5
674	Hydrological Modelling for Ungauged Basins: An Overview of the Past, Present, and Future Directions. , 2022, , 313-327.		1
675	Applying hydrological modeling to unravel the effects of land use change on the runoff of a paramo ecosystem. DYNA (Colombia), 2022, 89, 68-77.	0.2	2
677	Evaluating Monthly Flow Prediction Based on SWAT and Support Vector Regression Coupled with Discrete Wavelet Transform. Water (Switzerland), 2022, 14, 2649.	1.2	6
679	Testing the mHM-MPR Reliability for Parameter Transferability across Locations in North–Central Nigeria. Hydrology, 2022, 9, 158.	1.3	0
680	Integrating Meteorological Forcing from Ground Observations and MSWX Dataset for Streamflow Prediction under Multiple Parameterization Scenarios. Water (Switzerland), 2022, 14, 2721.	1.2	2
681	Upscaling Hillslope‣cale Subsurface Flow to Inform Catchment‣cale Recession Behavior. Water Resources Research, 2022, 58, .	1.7	3
682	Explaining the Flood Behavior for the Bridge Collapse Sites. Journal of Marine Science and Engineering, 2022, 10, 1241.	1.2	4
683	Differentiable, Learnable, Regionalized Processâ€Based Models With Multiphysical Outputs can Approach Stateâ€Ofâ€Theâ€Art Hydrologic Prediction Accuracy. Water Resources Research, 2022, 58, .	1.7	36
684	Impact of hydropower reservoirs on floods: Evidence from large river basins in Austria. Hydrological Sciences Journal, 0, , .	1.2	3
685	Advantages of Physically Based Flood Frequency Analysis with Long-Term Simulations for Iowa. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	2

#	Article	IF	CITATIONS
686	Calibrating a Hydrological Model in an Ungauged Mountain Basin with the Budyko Framework. Water (Switzerland), 2022, 14, 3112.	1.2	2
687	A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion. Hydrology and Earth System Sciences, 2022, 26, 5163-5184.	1.9	15
689	Predicting Freshwater Microbial Pollution Using a Spatial Model: Transferability between Catchments. Sustainability, 2022, 14, 13583.	1.6	0
690	The transfR toolbox for transferring observed streamflow series to ungauged basins based on their hydrogeomorphology. Environmental Modelling and Software, 2023, 159, 105562.	1.9	3
691	A Hybrid Physics–Al Model to Improve Hydrological Forecasts. , 2023, 2, .		0
693	Irrigation water use driving desiccation of Earth's endorheic lakes and seas. Australian Journal of Water Resources, 0, , 1-12.	1.6	3
694	Comparison of deep learning models and a typical process-based model in glacio-hydrology simulation. Journal of Hydrology, 2022, 615, 128562.	2.3	11
695	Pattern recognition describing spatio-temporal drivers of catchment classification for water quality. Science of the Total Environment, 2023, 861, 160240.	3.9	4
696	Identifying driving factors of the runoff coefficient based on the geographic detector model in the upper reaches of Huaihe River Basin. Open Geosciences, 2022, 14, 1421-1433.	0.6	0
697	A French hydrologist's research for sustainable agriculture. Journal of Hydrology, 2023, 617, 128907.	2.3	0
698	Assessing Transmission Losses through Ephemeral Streams: A Methodological Approach Based on the Infiltration of Treated Effluents Released into Streams. Water (Switzerland), 2022, 14, 3758.	1.2	1
699	Hydrologic Model Calibration With Remote Sensing Data Products in Global Large Basins. Water Resources Research, 2022, 58, .	1.7	7
700	Editorial – Operational, epistemic and ethical value chaining of hydrological data to knowledge and services: a watershed moment. Hydrological Sciences Journal, 2022, 67, 2363-2368.	1.2	0
701	Automatic Regionalization of Model Parameters for Hydrological Models. Water Resources Research, 2022, 58, .	1.7	4
702	Runoff Prediction Based on Deep Residual Shrinkage Long Short-term Memory Network. Journal of Physics: Conference Series, 2022, 2400, 012016.	0.3	0
703	A Framework to Regionalize Flow Information in a Catchment with Limited Hydrological Data. Open Journal of Modern Hydrology, 2023, 13, 22-51.	0.4	0
704	Flash Flood Reconstruction and Analysis—A Case Study Using Social Data. Climate, 2023, 11, 20.	1.2	1
705	Hydrological and Hydrodynamic Modeling for Flash Flood and Embankment Dam Break Scenario: Hazard Mapping of Extreme Storm Events. Sustainability, 2023, 15, 1758.	1.6	4

#	Article	IF	CITATIONS
706	Identification of a Function to Fit the Flow Duration Curve and Parameterization of a Semi-Arid Region in North China. Atmosphere, 2023, 14, 116.	1.0	1
707	Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models. Hydrology and Earth System Sciences, 2023, 27, 139-157.	1.9	29
708	Transfer performance of gated recurrent unit model for runoff prediction based on the comprehensive spatiotemporal similarity of catchments. Journal of Environmental Management, 2023, 330, 117182.	3.8	7
709	Meta-Transfer Learning: An application to Streamflow modeling in River-streams. , 2022, , .		1
710	Global hydrological parameter estimates to local applications: Influence of forcing and catchment properties. Hydrology Research, 2023, 54, 475-490.	1.1	1
711	Beyond river discharge gauging: hydrologic predictions using remote sensing alone. Environmental Research Letters, 2023, 18, 034015.	2.2	0
712	A data-driven approach to exploring the causal relationships between distributed pumping activities and aquifer drawdown. Science of the Total Environment, 2023, 870, 161998.	3.9	1
713	Inversion of river discharge from remotely sensed river widths: A critical assessment at three-thousand global river gauges. Remote Sensing of Environment, 2023, 287, 113489.	4.6	2
714	Water resources of Afghanistan and related hazards under rapid climate warming: a review. Hydrological Sciences Journal, 2023, 68, 507-525.	1.2	3
715	Building Cross-Site and Cross-Network collaborations in critical zone science. Journal of Hydrology, 2023, 618, 129248.	2.3	7
716	Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032. Hydrological Sciences Journal, 2023, 68, 529-541.	1.2	3
717	Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps. Hydrology, 2023, 10, 55.	1.3	1
718	Applicability of SWOT data in calibrating WRF-Hydro hydrological model over the Tawa River basin. Geocarto International, 2023, 38, .	1.7	1
719	Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau. Journal of Hydrology, 2023, 620, 129401.	2.3	12
720	A multi-criteria approach for improving streamflow prediction in a rapidly urbanizing data scarce catchment. International Journal of River Basin Management, 0, , 1-14.	1.5	2
721	Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats. Geoscientific Model Development, 2023, 16, 1553-1567.	1.3	4
722	Streamflow prediction using machine learning models in selected rivers of Southern India. International Journal of River Basin Management, 0, , 1-27.	1.5	3
723	Streamflow Prediction in Poorly Gauged Watersheds in the United States Through Dataâ€Driven Sparse Sensing. Water Resources Research, 2023, 59, .	1.7	2

#	Article	IF	CITATIONS
725	Estimation of flow duration and mass flow curves in ungauged tributary streams. Journal of Cleaner Production, 2023, 409, 137246.	4.6	3
745	WILL THE REMOVAL OF THE RECREATIONAL SYMBOL OF JESENIKY MOUNTAIN SUMMIT PARTS, THE DWARF PINE FORESTS, AFFECT THE ECOSYSTEM FUNCTIONS OF THE HILLS?. , 2023, , .		0
773	Ecological Revitalization Master Plan of Lipetsk City Based on the HBV Hydrological Modelling of a Small Ungauged Lipovka River (Russia). Springer Geography, 2023, , 251-267.	0.3	0
777	Statistical analysis of drought series. , 2024, , 305-362.		0