Delayed Frost Growth on Jumping-Drop Superhydroph

ACS Nano 7, 1618-1627 DOI: 10.1021/nn3055048

Citation Report

#	Article	IF	CITATIONS
2	Effect of Substrate Wettability on Frost Properties. Journal of Thermophysics and Heat Transfer, 2004, 18, 228-235.	0.9	45
3	Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces. Langmuir, 2013, 29, 9516-9524.	1.6	158
4	Superhydrophobic Grapheneâ€Based Materials: Surface Construction and Functional Applications. Advanced Materials, 2013, 25, 5352-5359.	11.1	68
5	Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay. Journal of Physical Chemistry C, 2013, 117, 21752-21762.	1.5	113
6	Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chemical Communications, 2013, 49, 4516.	2.2	266
7	Electrostatic charging of jumping droplets. Nature Communications, 2013, 4, 2517.	5.8	201
8	Mechanism of Frost Formation on Lubricant-Impregnated Surfaces. Langmuir, 2013, 29, 5230-5238.	1.6	322
9	Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces. ACS Nano, 2013, 7, 11043-11054.	7.3	180
10	Condensation heat transfer on superhydrophobic surfaces. MRS Bulletin, 2013, 38, 397-406.	1.7	329
11	Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Scientific Reports, 2013, 3, 2515.	1.6	166
12	Energy and hydrodynamic analyses of coalescence-induced jumping droplets. Applied Physics Letters, 2013, 103, .	1.5	155
13	Surface engineering for phase change heat transfer: A review. MRS Energy & Sustainability, 2014, 1, 1.	1.3	288
14	Viscosity of interfacial water regulates ice nucleation. Applied Physics Letters, 2014, 104, .	1.5	23
15	Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. Journal of Fluid Mechanics, 2014, 752, 39-65.	1.4	209
16	Mechanism of Delayed Frost Growth on Superhydrophobic Surfaces with Jumping Condensates: More Than Interdrop Freezing. Langmuir, 2014, 30, 15416-15422.	1.6	132
17	Impact dynamics of water droplets on Cu films with three-level hierarchical structures. Journal of Materials Science, 2014, 49, 3379-3390.	1.7	14
18	Bio-Inspired Strategies for Anti-Icing. ACS Nano, 2014, 8, 3152-3169.	7.3	760
19	Condensation and freezing of droplets on superhydrophobic surfaces. Advances in Colloid and Interface Science, 2014, 210, 47-57.	7.0	223

#	Article	IF	CITATIONS
20	General Frost Growth Mechanism on Solid Substrates with Different Stiffness. Langmuir, 2014, 30, 1160-1168.	1.6	59
21	Multiscale Effect of Hierarchical Self-Assembled Nanostructures on Superhydrophobic Surface. Langmuir, 2014, 30, 13581-13587.	1.6	25
22	A novel superhydrophobic hybrid nanocomposite material prepared by surface-initiated AGET ATRP and its anti-icing properties. Journal of Materials Chemistry A, 2014, 2, 9390-9399.	5.2	173
23	Jumping-droplet electrostatic energy harvesting. Applied Physics Letters, 2014, 105, .	1.5	163
24	Transparent Slippery Surfaces Made with Sustainable Porous Cellulose Lauroyl Ester Films. ACS Applied Materials & Interfaces, 2014, 6, 6969-6976.	4.0	64
25	Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets. Applied Physics Letters, 2014, 105, .	1.5	103
26	Dropwise Condensation on Micro- and Nanostructured Surfaces. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 223-250.	1.4	235
27	Interfacial Material System Exhibiting Superwettability. Advanced Materials, 2014, 26, 6872-6897.	11.1	448
28	Antiâ€ice Coating Inspired by Ice Skating. Small, 2014, 10, 4693-4699.	5.2	157
29	How Coalescing Droplets Jump. ACS Nano, 2014, 8, 10352-10362.	7.3	304
30	Efficient Self-Propelling of Small-Scale Condensed Microdrops by Closely Packed ZnO Nanoneedles. Journal of Physical Chemistry Letters, 2014, 5, 2084-2088.	2.1	139
31	Effect of Wettability on Sessile Drop Freezing: When Superhydrophobicity Stimulates an Extreme Freezing Delay. Langmuir, 2014, 30, 1659-1668.	1.6	173
32	DEVELOPMENT OF FRACTAL ULTRA-HYDROPHOBIC COATING FILMS TO PREVENT WATER VAPOR DEWING AND TO DELAY FROSTING. Fractals, 2014, 22, 1440002.	1.8	13
33	Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades. Cold Regions Science and Technology, 2014, 100, 50-58.	1.6	101
34	Understanding the anti-icing behavior of superhydrophobic surfaces. Surface Innovations, 2014, 2, 94-102.	1.4	41
35	Microcones and Nanograss: Toward Mechanically Robust Superhydrophobic Surfaces. Langmuir, 2014, 30, 4342-4350.	1.6	87
36	Anti-frost coatings containing carbon nanotube composite with reliable thermal cyclic property. Journal of Materials Chemistry A, 2014, 2, 11465-11471.	5.2	31
37	Energy-Effective Frost-Free Coatings Based on Superhydrophobic Aligned Nanocones. ACS Applied Materials & Interfaces, 2014, 6, 8976-8980.	4.0	124

#	ARTICLE	IF	CITATIONS
38	Droplet coalescence and freezing on hydrophilic, hydrophobic, and biphilic surfaces. Applied Physics Letters, 2015, 107, .	1.5	39
39	Coalescence-induced jumping of droplet: Inertia and viscosity effects. Physics of Fluids, 2015, 27, .	1.6	80
40	Superhydrophobicity vs. Ice Adhesion: The Quandary of Robust Icephobic Surface Design. Advanced Materials Interfaces, 2015, 2, 1500330.	1.9	51
41	Glaze Icing on Superhydrophobic Coating Prepared by Nanoparticles Filling Combined with Etching Method for Insulators. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	9
42	Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces. ACS Nano, 2015, 9, 12311-12319.	7.3	112
43	Inhibition of Condensation Frosting by Arrays of Hygroscopic Antifreeze Drops. Langmuir, 2015, 31, 13743-13752.	1.6	43
44	Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant. Physical Chemistry Chemical Physics, 2015, 17, 24988-24997.	1.3	57
45	Enhanced Jumping-Droplet Departure. Langmuir, 2015, 31, 13452-13466.	1.6	126
46	A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy, 2015, 82, 1068-1087.	4.5	340
47	Departure of Condensation Droplets on Superhydrophobic Surfaces. Langmuir, 2015, 31, 2414-2420.	1.6	100
48	Dynamics of Droplet Impact on Hydrophobic/Icephobic Concrete with the Potential for Superhydrophobicity. Langmuir, 2015, 31, 1437-1444.	1.6	88
49	Ice accretion on superhydrophobic insulators under freezing condition. Cold Regions Science and Technology, 2015, 112, 87-94.	1.6	38
50	Fabrication and anti-icing property of coral-like superhydrophobic aluminum surface. Applied Surface Science, 2015, 331, 132-139.	3.1	92
51	Super-hydrophobic surfaces of SiO2-coated SiC nanowires: Fabrication, mechanism and ultraviolet-durable super-hydrophobicity. Journal of Colloid and Interface Science, 2015, 444, 33-37.	5.0	32
52	Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin. Applied Thermal Engineering, 2015, 90, 136-144.	3.0	36
53	Frost formation with salt. Europhysics Letters, 2015, 110, 56002.	0.7	28
54	A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Langmuir, 2015, 31, 7885-7896.	1.6	56
55	Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating. Applied Surface Science, 2015, 346, 68-76.	3.1	191

#	Article	IF	CITATIONS
56	Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides. Applied Physics Letters, 2015, 106, .	1.5	109
57	Bioinspired Stimuliâ€Responsive and Antifreezeâ€Secreting Antiâ€Icing Coatings. Advanced Materials Interfaces, 2015, 2, 1400479.	1.9	119
58	Simple Approach to Superhydrophobic Nanostructured Al for Practical Antifrosting Application Based on Enhanced Self-propelled Jumping Droplets. ACS Applied Materials & Interfaces, 2015, 7, 7206-7213.	4.0	104
59	Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature, 2015, 527, 82-85.	13.7	349
60	Multifunctional Engineering Aluminum Surfaces for Selfâ€Propelled Antiâ€Condensation. Advanced Engineering Materials, 2015, 17, 961-968.	1.6	21
61	Recent Developments in Altered Wettability for Enhancing Condensation. , 2015, , 85-131.		6
62	Facile Fabrication of Anodic Alumina Rod-Capped Nanopore Films with Condensate Microdrop Self-Propelling Function. ACS Applied Materials & amp; Interfaces, 2015, 7, 18206-18210.	4.0	39
63	Hydrophobicity of Rare Earth Oxides Grown by Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 148-156.	3.2	106
64	On Modulating Interfacial Structure towards Improved Anti-Icing Performance. Coatings, 2016, 6, 3.	1.2	22
65	Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete. Entropy, 2016, 18, 132.	1.1	79
66	Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications. Small, 2016, 12, 1825-1839.	5.2	193
67	Microcontact Printing. , 2016, , 2157-2167.		0
68	Mechanical Properties of Nanostructures. , 2016, , 1937-1946.		0
69	MEMS on Flexible Substrates. , 2016, , 2010-2019.		0
70	Magnetron Sputtering. , 2016, , 1903-1903.		0
71	Micro-/Nanostructured Icephobic Materials. , 2016, , 2125-2128.		0
72	Microbial Fuel Cell. , 2016, , 2137-2137.		0
73	Multilamellar Vesicle (MLV). , 2016, , 2285-2285.		0

ARTICLE IF CITATIONS # MEMS Resonant Infrared Detectors., 2016, , 2028-2028. 0 74 Models for Tumor Growth. , 2016, , 2244-2254. 76 Modification of Carbon Nanotubes., 2016, , 2254-2254. 0 Retarded condensate freezing propagation on superhydrophobic surfaces patterned with micropillars. Applied Physics Letters, 2016, 108, . Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC 78 1.5 20 electric field. Applied Physics Letters, 2016, 109, . Design and fabrication of clustered rugged ZnO nanotube films with condensate microdrop 79 2.2 self-propelling function. Chemical Communications, 2016, 52, 7299-7301. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings. Langmuir, 2016, 32, 80 1.6 34 4278-4288. Coatings to prevent frost. Journal of Coatings Technology Research, 2016, 13, 645-653. 1.2 Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions. 82 4.0 179 ACS Applied Materials & amp; Interfaces, 2016, 8, 12583-12587. Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces. ACS Applied Materials & amp; Interfaces, 2016, 8, 29169-29178. Spontaneous Uphill Movement and Self-Removal of Condensates on Hierarchical Tower-like Arrays. 84 7.368 ACS Nano, 2016, 10, 9456-9462. Design and Fabrication of a Tipâ€Like ZnO Nanotube Array Structure with Condensate Microdrop 1.5 Selfã€Propelling Function. ChemNanoMat, 2016, 2, 1018-1022. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena. Langmuir, 86 1.6 91 2016, 32, 8350-8365. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings. Applied Surface Science, 2016, 390, 452-460. 87 3.1 Recent Advances in the Fabrication of Superhydrophobic Surfaces. Chemistry Letters, 2016, 45, 88 0.7 61 1134-1149. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. ACS Nano, 2016, 10, 8223-8232. 53 Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic 90 1.6 127 Surfaces. Langmuir, 2016, 32, 7774-7787. Strategies for anti-icing: low surface energy or liquid-infused?. RSC Advances, 2016, 6, 70251-70260.

#	Article	IF	CITATIONS
92	Controlling condensation and frost growth with chemical micropatterns. Scientific Reports, 2016, 6, 19131.	1.6	111
93	Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability. Scientific Reports, 2016, 6, 24653.	1.6	28
94	Design of anti-icing surfaces: smooth, textured or slippery?. Nature Reviews Materials, 2016, 1, .	23.3	1,048
95	Self-enhancement of droplet jumping velocity: the interaction of liquid bridge and surface texture. RSC Advances, 2016, 6, 99314-99321.	1.7	54
96	Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films. Scientific Reports, 2016, 6, 24682.	1.6	18
97	Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties. RSC Advances, 2016, 6, 61695-61702.	1.7	63
98	Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser. Langmuir, 2016, 32, 1065-1072.	1.6	115
99	Visualization study of the effect of surface contact angle on frost melting process under different frosting conditions. International Journal of Refrigeration, 2016, 64, 143-151.	1.8	19
100	Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces. International Journal of Heat and Mass Transfer, 2016, 93, 286-292.	2.5	45
101	Understanding the Role of Dynamic Wettability for Condensate Microdrop Selfâ€Propelling Based on Designed Superhydrophobic TiO ₂ Nanostructures. Small, 2017, 13, 1600687.	5.2	101
102	Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces. Physics of Fluids, 2017, 29, .	1.6	70
103	Ion-specific ice propagation behavior on polyelectrolyte brush surfaces. RSC Advances, 2017, 7, 840-844.	1.7	34
104	Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost. Scientific Reports, 2017, 7, 40300.	1.6	44
105	Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches. International Journal of Heat and Mass Transfer, 2017, 108, 1048-1056.	2.5	51
106	Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 6512-6519.	4.0	40
107	Frost formation and frost meltwater drainage characteristics on aluminum surfaces with grooved structures. Applied Thermal Engineering, 2017, 118, 448-454.	3.0	34
108	Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 10233-10242.	4.0	66
109	Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces. ACS Applied Materials & Amp: Interfaces 2017 9 8420-8425	4.0	78

#	Article	IF	CITATIONS
110	Frosting characteristics on hydrophobic and superhydrophobic surfaces: A review. Energy Conversion and Management, 2017, 138, 1-11.	4.4	120
111	Frost spreading on microscale wettability/morphology patterned surfaces. Applied Thermal Engineering, 2017, 121, 136-145.	3.0	34
112	Self-propelled drop jumping during defrosting and drainage characteristic of frost melt water from inclined superhydrophobic surface. International Journal of Refrigeration, 2017, 79, 25-38.	1.8	31
113	Imparting Icephobicity with Substrate Flexibility. Langmuir, 2017, 33, 6708-6718.	1.6	62
114	Computational study of microparticle effect on self-propelled jumping of droplets from superhydrophobic substrates. International Journal of Multiphase Flow, 2017, 95, 220-234.	1.6	14
115	Durable and self-healing superhydrophobic surface with bistratal gas layers prepared by electrospinning and hydrothermal processes. Chemical Engineering Journal, 2017, 326, 578-586.	6.6	38
116	Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. ACS Applied Materials & Interfaces, 2017, 9, 13770-13777.	4.0	116
117	Jumping-droplet electronics hot-spot cooling. Applied Physics Letters, 2017, 110, .	1.5	91
118	Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect. ACS Nano, 2017, 11, 906-917.	7.3	47
119	Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11285-11290.	3.3	132
120	Steady Method for the Analysis of Evaporation Dynamics. Langmuir, 2017, 33, 12007-12015.	1.6	31
121	Bioinspired Surfaces with Superwettability for Antiâ€lcing and Iceâ€Phobic Application: Concept, Mechanism, and Design. Small, 2017, 13, 1701867.	5.2	223
122	Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter, 2017, 13, 6562-6568.	1.2	150
123	Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. ACS Applied Materials & Interfaces, 2017, 9, 35391-35403.	4.0	71
124	An outlook on tunable superhydrophobic nanostructural surfaces and their possible impact on ice mitigation. Progress in Organic Coatings, 2017, 112, 304-318.	1.9	34
125	Self-shedding and sweeping of condensate on composite nano-surface under external force field: enhancement mechanism for dropwise and filmwise condensation modes. Scientific Reports, 2017, 7, 8633.	1.6	5
126	Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation. ACS Nano, 2017, 11, 8499-8510.	7.3	185
127	Atomic-scale computational design of hydrophobic RE surface-doped Al2O3 and TiO2. Physical Chemistry Chemical Physics, 2017, 19, 21119-21126.	1.3	7

#	Article	IF	CITATIONS
128	Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings. Angewandte Chemie - International Edition, 2017, 56, 11436-11439.	7.2	41
129	Insights into the Impact of Surface Hydrophobicity on Droplet Coalescence and Jumping Dynamics. Langmuir, 2017, 33, 8574-8581.	1.6	36
130	Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings. Angewandte Chemie, 2017, 129, 11594-11597.	1.6	1
131	Durable and self-healing superhydrophobic polyvinylidene fluoride (PVDF) composite coating with in-situ gas compensation function. Surface and Coatings Technology, 2017, 327, 18-24.	2.2	27
132	Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 29328-29336.	4.0	44
133	Coexistence of Pinning and Moving on a Contact Line. Langmuir, 2017, 33, 8970-8975.	1.6	24
134	Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces. Applied Physics Letters, 2017, 111, .	1.5	54
135	Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation. Nano Letters, 2017, 17, 7544-7551.	4.5	43
136	Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces. Scientific Reports, 2017, 7, 14722.	1.6	14
137	Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment. Scientific Reports, 2017, 7, 1981.	1.6	79
138	Internal convective jumping-droplet condensation in tubes. International Journal of Heat and Mass Transfer, 2017, 114, 1025-1036.	2.5	24
139	A lattice Boltzmann model for condensation and freezing of dry saturated vapor about a cryogenic spot on an inclined hydrophobic surface. International Journal of Heat and Mass Transfer, 2017, 114, 628-639.	2.5	20
140	Role of Water Solidification Concepts in Designing Nano-Textured Anti-Icing Surfaces. Journal of Physical Chemistry B, 2017, 121, 7527-7535.	1.2	17
141	Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces. ACS Omega, 2017, 2, 2883-2890.	1.6	33
142	Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 24308-24317.	4.0	42
143	Electric Field–Based Control and Enhancement of Boiling and Condensation. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 102-121.	1.4	52
144	A Review of Condensation Frosting. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 81-101.	1.4	137
145	Anti-frosting performance of superhydrophobic surface with ZnO nanorods. Applied Thermal Engineering, 2017, 110, 39-48.	3.0	98

#	Article	IF	CITATIONS
146	External convective jumping-droplet condensation on a flat plate. International Journal of Heat and Mass Transfer, 2017, 107, 74-88.	2.5	33
147	How solid surface free energy determines coalescence-induced nanodroplet jumping: A molecular dynamics investigation. Journal of Applied Physics, 2017, 122, .	1.1	23
148	Fabrication and Study of Micro- and Nanostructured Superhydrophobic and Anti-Icing Surfaces. Nanotechnologies in Russia, 2017, 12, 485-494.	0.7	6
150	UV-resistant hydrophobic CeO2 nanomaterial with photocatalytic depollution performance. Ceramics International, 2018, 44, 13439-13443.	2.3	17
151	Robust anti-icing performance of silicon wafer with hollow micro-/nano-structured ZnO. Journal of Industrial and Engineering Chemistry, 2018, 62, 46-51.	2.9	26
152	Enhanced condensation heat transfer in air-conditioner heat exchanger using superhydrophobic foils. Applied Thermal Engineering, 2018, 137, 758-766.	3.0	49
153	Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature. International Journal of Heat and Mass Transfer, 2018, 122, 395-402.	2.5	92
154	A novel flexible micro-ratchet/ZnO nano-rods surface with rapid recovery icephobic performance. Journal of Industrial and Engineering Chemistry, 2018, 62, 52-57.	2.9	31
155	Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties. RSC Advances, 2018, 8, 4204-4213.	1.7	24
156	Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Langmuir, 2018, 34, 2734-2740.	1.6	64
157	Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. Advanced Materials, 2018, 30, e1704652.	11.1	161
158	Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites. Journal Physics D: Applied Physics, 2018, 51, 055302.	1.3	42
159	Energy analysis of droplet jumping induced by multi-droplet coalescence: The influences of droplet number and droplet location. International Journal of Heat and Mass Transfer, 2018, 121, 315-320.	2.5	44
161	Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces. Journal of Laser Applications, 2018, 30, .	0.8	24
162	Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces. Applied Surface Science, 2018, 444, 604-609.	3.1	19
163	Experimental study on frost suppression for ASHP combining superhydrophobic heat exchanger and air flow. Applied Thermal Engineering, 2018, 136, 666-673.	3.0	28
164	lcing temperature measurements of water on pyroelectric single crystals: Impact of experimental methods on the degree of supercooling. Cold Regions Science and Technology, 2018, 151, 53-63.	1.6	9
165	Meltwater Evolution during Defrosting on Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 1415-1421.	4.0	39

	Ста	ATION REPORT	
#	Article	IF	CITATIONS
166	Accelerated freezing due to droplet pinning on a nanopillared surface. AIP Advances, 2018, 8, .	0.6	7
167	Study of the Dynamics of Water Droplet Freezing on the Surface of Nanocomposites in the Long-Wavelength Infrared Range. Technical Physics, 2018, 63, 1808-1813.	0.2	1
168	Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture. Science Advances, 2018, 4, eaau3488.	4.7	108
169	Preferential water condensation on superhydrophobic nano-cones array. Applied Physics Letters, 2018, 113, .	1.5	21
170	"Openâ€Mouth―Mesoporous Hollow Micro/Nano Coatings Based on POSS/PDMS: Fabrication, Mechanisms, and Antiâ€Icing Performance. Particle and Particle Systems Characterization, 2018, 35, 1800323.	1.2	12
171	Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces. Physics of Fluids, 2018, 30, .	1.6	44
172	Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off. Langmuir, 2018, 34, 14562-14569.	1.6	48
173	Spatial control of condensation and desublimation using ice nucleating proteins. Applied Physics Letters, 2018, 113, .	1.5	8
174	Cascade Freezing of Supercooled Water Droplet Collectives. ACS Nano, 2018, 12, 11274-11281.	7.3	26
175	Passive Antifrosting Surfaces Using Microscopic Ice Patterns. ACS Applied Materials & Interfaces, 2018, 10, 32874-32884.	4.0	61
176	Constrained droplet base in condensed water on carbon nanoparticle coating for delayed freezing. Extreme Mechanics Letters, 2018, 24, 38-46.	2.0	4
177	Morphology of supercooled droplets freezing on solid surfaces. AIP Advances, 2018, 8, .	0.6	4
178	Freezing delay, frost accumulation and droplets condensation properties of micro- or hierarchically-structured silicon surfaces. International Journal of Heat and Mass Transfer, 2018, 126, 442-451.	2.5	24
179	Enhancing Nucleation and Detachment of Condensed Drops by Hybrid Wetting Surfaces. Journal of Bionic Engineering, 2018, 15, 452-460.	2.7	6
180	Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier. RSC Advances, 2018, 8, 19906-19916.	1.7	21
181	How to Engineer Surfaces to Control and Optimize Boiling, Condensation and Frost Formation?. , 2018, , 63-158.		1
182	Effect of radius ratios of two droplets on coalescence-induced self-propelled jumping. AIP Advances, 2018, 8, .	0.6	17
183	Quantitative analysis of anti-freezing characteristics of superhydrophobic surfaces according to initial ice nuclei formation time and freezing propagation velocity. International Journal of Heat and Mass Transfer, 2018, 126, 109-117.	2.5	21

#	Article	IF	CITATIONS
184	Multiscale Dynamic Growth and Energy Transport of Droplets during Condensation. Langmuir, 2018, 34, 9085-9095.	1.6	29
185	Desublimation Frosting on Nanoengineered Surfaces. ACS Nano, 2018, 12, 8288-8296.	7.3	26
186	Lowâ€Cost Fabrication of Largeâ€Area Broccoliâ€Like Multiscale Micro―and Nanostructures for Metallic Superâ€Hydrophobic Surfaces with Ultralow Water Adhesion and Superior Antiâ€Frost Ability. Advanced Materials Interfaces, 2018, 5, 1800353.	1.9	38
187	Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation. Langmuir, 2018, 34, 6636-6644.	1.6	48
188	Wetting transition of sessile and condensate droplets on copper-based superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2018, 127, 280-288.	2.5	16
189	Enhancement of Coalescence-Induced Nanodroplet Jumping on Superhydrophobic Surfaces. Langmuir, 2018, 34, 11195-11203.	1.6	46
190	Frost Formation on Aluminum and Hydrophobic Surfaces. , 2018, , .		3
191	Hierarchical micro- and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance. Materials and Design, 2018, 155, 185-193.	3.3	34
192	A robust quasiâ€superhydrophobic ceria coating prepared using airâ€plasma spraying. Journal of the American Ceramic Society, 2019, 102, 1386-1393.	1.9	19
193	Numerical investigation of vibration-induced droplet shedding on smooth surfaces with large contact angles. Physical Review E, 2019, 100, 023105.	0.8	14
194	Droplet re-icing characteristics on a superhydrophobic surface. Applied Physics Letters, 2019, 115, .	1.5	40
195	The Effect of the Initial State of the Droplet Group on the Energy Conversion Efficiency of Self-Propelled Jumping. Langmuir, 2019, 35, 16037-16042.	1.6	19
196	Experimental investigation of condensation and freezing phenomena on hydrophilic and hydrophobic graphene coating. Applied Thermal Engineering, 2019, 160, 113987.	3.0	17
197	Rotation of a rebounding-coalescing droplet on a superhydrophobic surface. Physics of Fluids, 2019, 31, 062109.	1.6	17
198	Highly transparent and robust slippery lubricant-infused porous surfaces with anti-icing and anti-fouling performances. Journal of Alloys and Compounds, 2019, 803, 51-60.	2.8	57
199	Enhanced and guided self-propelled jumping on the superhydrophobic surfaces with macrotexture. Applied Physics Letters, 2019, 115, .	1.5	31
200	Bioinspired functions. , 2019, , 147-246.		1
201	<i>In Situ</i> Droplet Microgoniometry Using Optical Microscopy. ACS Nano, 2019, 13, 13343-13353.	7.3	12

#	Article	IF	CITATIONS
202	Microflower-Decorated Superhydrophobic Copper Surface for Dry Condensation. Langmuir, 2019, 35, 16275-16280.	1.6	20
203	Vitamin D Deficiency Attenuates Acute Alcoholâ€Induced Hepatic Lipid Accumulation in Mice. Lipids, 2019, 54, 651-663.	0.7	6
204	Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties. Soft Matter, 2019, 15, 7945-7955.	1.2	50
205	Visible Light-Activated Self-Recovery Hydrophobic CeO ₂ /Black TiO ₂ Coating Prepared Using Air Plasma Spraying. ACS Applied Materials & Interfaces, 2019, 11, 37209-37215.	4.0	13
206	Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior. ACS Applied Materials & Interfaces, 2019, 11, 38276-38284.	4.0	47
207	Condensation frosting on meter-scale superhydrophobic and superhydrophilic heat exchangers. International Journal of Heat and Mass Transfer, 2019, 145, 118694.	2.5	57
208	Biological and Engineered Topological Droplet Rectifiers. Advanced Materials, 2019, 31, e1806501.	11.1	113
209	A novel antiscaling and anti-corrosive polymer-based functional coating. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 397-405.	2.7	21
210	Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction. Scientific Reports, 2019, 9, 405.	1.6	38
211	Inhibition of surface ice nucleation by combination of superhydrophobic coating and alcohol spraying. International Journal of Heat and Mass Transfer, 2019, 134, 628-633.	2.5	9
212	A Facile Approach to Fabricate the Durable and Buoyant Superhydrophobic Fabric for Efficient Oil/Water Separation. Fibers and Polymers, 2019, 20, 1003-1010.	1.1	6
213	Musselâ€inspired catecholâ€based chemistry for direct construction of superâ€hydrophilic and waterproof coatings on intrinsic hydrophobic surfaces. Journal of Applied Polymer Science, 2019, 136, 48013.	1.3	16
214	Coalescence-induced jumping of condensate droplets on microstructured surfaces with different gravitational fields by lattice Boltzmann method. Computers and Fluids, 2019, 188, 60-69.	1.3	16
215	Coalescence-induced droplet detachment on low-adhesion surfaces: A three-phase system study. Physical Review E, 2019, 99, 063102.	0.8	3
216	Hemocompatibility of super-repellent surfaces: current and future. Materials Horizons, 2019, 6, 1596-1610.	6.4	30
217	Understanding the frosting and defrosting mechanism on the superhydrophobic surfaces with hierarchical structures for enhancing anti-frosting performance. Applied Thermal Engineering, 2019, 156, 111-118.	3.0	46
218	Size distribution theory for jumping-droplet condensation. Applied Physics Letters, 2019, 114, .	1.5	27
219	Numerical simulations of guided self-propelled jumping of droplets on a wettability gradient surface. Applied Thermal Engineering, 2019, 156, 524-530.	3.0	23

#	Article	IF	CITATIONS
220	Icephobic surfaces: Definition and figures of merit. Advances in Colloid and Interface Science, 2019, 269, 203-218.	7.0	115
221	Superhydrophobic surface based on cross-linked polymer. Materials Research Express, 2019, 6, 055008.	0.8	2
222	Designing liquid repellent, icephobic and self-cleaning surfaces with high mechanical and chemical durability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180270.	1.6	15
223	Design of surfaces for controlling hard and soft fouling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180266.	1.6	34
224	Scraping force characteristics of frost formed on vertical cooling surfaces having different structures and wettability. International Journal of Refrigeration, 2019, 101, 148-154.	1.8	6
225	Delaying Ice and Frost Formation Using Phaseâ€&witching Liquids. Advanced Materials, 2019, 31, e1807812.	11.1	75
226	How Surface Orientation Affects Jumping-Droplet Condensation. Joule, 2019, 3, 1360-1376.	11.7	69
227	Antiicing Properties of Bioinspired Liquidâ€Infused Doubleâ€Layer Surface with Internal Wetting Transport Ability. Advanced Materials Interfaces, 2019, 6, 1900244.	1.9	9
228	Numerical simulations of multi-hop jumping on superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2019, 135, 345-353.	2.5	29
229	Icing behavior of water droplets impinging on cold superhydrophobic surface. Surface and Coatings Technology, 2019, 363, 362-368.	2.2	56
230	The effect of microstructure on self-propelled droplet jumping. E3S Web of Conferences, 2019, 128, 06006.	0.2	1
231	Estimation of anti-icing properties of coatings. E3S Web of Conferences, 2019, 135, 01009.	0.2	1
232	Condensation Properties of Grooved Composite Microstructured Aluminum Alloy Surface. , 2019, , .		1
233	Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings. Coatings, 2019, 9, 811.	1.2	14
234	Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces. Langmuir, 2019, 35, 16201-16209.	1.6	17
235	Effect of substrate wettability and flexibility on the initial stage of water vapor condensation. Soft Matter, 2019, 15, 10055-10064.	1.2	7
236	Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets. Physics of Fluids, 2019, 31, .	1.6	25
237	Electrostatic-induced coalescing-jumping droplets on nanostructured superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2019, 128, 550-561.	2.5	19

#	Article	IF	CITATIONS
238	Feasible fabrication of a wear-resistant hydrophobic surface. Applied Surface Science, 2019, 463, 923-930.	3.1	33
239	Influence of lubricant-mediated droplet coalescence on frosting delay on lubricant impregnated surfaces. International Journal of Heat and Mass Transfer, 2019, 128, 217-228.	2.5	19
240	The theoretical analysis and experimental study on anti-frosting performance of surface characteristics. International Journal of Thermal Sciences, 2019, 137, 343-351.	2.6	6
241	Durable, optically transparent, superhydrophobic polymer films. Applied Surface Science, 2019, 470, 187-195.	3.1	34
242	Disturbing stability of interface by adopting phase-change temperature gradient to reduce ice adhesion strength. Cold Regions Science and Technology, 2019, 158, 69-75.	1.6	8
243	Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir, 2019, 35, 10689-10703.	1.6	105
244	Nature-inspired surface topography: design and function. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	23
245	Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity. Chemical Engineering Science, 2020, 211, 115252.	1.9	31
247	How ice bridges the gap. Soft Matter, 2020, 16, 1156-1161.	1.2	23
248	Intelligent Icephobic Surface toward Self-Deicing Capability. ACS Sustainable Chemistry and Engineering, 2020, 8, 792-799.	3.2	25
249	FDTSâ€Modified SiO ₂ /rGO Wrinkled Films with a Microâ€Nanoscale Hierarchical Structure and Antiâ€Icing/Deicing Properties under Condensation Condition. Advanced Materials Interfaces, 2020, 7, 1901446.	1.9	39
250	Passive anti-frosting cables. International Journal of Heat and Mass Transfer, 2020, 146, 118808.	2.5	23
251	Sweeping by sessile drop coalescence. European Physical Journal: Special Topics, 2020, 229, 1739-1756.	1.2	6
252	New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chemical Communications, 2020, 56, 14757-14788.	2.2	18
253	Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. Langmuir, 2020, 36, 9510-9522.	1.6	45
254	Versatile and Scalable Icephobization of Airspace Composite by Surface Morphology and Chemistry Tuning. ACS Applied Polymer Materials, 2020, 2, 977-986.	2.0	12
255	A review of recent literature on icing phenomena: Transport mechanisms, their modulations and controls. International Journal of Heat and Mass Transfer, 2020, 159, 120074.	2.5	56
256	Condensation Frosting on Micropillar Surfaces – Effect of Microscale Roughness on Ice Propagation. Langmuir, 2020, 36, 13563-13574.	1.6	10

#	Article	IF	CITATIONS
259	Droplet Evaporation Dynamics of Low Surface Tension Fluids Using the Steady Method. Langmuir, 2020, 36, 13860-13871.	1.6	5
260	Quantitative relations between droplet jumping and anti-frosting effect on superhydrophobic surfaces. Energy and Buildings, 2020, 225, 110315.	3.1	33
261	Molecular physics of jumping nanodroplets. Nanoscale, 2020, 12, 20631-20637.	2.8	14
262	Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter, 2020, 3, 1178-1195.	5.0	41
263	Effects of Gravitational Force and Surface Orientation on the Jumping Velocity and Energy Conversion Efficiency of Coalesced Droplets. Microgravity Science and Technology, 2020, 32, 1185-1197.	0.7	11
264	Enhancing the Longâ€Term Robustness of Dropwise Condensation on Nanostructured Superhydrophobic Surfaces by Introducing 3D Conical Microtextures Prepared by Femtosecond Laser. Advanced Materials Interfaces, 2020, 7, 2000997.	1.9	14
265	Numerical investigation of surface curvature effect on the self-propelled capability of coalesced drops. Physics of Fluids, 2020, 32, 122117.	1.6	8
266	Controlling the Jumping Angle of Coalescing Droplets Using Surface Structures. ACS Applied Materials & Interfaces, 2020, 12, 52221-52228.	4.0	14
269	Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates. Langmuir, 2020, 36, 6635-6650.	1.6	16
270	Contact time on inclined superhydrophobic surfaces decorated with parallel macro-ridges. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124924.	2.3	28
271	Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces. Soft Matter, 2020, 16, 5388-5397.	1.2	11
272	Highly efficient solar anti-icing/deicing <i>via</i> a hierarchical structured surface. Materials Horizons, 2020, 7, 2097-2104.	6.4	108
273	Smart Superhydrophobic Films with Selfâ€Sensing and Antiâ€Icing Properties Based on Silica Nanoparticles and Graphene. Advanced Materials Interfaces, 2020, 7, 2000492.	1.9	20
274	Waterâ€Based Robust Transparent Superamphiphobic Coatings for Resistance to Condensation, Frosting, Icing, and Fouling. Advanced Materials Interfaces, 2020, 7, 1902201.	1.9	22
275	Frost-free zone on macrotextured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6323-6329.	3.3	51
276	Departure Velocity of Rolling Droplet Jumping. Langmuir, 2020, 36, 3713-3719.	1.6	16
277	How Micro-/Nanostructure Evolution Influences Dynamic Wetting and Natural Deicing Abilities of Bionic Lotus Surfaces. Langmuir, 2020, 36, 4005-4014.	1.6	25
278	Inhibiting Condensation Freezing on Patterned Polyelectrolyte Coatings. ACS Nano, 2020, 14, 5000-5007.	7.3	32

#	Article	IF	Citations
279	Anti-frosting/anti-icing property of nano-ZnO superhydrophobic surface on Al alloy prepared by radio frequency magnetron sputtering. Materials Research Express, 2020, 7, 026401.	0.8	16
280	From Extremely Water-Repellent Coatings to Passive Icing Protection—Principles, Limitations and Innovative Application Aspects. Coatings, 2020, 10, 66.	1.2	34
281	Dissipation of oscillatory contact lines using resonant mode scanning. Npj Microgravity, 2020, 6, 3.	1.9	8
282	Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 7805-7814.	4.0	52
283	Bioinspired Multifunctional Anti-icing Hydrogel. Matter, 2020, 2, 723-734.	5.0	150
284	Anti-frosting performance of sprayable superhydrophobic coating suitable for outdoor coil of air source heat pump. Applied Thermal Engineering, 2020, 169, 114967.	3.0	37
285	Self-ejections of multiple isolated slushes on disorderly grooved superhydrophobic surfaces. Applied Physics Letters, 2020, 116, 053702.	1.5	2
286	Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review. Advances in Colloid and Interface Science, 2020, 279, 102155.	7.0	74
287	Multiscale Modeling to Predict the Hydrophobicity of an Experimentally Designed Coating. Journal of Physical Chemistry C, 2020, 124, 9866-9875.	1.5	2
288	Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove. Langmuir, 2020, 36, 5444-5453.	1.6	41
289	Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance. Soft Matter, 2020, 16, 4462-4476.	1.2	30
290	Coalescence-induced jumping of nanodroplets on mixed-wettability superhydrophobic surfaces. Canadian Journal of Physics, 2021, 99, 297-301.	0.4	6
291	Distribution, coalescence, and freezing characteristics of water droplets on surfaces with different wettabilities under subfreezing convective flow. Applied Thermal Engineering, 2021, 182, 116052.	3.0	11
292	Promote anti- /de- frosting by suppressing directional ice bridging. International Journal of Heat and Mass Transfer, 2021, 165, 120609.	2.5	22
293	Polysiloxane as icephobic materials – The past, present and the future. Chemical Engineering Journal, 2021, 405, 127088.	6.6	83
294	Wettability-defined frosting dynamics between plane fins in quiescent air. International Journal of Heat and Mass Transfer, 2021, 164, 120563.	2.5	22
295	Analytical model for drag reduction on liquid-infused structured non-wetting surfaces. Soft Matter, 2021, 17, 1388-1403.	1.2	19
296	Ultimate jumping of coalesced droplets on superhydrophobic surfaces. Journal of Colloid and Interface Science, 2021, 587, 429-436.	5.0	33

#	Article	IF	CITATIONS
297	Metallic skeleton promoted two-phase durable icephobic layers. Journal of Colloid and Interface Science, 2021, 587, 47-55.	5.0	14
298	Analysis of Laminar Convective Heat Transfer Over Structured Non-Wetting Surfaces. International Journal of Heat and Mass Transfer, 2021, 167, 120810.	2.5	13
299	Coalescence-induced self-propelled jumping of three droplets on non-wetting surfaces: Droplet arrangement effects. Journal of Applied Physics, 2021, 129, .	1.1	6
300	Coalescence-Induced Droplet Jumping. Langmuir, 2021, 37, 983-1000.	1.6	33
301	Effect and relational analysis of physical parameters on coalescence-induced self-propelled jumping of droplets. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 124702.	0.2	0
302	Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability. Langmuir, 2021, 37, 2476-2484.	1.6	4
303	A Conductive Hydrophobic Polyaniline Sandwiched Polyvinylidene Fluoride Membrane for Early Detection of Surfactant-Induced Wetting in Membrane Distillation Using Impedance. ACS Applied Polymer Materials, 2021, 3, 679-690.	2.0	17
304	Solar-assisted icephobicity down to â^'60°C with superhydrophobic selective surfaces. Cell Reports Physical Science, 2021, 2, 100384.	2.8	43
305	A cost-effective method for preparing anti-corrosive and fireproof super hydrophobic coating. IOP Conference Series: Earth and Environmental Science, 2021, 714, 032056.	0.2	0
306	Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Progress in Organic Coatings, 2021, 152, 106117.	1.9	97
307	Tunable self-jumping of melting frost on macro-patterned anisotropic superhydrophobic surfaces. Surface and Coatings Technology, 2021, 409, 126858.	2.2	9
308	Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
309	A robust, hydrophobic CeO2/NiCoCrAlY composite coating with excellent thermal stability and corrosion resistance prepared by air plasma spray. Journal of Alloys and Compounds, 2021, 861, 158623.	2.8	19
310	Super-Hydrophobic Coating Based on Acrylic Resin A01. Solid State Phenomena, 0, 316, 720-725.	0.3	0
311	Freezing of a nanofluid droplet: From a pointy tip to flat plateau. Applied Physics Letters, 2021, 118, .	1.5	14
312	Research and Prediction of Wettability of Irregular Square Column Structure on Polymethyl Methacrylate (PMMA) Surface Prepared by Femtosecond Laser. Coatings, 2021, 11, 529.	1.2	1
313	Flexible and efficient regulation of coalescence-induced droplet jumping on superhydrophobic surfaces with string. Applied Physics Letters, 2021, 118, .	1.5	15
314	Atmospheric Corrosion Protection Performance and Mechanism of Superhydrophobic Surface Based on Coalescence-Induced Droplet Self-Jumping Behavior. ACS Applied Materials & amp; Interfaces, 2021, 13, 25438-25450.	4.0	40

#	Article	IF	CITATIONS
315	Biomimetic modification of freezing facility surfaces to prevent icing and frosting during freezing for the food industry. Trends in Food Science and Technology, 2021, 111, 581-594.	7.8	23
316	Unique and universal dew-repellency of nanocones. Nature Communications, 2021, 12, 3458.	5.8	33
317	Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove. ACS Applied Materials & Interfaces, 2021, 13, 32542-32554.	4.0	28
318	Asymmetric solidification during droplet freezing in the presence of a neighboring droplet. International Journal of Heat and Mass Transfer, 2021, 171, 121134.	2.5	8
319	Superhydrophobic heat exchangers delay frost formation and enhance efficency of electric vehicle heat pumps. International Journal of Heat and Mass Transfer, 2021, 172, 121162.	2.5	45
320	Robust photothermal anti-icing/deicing via flexible CMDSP carbon nanotube films. Nanotechnology, 2021, , .	1.3	5
321	Using Frost to Promote Cassie Ice on Hydrophilic Pillars. Physical Review Letters, 2021, 127, 044501.	2.9	11
322	Condensation frosting and passive anti-frosting. Cell Reports Physical Science, 2021, 2, 100474.	2.8	35
323	Design and applications of surfaces that control the accretion of matter. Science, 2021, 373, .	6.0	114
324	Polymer icephobic surface by graphite coating and chemical grafting with diazonium salts. Surfaces and Interfaces, 2021, 25, 101226.	1.5	4
325	Designing Antiâ€icing Surfaces by Controlling Ice Formation. Advanced Materials Interfaces, 2021, 8, 2100327.	1.9	29
326	Bouncing behavior of a water droplet on a super-hydrophobic surface near freezing temperatures. International Journal of Heat and Mass Transfer, 2021, 174, 121304.	2.5	22
327	Salt-solution-infused thin-film condenser for simultaneous anti-frost and solar-assisted atmospheric water harvesting. Cell Reports Physical Science, 2021, 2, 100568.	2.8	4
328	Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 43489-43504.	4.0	20
329	Highly transparent and super-wettable nanocoatings hybridized with isocyanate-silane modified surfactant for multifunctional applications. Nano Materials Science, 2022, 4, 151-168.	3.9	6
330	Dropwise condensation freezing and frosting on bituminous surfaces at subzero temperatures. Construction and Building Materials, 2021, 298, 123851.	3.2	9
331	Preparation and performance of nanoparticles-based anti-frosting transparent hydrophobic surfaces. International Journal of Refrigeration, 2021, 130, 404-412.	1.8	2
332	A modeling study of sessile water droplet on the cold plate surface during freezing under natural convection with gravity effect considered. International Journal of Multiphase Flow, 2021, 143, 103749.	1.6	7

#	Article	IF	CITATIONS
333	Preparations of versatile polytetrafluoroethylene superhydrophobic surfaces using the femtosecond laser technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127441.	2.3	17
334	Coalescence-induced jumping and condensation of argon nanodroplets in the Cassie or the Wenzel state on nanopillar-arrayed surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127269.	2.3	8
335	Dropwise condensation heat transfer on nanostructured superhydrophobic surfaces with different inclinations and surface subcoolings. International Journal of Heat and Mass Transfer, 2021, 181, 121898.	2.5	18
336	Rational fabrication of superhydrophobic surfaces with coalescence-induced droplet jumping behavior for atmospheric corrosion protection. Chemical Engineering Journal, 2022, 428, 132029.	6.6	35
337	Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing. Chemical Engineering Journal, 2022, 427, 130922.	6.6	105
338	Effect of surface wettability on impact-freezing of supercooled large water droplet. Experimental Thermal and Fluid Science, 2022, 130, 110508.	1.5	8
339	A Passive Anti-icing Strategy Based on a Superhydrophobic Mesh with Extremely Low Ice Adhesion Strength. Journal of Bionic Engineering, 2021, 18, 55-64.	2.7	98
340	Enhancement of Two-Phase Flow Using EHD Technique. SpringerBriefs in Applied Sciences and Technology, 2020, , 27-50.	0.2	1
341	A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures. Applied Surface Science, 2018, 436, 172-182.	3.1	24
342	Review of experimental data associated with the solidification characteristics of water droplets on a cold plate surface at the early frosting stage. Energy and Buildings, 2020, 223, 110103.	3.1	55
343	Recent progress on developing anti-frosting and anti-fouling functional surfaces for air source heat pumps. Energy and Buildings, 2020, 223, 110139.	3.1	20
344	Transparent and water repellent ceria film grown by atomic layer deposition. Surface and Coatings Technology, 2017, 320, 190-195.	2.2	15
345	Suppressing Condensation Frosting Using an Out-of-Plane Dry Zone. Langmuir, 2020, 36, 15603-15609.	1.6	7
346	Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 1743-1753.	4.0	147
347	Heat transfer model based on diffusion layer theory for dropwise condensation with high non-condensable gas. AIP Advances, 2020, 10, .	0.6	10
348	Anti-frosting and defrosting performance of chemically modified super-nonwettable carbon soot coatings. Journal Physics D: Applied Physics, 2021, 54, 015303.	1.3	13
349	Coalescence-induced nanodroplet jumping. Physical Review Fluids, 2016, 1, .	1.0	128
350	Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch. Physical Review Fluids, 2017, 2, .	1.0	60

#	Article	IF	CITATIONS
351	Ice wicking. Physical Review Fluids, 2019, 4, .	1.0	11
352	Bubble formation in freezing droplets. Physical Review Fluids, 2019, 4, .	1.0	43
353	Computational Modelling of Droplet Dynamics Behaviour in Polymer Electrolyte Membrane Fuel Cells: A Review. Journal of Electrochemical Science and Technology, 2019, 10, 345-360.	0.9	4
354	Self-Propelled Jump Regime in Nanoscale Droplet Collisions: A Molecular Dynamics Study. Communications in Computational Physics, 2018, 23, .	0.7	3
355	Frost spreading and pattern formation on microstructured surfaces. Physical Review E, 2021, 104, 044901.	0.8	8
356	A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 086801.	0.2	2
357	Superhydrophobicity or Icephobicity for an Effective Icing Mitigation Strategy?. , 2014, , .		3
358	Micro/Nanostructured Icephobic Materials. , 2015, , 1-4.		0
359	Superhydrophobic materials used for anti-icing Theory, application, and development. IScience, 2021, 24, 103357.	1.9	52
360	Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review. Coatings, 2021, 11, 1343.	1.2	34
362	Manufacturing of stable hydrophobic surface on rare-earth oxides aluminium hybrid composite. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 899-912.	1.4	3
363	Anti-Icing Technology based on Drop Bouncing Dynamics for the Prevention of Freezing of Electric Power Equipment. Journal of the Korean Society for Precision Engineering, 2020, 37, 917-928.	0.1	0
364	The mechanisms of frost formation on a semipermeable membrane. International Journal of Heat and Mass Transfer, 2022, 182, 121912.	2.5	7
365	Insight into Newtonian fluid flow and heat transfer in vertical microchannel subject to rhythmic membrane contraction due to pressure gradient and buoyancy forces. International Journal of Heat and Mass Transfer, 2022, 184, 122249.	2.5	16
366	Sustainable icephobicity on durable quasi-liquid surface. Chemical Engineering Journal, 2022, 431, 133475.	6.6	37
367	A Review of Methods and Techniques for Detecting Frost on Plant Surfaces. Agriculture (Switzerland), 2021, 11, 1142.	1.4	2
368	Fabrication of hierarchically textured aluminum-based superhydrophobic surfaces for anti-frosting application. Materials Today: Proceedings, 2022, 56, 1267-1273.	0.9	1
369	Optical investigation of cryogenic frost formation under forced convection. Applied Thermal Engineering, 2022, 202, 117887.	3.0	10

#	Article	IF	CITATIONS
370	Highly Transparent and Selfâ€Healable Solar Thermal Anti…Deicing Surfaces: When Ultrathin MXene Multilayers Marry a Solid Slippery Selfâ€Cleaning Coating. Advanced Materials, 2022, 34, e2108232.	11.1	76
371	The prediction of energy conversion during the self-propelled jumping of multidroplets based on convolutional neural networks. Physics of Fluids, 2022, 34, .	1.6	6
372	Fundamentals and Applications of Polymer Brushes in Air. ACS Applied Polymer Materials, 2022, 4, 3062-3087.	2.0	44
373	Electrostatic tweezer for droplet manipulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	47
374	Coalescence-induced jumping of droplets on superhydrophobic substrates with a beam structure. Applied Surface Science, 2022, 582, 152284.	3.1	5
375	Study on Frost-Suppression Characteristics of Superhydrophobic Aluminum Surface Heat Exchanger Applied in Air Source Heat Pump. Sustainability, 2022, 14, 1954.	1.6	4
376	Superhydrophobic Heat Exchangers Delay Frost Formation and Reduce Defrost Energy Input of Aircraft Environmental Control Systems. SSRN Electronic Journal, 0, , .	0.4	0
377	Recent advances in solar-thermal surfaces for anti-icing/anti-frosting/anti-fogging. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 089201.	0.2	2
378	Ice Dendrite Growth Atop a Frozen Drop under Natural Convection Conditions. Crystals, 2022, 12, 323.	1.0	2
379	Dynamics of Frost Propagation on Breath Figures. Langmuir, 2022, 38, 2972-2978.	1.6	3
380	Self-peeling of frozen water droplets upon impacting a cold surface. Communications Physics, 2022, 5, .	2.0	13
381	High-Efficiency Directional Ejection of Coalesced Drops on a Circular Groove. Langmuir, 2022, 38, 4028-4035.	1.6	5
382	Solar Deicing Nanocoatings Adaptive to Overhead Power Lines. Advanced Functional Materials, 2022, 32, .	7.8	38
383	How Superhydrophobic Grooves Drive Single-Droplet Jumping. Langmuir, 2022, 38, 4452-4460.	1.6	18
384	Experimental study of frost formation on straight cylindrical fins of cryogenic temperature under natural convection conditions. International Journal of Refrigeration, 2022, 135, 51-59.	1.8	5
385	Analytical prediction of electrowetting-induced jumping motion for droplets on textured hydrophobic substrates: Effects of the wetting states. Physics of Fluids, 2022, 34, 032001.	1.6	0
386	Anti-icing ceramics surface induced by femtosecond laser. Ceramics International, 2022, 48, 10236-10243.	2.3	16
387	Superhydrophobic heat exchangers delay frost formation and reduce defrost energy input of aircraft environmental control systems. International Journal of Heat and Mass Transfer, 2022, 189, 122669.	2.5	30

#	Article	IF	CITATIONS
388	Anti-icing propagation and icephobicity of slippery liquid-infused porous surface for condensation frosting. International Journal of Heat and Mass Transfer, 2022, 190, 122730.	2.5	23
389	Material Strategies for Ice Accretion Prevention and Easy Removal. , 2022, 4, 246-262.		38
390	Self-Propelled Nanodroplet Jumping Enhanced by Nanocone Arrays: Implications for Self-Cleaning and Anti-Icing Surfaces. ACS Applied Nano Materials, 2022, 5, 810-817.	2.4	3
391	Frost Delay of a Water-Absorbing Surface with Engineered Wettability via Nonfreezing Water. Langmuir, 2022, 38, 5787-5794.	1.6	3
392	Surface design strategies for mitigating ice and snow accretion. Matter, 2022, 5, 1423-1454.	5.0	31
393	Selfâ€Lubricative Organic–Inorganic Hybrid Coating with Antiâ€Icing and Antiâ€Waxing Performances by Grafting Liquidâ€Like Polydimethylsiloxane. Advanced Materials Interfaces, 2022, 9, .	1.9	14
394	Sustainable anti-frosting surface for efficient thermal transport. Cell Reports Physical Science, 2022, 3, 100937.	2.8	6
395	Frost formation from general-low to ultra-low temperatures: A review. International Journal of Heat and Mass Transfer, 2022, 195, 123164.	2.5	12
396	Ultrascalable Surface Structuring Strategy of Metal Additively Manufactured Materials for Enhanced Condensation. Advanced Science, 2022, 9, .	5.6	8
397	Functional microdroplet self-dislodging icephobic surfaces: A review from mechanism to synergic morphology. Applied Thermal Engineering, 2022, 215, 118928.	3.0	4
399	Ultralow-adhesion icephobic surfaces: Combining superhydrophobic and liquid-like properties in the same surface. Nano Research, 2023, 16, 589-598.	5.8	12
400	Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces. Langmuir, 2022, 38, 9981-9991.	1.6	7
401	Surface wettability of water and blood on diversified nanoconeâ€shaped ZnO films modified with nâ€dodecyl mercaptan. Surface and Interface Analysis, 0, , .	0.8	0
402	Two-Dimensional Simulation of the Freezing Characteristics in PEMFCs during Cold Start Considering Ice Crystallization Kinetics. Polymers, 2022, 14, 3203.	2.0	6
403	A brief review: The mechanism; simulation and retardation of frost on the cold plane and evaporator surface. Energy and Buildings, 2022, 272, 112366.	3.1	5
404	Experimental study on anti-frosting performance of superhydrophobic surface under high humidity conditions. Applied Thermal Engineering, 2022, 217, 119193.	3.0	14
405	Condensation droplet sieve. Nature Communications, 2022, 13, .	5.8	34
406	An environment-friendly polyurethane composite membrane decorated by superhydrophobic modification of TiC as high efficient separator of oil-water emulsion. Journal of Membrane Science, 2022, 662, 121000.	4.1	9

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
407	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
408	Experimental Research on Microsecond-Laser-Induced Superhydrophobic Surface and Its Ice Suppression Properties. Jom, 0, , .	0.9	0
409	Coalescence-Induced Jumping for Removing the Deposited Heterogeneous Droplets: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2022, 126, 8030-8038.	1.2	6
410	Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets. Langmuir, 2022, 38, 12674-12681.	1.6	3
411	Gradient droplet distribution promotes spontaneous formation of frost-free zone. Communications Materials, 2022, 3, .	2.9	7
412	Fabrication of Metallic Superhydrophobic Surfaces with Tunable Condensate Self-Removal Capability and Excellent Anti-Frosting Performance. Nanomaterials, 2022, 12, 3655.	1.9	3
413	Chemical vapor deposition of transparent superhydrophobic anti-lcing coatings with tailored polymer nanoarray architecture. Chemical Engineering Journal, 2023, 454, 139981.	6.6	53
414	Coalescence-induced jumping of in-plane moving droplets: Effects of initial velocity and sideslip angle. Chemical Engineering Science, 2023, 265, 118247.	1.9	2
415	Hierarchical microporous superhydrophobic surfaces with nanostructures enhancing vapor condensation heat transfer. Applied Thermal Engineering, 2023, 219, 119527.	3.0	5
416	Enhanced horizontal mobility of a coalesced jumping droplet on superhydrophobic surfaces with an asymmetric ridge. Physics of Fluids, 2022, 34, .	1.6	7
417	Localized Characteristics of the First Three Typical Condensation Frosting Stages in the Edge Region of a Horizontal Cold Plate. Micromachines, 2022, 13, 1906.	1.4	8
418	Influence of jumping-droplet condensation on the properties of separated flow in an air-cooled condenser tube: An Euler-Lagrange approach. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0, , 095765092211386.	0.8	0
419	Frosting characteristics of superhydrophobic surface under desublimation frosting conditions. International Journal of Thermal Sciences, 2023, 184, 108038.	2.6	8
420	Long-lasting ceria-based anti-frosting surfaces. International Communications in Heat and Mass Transfer, 2023, 140, 106550.	2.9	1
421	Freezing propagation of condensate droplets at early stage of frosting on vertical hydrophobic surface. Case Studies in Thermal Engineering, 2023, 41, 102617.	2.8	0
422	How macrostructures enhance droplet coalescence jumping: A mechanism study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130740.	2.3	6
423	A frost model based on the frost layer's supporting function. International Journal of Heat and Mass Transfer, 2023, 202, 123741.	2.5	6
424	Fabrication of Superhydrophobic and Light-Absorbing Polyester Fabric Based on Caffeic Acid. Polymers, 2022, 14, 5536.	2.0	2

#	Article	IF	CITATIONS
425	Review on Anti-Frost Technology Based on Microchannel Heat Exchanger. Journal of Shanghai Jiaotong University (Science), 0, , .	0.5	0
426	Atomistic Description of Interdroplet Ice-Bridge Formation during Condensation Frosting. Langmuir, 2023, 39, 579-587.	1.6	2
427	Rotating Surfaces Promote the Shedding of Droplets. Research, 2023, 6, .	2.8	6
428	Mechanically robust superhydrophobic copper surface with self-cleaning, anti-icing, and corrosion resistance. Surface and Coatings Technology, 2023, 455, 129216.	2.2	7
429	Review on ice crystallization and adhesion to optimize ice slurry generators without moving components. Applied Thermal Engineering, 2023, 223, 119974.	3.0	5
430	Impacts of initial cooling rate on local frosting characteristics of horizontal cold plate surface with edge effect considered. International Communications in Heat and Mass Transfer, 2023, 143, 106654.	2.9	15
431	Freezing-induced wetting transitions on superhydrophobic surfaces. Nature Physics, 2023, 19, 649-655.	6.5	23
432	Study on anti-icing performance of carbon fiber composite superhydrophobic surface. Materials Today Chemistry, 2023, 29, 101421.	1.7	6
433	Durability and Degradation Mechanisms of Antifrosting Surfaces. ACS Applied Materials & Interfaces, 2023, 15, 13711-13723.	4.0	7
434	A Review of Condensation Frosting—Mechanisms and Promising Solutions. Crystals, 2023, 13, 493.	1.0	2
435	Photothermal MOF-Based Multifunctional Coating with Passive and Active Protection Synergy. , 2023, 1, 1058-1068.		3
436	Experimental study of frosting cleaning process on superhydrophobic copper surface. International Journal of Refrigeration, 2023, 151, 87-96.	1.8	0
437	Efficient defrosting on hybrid surfaces with heterogeneous wettability. Case Studies in Thermal Engineering, 2023, 45, 102999.	2.8	1
438	Efficient anti-frosting on discrete nanoclusters via spatiotemporal control of condensation frosting dynamics. Chemical Engineering Journal, 2023, 465, 142991.	6.6	3