Carbon/carbon supercapacitors

Journal of Energy Chemistry 22, 226-240 DOI: 10.1016/s2095-4956(13)60028-5

Citation Report

#	Article	IF	CITATIONS
2	Highly confined ions store charge more efficiently in supercapacitors. Nature Communications, 2013, 4, 2701.	5.8	570
3	Effect of unequal load of carbon xerogel in electrodes on the electrochemical performance of asymmetric supercapacitors. Journal of Applied Electrochemistry, 2014, 44, 481-489.	1.5	11
4	On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano, 2014, 8, 1576-1583.	7.3	201
5	Metal–organic complexes as redox candidates for carbon based pseudo-capacitors. Journal of Materials Chemistry A, 2014, 2, 18132-18138.	5.2	19
6	Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2014, 2, 5131.	5.2	27
7	The effect of the carbon surface chemistry and electrolyte pH on the energy storage of supercapacitors. RSC Advances, 2014, 4, 32398-32404.	1.7	45
8	Lithium manganese spinel materials for high-rate electrochemical applications. Journal of Energy Chemistry, 2014, 23, 543-558.	7.1	59
9	Monovalent silicotungstate salts as electrolytes for electrochemical supercapacitors. Electrochimica Acta, 2014, 138, 240-246.	2.6	27
10	One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 14439-14448.	5.2	74
11	Facile growth of hollow porous NiO microspheres assembled from nanosheet building blocks and their high performance as a supercapacitor electrode. CrystEngComm, 2014, 16, 10389-10394.	1.3	51
12	Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance. Electrochimica Acta, 2014, 138, 270-277.	2.6	42
13	Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon, 2014, 69, 66-78.	5.4	169
14	Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochimica Acta, 2014, 140, 132-138.	2.6	152
15	A dandelion-like carbon microsphere/MnO2 nanosheets composite for supercapacitors. Journal of Energy Chemistry, 2014, 23, 82-90.	7.1	34
16	Ionic liquid based EDLCs: influence of carbon porosity on electrochemical performance. Faraday Discussions, 2014, 172, 163-177.	1.6	15
17	Activated Carbon-Coated Carbon Nanotubes for Energy Storage in Supercapacitors and Capacitive Water Purification. ACS Sustainable Chemistry and Engineering, 2014, 2, 1289-1298.	3.2	209
18	Advanced Materials for Supercapacitors. Electrochemical Energy Storage and Conversion, 2015, , 423-449.	0.0	0
20	Influence of chemical structure of dyes on capacitive dye removal from solutions. Electrochimica Acta, 2015, 174, 588-595.	2.6	34

#	Article	IF	CITATIONS
21	Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor. Journal of Physics and Chemistry of Solids, 2015, 85, 62-68.	1.9	46
22	Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature. Korean Journal of Chemical Engineering, 2015, 32, 248-254.	1.2	24
23	Simulations of room temperature ionic liquids: from polarizable to coarse-grained force fields. Physical Chemistry Chemical Physics, 2015, 17, 14270-14279.	1.3	145
24	Effect of reduction heat treatment in H2 atmosphere on structure and electrochemical properties of activated carbon. Journal of Solid State Electrochemistry, 2015, 19, 1437-1446.	1.2	17
25	Urea-assisted hydrothermal synthesis of manganese dioxides with various morphologies for hybrid supercapacitors. Journal of Alloys and Compounds, 2015, 648, 190-194.	2.8	21
26	Narrow-porous pitch-based carbon fibers of superior capacitance properties in aqueous electrolytes. Electrochimica Acta, 2015, 167, 348-356.	2.6	29
27	High rate capability Li3V2¬xNix(PO4)3/C (x = 0, 0.05, and 0.1) cathodes for Li-ion asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11807-11816.	5.2	34
29	High-rate supercapacitive performance of GO/r-GO electrodes interfaced with plastic-crystal-based flexible gel polymer electrolyte. Electrochimica Acta, 2015, 182, 995-1007.	2.6	37
30	Nanostructured Transition Metal Oxides Produced by Electrodeposition for Application as Redox Electrodes for Supercapacitors. , 2015, , 1-27.		4
31	Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon, 2015, 95, 72-83.	5.4	102
32	Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry, 2015, 24, 559-586.	7.1	19
33	The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Applied Surface Science, 2015, 357, 696-703.	3.1	188
34	Graphene in Supercapacitor Applications. Current Opinion in Colloid and Interface Science, 2015, 20, 416-428.	3.4	154
35	Effects of structural design on the performance of electrical double layer capacitors. Applied Energy, 2015, 138, 631-639.	5.1	26
36	Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors. Journal of Power Sources, 2015, 274, 1147-1154.	4.0	62
37	Highâ€Rate and Highâ€Volumetric Capacitance of Compact Graphene–Polyaniline Hydrogel Electrodes. Advanced Energy Materials, 2016, 6, 1600185.	10.2	91
38	A Comprehensive Study on Rechargeable Energy Storage Technologies. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	25
39	Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids. Journal of Chemical Physics, 2016, 145, 204707.	1.2	41

#	Article	IF	CITATIONS
40	Electrochemical impedance spectroscopy study of carbon electrodes prepared from date pits and fibers of oil palm empty fruit bunches. , 2016, , .		1
41	Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors. CrystEngComm, 2016, 18, 3040-3047.	1.3	53
42	Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes. Current Applied Physics, 2016, 16, 665-672.	1.1	40
43	A Generic Model for Electric Double Layers in Porous Electrodes. Journal of Physical Chemistry C, 2016, 120, 8704-8710.	1.5	73
44	Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures. ACS Energy Letters, 2016, 1, 21-26.	8.8	146
45	Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids. Carbon, 2016, 105, 474-483.	5.4	66
46	Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives. Journal of Physical Chemistry C, 2016, 120, 24041-24047.	1.5	37
47	Symmetric Electrodes for Electrochemical Energy‣torage Devices. Advanced Science, 2016, 3, 1600115.	5.6	64
48	Fundamentals of Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 1-30.	0.0	4
49	Effects of activation temperature on the deoxygenation, specific surface area and supercapacitor performance of graphene. Carbon, 2016, 109, 558-565.	5.4	40
50	Sugarcane molasses as a pseudocapacitive material for supercapacitors. RSC Advances, 2016, 6, 88826-88836.	1.7	18
51	Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. Journal of Power Sources, 2016, 336, 419-426.	4.0	31
52	Supercapacitors: from the Leyden jar to electric busses. ChemTexts, 2016, 2, 1.	1.0	45
53	Enhancement of the carbon electrode capacitance by brominated hydroquinones. Journal of Power Sources, 2016, 326, 587-594.	4.0	52
54	Self-discharge of electrochemical capacitors based on soluble or grafted quinone. Physical Chemistry Chemical Physics, 2016, 18, 19137-19145.	1.3	48
55	Ultrathin MnO ₂ nanosheets grown on fungal conidium-derived hollow carbon spheres as supercapacitor electrodes. RSC Advances, 2016, 6, 5184-5191.	1.7	21
56	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	5.4	261
57	Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy and Environmental Science, 2016, 9, 623-633.	15.6	204

#	Article	IF	CITATIONS
58	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	0.7	17
59	New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. Journal of Power Sources, 2016, 326, 702-710.	4.0	31
60	Ultrasonic Assisted Fabrication of Nanocomposite Electrode Materials Au/C for Low-Voltage Electronics. Materials and Manufacturing Processes, 2016, 31, 739-744.	2.7	9
61	Application of Some Carbon Fabrics as Outstanding Supercapacitor Electrode Materials in Acetonitrile Based Electrolyte. Journal of the Electrochemical Society, 2017, 164, A453-A460.	1.3	4
62	Hydrothermal synthesis of pure LiMn2O4 from nanostructured MnO2 precursors for aqueous hybrid supercapacitors. Ionics, 2017, 23, 1083-1090.	1.2	9
63	One-pot hydrothermal synthesis of novel 3D starfish-like δ-MnO ₂ nanosheets on carbon fiber paper for high-performance supercapacitors. RSC Advances, 2017, 7, 14910-14916.	1.7	32
64	Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode. Journal of Energy Chemistry, 2017, 26, 790-798.	7.1	33
65	Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon. Journal of Hazardous Materials, 2017, 328, 46-55.	6.5	103
66	Synthesis and characterization of <i>β</i> -Ni(OH) ₂ embedded with MgO and ZnO nanoparticles as nanohybrids for energy storage devices. Materials Research Express, 2017, 4, 065503.	0.8	30
67	Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 14504-14514.	1.1	13
68	Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 14066-14072.	1.5	45
69	Li 2 SO 4 -polyacrylamide polymer electrolytes for 2.0 V solid symmetric supercapacitors. Electrochemistry Communications, 2017, 81, 52-55.	2.3	33
70	From current peaks to waves and capacitive currents—on the origins of capacitor-like electrode behavior. Journal of Solid State Electrochemistry, 2017, 21, 2601-2607.	1.2	16
71	Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. Journal of Energy Chemistry, 2017, 26, 1252-1259.	7.1	75
72	Solid Polymer Electrolyte Based on PVDF-HFP and Ionic Liquid Embedded with TiO ₂ Nanoparticle for Electric Double Layer Capacitor (EDLC) Application. Journal of the Electrochemical Society, 2017, 164, F1348-F1353.	1.3	34
73	Exploring the effects of carbon meso-structure and macrostructure on the rate performance of porous carbon supercapacitors. Journal of Applied Electrochemistry, 2017, 47, 1213-1226.	1.5	5
74	Elucidating the Importance of Pore Structure in Determining the Double-Layer Capacitance of Nanoporous Carbon Materials. Journal of Physical Chemistry C, 2017, 121, 20555-20566.	1.5	11
75	Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high	4.0	192

#	Article	IF	CITATIONS
76	A "Nanopore Lithography―Strategy for Synthesizing Hierarchically Micro/Mesoporous Carbons from ZIF-8/Graphene Oxide Hybrids for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2017, 9, 44740-44755.	4.0	46
77	Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Applied Surface Science, 2017, 423, 1025-1034.	3.1	180
78	Polyacrylamide-lithium chloride polymer electrolyte and its applications in electrochemical capacitors. Electrochemistry Communications, 2017, 74, 33-37.	2.3	41
79	The effect of temperature deposited on the performance of ZnO-CNT-graphite for supercapacitors. Journal of Physics: Conference Series, 2017, 877, 012006.	0.3	2
80	Supercapacitors using Binderless Activated Carbon Monoliths Electrodes consisting of a Graphite Additive and Pre-carbonized Biomass Fibers. International Journal of Electrochemical Science, 2017, 12, 2520-2539.	0.5	27
81	Supercapacitor Nanofiber Electrodes Graphene-Based. International Journal of Electrochemical Science, 2017, 12, 2917-2932.	0.5	7
82	Effect of Heat-Treatment of Manganese Oxide Deposited on Stainless Steel 316L Current Collector Surface towards Carbon Based Supercapacitor Performance. International Journal of Electrochemical Science, 2017, , 2466-2484.	0.5	2
83	Preparation of MnO2/porous carbon material with core–shell structure and its application in supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 7957-7964.	1.1	6
84	A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors. Electrochimica Acta, 2018, 274, 121-130.	2.6	44
85	Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters, 2018, 10, 33.	14.4	73
86	Ion-ion correlations across and between electrified graphene layers. Journal of Chemical Physics, 2018, 148, 193812.	1.2	28
87	The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry, 2018, 61, 124-132.	2.9	50
88	Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, 7312-7329.	1.7	86
89	Hydrothermal synthesis of CoMoO 4 /Co 1- x S hybrid on Ni foam for high-performance supercapacitors. Journal of Energy Chemistry, 2018, 27, 478-485.	7.1	35
90	Sustainable materials for electrochemical capacitors. Materials Today, 2018, 21, 437-454.	8.3	255
91	Manufacturing Carbon Material by Carbonization of Cellulosic Palm Oil Waste for Supercapacitor Material. MATEC Web of Conferences, 2018, 156, 03018.	0.1	14
92	Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications. Applied Surface Science, 2018, 427, 1055-1064.	3.1	47
93	Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials, 2018, 12, 128-136.	9.5	167

#	Article	IF	CITATIONS
94	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Double‣ayer Capacitors. Advanced Sustainable Systems, 2018, 2, 1700128.	2.7	46
95	Metal sputtered graphene based hybrid films comprising tin oxide/reduced graphene oxide/Ni as electrodes for high-voltage electrochemical capacitors. Carbon, 2018, 129, 1-7.	5.4	7
96	Graphene/ionic liquid ultracapacitors: does ionic size correlate with energy storage performance?. New Journal of Chemistry, 2018, 42, 18409-18417.	1.4	26
97	Rose-derived 3D carbon nanosheets for high cyclability and extended voltage supercapacitors. Electrochimica Acta, 2018, 291, 287-296.	2.6	90
98	Highly activated porous carbon with 3D microspherical structure and hierarchical pores as greatly enhanced cathode material for high-performance supercapacitors. Journal of Power Sources, 2018, 391, 162-169.	4.0	72
99	Electrochemical Behavior of Nanoporous Supercapacitors with Oligomeric Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 14402-14407.	1.5	13
100	Amino-functionalized silica anchored to multiwall carbon nanotubes as hybrid electrode material for supercapacitors. Materials Science for Energy Technologies, 2018, 1, 70-76.	1.0	13
101	Solid-phase diffusion controlled growth of nickel silicide nanowires for supercapacitor electrode. Applied Surface Science, 2018, 456, 515-525.	3.1	16
102	Confined Redox Reactions of Iodide in Carbon Nanopores for Fast and Energyâ€Efficient Desalination of Brackish Water and Seawater. ChemSusChem, 2018, 11, 3460-3472.	3.6	46
103	Breaking the Limits of Ionic Liquidâ€Based Supercapacitors: Mesoporous Carbon Electrodes Functionalized with Manganese Oxide Nanosplotches for Dense, Stable, and Wideâ€Temperature Energy Storage. Advanced Functional Materials, 2018, 28, 1801298.	7.8	75
104	Nanostructured porous carbons for electrochemical energy conversion and storage. Surface and Coatings Technology, 2018, 350, 307-312.	2.2	16
105	Ionic Liquid Mixture Expands the Potential Window and Capacitance of a Supercapacitor in Tandem. Journal of Physical Chemistry C, 2018, 122, 18304-18310.	1.5	27
106	Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. Journal of Power Sources, 2018, 395, 271-279.	4.0	62
107	2.21 Supercapacitors. , 2018, , 663-695.		8
108	Three-Dimensional Interconnected Microporous Carbon Network Derived from Aniline Formaldehyde Resin/Sodium Polyacrylate Interpenetrating Polymer Networks (AF/PAAS IPNs) with Controllable Porosity for Supercapacitors. ACS Applied Energy Materials, 2019, 2, 6440-6452.	2.5	7
109	Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Materials, 2019, 22, 1-14.	9.5	43
110	Synthesis and characterization of modified chitosan membranes for applications in electrochemical capacitor. Electrochimica Acta, 2019, 320, 134632.	2.6	23
111	N-doped porous carbon film electrodes for electrochemical capacitor, made by electrospray of sol precursors. Carbon, 2019, 154, 33-41.	5.4	16

#	Article	IF	CITATIONS
112	High-performance supercapacitor electrode based on activated carbon fiber felt/iron oxides. Materials Today Communications, 2019, 21, 100553.	0.9	25
113	One-step template carbonization-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. Journal of Solid State Electrochemistry, 2019, 23, 2355-2366.	1.2	6
114	Nano Carbon Produced by Advanced Mild Hydrothermal Process of Oil Palm Biomass for Supercapacitor Material. IOP Conference Series: Materials Science and Engineering, 2019, 543, 012031.	0.3	15
115	Using square wave voltammetry for the electrochemical characterization of cerium oxide/multiwalled carbon nanotube composites in different aqueous electrolytes. Journal of Electroanalytical Chemistry, 2019, 847, 113269.	1.9	1
116	Activated Carbon Prepared from Rose Branch using H3PO4- hydrothermal Carbonization and Activation and its Apllication for Supercapacitors. International Journal of Electrochemical Science, 2019, 14, 7899-7910.	0.5	9
117	Flexible Freestanding MoO 3â^' x –Carbon Nanotubes–Nanocellulose Paper Electrodes for Chargeâ€6torage Applications. ChemSusChem, 2019, 12, 5157-5163.	3.6	20
118	Linear-Polyethyleneimine-Templated Synthesis of N-Doped Carbon Nanonet Flakes for High-performance Supercapacitor Electrodes. Nanomaterials, 2019, 9, 1225.	1.9	11
119	Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Physical Chemistry Chemical Physics, 2019, 21, 3122-3133.	1.3	114
120	Ion Dynamics at the Single Wall Carbon Nanotube Based Composite Electrode/Electrolyte Interface: Influence of the Cation Size and Electrolyte pH. Journal of Physical Chemistry C, 2019, 123, 4262-4273.	1.5	9
121	Impurities Limit the Capacitance of Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 4085-4093.	1.5	24
122	Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials, 2019, 9, 1900334.	10.2	151
123	Oxygen- and Nitrogen-Enriched Honeycomb-Like Porous Carbon from <i>Laminaria japonica</i> with Excellent Supercapacitor Performance in Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2019, 7, 11550-11563.	3.2	56
124	Hierarchical Nanoporous Carbon Templated and Catalyzed by the Bicontinuous Nanoporous Copper for High Performance Electrochemical Capacitors. ChemistrySelect, 2019, 4, 6437-6444.	0.7	6
125	Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Advances, 2019, 1, 2586-2597.	2.2	97
126	From Polyethylene to Highly Graphitic and Magnetic Carbon Spheres Nanocomposites: Carbonization under Pressure. Nanomaterials, 2019, 9, 606.	1.9	6
127	Electroadsorptive Removal of Gaseous Pollutants. Applied Sciences (Switzerland), 2019, 9, 1162.	1.3	2
128	Predicting the capacitance of carbon-based electric double layer capacitors by machine learning. Nanoscale Advances, 2019, 1, 2162-2166.	2.2	52
129	Machine learning models for solvent effects on electric double layer capacitance. Chemical Engineering Science, 2019, 202, 186-193.	1.9	38

#	Article	IF	CITATIONS
130	Compressed and Crumpled Porous Carbon Electrode for High Volumetric Performance Electrical Double‣ayer Capacitors. Energy Technology, 2019, 7, 1900209.	1.8	9
131	Optimizing carbon/carbon supercapacitors in aqueous alkali sulfates electrolytes. Journal of Energy Chemistry, 2019, 38, 219-224.	7.1	34
132	Performance enhancement approach for supercapacitor by using mango kernels derived activated carbon electrode with p-hydroxyaniline based redox additive electrolyte. Materials Chemistry and Physics, 2019, 229, 66-77.	2.0	31
133	Templateâ€Induced Selfâ€Activation Route for Hierarchical Porous Carbon Derived from Interpenetrating Polymer Networks as Electrode Material for Supercapacitors. ChemElectroChem, 2019, 6, 2648-2658.	1.7	16
134	Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance. Electrochimica Acta, 2019, 303, 246-256.	2.6	140
135	Hexylsulfanyl-substituted CoPc and GO-CoPc on Ni foam as electroactive material for supercapacitors. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1616-1621.	0.4	2
136	High-Performance Organic Electric Double-Layer Capacitors Using Allergen-Derived Activated Carbons. Journal of the Electrochemical Society, 2019, 166, A3950-A3958.	1.3	9
137	Background, fundamental understanding and progress in electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 667-692.	1.2	62
138	High-temperature tungsten trioxides obtained by concentrated solar energy: physicochemical and electrochemical characterization. Journal of Solid State Electrochemistry, 2019, 23, 707-716.	1.2	3
139	Design of organic supercapacitors with high performances using pore size controlled active materials. Current Applied Physics, 2019, 19, 89-96.	1.1	10
140	Novel Keplerate type polyoxometalate-surfactant-graphene hybrids as advanced electrode materials for supercapacitors. Energy Storage Materials, 2019, 17, 186-193.	9.5	34
141	Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. Journal of Energy Chemistry, 2019, 39, 1-7.	7.1	156
142	A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta, 2019, 299, 789-799.	2.6	63
143	Highly mesoporous carbon flakes derived from a tubular biomass for high power electrochemical energy storage in organic electrolyte. Materials Chemistry and Physics, 2019, 223, 16-23.	2.0	41
144	The role of conductive additives on the performance of hybrid carbon xerogels as electrodes in aqueous supercapacitors. Electrochimica Acta, 2019, 295, 693-702.	2.6	18
145	Ag@Activated Carbon Felt Composite as Electrode for Supercapacitors and a Study of Three Different Aqueous Electrolytes. Materials Research, 2019, 22, .	0.6	19
146	High-performance nitrogen-doped hierarchical porous carbon derived from cauliflower for advanced supercapacitors. Journal of Materials Science, 2019, 54, 2446-2457.	1.7	43
147	Flexible GO-CoPc and GO-NiPc nanocomposite electrodes for hybrid supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113766.	1.3	10

#	Article	IF	CITATIONS
148	N-activated carbon fiber produced by oxidation process design and its application as supercapacitor electrode. Journal of Porous Materials, 2020, 27, 141-149.	1.3	13
149	Mesoporous graphene nanoflakes for high performance supercapacitors with ionic liquid electrolyte. Microporous and Mesoporous Materials, 2020, 294, 109851.	2.2	28
151	Supercapacitive and ORR performances of nitrogen-doped hollow carbon spheres pyrolyzed from polystyrene@polypyrrole-polyaniline. Journal of Alloys and Compounds, 2020, 818, 152890.	2.8	25
152	Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Advances, 2020, 2, 70-108.	2.2	164
153	Caseinâ€Derived Activated Carbon: Turning Expired Milk into Active Material for Electrochemical Capacitors. Energy Technology, 2020, 8, 1901225.	1.8	2
154	Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors. Applied Surface Science, 2020, 507, 145190.	3.1	50
155	Interfacial aspects induced by saturated aqueous electrolytes in electrochemical capacitor applications. Electrochimica Acta, 2020, 334, 135572.	2.6	23
156	Thermophysical study of graphene nanoflakes by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2641-2648.	2.0	8
157	Symmetric electric doubleâ€layer capacitor containing imidazolium ionic liquidâ€based solid polymer electrolyte: Effect of TiO 2 and ZnO nanoparticles on electrochemical behavior. Journal of Applied Polymer Science, 2020, 137, 48757.	1.3	27
158	Mixtures of acetonitrile and ethyl isopropyl sulfone as electrolytes for electrochemical double layer capacitors. Electrochimica Acta, 2020, 331, 135421.	2.6	23
159	Soybean-waste-derived activated porous carbons for electrochemical-double-layer supercapacitors: Effects of processing parameters. Journal of Energy Storage, 2020, 27, 101070.	3.9	32
160	Extremely flexible and mechanically durable planar supercapacitors: High energy density and low-cost power source for E-skin electronics. Nano Energy, 2020, 78, 105356.	8.2	18
161	Theoretical Model for Magnetic Supercapacitors—From the Electrode Material to Electrolyte Ion Dependence. Journal of Physical Chemistry C, 2020, 124, 26613-26624.	1.5	21
162	Three-Dimensional Architectures in Electrochemical Capacitor Applications – Insights, Opinions, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	10
163	Electrochemical characteristics of nanocomposites based on carbon black and a pyrocarbon matrix. AIP Conference Proceedings, 2020, , .	0.3	0
164	Three-Dimensional Walnut-Like, Hierarchically Nanoporous Carbon Microspheres: One-Pot Synthesis, Activation, and Supercapacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 8024-8036.	3.2	32
165	Acetonitrile confined in carbon nanotubes, part I: Structure, dynamic and transport properties. Journal of Molecular Liquids, 2020, 311, 113053.	2.3	1
166	Nitrogen doping of mesoporous graphene nanoflakes as a way to enhance their electrochemical performance in ionic liquid-based supercapacitors. Journal of Energy Storage, 2020, 30, 101464.	3.9	9

#	Article	IF	CITATIONS
167	Facile synthesis and electrochemical study of a ternary hybrid PANI/GNP/MnO2 as supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 2020, 31, 12455-12466.	1.1	17
168	Nâ€Doping in Precursor Sol: Some Observations in Reference to In Situâ€Grown Carbon Film Electrodes for Supercapacitor Applications. Energy Technology, 2020, 8, 1901479.	1.8	6
169	Chain length matters: Structural transition and capacitance of room temperature ionic liquids in nanoporous electrodes. Chemical Engineering Science, 2020, 227, 115927.	1.9	27
170	Solid-state transformation of aqueous to organic electrolyte – Enhancing the operating voltage window of â€~ <i>in situ</i> electrolyte' supercapacitors. Sustainable Energy and Fuels, 2020, 4, 2438-2447.	2.5	11
171	Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects. Current Opinion in Electrochemistry, 2020, 21, 167-174.	2.5	15
172	Hierarchitecture Co 2 (OH) 3 Cl@FeCo 2 O 4 composite as a novel and highâ€performance electrode material applied in supercapacitor. International Journal of Energy Research, 2020, 44, 3122-3133.	2.2	10
173	Free energy barriers for TMEA+, TMA+, and BF4- ion diffusion through nanoporous carbon electrodes. Carbon, 2020, 161, 550-561.	5.4	11
174	Improvement of a commercial activated carbon for organic electric double-layer capacitors using a consecutive doping method. Carbon, 2020, 160, 45-53.	5.4	38
175	The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Advanced Energy Materials, 2020, 10, 1903848.	10.2	152
176	Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry, 2021, 54, 352-367.	7.1	97
177	High-performance electric double-layer capacitor fabricated with nanostructured carbon black-paint pigment as an electrode. Carbon Letters, 2021, 31, 137-146.	3.3	12
178	Multi-dimensional graded electrodes with enhanced capacitance and superior cyclic stability. Journal of Power Sources, 2021, 481, 228911.	4.0	10
179	Fundamental electrochemical energy storage systems. , 2021, , 27-43.		15
180	Curvature effects on electric-double-layer capacitance. Chinese Journal of Chemical Engineering, 2021, 31, 145-152.	1.7	11
181	Peculiar role of the electrolyte viscosity in the electrochemical capacitor performance. Journal of Materials Chemistry A, 2021, 9, 8644-8654.	5.2	18
182	Physical and chemical activation mechanisms of carbon materials based on the microdomain model. Journal of Materials Chemistry A, 2021, 9, 9815-9825.	5.2	43
183	A review of neutral pH polymer electrolytes for electrochemical capacitors: Transitioning from liquid to solid devices. Materials Reports Energy, 2021, 1, 100005.	1.7	12
184	Investigating the Influence of Reflux Condensation Reaction Temperature on the Growth of FeCo 2 O 4 Thin Film for Flexible Supercapacitor. ChemistrySelect, 2021, 6, 1838-1844.	0.7	8

#	ARTICLE	IF	CITATIONS
185	Lowâ€Cost Carbon Xerogels Derived from Phenol–Formaldehyde Resin for Organic Electric Double‣ayer Capacitors. Energy Technology, 2021, 9, 2000918.	1.8	7
186	Simple CVD growth of P-doped graphitic hallow carbon spheres for high-voltage (2.0ÂV) aqueous symmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 8475-8490.	1.1	6
187	A study of low-temperature solid-state supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. Journal of Power Sources, 2021, 488, 229461.	4.0	37
188	The Performance of Fibrous CDC Electrodes in Aqueous and Non-Aqueous Electrolytes. Journal of Carbon Research, 2021, 7, 46.	1.4	2
189	Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. Energies, 2021, 14, 2649.	1.6	26
190	Biomass-Based Carbon Electrodes in the Design of Supercapacitors: An Electrochemical Point of View. , 0, , .		1
191	Magnetic field-induced capacitance change in aqueous carbon-based supercapacitors. Cell Reports Physical Science, 2021, 2, 100455.	2.8	13
192	Preparation of carbon electrodes from alkaline extraction of lignite for double-layer capacitors. Ionics, 2021, 27, 3605-3614.	1.2	7
193	Preliminary study on the performance of a redox capacitor with the use of ionic liquid-based gel polymer electrolyte and polypyrrole electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 17629-17636.	1.1	2
194	Ultra-hydrophilic porous carbons and their supercapacitor performance using pure water as electrolyte. Carbon, 2021, 178, 540-551.	5.4	31
195	Low-Cost Activated Carbon Electrodes from Waste Maple Leaves for Organic Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2021, 168, 080532.	1.3	2
196	Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application. Renewable Energy, 2021, 174, 557-572.	4.3	32
197	Binary vanadium pentoxide carbon-graphene foam composites derived from dark red hibiscus sabdariffa for advanced asymmetric supercapacitor. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200347.	1.6	2
198	Preparation and characterization of PANI: α borophene electrode for supercapacitors. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114833.	1.3	11
199	Algal-based polysaccharides as polymer electrolytes in modern electrochemical energy conversion and storage systems: A review. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100023.	1.6	12
200	Conductive Fe@Fe2O3/FeOOH necklace-like nanowires of high electrochemical performances for a supercapacitor application. Materials Research Bulletin, 2022, 145, 111549.	2.7	18
201	Boosting the Supercapacitance of Nitrogenâ€Đoped Carbon by Tuning Surface Functionalities. ChemSusChem, 2017, 10, 4018-4024.	3.6	38
202	Nanostructured Transition Metal Oxides Produced by Electrodeposition for Application as Redox Electrodes for Supercapacitors. , 2016, , 681-714.		4

#	Article	IF	Citations
203	Activated carbon derived from tea waste: A promising supporting material for metal nanoparticles used as catalysts in hydrolysis of ammonia borane. Biomass and Bioenergy, 2020, 138, 105589.	2.9	47
204	A Comparative Study of Sulfate-Based Neutral pH Polymer Electrolytes: Effects of Temperature on Ionic Conductivity. Journal of the Electrochemical Society, 2020, 167, 126508.	1.3	2
205	Impedance Response of Electrochemical Interfaces: Part I. Exact Analytical Expressions for Ideally Polarizable Electrodes. Journal of the Electrochemical Society, 2020, 167, 166517.	1.3	10
206	Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications. Journal of Electrochemical Science and Technology, 2017, 8, 314-322.	0.9	3
207	Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors. Korean Journal of Materials Research, 2016, 26, 696-703.	0.1	4
208	Deoxygenated porous carbon with highly stable electrochemical reaction interface for practical high-performance lithium-ion capacitors. Journal Physics D: Applied Physics, 2022, 55, 045501.	1.3	9
209	Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte. Korean Journal of Materials Research, 2015, 25, 132-137.	0.1	0
211	3.NiOæ£æ¥µã,'用ã"ã,‹æ°´ç³»ãfã,ëf–ãfªãffãf‰ã,ãf£ãfʿã,•ã,¿. Electrochemistry, 2017, 85, 746-749.	0.6	Ο
212	Varying Impedance "Orbital Impedance Stability" Graphene Based Supercapacitor Nanofiber Electrodes – Utilizing A New Direct Method of Studying Impedance Based on Actual Experimental Data. Acta Chemica Malaysia, 2019, 3, 21-37.	0.6	2
213	Bioenergy-Byproducts Based Electrodes for Flexible Supercapacitors. Clean Energy Production Technologies, 2020, , 437-464.	0.3	Ο
214	An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. International Journal of Energy Research, 2022, 46, 3939-3982.	2.2	8
215	Sustainable Preparation of Nanoporous Carbons via Dry Ball Milling: Electrochemical Studies Using Nanocarbon Composite Electrodes and a Deep Eutectic Solvent as Electrolyte. Nanomaterials, 2021, 11, 3258.	1.9	10
216	Chromium (III) doped polycrystalline MgAl2O4 nanoparticles for photocatalytic and supercapacitor applications. Journal of Physics and Chemistry of Solids, 2022, 161, 110491.	1.9	18
217	Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere, 2022, 291, 132931.	4.2	29
218	Acid Orange-7 uptake on spherical-shaped nanocarbons. Nanomaterials and Nanotechnology, 2021, 11, 184798042110550.	1.2	4
219	Application of MnO2/MWCNT composite in supercapacitors. Materials Today: Proceedings, 2022, 60, 1008-1011.	0.9	10
220	Glycine based auto-combustion synthesis of ZnO nanoparticles as electrode material for supercapacitor. Physica Scripta, 0, , .	1.2	0
221	Graphene quantum dot inlaid carbon nanofibers: Revealing the edge activity for ultrahigh rate pseudocapacitive energy storage. Energy Storage Materials, 2022, 47, 158-166.	9.5	23

#	Article	IF	CITATIONS
222	A 'Reservoir-Pipe' Design of Heterogeneous Stacking Carbon Films for Optimized Supercapacitor Performance. SSRN Electronic Journal, 0, , .	0.4	0
223	Refurbished Carbon Materials from Waste Supercapacitors as Industrial-Grade Electrodes: Empowering Electronic Waste. SSRN Electronic Journal, 0, , .	0.4	Ο
224	Capacitance of Carbon Nanotube/Graphene Composite Electrodes with [BMIM ⁺][BF ₄ [–]]/Acetonitrile: Fixed Voltage Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2022, 126, 5822-5837.	1.5	10
225	Polyethyleneâ€Derived Activated Carbon Materials for Commercially Available Supercapacitor in an Organic Electrolyte System. Macromolecular Rapid Communications, 2022, 43, e2200006.	2.0	8
226	Micro Energy Storage Systems in Energy Harvesting Applications: Analytical Evaluation towards Future Research Improvement. Micromachines, 2022, 13, 512.	1.4	0
227	Direct observation of the CO2 formation and C–H consumption of carbon electrode in an aqueous neutral electrolyte supercapacitor by in-situ FTIR and Raman. Journal of Energy Chemistry, 2022, 71, 488-496.	7.1	10
228	Polyethylene terephthalate (PET) waste to carbon materials: Theory, methods and applications. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105496.	2.6	26
229	Graphdiyne Electrochemistry: Progress and Perspectives. Small, 2022, 18, e2201135.	5.2	32
230	Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Science China Materials, 2022, 65, 2412-2420.	3.5	11
231	Preparation of high porous carbon using Al-based MOFs and influence of dimethylformamide on morphological and electrochemical supercapacitor performances. International Journal of Electrochemical Science, 0, , ArticleID:220671.	0.5	0
232	Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste. Energy Storage Materials, 2022, 49, 564-574.	9.5	15
233	Heterogeneous stacking carbon films for optimized supercapacitor performance. Energy Storage Materials, 2022, 50, 365-372.	9.5	6
234	Electrode Potentials in Electrochemical Double-Layer Capacitors with Asymmetric Electrode Thicknesses. SSRN Electronic Journal, 0, , .	0.4	0
235	Effects of Pore Structure and Carbon Loading on Solid Capacitive Devices at Low Temperatures. Journal of the Electrochemical Society, 2022, 169, 070522.	1.3	1
236	The synthesis of porous carbons from a lignin-rich residue for high-performance supercapacitors. New Carbon Materials, 2022, 37, 743-751.	2.9	5
237	Effect of partial oxidation and repolarization of TiC-derived nanoporous carbon electrodes on supercapacitor performance using a pH-neutral aqueous electrolyte. Journal of Solid State Electrochemistry, 2022, 26, 2365-2378.	1.2	4
238	Analysis of impedance: The distribution of capacitance in halide ion treated supercapacitors. Journal of Electroanalytical Chemistry, 2022, 922, 116754.	1.9	2
239	Rice husk-derived activated carbon electrode in redox-active electrolyte – New approach for enhancing supercapacitor performance. Journal of Energy Storage, 2022, 55, 105699.	3.9	14

#	Article	IF	CITATIONS
240	Chitin as a Universal and Sustainable Electrode Binder for Electrochemical Capacitors. SSRN Electronic Journal, 0, , .	0.4	1
241	Carbon Nanotube Fiber-Based Wearable Supercapacitors—A Review on Recent Advances. Energies, 2022, 15, 6506.	1.6	15
242	Alkaline hydrogel electrolyte from biosourced chitosan to enhance the rate capability and energy density of carbon-based supercapacitors. Energy Advances, 2022, 1, 1051-1064.	1.4	10
243	Machine learning techniques for prediction of capacitance and remaining useful life of supercapacitors: A comprehensive review. Journal of Energy Chemistry, 2023, 77, 438-451.	7.1	16
244	Supercapacitors production from waste: A new window for sustainable energy and waste management. Fuel, 2023, 337, 127125.	3.4	26
245	Novel designs of carbon electrodes for the technological improvement of electrochemical capacitors. , 2023, , 321-358.		1
246	Enhanced activated carbon lithium-ion capacitor electrochemical stability through electrolyte dielectric optimisation. Sustainable Energy and Fuels, 2023, 7, 1846-1854.	2.5	3
247	A Graphene Oxide–Thioamide Polymer Hybrid for Highâ€Performance Supercapacitor Electrodes. Small Science, 2023, 3, .	5.8	5
248	New development in carbon-based electrodes and electrolytes for enhancement of supercapacitor performance and safety. , 2023, , 353-408.		1
260	Teaching electrochemistry and student participation in the development of sustainable electricity generation/storage devices at the Institute of Chemistry of the University of Tartu. Journal of Solid State Electrochemistry, 2024, 28, 847-867.	1.2	0