Bridging the gap between theories of sensory cue integr multisensory neurons

Nature Reviews Neuroscience 14, 429-442 DOI: 10.1038/nrn3503

Citation Report

#	Article	IF	CITATIONS
1	Convergent approaches toward the study of multisensory perception. Frontiers in Systems Neuroscience, 2013, 7, 81.	2.5	23
2	Davida Teller Award Lecture 2013: The importance of prediction and anticipation in the control of smooth pursuit eye movements. Journal of Vision, 2014, 14, 10-10.	0.3	29
3	Contributions of visual and proprioceptive information to travelled distance estimation during changing sensory congruencies. Experimental Brain Research, 2014, 232, 3277-3289.	1.5	50
5	Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution. Journal of Physiology, 2014, 592, 1565-1580.	2.9	45
6	Asymmetrical integration of sensory information during mating decisions in grasshoppers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16562-16567.	7.1	20
7	Multisensory constraints on awareness. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130207.	4.0	40
8	Bayesian statistics: relevant for the brain?. Current Opinion in Neurobiology, 2014, 25, 130-133.	4.2	35
9	Multisensory Integration: Flexible Use of General Operations. Neuron, 2014, 81, 1240-1253.	8.1	237
10	Development of multisensory integration from the perspective of the individual neuron. Nature Reviews Neuroscience, 2014, 15, 520-535.	10.2	278
11	Identifying and Quantifying Multisensory Integration: A Tutorial Review. Brain Topography, 2014, 27, 707-730.	1.8	159
12	The cortical distribution of multisensory neurons was modulated by multisensory experience. Neuroscience, 2014, 272, 1-9.	2.3	35
13	Allocating structure to function: the strong links between neuroplasticity and natural selection. Frontiers in Human Neuroscience, 2014, 7, 918.	2.0	56
14	The vestibular system: a spatial reference for bodily self-consciousness. Frontiers in Integrative Neuroscience, 2014, 8, 31.	2.1	111
15	How Optic Flow and Inertial Cues Improve Motion Perception. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 141-148.	1.1	8
16	Smelling directions: Olfaction modulates ambiguous visual motion perception. Scientific Reports, 2014, 4, 5796.	3.3	40
17	Sensory reliability shapes perceptual inference via two mechanisms. Journal of Vision, 2015, 15, 22.	0.3	81
18	A spatially collocated sound thrusts a flash into awareness. Frontiers in Integrative Neuroscience, 2015, 9, 16.	2.1	25
19	Perception and Reality: Why a Wholly Empirical Paradigm is Needed to Understand Vision. Frontiers in Systems Neuroscience, 2015, 9, 156.	2.5	31

#	Article	IF	CITATIONS
20	Integration of Semi-Circular Canal and Otolith Cues for Direction Discrimination during Eccentric Rotations. PLoS ONE, 2015, 10, e0136925.	2.5	8
21	Multisensory Causal Inference in the Brain. PLoS Biology, 2015, 13, e1002075.	5.6	99
22	Whole brain mapping of visual and tactile convergence in the macaque monkey. NeuroImage, 2015, 117, 93-102.	4.2	30
23	Neural Mechanisms for Discounting Head-Roll-Induced Retinal Motion. Journal of Neuroscience, 2015, 35, 4851-4856.	3.6	38
24	Impact Prediction by Looming Visual Stimuli Enhances Tactile Detection. Journal of Neuroscience, 2015, 35, 4179-4189.	3.6	65
25	Injection of a Dopamine Type 2 Receptor Antagonist into the Dorsal Striatum Disrupts Choices Driven by Previous Outcomes, But Not Perceptual Inference. Journal of Neuroscience, 2015, 35, 6298-6306.	3.6	49
26	Modeling development of natural multi-sensory integration using neural self-organisation and probabilistic population codes. Connection Science, 2015, 27, 358-376.	3.0	34
27	A Potential Role of Auditory Induced Modulations in Primary Visual Cortex. Multisensory Research, 2015, 28, 331-349.	1.1	7
28	What does a neuron learn from multisensory experience?. Journal of Neurophysiology, 2015, 113, 883-889.	1.8	49
29	Attention modeled as information in learning multisensory integration. Neural Networks, 2015, 65, 44-52.	5.9	12
30	Deconstructing multisensory enhancement in detection. Journal of Neurophysiology, 2015, 113, 1800-1818.	1.8	15
31	Unraveling Cross-Modal Development in Animals: Neural Substrate, Functional Coding and BehavioralÂReadout. Multisensory Research, 2015, 28, 33-69.	1.1	4
32	Dissecting neural circuits for multisensory integration and crossmodal processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140203.	4.0	46
33	The problem of multimodal concurrent serial order in behavior. Neuroscience and Biobehavioral Reviews, 2015, 56, 252-265.	6.1	9
34	Drosophila Neurobiology: No Escape from â€~Big Data' Science. Current Biology, 2015, 25, R606-R608.	3.9	6
35	Cortical Hierarchies Perform Bayesian Causal Inference in Multisensory Perception. PLoS Biology, 2015, 13, e1002073.	5.6	258
36	A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 2015, 520, 633-639.	27.8	410
37	Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nature Neuroscience, 2015, 18, 718-727.	14.8	196

CITAT	ELONI.	Report
		REDUBT

#	Article	IF	CITATIONS
38	Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness. Neuron, 2015, 88, 145-166.	8.1	503
39	Who is That? Brain Networks and Mechanisms for Identifying Individuals. Trends in Cognitive Sciences, 2015, 19, 783-796.	7.8	61
40	A Higher Brain Circuit for Immediate Integration of Conflicting Sensory Information in Drosophila. Current Biology, 2015, 25, 2203-2214.	3.9	142
41	A bio-inspired multisensory stochastic integration algorithm. Neurocomputing, 2015, 151, 11-33.	5.9	0
42	Bayesian Analysis of Perceived Eye Level. Frontiers in Computational Neuroscience, 2016, 10, 135.	2.1	0
43	Language Processing as Cue Integration: Grounding the Psychology of Language in Perception and Neurophysiology. Frontiers in Psychology, 2016, 7, 120.	2.1	78
44	Optimal visuotactile integration for velocity discrimination of self-hand movements. Journal of Neurophysiology, 2016, 116, 1522-1535.	1.8	30
45	Interval timing, temporal averaging, and cue integration. Current Opinion in Behavioral Sciences, 2016, 8, 60-66.	3.9	20
46	Signatures of a Statistical Computation in the Human Sense of Confidence. Neuron, 2016, 90, 499-506.	8.1	212
47	Vestibular animal models: contributions to understanding physiology and disease. Journal of Neurology, 2016, 263, 10-23.	3.6	58
48	Look Hear! The Prefrontal Cortex is Stratified by Modality of Sensory Input During Multisensory Cognitive Control. Cerebral Cortex, 2017, 27, bhw131.	2.9	16
49	A tutorial on cue combination and Signal Detection Theory: Using changes in sensitivity to evaluate how observers integrate sensory information. Journal of Mathematical Psychology, 2016, 73, 117-139.	1.8	27
50	Dynamic Multisensory Integration: Somatosensory Speed Trumps Visual Accuracy during Feedback Control. Journal of Neuroscience, 2016, 36, 8598-8611.	3.6	84
51	Correlation detection as a general mechanism for multisensory integration. Nature Communications, 2016, 7, 11543.	12.8	124
52	Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals. Journal of Neuroscience, 2016, 36, 10791-10802.	3.6	13
53	The neural basis of depth perception from motion parallax. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150256.	4.0	26
54	Towards explaining spatial touch perception: Weighted integration of multiple location codes. Cognitive Neuropsychology, 2016, 33, 26-47.	1.1	59
55	The importance of task design and behavioral control for understanding the neural basis of cognitive functions. Current Opinion in Neurobiology, 2016, 37, 16-22.	4.2	22

#	Article	IF	CITATIONS
56	Multisensory Convergence of Visual and Vestibular Heading Cues in the Pursuit Area of the Frontal Eye Field. Cerebral Cortex, 2016, 26, 3785-3801.	2.9	50
57	Neural Basis of Strategic Decision Making. Trends in Neurosciences, 2016, 39, 40-48.	8.6	81
58	Multisensory Integration in Self Motion Perception. Multisensory Research, 2016, 29, 525-556.	1.1	51
59	The COGs (context, object, and goals) in multisensory processing. Experimental Brain Research, 2016, 234, 1307-1323.	1.5	51
60	Decentralized Multisensory Information Integration in Neural Systems. Journal of Neuroscience, 2016, 36, 532-547.	3.6	43
61	Brain–computer interfaces for dissecting cognitive processes underlying sensorimotor control. Current Opinion in Neurobiology, 2016, 37, 53-58.	4.2	82
62	An Introduction to Neural Information Processing. , 2016, , .		2
63	Sounds facilitate visual motion discrimination via the enhancement of late occipital visual representations. Neurolmage, 2017, 148, 31-41.	4.2	36
64	Vestibular contributions to high-level sensorimotor functions. Neuropsychologia, 2017, 105, 144-152.	1.6	22
65	Multisensory Integration Uses a Real-Time Unisensory–Multisensory Transform. Journal of Neuroscience, 2017, 37, 5183-5194.	3.6	22
66	Language and other complex behaviors: Unifying characteristics, computational models, neural mechanisms. Language Sciences, 2017, 62, 91-123.	1.0	11
67	Serotonergic Modulation of Sensory and Multisensory Processing in Superior Colliculus. Multisensory Research, 2017, 30, 121-158.	1.1	2
68	Distributed Visual–Vestibular Processing in the Cerebral Cortex of Man and Macaque. Multisensory Research, 2017, 30, 91-120.	1.1	32
69	Computational principles and models of multisensory integration. Current Opinion in Neurobiology, 2017, 43, 25-34.	4.2	76
70	Where are you heading? Flexible integration of retinal and extraâ€retinal cues during selfâ€motion perception. PsyCh Journal, 2017, 6, 141-152.	1.1	3
71	Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response. Neuron, 2017, 94, 1190-1204.e6.	8.1	112
72	Sensory integration and neuromodulatory feedback facilitate Drosophila mechanonociceptive behavior. Nature Neuroscience, 2017, 20, 1085-1095.	14.8	91
73	Vestibular signals of self-motion modulate global motion perception. Vision Research, 2017, 130, 22-30.	1.4	7

#	Article	IF	Citations
74	Neural correlates of multisensory reliability and perceptual weights emerge at early latencies during audioâ€visual integration. European Journal of Neuroscience, 2017, 46, 2565-2577.	2.6	16
75	Near-optimal integration of facial form and motion. Scientific Reports, 2017, 7, 11002.	3.3	8
76	Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades. Biological Psychology, 2017, 129, 36-44.	2.2	66
77	Effect of eye position during human visual-vestibular integration of heading perception. Journal of Neurophysiology, 2017, 118, 1609-1621.	1.8	16
78	A multi-animal tracker for studying complex behaviors. BMC Biology, 2017, 15, 29.	3.8	35
79	Peripheral nerve injury induces adult brain neurogenesis and remodelling. Journal of Cellular and Molecular Medicine, 2017, 21, 299-314.	3.6	22
80	Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Frontiers in Cellular Neuroscience, 2017, 11, 214.	3.7	146
81	The cost of making an eye movement: A direct link between visual working memory and saccade execution. Journal of Vision, 2017, 17, 15.	0.3	26
82	Probing Electrophysiological Indices of Perceptual Awareness across Unisensory and Multisensory Modalities. Journal of Cognitive Neuroscience, 2018, 30, 814-828.	2.3	11
85	Judging the position of the artificial hand induces a "visual―drift towards the real one during the rubber hand illusion. Scientific Reports, 2018, 8, 2531.	3.3	19
86	Optimal visuo-vestibular integration for self-motion perception in patients with unilateral vestibular loss. Neuropsychologia, 2018, 111, 112-116.	1.6	3
87	Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal Mechanisms. Neuron, 2018, 97, 626-639.e8.	8.1	72
88	Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding. Hearing Research, 2018, 360, 107-123.	2.0	28
89	A Switching Observer for Human Perceptual Estimation. Neuron, 2018, 97, 462-474.e6.	8.1	38
90	Processing of haptic texture information over sequential exploration movements. Attention, Perception, and Psychophysics, 2018, 80, 177-192.	1.3	8
91	Effect of vibration during visual-inertial integration on human heading perception during eccentric gaze. PLoS ONE, 2018, 13, e0199097.	2.5	6
92	Audiovisual Integration Enhances Stimulus Detection Performance in Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 231.	2.0	22
93	The Effect of Haptic Prediction Accuracy on Presence. , 2018, , .		13

#	Article	IF	CITATIONS
94	Spatial vision in older adults: perceptual changes and neural bases. Ophthalmic and Physiological Optics, 2018, 38, 363-375.	2.0	14
95	Spatial bias in estimating the position of visual and proprioceptive targets. Journal of Neurophysiology, 2018, 119, 1879-1888.	1.8	22
96	Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss. Frontiers in Human Neuroscience, 2018, 12, 192.	2.0	25
97	Auditory motion does not modulate spiking activity in the middle temporal and medial superior temporal visual areas. European Journal of Neuroscience, 2018, 48, 2013-2029.	2.6	5
98	Multisensory enhancement of burst activity in an insect auditory neuron. Journal of Neurophysiology, 2018, 120, 139-148.	1.8	2
99	The threshold for the McGurk effect in audio-visual noise decreases with development. Scientific Reports, 2018, 8, 12372.	3.3	31
100	From multisensory integration in peripersonal space to bodily selfâ€consciousness: from statistical regularities to statistical inference. Annals of the New York Academy of Sciences, 2018, 1426, 146-165.	3.8	46
101	An oscillatory neural network model that demonstrates the benefits of multisensory learning. Cognitive Neurodynamics, 2018, 12, 481-499.	4.0	23
102	Toward understanding the neurophysiological basis of peripersonal space: An EEG study on healthy individuals. PLoS ONE, 2019, 14, e0218675.	2.5	6
103	Audiovisual detection at different intensities and delays. Journal of Mathematical Psychology, 2019, 91, 159-175.	1.8	1
104	Increase in weighting of vision vs. proprioception associated with force field adaptation. Scientific Reports, 2019, 9, 10167.	3.3	13
105	A microfluidic-induced C. elegans sleep state. Nature Communications, 2019, 10, 5035.	12.8	27
106	State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Progress in Neurobiology, 2019, 183, 101691.	5.7	57
107	Modelling visual-vestibular integration and behavioural adaptation in the driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66, 310-323.	3.7	9
108	The evolution of wetness perception: A comparison of arachnid, insect and human models. Journal of Thermal Biology, 2019, 85, 102412.	2.5	9
109	Visual Feedback Processing of the Limb Involves Two Distinct Phases. Journal of Neuroscience, 2019, 39, 6751-6765.	3.6	43
110	The circuit architecture of cortical multisensory processing: Distinct functions jointly operating within a common anatomical network. Progress in Neurobiology, 2019, 174, 1-15.	5.7	44
111	Theoretical framework for "unexplained―dizziness in the elderly: The role of small vessel disease. Progress in Brain Research, 2019, 248, 225-240.	1.4	12

#	Article	IF	CITATIONS
112	Somatosensory interactions reveal feature-dependent computations. Journal of Neurophysiology, 2019, 122, 5-21.	1.8	20
113	Interhemispheric control of sensory cue integration and self-motion perception. Neuroscience, 2019, 408, 378-387.	2.3	15
114	Vestibular processing during natural self-motion: implications for perception and action. Nature Reviews Neuroscience, 2019, 20, 346-363.	10.2	151
115	Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genetics, 2019, 15, e1007706.	3.5	22
116	To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inference. PLoS Biology, 2019, 17, e3000210.	5.6	73
117	Processing of object motion and self-motion in the lateral subdivision of the medial superior temporal area in macaques. Journal of Neurophysiology, 2019, 121, 1207-1221.	1.8	20
118	Neural Substrates of Drosophila Larval Anemotaxis. Current Biology, 2019, 29, 554-566.e4.	3.9	32
119	Optimality and heuristics in perceptual neuroscience. Nature Neuroscience, 2019, 22, 514-523.	14.8	72
120	Weighted Visual and Vestibular Cues for Spatial Updating During Passive Self-Motion. Multisensory Research, 2019, 32, 165-178.	1.1	4
121	Modular Multilayer Neural Networks Integrate Multisensory Information Near-optimally. , 2019, , .		0
122	Assessment of fighting ability in the vocal cichlid <i>Metriaclima zebra</i> in face of incongruent audiovisual information. Biology Open, 2019, 8, .	1.2	7
123	Congruent audio-visual stimulation during adaptation modulates the subsequently experienced visual motion aftereffect. Scientific Reports, 2019, 9, 19391.	3.3	2
124	Balance control mechanisms do not benefit from successive stimulation of different sensory systems. PLoS ONE, 2019, 14, e0226216.	2.5	5
125	Increased Neural Strength and Reliability to Audiovisual Stimuli at the Boundary of Peripersonal Space. Journal of Cognitive Neuroscience, 2019, 31, 1155-1172.	2.3	23
126	Formal models and quantitative measures of multisensory integration: a selective overview. European Journal of Neuroscience, 2020, 51, 1161-1178.	2.6	29
127	Multisensory interactions underlying flavor consumption in rats: the role of experience and unisensory component liking. Chemical Senses, 2020, 45, 27-35.	2.0	8
128	â€~Doublecheck: a sensory confirmation is required to own a robotic hand, sending a command to feel in charge of it'. Cognitive Neuroscience, 2020, 11, 216-228.	1.4	16
129	Monkeys and humans implement causal inference to simultaneously localize auditory and visual stimuli. Journal of Neurophysiology, 2020, 124, 715-727.	1.8	17

#	Article	IF	CITATIONS
130	Linguistic Structure and Meaning Organize Neural Oscillations into a Content-Specific Hierarchy. Journal of Neuroscience, 2020, 40, 9467-9475.	3.6	72
131	Rotating One's Head Modulates the Perceived Velocity ofÂMotion Aftereffect. Multisensory Research, 2020, 33, 189-212.	1.1	1
132	Behavior- and Modality-General Representation of Confidence in Orbitofrontal Cortex. Cell, 2020, 182, 112-126.e18.	28.9	68
133	A Survey on Probabilistic Models in Human Perception and Machines. Frontiers in Robotics and AI, 2020, 7, 85.	3.2	3
134	Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nature Communications, 2020, 11, 3341.	12.8	28
135	Contextual speech rate influences morphosyntactic prediction and integration. Language, Cognition and Neuroscience, 2020, 35, 933-948.	1.2	6
136	Vision automatically exerts online and offline influences on bimanual tactile spatial perception. Journal of Mathematical Psychology, 2021, 100, 102480.	1.8	1
137	Multimodal Affective States Recognition Based on Multiscale CNNs and Biologically Inspired Decision Fusion Model. IEEE Transactions on Affective Computing, 2023, 14, 1391-1403.	8.3	9
138	Sensory feedback-dependent coding of arm position in local field potentials of the posterior parietal cortex. Scientific Reports, 2021, 11, 9060.	3.3	1
139	Primate extrastriate cortical area MST: a gateway between sensation and cognition. Journal of Neurophysiology, 2021, 125, 1851-1882.	1.8	17
140	Perceptual Inference, Learning, and Attention in a Multisensory World. Annual Review of Neuroscience, 2021, 44, 449-473.	10.7	62
141	Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion. Brain Structure and Function, 2021, 226, 2931-2950.	2.3	15
142	Linear Integration of Sensory Evidence over Space and Time Underlies Face Categorization. Journal of Neuroscience, 2021, 41, 7876-7893.	3.6	4
143	Effect of timing delay between visual and vestibular stimuli on heading perception. Journal of Neurophysiology, 2021, 126, 304-312.	1.8	4
145	The effect of expertise, training and neurostimulation on sensory-motor skill in esports. Computers in Human Behavior, 2021, 121, 106782.	8.5	25
146	Vestibular Precision at the Level of Perception, Eye Movements, Posture, and Neurons. Neuroscience, 2021, 468, 282-320.	2.3	29
147	The prefrontal cortex and (uniquely) human cooperation: a comparative perspective. Neuropsychopharmacology, 2022, 47, 119-133.	5.4	13
148	Implicit Neurofeedback Training of Feature-Based Attention Promotes Biased Sensory Processing during Integrative Decision-Making. Journal of Neuroscience, 2021, 41, 8233-8248.	3.6	2

#	ARTICLE	IF	CITATIONS
149	Cognitive, Systems, and Computational Neurosciences of the Self in Motion. Annual Review of Psychology, 2022, 73, 103-129.	17.7	18
151	Knowledge-based and signal-based cues are weighted flexibly during spoken language comprehension Journal of Experimental Psychology: Learning Memory and Cognition, 2020, 46, 549-562.	0.9	17
158	Multisensory Interactions between Vestibular, Visual and Somatosensory Signals. PLoS ONE, 2015, 10, e0124573.	2.5	33
159	Coordinates of Human Visual and Inertial Heading Perception. PLoS ONE, 2015, 10, e0135539.	2.5	11
160	Multisensory Interactions Influence Neuronal Spike Train Dynamics in the Posterior Parietal Cortex. PLoS ONE, 2016, 11, e0166786.	2.5	3
161	Eye Movements in Darkness Modulate Self-Motion Perception. ENeuro, 2017, 4, ENEURO.0211-16.2016.	1.9	8
162	Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation. ELife, 2019, 8, .	6.0	31
163	Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. ELife, 2019, 8, .	6.0	47
164	Bayes Optimality of Human Perception, Action and Learning: Behavioural and Neural Evidence. Lecture Notes in Computer Science, 2014, , 117-129.	1.3	0
165	Neural Coding. , 2016, , 183-231.		0
170	Interlimb Generalization of Learned Bayesian Visuomotor Prior Occurs in Extrinsic Coordinates. ENeuro, 2018, 5, ENEURO.0183-18.2018.	1.9	8
170 174		1.9	8
	ENeuro, 2018, 5, ENEURO.0183-18.2018.	1.9	
174	ENeuro, 2018, 5, ENEURO.0183-18.2018. Bayesian Model for Multisensory Integration and Segregation. , 2019, , .	1.9	0
174 178	ENeuro, 2018, 5, ENEURO.0183-18.2018. Bayesian Model for Multisensory Integration and Segregation., 2019,,. Multisensory Integration for Self-Motion Perception., 2020,, 458-482. Modelling Bayesian Computation in the Brain: Unification, Explanation, and Constraints. Studies in		0 3
174 178 179	ENeuro, 2018, 5, ENEURO.0183-18.2018. Bayesian Model for Multisensory Integration and Segregation., 2019,,. Multisensory Integration for Self-Motion Perception., 2020,, 458-482. Modelling Bayesian Computation in the Brain: Unification, Explanation, and Constraints. Studies in Brain and Mind, 2021,, 11-33.		0 3 0
174 178 179 180	ENeuro, 2018, 5, ENEURO.0183-18.2018. Bayesian Model for Multisensory Integration and Segregation., 2019,,. Multisensory Integration for Self-Motion Perception., 2020,, 458-482. Modelling Bayesian Computation in the Brain: Unification, Explanation, and Constraints. Studies in Brain and Mind, 2021,, 11-33. Inputs, Outputs, and Multisensory Processing., 2021,, 153-192.	0.5	0 3 0 0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
187	Bayesian decision theory and navigation. Psychonomic Bulletin and Review, 2022, 29, 7	721-752.	2.8	9
189	Direct eye gaze enhances the ventriloquism effect. Attention, Perception, and Psychop	hysics, 2022, , 1.	1.3	2
190	Influence of Sensory Conflict on Perceived Timing of Passive Rotation in Virtual Reality. Research, 2022, 35, 367-389.	Multisensory	1.1	3
192	Deterministic Multimodal Perturbation Enables Neuromorphic-Compatible Signal Multi 4, 102-110.	plexing. , 2022,		3
193	The influence of early audiovisual experience on multisensory integration and causal integration (commentary on Smyre et al., 2021). European Journal of Neuroscience, 2022, 55, 637		2.6	1
194	Neuromorphic sensory computing. Science China Information Sciences, 2022, 65, 1.		4.3	33
195	Multisensory integration and its plasticity – How do innate and postnatal factors cor forming individual differences?. Cortex, 2021, 145, A1-A4.	itribute to	2.4	0
197	Do Congruent Auditory Stimuli Facilitate Visual Search in Dynamic Environments? An E Study Based on Multisensory Interaction. Multisensory Research, 2022, 35, 1-15.	xperimental	1.1	0
198	Expanding Aesthetics. Frontiers in Veterinary Science, 2022, 9, .		2.2	0
200	What is neurorepresentationalism? From neural activity and predictive processing to m representations and consciousness. Behavioural Brain Research, 2022, 432, 113969.	ulti-level	2.2	11
203	Cortical Mechanisms of Multisensory Linear Self-motion Perception. Neuroscience Bulle 125-137.	etin, 2023, 39,	2.9	7
204	Nature deficit and senses: Relationships among childhood nature exposure and adulthor profiles, creativity, and nature relatedness. Landscape and Urban Planning, 2022, 226,	ood sensory 104489.	7.5	10
205	A theoretical model and empirical analysis of university library readers' spatial cognition Tech, 2022, ahead-of-print, .	ı. Library Hi	5.1	3
206	Conscious awareness of a visuo-proprioceptive mismatch: Effect on cross-sensory recal Frontiers in Neuroscience, 0, 16, .	ibration.	2.8	8
207	Multimodal Sensory Computing. , 2022, , 225-237.			0
208	Neural dynamics of causal inference in the macaque frontoparietal circuit. ELife, 0, 11,		6.0	8
209	Multisensory integration of orallyâ€sourced gustatory and olfactory inputs to the post cortex in awake rats. Journal of Physiology, 2023, 601, 151-169.	erior piriform	2.9	3
210	Temporal scaling and computing time in neural circuits: Should we stop watching the c for its gears?. Frontiers in Behavioral Neuroscience, 0, 16, .	lock and look	2.0	3

#	Article	IF	Citations
" 211	Walking humans and running mice: perception and neural encoding of optic flow during self-motion. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	3
212	Being active over one's own motion: Considering predictive mechanisms in self-motion perception. Neuroscience and Biobehavioral Reviews, 2023, , 105051.	6.1	1
213	Altered visual conscious awareness in patients with vestibular dysfunctions; a cross-sectional observation study. Journal of the Neurological Sciences, 2023, 448, 120617.	0.6	2
214	Factors influencing clinical outcome in vestibular neuritis – A focussed review and reanalysis of prospective data. Journal of the Neurological Sciences, 2023, 446, 120579.	0.6	3
215	Coherent mapping of position and head direction across auditory and visual cortex. Cerebral Cortex, 2023, 33, 7369-7385.	2.9	3
216	Statistically Optimal Cue Integration During Human Spatial Navigation. Psychonomic Bulletin and Review, 2023, 30, 1621-1642.	2.8	7
217	Active self-motion control and the role of agency under ambiguity. Frontiers in Psychology, 0, 14, .	2.1	0
218	Multisensory learning binds neurons into a cross-modal memory engram. Nature, 2023, 617, 777-784.	27.8	10
219	Sensory fusion in the hoverfly righting reflex. Scientific Reports, 2023, 13, .	3.3	0
221	Multisensory alarm to benefit alarm identification and decrease workload: a feasibility study. Journal of Clinical Monitoring and Computing, 2023, 37, 1051-1059.	1.6	1
223	Proprioceptive uncertainty promotes the rubber hand illusion. Cortex, 2023, 165, 70-85.	2.4	8
224	Visual accuracy dominates over haptic speed for state estimation of a partner during collaborative sensorimotor interactions. Journal of Neurophysiology, 2023, 130, 23-42.	1.8	3
225	Bimodular continuous attractor neural networks with static and moving stimuli. Physical Review E, 2023, 107, .	2.1	0
226	Explaining human interactions on the road by large-scale integration of computational psychological theory. , 2023, 2, .		5
227	Integration of Vestibular, Visual, and Proprioceptive Inputs in the Cerebral Cortex during Movement Control. Human Physiology, 2023, 49, 176-182.	0.4	0
228	Electronic skins with multimodal sensing and perception. , 0, 3, .		1
230	Multisensory causal inference is feature-specific, not object-based. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	3
231	Visuo-vestibular heading perception: a model system to study multi-sensory decision making. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	2

#	Article	IF	CITATIONS
232	Multisensory integration in the mammalian brain: diversity and flexibility in health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	2
233	How the brain controls decision making inÂa multisensory world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	0
234	How â€~visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	2
235	Implications of Multimodal Integration and Masking on Acoustic Deterrent Efficacy. , 2023, , 1-14.		0
237	Motion aftereffects in vision, audition, and touch, and their crossmodal interactions. Neuropsychologia, 2023, 190, 108696.	1.6	0
238	How deep is the brain? The shallow brain hypothesis. Nature Reviews Neuroscience, 2023, 24, 778-791.	10.2	5
239	Bayesian encoding and decoding as distinct perspectives on neural coding. Nature Neuroscience, 2023, 26, 2063-2072.	14.8	1
240	Probabilistic modeling and numerical simulation of neural circuits for multisensory integration. , 0, 70, 522-528.		0
241	Brain-inspired bodily self-perception model for robot rubber hand illusion. Patterns, 2023, 4, 100888.	5.9	1
242	Multisensory Integration and Causal Inference in Typical and Atypical Populations. Advances in Experimental Medicine and Biology, 2024, , 59-76.	1.6	0
243	More Than the Sum of Its Parts: Visual–Tactile Integration in the Behaving Rat. Advances in Experimental Medicine and Biology, 2024, , 37-58.	1.6	0
244	From Multisensory Integration to Multisensory Decision-Making. Advances in Experimental Medicine and Biology, 2024, , 23-35.	1.6	0
245	Triple dissociation of visual, auditory and motor processing in mouse primary visual cortex. Nature Neuroscience, 2024, 27, 758-771.	14.8	1