Meta-analysis identifies four new loci associated with to

Nature Genetics 45, 680-685 DOI: 10.1038/ng.2634

Citation Report

#	Article	IF	CITATIONS
1	Contrasting effects of Deadend1 (Dnd1) gain and loss of function mutations on allelic inheritance, testicular cancer, and intestinal polyposis. BMC Genetics, 2013, 14, 54.	2.7	21
2	Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nature Genetics, 2013, 45, 686-689.	9.4	149
3	New studies identify susceptibility loci, implicated genes. Nature Reviews Urology, 2013, 10, 370-370.	1.9	0
4	An Active C-Terminally Truncated Form of Ca2+/Calmodulin-Dependent Protein Kinase Phosphatase-N (CaMKP-N/PPM1E). BioMed Research International, 2013, 2013, 1-10.	0.9	5
6	Fetal Cyclophosphamide Exposure Induces Testicular Cancer and Reduced Spermatogenesis and Ovarian Follicle Numbers in Mice. PLoS ONE, 2014, 9, e93311.	1.1	37
7	Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis. Asian Journal of Andrology, 2015, 17, 381.	0.8	38
8	Genomic screening of testicular germ cell tumors from monozygotic twins. Orphanet Journal of Rare Diseases, 2014, 9, 181.	1.2	7
9	A Hierarchical Frailty Model for Familial Testicular Germ-Cell Tumors. American Journal of Epidemiology, 2014, 179, 499-506.	1.6	20
10	Update on testicular germ cell tumors. Current Opinion in Oncology, 2014, 26, 294-298.	1.1	2
11	Testicular cancer: biology and biomarkers. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 464, 301-313.	1.4	50
12	Evidence that active demethylation mechanisms maintain the genome of carcinoma in situ cells hypomethylated in the adult testis. British Journal of Cancer, 2014, 110, 668-678.	2.9	44
13	An oncofetal and developmental perspective on testicular germ cell cancer. Seminars in Cancer Biology, 2014, 29, 59-74.	4.3	59
14	Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses. Analytical Chemistry, 2014, 86, 6931-6939.	3.2	332
15	Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nature Reviews Urology, 2014, 11, 278-288.	1.9	159
17	Familial testicular germ cell tumor: no associated syndromic pattern identified. Hereditary Cancer in Clinical Practice, 2014, 12, 3.	0.6	2
18	Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Human Molecular Genetics, 2014, 23, 6061-6068.	1.4	28
19	International Variations and Trends in Testicular Cancer Incidence and Mortality. European Urology, 2014, 65, 1095-1106.	0.9	212
20	Common variants identified in genomeâ€wide association studies of testicular germ cell tumour: an update, biological insights and clinical application. Andrology, 2015, 3, 34-46.	1.9	46

#	Article	IF	CITATIONS
21	Quantifying the heritability of testicular germ cell tumour using both population-based and genomic approaches. Scientific Reports, 2015, 5, 13889.	1.6	55
22	Hard Work Ahead: Fine Mapping and Functional Follow-up of Susceptibility Alleles in Cancer GWAS. Current Epidemiology Reports, 2015, 2, 205-217.	1.1	1
23	Incidence of testicular germ cell tumors among <scp>US</scp> men by census region. Cancer, 2015, 121, 4181-4189.	2.0	31
24	Loss of <i>Rad51c</i> accelerates tumourigenesis in sebaceous glands of <i>Trp53</i> â€mutant mice. Journal of Pathology, 2015, 235, 136-146.	2.1	9
25	Interaction Association Analysis of Imputed SNPs in Caseâ€Control and Followâ€Up Studies. Genetic Epidemiology, 2015, 39, 185-196.	0.6	0
26	Update in germ cell tumours. Current Opinion in Oncology, 2015, 27, 177-184.	1.1	13
27	DMRT1 and the road to masculinity. , 2015, , 123-174.		4
28	Genome Wide DNA Methylation Profiles Provide Clues to the Origin and Pathogenesis of Germ Cell Tumors. PLoS ONE, 2015, 10, e0122146.	1.1	63
29	A Spatial Haplotype Copying Model with Applications to Genotype Imputation. Journal of Computational Biology, 2015, 22, 451-462.	0.8	0
30	Nontesticular cancers in relatives of testicular germ cell tumor (TGCT) patients from multipleâ€case TGCT families. Cancer Medicine, 2015, 4, 1069-1078.	1.3	2
31	Polygenic susceptibility to testicular cancer: implications for personalised health care. British Journal of Cancer, 2015, 113, 1512-1518.	2.9	10
32	Rare inactivating PDE11A variants associated with testicular germ cell tumors. Endocrine-Related Cancer, 2015, 22, 909-917.	1.6	24
33	Prospectively Identified Incident Testicular Cancer Risk in a Familial Testicular Cancer Cohort. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1614-1621.	1.1	4
34	Involvement of epigenetic modifiers in the pathogenesis of testicular dysgenesis and germ cell cancer. Biomolecular Concepts, 2015, 6, 219-227.	1.0	5
35	Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nature Communications, 2015, 6, 5973.	5.8	161
36	Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages. Neoplasia, 2015, 17, 167-174.	2.3	17
37	Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Human Molecular Genetics, 2015, 24, 4138-4146.	1.4	49
38	Multi-stage genome-wide association study identifies new susceptibility locus for testicular germ cell tumour on chromosome 3q25. Human Molecular Genetics, 2015, 24, 1169-1176.	1.4	31

#	Article	IF	CITATIONS
39	Identification of four new susceptibility loci for testicular germ cell tumour. Nature Communications, 2015, 6, 8690.	5.8	36
40	Structural and biochemical insights into the role of testis-expressed gene 14 (TEX14) in forming the stable intercellular bridges of germ cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12372-12377.	3.3	28
41	A multivariate Bernoulli model to predict DNasel hypersensitivity status from haplotype data. Bioinformatics, 2015, 31, 3514-3521.	1.8	2
42	Conadal Maldevelopment as Risk Factor for Germ Cell Cancer: Towards a Clinical Decision Model. European Urology, 2015, 67, 692-701.	0.9	92
43	Recent trends in the incidence of testicular germ cell tumors in the United States. Andrology, 2015, 3, 13-18.	1.9	107
44	International testicular cancer incidence trends: generational transitions in 38 countries 1900–1990. Cancer Causes and Control, 2015, 26, 151-158.	0.8	37
45	Familial testicular germ cell tumors (FTGCT) – overview of a multidisciplinary etiologic study. Andrology, 2015, 3, 47-58.	1.9	25
46	Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility. Nature Communications, 2016, 7, 13840.	5.8	32
47	Will Testicular Germ Cell Tumors Remain Untargetable?. Targeted Oncology, 2016, 11, 711-721.	1.7	5
48	Zebrafish Germ Cell Tumors. Advances in Experimental Medicine and Biology, 2016, 916, 479-494.	0.8	10
49	HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Research, 2016, 44, D877-D881.	6.5	796
50	Parent-of-origin effects of A1CF and ACO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5425-33.	3.3	18
51	Genetic changes associated with testicular cancer susceptibility. Seminars in Oncology, 2016, 43, 575-581.	0.8	26
52	Impaired Planar Germ Cell Division in the Testis, Caused by Dissociation of RHAMM from the Spindle, Results in Hypofertility and Seminoma. Cancer Research, 2016, 76, 6382-6395.	0.4	27
53	Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nature Communications, 2016, 7, 12050.	5.8	146
54	The genomic landscape of testicular germ cell tumours: from susceptibility to treatment. Nature Reviews Urology, 2016, 13, 409-419.	1.9	83
55	Testicular germ cell tumours. Lancet, The, 2016, 387, 1762-1774.	6.3	273
56	Altered primary chromatin structures and their implications in cancer development. Cellular Oncology (Dordrecht), 2016, 39, 195-210.	2.1	35

#	Article	IF	CITATIONS
57	Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiological Reviews, 2016, 96, 55-97.	13.1	700
58	Germ cell tumors: Insights from the <i>Drosophila</i> ovary and the mouse testis. Molecular Reproduction and Development, 2017, 84, 200-211.	1.0	15
59	Mosaic chromosome Y loss and testicular germ cell tumor risk. Journal of Human Genetics, 2017, 62, 637-640.	1.1	34
60	Future of testicular germ cell tumor incidence in the United States: Forecast through 2026. Cancer, 2017, 123, 2320-2328.	2.0	82
61	Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nature Communications, 2017, 8, 15034.	5.8	40
62	Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nature Genetics, 2017, 49, 1141-1147.	9.4	105
63	Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nature Genetics, 2017, 49, 1133-1140.	9.4	120
64	Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility. Nature Genetics, 2017, 49, 674-679.	9.4	117
65	Variants in <i>BAK1</i> , <i>SPRY4,</i> and <i>GAB2</i> are associated with pediatric germ cell tumors: A report from the children's oncology group. Genes Chromosomes and Cancer, 2017, 56, 548-558.	1.5	27
66	Fine-mapping of antipsychotic response genome-wide association studies reveals novel regulatory mechanisms. Pharmacogenomics, 2017, 18, 105-120.	0.6	14
67	Update on the Pathophysiology and Risk Factors for the Development of Malignant Testicular Germ Cell Tumors in Complete Androgen Insensitivity Syndrome. Sexual Development, 2017, 11, 175-181.	1.1	55
68	The Emerging Role of TRAF7 in Tumor Development. Journal of Cellular Physiology, 2017, 232, 1233-1238.	2.0	68
69	The biology of germ cell tumors in disorders of sex development. Clinical Genetics, 2017, 91, 292-301.	1.0	42
70	Malignant testicular germ cell tumors in postpubertal individuals with androgen insensitivity: prevalence, pathology and relevance of single nucleotide polymorphism-based susceptibility profiling. Human Reproduction, 2017, 32, 2561-2573.	0.4	50
71	Epigenetic and risk factors of testicular germ cell tumors a brief review. Frontiers in Bioscience - Landmark, 2017, 22, 1073-1098.	3.0	18
72	ESCRT-dependent control of membrane remodelling during cell division. Seminars in Cell and Developmental Biology, 2018, 74, 50-65.	2.3	84
73	Current knowledge of risk factors for testicular germ cell tumors. International Journal of Urology, 2018, 25, 337-344.	0.5	25
74	Functions and dysfunctions of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and CaMKP-N/PPM1E. Archives of Biochemistry and Biophysics, 2018, 640, 83-92.	1.4	17

#	Article	IF	CITATIONS
75	Systematic review and metaâ€analysis of the genetic association between protamine polymorphism and male infertility. Andrologia, 2018, 50, e12990.	1.0	5
76	Complex Polygenic Nature of Testicular Germ Cell Cancer Suggests Multifactorial Aetiology. European Urology, 2018, 73, 832-833.	0.9	8
77	Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. International Journal of Biochemistry and Cell Biology, 2018, 96, 98-134.	1.2	79
78	Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder?. Life Sciences, 2018, 194, 120-129.	2.0	58
79	Genomeâ€wide association study identifies the <i>GLDC</i> / <i>IL33</i> locus associated with survival of osteosarcoma patients. International Journal of Cancer, 2018, 142, 1594-1601.	2.3	31
80	Histological Assessment of Gonads in DSD: Relevance for Clinical Management. Sexual Development, 2018, 12, 106-122.	1.1	35
82	Testicular cancer. Nature Reviews Disease Primers, 2018, 4, 29.	18.1	299
83	The genetic landscape of 87 ovarian germ cell tumors. Gynecologic Oncology, 2018, 151, 61-68.	0.6	44
84	Update on epidemiologic considerations and treatment trends in testicular cancer. Current Opinion in Urology, 2018, 28, 440-447.	0.9	22
85	Whole exome sequencing identifies <i>PLEC</i> , <i>EXO5</i> and <i>DNAH7</i> as novel susceptibility genes in testicular cancer. International Journal of Cancer, 2018, 143, 1954-1962.	2.3	19
86	Testicular cancer among US men aged 50 years and older. Cancer Epidemiology, 2018, 55, 68-72.	0.8	23
87	Assessment of piRNA biogenesis and function in testicular germ cell tumors and their precursor germ cell neoplasia in situ. BMC Cancer, 2018, 18, 20.	1.1	17
89	Testicular Cancer in New Zealand (TCNZ) study: protocol for a national case–control study. BMJ Open, 2018, 8, e025212.	0.8	1
90	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	2.9	324
91	Global incidence comparisons and trends in ovarian germ cell tumors by geographic region in girls, adolescents and young women: 1988–2012. Gynecologic Oncology, 2019, 154, 608-615.	0.6	17
92	Functions of genes related to testicular germ cell tumour development. Andrology, 2019, 7, 527-535.	1.9	12
93	Testicular Cancer: Genes, Environment, Hormones. Frontiers in Endocrinology, 2019, 10, 408.	1.5	34
94	Rare Human Missense Variants can affect the Function of Disease-Relevant Proteins by Loss and Gain of Peroxisomal Targeting Motifs. International Journal of Molecular Sciences, 2019, 20, 4609.	1.8	6

#	Article	IF	CITATIONS
95	Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (<i>CHEK2</i>) With Susceptibility to Testicular Germ Cell Tumors. JAMA Oncology, 2019, 5, 514.	3.4	43
96	Testicular germ cell tumor: a comprehensive review. Cellular and Molecular Life Sciences, 2019, 76, 1713-1727.	2.4	98
97	Different Clinical Presentations and Management in Complete Androgen Insensitivity Syndrome (CAIS). International Journal of Environmental Research and Public Health, 2019, 16, 1268.	1.2	46
98	Cross-Cancer Pleiotropic Associations with Lung Cancer Risk in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 715-723.	1.1	11
99	The puzzling incidence of testicular cancer in New Zealand: what can we learn?. Andrology, 2019, 7, 394-401.	1.9	4
100	Human Germ Cell Tumors are Developmental Cancers: Impact of Epigenetics on Pathobiology and Clinic. International Journal of Molecular Sciences, 2019, 20, 258.	1.8	93
101	Genomic Characterization of Testicular Germ Cell Tumors Relapsing After Chemotherapy. European Urology Focus, 2020, 6, 122-130.	1.6	30
102	Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer. Frontiers of Medicine, 2020, 14, 318-326.	1.5	9
103	Genetic predisposition for multiple myeloma. Leukemia, 2020, 34, 697-708.	3.3	25
104	Alteration of genome folding via contact domain boundary insertion. Nature Genetics, 2020, 52, 1076-1087.	9.4	35
105	Increasing Incidence of Testicular Germ Cell Tumors among Racial/Ethnic Minorities in the United States. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1237-1245.	1.1	15
106	Association Between BAK1 Gene rs210138 Polymorphisms and Testicular Germ Cell Tumors: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 2020, 11, 2.	1.5	1
108	Potential biomarkers for testicular germ cell tumour: Risk assessment, diagnostic, prognostic and monitoring of recurrence. Andrologia, 2021, 53, e13998.	1.0	3
109	Between a Rock and a Hard Place: An Epigenetic-Centric View of Testicular Germ Cell Tumors. Cancers, 2021, 13, 1506.	1.7	18
110	Promoter methylation of DNA homologous recombination genes is predictive of the responsiveness to PARP inhibitor treatment in testicular germ cell tumors. Molecular Oncology, 2021, 15, 846-865.	2.1	15
111	Malignant Germ Cell Tumors and Their Precursor Gonadal Lesions in Patients with XY-DSD: A Case Series and Review of the Literature. International Journal of Environmental Research and Public Health, 2021, 18, 5648.	1.2	4
112	On the origin of germ cell neoplasia in situ: Dedifferentiation of human adult Sertoli cells in cross talk with seminoma cells in vitro. Neoplasia, 2021, 23, 731-742.	2.3	4
114	Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nature Communications, 2021, 12, 4487.	5.8	27

# 115	ARTICLE Testicular Germ Cell Tumors and Teratomas. , 2017, , 225-267.	IF	CITATIONS 3
116	A Spatial-Aware Haplotype Copying Model with Applications to Genotype Imputation. Lecture Notes in Computer Science, 2014, , 371-384.	1.0	1
117	Germ Cell Tumors from a Developmental Perspective: Cells of Origin, Pathogenesis, and Molecular Biology (Emerging Patterns). , 2017, , 23-129.		14
119	Subfertility and Risk of Testicular Cancer in the EPSAM Case-Control Study. PLoS ONE, 2016, 11, e0169174.	1.1	9
120	Lower abdominal and pelvic radiation and testicular germ cell tumor risk. PLoS ONE, 2020, 15, e0239321.	1.1	8
121	The prognostic value of DNA damage level in peripheral blood lymphocytes of chemotherapy-naÃ ⁻ ve patients with germ cell cancer. Oncotarget, 2016, 7, 75996-76005.	0.8	11
122	Utilization of Rad51C promoter for transcriptional targeting of cancer cells. Oncotarget, 2014, 5, 1805-1811.	0.8	5
123	Exploring the molecular aspects associated with testicular germ cell tumors: a review. Oncotarget, 2018, 9, 1365-1379.	0.8	21
124	Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer. Oncotarget, 2018, 9, 12630-12638.	0.8	8
125	Genes associated with testicular germ cell tumors and testicular dysgenesis in patients with testicular microlithiasis. Asian Journal of Andrology, 2018, 20, 593.	0.8	7
126	Reprogramming of germ cells into pluripotency. World Journal of Stem Cells, 2016, 8, 251.	1.3	11
127	Expression analysis of genes encoding TEX11, TEX12, TEX14 and TEX15 in testis tissues of men with non-obstructive azoospermia. Jornal Brasileiro De Reproducao Assistida, 2018, 22, 185-192.	0.3	22
128	miRNA-1297 Induces Cell Proliferation by Targeting Phosphatase and Tensin Homolog in Testicular Germ Cell Tumor Cells. Asian Pacific Journal of Cancer Prevention, 2014, 15, 6243-6246.	0.5	17
130	Hodentumoren. , 2015, , 1-13.		0
133	GENETIC ASPECTS OF TESTICULAR DYSGENESIS SYNDROME AND ASSOCIATED CONDITIONS. Onkourologiya, 2018, 14, 92-106.	0.1	0
134	The Association of Single Nucleotide Polymorphisms with Cancer Risk. , 2019, , 87-144.		0
135	Use of Genomewide Association Studies to Evaluate Genetic Predisposition to Testicular Germ Cell Tumors. Methods in Molecular Biology, 2021, 2195, 189-223.	0.4	0
136	Genetic and epigenetic analysis of monozygotic twins discordant for testicular cancer. International Journal of Molecular Epidemiology and Genetics, 2014, 5, 135-9.	0.4	4

#	Article	IF	CITATIONS
137	The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. Cancer Genomics and Proteomics, 2014, 11, 175-94.	1.0	29
138	Crosstalk between Meg3 and miR-1297 regulates growth of testicular germ cell tumor through PTEN/PI3K/AKT pathway. American Journal of Translational Research (discontinued), 2016, 8, 1091-9.	0.0	30
139	Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocrine-Related Cancer, 2020, 27, 457-468.	1.6	2
140	Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocrine-Related Cancer, 2020, 27, 457-468.	1.6	4
141	Genomic Profile in a Non-Seminoma Testicular Germ-Cell Tumor Cohort Reveals a Potential Biomarker of Sensitivity to Platinum-Based Therapy. Cancers, 2022, 14, 2065.	1.7	5
142	Genetics of testicular cancer: a review. Current Opinion in Urology, 2022, 32, 481-487.	0.9	7
143	Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Medical Genomics, 2022, 15, .	0.7	3
144	Evolutionary Origins of Metabolic Reprogramming in Cancer. International Journal of Molecular Sciences, 2022, 23, 12063.	1.8	Ο
145	HPGDS is a novel prognostic marker associated with lipid metabolism and aggressiveness in lung adenocarcinoma. Frontiers in Oncology, 0, 12, .	1.3	4
146	Bioinformatics Prediction and Machine Learning on Gene Expression Data Identifies Novel Gene Candidates in Gastric Cancer. Genes, 2022, 13, 2233.	1.0	2
147	Endocannabinoid system and epigenetics in spermatogenesis and testicular cancer. Vitamins and Hormones, 2023, , 75-106.	0.7	3
148	Testicular germ cell tumors: Genomic alternations and RAS-dependent signaling. Critical Reviews in Oncology/Hematology, 2023, 183, 103928.	2.0	2
149	Increase and Plateauing of Testicular Cancer Incidence in Austria—A Time Trend Analysis of the Past Four Decades. European Urology Open Science, 2023, 49, 104-109.	0.2	1
150	The Role of the Environment in Testicular Dysgenesis Syndrome. Endocrinology, 2023, , 1-38.	0.1	0
151	Cross-cancer pleiotropic analysis identifies three novel genetic risk loci for colorectal cancer. Human Molecular Genetics, 2023, 32, 2093-2102.	1.4	3
152	The Role of the Environment in Testicular Dysgenesis Syndrome. Endocrinology, 2023, , 271-308.	0.1	0