Mechanism of Persulfate Activation by Phenols

Environmental Science & amp; Technology 47, 5864-5871 DOI: 10.1021/es400728c

Citation Report

#	Article	IF	CITATIONS
2	Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Applied Catalysis B: Environmental, 2014, 154-155, 134-141.	10.8	437
3	High Catalytic Synergism between the Components of the Rhenium Complex@Silver Hybrid Material in Alkene Epoxidations. ChemCatChem, 2014, 6, 1935-1939.	1.8	12
4	Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Advances, 2014, 4, 3502-3511.	1.7	123
5	Comment on Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for TCE Degradation in Groundwater. Environmental Science & Technology, 2014, 48, 4630-4631.	4.6	28
6	Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation. Environmental Science & Technology, 2014, 48, 5868-5875.	4.6	634
7	Peroxymonosulfate activation by phosphate anion for organics degradation in water. Chemosphere, 2014, 117, 582-585.	4.2	186
8	Electrolytic Manipulation of Persulfate Reactivity by Iron Electrodes for Trichloroethylene Degradation in Groundwater. Environmental Science & Technology, 2014, 48, 656-663.	4.6	224
9	Activating persulfate by Fe0 coupling with weak magnetic field: Performance and mechanism. Water Research, 2014, 62, 53-62.	5.3	152
10	Activation of Persulfate by Surfactants under Acidic and Basic Conditions. Ground Water Monitoring and Remediation, 2014, 34, 51-59.	0.6	13
11	Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. Journal of Environmental Health Science & Engineering, 2015, 13, 76.	1.4	62
12	New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. Journal of Hazardous Materials, 2015, 285, 491-500.	6.5	307
13	Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system. Chemical Engineering Journal, 2015, 270, 73-79.	6.6	92
14	Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate. Environmental Science and Pollution Research, 2015, 22, 4670-4679.	2.7	68
15	Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chemical Engineering Journal, 2015, 266, 28-33.	6.6	556
16	Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. Water Research, 2015, 84, 1-7.	5.3	112
17	Performance of α-methylnaphthalene degradation by dual oxidant of persulfate/calcium peroxide: Implication for ISCO. Chemical Engineering Journal, 2015, 279, 538-546.	6.6	55
18	Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catalysis, 2015, 5, 4629-4636.	5.5	642
19	Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation. Environmental Science & Technology, 2015, 49, 5645-5653.	4.6	684

#	Article	IF	CITATIONS
20	Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe ₃ O ₄ : Mechanism, Stability, and Effects of pH and Bicarbonate Ions. Environmental Science & Technology, 2015, 49, 6838-6845.	4.6	619
21	Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine. Environmental Science & Technology, 2015, 49, 10373-10379.	4.6	133
22	Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge. Chemical Papers, 2015, 69, .	1.0	14
23	Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. Environmental Science & Technology, 2015, 49, 12941-12950.	4.6	954
24	Heat-activated persulfate oxidation of atrazine: Implications for remediation of groundwater contaminated by herbicides. Chemical Engineering Journal, 2015, 263, 45-54.	6.6	438
25	Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene. Environmental Pollution, 2016, 215, 96-102.	3.7	115
26	Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. Journal of Hazardous Materials, 2016, 316, 232-241.	6.5	181
27	Kinetics and transformation pathways on oxidation of fluoroquinolones with thermally activated persulfate. Chemical Engineering Journal, 2016, 292, 82-91.	6.6	120
28	Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chemical Engineering Journal, 2016, 298, 225-233.	6.6	269
29	Oxidation of Refractory Benzothiazoles with PMS/CuFe ₂ O ₄ : Kinetics and Transformation Intermediates. Environmental Science & amp; Technology, 2016, 50, 5864-5873.	4.6	132
30	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	10.8	390
31	Activation of Peroxymonosulfate by Subsurface Minerals. Journal of Contaminant Hydrology, 2016, 191, 33-43.	1.6	51
32	Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron. Science of the Total Environment, 2016, 562, 889-897.	3.9	75
33	Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. Environmental Science & Technology, 2016, 50, 10134-10142.	4.6	546
34	Persulfate Interaction with Tropical Soils. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	13
35	Feasible oxidation of 17β-estradiol using persulfate activated by Bi ₂ WO ₆ /Fe ₃ O ₄ under visible light irradiation. RSC Advances, 2016, 6, 79910-79919.	1.7	30
36	Persulfate activation during exertion of total oxidant demand. Chemosphere, 2016, 158, 184-192.	4.2	32
37	In situ solidification and in situ chemical oxidation combined in a single application to reduce contaminant mass and leachability in soil. Journal of Environmental Chemical Engineering, 2016, 4, 2857-2864	3.3	10

# 38	ARTICLE Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals. Applied Catalysis B: Environmental, 2016, 187, 1-10.	lF 10.8	Citations 200
39	Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environmental Science and Pollution Research, 2016, 23, 765-773.	2.7	44
40	Degradation of tetrabromobisphenol A in heat activated persulfate oxidation process. RSC Advances, 2016, 6, 29718-29726.	1.7	24
41	Activated persulfate for organic chemical degradation: A review. Chemosphere, 2016, 151, 178-188.	4.2	1,144
42	Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Research, 2016, 96, 12-21.	5.3	212
43	Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Applied Catalysis B: Environmental, 2016, 188, 98-105.	10.8	570
44	Determination of persulphates using N,N-diethyl-p-phenylenediamine as colorimetric reagent: Oxidative coloration and degradation of the reagent without bactericidal effect in water. Chemical Engineering Journal, 2016, 286, 223-231.	6.6	59
45	Facile preparation of S/Fe composites as an effective peroxydisulfate activator for RhB degradation. Separation and Purification Technology, 2016, 163, 145-152.	3.9	59
46	Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environmental Science & Technology, 2016, 50, 772-781.	4.6	294
47	Activation of persulfate by Co ₃ O ₄ nanoparticles for orange G degradation. RSC Advances, 2016, 6, 758-768.	1.7	101
48	Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid. Frontiers of Environmental Science and Engineering, 2016, 10, 438-446.	3.3	17
49	Insights into the synergy of zero-valent iron and copper oxide in persulfate oxidation of Orange G solutions. Research on Chemical Intermediates, 2016, 42, 481-497.	1.3	15
50	Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation. Chemical Engineering Journal, 2017, 316, 471-480.	6.6	133
51	Oxidative degradation of benzoic acid using Fe 0 - and sulfidized Fe 0 -activated persulfate: A comparative study. Chemical Engineering Journal, 2017, 315, 426-436.	6.6	111
52	Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study. Environmental Science & Technology, 2017, 51, 3410-3417.	4.6	325
53	Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism. Chemosphere, 2017, 173, 529-534.	4.2	96
54	Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology. Water Science and Technology, 2017, 75, 2216-2224.	1.2	12
55	Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Research, 2017, 113, 80-88.	5.3	776

#	Article	IF	CITATIONS
56	Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: The effect of metal ions. Chemical Engineering Journal, 2017, 317, 613-622.	6.6	57
57	Sulfate Radical-Induced Disinfection of Pathogenic <i>Escherichia coli</i> O157:H7 via Iron-Activated Persulfate. Environmental Science and Technology Letters, 2017, 4, 154-160.	3.9	73
58	Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway. Journal of Hazardous Materials, 2017, 329, 272-279.	6.5	22
59	Ultraviolet/ultrasound-activated persulfate for degradation of drug by zinc selenide quantum dots: Catalysis and microbiology study. Journal of Photochemistry and Photobiology B: Biology, 2017, 170, 304-308.	1.7	10
60	Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol. Chemical Engineering Journal, 2017, 324, 203-215.	6.6	79
61	Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution. Water Research, 2017, 120, 43-51.	5.3	174
62	Comparison of Persulfate Activation and Fenton Reaction in Remediating an Organophosphorus Pesticides-Polluted Soil. Pedosphere, 2017, 27, 465-474.	2.1	48
63	Heteroatoms doped metal iron–polyvinylidene fluoride (PVDF) membrane for enhancing oxidation of organic contaminants. Journal of Hazardous Materials, 2017, 338, 265-275.	6.5	62
64	Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix. Journal of Molecular Liquids, 2017, 241, 704-714.	2.3	141
65	Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: Formation of SO 2 extrusion products and effects of natural organic matter. Science of the Total Environment, 2017, 593-594, 704-712.	3.9	104
66	Natural Persulfate Activation for Anthracene Remediation in Tropical Environments. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	21
67	Magnetic EDTA functionalized CoFe2O4 nanoparticles (EDTA-CoFe2O4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G. Environmental Science and Pollution Research, 2017, 24, 11536-11548.	2.7	32
68	Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors. Water Research, 2017, 116, 182-193.	5.3	190
69	Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants. Chemical Engineering Journal, 2017, 314, 240-248.	6.6	125
70	Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chemical Engineering Journal, 2017, 313, 498-507.	6.6	167
71	Comparative study of the formation of brominated disinfection byproducts in UV/persulfate and UV/H2O2 oxidation processes in the presence of bromide. Environmental Science and Pollution Research, 2017, 24, 23219-23225.	2.7	14
72	Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. Water Research, 2017, 125, 209-218.	5.3	237
73	Degradation of sulfolane using activated persulfate with UV and UV-Ozone. Water Research, 2017, 125, 325-331.	5.3	69

ARTICLE IF CITATIONS Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response 4.2 75 74 to changes in pH and temperature. Chemosphere, 2017, 189, 86-93. Activation of peroxymonosulfate by Fe78Si9B13 metallic glass: The influence of crystallization. 2.8 Journal of Alloys and Compounds, 2017, 728, 525-533. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron 76 1.6 25 species. Journal of Contaminant Hydrology, 2017, 205, 70-77. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review 320 on heterogeneous catalysts and applications. Chemosphere, 2017, 189, 224-238. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible 78 4.2 123 light irradiation. Chemosphere, 2017, 189, 115-122. Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal, 2017, 330, 44-62. 79 1,320 6.6 Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both 80 170 4.2 adsorption and advanced oxidation process. Chemosphere, 2017, 185, 754-763. Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped 6.6 256 ordered mesoporous carbon. Chemical Éngineering Journal, 2017, 328, 1112-1121. Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S. 82 6.5 218 Journal of Hazardous Materials, 2017, 322, 532-539. Enhanced degradation of 2,4-dinitrotoluene in groundwater by persulfate activated using 6.6 iron–carbon micro-electrolysis. Chemical Engineering Journal, 2017, 311, 183-190. Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study. Applied 10.8 84 175 Catalysis B: Environmental, 2017, 202, 1-11. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: 6.6 302 Identification of radicals and degradation pathway. Chemical Engineering Journal, 2017, 308, 330-339. Activation of Persulfate at Waste Heat Temperatures for Humic Acid Degradation. ACS Sustainable 86 3.2 36 Chemistry and Engineering, 2018, 6, 4345-4353. Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment. Environmental Science & amp; Technology, 2018, 52, 4305-4312. 87 4.6 114 Enhanced photocatalytic activity of transition metal ions doped g–C3N4 nanosheet activated by PMS for organic pollutant degradation. Journal of Materials Science: Materials in Electronics, 2018, 29, 88 1.1 38 8201-8209. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous 614 organic pollutants: Electron transfer mechańism. Applied Catalysis B: Environmental, 2018, 231, 1-10. Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation 90 1.2 23 of undesired degradation byproducts. Water Science and Technology, 2018, 2017, 340-350. Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: A 6.6 244 state-of-the-art minireview. Chemical Engineering Journal, 2018, 346, 726-738.

#	Article	IF	CITATIONS
92	Degradation mechanism and kinetic modeling for UV/peroxydisulfate treatment of penicillin antibiotics. Chemical Engineering Journal, 2018, 341, 93-101.	6.6	43
93	Persulfate activation by glucose for in situ chemical oxidation. Water Research, 2018, 133, 247-254.	5.3	66
94	The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study. Water Research, 2018, 135, 144-154.	5.3	32
95	Critical review of the science and sustainability of persulphate advanced oxidation processes. Chemical Engineering Journal, 2018, 338, 651-669.	6.6	461
96	Selective Transformation of β-Lactam Antibiotics by Peroxymonosulfate: Reaction Kinetics and Nonradical Mechanism. Environmental Science & Technology, 2018, 52, 1461-1470.	4.6	143
97	Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change. Journal of Hazardous Materials, 2018, 354, 153-160.	6.5	74
98	Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride. Journal of Colloid and Interface Science, 2018, 526, 18-27.	5.0	114
99	Exploring the complex removal behavior of natural organic matter upon N-doped reduced graphene oxide-activated persulfate via excitation-emission matrix combined with parallel factor analysis and size exclusion chromatography. Chemical Engineering Journal, 2018, 347, 252-262.	6.6	16
100	Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate. Chemical Engineering Journal, 2018, 348, 455-463.	6.6	90
101	Degradation of bisphenol A through transition metals activating persulfate process. Ecotoxicology and Environmental Safety, 2018, 158, 239-247.	2.9	79
102	Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process. Water Research, 2018, 139, 66-73.	5.3	148
103	Oxidative degradation of Orange G by peroxomonosulfate in presence of biosynthesized copper nanoparticles—A kinetic study. Environmental Technology and Innovation, 2018, 10, 281-289.	3.0	13
104	Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catalysis Today, 2018, 307, 140-146.	2.2	121
105	Phenol abatement using persulfate activated by nZVI, H ₂ O ₂ and NaOH and development of a kinetic model for alkaline activation. Environmental Technology (United Kingdom), 2018, 39, 35-43.	1.2	23
106	Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation. Separation and Purification Technology, 2018, 192, 88-98.	3.9	139
107	Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere, 2018, 190, 296-306.	4.2	204
108	Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species. Chemical Engineering Journal, 2018, 333, 657-664.	6.6	234
109	Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environmental Technology and Innovation, 2018, 9, 303-322.	3.0	82

#	Article	IF	CITATIONS
110	Fe73.5Si13.5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation. Materials and Design, 2018, 140, 73-84.	3.3	43
111	Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms. Chemical Engineering Journal, 2018, 334, 2539-2546.	6.6	284
112	Response to the comments on â€~â€~Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature'' by Ma, J., Li, H., Chi, L., Chen, H., & Chen, C. [Chemosphere 189 (2017) 86–93]. Chemosphere, 2018, 194, 403-404.	4.2	0
113	Temperature-dependent evolution of hydroxyl radicals from peroxymonosulfate activation over nitrogen-modified carbon nanotubes. Sustainable Materials and Technologies, 2018, 18, e00082.	1.7	10
114	Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification. Environmental Science & Technology, 2018, 52, 14352-14361.	4.6	109
115	Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination?. Environmental Science & Technology, 2018, 52, 11276-11284.	4.6	517
116	Electrochemical generation of persulfate and its performance on 4-bromophenol treatment. Separation and Purification Technology, 2018, 207, 461-469.	3.9	47
117	Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants. Chemical Engineering Journal, 2018, 353, 533-541.	6.6	200
118	Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation. Journal of Contaminant Hydrology, 2018, 215, 73-85.	1.6	14
119	Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. Journal of Hazardous Materials, 2018, 359, 396-407.	6.5	164
120	Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: Reactive kinetics, degradation products and mechanism. Chemical Engineering Journal, 2018, 354, 983-994.	6.6	55
121	Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chemical Engineering Journal, 2018, 354, 941-976.	6.6	448
122	Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application. Chemical Engineering Journal, 2018, 354, 507-516.	6.6	162
123	Treatment of dinitrodiazophenol industrial wastewater in heat-activated persulfate system. RSC Advances, 2018, 8, 20603-20611.	1.7	34
124	Degradation of aqueous 2,4,4′-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Research, 2018, 143, 176-187.	5.3	165
125	A potential novel approach for in situ chemical oxidation based on the combination of persulfate and dithionite. Science of the Total Environment, 2019, 693, 133635.	3.9	20
126	Conductive, Tough, Transparent, and Self-Healing Hydrogels Based on Catechol–Metal Ion Dual Self-Catalysis. Chemistry of Materials, 2019, 31, 5625-5632.	3.2	214
127	A sustainable biochar catalyst synergized with copper heteroatoms and CO ₂ for singlet oxygenation and electron transfer routes. Green Chemistry, 2019, 21, 4800-4814.	4.6	188

#	Article	IF	CITATIONS
128	Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects. Chemical Engineering Journal, 2019, 378, 122141.	6.6	158
129	Photocatalytic potential of bio-engineered copper nanoparticles synthesized from Ficus carica extract for the degradation of toxic organic dye from waste water: Growth mechanism and study of parameter affecting the degradation performance. Materials Research Bulletin, 2019, 120, 110583.	2.7	54
130	The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation. Carbon, 2019, 155, 740-755.	5.4	58
131	Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 2019, 182, 105276.	2.6	30
132	The influence of bromide on the degradation of sulfonamides in UV/free chlorine treatment: Degradation mechanism, DBPs formation and toxicity assessment. Chemical Engineering Journal, 2019, 362, 692-701.	6.6	34
133	Synergic thermal activation of peroxydisulfate intercalated Mg/Al layered double hydroxide at a low temperature. Chemical Engineering Journal, 2019, 363, 133-140.	6.6	12
134	Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions. Chemical Engineering Journal, 2019, 375, 122070.	6.6	54
135	An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants. Environment International, 2019, 130, 104918.	4.8	36
136	Cyanideâ€Free Oneâ€Pot Synthesis of Methacrylic Esters from Acetone. Chemistry - A European Journal, 2019, 25, 10913-10917.	1.7	2
137	Geoenvironmental characteristics of bisphenol A contaminated soil after persulfate treatment with different activation/enhancement methods. PLoS ONE, 2019, 14, e0214024.	1.1	2
138	Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with BiOl _{0.5} Cl _{0.5} . RSC Advances, 2019, 9, 14060-14071.	1.7	50
139	Ofloxacin degradation over Cu–Ce tyre carbon catalysts by the microwave assisted persulfate process. Applied Catalysis B: Environmental, 2019, 253, 149-159.	10.8	92
140	Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Applied Catalysis B: Environmental, 2019, 254, 166-173.	10.8	107
141	Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chemical Engineering Journal, 2019, 372, 836-851.	6.6	435
142	Ascorbic acid induced activation of persulfate for pentachlorophenol degradation. Chemosphere, 2019, 229, 200-205.	4.2	49
143	Natural organic activator quercetin for persulfate oxidative degradation of halogenated hydrocarbons. Environmental Science: Water Research and Technology, 2019, 5, 1064-1071.	1.2	6
144	Kinetic performance of peroxymonosulfate activated by Co/Bi25FeO40: radical and non-radical mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 56-64.	2.7	38
145	Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms. Water Research, 2019, 157, 106-118.	5.3	145

#	Article	IF	CITATIONS
146	A nonradical reaction-dominated phenol degradation with peroxydisulfate catalyzed by nitrogen-doped graphene. Science of the Total Environment, 2019, 667, 287-296.	3.9	60
147	Improved degradation of anthraquinone dye by electrochemical activation of PDS. Ecotoxicology and Environmental Safety, 2019, 177, 77-85.	2.9	67
148	Activation of Peroxydisulfate by Ferrite Materials for Phenol Degradation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8099-8108.	3.2	41
149	Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. Water Research, 2019, 157, 406-414.	5.3	263
150	Oxidative Degradation of Amoxicillin in Aqueous Solution by Thermally Activated Persulfate. Journal of Chemistry, 2019, 2019, 1-10.	0.9	23
151	Interactions between chlorophenols and peroxymonosulfate: pH dependency and reaction pathways. Science of the Total Environment, 2019, 664, 133-139.	3.9	36
152	Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Separation and Purification Technology, 2019, 218, 106-112.	3.9	136
153	Decolorisation of Methylene Blue with Sodium Persulfate Activated with Visible Light in the Presence of Glucose and Sucrose. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	8
154	Promotion of peroxydisulfate activation over Cu0.84Bi2.08O4 for visible light induced photodegradation of ciprofloxacin in water matrix. Chemical Engineering Journal, 2019, 356, 472-482.	6.6	78
155	Response to the comments on "peroxydisulfate chemistry in the environmental literature: A brief critique''. Journal of Hazardous Materials, 2019, 367, 356.	6.5	3
156	Enhanced oxidation of aniline using Fe(III)-S(IV) system: Role of different oxysulfur radicals. Chemical Engineering Journal, 2019, 362, 183-189.	6.6	57
157	Degradation of Acid Orange 7 by peroxymonosulfate activated by cupric oxide. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 29-38.	0.6	9
158	Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism. Chemical Engineering Journal, 2019, 360, 157-170.	6.6	344
159	The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Research, 2019, 149, 386-393.	5.3	37
160	Degradation of dimethyl phthalate by activating peroxymonosulfate using nanoscale zero valent tungsten: Mechanism and degradation pathway. Chemical Engineering Journal, 2019, 359, 138-148.	6.6	50
161	Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process. Chemosphere, 2019, 220, 514-522.	4.2	66
162	Peroxymonosulfate-based cleaning technology for metal oxide-coated ceramic ultrafiltration membrane polluted by Alcian Blue 8GX dye: Radical and non-radical oxidation cleaning mechanism. Journal of Membrane Science, 2019, 573, 210-217.	4.1	54
163	Activation of persulfate with metal–organic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-Chloroaniline removal. Chemical Engineering Journal, 2019, 358, 408-418.	6.6	177

#	Article	IF	CITATIONS
164	Reply to Behrman. Environmental Technology (United Kingdom), 2019, 40, 133-133.	1.2	0
165	Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007–2018). Journal of Environmental Chemical Engineering, 2020, 8, 102940.	3.3	47
166	Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catalysis Today, 2020, 355, 319-324.	2.2	28
167	MOF-derived metal-free N-doped porous carbon mediated peroxydisulfate activation via radical and non-radical pathways: Role of graphitic N and C O. Chemical Engineering Journal, 2020, 380, 122584.	6.6	124
168	Combining chemical oxidation and bioremediation for petroleum polluted soil remediation by BC-nZVI activated persulfate. Chemical Engineering Journal, 2020, 382, 123055.	6.6	55
169	Persulfate activation induced by ascorbic acid for efficient organic pollutants oxidation. Chemical Engineering Journal, 2020, 382, 122355.	6.6	52
170	Degradation of bisphenol A by persulfate coupled with dithionite: Optimization using response surface methodology and pathway. Science of the Total Environment, 2020, 699, 134258.	3.9	46
171	Cu(II)-enhanced degradation of acid orange 7 by Fe(II)-activated persulfate with hydroxylamine over a wide pH range. Chemosphere, 2020, 238, 124533.	4.2	59
172	Activation of persulfate with biochar for degradation of bisphenol A in soil. Chemical Engineering Journal, 2020, 381, 122637.	6.6	109
173	Role of radical and non-radical pathway in activating persulfate for degradation of p-nitrophenol by sulfur-doped ordered mesoporous carbon. Chemical Engineering Journal, 2020, 384, 123304.	6.6	208
174	Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chemical Engineering Journal, 2020, 384, 123298.	6.6	94
175	Role of adsorption and oxidation in porous carbon aerogel/persulfate system for non-radical degradation of organic contaminant. Chemosphere, 2020, 241, 125066.	4.2	35
176	Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chemical Engineering Journal, 2020, 387, 124008.	6.6	184
177	Activation of persulfate by microwave radiation combined with FeS for treatment of wastewater from explosives production. Environmental Science: Water Research and Technology, 2020, 6, 581-592.	1.2	13
178	Cycle of Ni(II)-Ni(III)-Ni(II) in Ni-doped layered double hydroxides for activation of intercalated peroxydisulfate. Chemical Engineering Journal, 2020, 386, 123937.	6.6	18
179	AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. Chemosphere, 2020, 246, 125726.	4.2	109
180	New insight into wastewater treatment by activation of sulfite with photosensitive organic dyes under visible light irradiation. Chemical Engineering Journal, 2020, 389, 123446.	6.6	21
181	Treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans contaminated soil using S2O82â^' with ferrous ion and heat as activating methods. Chemical Engineering Journal, 2020, 384, 123299.	6.6	9

#	Article	IF	CITATIONS
182	Kinetics and mechanisms of enhanced degradation of ibuprofen by piezo-catalytic activation of persulfate. Chemical Engineering Journal, 2020, 392, 123818.	6.6	79
183	Degradation of benzene derivatives in the CuMgFe-LDO/persulfate system: The role of the interaction between the catalyst and target pollutants. Journal of Environmental Sciences, 2020, 90, 87-97.	3.2	21
184	Nickel–Nickel oxide nanocomposite as a magnetically separable persulfate activator for the nonradical oxidation of organic contaminants. Journal of Hazardous Materials, 2020, 388, 121767.	6.5	29
185	Activation of persulfate by EDTA-2K-derived nitrogen-doped porous carbons for organic contaminant removal: Radical and non-radical pathways. Chemical Engineering Journal, 2020, 386, 124009.	6.6	56
186	Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition. Water Research, 2020, 186, 116371.	5.3	16
187	Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: Performance and mechanism. Water Research, 2020, 173, 115559.	5.3	270
188	In situ organic Fenton-like catalysis triggered by anodic polymeric intermediates for electrochemical water purification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30966-30972.	3.3	41
189	A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water. Water Research, 2020, 185, 116136.	5.3	74
190	Using Fluorescence Spectroscopy to Assess Organic Matters in Activated Persulfate. Journal of Physics: Conference Series, 2020, 1569, 042094.	0.3	0
191	Peroxymonosulfate Activation on a Hybrid Material of Conjugated PVC and TiO2 Nanotubes for Enhancing Degradation of Rhodamine B under Visible Light. Advances in Polymer Technology, 2020, 2020, 1-9.	0.8	3
192	The reaction of peroxydisulfate with phenols. Chemical Engineering Journal, 2020, 393, 124742.	6.6	0
193	Rational design of efficient metal-free catalysts for peroxymonosulfate activation: Selective degradation of organic contaminants via a dual nonradical reaction pathway. Journal of Hazardous Materials, 2020, 398, 122808.	6.5	52
194	Tannic acid enhances the removal of chloroform from water using NaOH-activated persulfate. Environmental Chemistry Letters, 2020, 18, 1441-1446.	8.3	12
195	Removal of 17β-Estradiol Using Persulfate Synergistically Activated Using Heat and Ultraviolet Light. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	13
196	Turning thiophene contaminant into polymers from wastewater by persulfate and CuO. Chemical Engineering Journal, 2020, 397, 125351.	6.6	30
197	Improving solid–liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation. Journal of Hazardous Materials, 2020, 398, 122989.	6.5	40
198	Co-treatment of potassium ferrate and peroxymonosulfate enhances the decomposition of the cotton straw and cow manure mixture. Science of the Total Environment, 2020, 724, 138321.	3.9	9
199	Zero-valent iron/activated carbon microelectrolysis to activate peroxydisulfate for efficient degradation of chlortetracycline in aqueous solution. RSC Advances, 2020, 10, 19401-19409.	1.7	24

#	Article	IF	CITATIONS
200	Activation of persulfate by graphitized biochar for sulfamethoxazole removal: The roles of graphitic carbon structure and carbonyl group. Journal of Colloid and Interface Science, 2020, 577, 419-430.	5.0	94
201	A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight. Science of the Total Environment, 2020, 733, 139146.	3.9	35
202	Nitrogen-doped mesoporous carbon material (NCMK-3) as a catalyst for the removal of 4-chlorophenol during persulfate oxidation and its efficiency after reuse. Environmental Technology (United Kingdom), 2020, , 1-7.	1.2	3
203	A Comparative Study on Oxidation of Acidic Red 18 by Persulfate with Ferrous and Ferric Ions. Catalysts, 2020, 10, 698.	1.6	8
204	Mechanistic insights into adsorptive and oxidative removal of monochlorobenzene in biochar-supported nanoscale zero-valent iron/persulfate system. Chemical Engineering Journal, 2020, 400, 125811.	6.6	109
205	Insight into the mechanism of persulfate activated by bone char: Unraveling the role of functional structure of biochar. Chemical Engineering Journal, 2020, 401, 126127.	6.6	106
206	Synergistic Catalysis of Co(OH)2/CuO for the Degradation of Organic Pollutant Under Visible Light Irradiation. Scientific Reports, 2020, 10, 1939.	1.6	34
207	Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science & Technology, 2020, 54, 3064-3081.	4.6	1,779
208	Elucidating the performance of an integrated laccase- and persulfate-assisted process for degradation of trace organic contaminants (TrOCs). Environmental Science: Water Research and Technology, 2020, 6, 1069-1082.	1.2	16
209	Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review. Journal of Environmental Management, 2020, 260, 110125.	3.8	136
210	Persulfate activation by two-dimensional MoS2 confining single Fe atoms: Performance, mechanism and DFT calculations. Journal of Hazardous Materials, 2020, 389, 122137.	6.5	72
211	Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms. Water Research, 2020, 176, 115746.	5.3	89
212	Catalytic reactivity of Co3O4 with different facets in the hydrogen abstraction of phenol by persulfate. Applied Catalysis B: Environmental, 2020, 270, 118819.	10.8	104
213	Nonradical oxidation in persulfate activation by graphene-like nanosheets (GNS): Differentiating the contributions of singlet oxygen (1O2) and sorption-dependent electron transfer. Chemical Engineering Journal, 2020, 393, 124725.	6.6	94
214	B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation. Chemical Engineering Journal, 2020, 396, 125119.	6.6	148
215	Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation. Chemosphere, 2020, 253, 126679.	4.2	55
216	Degradation of benzotriazole by sulfate radical-based advanced oxidation process. Environmental Technology (United Kingdom), 2021, 42, 238-247.	1.2	17
217	Enhanced peroxydisulfate oxidation via Cu(III) species with a Cu-MOF-derived Cu nanoparticle and 3D graphene network. Journal of Hazardous Materials, 2021, 403, 123691.	6.5	38

~		<u> </u>		
(пт	ATIO	NIV	FDO	DT
	AIIO	IN IN	. L F O	IV I

#	Article	IF	Citations
218	Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals. Journal of Hazardous Materials, 2021, 402, 123557.	6.5	25
219	Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions. Journal of Hazardous Materials, 2021, 403, 123591.	6.5	81
220	Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal, 2021, 407, 127191.	6.6	212
221	Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Science of the Total Environment, 2021, 765, 142794.	3.9	259
222	Catalytic Oxidation of Dyeing Wastewater by Copper Oxide Activating Persulfate: Performance, Mechanism and Application. International Journal of Environmental Research, 2021, 15, 1-10.	1.1	12
223	Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. Journal of Hazardous Materials, 2021, 408, 124436.	6.5	297
224	Remediation of soil contaminated with ibuprofen by persulfate activated with gallic acid and ferric iron. Chemical Engineering Journal, 2021, 426, 127653.	6.6	7
225	Interrelated effects of soils and compounds on persulfate oxidation of petroleum hydrocarbons in soils. Journal of Hazardous Materials, 2021, 408, 124845.	6.5	18
226	Sequential Ultrafiltration-Catalysis Membrane for Excellent Removal of Multiple Pollutants in Water. Environmental Science & amp; Technology, 2021, 55, 2652-2661.	4.6	87
227	Non-radical reactions in persulfate-based homogeneous degradation processes: A review. Chemical Engineering Journal, 2021, 421, 127818.	6.6	103
228	Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism. Chemosphere, 2021, 263, 128194.	4.2	22
229	Influence of surface functionalities of pyrogenic carbonaceous materials on the generation of reactive species towards organic contaminants: A review. Chemical Engineering Journal, 2021, 404, 127066.	6.6	54
230	Facile synthesis of an effective g-C ₃ N ₄ -based catalyst for advanced oxidation processes and degradation of organic compounds. Journal of Materials Chemistry A, 2021, 9, 14841-14850.	5.2	26
231	Peroxydisulfate Activation and Singlet Oxygen Generation by Oxygen Vacancy for Degradation of Contaminants. Environmental Science & amp; Technology, 2021, 55, 2110-2120.	4.6	252
232	Piezoelectric activation of peroxymonosulfate by MoS ₂ nanoflowers for the enhanced degradation of aqueous organic pollutants. Environmental Science: Nano, 2021, 8, 784-794.	2.2	57
233	The in situ catalytic oxidation of sulfamethoxazole via peroxydisufate activation operated in a NG/rGO/CNTs composite membrane filtration. Environmental Science and Pollution Research, 2021, 28, 26828-26839.	2.7	13
234	Persulfate in Remediation of Soil and Groundwater Contaminated byÂOrganic Compounds. Environmental Pollution, 2021, , 221-262.	0.4	2
235	Implications for practical application of commercial reduced iron powders to activate aqueous sulfite for decontamination of organics. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3

#	Article	IF	CITATIONS
236	Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Applied Catalysis B: Environmental, 2021, 286, 119900.	10.8	177
237	Integration of microbial reductive dehalogenation with persulfate activation and oxidation (Bio-RD-PAO) for complete attenuation of organohalides. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	5
238	Enhancing Volatile Fatty Acid Production during Anaerobic Fermentation of Waste Activated Sludge with Persulfates: Peroxymonosulfate versus Peroxydisulfate. ACS Sustainable Chemistry and Engineering, 2021, 9, 10073-10082.	3.2	34
239	Degradation of 2,4-DCP using persulfate and iron/E-carbon micro-electrolysis coupling system. Journal of Hazardous Materials, 2021, 413, 125381.	6.5	37
240	Selective Oxidation of Various Phenolic Contaminants by Activated Persulfate via the Hydrogen Abstraction Pathway. ACS ES&T Engineering, 2021, 1, 1275-1286.	3.7	30
241	New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes. Chemical Engineering Journal, 2021, 416, 129027.	6.6	153
242	A novel green synthesis of zero valent iron nanoparticles (nZVI) using walnut green skin: characterisation, catalytic degradation and toxicity studies. International Journal of Environmental Analytical Chemistry, 2023, 103, 6458-6474.	1.8	4
243	Research progress on nano-FeO/PS system for degradation of refractory organics in aqueous solution. Journal of Environmental Chemical Engineering, 2021, 9, 105345.	3.3	16
244	Efficiency and Quantitative Structure-Activity Relationship of Monoaromatics Oxidation by Quinone-Activated Persulfate. Frontiers in Chemistry, 2021, 9, 580643.	1.8	4
245	Oxidative Degradation of Tetracycline by Magnetite and Persulfate: Performance, Water Matrix Effect, and Reaction Mechanism. Nanomaterials, 2021, 11, 2292.	1.9	20
246	Fe3O4@CNT as a high-effective and steady chainmail catalyst for tetracycline degradation with peroxydisulfate activation: Performance and mechanism. Separation and Purification Technology, 2021, 273, 118705.	3.9	67
247	Catalytic activation of PS/PMS over Fe-Co bimetallic oxides for phenol oxidation under alkaline conditions. Applied Surface Science, 2021, 562, 150134.	3.1	54
248	Novel insights into enhanced dewaterability and consolidation characteristics of landfill sludge and fresh sludge conditioned by Fe2+ activated sodium persulfate. Journal of Environmental Management, 2021, 296, 113196.	3.8	12
249	Unveiling the interaction of epigallocatechin-3-gallate with peroxymonosulfate for degradation of bisphenol S: Two-stage kinetics and identification of reactive species. Separation and Purification Technology, 2021, 274, 119040.	3.9	5
250	Activation of peroxydisulfate by carbon nanotube for the degradation of 2,4-dichlorophenol: Contributions of surface-bound radicals and direct electron transfer. Chemosphere, 2021, 283, 131282.	4.2	15
251	Unraveling the mechanisms for persulfate-based remediation of triphenyl phosphate-contaminated soils: Complicated soil constituent effects on the formation and propagation of reactive oxygen species. Chemical Engineering Journal, 2021, 426, 130662.	6.6	21
252	Degradation of simazine by heat-activated peroxydisulfate process: A coherent study on kinetics, radicals and models. Chemical Engineering Journal, 2021, 426, 131876.	6.6	31
253	Revealing the heterogeneous activation mechanism of peroxydisulfate by CuO: the critical role of surface-binding organic substrates. Science of the Total Environment, 2022, 802, 149833.	3.9	15

#	Article	IF	CITATIONS
254	Easily Regenerated CuO/l̂3-Al ₂ O ₃ for Persulfate-Based Catalytic Oxidation: Insights into the Deactivation and Regeneration Mechanism. ACS Applied Materials & Interfaces, 2021, 13, 2630-2641.	4.0	36
255	A microwave radiation-enhanced Fe–C/persulfate system for the treatment of refractory organic matter from biologically treated landfill leachate. RSC Advances, 2021, 11, 29620-29631.	1.7	6
256	Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation. Chemical Engineering Journal, 2020, 397, 125533.	6.6	94
257	Enhanced surface activation process of persulfate by modified bagasse biochar for degradation of phenol in water and soil: Active sites and electron transfer mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124904.	2.3	52
258	Zero Valent Iron-induced Fenton-like Oxidation Towards Water Treatment. Chemistry in the Environment, 2021, , 347-375.	0.2	0
259	How Organic Substances Promote the Chemical Oxidative Degradation of Pollutants: A Mini Review. Sustainability, 2021, 13, 10993.	1.6	5
260	Facile Synthesis of Atomic Feâ€Nâ€C Materials and Dual Roles Investigation of Feâ€N ₄ Sites in Fenton‣ike Reactions. Advanced Science, 2021, 8, e2101824.	5.6	118
261	Removal of Sulfonamides in Water Using an Electro/Peroxydisulfate System Catalyzed with Activated Carbon. Polish Journal of Environmental Studies, 2019, 28, 1957-1965.	0.6	2
262	Kill three birds with one stone: Iron-doped graphitic biochar from biogas residues for ammonium persulfate activation to simultaneously degrade benzo[a]pyrene and improve lettuce growth. Chemical Engineering Journal, 2022, 430, 132844.	6.6	20
263	A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate. Journal of Environmental Science International, 2020, 29, 69-77.	0.0	1
264	Modulation of carbon induced persulfate activation by nitrogen dopants: recent advances and perspectives. Journal of Materials Chemistry A, 2021, 9, 25796-25826.	5.2	34
265	Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives. Journal of Hazardous Materials, 2022, 424, 127612.	6.5	62
266	Peroxymonosulfate activation by recycling of discarded cigarette filters: Selective degradation of contaminants. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104139.	2.7	4
267	Promotive effects of vacuum-UV/UV (185/254Ânm) light on elimination of recalcitrant trace organic contaminants by UV-AOPs during wastewater treatment and reclamation: A review. Science of the Total Environment, 2022, 818, 151776.	3.9	18
268	Use of an automated respirometer for in situ chemical oxidation (ISCO) activator type and concentration selection. Environmental Science and Pollution Research, 2022, 29, 3141-3146.	2.7	1
269	Activation of persulfate using CuS synthesized by ultrafast solid-state reaction for removal of organic pollutants from wastewater: Economical synthesis, catalytic performance, and mechanism. Separation and Purification Technology, 2022, 284, 120238.	3.9	12
270	Covalent organic frameworks-derived hierarchically porous N-doped carbon for 2,4-dichlorophenol degradation by activated persulfate: The dual role of graphitic N. Journal of Hazardous Materials, 2022, 426, 128065.	6.5	33
271	A facial strategy to efficiently improve catalytic performance of CoFe2O4 to peroxymonosulfate. Journal of Environmental Sciences, 2022, 116, 1-13.	3.2	14

#	Article	IF	CITATIONS
272	In situ chemical oxidation (ISCO) remediation: A focus on activated persulfate oxidation of pesticide-contaminated soil and groundwater. , 2022, , 75-86.		2
273	Diclofenac degradation by activating peroxydisulfate via well-dispersed GO/Cu2O nano-composite. Environmental Science and Pollution Research, 2022, , 1.	2.7	4
274	Insights into vacuum preloading consolidation of landfill sludge based on Fe2+-activated sodium persulfate. Environmental Science and Pollution Research, 2022, 29, 35964-35976.	2.7	2
275	3D hybrid scaffold with aligned nanofiber yarns embedded in injectable hydrogels for monitoring and repairing chronic wounds. Composites Part B: Engineering, 2022, 234, 109688.	5.9	19
276	Degradation of iopamidol by silicate-based microfiltration membrane activated peroxymonosulfate in aqueous solution: Efficiency, mechanism and degradation pathway. Journal of Cleaner Production, 2022, 338, 130562.	4.6	2
277	Activation of persulfate by humic substances: Stoichiometry and changes in the optical properties of the humic substances. Water Research, 2022, 212, 118107.	5.3	10
278	Complexation and reduction of soil iron minerals by natural polyphenols enhance persulfate activation for the remediation of triphenyl phosphate (TPHP)-contaminated soil. Chemical Engineering Journal, 2022, 435, 134610.	6.6	10
279	Novel Strategy for Soil Remediation of Contaminated Sites Using Persulfate-based Advanced Oxidation Technologies. Chemistry in the Environment, 2022, , 289-314.	0.2	ο
280	Mechanism of the Improved Fe(Iii)/Persulfate Reaction by Gallic Acid for Ibuprofen Degradation. SSRN Electronic Journal, 0, , .	0.4	0
281	Methods of Persulfate Activation for the Degradation of Pollutants: Fundamentals and Influencing Parameters. Chemistry in the Environment, 2022, , 1-59.	0.2	7
282	Mediation of water-soluble oligoaniline by phenol in the aniline–persulfate system under alkaline conditions. Physical Chemistry Chemical Physics, 2022, 24, 10394-10407.	1.3	2
283	Surface facet Fe2O3-based visible light photocatalytic activation of persulfate for the removal of RR120 dye: nonlinear modeling and optimization. Environmental Science and Pollution Research, 2022, 29, 51651-51664.	2.7	5
284	Vacancy-rich BiO2â^'x as a highly-efficient persulfate activator under near infrared irradiation for bacterial inactivation and mechanism study. Journal of Hazardous Materials, 2022, 431, 128510.	6.5	14
285	Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. Journal of Hazardous Materials, 2022, 432, 128738.	6.5	52
286	FeOx@graphitic carbon core–shell embedded in microporous N-doped biochar activated peroxydisulfate for removal of Bisphenol A: Multiple active sites induced non-radical/radical mechanism. Chemical Engineering Journal, 2022, 438, 135552.	6.6	30
287	Highly effective dehalogenation and detoxification of trihalophenols by activated peroxydisulfate with black carbon derived from coal tar. Chemical Engineering Journal, 2022, 440, 135958.	6.6	3
288	Piezo-Promoted Persulfate Activation by Srbi2b2o7 for Efficient Sulfadiazine Degradation from Water. SSRN Electronic Journal, 0, , .	0.4	0
289	Degradation of methyl orange by pyrite activated persulfate oxidation: mechanism, pathway and influences of water substrates. Water Science and Technology, 2022, 85, 2912-2927.	1.2	9

#	Article	IF	CITATIONS
290	Crystal boron significantly enhances pollutants removal kinetics by Fe0/PMS system. Separation and Purification Technology, 2022, 292, 121055.	3.9	7
291	Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Separation and Purification Technology, 2022, 293, 121115.	3.9	97
292	Developing a molecularly imprinted channels catalyst based on template effect for targeted removal of organic micropollutants from wastewaters. Chemical Engineering Journal, 2022, 445, 136755.	6.6	11
293	Nonradical electron transfer-based peroxydisulfate activation by a Mnâ^ Fe bimetallic oxide derived from spent alkaline battery for the oxidation of bisphenol A. Journal of Hazardous Materials, 2022, 436, 129172.	6.5	21
294	Heteroatoms-doped biochar derived from deciduous resource as persulfate catalysts for efficient degradation of phenol. Journal of Water Process Engineering, 2022, 48, 102866.	2.6	10
295	Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges. Chemosphere, 2022, 303, 135004.	4.2	8
296	Direct degradation of methylene blue by unactivated peroxymonosulfate: reaction parameters, kinetics, and mechanism. Environmental Science and Pollution Research, 0, , .	2.7	1
298	Dissociation of acid blue 113 dye from aqueous solutions using activated persulfate by zero iron nanoparticle from green synthesis: the optimization process with RSM-BBD model: mineralization and reaction kinetic study. Biomass Conversion and Biorefinery, 2024, 14, 6333-6345.	2.9	2
299	Abatement of Organic Contaminants by Mn(VII)/TEMPOs: Effects of TEMPOs Structure, Organic Contaminant Speciation, and Active Oxidizing Species. Environmental Science & Technology, 2022, 56, 10361-10371.	4.6	9
300	Piezo-promoted persulfate activation by SrBi2B2O7 for efficient sulfadiazine degradation from water. Journal of Hazardous Materials, 2022, 437, 129359.	6.5	22
301	Peroxydisulfate activation using B-doped biochar for the degradation of oxytetracycline in water. Applied Surface Science, 2022, 599, 153917.	3.1	31
302	Evaluation of TiO2/UV; O3/UV, and PDS/Vis for improving chlorfenvinphos removal from real municipal treated wastewater effluent. International Journal of Environmental Science and Technology, 2023, 20, 6053-6064.	1.8	1
303	Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environmental Science & Technology, 2022, 56, 11111-11131.	4.6	112
304	Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and 102 generation. Water Research, 2022, 221, 118797.	5.3	104
305	Sustainable and green persulfate-based chemiluminescent method for on-site estimation of chemical oxygen demand in waters. Analytica Chimica Acta, 2022, 1223, 340196.	2.6	2
306	Fast biodegradation of long-chain alkanes in heavily polluted soil by improving C/H conversion after pre-oxidation. Biochemical Engineering Journal, 2022, 186, 108594.	1.8	2
307	The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Separation and Purification Technology, 2022, 300, 121831.	3.9	54
308	The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chemical Engineering Research and Design, 2022, 187, 470-496.	2.7	18

#	Article	IF	CITATIONS
309	A Review of Persulfate Activation by Magnetic Catalysts to Degrade Organic Contaminants: Mechanisms and Applications. Catalysts, 2022, 12, 1058.	1.6	7
310	Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. Water, Air, and Soil Pollution, 2022, 233, .	1.1	16
311	Role of trace TEMPO as electron shuttle in enhancing chloroquine phosphate elimination in UV-LED-driven persulfate activation process. Journal of Environmental Chemical Engineering, 2022, 10, 108641.	3.3	9
312	Mechanism of the improved Fe(III)/persulfate reaction by gallic acid for ibuprofen degradation. Environmental Pollution, 2022, 314, 120318.	3.7	6
313	Heterogeneous Activation of Persulfate by Activated Carbon for Efficient Acetaminophen Degradation: Mechanism, Kinetics, Mineralization, and Density Functional Theory. ChemistrySelect, 2022, 7, .	0.7	4
315	ABTS as Both Activator and Electron Shuttle to Activate Persulfate for Diclofenac Degradation: Formation and Contributions of ABTS ^{•+} , SO ₄ ^{•–} , and [•] OH. Environmental Science & Technology, 2023, 57, 18420-18432.	4.6	14
316	The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. Environmental Research, 2023, 216, 114656.	3.7	11
317	LaRuO3 perovskites as effective and reusable heterogeneous catalysts to activate peroxymonosulfate for carbamazepine degradation. Separation and Purification Technology, 2023, 304, 122359.	3.9	3
318	New insight into the mechanism of ferric hydroxide-based heterogeneous Fenton-like reaction. Journal of Hazardous Materials, 2023, 443, 130278.	6.5	3
319	Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. Environmental Research, 2023, 217, 114789.	3.7	89
320	Rapid concurrent photocatalysis-persulfate activation for ciprofloxacin degradation by Bi2S3 quantum dots-decorated MIL-53(Fe) composites. Chemical Engineering Journal, 2023, 456, 140971.	6.6	17
321	Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms. Separation and Purification Technology, 2023, 308, 122886.	3.9	11
322	Rapid AOP Method for Estrogens Removal via Persulfate Activated by Hydrodynamic Cavitation. Water (Switzerland), 2022, 14, 3816.	1.2	3
323	Efficient removal of Phaeocystis globosa from seawater with the persulfate activation by arbutin-modified cellulose nanocrystals. Chemosphere, 2023, 313, 137647.	4.2	3
324	Enhanced persulfate activation by nitrogen-doped mesoporous carbon for efficiently degrading organic matters. Environmental Science and Pollution Research, 2023, 30, 33795-33807.	2.7	2
325	Novel magnetic graphoxide/biochar composite derived from tea for multiple SAs and QNs antibiotics removal in water. Environmental Science and Pollution Research, 2023, 30, 43215-43228.	2.7	2
326	Unveiling Molecular Transformations of Soil Organic Matter after Remediation by Chemical Oxidation Based on ESI-FT-ICR-MS analysis. ACS ES&T Engineering, 2023, 3, 831-840.	3.7	3
327	Theoretical investigation into activation of hydroperoxides by excited quinones under ultraviolet irradiation. Chemical Engineering Journal, 2023, 463, 142423.	6.6	0

#	Article	IF	CITATIONS
328	Trade-off effect of dissolved organic matter on degradation and transformation of micropollutants: A review in water decontamination. Journal of Hazardous Materials, 2023, 450, 130996.	6.5	8
329	Activation of Persulfate for Groundwater Remediation: From Bench Studies to Application. Applied Sciences (Switzerland), 2023, 13, 1304.	1.3	3
330	Application of BiOX Photocatalyst to Activate Peroxydisulfate Ion-Investigation of a Combined Process for the Removal of Organic Pollutants from Water. Catalysts, 2023, 13, 513.	1.6	5
331	The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. Water Research, 2023, 235, 119925.	5.3	48
332	Reactive nanostructured membrane with high permeate flux under an ultralow pressure for excellent removal of refractory organic matter in actual water. Applied Catalysis B: Environmental, 2023, 334, 122794.	10.8	8