Shear bands in metallic glasses

Materials Science and Engineering Reports 74, 71-132 DOI: 10.1016/j.mser.2013.04.001

Citation Report

#	Article	IF	CITATIONS
1	Localized shear deformation and softening of bulk metallic glass: stress or temperature driven?. Scientific Reports, 2013, 3, 2798.	1.6	60
2	Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass. Applied Physics Letters, 2013, 103, 211907.	1.5	18
3	Experimental and Theoretical Advances in Amorphous Alloys. Advances in Materials Science and Engineering, 2014, 2014, 1-2.	1.0	6
4	Effective temperature dynamics of shear bands in metallic glasses. Physical Review E, 2014, 90, 062405.	0.8	17
5	Cold Spraying of Amorphous Cu50Zr50 Alloys. Journal of Thermal Spray Technology, 2014, 24, 108.	1.6	10
6	Simulation study of mechanical properties of bulk metallic glass systems: martensitic inclusions and twinned precipitates. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 085008.	0.8	3
7	Nonlinear glassy rheology. Current Opinion in Colloid and Interface Science, 2014, 19, 549-560.	3.4	48
8	Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 616, 288-296.	2.6	25
9	Nanocrystalline Phase Formation inside Shear Bands of Pd-Cu-Si Metallic Glass. Advances in Materials Science and Engineering, 2014, 2014, 1-4.	1.0	4
10	Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows. Physical Review E, 2014, 90, 052304.	0.8	14
11	Origin of yielding in metallic glass: Stress-induced flow. Applied Physics Letters, 2014, 104, 251901.	1.5	10
12	Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications, 2014, 5, 5823.	5.8	251
13	Room Temperature Homogeneous Ductility of Micrometer‣ized Metallic Glass. Advanced Materials, 2014, 26, 5715-5721.	11.1	68
14	Direct experimental evidence of nano-voids formation and coalescence within shear bands. Applied Physics Letters, 2014, 105, 181909.	1.5	51
15	Shear bands in metallic glasses are not necessarily hot. APL Materials, 2014, 2, .	2.2	25
16	Robust scaling of strength and elastic constants and universal cooperativity in disordered colloidal micropillars. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18167-18172.	3.3	8
17	The β-relaxation in metallic glasses. National Science Review, 2014, 1, 429-461.	4.6	199
18	Analysis of Cooperativity in Metallic Glass Forming Liquids. Materials Science Forum, 0, 783-786, 1889-1894.	0.3	3

#	Article	IF	CITATIONS
19	Direct Observation on the Evolution of Shear Banding and Buckling in Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5397-5408.	1.1	14
20	Damage-tolerant Zr–Cu–Al-based bulk metallic glasses with record-breaking fracture toughness. Journal of Materials Research, 2014, 29, 1489-1499.	1.2	50
21	Uniting superhardness and damage-tolerance in a nanosandwich-structured Ti–B–N coating. Scripta Materialia, 2014, 74, 88-91.	2.6	16
22	Shear-induced volumetric strain in CuZr metallic glass. International Journal of Engineering Science, 2014, 83, 99-106.	2.7	5
23	Extended defects, ideal strength and actual strengths of finite-sized metallic glasses. Acta Materialia, 2014, 73, 149-166.	3.8	31
24	Evolution of crystallite size, lattice parameter and internal strain in Al precipitates during high energy ball milling of partly amorphous Al87Ni8La5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 604, 27-33.	2.6	32
25	Stabilized shear banding of ZrCu-based metallic glass composites under tensile loading. Journal of Materials Science, 2014, 49, 2164-2170.	1.7	38
26	Impact of Plastic Deformation and Shear Band Formation on the Boson Heat Capacity Peak of a Bulk Metallic Glass. Physical Review Letters, 2014, 112, 135901.	2.9	41
27	Indentation-induced deformation localisation in Zr–Cu-based metallic glass. Journal of Alloys and Compounds, 2014, 615, S93-S97.	2.8	5
28	On the origin of elastic strain limit of bulk metallic glasses. Applied Physics Letters, 2014, 104, .	1.5	20
29	FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction. Journal of Applied Physics, 2014, 115, 053520.	1.1	15
30	Intrinsic ductility of glassy solids. Journal of Applied Physics, 2014, 115, .	1.1	70
31	Optically transparent magnetic and electrically conductive Fe–Cr–Zr ultraâ€ŧhin films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 999-1004.	0.8	10
32	Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science, 2014, 305, 101-110.	3.1	107
33	Evidence of the existence of two deformation stages in bulk metallic glasses. Journal of Non-Crystalline Solids, 2014, 396-397, 20-24.	1.5	35
34	Indentation size effect in metallic glasses: Mean pressure at the initiation of plastic flow. Journal of Alloys and Compounds, 2014, 615, S98-S101.	2.8	15
35	In situ studies of temperature-dependent behaviour and crystallisation of Ni36.5Pd36.5P27 metallic glass. Journal of Alloys and Compounds, 2014, 615, S208-S212.	2.8	13
36	Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Materialia, 2014, 63, 180-190.	3.8	54

#		IE	CITATION
# 37	Effects of mechanical compression and autoclave treatment on the backbone clusters in the Al86Ni9La5 amorphous alloy. Journal of Alloys and Compounds, 2014, 587, 59-65.	2.8	13
38	Visible photon multiplication in Ce ³⁺ –Tb ³⁺ doped borate glasses for enhanced solar cells. Journal Physics D: Applied Physics, 2014, 47, 445101.	1.3	6
39	Deformation behavior of amorphous Co-Fe-Cr-Si-B alloys in the initial stages of severe plastic deformation. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 996-1000.	0.1	9
40	Influence of cyclic loading on the onset of failure in a Zr-based bulk metallic glass. Journal of Materials Science, 2014, 49, 6716-6721.	1.7	11
41	Shear Banding of Colloidal Glasses: Observation of a Dynamic First-Order Transition. Physical Review Letters, 2014, 113, 208301.	2.9	41
42	Hydrogen-induced hardening and softening of Ni–Nb–Zr amorphous alloys: Dependence on the Zr content. Scripta Materialia, 2014, 93, 56-59.	2.6	30
43	Microscopic description of flow defects and relaxation in metallic glasses. Physical Review E, 2014, 90, 042313.	0.8	27
44	Synthesis and mechanical response of disordered colloidal micropillars. Physical Chemistry Chemical Physics, 2014, 16, 10274-10285.	1.3	11
45	Prolonged work hardening range in high manganese TRIP steel during adiabatic shear band formation. Materials Letters, 2014, 134, 180-183.	1.3	3
46	Elastic and plastic characteristics of a model Cu–Zr amorphous alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 16-26.	2.6	4
47	The intrinsic and extrinsic factors for brittle-to-ductile transition in bulk metallic glasses. Theoretical and Applied Fracture Mechanics, 2014, 71, 76-78.	2.1	4
48	Hardness characteristic and shear band formation in metastable β-titanium alloys. Materials Characterization, 2014, 96, 151-157.	1.9	32
49	Mechanical annealing in the flow of supercooled metallic liquid. Journal of Applied Physics, 2014, 116, 053522.	1.1	2
50	Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Applied Surface Science, 2014, 317, 432-442.	3.1	89
51	Laser welding of Zr41Ti14Cu12Ni10Be23 bulk metallic glass and zirconium metal. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 786-788.	0.4	8
52	Metallic Glasses. , 2014, , 305-385.		29
53	Compositional dependence of shear-band dynamics in the Zr–Cu–Al bulk metallic glass system. Applied Physics Letters, 2014, 104, 101910.	1.5	28
54	Nucleation of shear bands in amorphous alloys. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3938-3942.	3.3	93

#	Article	IF	CITATIONS
55	Pronounced tensile plasticity at room temperature in a Au65Cu10.5Ag7.5Si17 metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 32-36.	2.6	5
56	Bulk Metallic Glasses Deform via Slip Avalanches. Physical Review Letters, 2014, 112, 155501.	2.9	183
57	Formation of CuZr-based bulk metallic glass composites containing nanometer-scale B2-CuZr phase through sub-Tg annealing. Journal of Alloys and Compounds, 2014, 617, 699-706.	2.8	26
58	Structural and phase transitions in the amorphous and nanocrystalline Ti 50 Ni 25 Cu 25 alloys upon high-pressure torsion. Materials Letters, 2014, 133, 32-34.	1.3	15
59	Dendrite size dependence of tensile plasticity of in situ Ti-based metallic glass matrix composites. Journal of Alloys and Compounds, 2014, 583, 593-597.	2.8	57
60	Localization of plastic deformation along shear bands in Vitreloy bulk metallic glass during high pressure torsion. Journal of Alloys and Compounds, 2014, 593, 207-212.	2.8	22
61	Notch Effect of Materials: Strengthening or Weakening?. Journal of Materials Science and Technology, 2014, 30, 599-608.	5.6	81
62	Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy. Ultramicroscopy, 2014, 142, 1-9.	0.8	108
63	On the mechanism of deformation and failure in bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 91-105.	2.6	23
64	Onset and Direction of Shear Banding Instability in Metallic Glasses. Journal of Materials Science and Technology, 2014, 30, 616-621.	5.6	6
65	Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 2014, 30, 560-565.	5.6	55
66	Strain rate dependence of mechanical behavior in a CuZr-based bulk metallic glass composite containing B2-CuZr phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 268-275.	2.6	10
67	Effect of ion irradiation in an Al90Fe2Ce8 metallic glass. Materials & Design, 2014, 62, 133-136.	5.1	17
68	Statistical analysis of acoustic emission events in torsional deformation of a Vitreloy bulk metallic glass. Acta Materialia, 2014, 70, 113-122.	3.8	13
69	Pure shear stress reversal on a Cu-based bulk metallic glass reveals a Bauschinger-type effect. Journal of Alloys and Compounds, 2014, 615, S75-S78.	2.8	12
70	Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review. Journal of Materials Science and Technology, 2014, 30, 523-545.	5.6	229
71	Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Materialia, 2014, 74, 165-182.	3.8	130
72	Impact of the structural state on the mechanical properties in a Zr–Co–Al bulk metallic glass. Journal of Alloys and Compounds, 2014, 607, 139-149.	2.8	45

#	Article	IF	CITATIONS
73	The local stress state of a running shear band in amorphous solids. Journal of Materials Research, 2015, 30, 1979-1987.	1.2	6
74	Enhanced thermoelectric performance of amorphous Nb based oxynitrides. Physica B: Condensed Matter, 2015, 479, 96-100.	1.3	10
75	Temperature-Induced Short-Range Order Changes in Co67B33 Glassy Thin Films and Elastic Limit Implications. Materials Research Letters, 2015, 3, 82-87.	4.1	5
76	Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures. Physical Review B, 2015, 91, .	1.1	25
77	Universal enthalpy-entropy compensation rule for the deformation of metallic glasses. Physical Review B, 2015, 92, .	1.1	19
78	Deformation-driven diffusion and plastic flow in amorphous granular pillars. Physical Review E, 2015, 91, 062212.	0.8	27
79	Mechanical behavior of a composite interface: Calcium-silicate-hydrates. Journal of Applied Physics, 2015, 118, .	1.1	18
80	Mechanisms of metastable states in CuZr systems with glass-like structures. Journal of Chemical Physics, 2015, 143, 114503.	1.2	3
81	Evolution of structural and dynamic heterogeneities during elastic to plastic transition in metallic glass. Journal of Applied Physics, 2015, 118, .	1.1	17
82	Activation volume in heterogeneous deformation of Mg65Cu12.5Ni12.5(Ce75La25)10 metallic glass. Journal of Applied Physics, 2015, 118, 204302.	1.1	5
83	Tensile behavior of laser treated Fe-Si-B metallic glass. Journal of Applied Physics, 2015, 118, .	1.1	12
84	Disruption of Thermally-Stable Nanoscale Grain Structures by Strain Localization. Scientific Reports, 2015, 5, 10663.	1.6	15
85	Sub-micron strain analysis of local stick-slip motion of individual shear bands in a bulk metallic glass. Applied Physics Letters, 2015, 107, .	1.5	21
86	An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites. Scientific Reports, 2015, 5, 13964.	1.6	20
87	Revealing localized plastic flow in apparent elastic region before yielding in metallic glasses. Journal of Applied Physics, 2015, 118, .	1.1	19
88	Micromechanical Modeling the Plastic Deformation of Particle-Reinforced Bulk Metallic Glass Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3705-3712.	1.1	5
89	Altering strength and plastic deformation behavior via alloying and laminated structure in nanocrystalline metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 24-32.	2.6	5
90	Shearâ€Band Dynamics in Metallic Glasses. Advanced Functional Materials, 2015, 25, 2353-2368.	7.8	190

#	Article	IF	CITATIONS
91	Stress-Corrosion Interactions in Zr-Based Bulk Metallic Glasses. Metals, 2015, 5, 1262-1278.	1.0	7
92	Toughness of Bulk Metallic Glasses. Metals, 2015, 5, 1279-1305.	1.0	55
93	Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites. Metals, 2015, 5, 2134-2147.	1.0	19
94	Metallic Glasses. Metals, 2015, 5, 2397-2400.	1.0	1
95	Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal. Scientific Reports, 2014, 4, 6699.	1.6	13
96	Strain induced fragility transition in metallic glass. Nature Communications, 2015, 6, 7179.	5.8	32
97	Tuning order in disorder. Nature Materials, 2015, 14, 547-552.	13.3	255
98	Influence of laser shock peening on morphology and mechanical property of Zr-based bulk metallic glass. Optics and Lasers in Engineering, 2015, 74, 75-79.	2.0	8
99	Structural aspects of elasto-plastic deformation of a Zr-based bulk metallic glass under uniaxial compression. Acta Materialia, 2015, 95, 30-36.	3.8	26
100	Stability of a metastable B2 phase embedded in a metallic glass matrix at liquid-nitrogen temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 634, 99-102.	2.6	18
101	Stress corrosion cracking of a Zr-based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 681-690.	2.6	12
102	The influence of different preparation methods on the microstructures and properties of the in situ bulk-metallic-glass-matrix composites. Journal of Materials Research, 2015, 30, 512-520.	1.2	3
103	Achieving high energy absorption capacity in cellular bulk metallic glasses. Scientific Reports, 2015, 5, 10302.	1.6	23
104	Structural features of plastic deformation in bulk metallic glasses. Applied Physics Letters, 2015, 106, .	1.5	24
105	On the applicability of a mesoscopic interface sliding controlled model for understanding superplastic flow in bulk metallic glasses. Intermetallics, 2015, 60, 50-57.	1.8	6
106	Enhanced plasticity in Zr–Cu–Ag–Al–Be bulk metallic glasses. Journal of Non-Crystalline Solids, 2015, 412, 35-44.	1.5	17
107	Temperature dependent dynamic flow behavior of an in-situ Ti-based bulk metallic glass composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 21-26.	2.6	7
108	Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nature Communications, 2015, 6, 6035.	5.8	107

#	Article	IF	CITATIONS
109	The ductile to brittle transition behavior in a Zr-based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 393-402.	2.6	26
110	Softening-induced plastic flow instability and indentation size effect in metallic glass. Journal of the Mechanics and Physics of Solids, 2015, 77, 70-85.	2.3	36
111	Universal mechanism of thermomechanical deformation in metallic glasses. Physical Review B, 2015, 91,	1.1	11
112	Tensile fracture of metallic glasses via shear band cavitation. Acta Materialia, 2015, 82, 483-490.	3.8	39
113	The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials, 2015, 8, 1831-1840.	1.3	24
114	Atomic structure of shear bands in Cu64Zr36 metallic glasses studied by molecular dynamics simulations. Acta Materialia, 2015, 95, 236-243.	3.8	104
115	Mechanical response of Ti-based bulk metallic glass under static and dynamic indentations. Journal of Non-Crystalline Solids, 2015, 422, 32-38.	1.5	2
116	Glass forming ability, thermal stability and indentation characteristics of Ce 60 Cu 25 Al 15â^'x Ga x (0 ≤Tj ET	Qq1 _{.5} 1 0.78	84314 rgB⊺ /
117	Evaluate the effect of laser shock peening on plasticity of Zr-based bulk metallic glass. Optics and Laser Technology, 2015, 73, 94-100.	2.2	18
118	Stagnation accommodated global plasticity in nanoglass composites. Scripta Materialia, 2015, 106, 46-51.	2.6	12
119	On the compressive failure of tungsten fiber reinforced Zr-based bulk metallic glass composite. International Journal of Solids and Structures, 2015, 69-70, 428-441.	1.3	20
120	Plasticity enhancement in Ni–P amorphous alloy/Ni/Zr-based metallic glass composites with a sandwich structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 643, 175-182.	2.6	16
121	FEM analysis on the "self-sharpening―behavior of tungsten fiber/metallic glass matrix composite long rod. International Journal of Impact Engineering, 2015, 86, 67-83.	2.4	37
122	Size effects on tensile and compressive strengths in metallic glass nanowires. Journal of the Mechanics and Physics of Solids, 2015, 84, 130-144.	2.3	59
123	The fracture of bulk metallic glasses. Progress in Materials Science, 2015, 74, 211-307.	16.0	421
124	Intrinsic versus extrinsic effects on serrated flow of bulk metallic glasses. Intermetallics, 2015, 66, 31-39.	1.8	33
125	Al-based bulk metallic glass with large plasticity and ultrahigh strength. Journal of Alloys and Compounds, 2015, 648, 276-279.	2.8	21
126	Origin of anomalous inverse notch effect in bulk metallic glasses. Journal of the Mechanics and Physics of Solids, 2015, 84, 85-94.	2.3	67

#	Article	IF	CITATIONS
127	Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu–Zr films. Acta Materialia, 2015, 95, 132-144.	3.8	68
128	Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture. Acta Materialia, 2015, 98, 94-102.	3.8	93
129	Bulk Metallic Glasses: Mechanical Properties and Performance. Engineering Materials, 2015, , 101-134.	0.3	0
130	Bending property enhancements of Zr 55 Cu 30 Al 10 Ni 5 bulk metallic glass: Effects of various surface modifications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 69-75.	2.6	11
131	Direct in situ observation of metallic glass deformation by real-time nano-scale indentation. Scientific Reports, 2015, 5, 9122.	1.6	10
132	Atomistic simulation of nanoformed metallic glass. Applied Surface Science, 2015, 343, 153-159.	3.1	17
133	Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Materialia, 2015, 90, 232-241.	3.8	89
134	Numerical study of shear banding evolution in bulk metallic glass composites. Materials & Design, 2015, 77, 32-40.	5.1	28
135	Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites. Scientific Reports, 2015, 5, 8967.	1.6	26
136	Fatigue crack propagation behavior and fracture toughness in a Ni-free ZrCuFeAlAg bulk metallic glass. Acta Materialia, 2015, 92, 209-219.	3.8	27
137	Progressive shear band propagation in metallic glasses under compression. Acta Materialia, 2015, 91, 19-33.	3.8	125
138	Inverse ductile–brittle transition in metallic glasses?. Materials Science and Technology, 2015, 31, 635-650.	0.8	11
139	Plasticity improvement for dendrite/metallic glass matrix composites by pre-deformation. Materials and Design, 2015, 86, 266-271.	3.3	29
140	Microstructure, thermal stability and mechanical properties of Zr–Cu–Al–Sn bulk metallic glass. Journal of Non-Crystalline Solids, 2015, 429, 208-212.	1.5	14
141	Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass. Acta Materialia, 2015, 99, 165-175.	3.8	44
142	Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 2015, 524, 200-203.	13.7	568
143	Dynamic correlation between the flow units of supercooled metallic liquid. Applied Physics Letters, 2015, 106, 031908.	1.5	4
144	Rate-dependent shear-band initiation in a metallic glass. Applied Physics Letters, 2015, 106, .	1.5	33

#	Article	IF	CITATIONS
145	Size Effect Suppresses Brittle Failure in Hollow Cu ₆₀ Zr ₄₀ Metallic Glass Nanolattices Deformed at Cryogenic Temperatures. Nano Letters, 2015, 15, 5673-5681.	4.5	77
146	Quantitative Measurement of Density in a Shear Band of Metallic Glass Monitored Along its Propagation Direction. Physical Review Letters, 2015, 115, 035501.	2.9	110
147	Dependence of shear yield strain and shear transformation zone on the glass transition temperature in thin film metallic glasses. Journal of Alloys and Compounds, 2015, 652, 191-199.	2.8	10
148	On the source of plastic flow in metallic glasses: Concepts and models. Intermetallics, 2015, 67, 81-86.	1.8	99
149	Cryogenic rejuvenation. Nature Materials, 2015, 14, 867-868.	13.3	63
150	Viscous Flow of Glass-Forming Liquids and Glasses. Springer Proceedings in Physics, 2015, , 103-137.	0.1	3
151	On the formation of metallic glass coatings by means of Cold Gas Spray technology. Journal of Alloys and Compounds, 2015, 651, 764-772.	2.8	49
152	Startup shear of a highly entangled polystyrene solution deep into the nonlinear viscoelastic regime. Rheologica Acta, 2015, 54, 771-777.	1.1	16
153	Surface roughness imparts tensile ductility to nanoscale metallic glasses. Extreme Mechanics Letters, 2015, 5, 88-95.	2.0	24
154	Guiding and Deflecting Cracks in Bulk Metallic Glasses to Increase Damage Tolerance. Advanced Engineering Materials, 2015, 17, 620-625.	1.6	15
155	Strain Gradient in Microâ€Hardness Testing and Structural Relaxation in Metallic Glasses. Advanced Engineering Materials, 2015, 17, 885-892.	1.6	5
156	Bridging shear transformation zone to the atomic structure of amorphous solids. Journal of Non-Crystalline Solids, 2015, 410, 100-105.	1.5	5
157	Influence of Cold Gas Spray process conditions on the microstructure of Fe-based amorphous coatings. Journal of Alloys and Compounds, 2015, 622, 995-999.	2.8	59
158	Dynamic shear punch behavior of tungsten fiber reinforced Zr-based bulk metallic glass matrix composites. International Journal of Impact Engineering, 2015, 79, 22-31.	2.4	10
159	Enhancement of plasticity in Zr-based bulk metallic glasses electroplated with copper coatings. Intermetallics, 2015, 57, 121-126.	1.8	33
160	Joining of bulk metallic glass to brass by thick-walled cylinder explosion. Scripta Materialia, 2015, 97, 17-20.	2.6	26
161	A shear localization mechanism for lubricity of amorphous carbon materials. Scientific Reports, 2014, 4, 3662.	1.6	92
162	Inhomogeneous deformation in bulk metallic glasses: FEM analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstr <u>ucture and Processing, 2015, 620, 333-351</u> .	2.6	27

#	Article	IF	CITATIONS
163	Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Materials & Design, 2015, 65, 410-416.	5.1	46
164	Dynamic fragmentation induced by network-like shear bands in a Zr-based bulk metallic glass. Intermetallics, 2015, 56, 96-100.	1.8	13
165	Glass-formation and deformation behavior of Ni–Pd–P–B alloy. Journal of Alloys and Compounds, 2015, 619, 509-512.	2.8	7
166	On the Modelling of the Transient Flow Behavior of Metallic Glasses: Analogy with Portevin-Le Chatelier Effect. Metals, 2016, 6, 48.	1.0	4
167	Revealing flow behaviors of metallic glass based on activation of flow units. Journal of Applied Physics, 2016, 119, .	1.1	10
168	Deformation-driven catalysis of nanocrystallization in amorphous Al alloys. Beilstein Journal of Nanotechnology, 2016, 7, 1428-1433.	1.5	3
169	Effect of strain hardening and volume fraction of crystalline phase on strength and ductility of bulk metallic glass composites. Scripta Materialia, 2016, 124, 51-55.	2.6	34
170	Bulk Metallic Glasses as Structural Materials: A Review. Advanced Engineering Materials, 2016, 18, 1308-1331.	1.6	207
171	Superior room-temperature ductility of typically brittle quasicrystals at small sizes. Nature Communications, 2016, 7, 12261.	5.8	32
172	β-relaxation related bright bands in thin film metallic glasses: Localized percolation of flow units captured via transmission electron microscope. Applied Physics Letters, 2016, 109, 261903.	1.5	3
173	Plastic Deformation Modes of CuZr/Cu Multilayers. Scientific Reports, 2016, 6, 23306.	1.6	38
174	Formation and dilatation of shear bands in a Cu-Zr metallic glass: A free volume perspective. Journal of Applied Physics, 2016, 120, .	1.1	22
175	Notch fatigue behavior: Metallic glass versus ultra-high strength steel. Scientific Reports, 2016, 6, 35557.	1.6	9
176	Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass. Scientific Reports, 2016, 6, 21967.	1.6	19
177	The kinetic origin of delayed yielding in metallic glasses. Applied Physics Letters, 2016, 108, 251901.	1.5	8
178	Evolution of shear banding flows in metallic glasses characterized by molecular dynamics. Journal of Applied Physics, 2016, 119, 234303.	1.1	1
179	Structure in sheared supercooled liquids: Dynamical rearrangements of an effective system of icosahedra. Journal of Chemical Physics, 2016, 145, 234501.	1.2	5
180	Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating. Scientific Reports, 2016, 6, 27852.	1.6	11

#	Article	IF	CITATIONS
181	Focus: Nucleation kinetics of shear bands in metallic glass. Journal of Chemical Physics, 2016, 145, 211803.	1.2	10
182	Universal structural parameter to quantitatively predict metallic glass properties. Nature Communications, 2016, 7, 13733.	5.8	124
183	Discrete drops in the electrical contact resistance during nanoindentation of a bulk metallic glass. Applied Physics Letters, 2016, 108, 181903.	1.5	16
184	The thermal history effect on shear band initiation in metallic glass. Journal of Applied Physics, 2016, 119, 245113.	1.1	6
185	Generalized energy failure criterion. Scientific Reports, 2016, 6, 23359.	1.6	34
186	Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation. Scientific Reports, 2016, 6, 25832.	1.6	41
187	Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses. Scientific Reports, 2016, 6, 36556.	1.6	26
188	The Critical Criterion on Runaway Shear Banding in Metallic Glasses. Scientific Reports, 2016, 6, 21388.	1.6	18
189	Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature. APL Materials, 2016, 4, .	2.2	20
190	Enhanced plasticity of bulk metallic glass in different aspect ratios via laser shock peening with multiple impacts. Optics and Laser Technology, 2016, 83, 43-48.	2.2	12
191	Stress-dependent shear transformation zone in Ni Nb thin film metallic glass and its correlation with deformation mode transition. Scripta Materialia, 2016, 122, 59-63.	2.6	11
192	Compressive plasticity of a La-based glass-crystal composite at cryogenic temperatures. Materials and Design, 2016, 101, 146-151.	3.3	11
193	Flow-induced elastic anisotropy of metallic glasses. Acta Materialia, 2016, 112, 132-140.	3.8	30
194	Microalloying-induced large plasticity in La-Al-C bulk metallic glass. Journal of Non-Crystalline Solids, 2016, 447, 55-58.	1.5	2
195	Effect of strain rates on deformation behaviors of an in situ Ti-based metallic glass matrix composite. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	5
196	Non-repeatability of large plasticity for Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2016, 676, 209-214.	2.8	20
197	Reliability of the plastic deformation behavior of a Zr-based bulk metallic glass. Intermetallics, 2016, 74, 25-30.	1.8	16
198	Effect of annealing on the devitrification behavior and mechanical properties of rapidly quenched Ce-based glassy alloys. Journal of Non-Crystalline Solids, 2016, 445-446, 53-60.	1.5	8

#	Article	IF	CITATIONS
199	Stored energy in metallic glasses due to strains within the elastic limit. Philosophical Magazine, 2016, 96, 1643-1663.	0.7	97
200	Role of minor additions on metallic glasses and composites. Journal of Materials Research, 2016, 31, 76-87.	1.2	15
201	Tuning the performance of bulk metallic glasses by milling artificial holes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 668, 50-54.	2.6	5
202	Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. Journal of Alloys and Compounds, 2016, 659, 224-231.	2.8	39
203	Mapping of residual strains around a shear band in bulk metallic glass by nanobeam X-ray diffraction. Acta Materialia, 2016, 111, 187-193.	3.8	47
204	Competition between shear band nucleation and propagation across rate-dependent flow transitions in a model metallic glass. Acta Materialia, 2016, 111, 273-282.	3.8	29
205	Power-law scaling between mean stress drops and strain rates in bulk metallic glasses. Materials and Design, 2016, 99, 427-432.	3.3	27
206	Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	22
207	Improved ductility of Cu ₆₄ Zr ₃₆ metallic glass/Cu nanocomposites via phase and grain boundaries. Nanotechnology, 2016, 27, 175701.	1.3	29
208	Self-organized Criticality Behavior in Bulk Metallic Glasses. Journal of Iron and Steel Research International, 2016, 23, 7-13.	1.4	16
209	Structure transformation and fractography in Zr20Ti20Cu20Ni20Be20 metallic glass. Journal of Non-Crystalline Solids, 2016, 452, 273-279.	1.5	3
210	Suppression of annealing-induced embrittlement in bulk metallic glass by surface crystalline coating. Materials and Design, 2016, 109, 179-185.	3.3	23
211	Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Materialia, 2016, 121, 266-276.	3.8	41
212	Thermally induced failure mechanism transition and its correlation with short-range order evolution in metallic glasses. Extreme Mechanics Letters, 2016, 9, 215-225.	2.0	23
213	Ideal shear banding in metallic glass. Philosophical Magazine, 2016, 96, 3159-3176.	0.7	3
214	Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Materialia, 2016, 120, 327-336.	3.8	61
215	Influence of Ag and Co additions on glass-forming ability, thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 90-98.	2.6	28
216	Strain Rate Sensitivity Variation in CuZr-based Bulk Metallic Glass Composites Containing B2-CuZr Phase. Rare Metal Materials and Engineering, 2016, 45, 542-547.	0.8	4

#	Article	IF	CITATIONS
217	Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Scientific Reports, 2016, 6, 36627.	1.6	21
218	Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 349-355.	2.6	25
219	Time-resolved measurement of shear-band temperature during serrated flow in a Zr-based metallic glass. Acta Materialia, 2016, 115, 468-474.	3.8	38
220	Transition from stress-driven to thermally activated stress relaxation in metallic glasses. Physical Review B, 2016, 94, .	1.1	65
221	Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation. Physical Review B, 2016, 93, .	1.1	42
222	Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 2016, 93, .	1.1	39
223	Cavitation-Induced Fracture Causes Nanocorrugations in Brittle Metallic Glasses. Physical Review Letters, 2016, 117, 044302.	2.9	31
224	Cold-Sprayed Nanostructured Pure Cobalt Coatings. Journal of Thermal Spray Technology, 2016, 25, 1168-1176.	1.6	5
225	Crystallization Evolution of Cold-Sprayed Pure Ni Coatings. Journal of Thermal Spray Technology, 2016, 25, 1158-1167.	1.6	17
226	Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85, 34-51.	4.1	68
227	Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nature Reviews Materials, 2016, 1, .	23.3	240
228	Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5395-5400.	1.1	13
229	Interpreting room temperature deformation of Zr 67 Cu 33 metallic glass through Voronoi cluster dynamics. Journal of Non-Crystalline Solids, 2016, 454, 59-69.	1.5	3
230	Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites. Scientific Reports, 2016, 6, 19235.	1.6	39
231	The shear band controlled deformation in metallic glass: a perspective from fracture. Scientific Reports, 2016, 6, 21852.	1.6	22
232	Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass. Scientific Reports, 2016, 6, 21929.	1.6	28
233	Shear-banding Induced Indentation Size Effect in Metallic Glasses. Scientific Reports, 2016, 6, 28523.	1.6	15
234	Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study. Scientific Reports, 2016, 6, 30935.	1.6	33

#	Article	IF	CITATIONS
235	Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension. Scientific Reports, 2016, 6, 36130.	1.6	10
236	Yielding of glass under shear: A directed percolation transition precedes shear-band formation. Physical Review E, 2016, 94, 042605.	0.8	74
237	Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses. Scientific Reports, 2016, 6, 34340.	1.6	8
238	Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass. Scientific Reports, 2016, 6, 29357.	1.6	21
239	Nanoindentation studies of Zr50Cu50metallic glass thin film nanocomposites via molecular dynamics simulations. Metallurgical Research and Technology, 2016, 113, 602.	0.4	4
240	Crack initiation in metallic glasses under nanoindentation. Acta Materialia, 2016, 115, 413-422.	3.8	39
241	Huge reduction of Young's modulus near a shear band in metallic glass. Journal of Alloys and Compounds, 2016, 687, 221-226.	2.8	21
242	Serration behaviours in metallic glasses with different plasticity. Philosophical Magazine, 2016, 96, 2243-2255.	0.7	23
243	Effect of laser shock peening on the compressive deformation and plastic behavior of Zr-based bulk metallic glass. Optics and Lasers in Engineering, 2016, 86, 53-61.	2.0	22
244	Understanding the serrated flow and Johari-Goldstein relaxation of metallic glasses. Journal of Non-Crystalline Solids, 2016, 444, 23-30.	1.5	17
245	A model metallic glass exhibits size-independent tensile ductility. Acta Materialia, 2016, 103, 587-594.	3.8	11
246	Tailoring structural inhomogeneities in metallic glasses to enable tensile ductility at room temperature. Materials Today, 2016, 19, 568-579.	8.3	119
247	Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying. Journal of Thermal Spray Technology, 2016, 25, 992-1008.	1.6	24
248	Size distribution of shear transformation zones and their evolution towards the formation of shear bands in metallic glasses. Journal of Non-Crystalline Solids, 2016, 445-446, 61-68.	1.5	24
249	Eutectic crystallization during fracture of Zr–Cu–Co–Al metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 210-214.	2.6	14
250	Effect of external disturbances on the strain-rate dependent plastic deformation behavior of a bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 103-109.	2.6	12
251	A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility. Journal of Alloys and Compounds, 2016, 685, 322-330.	2.8	58
252	Cold spraying – A materials perspective. Acta Materialia, 2016, 116, 382-407.	3.8	607

#	Article	IF	CITATIONS
253	Mechanical behavior of bulk metallic glass prepared by copper mold casting with reversed pressure. Journal of Materials Processing Technology, 2016, 237, 270-276.	3.1	19
254	Co-existence of homogeneous flow and localized plastic deformation in tension of amorphous Ni–P films on ductile substrate. Acta Materialia, 2016, 106, 182-192.	3.8	27
255	Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. International Journal of Plasticity, 2016, 80, 75-85.	4.1	63
256	Metallic glass matrix composites. Materials Science and Engineering Reports, 2016, 100, 1-69.	14.8	424
257	Modified strain rate regime in ultrafine grained copper with silver micro-alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 1-5.	2.6	11
258	Induced Plasticity of a Brittle (La, Ce)-Based Bulk Metallic Glass by Surface Corrosion. Acta Metallurgica Sinica (English Letters), 2016, 29, 129-133.	1.5	1
259	FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 652, 145-166.	2.6	26
260	Heterogeneity in the Small-Scale Deformation Behavior of Disordered Nanoparticle Packings. Nano Letters, 2016, 16, 2455-2462.	4.5	9
261	Flaw tolerance of metallic glasses. Acta Materialia, 2016, 107, 220-228.	3.8	61
262	Interactions of Shear Bands in a Ductile Metallic Glass. Journal of Iron and Steel Research International, 2016, 23, 48-52.	1.4	11
263	Sample size effects on strength and deformation mechanism of Sc75Fe25 nanoglass and metallic glass. Scripta Materialia, 2016, 116, 95-99.	2.6	69
264	The material-dependence of plasticity in metallic glasses: An origin from shear band thermology. Materials and Design, 2016, 96, 189-194.	3.3	13
265	Designing in situ and ex situ bulk metallic glass composites via spark plasma sintering in the super cooled liquid state. Materials and Design, 2016, 93, 26-38.	3.3	35
266	Anisotropic dynamic mechanical response of tungsten fiber/Zr-based bulk metallic glass composites. Materials and Design, 2016, 93, 485-493.	3.3	10
267	How hot is a shear band in a metallic glass?. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 321-331.	2.6	27
268	Electrochemically synthesized amorphous and crystalline nanowires: dissimilar nanomechanical behavior in comparison with homologous flat films. Nanoscale, 2016, 8, 1344-1351.	2.8	16
269	Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Materialia, 2016, 109, 375-393.	3.8	400
270	Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. Journal of Alloys and Compounds, 2016, 669, 167-176.	2.8	30

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
271	Two-dimensional magnetic colloids under shear. Soft Matter, 2016, 12, 3142-3148.	1.5	2	7
272	Mechanical Behavior of Micronanoscaled Metallic Glasses. Materials Research Letters, 2016, 4	ł, 63-74. 4.	1	24
273	A non-viscous-featured fractograph in metallic glasses. Philosophical Magazine, 2016, 96, 542	2-550. o.	.7	2
274	Bulk Metallic Glasses and Glassy/Crystalline Materials. Springer Series in Materials Science, 20 397-440.	16, , o.	.4	7
275	Shear band relaxation in a deformed bulk metallic glass. Acta Materialia, 2016, 109, 330-340.	3.	8	40
276	Direct observation of shear–induced nanocrystal attachment and coalescence in CuZr-base glasses: TEM investigation. Journal of Alloys and Compounds, 2016, 665, 339-344.	d metallic 2.	8	4
277	Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics. Computational Materials Science, 2016, 114, 13-17.	1.4	4	4
278	Giant size effect on compressive plasticity of (Zr 55 Cu 30 Al 10 Ni 5) 99 Nb 1 bulk metallic g Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 968-975.	lass. 2.	6	18
279	An index of shear banding susceptibility of metallic glasses. Intermetallics, 2016, 71, 12-17.	1.;	8	2
280	Nature of crack-tip plastic zone in metallic glasses. International Journal of Plasticity, 2016, 77	², 54-74. 4.	1	35
281	Excess vibrational density of states and the brittle to ductile transition in crystalline and amor solids. Soft Matter, 2016, 12, 1210-1218.	phous 1.:	2	9
282	Direct atomic-scale evidence for shear–dilatation correlation in metallic glasses. Scripta Ma 2016, 112, 37-41.	terialia, 2.	6	28
283	Multiple relaxation processes in Zr 44 Cu 40 Al 8 Ag 8 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 651, 69	amp; 2., -74. 2.	6	8
284	Microalloying and microstructures of Cu-based bulk metallic glasses & amp; composites and re mechanical properties. Materials and Design, 2016, 89, 1130-1136.	elevant 3.	3	14
285	Atomistic mechanism of elastic softening in metallic glass under cyclic loading revealed by mo dynamics simulations. Intermetallics, 2016, 68, 5-10.	blecular 1.	8	23
286	Amorphous Coatings and Surfaces on Structural Materials. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 1-46.	6.	8	73
287	A micromechanics-based incremental damage theory of bulk metallic glass matrix composites International Journal of Damage Mechanics, 2016, 25, 358-376.	. 2.	4	6
288	Feasibility of using bulk metallic glass for self-expandable stent applications. , 2017, 105, 187	4-1882.		15

#	Article	IF	CITATIONS
289	Unusual strain rate sensitivity of nanoscale amorphous CuZr/crystalline Cu multilayers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 84-89.	2.6	11
290	The ductility and toughness improvement in metallic glass through the dual effects of graphene interface. Journal of Materials Research, 2017, 32, 392-403.	1.2	12
291	Dynamical theory of shear bands in structural glasses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1287-1292.	3.3	28
292	Size effect on beta relaxation in a La-based bulk metallic glass. Physica B: Condensed Matter, 2017, 509, 46-49.	1.3	2
293	Crystallisation behaviour during tensile loading of laser treated Fe–Si–B metallic glass. Philosophical Magazine, 2017, 97, 497-514.	0.7	8
294	Serrated flow behavior in a Pd-based bulk metallic glass under nanoindentation. Journal of Non-Crystalline Solids, 2017, 460, 47-53.	1.5	27
295	Formation of nanostructured metallic glass thin films upon sputtering. Heliyon, 2017, 3, e00228.	1.4	27
296	Multiscale structures and phase transitions in metallic glasses: A scattering perspective. Chinese Physics B, 2017, 26, 017104.	0.7	4
297	Understanding the effects of Poisson's ratio on the shear band behavior and plasticity of metallic glasses. Journal of Materials Science, 2017, 52, 6789-6799.	1.7	14
298	Revealing the shear band cracking mechanism in metallic glass by X-ray tomography. Scripta Materialia, 2017, 133, 24-28.	2.6	40
299	Deformation mode transitions in amorphous-Cu45Zr55/crystalline-Cu multilayers. Thin Solid Films, 2017, 626, 184-189.	0.8	21
300	Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading. Journal of Alloys and Compounds, 2017, 708, 722-727.	2.8	19
301	Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening. Scientific Reports, 2017, 7, 43948.	1.6	7
302	Improving plasticity and work-hardening capability of β-type bulk metallic glass composites by destabilizing β phases. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 404-410.	2.6	38
303	Nanoindentation measurements on a torsionally deformed Zr44Ti11Cu10Ni10Be25 bulk metallic glass. Journal of Alloys and Compounds, 2017, 708, 301-307.	2.8	1
304	Mutual interaction of shear bands in metallic glasses. Intermetallics, 2017, 85, 48-53.	1.8	23
305	Intermediate Temperature Brittleness in Metallic Glasses. Advanced Materials, 2017, 29, 1605537.	11.1	34
306	Serrated flow of CuZr-based bulk metallic glasses probed by nanoindentation: Role of the activation barrier, size and distribution of shear transformation zones. Journal of Non-Crystalline Solids, 2017, 459, 130-141.	1.5	58

		CITATION R	EPORT	
#	ARTICLE		IF	Citations
307	High-throughput drawing and testing of metallic glass nanostructures. Nanoscale, 2017,	9, 3261-3268.	2.8	40
308	High-rate squeezing process of bulk metallic glasses. Scientific Reports, 2017, 7, 45051.		1.6	9
309	The introduction of highly dense shear bands and their effect on plastic deformation in Zr Cu-based bulk metallic glasses. Materials Science & Engineering A: Structural Materia Properties, Microstructure and Processing, 2017, 695, 265-269.	⁻ and als:	2.6	5
310	Atomistic origin of size effects in fatigue behavior of metallic glasses. Journal of the Mech Physics of Solids, 2017, 104, 84-95.	anics and	2.3	68
311	Effect of pre-existing shear bands on mechanical properties and serration behaviors in bul glasses. Journal of Iron and Steel Research International, 2017, 24, 402-410.	k metallic	1.4	3
312	Evolution of shear-band cracking in metallic glass under cyclic compression. Materials Sci Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696	ence & 5, 267-272.	2.6	21
313	Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer. Appli Letters, 2017, 110, .	ed Physics	1.5	25
314	Topology and electronic structure of flexible (Nb,Ru)O ₂ thermoelectrics. Jour Physics Condensed Matter, 2017, 29, 085701.	mal of	0.7	0
315	A microscopic continuum model for defect dynamics in metallic glasses. Journal of the Me Physics of Solids, 2017, 104, 1-11.	echanics and	2.3	5
316	Extracting compressive stress-strain curve based on stick-slip shear banding process in bug lasses. Journal of Iron and Steel Research International, 2017, 24, 372-377.	ılk metallic	1.4	1
317	Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass. Scripta Mat 135, 24-28.	cerialia, 2017,	2.6	31
318	Relationship of deformation mode with strain-dependent shear transformation zone size metallic glasses using molecular dynamics simulations. Journal of Non-Crystalline Solids, 2 45-50.	in Cu-Zr 2017, 469,	1.5	9
319	Computational modeling sheds light on structural evolution in metallic glasses and super liquids. Npj Computational Materials, 2017, 3, .	cooled	3.5	67
320	Gradual shear band cracking and apparent softening of metallic glass under low temperat compression. Intermetallics, 2017, 87, 45-54.	ture	1.8	20
321	Dislocation characteristics of shear bands in metallic glasses. Scripta Materialia, 2017, 13	0, 138-142.	2.6	20
322	Strain rate sensitivity and deformation behavior in a Ti-based bulk metallic glass composit Non-Crystalline Solids, 2017, 471, 128-136.	te. Journal of	1.5	10
323	Co content effect on elastic strain limit in ZrCuNiAlCo bulk metallic glasses. Scripta Mate 137, 94-99.	rialia, 2017,	2.6	15
324	The increase of strength properties at nanocrystal formation. Materials Letters, 2017, 20	6, 64-66.	1.3	11

#	Article	IF	CITATIONS
325	An Eccentric Ellipse Failure Criterion for Amorphous Materials. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	8
326	Plastic deformation behaviours of CuZr amorphous/crystalline nanolaminate: a molecular dynamics study. Molecular Simulation, 2017, 43, 1116-1124.	0.9	18
327	Elevated temperature, micro-compression transient plasticity tests on nanocrystalline Palladium-Gold: Probing activation parameters at the lower limit of crystallinity. Acta Materialia, 2017, 129, 124-137.	3.8	13
328	Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films. Acta Materialia, 2017, 131, 246-259.	3.8	72
329	Influence of shot peening on the mechanical properties of bulk amorphous Vitreloy 105. Surface Engineering, 2017, 33, 721-730.	1.1	11
330	Coalescence and subsequent twinning of nanocrystals during deformation of CuZr-based metallic glasses: The grain size effect. Journal of Non-Crystalline Solids, 2017, 464, 39-43.	1.5	8
331	Mapping the cyclic plastic zone to elucidate the mechanisms of crack tip deformation in bulk metallic glasses. Applied Physics Letters, 2017, 110, 081903.	1.5	13
332	Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 692, 146-155.	2.6	23
333	Failure of Zr 61 Ti 2 Cu 25 Al 12 bulk metallic glass under torsional loading. Intermetallics, 2017, 86, 25-32.	1.8	12
334	β-type Ti-based bulk metallic glass composites with tailored structural metastability. Journal of Alloys and Compounds, 2017, 708, 972-981.	2.8	36
335	Plastic deformation mechanisms and size effect of Cu50Zr50/Cu amorphous/crystalline nanolaminate: A molecular dynamics study. Computational Materials Science, 2017, 129, 137-146.	1.4	30
336	Effect of replacing Nb with (Mo and Zr) on glass forming ability, magnetic and mechanical properties of FeCoBSiNb bulk metallic glass. Journal of Alloys and Compounds, 2017, 707, 78-81.	2.8	24
337	The breakdown of strength size scaling in spherical nanoindentation and microcompression of metallic glasses. Scripta Materialia, 2017, 130, 283-287.	2.6	7
338	The multiple shear bands and plasticity in metallic glasses: A possible origin from stress redistribution. Journal of Alloys and Compounds, 2017, 695, 3457-3466.	2.8	17
339	Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surface and Coatings Technology, 2017, 310, 59-69.	2.2	32
340	Micro-machinability of bulk metallic glass in ultra-precision cutting. Materials and Design, 2017, 136, 1-12.	3.3	56
341	Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomaterialia, 2017, 64, 1-14.	4.1	60
343	Shocking of metallic glass to induce microstructure heterogeneity: A molecular dynamics study. Journal of Applied Physics, 2017, 122, .	1.1	10

#	Article	IF	CITATIONS
344	Effect of surface and internal defects on the mechanical properties of metallic glasses. Scientific Reports, 2017, 7, 13472.	1.6	4
345	Nonlinear response and avalanche behavior in metallic glasses. European Physical Journal: Special Topics, 2017, 226, 2997-3021.	1.2	7
346	Mechanical and corrosion properties of Ti-Ni-Cu-Zr metallic glass matrix composites. Journal of Alloys and Compounds, 2017, 727, 1344-1350.	2.8	18
347	Effect of the strain rate on the intermediate temperature brittleness in Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2017, 475, 172-178.	1.5	11
348	The stochastic transition from size dependent to size independent yield strength in metallic glasses. Journal of the Mechanics and Physics of Solids, 2017, 109, 200-216.	2.3	24
349	Strain gradient drives shear banding in metallic glasses. Physical Review B, 2017, 96, .	1.1	34
350	Universality of slip avalanches in a ductile Fe-based bulk metallic glass. Journal of Iron and Steel Research International, 2017, 24, 366-371.	1.4	7
351	Fractography and morphology of shear bands of a Zr-based bulk metallic glass. Journal of Iron and Steel Research International, 2017, 24, 385-389.	1.4	4
352	Statistical analysis on strain-rate effects during serrations in a Zr-based bulk metallic glass. Journal of Iron and Steel Research International, 2017, 24, 455-461.	1.4	8
353	On nanovoids formation in shear bands of an amorphous Al-based alloy. Mechanics of Materials, 2017, 113, 19-23.	1.7	27
354	Modeling and simulation of microstructural evolution in Zr based Bulk Metallic Glass Matrix Composites during solidification. MRS Advances, 2017, 2, 3591-3606.	0.5	8
355	Stability of shear banding process in bulk metallic glasses and composites. Journal of Materials Research, 2017, 32, 2560-2569.	1.2	9
356	Tailoring plasticity of metallic glasses via interfaces in Cu/amorphous CuNb laminates. Journal of Materials Research, 2017, 32, 2680-2689.	1.2	17
357	On the question of fractal packing structure in metallic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8458-8463.	3.3	31
358	Tailoring modulus and hardness of in-situ formed β-Ti in bulk metallic glass composites by precipitation of isothermal ω-Ti. Materials and Design, 2017, 133, 82-90.	3.3	26
359	Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass. Acta Materialia, 2017, 138, 111-118.	3.8	76
360	Hardening of shear band in metallic glass. Scientific Reports, 2017, 7, 7076.	1.6	15
361	Mechanical properties and microstructure of Zr-Ti-Ni thin film metallic glasses modified with minor SF6. Composites Part B: Engineering, 2017, 129, 243-250.	5.9	10

ARTICLE IF CITATIONS Improvement of dynamic notch toughness for the Zr 56 Co 28 Al 16 bulk metallic glass by local 362 1.5 8 pre-deformation. Journal of Non-Crystalline Solids, 2017, 473, 96-101. "Ductile―Fracture of Metallic Glass Nanolaminates. Advanced Materials Interfaces, 2017, 4, 1700510. 24 Enhanced tensile plasticity of Zr based bulk metallic glasses by a stress induced large scale flow. 364 2.8 15 Journal of Alloys and Compounds, 2017, 727, 297-303. Shear-band thickness and shear-band cavities in a Zr-based metallic glass. Acta Materialia, 2017, 140, 206-216. Shear softening of Ta-containing metallic glass matrix composites upon dynamic loading. Materials 366 Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 2.6 11 704. 322-328. Investigating shear band interaction in metallic glasses by adjacent nanoindentation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 2.6 704, 375-385. Coarse graining atomistic simulations of plastically deforming amorphous solids. Physical Review E, 368 0.8 38 2017, 95, 053001. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of 369 3.3 66 the National Academy of Sciences of the United States of America, 2017, 114, 13631-13636. Structure-property relationships from universal signatures of plasticity in disordered solids. 370 6.0 218 Science, 2017, 358, 1033-1037. Change in the structure of amorphous alloys under high pressure. Physics of the Solid State, 2017, 59, 371 0.2 2248-2256. A hidden variable in shear transformation zone volume versus Poisson's ratio relation in metallic 372 2.2 7 glasses. APL Materials, 2017, 5, 106105. Nanoindentation study of the creep behavior in a Fe-based bulk metallic glass. Materials Research 0.8 Express, 2017, 4, 115202. Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses. Physical Review Letters, 2017, 119, 374 2.9 165 195503. Fracture, roughness and phase transformation in CAD/CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics. Journal of the Mechanical Behavior of 1.5 Biomedical Materials, 2017, 74, 251-260. Abnormal internal friction in the in-situ Ti60Zr15V10Cu5Be10 metallic glass matrix composite. Journal 376 2.8 33 of Alloys and Compounds, 2017, 724, 921-931. Size effect in Pd77.5Cu6Si16.5 metallic glass micro-wires: More scattered strength with decreasing diameter. Applied Physics Letters, 2017, 111, . 378 Ductile fracture in notched bulk metallic glasses. Acta Materialia, 2017, 136, 126-133. 3.8 72 Deformation mechanisms during severe plastic deformation of a Cu Ag composite. Journal of Alloys 379 2.8 28 and Compounds, 2017, 695, 2285-2294

#	Article	IF	CITATIONS
380	Tunable elastic heterogeneity caused by deformation-induced magnetization in flexible metallic glass. Scripta Materialia, 2017, 130, 7-11.	2.6	6
381	Free volume gradient effect on mechanical properties of metallic glasses. Scripta Materialia, 2017, 130, 12-16.	2.6	34
382	Shear band propagation and plastic softening of metallic glass under cyclic compression. Journal of Alloys and Compounds, 2017, 695, 2016-2022.	2.8	29
383	Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method. Journal of Alloys and Compounds, 2017, 707, 332-336.	2.8	19
384	Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using <i>in situ</i> TEM diffraction. Materials Research Letters, 2017, 5, 135-143.	4.1	5
385	Tuning plasticity of in-situ dendrite metallic glass composites via the dendrite-volume-fraction-dependent shear banding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 121-129.	2.6	21
386	Effect of strain rate on yielding strength of a Zr-based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 21-26.	2.6	49
387	Tailoring residual stress to achieve large plasticity in Zr55Al10Ni5Cu30 bulk metallic glass. Journal of Alloys and Compounds, 2017, 690, 176-181.	2.8	5
388	Strength and plasticity of nanolaminated materials. Materials Research Letters, 2017, 5, 1-19.	4.1	224
389	Plastic deformation behaviors of amorphous-Cu50Zr50/crystalline-Cu nanolaminated structures by molecular dynamics simulations. Journal of Alloys and Compounds, 2017, 693, 285-290.	2.8	44
390	Time-dependent shear transformation zone in thin film metallic glasses revealed by nanoindentation creep. Journal of Alloys and Compounds, 2017, 696, 239-245.	2.8	30
391	A new class of non-crystalline materials: Nanogranular metallic glasses. Journal of Alloys and Compounds, 2017, 707, 371-378.	2.8	28
392	Statistical weibull analysis of compressive fracture strength of (Zr55Cu30Al10Ni5)99Nb1 bulk metallic glass. Journal of Alloys and Compounds, 2017, 695, 2740-2744.	2.8	8
393	Shear Banding Observed in Real-Time with a Laser Speckle Method. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 327-333.	0.3	0
394	Nature of the Thermodynamic Reversibility of Structural and Phase Transitions at Variation of the Temperature of Severe Plastic Deformation. JETP Letters, 2017, 106, 785-787.	0.4	1
395	Up-Hill Diffusion of Phase-Separated FeCu Melt by Molecular Dynamics Simulation. Chinese Physics Letters, 2017, 34, 026401.	1.3	2
396	Shear banding in metallic glasses described by alignments of Eshelby quadrupoles. Physical Review B, 2017, 95, .	1.1	60
397	Vitrification and Crystallization of Phase-Separated Metallic Liquid. Metals, 2017, 7, 73.	1.0	5

#	Article	IF	CITATIONS
398	Improved Plasticity of Ti-Based Bulk Metallic Glass at Room Temperature by Electroless Thin Nickel Coating. Metals, 2017, 7, 562.	1.0	4
399	Effect of annealing and cobalt content on relaxation and crystallization behavior of zirconium based bulk metallic glasses. EPJ Web of Conferences, 2017, 151, 07001.	0.1	0
400	Controlling the Mechanical Properties of Bulk Metallic Glasses by Superficial Dealloyed Layer. Nanomaterials, 2017, 7, 352.	1.9	9
401	The Development of Structure Model in Metallic Classes. Materials Research, 2017, 20, 326-338.	0.6	13
402	Atomistic deformation mechanisms of amorphous/polycrystalline metallic nanolaminates. Intermetallics, 2018, 95, 102-109.	1.8	21
403	Irradiation Enhances Strength and Deformability of Nanoâ€Architected Metallic Glass. Advanced Engineering Materials, 2018, 20, 1701055.	1.6	13
404	Effect of compressive deformation on thermal and corrosive properties of Zr61.7Al ₈ Ni13Cu17Sn0.3 bulk metallic glass. International Journal of Modern Physics B, 2018, 32, 1850077.	1.0	0
405	Nanocrystal formation in Al- and Ti-based amorphous alloys at deformation. Journal of Alloys and Compounds, 2018, 747, 26-30.	2.8	20
406	Numerical analyses on thermal stress distribution induced from impact compression in 3D carbon fiber/epoxy braided composite materials. Journal of Thermal Stresses, 2018, 41, 903-919.	1.1	21
407	Nanomechanics of slip avalanches in amorphous plasticity. Journal of the Mechanics and Physics of Solids, 2018, 114, 158-171.	2.3	43
408	Universally scaling Hall-Petch-like relationship in metallic glass matrix composites. International Journal of Plasticity, 2018, 105, 225-238.	4.1	43
409	High speed dynamic deformation of polysynthetic twinned titanium aluminide intermetallic compound. Acta Materialia, 2018, 152, 269-277.	3.8	16
410	On Temperature Rise Within the Shear Bands in Bulk Metallic Glasses. Metals and Materials International, 2018, 24, 481-488.	1.8	10
411	On cryothermal cycling as a method for inducing structural changes in metallic glasses. NPG Asia Materials, 2018, 10, 137-145.	3.8	68
412	Enhanced plasticity of Zr56Co24Ag4Al16 and Zr56Co22Cu6Al16 bulk metallic glasses by controlling the casting temperature. Journal of Non-Crystalline Solids, 2018, 491, 114-123.	1.5	13
413	Effect of temperature on the fracture surface morphology of Ti- and Zr-based bulk metallic glasses: exploring correlation between morphology and plasticity. Journal of Materials Science, 2018, 53, 10372-10382.	1.7	8
414	Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. Npj Computational Materials, 2018, 4, .	3.5	70
415	Dilatancy induced ductile–brittle transition of shear band in metallic glasses. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170836.	1.0	24

r

#	Article	IF	CITATIONS
416	Tensile properties of Zr70Ni16Cu6Al8 BMG at room and cryogenic temperatures. Journal of Alloys and Compounds, 2018, 742, 952-957.	2.8	7
417	Experimental studies of shear bands in Zr-Cu metallic glass. Journal of Non-Crystalline Solids, 2018, 484, 40-48.	1.5	14
418	Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. Journal of Alloys and Compounds, 2018, 742, 45-53.	2.8	25
419	Effects of strain and strain rate on the evolution of shear bands for room temperature rolled Pd 40 Ni 40 P 20 bulk metallic glass. Journal of Non-Crystalline Solids, 2018, 485, 74-81.	1.5	11
420	Electric-field control of ferromagnetism in a Co-Fe-Ta-B amorphous alloy. Materials and Design, 2018, 143, 65-71.	3.3	7
421	Structural evolution in a metallic glass pillar upon compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 8-13.	2.6	2
422	Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow. Physica B: Condensed Matter, 2018, 534, 163-168.	1.3	10
423	Strain Distribution Across an Individual Shear Band in Real and Simulated Metallic Glasses. Nano Letters, 2018, 18, 1221-1227.	4.5	43
424	Investigating local atomic structural order in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiAl</mml:mtext></mml:mrow><mml:m glass using molecular dynamic simulation. Computational Condensed Matter, 2018, 14, 74-83.</mml:m </mml:msub></mml:mrow></mml:math 	ın>3?/mml	:mñ>
425	Extreme rejuvenation and softening in a bulk metallic glass. Nature Communications, 2018, 9, 560.	5.8	186
426	Novel deformation-induced polymorphic crystallization and softening of Al-based amorphous alloys. Acta Materialia, 2018, 147, 90-99.	3.8	35
427	Thickness dependent structural evolution in Mg-Zn-Ca thin film metallic glasses. Journal of Alloys and Compounds, 2018, 742, 524-535.	2.8	19
428	Variational formulation for dissipative continua and an incremental J-integral. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170674.	1.0	1
429	Cyclic cryogenic pretreatments influencing the mechanical properties of a bulk glassy Zrâ€based alloy. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1330-1343.	1.7	22
430	Balancing strength, hardness and ductility of Cu ₆₄ Zr ₃₆ nanoglasses via embedded nanocrystals. Nanotechnology, 2018, 29, 025701.	1.3	19
431	Molecular dynamics analysis of plastic deformation and mechanics of imprinted metallic glass films. Computational Materials Science, 2018, 144, 248-255.	1.4	21
432	Numerical simulation on the deformation behaviors of bulk metallic glass composites under uniaxial tension and compression. Composite Structures, 2018, 187, 411-428.	3.1	22
433	Enhancement of plasticity in Zr-Cu-Ni-Al-Ti bulk metallic glass by heterogeneous microstructure. Journal of Non-Crystalline Solids, 2018, 481, 530-536.	1.5	23

#	Article	IF	CITATIONS
434	Test sample geometry for fracture toughness measurements of bulk metallic glasses. Acta Materialia, 2018, 145, 477-487.	3.8	43
435	Localized atomic segregation in the spalled area of a Zr ₅₀ Cu ₄₀ Al ₁₀ bulk metallic glasses induced by laser-shock experiment. Journal Physics D: Applied Physics, 2018, 51, 065304.	1.3	10
436	Shear banding leads to accelerated aging dynamics in a metallic glass. Physical Review B, 2018, 97, .	1.1	43
437	Developing β-type bulk metallic glass composites from Ti/Zr-based bulk metallic glasses by an iteration method. Journal of Alloys and Compounds, 2018, 740, 639-646.	2.8	20
438	Deformation behavior of bulk metallic glasses under a mixed-mode (I/II) loading condition. Intermetallics, 2018, 93, 148-154.	1.8	6
439	The effect of void defects on the shear band nucleation of metallic glasses. Intermetallics, 2018, 94, 114-118.	1.8	21
440	On the shear band velocity in metallic glasses: A high-speed imaging study. Materials Letters, 2018, 225, 105-108.	1.3	7
441	Failure surfaces of high-strength materials predicted by a universal failure criterion. International Journal of Fracture, 2018, 211, 237-252.	1.1	5
442	Dual self-organised shear banding behaviours and enhanced ductility in phase separating Zr-based bulk metallic glasses. Philosophical Magazine, 2018, 98, 1744-1764.	0.7	13
443	Glass forming ability and bending plasticity evolutions in Zr-Co-Al bulk metallic glasses and their structural origin. Journal of Non-Crystalline Solids, 2018, 488, 52-62.	1.5	14
444	A comparative study of the rate effect on deformation mode in ductile and brittle bulk metallic glasses. Intermetallics, 2018, 96, 94-103.	1.8	15
445	Anomalous deformation mode transition in amorphous Mg-Zn-Ca thin films. Scripta Materialia, 2018, 149, 139-143.	2.6	7
446	Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point. Materials Research Express, 2018, 5, 036511.	0.8	4
447	"Extended―shear bands in interior of Pd-based bulk metallic glasses. Rare Metals, 2018, 37, 54-58.	3.6	3
448	Phase separation and structure transition of undercooled Fe ₇₅ Cu ₂₅ melts. Physics and Chemistry of Liquids, 2018, 56, 290-298.	0.4	2
449	Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Materialia, 2018, 143, 338-363.	3.8	119
450	Using architectured materials to control localized shear fracture. Acta Materialia, 2018, 143, 298-305.	3.8	24
451	Nanoindentation creep behavior of Cu–Zr metallic glass films. Materials Research Letters, 2018, 6, 22-28.	4.1	40

#	Article	IF	CITATIONS
452	Discrete shear-transformation-zone plasticity modeling of notched bars. Journal of the Mechanics and Physics of Solids, 2018, 111, 18-42.	2.3	20
453	Highly stretchable kirigami metallic glass structures with ultra-small strain energy loss. Scripta Materialia, 2018, 142, 83-87.	2.6	29
454	Effect of temperature on shear bands and bending plasticity of metallic glasses. Journal of Alloys and Compounds, 2018, 732, 922-927.	2.8	13
455	Manufacturing of Cu-based metallic glasses matrix composites by spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 405-414.	2.6	21
456	Fe73.5Si13.5B9Cu1Nb3 metallic glass: Rapid activation of peroxymonosulfate towards ultrafast Eosin Y degradation. Materials and Design, 2018, 140, 73-84.	3.3	43
457	Temperature-dependence of mode I fracture toughness of a bulk metallic glass. Acta Materialia, 2018, 144, 325-336.	3.8	40
458	Rapid and partial crystallization to design ductile CuZr-based bulk metallic glass composites. Materials and Design, 2018, 139, 132-140.	3.3	46
459	Cryogenic mechanical property and deformation behavior of a Ti-based metallic glass matrix composite by three point bending tests. Intermetallics, 2018, 93, 360-365.	1.8	3
460	The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 bulk metallic glass. Journal of Non-Crystalline Solids, 2018, 481, 74-84.	1.5	41
461	Fragmentation and adhesion properties of Cu-Zr amorphous thin films on polyimide substrates. Philosophical Magazine Letters, 2018, 98, 464-472.	0.5	3
462	Notch Strengthening in Nanoscale Metallic Glasses. SSRN Electronic Journal, 2018, , .	0.4	0
463	Probing Nanoscale Structural Heterogeneity in Metallic Glasses Using 4-D STEM. Microscopy and Microanalysis, 2018, 24, 202-203.	0.2	1
464	In situ Single/Cyclic Deformation and Correlated Precession Electron Diffraction Analysis of Nano-laminate Crystalline/Glassy Metal Composites. Microscopy and Microanalysis, 2018, 24, 1832-1833.	0.2	0
465	Probing the size- and constituent-mediated mechanical properties and deformation behavior in crystalline/amorphous nanolaminates. Nanoscale, 2018, 10, 21827-21841.	2.8	11
466	Zr-Co(Cu)-Al bulk metallic glasses with optimal glass-forming ability and their compressive properties. Transactions of Nonferrous Metals Society of China, 2018, 28, 1543-1552.	1.7	11
467	Hardness and Modulus of Cu-based Bulk Metallic Glasses via Nanoindentation. Rare Metal Materials and Engineering, 2018, 47, 479-484.	0.8	8
468	High performance cutting of Zr-based bulk metallic glass: a review of chip formation. Procedia CIRP, 2018, 77, 421-424.	1.0	11
469	An Analytical Method for Studying the Stress-Strain Relations of Bulk Metallic Glass Matrix Composites under Tension. Advanced Composites Letters, 2018, 27, 096369351802700.	1.3	0

#	Article	IF	Citations
470	Slip statistics for a bulk metallic glass composite reflect its ductility. Journal of Applied Physics, 2018, 124, 185101.	1.1	11
471	Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature. Scientific Reports, 2018, 8, 16317.	1.6	9
472	Atomic imprinting into metallic glasses. Communications Physics, 2018, 1, .	2.0	28
473	Surface compressive and softening effect on deformation mode transition in Ni-Nb metallic glassy thin films: A molecular dynamics study. Journal of Applied Physics, 2018, 124, 205304.	1.1	1
474	Temperature rise in shear bands in a simulated metallic glass. Physical Review B, 2018, 98, .	1.1	11
475	Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9, 3965.	5.8	115
476	A nanoscale study of the negative strain rate dependency of the strength of metallic glasses by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2018, 20, 26552-26557.	1.3	6
477	Atomistic simulation of effects of surface notches and loading mode on deformation and mechanics of ZrNi metallic glass. AIP Advances, 2018, 8, 075325.	0.6	1
478	On sample size effects in fracture toughness determination of Bulk Metallic Glasses. Engineering Fracture Mechanics, 2018, 202, 500-507.	2.0	7
479	Compressive mechanical properties and failure modes of Zr-based bulk metallic glass composites containing tungsten springs. Materials and Design, 2018, 160, 652-660.	3.3	19
480	Shear Transformation Zone Dynamics Modeling of Deformation in Metallic Glasses. , 2018, , 1-28.		0
481	Bending deformation behavior of Zr65Cu17.5Ni10Al7.5 bulk metallic glass with different solidification cooling rate. AIP Advances, 2018, 8, .	0.6	2
482	Energy Storage in Metallic Glasses via Flash Annealing. Advanced Functional Materials, 2018, 28, 1805385.	7.8	34
483	Constitutive Modeling in Metallic Glasses for Predictions and Designs. , 2018, , 1-27.		0
484	Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass. Nature Communications, 2018, 9, 4414.	5.8	62
485	Making glassy solids ductile at room temperature by imparting flexibility into their amorphous structure. Materials Research Letters, 2018, 6, 570-583.	4.1	17
486	Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy. Ultramicroscopy, 2018, 195, 189-193.	0.8	44
487	Strengthening mechanisms in NiTi(NbFe)/amorphous-CuZrAl multilayered thin films. Surface and Coatings Technology, 2018, 353, 247-253.	2.2	4

#	Article	IF	CITATIONS
488	Achieving high uniformity of the elastic strain energy accumulation rate during the serrated plastic flows of bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 269-275.	2.6	10
489	Probing structural changes during ductile fracture in metallic glasses via in situ straining inside a MeV transmission electron microscope. Intermetallics, 2018, 102, 94-100.	1.8	2
490	Free volume gradient effect on shear banding behavior in CuZr/CuZr multilayers. Thin Solid Films, 2018, 666, 48-53.	0.8	7
491	Metallic Glass Structures for Mechanical-Energy-Dissipation Purpose: A Review. Metals, 2018, 8, 689.	1.0	26
492	Thermal-pressure effects on energy state of metallic glass Cu50Zr50. Computational Materials Science, 2018, 155, 493-498.	1.4	22
493	Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique. Crystals, 2018, 8, 128.	1.0	2
494	Local atomic environment and shear banding in metallic glasses. Computational Materials Science, 2018, 155, 129-135.	1.4	8
495	Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion. Acta Materialia, 2018, 160, 147-157.	3.8	45
496	Strengthening mechanisms in nanoporous metallic glasses. Computational Materials Science, 2018, 155, 151-158.	1.4	32
497	Homogeneous elongation and distinguishing work hardening in La-based metallic glass composites upon dynamic tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 329-334.	2.6	2
498	Elastic Fluctuations and Structural Heterogeneities in Metallic Glasses. Advanced Functional Materials, 2018, 28, 1800388.	7.8	48
499	Non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 and Zr56Co22Cu6Al16 bulk metallic glasses. Journal of Thermal Analysis and Calorimetry, 2018, 134, 903-914.	2.0	16
500	Tailoring shear banding behaviors in high entropy bulk metallic glass by minor Sn addition: A nanoindentation study. Journal of Alloys and Compounds, 2018, 762, 422-430.	2.8	21
501	Microstructure and mechanical properties of a Cu-Zr based bulk metallic glass containing atomic scale chemical heterogeneities. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 433-438.	2.6	29
502	Rate-dependent shear banding and fracture behavior in a ductile bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 270-279.	2.6	21
503	A mechanism of failure in shear bands. Extreme Mechanics Letters, 2018, 23, 67-71.	2.0	56
504	Atomic simulations of plastic deformation mechanism of MgAl/Mg nanoscale amorphous/crystalline multilayers. Journal of Non-Crystalline Solids, 2018, 500, 121-128.	1.5	19
505	From size-dependent strengthening to softening in nanolaminated Cu/Cu-Zr crystalline/amorphous micropillars. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 29-34.	2.6	9

#	Article	IF	CITATIONS
506	Fatigue and fracture behavior of bulk metallic glasses and their composites. Progress in Materials Science, 2018, 98, 168-248.	16.0	89
507	Size effects on the fracture of microscale and nanoscale materials. Nature Reviews Materials, 2018, 3, 211-224.	23.3	72
508	Nano-laminated thin film metallic glass design for outstanding mechanical properties. Scripta Materialia, 2018, 155, 73-77.	2.6	23
509	Experimental analysis to the structural relaxation of Ti48Zr20V12Cu5Be15 metallic glass matrix composite. Journal of Alloys and Compounds, 2018, 769, 443-452.	2.8	6
510	Laser shock compression induced crystallization of Ce3Al metallic glass. Journal of Applied Physics, 2018, 124, 035904.	1.1	2
511	Effects of ZrCuAl bulk metallic glasses Poisson's ratios on spalling process induced by laser shock. AIP Conference Proceedings, 2018, , .	0.3	1
512	The design and mechanical behaviors of in-situ formed ductile dendrite Ti-based bulk metallic glass composites with tailored composition and mechanisms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 148-156.	2.6	19
513	A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018, 9, 19.	1.8	59
514	Martensitic Transformation and Plastic Deformation of TiCuNiZr-Based Bulk Metallic Glass Composites. Metals, 2018, 8, 196.	1.0	10
515	Tensile Creep Characterization and Prediction of Zr-Based Metallic Glass at High Temperatures. Metals, 2018, 8, 457.	1.0	7
516	Surface Morphology of Deformed Amorphous-Nanocrystalline Materials and the Formation of Nanocrystals. Journal of Surface Investigation, 2018, 12, 492-498.	0.1	12
517	Constituent constraining effects on the microstructural evolution, ductility, and fracture mode of crystalline/amorphous nanolaminates. Journal of Alloys and Compounds, 2018, 768, 88-96.	2.8	10
518	A failure mechanism based constitutive model for bulk metallic glass. Mechanics of Materials, 2018, 125, 52-69.	1.7	17
519	Mechanisms for the free volume tuning the mechanical properties of metallic glass through ion irradiation. Intermetallics, 2018, 101, 173-178.	1.8	23
520	Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type. Computational Materials Science, 2018, 154, 225-233.	1.4	28
521	Study of Glass Forming on Cu60.0Zr32.5Ti7.5 Alloy by Molecular Dynamics Simulation. Materials Research, 2018, 21, .	0.6	4
522	Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Materialia, 2018, 155, 69-79.	3.8	35
523	Laves phase precipitation in Ti-Zr-Fe-Cr alloys with high strength and large plasticity. Materials and Design, 2018, 154, 228-238.	3.3	110

#	Article	IF	CITATIONS
524	Micromechanical mechanism of yielding in dual nano-phase metallic glass. Scripta Materialia, 2018, 154, 186-191.	2.6	32
525	Ductile bulk metallic glass by controlling structural heterogeneities. Scientific Reports, 2018, 8, 9174.	1.6	42
526	Random critical point separates brittle and ductile yielding transitions in amorphous materials. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6656-6661.	3.3	195
527	Size-dependent mechanical responses of metallic glasses. International Materials Reviews, 2019, 64, 163-180.	9.4	36
528	Ballistic performance of tungsten particle / metallic glass matrix composite long rod. Defence Technology, 2019, 15, 132-145.	2.1	12
529	Plastic Deformation Mechanism of Ductile Fe50Ni30P13C7 Metallic Glass. Metals and Materials International, 2019, 25, 487-498.	1.8	6
530	Control of shear band dynamics in Cu50Zr50 metallic glass by introducing amorphous-crystalline interfaces. Journal of Alloys and Compounds, 2019, 770, 896-905.	2.8	38
531	The coupling effects of laser thermal shock and surface nitridation on mechanical properties of Zr-based metallic glass. Journal of Alloys and Compounds, 2019, 770, 864-874.	2.8	19
532	Fabrication and characterization of Fe-based metallic glasses by Selective Laser Melting. Optics and Laser Technology, 2019, 109, 20-26.	2.2	55
533	Research on high-Al Cu-Zr-Al-Y bulk metallic glass and its composites. Journal of Alloys and Compounds, 2019, 770, 1029-1037.	2.8	11
534	On the origin of intermediate temperature brittleness in La-based bulk metallic glasses. Journal of Alloys and Compounds, 2019, 770, 535-539.	2.8	9
535	Plasticity without dislocations in a polycrystalline intermetallic. Nature Communications, 2019, 10, 3587.	5.8	38
536	Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Computational Materials Science, 2019, 170, 109162.	1.4	51
537	A macro-and microscopic model characterizing unstable shear banding in metallic glass. Materials Research Express, 2019, 6, 106580.	0.8	2
538	Structural periodicity in laser additive manufactured Zr-based bulk metallic glass. Applied Physics Letters, 2019, 115, .	1.5	35
539	In situ study of the shear band features of a CuZr-based bulk metallic glass composite. Intermetallics, 2019, 112, 106523.	1.8	19
540	Improving fatigue property of metallic glass by tailoring the microstructure to suppress shear band formation. Materialia, 2019, 7, 100407.	1.3	15
541	Structural characteristics in deformation mechanism transformation in nanoscale metallic glasses. Journal of Physics Condensed Matter, 2019, 31, 455401.	0.7	1

#	Article	IF	CITATIONS
542	Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Materials and Design, 2019, 181, 108064.	3.3	44
543	Correlations of non-affine displacements in metallic glasses through the yield transition. JPhys Materials, 2019, 2, 045006.	1.8	20
544	A way by inhomogeneous plastic deformation of metallic glasses to synthesize metallic nanoglasses: A brief review. Materialia, 2019, 7, 100390.	1.3	5
545	Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation. Journal of Materials Science and Technology, 2019, 35, 2221-2226.	5.6	36
546	Development of Bulk Metallic Glass Matrix Composites (BMGMC) by Additive Manufacturing: Modelling and Simulation – A Review: Part B. Advanced Materials Research, 2019, 1154, 40-79.	0.3	1
547	Development of Bulk Metallic Glass Matrix Composites (BMGMC) by Additive Manufacturing: Modelling and Simulation – A Review: Part A. Advanced Materials Research, 2019, 1154, 1-39.	0.3	2
548	Glass forming ability and a novel method for evaluating the thermoplastic formability of Zr Ti65-Be27.5Cu7.5 alloys. Intermetallics, 2019, 114, 106600.	1.8	8
549	Compression-compression fatigue behavior of a Zr-based metallic glass with different free volume contents. Journal of Alloys and Compounds, 2019, 810, 151924.	2.8	10
550	Investigation of Mode I Notch Toughness of Zr41.2Ti13.8Cu10Ni12.5Be22.5 Metallic Glass under Dynamic Loading Conditions. Journal of Materials Engineering and Performance, 2019, 28, 6025-6032.	1.2	3
551	Controllable brittleness in soft-magnetic Fe-P-C-B metallic glasses through composition design. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138385.	2.6	15
552	Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review. Entropy, 2019, 21, 54.	1.1	13
553	Probing the Degree of Heterogeneity within a Shear Band of a Model Glass. Physical Review Letters, 2019, 123, 195502.	2.9	35
554	The Indentation-Induced Pop-in Phenomenon and Fracture Behaviors of GaP(100) Single-Crystal. Micromachines, 2019, 10, 752.	1.4	4
555	Effects of Etching on Amorphous Alloys. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1261-1264.	0.1	0
556	Roles of ion irradiation and thermal annealing in inducing crystallization in metallic glass. Intermetallics, 2019, 114, 106608.	1.8	11
557	Simulations of Shear bands in Metallic Glasses with Mesoscale Modeling. Multiscale Science and Engineering, 2019, 1, 280-287.	0.9	1
558	3D Imaging of Nanoparticles in an Inorganic Matrix Using TOF-SIMS Validated with STEM and EDX. Analytical Chemistry, 2019, 91, 11834-11839.	3.2	25
559	Ultrafast extreme rejuvenation of metallic glasses by shock compression. Science Advances, 2019, 5, eaaw6249.	4.7	66

#	Article	IF	CITATIONS
560	Study of the sensitivity of the mode I/III notch toughness of Zr _{41.2} Ti _{13.8} Cu ₁₀ Ni _{12.5} Be _{22.5} metallic glass to the loading rate under impact loading. Materials Research Express, 2019, 6, 105205.	0.8	1
561	Size-dependent microstructure evolution and hardness of He irradiated Nb/Zr multilayers under different ion doses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138259.	2.6	14
562	Potential energy landscape activations governing plastic flows in glass rheology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18790-18797.	3.3	54
563	Development of Bulk Metallic Glasses and their Composites by Additive Manufacturing – Evolution, Challenges and a Proposed Novel Solution. Advanced Materials Research, 2019, 1155, 1-28.	0.3	1
564	Shear-band-to-crack transition in bulk metallic glasses under quasi-static and dynamic shearing. Journal of Non-Crystalline Solids, 2019, 521, 119484.	1.5	6
565	Deformation mechanism of amorphous/crystalline phase-separated alloys: A molecular dynamics study. Journal of Non-Crystalline Solids, 2019, 523, 119605.	1.5	4
566	Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films. Scientific Reports, 2019, 9, 13426.	1.6	13
567	Failure of Particle-Laden Interfaces Studied Using The Funnel Method. Colloids and Interface Science Communications, 2019, 28, 54-59.	2.0	7
568	Strategies to tailor serrated flows in metallic glasses. Journal of Materials Research, 2019, 34, 1595-1607.	1.2	7
569	Tuning the microstructure and metastability of β-Ti for simultaneous enhancement of strength and ductility of Ti-based bulk metallic glass composites. Acta Materialia, 2019, 168, 24-36.	3.8	95
570	Rejuvenation saturation upon cyclic elastic loading in metallic glass. Computational Materials Science, 2019, 166, 318-325.	1.4	23
571	Improving ductility of nanoporous metallic glasses. Computational Materials Science, 2019, 167, 111-117.	1.4	17
572	The decrease of Young's modulus in shear bands of amorphous Al87Ni8La5 alloy after deformation. Materials Letters, 2019, 252, 114-116.	1.3	16
573	On the effect of hydrostatic stress on plastic deformation in metallic glasses. Journal of Non-Crystalline Solids, 2019, 521, 119485.	1.5	17
574	Nanoscratching of metallic glasses – An atomistic study. Tribology International, 2019, 139, 1-11.	3.0	43
575	Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106, 100561.	16.0	257
576	Metallic glass ultrathin films with hierarchical structure and their dynamic and thermodynamic behavior. Physical Chemistry Chemical Physics, 2019, 21, 14556-14561.	1.3	1
577	Catastrophic stress corrosion failure of Zr-base bulk metallic glass through hydrogen embrittlement. Corrosion Science, 2019, 159, 108057.	3.0	12

#	Article	IF	CITATIONS
578	Atomistic understanding of deformation-induced heterogeneities in wire drawing and their effects on the tensile ductility of metallic glass wires. Journal of Alloys and Compounds, 2019, 803, 193-204.	2.8	12
579	Severe Plastic Deformation of Amorphous Alloys. Materials Transactions, 2019, 60, 1283-1293.	0.4	35
580	Selective Laser Melting (SLM) of in-situ beta phase reinforced Ti/Zr-based bulk metallic glass matrix composite. Scripta Materialia, 2019, 171, 21-25.	2.6	32
581	Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nature Communications, 2019, 10, 2445.	5.8	46
582	Exceptional fracture resistance of ultrathin metallic glass films due to an intrinsic size effect. Scientific Reports, 2019, 9, 8281.	1.6	16
583	Enhancement in Photocatalytic Activity of SrTiO ₃ byÂTailoring Particle Size and Defects. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900294.	0.8	17
584	Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La–Al–Ni metallic glass. Intermetallics, 2019, 111, 106497.	1.8	40
585	Shear-band cavities and strain hardening in a metallic glass revealed with phase-contrast x-ray tomography. Scripta Materialia, 2019, 170, 29-33.	2.6	19
586	Effect of loading rate on creep behavior and shear transformation zone in amorphous alloy thin films, and its correlation with deformation mode transition. Thin Solid Films, 2019, 681, 23-31.	0.8	10
588	Fast-heating-induced formation of metallic-glass/crystal composites with enhanced plasticity. Thermochimica Acta, 2019, 677, 198-205.	1.2	22
589	Improved Tensile Ductility by Severe Plastic Deformation for Nano-Structured Metallic Glass. Materials, 2019, 12, 1611.	1.3	6
590	The effect of changes in the local atomic structure on the magnetic properties of amorphous iron-based alloys deformed by high-pressure torsion at different temperatures. Journal of Alloys and Compounds, 2019, 797, 622-629.	2.8	6
591	Shear-band structure and chemistry in a Zr-based metallic glass probed with nano-beam x-ray fluorescence and transmission electron microscopy. Scripta Materialia, 2019, 169, 23-27.	2.6	17
592	On the variation of the mechanical energy accumulation rates during the flow serrations of a Zr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2019, 508, 1-6.	1.5	5
593	Rejuvenation, embryonic shear bands and improved tensile plasticity of metallic glasses by nanosecond laser shock wave. Journal of Non-Crystalline Solids, 2019, 513, 76-83.	1.5	18
594	Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying. Acta Materialia, 2019, 171, 216-230.	3.8	47
595	Elemental re-distribution inside shear bands revealed by correlative atom-probe tomography and electron microscopy in a deformed metallic glass. Scripta Materialia, 2019, 168, 14-18.	2.6	21
596	Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104, 250-329.	16.0	428

#	Article	IF	CITATIONS
597	Influence of Metal Additives on Microstructure and Properties of Amorphous Metal–SiOC Composites. Jom, 2019, 71, 2445-2451.	0.9	5
598	Numerical Analysis of the Impact Fracture of Metallic Glass Based on Free Volume Model. Key Engineering Materials, 2019, 794, 188-193.	0.4	1
599	Modulating heterogeneity and plasticity in bulk metallic glasses: Role of interfaces on shear banding. International Journal of Plasticity, 2019, 119, 156-170.	4.1	88
600	Notch strengthening in nanoscale metallic glasses. Acta Materialia, 2019, 169, 147-154.	3.8	39
601	Experimental and computational analysis of initiation and propagation of shear bands in bulk metallic glasses. Materials Research Express, 2019, 6, 075207.	0.8	0
602	Significant Mechanical Softening of an Al-Y-Ni-Co Metallic Glass on Cold and Hot Rolling. Jom, 2019, 71, 4079-4085.	0.9	6
603	High-resolution transmission electron microscopy investigation of diffusion in metallic glass multilayer films. Materials Today Advances, 2019, 1, 100004.	2.5	9
604	Stability of the B2 CuZr phase in Cu-Zr-Al-Sc bulk metallic glass matrix composites. Journal of Alloys and Compounds, 2019, 790, 657-665.	2.8	13
605	Tunable tensile ductility of metallic glasses with partially rejuvenated amorphous structures. Acta Materialia, 2019, 169, 122-134.	3.8	34
606	The embrittlement and toughening of metallic glasses from nano-crystallization. Journal of Applied Physics, 2019, 125, .	1.1	11
607	Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. Journal of Alloys and Compounds, 2019, 792, 684-693.	2.8	51
608	Recovering the bending ductility of the stress-relieved Fe-based amorphous alloy ribbons by cryogenic thermal cycling. Journal of Alloys and Compounds, 2019, 790, 529-535.	2.8	24
609	New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties. Journal of Alloys and Compounds, 2019, 791, 947-951.	2.8	26
610	Mechanical behavior of CuZr dual-phase nanocrystal-metallic glass composites. Computational Materials Science, 2019, 163, 290-300.	1.4	18
611	Prediction of tensile yielding in metallic glass matrix composites. Intermetallics, 2019, 108, 72-76.	1.8	7
612	Plastic flow anisotropy drives shear fracture. Scientific Reports, 2019, 9, 1425.	1.6	26
613	Deformation behavior of designed dual-phase CuZr metallic glasses. Materials and Design, 2019, 168, 107662.	3.3	22
614	Dynamic Plasticity and Failure of Microscale Glass: Rate-Dependent Ductile–Brittle–Ductile Transition. Nano Letters, 2019, 19, 2350-2359.	4.5	39

#	Article	IF	CITATIONS
615	Fracture of notched ductile bulk metallic glass bars subjected to tension-torsion: Experiments and simulations. Acta Materialia, 2019, 168, 309-320.	3.8	21
616	Spark Plasma Sintering of Metallic Glasses. , 2019, , 291-335.		3
617	Elucidating how correlated operation of shear transformation zones leads to shear localization and fracture in metallic glasses: Tensile tests on Cu Zr based metallic-glass microwires, molecular dynamics simulations, and modelling. International Journal of Plasticity, 2019, 119, 1-20.	4.1	42
618	Anisotropic deformation behaviors of amorphous-crystalline nanolaminates investigated via molecular dynamics simulations. Journal of Alloys and Compounds, 2019, 787, 649-657.	2.8	10
619	Numerical study on toughening mechanism of bulk metallic glass composites from martensite transformation of toughening phase. Journal of Non-Crystalline Solids, 2019, 506, 88-97.	1.5	8
620	Glass-forming ability, phase formation and mechanical properties of glass-forming Cu-Hf-Zr alloys. Progress in Natural Science: Materials International, 2019, 29, 576-581.	1.8	8
621	Pure shear deformation and its induced mechanical responses in metallic glasses. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190486.	1.0	1
622	Structure of deformed Al-based amorphous alloys. IOP Conference Series: Materials Science and Engineering, 2019, 672, 012017.	0.3	1
623	Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Materials Today Advances, 2019, 4, 100027.	2.5	88
624	Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Applied Sciences (Switzerland), 2019, 9, 4277.	1.3	11
625	A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. Nature Communications, 2019, 10, 5537.	5.8	56
626	Effect of Ta particles on the fracture behavior of notched bulk metallic glass composites. Intermetallics, 2019, 106, 1-6.	1.8	5
627	Quantitatively determining the martensitic transformation in a CuZr-based bulk metallic glass composite. Journal of Alloys and Compounds, 2019, 782, 961-966.	2.8	16
628	Serration dynamics in the presence of chemical heterogeneities for a Cu-Zr based bulk metallic glass. Journal of Alloys and Compounds, 2019, 775, 298-303.	2.8	14
629	Thermomechanical behavior of amorphous alloys based on titanium at the temperature range of the glass transition and crystallization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 77-86.	2.6	3
630	Origin of serrated flow in bulk metallic glasses. Journal of the Mechanics and Physics of Solids, 2019, 124, 634-642.	2.3	33
631	Influence of cyclic loading on the structure and double-stage structure relaxation behavior of a Zr-Cu-Fe-Al metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 526-531.	2.6	18
632	Serrated flow during inhomogeneous bending deformation of bulk metallic glasses: From self-organized critical to chaotic dynamics. Journal of Non-Crystalline Solids, 2019, 505, 62-71.	1.5	13

#	Article	IF	CITATIONS
633	Effect of complex stress fields on the plastic energy accumulation in a Zr-based bulk metallic glass. Physica B: Condensed Matter, 2019, 554, 45-50.	1.3	6
634	High strain rate compressive behaviors and adiabatic shear band localization of 3-D carbon/epoxy angle-interlock woven composites at different loading directions. Composite Structures, 2019, 211, 502-521.	3.1	36
635	Interfacial stress transfer mechanism of Cu-Zr amorphous films on polyimide substrates: Effect of deformation-induced devitrification. Journal of Alloys and Compounds, 2019, 783, 841-847.	2.8	5
636	One-Pot Synthesis of Gel Glass Embedded with Luminescent Silicon Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 2507-2515.	4.0	8
637	Inhomogeneity of Free Volumes in Metallic Glasses under Tension. Materials, 2019, 12, 98.	1.3	17
638	Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression. Composites Part B: Engineering, 2019, 161, 677-690.	5.9	36
639	Effects of Ni and Si additions on mechanical properties and serrated flow behavior in FeMoPCB bulk metallic glasses. Journal of Alloys and Compounds, 2019, 783, 555-564.	2.8	25
641	Novel in-situ Ti-based dendrite/nanostructured matrix composites with excellent mechanical performances upon dynamic compression. Journal of Alloys and Compounds, 2019, 781, 716-722.	2.8	2
642	Mechanical property and serration behavior of Ti-based metallic glassy composites reinforced by an in-situ dendritic phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 301-308.	2.6	5
643	Shear band fracture in metallic glass: Sample size effect. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 377-382.	2.6	20
644	Voronoi volume recovery during plastic deformation in deep-notched metallic glasses. Journal of Alloys and Compounds, 2019, 776, 460-468.	2.8	11
645	Influence of as-cast spherulites on the fracture toughness of a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0010.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>Zr</mml:mi></mml:mrow><mml:mrow><mm Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and</mm </mml:mrow></mml:msub></mml:mrow></mml:math 	l:2016) > 5 5 < /	ˈmːʃənl:mn><
646	Effect of interface structure on deformation behavior of crystalline Cu/amorphous CuZr sandwich structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 215-220.	0.9	8
647	Mechanical Relaxation of a Ti36.2Zr30.3Cu8.3Fe4Be21.2 Bulk Metallic Glass: Experiments and Theoretical Analysis. Acta Metallurgica Sinica (English Letters), 2019, 32, 726-732.	1.5	3
648	Physical mechanism of internal friction behavior of β-type bulk metallic glass composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 193-197.	2.6	10
649	Correlations between plastic deformation capacity and fragility/characteristic free volume in amorphous alloys. Materials Research Express, 2019, 6, 015201.	0.8	2
650	Effects of polydispersity and disorder on the mechanical properties of hydrated silicate gels. Journal of the Mechanics and Physics of Solids, 2019, 122, 555-565.	2.3	35
651	Failure of a Ti-Based Metallic Glass Matrix Composite Upon High-Temperature Annealing. Metals and Materials International, 2020, 26, 285-291.	1.8	5

#	Article	IF	CITATIONS
652	Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 770, 138535.	2.6	48
653	Complexity analysis of serrated flows in a bulk metallic glass under constrained and unconstrained conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138585.	2.6	26
654	Varying the treating conditions to rejuvenate metallic glass by deep cryogenic cycling treatment. Journal of Alloys and Compounds, 2020, 819, 152997.	2.8	17
655	Temperature rises during strain-rate dependent avalanches in bulk metallic glasses. Intermetallics, 2020, 116, 106637.	1.8	9
656	Role of Ni and Co in tailoring magnetic and mechanical properties of Fe84Si2B13P1 metallic glass. Journal of Alloys and Compounds, 2020, 816, 152549.	2.8	15
657	Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review. Journal of Non-Crystalline Solids, 2020, 527, 119753.	1.5	39
658	Stochastic deformation and shear transformation zones of the glassy matrix in CuZr-based metallic-glass composites. International Journal of Plasticity, 2020, 125, 52-62.	4.1	64
659	"Self-sharpening―tungsten high-entropy alloy. Acta Materialia, 2020, 186, 257-266.	3.8	91
660	Simultaneously enhancing strength and toughness of Zr-based bulk metallic glasses via minor Hf addition. Intermetallics, 2020, 118, 106685.	1.8	13
661	Pile-up and heat effect on the mechanical response of SiGe on Si(OÂOÂ1) substrate during nanoscratching and nanoindentation using molecular dynamics. Computational Materials Science, 2020, 174, 109465.	1.4	36
662	Abnormal softening of Ti-metallic glasses during nanosecond laser shock peening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138844.	2.6	16
663	Optimum shear stability at intermittent-to-smooth transition of plastic flow in metallic glasses at cryogenic temperatures. Materialia, 2020, 9, 100559.	1.3	6
664	Metal frame reinforced bulk metallic glass composites. Materials Research Letters, 2020, 8, 60-67.	4.1	12
665	Achieving stable plastic flows in a Zr-based bulk metallic glass under tailored mixed-mode (I/II) loading conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138695.	2.6	6
666	Diffusion assisted interaction of shear bands in metallic glasses. Journal of Alloys and Compounds, 2020, 817, 153327.	2.8	2
667	High deformation capacity and dynamic shear band propagation of imprinted amorphous Cu50Zr50/crystalline Cu multilayered nanofilms. Journal of Physics and Chemistry of Solids, 2020, 138, 109291.	1.9	19
668	Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films. Journal of Alloys and Compounds, 2020, 820, 153388.	2.8	52
669	Long-term room-temperature aging treatment of a bulk metallic glass composite. Journal of Alloys and Compounds, 2020, 820, 153165.	2.8	5

#	Article	IF	CITATIONS
670	Dynamic mechanical behaviors of a metastable <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mi mathvariant="bold">β</mml:mi </mml:mrow>-type bulk metallic glass composite. Journal of Alloys and Compounds, 2020, 819, 153040.</mml:math 	2.8	10
671	Effect of mechanically induced structural rejuvenation on the deformation behaviour of CuZr based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138848.	2.6	19
672	Notch Effect on Plastic Deformation of Metallic Glass: A Numerical Study by Revised Free-Volume Theory. Advances in Materials Science and Engineering, 2020, 2020, 1-13.	1.0	0
673	Revisit initiation of localized plastic deformation: Shear band & necking. Extreme Mechanics Letters, 2020, 40, 100914.	2.0	7
674	Shear Bands Topology in the Deformed Bulk Metallic Glasses. Metals, 2020, 10, 374.	1.0	9
675	Mighty Morphin(g) Amorphous Metals. Matter, 2020, 2, 802-804.	5.0	1
676	Influence of combinatorial annealing and plastic deformation treatments on the intrinsic properties of Cu46Zr46Al8 bulk metallic glass. Intermetallics, 2020, 127, 106986.	1.8	8
677	Numerical study of stationary cracks in bulk metallic glass composites under Mode I, small scale yielding conditions. Engineering Fracture Mechanics, 2020, 239, 107312.	2.0	1
678	Strengthening and toughening mechanisms of metallic glass nanocomposites via graphene nanoplatelets. Journal of Non-Crystalline Solids, 2020, 546, 120284.	1.5	6
679	Zr55Cu30Al10Ni5 amorphous alloy sheets with large plasticity fabricated by twin-roll strip casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139904.	2.6	6
680	Effect of chemical composition on the fracture toughness of bulk metallic glasses. Materialia, 2020, 12, 100828.	1.3	30
681	Understanding the tensile fracture of deeply-notched metallic glasses. International Journal of Solids and Structures, 2020, 207, 70-81.	1.3	1
682	Bending proof strength of Zr61Ti2Cu25Al12 bulk metallic glass and its correlation with shear-banding initiation. Intermetallics, 2020, 126, 106915.	1.8	7
683	Atomistic investigation of aging and rejuvenation in CuZr metallic glass under cyclic loading. Computational Materials Science, 2020, 185, 109965.	1.4	15
684	Cooperative Shear in Bulk Metallic Glass Composites Containing Metastable β -Ti Dendrites. Physical Review Letters, 2020, 125, 055501.	2.9	16
685	Expanding the homogeneous regime of deformation in bulk metallic glass by electromigration-induced rejuvenation. Communications Materials, 2020, 1, .	2.9	8
686	Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. Metals, 2020, 10, 867.	1.0	10
687	Shear transformation zone dependence of creep behaviors of amorphous phase in a CuZr-based bulk metallic glass composite. Science China Technological Sciences, 2020, 63, 1560-1565.	2.0	2

#	Article	IF	CITATIONS
688	Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates. Journal of Materials Science and Technology, 2020, 57, 70-77.	5.6	7
689	Heterogeneous microstructure of Zr46Cu46Al8 nanoglasses studied by quantifying glass-glass interfaces. Journal of Non-Crystalline Solids, 2020, 546, 120265.	1.5	9
690	Icosahedral and dodecagonal quasicrystal plus glass alloys with plastic deformability. Acta Materialia, 2020, 199, 1-8.	3.8	7
691	Applicability of cutting theory to nanocutting of metallic glasses: Atomistic simulation. Journal of Non-Crystalline Solids, 2020, 550, 120363.	1.5	16
692	Deformation map of metallic glass: Normal stress effect. Science China Materials, 2020, 63, 2620-2626.	3.5	2
693	Quantitative characteristics of shear bands formed upon deformation in bulk amorphous Zr-based alloy. Materials Letters, 2020, 281, 128659.	1.3	7
694	Ultrasonic plasticity of metallic glass near room temperature. Applied Materials Today, 2020, 21, 100866.	2.3	15
695	Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses. International Journal of Plasticity, 2020, 134, 102845.	4.1	32
696	Devitrification of Zr55Cu30Al15Ni5Bulk Metallic Glass under Heating and HPT Deformation. Metals, 2020, 10, 1329.	1.0	4
697	Structural rejuvenation and toughening of bulk metallic glass via ultrasound excitation technique. Science China Technological Sciences, 2020, 63, 2395-2402.	2.0	2
698	Ductile and Brittle Yielding in Thermal and Athermal Amorphous Materials. Physical Review Letters, 2020, 125, 168003.	2.9	43
699	Aspect ratio-dependent nanoindentation behavior of Cu64Zr36 metallic glass nanopillars investigated by molecular dynamics simulations. Journal of Applied Physics, 2020, 128, .	1.1	10
700	Effect of Annealing on Strain Rate Sensitivity of Metallic Glass under Nanoindentation. Metals, 2020, 10, 1063.	1.0	5
701	Intrinsic and extrinsic effects on the brittle-to-ductile transition in metallic glasses. Journal of Applied Physics, 2020, 128, .	1.1	17
702	Molecular dynamics simulation of effects of microstructure and loading mode on mechanical properties of Au nanowires. Molecular Simulation, 2020, 46, 1291-1297.	0.9	1
703	The Influence of Magnetron Sputtering Conditions on the Structure of Zr–Pd Coatings. Technical Physics Letters, 2020, 46, 725-728	0.2	0
704	Effect of polymer–nanoparticle interaction on strain localization in polymer nanopillars. Soft Matter, 2020, 16, 8639-8646.	1.2	8
705	Microscopic origin of shear banding as a localized driven glass transition in compressed colloidal pillars. Physical Review E, 2020, 102, 032605.	0.8	1

#	Article	IF	CITATIONS
706	Strain localization and failure of disordered particle rafts with tunable ductility during tensile deformation. Soft Matter, 2020, 16, 8226-8236.	1.2	9
707	Ultrastable Metallic Glasses <i>InÂSilico</i> . Physical Review Letters, 2020, 125, 085505.	2.9	20
708	Quasi-work-hardening at sites of shear band interactions in a Cu50Zr50 metallic glass. Materials Letters, 2020, 281, 128655.	1.3	3
709	Effect of spherical indenter radius and loading rate on the kinetic nanoindentation creep behavior of La-based metallic glasses. Journal of Applied Physics, 2020, 128, 165108.	1.1	0
710	Influence of High-Pressure Torsion and Accumulative High-Pressure Torsion on Microstructure and Properties of Zr-Based Bulk Metallic Glass Vit105. Metals, 2020, 10, 1433.	1.0	9
711	Unified perspective on structural heterogeneity of a LaCe-based metallic glass from versatile dynamic stimuli. Intermetallics, 2020, 125, 106922.	1.8	8
712	Influence of HPT Deformation on the Structure and Properties of Amorphous Alloys. Metals, 2020, 10, 415.	1.0	25
713	Analysis on specific cutting energy in micro milling of bulk metallic glass. International Journal of Advanced Manufacturing Technology, 2020, 108, 245-261.	1.5	10
714	Coordinate transformation methodology for simulating quasistatic elastoplastic solids. Physical Review E, 2020, 101, 053304.	0.8	1
715	Atomistic-level study of the mechanical behavior of amorphous and crystalline silica nanoparticles. Ceramics International, 2020, 46, 21647-21656.	2.3	11
716	High-throughput investigations of configurational-transformation-dominated serrations in CuZr/Cu nanolaminates. Journal of Materials Science and Technology, 2020, 53, 192-199.	5.6	14
717	Identifying flow defects in amorphous alloys using machine learning outlier detection methods. Scripta Materialia, 2020, 186, 185-189.	2.6	30
718	Hydrodynamic plastic flow in metal materials. Results in Materials, 2020, 6, 100090.	0.9	8
719	Mechanism of local hardening in metallic glass during He ion irradiation. Materialia, 2020, 11, 100691.	1.3	7
720	In situ high-energy X-ray diffraction study of thermally-activated martensitic transformation far below room temperature in CuZr-based bulk metallic glass composites. Journal of Alloys and Compounds, 2020, 841, 155781.	2.8	16
721	Role of pre-existing shear band morphology in controlling the fracture behavior of a Zr–Ti–Cu–Ni–Al bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139396.	2.6	8
722	Parallel three-dimensional simulations of quasi-static elastoplastic solids. Computer Physics Communications, 2020, 257, 107254.	3.0	5
723	Oxygen effect on bending behavior of a zirconium based bulk metallic glass. Journal of Non-Crystalline Solids, 2020, 535, 119966.	1.5	7

#	Article	IF	CITATIONS
724	Balancing strength and ductility of cylindrical-shaped Cu64Zr36 nanoglass via embedded Cu nanocrystals. Journal of Non-Crystalline Solids, 2020, 544, 120211.	1.5	3
725	Phase transformation and surface morphology of amorphous alloys after high pressure torsion. Materials Letters, 2020, 273, 127941.	1.3	8
726	Glass Stability Changes the Nature of Yielding under Oscillatory Shear. Physical Review Letters, 2020, 124, 225502.	2.9	60
727	Imparities of shear avalanches dynamic evolution in a metallic glass. Materials Research Letters, 2020, 8, 357-363.	4.1	42
728	Rejuvenation through plastic deformation of a La-based metallic glass measured by fast-scanning calorimetry. Journal of Non-Crystalline Solids: X, 2020, 8, 100051.	0.5	6
729	Chaotic dynamics in shear-band-mediated plasticity of metallic glasses. Physical Review B, 2020, 101, .	1.1	9
730	Microstructural characterization and mechanical behavior of nanocomposite Ti-Ni-Nb surface alloys synthesized on TiNi SMA substrate by additive thin-film electron-beam mixing. Materials Characterization, 2020, 166, 110455.	1.9	14
731	Machine learning bridges local static structure with multiple properties in metallic glasses. Materials Today, 2020, 40, 48-62.	8.3	54
732	Shear band deformation and fatigue striations during three-point bending fatigue crack growth in brittle metallic glass. Journal of Non-Crystalline Solids, 2020, 536, 119988.	1.5	11
733	A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks. Journal of Materials Research, 2020, 35, 872-889.	1.2	17
734	Plastic instabilities and yielding in amorphous solids under pure shear. Journal of Non-Crystalline Solids, 2020, 536, 119997.	1.5	0
735	Rejuvenation and shear banding in model amorphous solids. Physical Review E, 2020, 101, 033001.	0.8	39
736	Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Ability. Materials, 2020, 13, 1319.	1.3	2
737	Microstructure and mechanical properties of Fe-based bulk metallic glass composites fabricated by selective laser melting. Journal of Non-Crystalline Solids, 2020, 538, 120046.	1.5	17
738	Microstructures, Martensitic Transformation and Mechanical Properties of TiNi-Based Amorphous-Crystalline Composites. Jom, 2020, 72, 2312-2323.	0.9	2
739	Study on stochastic nature of plasticity of Cu/Zr metallic glass micropillars. Journal of Alloys and Compounds, 2020, 831, 154719.	2.8	7
740	Effect of Hydrogen Charging on Pop-in Behavior of a Zr-Based Metallic Glass. Metals, 2020, 10, 22.	1.0	10
741	Shear banding stability and fracture of metallic glass: Effect of external confinement. Journal of the Mechanics and Physics of Solids, 2020, 138, 103922.	2.3	9

#	Article	IF	CITATIONS
742	Fracture and fatigue behaviour of a laser additive manufactured Zr-based bulk metallic glass. Additive Manufacturing, 2020, 36, 101416.	1.7	24
743	Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites. Composites Part B: Engineering, 2020, 199, 108219.	5.9	28
744	Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass. Applied Sciences (Switzerland), 2020, 10, 3892.	1.3	8
745	Mechanical performance and corrosion behaviour of Zr-based bulk metallic glass produced by selective laser melting. Materials and Design, 2020, 189, 108532.	3.3	48
746	Layer thickness effects on the strengthening and toughening mechanisms in metallic glass-graphene nanolaminates. Computational Materials Science, 2020, 177, 109536.	1.4	18
747	Unusual dislocation behavior in high-entropy alloys. Scripta Materialia, 2020, 181, 127-133.	2.6	154
748	A novel FeNi-based bulk metallic glass with high notch toughness over 70ÂMPaÂm1/2 combined with excellent soft magnetic properties. Materials and Design, 2020, 191, 108597.	3.3	24
749	Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature, 2020, 578, 559-562.	13.7	203
750	Correlation between High Temperature Deformation and \hat{I}^2 Relaxation in LaCe-Based Metallic Glass. Materials, 2020, 13, 833.	1.3	8
751	Size dependent hidden serration behaviors of shear banding in metallic glass thin films. Journal of Non-Crystalline Solids, 2020, 534, 119953.	1.5	10
752	Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Applied Surface Science, 2020, 511, 145545.	3.1	44
753	Interfacial mechanics and shear deformation of indented germanium on silicon (001) using molecular dynamics. Vacuum, 2020, 173, 109184.	1.6	19
754	Atomic-level structural identification for prediction of localized shear deformation in metallic glasses. International Journal of Solids and Structures, 2020, 191-192, 363-369.	1.3	9
755	Element dependence of radiation-induced structural changes in metallic glasses. Journal of Non-Crystalline Solids, 2020, 533, 119933.	1.5	3
756	Strain rate and shear-transformation zone response of nanoindentation and nanoscratching on Ni50Zr50 metallic glasses using molecular dynamics. Physica B: Condensed Matter, 2020, 583, 412021.	1.3	13
757	High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy. Nature Communications, 2020, 11, 2110.	5.8	31
758	Observation of indentation-induced shear bands in a metalâ^'organic framework glass. Proceedings of the United States of America, 2020, 117, 10149-10154.	3.3	47
759	The matrix effect in TOF-SIMS analysis of two-element inorganic thin films. Journal of Analytical Atomic Spectrometry, 2020, 35, 1156-1166.	1.6	37

#	Article	IF	CITATIONS
760	Review on Quantum Mechanically Guided Design of Ultra-Strong Metallic Glasses. Frontiers in Materials, 2020, 7, .	1.2	7
761	Precursors to plastic failure in a numerical simulation of CuZr metallic glass. Journal of Physics Condensed Matter, 2020, 32, 174003.	0.7	1
762	Specific Features of Structure Transformation and Properties of Amorphous-Nanocrystalline Alloys. Metals, 2020, 10, 358.	1.0	7
763	Adiabatic Shear Band Formation in Metallic Glasses. , 0, , .		0
764	Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting. Journal of Materials Science and Technology, 2021, 60, 139-146.	5.6	36
765	Intermediate structural evolution preceding growing BCC crystal interface in deeply undercooled monatomic metallic liquids. Acta Materialia, 2021, 202, 387-398.	3.8	10
766	A micromechanics-based framework to predict transitions between dimple and cup-cone fracture modes in shocked metallic glasses. International Journal of Plasticity, 2021, 137, 102884.	4.1	11
767	Enhanced tensile strength and ductility of bulk metallic glasses Zr52.5Cu17.9Al10Ni14.6Ti5 via high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140485.	2.6	12
768	Structural homology of the strength for metallic glasses. Journal of Materials Science and Technology, 2021, 81, 123-130.	5.6	8
769	Critical transitions in the shape morphing of kirigami metallic glass. Journal of Materials Science and Technology, 2021, 61, 204-212.	5.6	10
770	Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM). Journal of Materials Science and Technology, 2021, 67, 174-185.	5.6	15
771	Correlation between deformation behavior and atomic-scale heterogeneity in Fe-based bulk metallic glasses. Journal of Materials Science and Technology, 2021, 65, 54-60.	5.6	13
772	Dynamic fracture behavior of Zr63Cu12Ni12Al10Nb3 metallic glass under high strain-rate loading. Journal of Alloys and Compounds, 2021, 853, 157110.	2.8	15
773	Thermo-mechanical processing of a Zr62.5Cu22.5Fe5Al10 glassy alloy as a way to obtain tensile ductility. Journal of Alloys and Compounds, 2021, 853, 157138.	2.8	9
774	Strain-dependent shear-band structure in a Zr-based bulk metallic glass. Scripta Materialia, 2021, 190, 75-79.	2.6	17
775	Effects of pre-strain on the nanoindentation behaviors of metallic glass studied by molecular dynamics simulations. Computational Materials Science, 2021, 186, 110073.	1.4	19
776	Trimodal shear band nucleation distribution in a Gd-based metallic glass via nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140402.	2.6	12
777	New evidences for understanding the serrated flow and shear band behavior in nanoindentation of metallic glasses. Journal of Alloys and Compounds, 2021, 857, 157587.	2.8	8

#	Article	IF	CITATIONS
778	Bicontinuous nanoporous design induced homogenization of strain localization in metallic glasses. Scripta Materialia, 2021, 192, 67-72.	2.6	16
779	A new continuum model for viscoplasticity in metallic glasses based on thermodynamics and its application to creep tests. Journal of the Mechanics and Physics of Solids, 2021, 146, 104216.	2.3	15
780	Shear localization in metallic materials at high strain rates. Progress in Materials Science, 2021, 119, 100755.	16.0	80
781	Tuning the mechanical properties of nanoglass-metallic glass composites with brick and mortar designs. Scripta Materialia, 2021, 194, 113639.	2.6	12
782	High-strength and tunable plasticity in sputtered Al–Cr alloys with multistage phase transformations. International Journal of Plasticity, 2021, 137, 102915.	4.1	9
783	A plastic FeNi-based bulk metallic glass and its deformation behavior. Journal of Materials Science and Technology, 2021, 76, 20-32.	5.6	35
784	The influence of intrinsic size in amorphous CuxTa100-x/Cu crystalline nanolaminates using molecular dynamics simulation. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114470.	1.3	9
785	Temperature dependence of serrated flow, strain-rate sensitivity and activation volume in a Ti-based bulk metallic glass. Journal of Non-Crystalline Solids, 2021, 553, 120497.	1.5	4
786	Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding. Materials and Design, 2021, 197, 109246.	3.3	11
787	Effect of plasticity on nanoscale wear of third-body particles. Tribology International, 2021, 155, 106739.	3.0	6
788	High-pressure torsion of Zr-based bulk metallic glasses and amorphous melt-spun ribbons. IOP Conference Series: Materials Science and Engineering, 2020, 1008, 012029.	0.3	1
789	Plastic deformation and yield strength of metals. , 2021, , 235-312.		0
790	Spatial–Temporal evolution of shear banding in bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140286.	2.6	8
791	Using delaunay triangularization to characterize non-affine displacement fields during athermal, quasistatic deformation of amorphous solids. Soft Matter, 2021, 17, 8612-8623.	1.2	5
792	Multiscale Manufacturing of Amorphous Alloys by a Facile Electrodeposition Approach and Their Property Dependence on the Local Atomic Order. ACS Applied Materials & Interfaces, 2021, 13, 9260-9271.	4.0	10
793	Atomic-scale homogeneous plastic flow beyond near-theoretical yield stress in a metallic glass. Communications Materials, 2021, 2, .	2.9	10
794	Constitutive modeling of size-dependent deformation behavior in nano-dual-phase glass-crystal alloys. International Journal of Plasticity, 2021, 137, 102918.	4.1	10
795	Current Research Status on Cold Sprayed Amorphous Alloy Coatings: A Review. Coatings, 2021, 11, 206.	1.2	17

#	Article	IF	CITATIONS
796	In situ Fe-rich particle reinforced Mg-based metallic glass matrix composites via dealloying in metallic melt. Materials Letters, 2021, 285, 129165.	1.3	4
797	Size-temperature equivalence in tensile deformation of metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140595.	2.6	4
798	High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371, 830-834.	6.0	546
799	Free volume evolution dominated by glass forming ability determining mechanical performance in Zr Ti65-Be27.5Cu7.5 metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140764.	2.6	11
800	Varying kinetic stability, icosahedral ordering, and mechanical properties of a model Zr-Cu-Al metallic glass by sputtering. Physical Review Materials, 2021, 5, .	0.9	3
801	Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nature Communications, 2021, 12, 1506.	5.8	40
802	Temperature-dependent deformation behavior of a CuZr-based bulk metallic glass composite. Journal of Alloys and Compounds, 2021, 858, 158368.	2.8	10
803	Hardening overwhelming softening in Ti-based metallic glass composites upon cold rolling. Intermetallics, 2021, 130, 107066.	1.8	6
804	Origin of different thermal cycling effects in Fe80P20 and Ni60Nb40 metallic glasses. Materials Today Physics, 2021, 17, 100349.	2.9	5
805	Corrosion Studies of Hf64Cu18Ni18 Metallic Glass in Acidic and Alkaline Media. Transactions of the Indian Institute of Metals, 2021, 74, 949-956.	0.7	2
806	Hardened core of bilayer shear bands in a Zr-based metallic glass. Materials Letters, 2021, 286, 129242.	1.3	2
807	Rejuvenation of a naturally aged bulk metallic glass by elastostatic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140843.	2.6	12
808	Observation of cavitation governing fracture in glasses. Science Advances, 2021, 7, .	4.7	33
809	Development of Bulk Metallic Glasses and their Composites by Additive Manufacturing - Evolution, Challenges and a Proposed Novel Solution. Advanced Materials Research, 0, 1163, 1-26.	0.3	2
811	High strain rate in situ micropillar compression of a Zr-based metallic glass. Journal of Materials Research, 2021, 36, 2325-2336.	1.2	13
812	Dependence of ductile-brittle transition related with serrated flow on viscosity dominated by glass forming ability in ZrxTi65-xBe27.5Cu7.5 metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 141057.	2.6	5
813	Plasmon energy losses in shear bands of metallic glass. Ultramicroscopy, 2021, 223, 113220.	0.8	3
814	Effect of the initial temperature on the shock response of Cu50Zr50 bulk metallic glass by molecular dynamics simulation. Journal of Applied Physics, 2021, 129, .	1.1	14

#	Article	IF	CITATIONS
815	Fatigue behavior of a Ti-based metallic glass: Effect of sampling location in association with free volume. Journal of Alloys and Compounds, 2021, 861, 158432.	2.8	5
816	Enhanced strain rate sensitivity in thermal-cycling-rejuvenated metallic glasses. Journal of Alloys and Compounds, 2021, 861, 158632.	2.8	6
817	Design ductile and work-hardenable composites with all brittle constituents. Acta Materialia, 2021, 208, 116770.	3.8	10
818	A universal criterion for the failure threshold in slowly sheared bulk metallic glasses. Journal of Applied Physics, 2021, 129, .	1.1	7
819	Microstructure and mechanical properties of Zr55Cu30Al10Ni5 amorphous alloy with high-energy states produced by strip casting. Journal of Alloys and Compounds, 2021, 861, 158542.	2.8	10
820	Nanocrystal formation in homogeneous and heterogeneous amorphous phases. Physics-Uspekhi, 2022, 65, 227-244.	0.8	5
821	Impact of cryogenic cycling on tracer diffusion in plastically deformed Pd40 Ni40 P20 bulk metallic glass. Acta Materialia, 2021, 209, 116785.	3.8	17
822	Atomistic understanding of creep and relaxation mechanisms of Cu64Zr36 metallic glass at different temperatures and stress levels. Journal of Non-Crystalline Solids, 2021, 559, 120676.	1.5	12
823	Molecular Dynamics Study of the Nanoindentation Behavior of Cu64Zr36/Cu Amorphous/Crystalline Nanolaminate Composites. Materials, 2021, 14, 2756.	1.3	10
824	Interaction of dislocations and shear bands in cutting of an amorphous-crystalline bilayer: An atomistic study. Computational Materials Science, 2021, 192, 110379.	1.4	11
825	Zr61Ti2Cu25Al12 bulk metallic glass under three-point bending: Characteristic of large-deflection deformation. Intermetallics, 2021, 132, 107156.	1.8	6
826	Self-formation of dual glassy-crystalline structure in magnetron sputtered W–Zr films. Vacuum, 2021, 187, 110099.	1.6	7
827	Nanoscale periodic distribution of energy dissipation at the shear band plane in a Zr-based metallic glass. Scripta Materialia, 2021, 197, 113784.	2.6	21
828	Molecular dynamics study on the nanovoid collapse and local deformation in shocked Cu50Zr50 metallic glasses. Journal of Non-Crystalline Solids, 2021, 559, 120703.	1.5	13
829	Effect of strain rates on the plastic deformation behavior and serrated flow of Zr55.7Cu22.4Ni7.2Al14.7 bulk metallic glass. Materials Today Communications, 2021, 27, 102320.	0.9	1
830	Determining deformation behaviors in a CuZr-based bulk metallic glass composite. Journal of Non-Crystalline Solids, 2021, 561, 120768.	1.5	5
831	Shear Band Evolution under Cyclic Loading and Fatigue Property in Metallic Glasses: A Brief Review. Materials, 2021, 14, 3595.	1.3	4
832	Electrodeposited metallic glasses with superlative wear resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 816, 141315.	2.6	11

#	Article	IF	CITATIONS
833	Amorphous complexions alter the tensile failure of nanocrystalline Cu-Zr alloys. Materialia, 2021, 17, 101134.	1.3	7
834	Response of an amorphous/crystalline interface to nanoindentation: an atomistic study. Applied Surface Science, 2021, 551, 149285.	3.1	14
835	Unveiling local atomic bonding and packing of amorphous nanophases via independent component analysis facilitated pair distribution function. Acta Materialia, 2021, 212, 116932.	3.8	13
836	On the relationship between the accumulation and release of elastic energy during the flow serrations of a Zr-based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141423.	2.6	6
837	Shear-induced chemical segregation in a Fe-based bulk metallic glass at room temperature. Scientific Reports, 2021, 11, 13650.	1.6	8
838	Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon. Materials and Design, 2021, 205, 109711.	3.3	24
839	Breakdown of the Hall-Petch relationship in extremely fine nanograined body-centered cubic Mo alloys. Acta Materialia, 2021, 213, 116950.	3.8	30
840	Character of the Distribution of Shear Bands According to the Volume of a Sample of Amorphous Alloy Based on Zr after Torsion under Pressure in a Bridgeman Chamber. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85, 782-790.	0.1	2
842	Role of amorphous layer and interfaces on the tensile behaviors of triple-phase Ti/Ni nanolaminates: A molecular dynamics study. Journal of Alloys and Compounds, 2021, 868, 159282.	2.8	8
843	Transition to chip serration in simulated cutting of metallic glasses. European Physical Journal B, 2021, 94, 1.	0.6	3
844	Novel class of nanostructured metallic glass films with superior and tunable mechanical properties. Acta Materialia, 2021, 213, 116955.	3.8	32
845	Recreating the shear band evolution in nanoscale metallic glass by mimicking the atomistic rolling deformation: a molecular dynamics study. Journal of Molecular Modeling, 2021, 27, 220.	0.8	5
846	The physics of severe plastic deformation. Physics-Uspekhi, 0, , .	0.8	0
847	Effect of aspect ratio on the serrated flow behavior of Zr61.7Al8Ni13Cu17Sn0.3 bulk metallic glass. Journal of Materials Science, 2021, 56, 16712-16725.	1.7	0
848	Shear fracture in bulk metallic glass composites. Acta Materialia, 2021, 213, 116963.	3.8	33
849	Identifying the high entropy characteristic in La-based metallic glasses. Applied Physics Letters, 2021, 119, .	1.5	3
850	Influence of High-Frequency Impact Treatment on the Mechanical Properties and Break Surface Fractography of Amorphous Ribbon. Metallofizika I Noveishie Tekhnologii, 2021, 43, 655-671.	0.2	0
851	Bulk metallic glass composites containing B2 phase. Progress in Materials Science, 2021, 121, 100799.	16.0	53

#	Article	IF	CITATIONS
852	Tuning of mechanical properties of Tantalum-based metallic glasses. International Journal of Mechanical Sciences, 2021, 204, 106546.	3.6	13
853	Influence of stoichiometry on indentation-induced plasticity in CuZr glasses. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	4
854	Dynamic mechanical relaxation and thermal creep of high-entropy La30Ce30Ni10Al20Co10 bulk metallic glass. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	37
855	Formation of a phase separated structure in the Zr–Cu–Fe–Al alloys by thermo-mechanical processing. Intermetallics, 2021, 135, 107224.	1.8	8
856	Flow serrations of rejuvenation behaviour through cryogenic thermal cycling for Zr-based bulk metallic glass. Philosophical Magazine, 2021, 101, 2261-2272.	0.7	2
857	Indentation of glasses. Progress in Materials Science, 2021, 121, 100834.	16.0	54
858	Interaction between parallel shear bands in a metallic glass. Journal of Non-Crystalline Solids, 2021, 566, 120882.	1.5	14
859	Correlations between the hierarchical spatial heterogeneity and the mechanical properties of metallic glasses. International Journal of Mechanical Sciences, 2021, 204, 106570.	3.6	8
860	Structural evolution of a CuZr-based bulk metallic glass composite during cryogenic treatment observed by in-situ high-energy X-ray diffraction. Journal of Alloys and Compounds, 2021, 871, 159570.	2.8	13
861	Composition and size dependent torsion fracture of metallic glasses. Journal of Materials Science and Technology, 2021, 82, 153-160.	5.6	5
862	In-situ observations on shear-banding process during tension of a Zr-based bulk metallic glass composite with dendrites. Journal of Non-Crystalline Solids, 2021, 565, 120841.	1.5	8
863	Influence of sub-Tg annealing on microstructure and crystallization behavior of TiZr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2021, 565, 120855.	1.5	6
864	Effect of High-Temperature Rolling and Annealing on the Structure and Properties of a Zirconium Based Amorphous Alloy. Physics of Metals and Metallography, 2021, 122, 789-793.	0.3	2
865	Towards damage resistant Al2O3–SiO2 glasses with structural and chemical heterogeneities through consolidation of glassy nanoparticles. Acta Materialia, 2021, 215, 117016.	3.8	8
866	CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting. Journal of Materials Science and Technology, 2021, 81, 139-150.	5.6	21
867	Vacuum infiltration molding and mechanical property of short carbon fiber reinforced Ti-based metallic glass matrix composite. Journal of Materials Processing Technology, 2021, 295, 117151.	3.1	13
868	Microstructure Quantification and Multiresolution Mechanical Characterization of Ti-Based Bulk Metallic Glass-Matrix Composites. Jom, 2021, 73, 3312-3322.	0.9	4
869	Tensile ductility and necking in consolidated amorphous alumina. Journal of the American Ceramic Society, 2022, 105, 958-965.	1.9	3

#	Article	IF	CITATIONS
870	Cu-based amorphous alloy plates fabricated via twin-roll strip casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142123.	2.6	11
871	Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach. Journal of Materials Science and Technology, 2021, 84, 97-104.	5.6	9
872	Morphology of cracks and shear bands in polymer-supported thin film metallic glasses. Materials Today Communications, 2021, 28, 102547.	0.9	3
873	Investigation of Thermophysical Properties of Zr-Based Metallic Glass-Polymer Composite. Metals, 2021, 11, 1412.	1.0	5
874	Size dependence of ductile to brittle transition of Zr-based metallic glasses under multiaxial loading. Journal of Materials Research and Technology, 2021, 14, 754-764.	2.6	4
875	Modelling the Shear Banding in Gradient Nano-Grained Metals. Nanomaterials, 2021, 11, 2468.	1.9	4
876	Effect of alloying oxygen on the microstructure and mechanical properties of Zr-based bulk metallic glass. Acta Materialia, 2021, 220, 117345.	3.8	33
877	Effects of Al replacement on glass forming ability and mechanical properties of Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2021, 568, 120962.	1.5	9
878	Critical growth and energy barriers of atomic-scale plastic flow units in metallic glasses. Scripta Materialia, 2021, 202, 114033.	2.6	4
879	The in-situ β phase reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141720.	2.6	4
880	Friction and Adhesion Govern Yielding of Disordered Nanoparticle Packings: A Multiscale Adhesive Discrete Element Method Study. Nano Letters, 2021, 21, 7989-7997.	4.5	0
881	Exceptionally shear-stable and ultra-strong Ir-Ni-Ta high-temperature metallic glasses at micro/nano scales. Science China Materials, 0, , 1.	3.5	0
882	Flaw-insensitive fracture of a micrometer-sized brittle metallic glass. Acta Materialia, 2021, 218, 117219.	3.8	17
883	Control of shear band formation in metallic glasses through introducing nanoscale pores. Journal of Non-Crystalline Solids, 2021, 569, 120994.	1.5	8
884	Ductile behavior and excellent corrosion resistance of Mg-Zn-Yb-Ag metallic glasses. Materials and Design, 2021, 210, 110027.	3.3	12
885	Tailoring microstructure of metallic glass for delocalized plasticity by pressure annealing: Forward and inverse studies. Acta Materialia, 2021, 220, 117282.	3.8	8
886	Fracture mechanisms in flat and cylindrical tensile specimens of TRIP-TWIP <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.svg"> <mml:mi>î² </mml:mi> -metastable Ti-12Mo alloy. Acta Materialia, 2021, 220, 117294.</mml:math 	3.8	12
887	Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting. Composites Part B: Engineering, 2021, 224, 109226.	5.9	21

#	Article	IF	CITATIONS
888	Chemical heterogeneous structure and internal record of deformation behavior in Cu-Fe-Zr metallic glasses. Journal of Alloys and Compounds, 2021, 886, 161220.	2.8	5
889	Effect of particle size on dynamic mechanical behaviors of W particles/Zr-based bulk metallic glass composites. Journal of Alloys and Compounds, 2021, 885, 160545.	2.8	6
890	Dynamic response and damage evolution of Zr-based bulk metallic glass under shock loading. Journal of Materials Science and Technology, 2021, 93, 119-127.	5.6	14
891	High-Entropy Alloys: Bulk Metallic Glasses. , 2022, , 318-326.		1
892	Inverse size effects in un-notched and notched metallic glass thin films. Journal of Non-Crystalline Solids, 2022, 575, 121172.	1.5	2
893	Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates. Journal of Materials Science and Technology, 2022, 99, 178-183.	5.6	8
894	Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates. Journal of Materials Science and Technology, 2022, 105, 226-236.	5.6	25
895	Composite. Interface Science and Technology, 2021, , 211-278.	1.6	1
896	Effect of Surface Mechanical Attrition Treatment on Micro-mechanical Properties of ZrCuAlNi Bulk Metallic Glass. Materials Research, 2021, 24, .	0.6	5
897	Metallic Glasses. Springer Handbooks, 2019, , 617-643.	0.3	6
898	An atomic-level perspective of shear band formation and interaction in monolithic metallic glasses. Applied Materials Today, 2020, 21, 100828.	2.3	12
899	Centimeter-sized CuZrAl bulk metallic glass with good plasticity and chemical heterogeneity. Intermetallics, 2020, 121, 106773.	1.8	15
900	On the mechanical properties of particle reinforced metallic glass matrix composites. Journal of Alloys and Compounds, 2018, 737, 271-294.	2.8	21
901	On the formation of shear bands in a metallic glass under tailored complex stress fields. Journal of Materials Science and Technology, 2020, 53, 112-117.	5.6	24
902	Nanostructural metallic materials: Structures and mechanical properties. Materials Today, 2020, 38, 114-135.	8.3	150
903	The mechanism of shear-band blocking in monolithic metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 162-166.	2.6	9
904	Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning. Npj Computational Materials, 2020, 6, .	3.5	35
905	Atomic imprinting in the absence of an intrinsic length scale. APL Materials, 2020, 8, .	2.2	12

#	Article	IF	CITATIONS
906	Adhesive wear mechanisms in the presence of weak interfaces: Insights from an amorphous model system. Physical Review Materials, 2019, 3, .	0.9	15
907	Shear banding mechanism in compressed nanocrystalline ceramic nanopillars. Physical Review Materials, 2019, 3, .	0.9	6
908	Elastostatic loading of metallic glass-crystal nanocomposites: Relationship of creep rate and interface energy. Physical Review Materials, 2019, 3, .	0.9	6
909	Brittle yielding of amorphous solids at finite shear rates. Physical Review Materials, 2020, 4, .	0.9	35
910	Chemical bonding in metallic glasses from machine learning and crystal orbital Hamilton population. Physical Review Materials, 2020, 4, .	0.9	6
911	Role of fluctuations in the yielding transition of two-dimensional glasses. Physical Review Research, 2020, 2, .	1.3	24
912	Fatigue of Metallic Glasses. Applied Mechanics Reviews, 2020, 72, .	4.5	23
913	Shear Bands in Materials Processing: Understanding the Mechanics of Flow Localization From Zener's Time to the Present. Applied Mechanics Reviews, 2020, 72, .	4.5	6
914	Shear Modulus Relaxation and Thermal Effects in a Zr65Cu15Ni10Al10 Metallic Glass after Inhomogeneous Plastic Deformation. Journal of Experimental and Theoretical Physics, 2020, 131, 582-588.	0.2	5
915	High Frequency Vibrations Impact on Mechanical Properties of Nanocrystalline Titanium. Metallofizika I Noveishie Tekhnologii, 2016, 38, 189-203.	0.2	2
916	Effects of Temperature and Alloy Composition on Nanomechanical Properties of ZrCu Metallic Glass under Tension. Current Nanoscience, 2019, >15, 481-485.	0.7	1
917	Effects of Al Addition on Microstructures and Mechanical Properties of CoCrFeMnNiAlx High Entropy Alloy Films. Entropy, 2020, 22, 2.	1.1	35
918	Simulation of Solidification Parameters during Zr Based Bulk Metallic Glass Matrix Composite's (BMGMCs) Additive Manufacturing. Engineering, 2018, 10, 85-108.	0.4	2
919	Production and Characterization of Zr Based Bulk Metallic Glass Matrix Composites (BMGMC) in the Form of Wedge Shape Ingots. Engineering, 2018, 10, 215-245.	0.4	8
920	Effect of Inoculation on Phase Formation and Indentation Hardness Behaviour of Zr _{47.5} Cu _{45.5} Al& and Zr ₆₅ Cu ₁₅ Al <sub Delle Motellia Chara Mattic Comparison Facility 2019, 10, 520, 550</sub 	lt;SUB&an 0.4 JB&g	np;gt;5& 4 t;10<
921	Heterogeneity: the soul of metallic glasses. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176112.	0.2	9
922	Inherited structure of amorphous matter. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176405.	0.2	3
923	Understanding of the Shear Bands in Amorphous Metals. Applied Microscopy, 2015, 45, 63-73.	0.8	20

#	Article	IF	CITATIONS
924	Indentation deformation and cracking behavior of hydrated aluminoborate glasses. Journal of the American Ceramic Society, 2022, 105, 1039-1051.	1.9	0
925	Computational investigation of deformation mechanisms at the atomistic scale of metallic glass-graphene composites (MGGCs). Journal of Applied Physics, 2021, 130, .	1.1	1
927	Ductilization of bulk metallic glassy material and its mechanism. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176111.	0.2	3
928	Self-organized critical behavior in plastic flow of amorphous solids. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 178103.	0.2	5
929	Five-fold local symmetries in metallic liquids and glasses. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176107.	0.2	6
930	Self-Organization in Viscous Liquids. Metallofizika I Noveishie Tekhnologii, 2017, 39, 1435-1443.	0.2	2
931	Effect of Single Pass Laser Surface Treatment on Microstructure Evolution of Inoculated Zr _{47.5} Cu _{45.5} Al ₅ Co _{2and Non-Inoculated Zr₆₅Cu₁₅Al₁₀Ni_{10Bub Materilis Characteristics For incoding 2019, 10, 720, 759}}	SUB> 0.4 JB>	1
932	Factors Affecting Temperature Rise in Shear Bands in a Simulated CuZr Metallic Glass. Structural Integrity, 2019, , 350-351.	0.8	0
933	Microstructure evolution during near- Tg annealing and its effect on shear banding in model alloys. Physical Review Materials, 2019, 3, .	0.9	3
934	Constitutive Modeling in Metallic Glasses for Predictions and Designs. , 2020, , 2021-2047.		0
935	The Influence of Feedstock Powder. Materials Forming, Machining and Tribology, 2020, , 33-85.	0.7	4
936	Inhibition of Electropulsing Nanocrystallization in Amorphous ZrCu under Helium Atmosphere. Materials Transactions, 2020, 61, 878-883.	0.4	4
937	On low-temperature strength and tensile ductility of bulk metallic glass composites containing stable or shape memory Î ² -Ti crystals. Acta Materialia, 2022, 222, 117444.	3.8	17
938	Predicting Fracture Propensity in Amorphous Alumina from Its Static Structure Using Machine Learning. ACS Nano, 2021, 15, 17705-17716.	7.3	20
939	Shear Transformation Zone Dynamics Modeling of Deformation in Metallic Glasses. , 2020, , 1237-1263.		0
940	Shear band evolution related with thermal annealing revealing ductile-brittle transition of Zr35Ti30Be27.5Cu7.5 metallic glass under complex stress state. Intermetallics, 2022, 140, 107378.	1.8	8
941	Excellent work-hardening in ZrCu/NiNb amorphous/amorphous nanolaminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142277.	2.6	4
942	Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite. Journal of Materials Science and Technology, 2022, 106, 225-235.	5.6	19

#	Article	IF	Citations
943	Crystalline defects in bulk metallic glasses: consequences on fracture toughness determination and ductility. Journal of Physics Condensed Matter, 2020, 32, 483001.	0.7	2
944	Time-dependent deformation mechanism of metallic glass in different structural states at different temperatures. Journal of Non-Crystalline Solids, 2022, 576, 121221.	1.5	2
945	Improved mechanical properties and corrosion resistance of Zr-Cu-Al-Ni-Ti bulk metallic glass by Fe substitution for Ni. Journal of Non-Crystalline Solids, 2022, 576, 121246.	1.5	9
946	Evolution of the Zr42.5Сu42.5Al10Fe5 amorphous alloy structure during the HPT process. Journal of Non-Crystalline Solids, 2022, 576, 121220.	1.5	6
947	Dynamic responses in shocked Cu-Zr nanoglasses with gradient microstructure. International Journal of Plasticity, 2022, 149, 103154.	4.1	15
948	Laser additive manufacturing of metallic glasses: issues in vitrification and mechanical properties. Oxford Open Materials Science, 2020, 1, .	0.5	4
949	The initiation of shear band formation in deformed metallic glasses from soft localized domains. Journal of Chemical Physics, 2021, 155, 204504.	1.2	13
950	Review of the Recent Development in Metallic Glass and Its Composites. Metals, 2021, 11, 1933.	1.0	18
951	Quantifying the Local Structure of Nanocrystals, Glasses, and Interfaces Using TEM-Based Diffraction. Chemistry of Materials, 2021, 33, 8990-9011.	3.2	3
952	On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses. Journal of Alloys and Compounds, 2022, 898, 162960.	2.8	7
953	Stress and Deformation During Solidification of Amorphous Alloys Causes Microstructural Inhomogeneity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 6-11.	1.1	1
954	Low-speed machining of a Zr-based bulk metallic glass. Journal of Manufacturing Processes, 2021, 72, 565-581.	2.8	19
955	Temperature rise up to melting under quasi-static loading conditions induced by adiabatic shear banding. Materials and Design, 2021, 212, 110269.	3.3	5
956	The Creep Deformation and Structural Dynamics of Zr _{47.5} Cu _{47.5} Al ₅ Metallic Glass Upon DCT Treatment. SSRN Electronic Journal, 0, , .	0.4	0
957	Investigation of the softening behavior in severely deformed micromachined sub-surface of Zr-based bulk metallic glass via nanoindentation. Journal of Non-Crystalline Solids, 2022, 576, 121280.	1.5	9
958	In Situ Generated Shear Bands in Metallic Glass Investigated by Atomic Force and Analytical Transmission Electron Microscopy. Metals, 2022, 12, 111.	1.0	4
959	Characterization of the deformation behaviors under uniaxial stress for bicontinuous nanoporous amorphous alloys. Physical Chemistry Chemical Physics, 2022, 24, 1099-1112.	1.3	14
960	Correlation between phase transformation and surface morphology under severe plastic deformation of theAl87Ni8La5 amorphous alloy. Journal of Non-Crystalline Solids, 2022, 577, 121279.	1.5	7

#	Article	IF	CITATIONS
961	Structural evolution under elastic cyclic loading in a Ti-based metallic glass. Journal of Non-Crystalline Solids, 2022, 577, 121263.	1.5	3
962	Discovering exceptionally hard and wear-resistant metallic glasses by combining machine-learning with high throughput experimentation. Applied Physics Reviews, 2022, 9, .	5.5	12
963	Yielding transition of a two dimensional glass former under athermal cyclic shear deformation. Journal of Chemical Physics, 2022, 156, 064502.	1.2	5
964	Deformation behavior of Zr33Hf8Ti6Cu32Ni10Co5Al6 high-entropy bulk metallic glass and Cu47Zr47Al6 low-entropy bulk metallic glass at room and high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142499.	2.6	13
965	Enhanced mechanical and antibacterial properties of Cu-bearing Ti-based bulk metallic glass by controlling porous structure. Journal of Alloys and Compounds, 2022, 904, 164005.	2.8	14
966	Pronounced softening of a Zr-based metallic glass in micro annular gap flow. Materials Research Letters, 2022, 10, 62-69.	4.1	3
967	Tuning length scale effect of hardness in Ag/Nb/Cu/Nb multilayers by Nb amorphous interlayer. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142651.	2.6	4
968	Nanoheterogeneous ZrTa metallic glass thin films with high strength and toughness. Journal of Alloys and Compounds, 2022, 901, 163578.	2.8	6
969	Nanoscale structural heterogeneity perspective on the ameliorated magnetic properties of a Fe-based amorphous alloy with decreasing cooling rate. Journal of Non-Crystalline Solids, 2022, 581, 121433.	1.5	4
970	Dynamic mechanical behaviors of metallic glass-shape memory alloy bilayered nanocomposite under shock wave compression. Journal of Non-Crystalline Solids, 2022, 581, 121419.	1.5	7
971	Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy. Journal of Materials Science and Technology, 2022, 114, 42-54.	5.6	9
972	Mechanical Behavior of Fe- and Co-Based Amorphous Alloys after Thermal Action. Metals, 2022, 12, 297.	1.0	2
973	Strain-hardening under uniaxial tension in a rejuvenated bulk metallic glass. Scripta Materialia, 2022, 212, 114572.	2.6	5
974	Discontinuous yielding transition of amorphous materials with low bulk modulus. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 123201.	0.9	1
975	Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 058101.	0.2	0
976	On the deformation and failure mechanisms of hydrogen alloyed metallic glasses. Journal of Applied Physics, 2022, 131, .	1.1	7
977	Penetration Gain Study of a Tungsten-Fiber/Zr-Based Metallic Glass Matrix Composite. Crystals, 2022, 12, 284.	1.0	2
978	The Effect of Free Volume on the Crystallization of Al87Ni8Gd5 Amorphous Alloy. Metals, 2022, 12, 332.	1.0	12

#	Article	IF	CITATIONS
979	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
980	Review of Thermoplastic Drawing with Bulk Metallic Glasses. Metals, 2022, 12, 518.	1.0	12
981	Molecular Dynamics Simulation of the Nanoindentation of Coal Vitrinite. Frontiers in Earth Science, 2022, 10, .	0.8	1
982	Assessment of Severe Plastic Deformation Processes in Bulk and Nanostructured Metallic Glass. Frontiers in Materials, 2022, 9, .	1.2	1
983	Low-temperature relaxation behavior of a bulk metallic glass leading to improvement of both strength and plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142841.	2.6	4
984	The correlation between structural characteristics and plasticity mediated by shear transformation zone size in amorphous alloys. Intermetallics, 2022, 143, 107496.	1.8	5
985	Chemical affinity can govern notch-tip brittle-to-ductile transition in metallic glasses. Extreme Mechanics Letters, 2022, 52, 101651.	2.0	5
986	Atomic study on deformation behaviors of crystal-glass nanocomposite with a typical hierarchical structure. Computational Materials Science, 2022, 206, 111287.	1.4	7
987	Formation ability, thermal stability, and mechanical properties of the Zr50Cu34Al8Ag8 amorphous alloys prepared by different mold materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142978.	2.6	15
988	Stress-induced gradient rejuvenation framework and memory effect in a metallic glass. Scripta Materialia, 2022, 213, 114636.	2.6	7
989	Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable Î ² -Ti crystals. Acta Materialia, 2022, 229, 117827.	3.8	14
990	A strategy to design Ti-based in-situ bulk metallic glass composites containing controllable volume fraction and composition of the dendrite phase using conventional titanium alloy Ti–6Al–4V. Journal of Materials Research and Technology, 2022, 18, 1834-1841.	2.6	2
991	Improving fatigue performance of metallic glasses with crystalline metal coating revealed by atomistic simulations. Journal of Non-Crystalline Solids, 2022, 586, 121559.	1.5	4
992	Bulk metallic glass cantilever beams: Outstanding at large-deflection deformation and their application in complaint mechanisms. Journal of Alloys and Compounds, 2022, 906, 164335.	2.8	3
993	Thermoplasticity of metallic glasses: Processing and applications. Progress in Materials Science, 2022, 127, 100941.	16.0	26
994	Effect of Al composition tuning on properties and structure in Zr-Co-Al metallic glass. Journal of Alloys and Compounds, 2022, 907, 164534.	2.8	0
995	Deformation and fracture behaviors of Zr-based metallic glasses under different constraint shear angles. Journal of Non-Crystalline Solids, 2022, 586, 121558.	1.5	2
996	Microstructural and mechanical evolution of amorphous Zr-Si with irradiation induced atomic reconfiguration and free volume variation. Surfaces and Interfaces, 2022, 30, 101890.	1.5	2

#	Article	IF	CITATIONS
997	A bridge from metallic glasses to medium-entropy alloys in Ti-Cu-Zr-Pd-Co system: Design, microstructure, and deformation-induced-martensitic transformation. Journal of Non-Crystalline Solids, 2022, 587, 121608.	1.5	4
998	Effects of sample diameter, aspect ratio, and strain rate on compressive deformation and fracture behavior of Zr50Cu34Al8Ag8 metallic glass. Journal of Non-Crystalline Solids, 2022, 587, 121583.	1.5	5
999	Effects of cryogenic thermal cycling on a La-based metallic glass: Relaxation or rejuvenation?. Journal of Alloys and Compounds, 2022, 909, 164741.	2.8	3
1000	Hardening and toughening effects of intermediate nanosized structures in a confined amorphous alloy film. Journal of Materials Science and Technology, 2022, 118, 44-53.	5.6	4
1001	Surface and Structure of Amorphous Alloys after Pressure Treatment. Journal of Surface Investigation, 2021, 15, 1117-1122.	0.1	4
1002	The Evolution of Micromechanical Properties for Zr-Based Metallic Glass Induced by Laser Shock Peening. Frontiers in Materials, 2021, 8, .	1.2	2
1003	Giant configurational softening controls atomic-level process of shear banding in metallic glasses. Physical Review Materials, 2021, 5, .	0.9	6
1004	Plasticity of Metal–Organic Framework Glasses. Journal of the American Chemical Society, 2021, 143, 20717-20724.	6.6	21
1005	Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films. Coatings, 2021, 11, 1539.	1.2	12
1006	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593.	0.4	2
1006 1007	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593. Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172.	0.4 2.6	2
1006 1007 1008	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593. Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172. Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120.	0.4 2.6 5.8	2 3 27
1006 1007 1008 1009	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593.Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172.Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120.Effect of Nb and Ta addition on mechanical properties of Zr-based bulk metallic glasses and composites. Journal of Alloys and Compounds, 2022, 912, 165071.	0.4 2.6 5.8 2.8	2 3 27 13
1006 1007 1008 1009	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593. Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172. Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120. Effect of Nb and Ta addition on mechanical properties of Zr-based bulk metallic glasses and composites. Journal of Alloys and Compounds, 2022, 912, 165071. Effective Energy Density of Glass Rejuvenation. Acta Mechanica Solida Sinica, 2022, 35, 746-754.	0.4 2.6 5.8 2.8 1.0	2 3 27 13 5
1006 1007 1008 1009 1010	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593. Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172. Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120. Effect of Nb and Ta addition on mechanical properties of Zr-based bulk metallic glasses and composites. Journal of Alloys and Compounds, 2022, 912, 165071. Effective Energy Density of Glass Rejuvenation. Acta Mechanica Solida Sinica, 2022, 35, 746-754. Shear Banding in Binary Cu-Zr Metallic Glass: Comparison of the G-Phase With L-Phase. Frontiers in Materials, 2022, 9, .	0.4 2.6 5.8 2.8 1.0 1.2	2 3 27 13 5 1
1006 1007 1008 1009 1011 1012	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593. Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172. Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120. Effect of Nb and Ta addition on mechanical properties of Zr-based bulk metallic glasses and composites. Journal of Alloys and Compounds, 2022, 912, 165071. Effective Energy Density of Class Rejuvenation. Acta Mechanica Solida Sinica, 2022, 35, 746-754. Shear Banding in Binary Cu-Zr Metallic Glass: Comparison of the G-Phase With L-Phase. Frontiers in Materials, 2022, 9, . The formation and propagation mechanism of shear band in bulk metallic glasses under dynamic compression. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143165.	0.4 2.6 5.8 2.8 1.0 1.2 2.6	2 3 27 13 5 1
1006 1007 1008 1009 1010 1011	Mechanics of amorphous solids. Chinese Science Bulletin, 2022, 67, 2578-2593. Shear banding and serrated flow behaviors of high toughness Zr61Ti2Cu25Al12 bulk metallic glass under bending. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143172. Extra plasticity governed by shear band deflection in gradient metallic glasses. Nature Communications, 2022, 13, 2120. Effect of Nb and Ta addition on mechanical properties of Zr-based bulk metallic glasses and composites. Journal of Alloys and Compounds, 2022, 912, 165071. Effective Energy Density of Glass Rejuvenation. Acta Mechanica Solida Sinica, 2022, 35, 746-754. Shear Banding in Binary Cu-Zr Metallic Glass: Comparison of the G-Phase With L-Phase. Frontiers in Materials, 2022, 9, . The formation and propagation mechanism of shear band in bulk metallic glasses under dynamic compressing. 2022, 844, 143165. The effect of Al content on Ti/Zr-based bulk metallic glass composite by additive manufacturing. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143162.	0.4 2.6 5.8 2.8 1.0 1.2 2.6 2.6	2 3 27 13 5 1 7 2

#	Article	IF	CITATIONS
1015	A constitutive model for metallic glasses based on two-temperature nonequilibrium thermodynamics. International Journal of Plasticity, 2022, 154, 103309.	4.1	9
1016	Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation. International Journal of Plasticity, 2022, 154, 103305.	4.1	26
1017	Local symmetry predictors of mechanical stability in glasses. Science Advances, 2022, 8, eabn0681.	4.7	9
1018	Improvement the Plasticity of a Zr - Ni - Al Bulk Metallic Glass by Static Quenching. SSRN Electronic Journal, 0, , .	0.4	0
1019	Reverse Transformation in [110]-Oriented Face-Centered-Cubic Single Crystals Studied by Atomic Simulations. Acta Metallurgica Sinica (English Letters), 2022, 35, 1631-1640.	1.5	2
1020	Extracting governing system for the plastic deformation of metallic glasses using machine learning. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	4
1021	Elastic criterion for shear-banding instability in amorphous solids. Physical Review E, 2022, 105, 045003.	0.8	8
1022	Unraveling the threshold stress of structural rejuvenation of metallic glasses via thermo-mechanical creep. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	12
1023	Glass as a State of Matter—The "newer―Glass Families from Organic, Metallic, Ionic to Non-silicate Oxide and Non-oxide Glasses. Reviews in Mineralogy and Geochemistry, 2022, 87, 1039-1088.	2.2	9
1024	Effect of testing conditions on the nanomechanical behavior of surface and inner core of as-cast Zr-base bulk metallic glassy plates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143206.	2.6	2
1025	Nanoscale creep behavior and its size dependency of a Zr-based bulk metallic glass manufactured by selective laser melting. Materials and Design, 2022, 218, 110723.	3.3	8
1026	Effect of sample size and cooling rate on the plastic deformation behavior of bulk metallic glasses: A comparative study. Journal of Non-Crystalline Solids, 2022, 589, 121643.	1.5	7
1027	Effect of structural heterogeneity on work-hardening behavior of metallic glass thin film. Journal of Alloys and Compounds, 2022, 913, 165299.	2.8	4
1028	In situ tensile and fracture behavior of monolithic ultra-thin amorphous carbon in TEM. Carbon, 2022, 196, 236-242.	5.4	5
1029	Improved Mechanical Properties of Metallic Glass by 2D Gradient Rejuvenation. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 177-184.	0.1	0
1030	Failure behavior and criteria of metallic glasses. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	3
1031	Effect of composition and nanostructure on the mechanical properties and thermal stability of Zr100-xCux thin film metallic glasses. Materials and Design, 2022, 219, 110752.	3.3	6
1032	Ultrasonic-Assisted Shearing Characteristics of Fe-Based Amorphous Alloy Strips. Journal of Materials Engineering and Performance, 2022, 31, 9630-9642.	1.2	2

#	Article	IF	CITATIONS
1033	Metallic glass nanostructures: Forming strategies and functional applications. Materials Today Advances, 2022, 15, 100253.	2.5	3
1034	Influence of magnetic interaction on configurational-entropy-suppressed <i>β</i> -relaxations in FeNi-based metallic glasses. AIP Advances, 2022, 12, 065304.	0.6	0
1035	Evolution of local densities during shear banding in Zr-based metallic glass micropillars. Acta Materialia, 2022, 235, 118068.	3.8	14
1036	The atomistic mechanism of notch sensitivity on the deformation mode in metallic glasses. Journal of Applied Physics, 2022, 131, 225108.	1.1	0
1037	Grain Size and Heterophase Effects on Mechanical Properties of Mg-Cu Nanoglasses. Frontiers in Materials, 0, 9, .	1.2	0
1038	Mapping Shear Bands in Metallic Glasses: From Atomic Structure to Bulk Dynamics. Physical Review Letters, 2022, 128, .	2.9	13
1039	The Strain Rate Sensitivity of Heterogeneous Thin Film Metallic Glasses: Interplay Between Nanoscale Heterogeneity and Dynamic Plasticity. Frontiers in Materials, 0, 9, .	1.2	3
1040	Hidden spatiotemporal sequence in transition to shear band in amorphous solids. Physical Review Research, 2022, 4, .	1.3	10
1041	Synergistic effects of microstructural inhomogeneity and phase-transformation-induced plasticity for ductility improvements in metallic glass composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143491.	2.6	2
1042	Rare events and disorder control the brittle yielding of well-annealed amorphous solids. Physical Review Research, 2022, 4, .	1.3	4
1043	Preparation, Microstructure and Mechanical Properties of Bulk Metallic Glass Composite Containing In-Situ Formed Dendrites and Ex-Situ Tungsten Particles. SSRN Electronic Journal, 0, , .	0.4	0
1044	Severe deformation-induced microstructural heterogeneities in Cu ₆₄ Zr ₃₆ metallic glass. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 065005.	0.8	4
1045	Predicting the location of shear band initiation in a metallic glass. Physical Review Materials, 2022, 6, .	0.9	5
1046	Atomic insights into the size effect of glassy domain on the propagation of plastic deformation carriers in crystal-glass nanocomposite. Journal of Applied Physics, 2022, 132, .	1.1	4
1047	Interparticle bonding and interfacial nanocrystallization mechanisms in additively manufactured bulk metallic glass fabricated by cold spray. Additive Manufacturing, 2022, 58, 103057.	1.7	0
1048	Evaluating the predictive power of machine learning model for shear transformation in metallic glasses using metrics for an imbalanced dataset. Frontiers in Materials, 0, 9, .	1.2	1
1049	Volume-shear coupling in a mesoscopic model of amorphous materials. Physical Review E, 2022, 106, .	0.8	0
1050	The Influence of High-Pressure Torsion on the Free Volume and Shear-Band Formation during the Indentation of Vit105 Metallic Glass. Metals, 2022, 12, 1278.	1.0	2

#	Article	IF	CITATIONS
1051	Large Compressive Plasticity of Brittle La69Co17Al14 Bulk Metallic Glass Under Constrained Compression. Metals and Materials International, 0, , .	1.8	0
1052	Defects controlled rejuvenation in the Zr47.5Cu47.5Al5 metallic glass. Journal of Alloys and Compounds, 2022, 927, 166876.	2.8	2
1053	Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition. Materials and Design, 2022, 221, 110972.	3.3	7
1054	Achieving structural rejuvenation in metallic glass by modulating Î ² relaxation intensity via easy-to-operate mechanical cycling. International Journal of Plasticity, 2022, 157, 103402.	4.1	32
1055	Extreme rejuvenation and superior stability in a metallic glass. Materials Today Physics, 2022, 27, 100782.	2.9	4
1056	Significant rejuvenation of a deformed metallic glass contributed by shear band affected zones during cryogenic cycling. Materials Letters, 2022, 326, 132988.	1.3	1
1057	Capture the early stage of shear banding for bulk metallic glass sheet for MEMS applications. Measurement: Journal of the International Measurement Confederation, 2022, 202, 111816.	2.5	0
1058	Synergistic effect of physical and chemical reactions on friction behaviors of DLC films in humid air. Materials Today Communications, 2022, 33, 104317.	0.9	2
1059	Ultrasonic-assisted fabrication of metallic glass composites. Journal of Non-Crystalline Solids, 2022, 597, 121894.	1.5	3
1060	Martensite stabilization in bulk metallic glass composites with shape memory crystals. Journal of Alloys and Compounds, 2022, 929, 167260.	2.8	2
1061	A flow model in bulk metallic glasses. Scripta Materialia, 2023, 222, 115047.	2.6	9
1062	Temperature Rise in Shear Bands and its Effect on Crystallization Behavior in Bulk Metallic Glasses. SSRN Electronic Journal, 0, , .	0.4	0
1063	Unified upper temperature for cryogenic thermal cycling treatment in Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2023, 931, 167263.	2.8	2
1064	Spatial Resolution Limit for Nanoindentation Mapping on Metallic Glasses. Materials, 2022, 15, 6319.	1.3	3
1065	Uncovering the Inherent Size Dependence of Yield Strength and Failure Mechanism in Micron-Sized Metallic Glass. Materials, 2022, 15, 6362.	1.3	3
1066	Effects of Niobium addition on dynamic mechanical behavior and fracture properties of iron-aluminide-based alloys. Journal of Materials Research and Technology, 2022, 20, 4137-4147.	2.6	2
1067	Enhanced mechanical properties of Zr65Cu15Ni10Al10 bulk metallic glass by simultaneously introducing surface grooves and multiple shear bands. Journal of Materials Research and Technology, 2022, 21, 1490-1506.	2.6	5
1068	Mechanical annealing and memories in a disordered solid. Science Advances, 2022, 8, .	4.7	4

#	Article	IF	CITATIONS
1069	Effect of Fe addition on the glass-forming ability, stability, and mechanical properties of Zr50Cu34-Fe Al8Ag8 metallic glasses. Journal of Alloys and Compounds, 2022, 929, 167334.	2.8	8
1070	Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses. Applied Mechanics Reviews, 2022, 74, .	4.5	8
1071	Additive manufacturing of metallic glasses and high-entropy alloys: Significance, unsettled issues, and future directions. Journal of Materials Science and Technology, 2023, 140, 79-120.	5.6	27
1072	Yielding, shear banding, and brittle failure of amorphous materials. Physical Review Research, 2022, 4, .	1.3	6
1073	Towards commonality between shear banding and glass-liquid transition in metallic glasses. Physical Review Materials, 2022, 6, .	0.9	1
1074	Rejuvenation by compressive elasto-static loading: The role of static stress on a Zr-based metallic glass. Journal of Alloys and Compounds, 2023, 933, 167715.	2.8	6
1075	Effect of composition and thermal history on deformation behavior and cluster connections in model bulk metallic glasses. Scientific Reports, 2022, 12, .	1.6	4
1076	Effects of strain rate on properties of Zr–Cu–Al–Fe bulk metallic glasses with Nb addition. Materials Chemistry and Physics, 2023, 293, 126968.	2.0	3
1077	Influence of structural heterogeneity on shear bands in fracture-affected zones of metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 858, 144197.	2.6	0
1078	Experimental evidence that shear bands in metallic glasses nucleate like cracks. Scientific Reports, 2022, 12, .	1.6	1
1079	Mechanical size effect and serrated flow of various Zr-based bulk metallic glasses. Intermetallics, 2022, 151, 107737.	1.8	3
1080	Shear-band blunting governs superior mechanical properties of shape memory metallic glass composites. Acta Materialia, 2022, 241, 118422.	3.8	9
1081	Effect of nanoindentation experimental parameters on the estimation of the plastic events in metallic glasses employing various analysis methods. Intermetallics, 2022, 151, 107748.	1.8	0
1082	Mapping structural heterogeneity at the nanoscale with scanning nano-structure electron microscopy (SNEM). Acta Materialia, 2023, 242, 118426.	3.8	9
1083	Percolation-like transition from nanoscale structural heterogeneities to shear bands in metallic glass detected by static force microscopy. Applied Surface Science, 2023, 611, 155730.	3.1	3
1084	Indentation creep dynamics in metallic glasses under different structural states. International Journal of Mechanical Sciences, 2023, 240, 107941.	3.6	8
1085	Components of the Shear Modulus and Their Dependence on Temperature and Plastic Deformation of a Metallic Glass. Metals, 2022, 12, 1964.	1.0	4
1086	Damage mechanisms of 2.5D SiO2f/SiO2 woven ceramic matrix composites under compressive impact. Ceramics International, 2023, 49, 9203-9218.	2.3	3

#	Article	IF	CITATIONS
1087	Mechanical and thermal stability of Bulk Metallic Glass alloys identified as candidates for space mechanism applications. Materials and Design, 2022, 224, 111350.	3.3	6
1088	Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary. Acta Materialia, 2023, 244, 118542.	3.8	6
1089	Anelastic-like nature of the rejuvenation of metallic glasses by cryogenic thermal cycling. Acta Materialia, 2023, 244, 118551.	3.8	16
1090	Severe plastic deformation influence on the structure transformation of the amorphous Zr62.5Ðju22.5Al10Fe5 alloy. Intermetallics, 2023, 152, 107777.	1.8	3
1091	Mg-Zn-Yb-Ag amorphous rods: A novel orthopedic biodegradable material with good mechanical properties and antibacterial properties. Journal of Non-Crystalline Solids, 2023, 602, 122090.	1.5	1
1092	Temperature rise in shear bands and its effect on crystallization behavior in bulk metallic glasses. Journal of Alloys and Compounds, 2023, 936, 168198.	2.8	3
1093	Competition between work hardening and softening in dislocation-mediated metallic glass matrix composites. Journal of Alloys and Compounds, 2023, 938, 168435.	2.8	1
1094	Shear transformation zones and serrated flow dynamics of metallic glasses revealed by nanoindentation. Journal of Alloys and Compounds, 2023, 936, 168165.	2.8	1
1095	Shear transformations in metallic glasses without excessive and predefinable defects. Proceedings of the United States of America, 2022, 119, .	3.3	13
1096	<i>Plaston</i> Concept and Activation of <i>Plaston</i> in Bulk Nanostructured Metals. Materia Japan, 2022, 61, 848-852.	0.1	0
1097	Laser additive manufacturing of laminated bulk metallic glass composite with desired strength-ductility combination. Journal of Materials Science and Technology, 2023, 147, 68-76.	5.6	8
1098	A Lightweight AlTiVNb High-Entropy Alloy Film with High Strength-Ductility Synergy and Corrosion Resistance. Materials, 2022, 15, 8568.	1.3	3
1099	Intense shear band plasticity in metallic glass as revealed by a diametral compression test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 864, 144533.	2.6	0
1100	A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids. Communications Physics, 2022, 5, .	2.0	4
1101	Elastic interactions of plastic events in strained amorphous solids before yield. Physical Review Materials, 2023, 7, .	0.9	3
1102	Nano-voids formation at the interaction sites of shear bands in a Zr-based metallic glass. EPJ Applied Physics, 2022, 97, 91.	0.3	1
1103	Significant improvement in surface hardness of Zr-based metallic glass by nanosecond pulsed laser irradiation in graphite powder water suspension. Surface and Coatings Technology, 2023, 454, 129195.	2.2	2
1104	Chemical and structural heterogeneity improve the plasticity of a Zr-based bulk metallic glass at low-temperature annealing. Journal of Non-Crystalline Solids, 2023, 603, 122115.	1.5	6

#	Article	IF	CITATIONS
1105	Self-Sustained Oscillations of the Torque under High-Pressure Torsion in an NdFeB Alloy. JETP Letters, 2022, 116, 698-702.	0.4	1
1106	Ultrastrong spinodoid alloys enabled by electrochemical dealloying and refilling. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
1107	Tailoring the mechanical properties of bulk metallic glasses via cooling from the supercooled liquid region. Science China Technological Sciences, 2023, 66, 173-180.	2.0	2
1108	Isomorphs in sheared binary Lennard-Jones glass: Transient response. Physical Review E, 2023, 107, .	0.8	1
1109	Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering, 2023, 30, 2105-2180.	6.0	6
1110	Synthesis and mechanical properties of highly structure-controlled Zr-based metallic glasses by thermal rejuvenation technique. Journal of Physics Condensed Matter, 2023, 35, 154004.	0.7	1
1111	Effect of Thermomechanical Treatment on the Micro-hardness and Crystallization Behavior of an Amorphous Zr65.5Ni16Cu8.5Al10 Alloy. Metals and Materials International, 0, , .	1.8	0
1112	Medium-range order endows a bulk metallic glass with enhanced tensile ductility. Journal of Materials Science and Technology, 2023, 159, 10-20.	5.6	2
1113	Effect of crystalline phase on deformation behaviors of amorphous matrix in a metallic glass composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144957.	2.6	1
1114	Void nucleation during ductile rupture of metals: A review. Progress in Materials Science, 2023, 135, 101085.	16.0	19
1115	Rejuvenation behavior and microstructural evolution of Cu-Zr metallic glass during multiple recovery annealing treatment via molecular dynamic simulation. Journal of Alloys and Compounds, 2023, 945, 169294.	2.8	4
1116	Micro-scaled plastic yielding and shear-banding dynamics in metallic glasses. Journal of Materials Science and Technology, 2023, 152, 237-246.	5.6	2
1117	Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass. Journal of Alloys and Compounds, 2023, 952, 170022.	2.8	0
1118	Nanocutting mechanisms of Cu50Zr50 amorphous alloy: A molecular dynamics simulation. Journal of Non-Crystalline Solids, 2023, 605, 122161.	1.5	3
1119	Laser-based additive manufacturing of bulk metallic glasses: recent advances and future perspectives for biomedical applications. Journal of Materials Research and Technology, 2023, 23, 2956-2990.	2.6	15
1120	Hidden shear bands of diversified structures in a bent heterogeneous metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 869, 144726.	2.6	1
1121	Revealing the length-scale dependence of the spatial mechanical heterogeneity and shear transformation zone size in metallic glassy films. Thin Solid Films, 2023, 768, 139733.	0.8	1
1122	Changes in the Structure of Amorphous Alloys under Deformation by High-Pressure Torsion and Multiple Rolling. Materials, 2023, 16, 1321.	1.3	3

#	Article	IF	Citations
1123	Non-monotonic influence of cryogenic thermal cycling on rejuvenation and impact toughness of Ti-based bulk metallic glass composites. Scripta Materialia, 2023, 228, 115340.	2.6	3
1124	Scaling Law for Impact Resistance of Amorphous Alloys Connecting Atomistic Molecular Dynamics with Macroscale Experiments. ACS Applied Materials & amp; Interfaces, 2023, 15, 13449-13459.	4.0	2
1125	Nanoscale strain mapping and symmetry analysis of Zr50Cu40Al10 metallic glass rejuvenated by high-pressure torsion via 4D scanning transmission electron microscopy. Journal of Non-Crystalline Solids, 2023, 606, 122197.	1.5	2
1126	Structural heterogeneity governing deformability of metallic glass. Matter, 2023, 6, 1160-1172.	5.0	7
1127	Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy. Nature Communications, 2023, 14, .	5.8	9
1128	The dynamics of shear band propagation in metallic glasses. Acta Materialia, 2023, 248, 118787.	3.8	5
1129	Cold Spray Coatings of Complex Concentrated Alloys: Critical Assessment of Milestones, Challenges, and Opportunities. Coatings, 2023, 13, 538.	1.2	4
1130	Strain rate response and rheological characteristics of ZrCuNiAl bulk metallic glass in supercooled liquid region. Journal of Non-Crystalline Solids, 2023, 607, 122216.	1.5	2
1131	Micro-indentation-Induced Deformation Studies on High-Pressure-Torsion-Processed Zr62Cu22Al10Fe5Dy1 Metallic Glass. Journal of Materials Engineering and Performance, 2024, 33, 256-263.	1.2	0
1132	Structural mechanisms of enhanced mechanical properties in amorphous–nanocrystalline ZrCu alloys under irradiation. Journal of Materials Science, 2023, 58, 5061-5071.	1.7	2
1133	Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons. Materials Research Letters, 2023, 11, 547-555.	4.1	4
1134	Preparation, Microstructure, and Mechanical Properties of Bulk Metallic Glass Composite Containing In Situ-Formed Dendrites and Ex Situ Tungsten Particles. Journal of Materials Engineering and Performance, 2024, 33, 1496-1505.	1.2	1
1135	Synthesis and mechanical properties of co-deposited W nanoparticle and ZrCuAg metallic glass thin film composites. Thin Solid Films, 2023, 773, 139822.	0.8	1
1136	Crystalline–Amorphous Nanostructures: Microstructure, Property and Modelling. Materials, 2023, 16, 2874.	1.3	1
1137	Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses. Advanced Materials, 2023, 35, .	11.1	10
1138	Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nature Materials, 2023, 22, 950-957.	13.3	27
1139	Shear Transformation Zone and Its Correlation with Fracture Characteristics for Fe-Based Amorphous Ribbons in Different Structural States. Metals, 2023, 13, 757.	1.0	1
1140	Research progress on the shear band of metallic glasses. Journal of Alloys and Compounds, 2023, 955, 170164.	2.8	4

	Ci	CITATION REPORT		
			C 171710110	
Ŧ	ARTICLE	IF	CITATIONS	
1160	Recent Progress of Amorphous Nanomaterials. Chemical Reviews, 2023, 123, 8859-8941.	23.0	29	
1183	Metallic glasses. MRS Bulletin, 2023, 48, 1054-1061.	1.7	5	
1196	Developing novel amorphous alloys from the perspectives of entropy and shear bands. Science China Materials, 2023, 66, 4143-4164.	3.5	0	