A large synthetic peptide and phosphopeptide reference spectrometry–based proteomics

Nature Biotechnology 31, 557-564 DOI: 10.1038/nbt.2585

Citation Report

#	Article	IF	CITATIONS
1	Cost-effective isobaric tagging for quantitative phosphoproteomics using DiART reagents. Molecular BioSystems, 2013, 9, 2981.	2.9	9
2	Rapid Combinatorial ERLIC–SCX Solid-Phase Extraction for In-Depth Phosphoproteome Analysis. Journal of Proteome Research, 2013, 12, 5989-5995.	1.8	28
3	Expanding Tandem Mass Spectral Libraries of Phosphorylated Peptides: Advances and Applications. Journal of Proteome Research, 2013, 12, 5971-5977.	1.8	21
4	Peptides aplenty. Nature Methods, 2013, 10, 609-609.	9.0	2
5	LuciPHOr: Algorithm for Phosphorylation Site Localization with False Localization Rate Estimation Using Modified Target-Decoy Approach. Molecular and Cellular Proteomics, 2013, 12, 3409-3419.	2.5	69
6	Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling. Cell Reports, 2014, 8, 1583-1594.	2.9	839
7	Large-scale label-free phosphoproteomics: from technology to data interpretation. Bioanalysis, 2014, 6, 2403-2420.	0.6	8
8	Diverse and divergent protein post-translational modifications in two growth stages of a natural microbial community. Nature Communications, 2014, 5, 4405.	5.8	51
9	Machine learning applications in proteomics research: How the past can boost the future. Proteomics, 2014, 14, 353-366.	1.3	52
10	Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics. Molecular and Cellular Proteomics, 2014, 13, 3709-3715.	2.5	98
11	Conserved Peptide Fragmentation as a Benchmarking Tool for Mass Spectrometers and a Discriminating Feature for Targeted Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2056-2071.	2.5	96
12	Simultaneous Quantification of Protein Phosphorylation Sites using Liquid Chromatography–Tandem Mass Spectrometry-Based Targeted Proteomics: A Linear Algebra Approach for Isobaric Phosphopeptides. Journal of Proteome Research, 2014, 13, 5452-5460.	1.8	6
13	Stable-isotope-labeled Histone Peptide Library for Histone Post-translational Modification and Variant Quantification by Mass Spectrometry. Molecular and Cellular Proteomics, 2014, 13, 2450-2466.	2.5	53
14	Proteomic and phosphoproteomic analyses of chromatinâ€associated proteins from <i>Arabidopsis thaliana</i> . Proteomics, 2014, 14, 2141-2155.	1.3	18
15	Genome-wide mapping of cellular traits using yeast. Yeast, 2014, 31, 197-205.	0.8	17
16	Transferred Subgroup False Discovery Rate for Rare Post-translational Modifications Detected by Mass Spectrometry. Molecular and Cellular Proteomics, 2014, 13, 1359-1368.	2.5	77
17	N-terminal sequence tagging using reliably determined b2 ions: A useful approach to deconvolute tandem mass spectra of co-fragmented peptides in proteomics. Journal of Proteomics, 2014, 103, 254-260.	1.2	2
18	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	13.7	1,697

#	Article	IF	CITATIONS
19	Comparison of Alternative MS/MS and Bioinformatics Approaches for Confident Phosphorylation Site Localization. Journal of Proteome Research, 2014, 13, 1128-1137.	1.8	37
20	Integrating phosphoproteomics in systems biology. Computational and Structural Biotechnology Journal, 2014, 10, 90-97.	1.9	33
21	Characterization of Biases in Phosphopeptide Enrichment by Ti ⁴⁺ -Immobilized Metal Affinity Chromatography and TiO ₂ Using a Massive Synthetic Library and Human Cell Digests. Analytical Chemistry, 2014, 86, 8312-8320.	3.2	43
22	MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra. Journal of Proteome Research, 2014, 13, 3679-3684.	1.8	416
23	Towards single-cell LC-MS phosphoproteomics. Analyst, The, 2014, 139, 4733-4749.	1.7	25
24	A Turn-Key Approach for Large-Scale Identification of Complex Posttranslational Modifications. Journal of Proteome Research, 2014, 13, 1190-1199.	1.8	7
25	Are proteins a redundant ontology? Epistemological limitations in the analysis of multistate species. Molecular BioSystems, 2014, 10, 1228-1235.	2.9	2
26	Identification of Novel PAMP-Triggered Phosphorylation and Dephosphorylation Events in <i>Arabidopsis thaliana</i> by Quantitative Phosphoproteomic Analysis. Journal of Proteome Research, 2014, 13, 2137-2151.	1.8	44
27	An investigation of heat shock protein 27 and P-glycoprotein mediated multi-drug resistance in breast cancer using liquid chromatography-tandem mass spectrometry-based targeted proteomics. Journal of Proteomics, 2014, 108, 188-197.	1.2	28
28	Using synthetic peptides to benchmark peptide identification software and search parameters for MS/MS data analysis. EuPA Open Proteomics, 2014, 5, 21-31.	2.5	8
29	Realâ€Time Monitoring of Phosphorylation Kinetics with Selfâ€Assembled Nanoâ€oscillators. Angewandte Chemie, 2015, 127, 2568-2572.	1.6	5
30	Analysis of the Candida albicans Phosphoproteome. Eukaryotic Cell, 2015, 14, 474-485.	3.4	40
31	MS ² PIP prediction server: compute and visualize MS ² peak intensity predictions for CID and HCD fragmentation. Nucleic Acids Research, 2015, 43, W326-W330.	6.5	63
32	A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA. Journal of Proteomics, 2015, 129, 42-50.	1.2	9
33	Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns. Molecular and Cellular Proteomics, 2015, 14, 205-215.	2.5	111
34	Global and Specific Responses of the Histone Acetylome to Systematic Perturbation. Molecular Cell, 2015, 57, 559-571.	4.5	119
35	An Optimized Platform for Hydrophilic Interaction Chromatography–Immobilized Metal Affinity Chromatography Enables Deep Coverage of the Rat Liver Phosphoproteome. Journal of Proteome Research, 2015, 14, 997-1009.	1.8	22
36	Realâ€Time Monitoring of Phosphorylation Kinetics with Selfâ€Assembled Nanoâ€oscillators. Angewandte Chemie - International Edition, 2015, 54, 2538-2542.	7.2	43

#	Article	IF	CITATIONS
37	Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2015, 14, 3415-3431.	1.8	53
38	Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines. Journal of Proteomics, 2015, 127, 247-258.	1.2	45
39	Confident Site Localization Using a Simulated Phosphopeptide Spectral Library. Journal of Proteome Research, 2015, 14, 2348-2359.	1.8	26
40	Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Review of Proteomics, 2015, 12, 469-487.	1.3	70
41	Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends in Endocrinology and Metabolism, 2015, 26, 676-687.	3.1	402
42	Nano-LC in proteomics: recent advances and approaches. Bioanalysis, 2015, 7, 1799-1815.	0.6	118
43	Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search. Journal of Proteome Research, 2015, 14, 4714-4720.	1.8	43
44	Computational phosphoproteomics: From identification to localization. Proteomics, 2015, 15, 950-963.	1.3	24
45	SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis. Journal of Proteome Research, 2016, 15, 2826-2840.	1.8	49
46	MALDIâ€TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome. Proteomics, 2016, 16, 1447-1456.	1.3	13
47	Common errors in mass spectrometryâ€based analysis of postâ€ŧranslational modifications. Proteomics, 2016, 16, 700-714.	1.3	106
48	Spectra library assisted de novo peptide sequencing for HCD and ETD spectra pairs. BMC Bioinformatics, 2016, 17, 538.	1.2	2
49	Modification Site Localization in Peptides. Advances in Experimental Medicine and Biology, 2016, 919, 243-247.	0.8	2
50	Modern Proteomics $\hat{a} \in$ ' Sample Preparation, Analysis and Practical Applications. Advances in Experimental Medicine and Biology, 2016, , .	0.8	13
51	A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer. Analytical and Bioanalytical Chemistry, 2016, 408, 7491-7503.	1.9	33
52	GAPP: A Proteogenomic Software for Genome Annotation and Global Profiling of Post-translational Modifications in Prokaryotes. Molecular and Cellular Proteomics, 2016, 15, 3529-3539.	2.5	11
54	Zirconium-Based Porphyrinic Metal–Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Analytical Chemistry, 2016, 88, 11207-11212.	3.2	146
55	BatMass: a Java Software Platform for LC–MS Data Visualization in Proteomics and Metabolomics. Journal of Proteome Research, 2016, 15, 2500-2509.	1.8	32

		I KLFOKI	
#	Article	IF	CITATIONS
56	Heptad-Specific Phosphorylation of RNA PolymeraseÂll CTD. Molecular Cell, 2016, 61, 305-314.	4.5	118
57	Quantification of microRNA by DNA–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry-Based Quasi-Targeted Proteomics. Analytical Chemistry, 2016, 88, 754-763.	3.2	43
58	Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates. Molecular and Cellular Proteomics, 2016, 15, 989-1006.	2.5	65
60	Data Analysis Strategies for Protein Modification Identification. Methods in Molecular Biology, 2016, 1362, 265-275.	0.4	10
61	Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Analytical Chemistry, 2016, 88, 74-94.	3.2	217
62	Building ProteomeTools based on a complete synthetic human proteome. Nature Methods, 2017, 14, 259-262.	9.0	182
63	Post hoc assessment of the immunogenicity of bioengineered factor VIIa demonstrates the use of preclinical tools. Science Translational Medicine, 2017, 9, .	5.8	57
64	Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. Journal of Proteomics, 2017, 162, 99-107.	1.2	31
65	Hyper-phosphorylation of Sequestosome-1 Distinguishes Resistance to Cisplatin in Patient Derived High Grade Serous Ovarian Cancer Cells. Molecular and Cellular Proteomics, 2017, 16, 1377-1392.	2.5	17
66	Annotation of the Domestic Pig Genome by Quantitative Proteogenomics. Journal of Proteome Research, 2017, 16, 2887-2898.	1.8	25
67	Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Analytical Chemistry, 2017, 89, 6367-6376.	3.2	44
68	Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 1127-1135.	1.2	6
69	Bonding-induced emission of silyl-protected copper nanoclusters for luminescence turn-on detection of trace water in organic solvents. Analyst, The, 2017, 142, 4613-4617.	1.7	28
70	Accurate phosphorylation site localization using phospho-brackets. Analytica Chimica Acta, 2017, 996, 38-47.	2.6	5
71	Recent advances in phosphoproteomics and application to neurological diseases. Analyst, The, 2017, 142, 4373-4387.	1.7	33
72	Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nature Communications, 2017, 8, 461.	5.8	71
73	Protein separations using enhanced-fluidity liquid chromatography. Journal of Chromatography A, 2017, 1523, 257-264.	1.8	27
74	Evaluation of Parameters for Confident Phosphorylation Site Localization Using an Orbitrap Fusion Tribrid Mass Spectrometer. Journal of Proteome Research, 2017, 16, 3448-3459.	1.8	68

#	Article	IF	CITATIONS
75	A Quasi-direct LC-MS/MS-based Targeted Proteomics Approach for miRNA Quantification via a Covalently Immobilized DNA-peptide Probe. Scientific Reports, 2017, 7, 5669.	1.6	20
76	Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst, The, 2017, 142, 3536-3548.	1.7	34
77	Tandem mass spectral libraries of peptides and their roles in proteomics research. Mass Spectrometry Reviews, 2017, 36, 634-648.	2.8	44
78	Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) _{<i>n</i>} and (X) <i>_n</i> K/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics. Journal of Proteome Research. 2017. 16. 852-861.	1.8	21
79	Systems Biology: Methods and Applications. , 2017, , 434-480.		0
80	Defeating Major Contaminants in Fe3+- Immobilized Metal Ion Affinity Chromatography (IMAC) Phosphopeptide Enrichment. Molecular and Cellular Proteomics, 2018, 17, 1028-1034.	2.5	68
81	Reverse and Random Decoy Methods for False Discovery Rate Estimation in High Mass Accuracy Peptide Spectral Library Searches. Journal of Proteome Research, 2018, 17, 846-857.	1.8	36
82	The Role of Electron Transfer Dissociation in Modern Proteomics. Analytical Chemistry, 2018, 90, 40-64.	3.2	124
83	Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. Journal of Proteome Research, 2018, 17, 727-738.	1.8	221
84	Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. Molecular and Cellular Proteomics, 2018, 17, 335-348.	2.5	41
85	pSite: Amino Acid Confidence Evaluation for Quality Control of De Novo Peptide Sequencing and Modification Site Localization. Journal of Proteome Research, 2018, 17, 119-128.	1.8	17
86	A Step-Up LC-MS/MS for Proteomics. Comprehensive Analytical Chemistry, 2018, , 377-414.	0.7	0
88	Global Ion Suppression Limits the Potential of Mass Spectrometry Based Phosphoproteomics. Journal of Proteome Research, 2019, 18, 493-507.	1.8	12
90	Retention Order Reversal of Phosphorylated and Unphosphorylated Peptides in Reversed-Phase LC/MS. Analytical Sciences, 2018, 34, 1037-1041.	0.8	8
91	Challenges in Separations of Proteins and Small Biomolecules and the Role of Modern Mass Spectroscopy Tools for Solving Them, as Well as Bypassing Them, in Structural Analytical Studies of Complex Biomolecular Mixtures. Separations, 2018, 5, 11.	1.1	4
92	Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification. Analytical Chemistry, 2018, 90, 8905-8911.	3.2	19
93	Selection of Protein Kinase Inhibitors Based on Tumor Tissue Kinase Activity Profiles in Patients with Refractory Solid Malignancies: An Interventional Molecular Profiling Study. Oncologist, 2018, 23, 1135.	1.9	2
94	Improved Peptide Retention Time Prediction in Liquid Chromatography through Deep Learning. Analytical Chemistry, 2018, 90, 10881-10888.	3.2	107

#	Article	IF	CITATIONS
95	Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nature Biotechnology, 2018, 36, 638-644.	9.4	30
96	Systematic Detection of Amino Acid Substitutions in Proteomes Reveals Mechanistic Basis of Ribosome Errors and Selection for Translation Fidelity. Molecular Cell, 2019, 75, 427-441.e5.	4.5	84
98	Modified cysteine S-phosphopeptide standards for mass spectrometry-based proteomics. Amino Acids, 2019, 51, 1365-1375.	1.2	5
99	Illuminating the dark phosphoproteome. Science Signaling, 2019, 12, .	1.6	219
100	MS/MS Spectrum Prediction for Modified Peptides Using pDeep2 Trained by Transfer Learning. Analytical Chemistry, 2019, 91, 9724-9731.	3.2	76
101	Duplex-Specific Nuclease-Mediated Amplification Strategy for Mass Spectrometry Quantification of MiRNA-200c in Breast Cancer Stem Cells. Analytical Chemistry, 2019, 91, 8820-8826.	3.2	31
102	Online porous graphic carbon chromatography coupled with tandem mass spectrometry for postâ€ŧranslational modification analysis. Rapid Communications in Mass Spectrometry, 2019, 33, 1240-1247.	0.7	8
103	Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides. Analytical and Bioanalytical Chemistry, 2019, 411, 3373-3382.	1.9	9
104	Gaining Confidence in the Elusive Histidine Phosphoproteome. Analytical Chemistry, 2019, 91, 5542-5547.	3.2	23
105	Optimization of TripleTOF spectral simulation and library searching for confident localization of phosphorylation sites. PLoS ONE, 2019, 14, e0225885.	1.1	5
106	Differential Ion Mobility–Mass Spectrometry for Detailed Analysis of the Proteome. Trends in Biotechnology, 2019, 37, 198-213.	4.9	54
107	Phosphopeptide Fragmentation and Site Localization by Mass Spectrometry: An Update. Analytical Chemistry, 2019, 91, 126-141.	3.2	80
108	Synthetic phosphopeptides: From spike-in standards to affinity tools for protein-protein interaction studies. Analytical Biochemistry, 2019, 568, 73-77.	1.1	0
109	Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. Journal of Proteomics, 2019, 191, 68-79.	1.2	30
110	Real-time laser induced chemical derivatizations of peptide N-Terminus for in-situ mass spectrometric sequencing at sub-picomole and nanosecond scale. Analytica Chimica Acta, 2020, 1100, 1-11.	2.6	0
111	Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nature Communications, 2020, 11, 3583.	5.8	38
112	O-Pair Search with MetaMorpheus for O-glycopeptide characterization. Nature Methods, 2020, 17, 1133-1138.	9.0	98
113	Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Scientific Data, 2020, 7, 334.	2.4	20

#	Article	IF	CITATIONS
114	The Hippo Pathway Transducers YAP1/TEAD Induce Acquired Resistance to Trastuzumab in HER2-Positive Breast Cancer. Cancers, 2020, 12, 1108.	1.7	13
115	A Fast and Memoryâ€Efficient Spectral Library Search Algorithm Using Localityâ€5ensitive Hashing. Proteomics, 2020, 20, e2000002.	1.3	10
116	Resolution of NASH and hepatic fibrosis by the GLP-1R and GCGR dual-agonist cotadutide via modulating mitochondrial function and lipogenesis. Nature Metabolism, 2020, 2, 413-431.	5.1	131
117	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	13.7	328
118	Widespread arginine phosphorylation in human cells—a novel protein PTM revealed by mass spectrometry. Science China Chemistry, 2020, 63, 341-346.	4.2	13
119	Comparing 22 Popular Phosphoproteomics Pipelines for Peptide Identification and Site Localization. Journal of Proteome Research, 2020, 19, 1338-1345.	1.8	30
120	A photocleavable and mass spectrometric DNA-peptide probe enables fast and specific enzyme-free detection of microRNA. Talanta, 2020, 211, 120726.	2.9	5
121	Kinase Inhibitor Treatment of Patients with Advanced Cancer Results in High Tumor Drug Concentrations and in Specific Alterations of the Tumor Phosphoproteome. Cancers, 2020, 12, 330.	1.7	11
122	Effect of Phosphorylation on the Collision Cross Sections of Peptide Ions in Ion Mobility Spectrometry. Mass Spectrometry, 2021, 10, A0093-A0093.	0.2	14
123	Exploring the diversity of plant proteome. Journal of Integrative Plant Biology, 2021, 63, 1197-1210.	4.1	12
124	P38αâ€MAPK phosphorylates Snapin and reduces Snapinâ€mediated BACE1 transportation in APPâ€transgenic mice. FASEB Journal, 2021, 35, e21691.	0.2	7
125	Decoding Post-Translational Modification Crosstalk With Proteomics. Molecular and Cellular Proteomics, 2021, 20, 100129.	2.5	92
126	Resources for Assignment of Phosphorylation Sites on Peptides and Proteins. Methods in Molecular Biology, 2016, 1355, 293-306.	0.4	4
128	CHAPTER 6. Identification and Localization of Post-Translational Modifications by High-Resolution Mass Spectrometry. New Developments in Mass Spectrometry, 2016, , 116-132.	0.2	Ο
133	Deep-Learning-Derived Evaluation Metrics Enable Effective Benchmarking of Computational Tools for Phosphopeptide Identification. Molecular and Cellular Proteomics, 2021, 20, 100171.	2.5	9
134	Affinity Selection from Synthetic Peptide Libraries Enabled by De Novo MS/MS Sequencing. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	0.9	3
135	Surface Plasma Resonance Biosensing of Phosphorylated Proteins Via Ph-Adjusted Specific Binding of Phosphate Residues with Uio-66. SSRN Electronic Journal, 0, , .	0.4	0
136	Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS ONE, 2022, 17, e0258924.	1.1	4

#	Article	IF	CITATIONS
138	Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides. Nature Machine Intelligence, 2022, 4, 378-388.	8.3	10
139	VA-PRT: A Visualization Tool for Analyzing Post-translational Modification Retention Times. , 2021, , .		0
140	Widespread arginine phosphorylation in Staphylococcus aureus. Molecular and Cellular Proteomics, 2022, , 100232.	2.5	3
141	SIMSI-Transfer: Software-Assisted Reduction of Missing Values in Phosphoproteomic and Proteomic Isobaric Labeling Data Using Tandem Mass Spectrum Clustering. Molecular and Cellular Proteomics, 2022, 21, 100238.	2.5	9
142	Surface plasma resonance biosensing of phosphorylated proteins via pH-adjusted specific binding of phosphate residues with UiO-66. Chemical Engineering Journal, 2022, 446, 137000.	6.6	1
143	Method for Independent Estimation of the False Localization Rate for Phosphoproteomics. Journal of Proteome Research, 2022, 21, 1603-1615.	1.8	14
144	PLDMS: Phosphopeptide Library Dephosphorylation Followed by Mass Spectrometry Analysis to Determine the Specificity of Phosphatases for Dephosphorylation Site Sequences. Methods in Molecular Biology, 2022, , 43-64.	0.4	1
145	Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry. Journal of Proteome Research, 2022, 21, 1789-1799.	1.8	10
146	Prediction of peptide mass spectral libraries with machine learning. Nature Biotechnology, 2023, 41, 33-43.	9.4	31
147	A UHPLC/MS/MS Assay Based on an Isotope-Labeled Peptide for Sensitive miR-21 Detection in HCC Serum. Oncologie, 2022, 24, 513-526.	0.2	1
148	Dataâ€independent acquisition proteomics methods for analyzing postâ€ŧranslational modifications. Proteomics, 2023, 23, .	1.3	7
149	Hierarchically mesoporous Ce-based MOFs with enhanced alkaline phosphatase-like activity for phosphorylated biomarker sensing. Chemical Communications, 2022, 58, 12720-12723.	2.2	15
150	A multi-purpose, regenerable, proteome-scale, human phosphoserine resource for phosphoproteomics. Nature Methods, 2022, 19, 1371-1375.	9.0	17
151	Temperature Dependence of Retention Behavior of Phosphorylated Peptides in Ion-Pair Reversed-Phase Liquid Chromatography. Chromatography, 2022, 43, 137-141.	0.8	1
152	A Python Package for the Localization of Protein Modifications in Mass Spectrometry Data. Journal of Proteome Research, 2023, 22, 501-507.	1.8	3
155	DeepFLR facilitates false localization rate control in phosphoproteomics. Nature Communications, 2023, 14, .	5.8	4