An old disk still capable of forming a planetary system

Nature 493, 644-646 DOI: 10.1038/nature11805

Citation Report

#	Article	IF	CITATIONS
1	Imaging of the CO Snow Line in a Solar Nebula Analog. Science, 2013, 341, 630-632.	6.0	252
2	Chemistry in Protoplanetary Disks. Chemical Reviews, 2013, 113, 9016-9042.	23.0	188
3	A Quantum Many-Body Spin System in an Optical Lattice Clock. Science, 2013, 341, 632-636.	6.0	152
4	MIXING AND TRANSPORT OF SHORT-LIVED AND STABLE ISOTOPES AND REFRACTORY GRAINS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2013, 773, 5.	1.6	28
5	A SPATIALLY RESOLVED VERTICAL TEMPERATURE GRADIENT IN THE HD 163296 DISK. Astrophysical Journal, 2013, 774, 16.	1.6	157
6	A SIGNIFICANTLY LOW CO ABUNDANCE TOWARD THE TW Hya PROTOPLANETARY DISK: A PATH TO ACTIVE CARBON CHEMISTRY?. Astrophysical Journal Letters, 2013, 776, L38.	3.0	155
7	EVIDENCE FOR A SNOW LINE BEYOND THE TRANSITIONAL RADIUS IN THE TW Hya PROTOPLANETARY DISK. Astrophysical Journal, 2013, 766, 82.	1.6	99
8	MRI-driven angular momentum transport in protoplanetary disks. EAS Publications Series, 2013, 62, 95-142.	0.3	11
9	SOFIA: first science highlights and future science potential. Astronomische Nachrichten, 2013, 334, 558-575.	0.6	4
10	THE 0.5-2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU. Astrophysical Journal, 2013, 771, 45.	1.6	112
11	TWO TIMESCALE DISPERSAL OF MAGNETIZED PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2013, 778, L14.	3.0	50
12	DIGIT survey of far-infrared lines from protoplanetary disks. Astronomy and Astrophysics, 2013, 559, A77.	2.1	95
13	A Herschel View of Dust Evolution in Protoplanetary Disks. Proceedings of the International Astronomical Union, 2013, 8, 140-144.	0.0	0
14	Gas and dust in the TW Hydrae association as seen by the <i>Herschel</i> Space Observatory. Astronomy and Astrophysics, 2013, 555, A67.	2.1	36
15	Uncertainties in water chemistry in disks: An application to TW Hydrae. Astronomy and Astrophysics, 2013, 559, A24.	2.1	42
16	The TW Hydrae association: trigonometric parallaxes and kinematic analysis. Astronomy and Astrophysics, 2014, 563, A121.	2.1	76
17	Separating gas-giant and ice-giant planets by halting pebble accretion. Astronomy and Astrophysics, 2014, 572, A35.	2.1	306
18	Protoplanetary disk masses from CO isotopologue line emission. Astronomy and Astrophysics, 2014,	2.1	125

#	Article	IF	CITATIONS
19	<i>>WISE</i> Y DWARFS AS PROBES OF THE BROWN DWARF-EXOPLANET CONNECTION. Astrophysical Journal, 2014, 783, 68.	1.6	82
20	A PARAMETRIC MODELING APPROACH TO MEASURING THE GAS MASSES OF CIRCUMSTELLAR DISKS. Astrophysical Journal, 2014, 788, 59.	1.6	214
21	Signatures of warm carbon monoxide in protoplanetary discs observed with Herschel SPIREâ~ Monthly Notices of the Royal Astronomical Society, 2014, 444, 3911-3925.	1.6	19
22	The science case and data processing strategy for the Thinned Aperture Light Collector (TALC): a project for a 20m far-infrared space telescope. , 2014, , .		5
23	Probing the presence of planets in transition discs' cavities via warps: the case of TW Hya. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3700-3710.	1.6	18
24	UNBIASED MILLIMETER-WAVE LINE SURVEYS OF TW Hya AND V4046 Sgr: THE ENHANCED C ₂ H AND CN ABUNDANCES OF EVOLVED PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 793, 55.	1.6	38
25	CO/H ₂ ABUNDANCE RATIO â‰^ 10 ^{–4} IN A PROTOPLANETARY DISK. Astrophysical Journal, 2014, 794, 160.	1.6	40
26	CHEMODYNAMICAL DEUTERIUM FRACTIONATION IN THE EARLY SOLAR NEBULA: THE ORIGIN OF WATER ON EARTH AND IN ASTEROIDS AND COMETS. Astrophysical Journal, 2014, 784, 39.	1.6	86
27	Review of scientific topics for the Millimetron space observatory. Physics-Uspekhi, 2014, 57, 1199-1228.	0.8	105
28	EXCLUSION OF COSMIC RAYS IN PROTOPLANETARY DISKS. II. CHEMICAL GRADIENTS AND OBSERVATIONAL SIGNATURES. Astrophysical Journal, 2014, 794, 123.	1.6	69
29	Exploring the origins of carbon in terrestrial worlds ^{â€} . Faraday Discussions, 2014, 168, 61.	1.6	63
30	Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discussions, 2014, 168, 9-47.	1.6	120
31	<i>HERSCHEL</i> EVIDENCE FOR DISK FLATTENING OR GAS DEPLETION IN TRANSITIONAL DISKS. Astrophysical Journal, 2014, 787, 153.	1.6	26
32	SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS?. Astrophysical Journal Letters, 2014, 793, L34.	3.0	97
33	Deuterium chemistry of dense gas in the vicinity of low-mass and massive star-forming regions. Monthly Notices of the Royal Astronomical Society, 2014, 443, 275-287.	1.6	15
34	Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astronomy and Astrophysics, 2014, 572, A107.	2.1	305
35	Molecules in the transition disk orbiting T Chamaeleontis. Astronomy and Astrophysics, 2014, 561, A42.	2.1	14
36	Complex organic molecules in protoplanetary disks. Astronomy and Astrophysics, 2014, 563, A33.	2.1	169

#	Article	IF	CITATIONS
37	Gas lines from the 5-Myr old optically thin disk around HD 141569A. Astronomy and Astrophysics, 2014, 561, A50.	2.1	45
39	The Chemistry of Nearby Disks. Proceedings of the International Astronomical Union, 2015, 10, 143-148.	0.0	0
40	VOLATILE DEPLETION IN THE TW HYDRAE DISK ATMOSPHERE. Astrophysical Journal Letters, 2015, 807, L32.	3.0	76
41	The molecular universe: from observations to laboratory and back. Proceedings of the International Astronomical Union, 2015, 11, 299-304.	0.0	0
42	PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER. Astrophysical Journal Letters, 2015, 815, L26.	3.0	79
43	Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1768-1778.	1.6	76
44	Gas line observations of disks. EPJ Web of Conferences, 2015, 102, 00008.	0.1	5
45	Observations of planet-forming volatiles. Proceedings of the International Astronomical Union, 2015, 11, 390-394.	0.0	0
46	Mass accretion rates from multiband photometry in the Carina Nebula: the case of Trumpler 14. Astronomy and Astrophysics, 2015, 574, A44.	2.1	9
47	CONSTRAINING THE X-RAY AND COSMIC-RAY IONIZATION CHEMISTRY OF THE TW Hya PROTOPLANETARY DISK: EVIDENCE FOR A SUB-INTERSTELLAR COSMIC-RAY RATE. Astrophysical Journal, 2015, 799, 204.	1.6	151
48	Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites. Geochimica Et Cosmochimica Acta, 2015, 164, 236-261.	1.6	38
49	FIRST DETECTION OF [C I] ³ P ₁ – ³ P ₀ EMISSION FROM A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2015, 802, L7.	`3. 0	17
50	DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE. Astrophysical Journal Letters, 2015, 802, L17.	3.0	96
51	THE IMPACT OF DUST EVOLUTION AND PHOTOEVAPORATION ON DISK DISPERSAL. Astrophysical Journal, 2015, 804, 29.	1.6	128
52	THE INNER STRUCTURE OF THE TW HYA DISK AS REVEALED IN SCATTERED LIGHT*. Astrophysical Journal Letters, 2016, 819, L1.	3.0	37
53	Probing the 2D temperature structure of protoplanetary disks with <i>Herschel</i> observations of high- <i>J</i> CO lines. Astronomy and Astrophysics, 2016, 591, A95.	2.1	27
54	A STEEPER THAN LINEAR DISK MASS–STELLAR MASS SCALING RELATION. Astrophysical Journal, 2016, 831, 125.	1.6	354
55	ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA. Astrophysical Journal Letters, 2016, 819, L7.	3.0	105

		CITATION REPORT	
#	Article	IF	CITATIONS
56	PROMPT PLANETESIMAL FORMATION BEYOND THE SNOW LINE. Astrophysical Journal Letters, 2016, 828, L2.	3.0	53
57	MASS MEASUREMENTS IN PROTOPLANETARY DISKS FROM HYDROGEN DEUTERIDE. Astrophysical Journal, 2016, 831, 167.	1.6	151
58	THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK. Astrophysical Journal, 2016, 832, 110.	1.6	130
59	Determining protoplanetary disk gas masses from CO isotopologues line observations. Astronomy and Astrophysics, 2016, 594, A85.	2.1	100
60	PROBING PLANET FORMING ZONES WITH RARE CO ISOTOPOLOGUES. Astrophysical Journal, 2016, 822, 53.	1.6	70
61	THE RADIAL DISTRIBUTION OF H ₂ AND CO IN TW HYA AS REVEALED BY RESOLVED ALMA OBSERVATIONS OF CO ISOTOPOLOGUES. Astrophysical Journal, 2016, 823, 91.	1.6	163
62	EVIDENCE FOR A CO DESORPTION FRONT IN THE OUTER AS 209 DISK. Astrophysical Journal Letters, 2016, 823, L18.	3.0	48
63	Observations and modelling of CO and [C i] in protoplanetary disks. Astronomy and Astrophysics, 2016, 588, A108.	2.1	64
64	A â€~Rosetta Stone' for Protoplanetary Disks: The Synergy of Multi-Wavelength Observations. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	43
65	ALMA SURVEY OF LUPUS PROTOPLANETARY DISKS. I. DUST AND GAS MASSES. Astrophysical Journal, 2016, 828, 46.	1.6	478
66	Volatile-carbon locking and release in protoplanetary disks. Astronomy and Astrophysics, 2016, 592, A83.	2.1	143
67	Steepening of the 820 <i>μ</i> m continuum surface brightness profile signals dust evolution in TW Hydrae's disk. Astronomy and Astrophysics, 2016, 586, A99.	2.1	25
68	Chemistry of TMC-1 with multiply deuterated species and spin chemistry of H ₂ , H ₂ ⁺ , H ₃ ⁺ and their isotopologues. Monthly Notices of the Royal Astronomical Society, 0, , stw3360.	1.6	16
69	DUST DIFFUSION AND SETTLING IN THE PRESENCE OF COLLISIONS: TRAPPING (SUB)MICRON GRAINS IN THE MIDPLANE. Astrophysical Journal, 2016, 822, 111.	1.6	36
70	A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya. Astrophysical Journal Letters, 2016, 829, L35.	3.0	90
71	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Science Reviews, 2016, 205, 213-230.	3.7	31
72	A CANDIDATE YOUNG MASSIVE PLANET IN ORBIT AROUND THE CLASSICAL T TAURI STAR CI TAU*. Astrophysical Journal, 2016, 826, 206.	1.6	103
73	First detection of gas-phase ammonia in a planet-forming disk. Astronomy and Astrophysics, 2016, 591, A122.	2.1	52

#	Article	IF	CITATIONS
74	Gravitational Instabilities in Circumstellar Disks. Annual Review of Astronomy and Astrophysics, 2016, 54, 271-311.	8.1	323
75	New Phases and Dissociation-Recombination of Hydrogen Deuteride to 3.4ÂMbar. Physical Review Letters, 2016, 116, 145501.	2.9	22
76	A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature, 2016, 538, 483-486.	13.7	188
77	HYDROCARBON EMISSION RINGS IN PROTOPLANETARY DISKS INDUCED BY DUST EVOLUTION. Astrophysical Journal, 2016, 831, 101.	1.6	149
78	The Gas Disk: Evolution and Chemistry. Space Science Reviews, 2016, 205, 3-40.	3.7	5
79	A Surface Density Perturbation in the TW Hydrae Disk at 95 au Traced by Molecular Emission. Astrophysical Journal, 2017, 835, 228.	1.6	35
80	Turbulent-diffusion Mediated CO Depletion in Weakly Turbulent Protoplanetary Disks. Astrophysical Journal, 2017, 835, 162.	1.6	31
81	Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks. Astrophysical Journal, 2017, 840, 93.	1.6	38
82	Mass inventory of the giant-planet formation zone in a solar nebula analogue. Nature Astronomy, 2017, 1, .	4.2	100
83	Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?. Astronomy and Astrophysics, 2017, 599, A113.	2.1	142
84	Exocometary gas structure, origin and physical properties around \hat{l}^2 Pictoris through ALMA CO multitransition observations. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1415-1433.	1.6	99
85	Survey of Cold Water Lines in Protoplanetary Disks: Indications of Systematic Volatile Depletion. Astrophysical Journal, 2017, 842, 98.	1.6	66
86	Disk Masses around Solar-mass Stars are Underestimated by CO Observations. Astrophysical Journal, 2017, 841, 39.	1.6	37
87	Apparent Disk-mass Reduction and Planetisimal Formation in GravitationallyUnstable Disks in Class 0/I Young Stellar Objects. Astrophysical Journal, 2017, 838, 151.	1.6	39
88	Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE. Astrophysical Journal, 2017, 837, 132.	1.6	176
89	Disk Evolution and the Fate of Water. Space Science Reviews, 2017, 212, 813-834.	3.7	7
90	An Incipient Debris Disk in the Chamaeleon I Cloud. Astrophysical Journal, 2017, 844, 60.	1.6	5
91	Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph. Astronomical Journal, 2017, 154, 73.	1.9	61

#	Article	IF	CITATIONS
92	Gas Mass Tracers in Protoplanetary Disks: CO is Still the Best. Astrophysical Journal, 2017, 849, 130.	1.6	54
93	ALMA Observations of Asymmetric Molecular Gas Emission from a Protoplanetary Disk in the Orion Nebula. Astronomical Journal, 2017, 153, 233.	1.9	3
94	A Three-dimensional View of Turbulence: Constraints on Turbulent Motions in the HD 163296 Protoplanetary Disk Using DCO ⁺ . Astrophysical Journal, 2017, 843, 150.	1.6	208
95	Diagnostics for the elemental composition of protostellar objects. Astronomy Reports, 2017, 61, 103-114.	0.2	2
96	A photoevaporative gap in the closest planet-forming disc. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L95-L99.	1.2	46
97	Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA. Astrophysical Journal, 2017, 851, 85.	1.6	71
98	An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster. Astronomical Journal, 2017, 153, 240.	1.9	243
99	Far-infrared HD emission as a measure of protoplanetary disk mass. Astronomy and Astrophysics, 2017, 605, A69.	2.1	66
100	Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. Astronomy and Astrophysics, 2017, 605, A30.	2.1	47
101	Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot. Astronomy and Astrophysics, 2017, 607, A14.	2.1	21
102	The Flying Saucer: Tomography of the thermal and density gas structure of an edge-on protoplanetary disk. Astronomy and Astrophysics, 2017, 607, A130.	2.1	47
103	Zooming in on the Chemistry of Protoplanetary Disks with ALMA. Proceedings of the International Astronomical Union, 2017, 13, 57-68.	0.0	0
104	Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?. Proceedings of the International Astronomical Union, 2017, 13, 124-128.	0.0	0
105	Unveiling the mid-plane temperature and mass distribution in the giant-planet formation zone. Proceedings of the International Astronomical Union, 2017, 13, 103-108.	0.0	0
106	Chemical enrichment of the planet-forming region as probed by accretion. Monthly Notices of the Royal Astronomical Society, 2018, 473, 757-764.	1.6	7
107	A Survey of CH ₃ CN and HC ₃ N in Protoplanetary Disks. Astrophysical Journal, 2018, 857, 69.	1.6	82
108	Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer. Astrophysical Journal, 2018, 856, 85.	1.6	82
109	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117.	1.6	149

TION R

# 110	ARTICLE CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations. Astrophysical Journal, 2018, 852, 122.	IF 1.6	CITATIONS
111	Probing the Baryon Cycle of Galaxies with <i>SPICA</i> Mid- and Far-Infrared Observations. Publications of the Astronomical Society of Australia, 2018, 35, .	1.3	11
112	A Brief Overview of Planet Formation. , 2018, , 1-19.		1
113	A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi. Astrophysical Journal, 2018, 855, 98.	1.6	13
114	SOFIA-HIRMES: Looking Forward to the HIgh-Resolution Mid-infrarEd Spectrometer. Journal of Astronomical Instrumentation, 2018, 07, .	0.8	9
115	A Subarcsecond ALMA Molecular Line Imaging Survey of the Circumbinary, Protoplanetary Disk Orbiting V4046 Sgr. Astrophysical Journal, 2018, 863, 106.	1.6	40
116	The Distribution and Excitation of CH ₃ CN in a Solar Nebula Analog. Astrophysical Journal, 2018, 859, 131.	1.6	65
117	Spiral Arms in Disks: Planets or Gravitational Instability?. Astrophysical Journal, 2018, 862, 103.	1.6	64
118	Ionization-driven Depletion and Redistribution of CO in Protoplanetary Disks. Astrophysical Journal Letters, 2018, 868, L37.	3.0	13
119	Origin of Weak Turbulence in the Outer Regions of Protoplanetary Disks. Astrophysical Journal, 2018, 865, 10.	1.6	40
120	CO destruction in protoplanetary disk midplanes: Inside versus outside the CO snow surface. Astronomy and Astrophysics, 2018, 618, A182.	2.1	94
121	On the Effects of Self-obscuration in the (Sub)Millimeter Spectral Indices and the Appearance of Protostellar Disks. Astrophysical Journal, 2018, 868, 39.	1.6	27
122	A Brief Overview of Planet Formation. , 2018, , 2185-2203.		8
123	Connecting Planetary Composition with Formation. , 2018, , 2475-2521.		4
124	Circumstellar Discs: What Will Be Next?. , 2018, , 3321-3352.		4
125	A Proposed Heterodyne Receiver for the Origins Space Telescope. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 558-571.	2.0	23
126	Characterizing TW Hydra. Astrophysical Journal, 2018, 853, 120.	1.6	38
127	Temperature, Mass, and Turbulence: A Spatially Resolved Multiband Non-LTE Analysis of CS in TW Hya. Astrophysical Journal, 2018, 864, 133.	1.6	75

#	Article	IF	CITATIONS
128	2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophysical Journal, Supplement Series, 2018, 239, 17.	3.0	335
129	Chemistry in disks. Astronomy and Astrophysics, 2018, 617, A28.	2.1	45
130	First detection of H ₂ S in a protoplanetary disk. Astronomy and Astrophysics, 2018, 616, L5.	2.1	42
131	Rotational Quenching of HD in Collisions with H ₂ : Resolving Discrepancies for Low-lying Rotational Transitions. Astrophysical Journal, 2018, 866, 95.	1.6	10
132	Constraining Gas-phase Carbon, Oxygen, and Nitrogen in the IM Lup Protoplanetary Disk. Astrophysical Journal, 2018, 865, 155.	1.6	69
133	The physical and chemical properties of planet forming disks. Proceedings of the International Astronomical Union, 2018, 14, 115-123.	0.0	1
134	Connecting Planetary Composition with Formation. , 2018, , 1-47.		1
135	Photoevaporation Does Not Create a Pileup of Giant Planets at 1 au. Astrophysical Journal, 2018, 855, 145.	1.6	7
136	Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life, 2018, 8, 18.	1.1	30
137	The Origins Space Telescope. Nature Astronomy, 2018, 2, 596-599.	4.2	41
138	First Detection of the Simplest Organic Acid in a Protoplanetary Disk*. Astrophysical Journal Letters, 2018, 862, L2.	3.0	73
139	Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO ₂ . Astronomy and Astrophysics, 2018, 611, A80.	2.1	29
140	CN rings in full protoplanetary disks around young stars as probes of disk structure. Astronomy and Astrophysics, 2018, 609, A93.	2.1	49
141	A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296. Astrophysical Journal Letters, 2018, 860, L12.	3.0	218
142	New Constraints From Dust Lines on the Surface Densities of Protoplanetary Disks. Astrophysical Journal, 2019, 878, 116.	1.6	48
143	Consistent Dust and Gas Models for Protoplanetary Disks. III. Models for Selected Objects from the FP7 DIANA Project*. Publications of the Astronomical Society of the Pacific, 2019, 131, 064301.	1.0	58
144	The First Detection of ¹³ C ¹⁷ O in a Protoplanetary Disk: A Robust Tracer of Disk Gas Mass. Astrophysical Journal Letters, 2019, 882, L31.	3.0	54
145	Investigating the gas-to-dust ratio in the protoplanetary disk of HD 142527. Publication of the Astronomical Society of Japan, 2019, 71, .	1.0	7

#	Article	IF	CITATIONS
146	Systematic Variations of CO Gas Abundance with Radius in Gas-rich Protoplanetary Disks. Astrophysical Journal, 2019, 883, 98.	1.6	70
147	Bright C ₂ H emission in protoplanetary discs in Lupus: high volatile C/O > 1 ratios. Astronomy and Astrophysics, 2019, 631, A69.	2.1	59
148	Properties of Density and Velocity Gaps Induced by a Planet in a Protoplanetary Disk. Astrophysical Journal, 2019, 884, 142.	1.6	14
149	Entrapment of CO in CO ₂ Ice. Astrophysical Journal, 2019, 883, 21.	1.6	11
150	Multi-wavelength observations of protoplanetary discs as a proxy for the gas disc mass. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	16
151	Probing the Gas Content of Late-stage Protoplanetary Disks with N ₂ H ⁺ . Astrophysical Journal, 2019, 881, 127.	1.6	20
152	Dust-to-gas Ratio Resurgence in Circumstellar Disks Due to the Formation of Giant Planets: The Case of HD 163296. Astrophysical Journal, 2019, 877, 50.	1.6	15
153	Consistent dust and gas models for protoplanetary disks. Astronomy and Astrophysics, 2019, 625, A66.	2.1	20
154	Rotational quenching of HD induced by collisions with H2 molecules. Monthly Notices of the Royal Astronomical Society, 2019, 488, 381-386.	1.6	9
155	Planet-forming material in a protoplanetary disc: the interplay between chemical evolution and pebble drift. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3998-4011.	1.6	70
156	Unlocking CO Depletion in Protoplanetary Disks. II. Primordial C/H Predictions inside the CO Snowline. Astrophysical Journal, 2019, 877, 131.	1.6	27
157	A Survey of C ₂ H, HCN, and C ¹⁸ O in Protoplanetary Disks. Astrophysical Journal, 2019, 876, 25.	1.6	66
158	A dust and gas cavity in the disc around CQ Tau revealed by ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4638-4654.	1.6	33
159	The Synthetic ALMA Multiband Analysis of the Dust Properties of the TW Hya Protoplanetary Disk. Astrophysical Journal, 2019, 872, 179.	1.6	6
160	Upper limits on CH ₃ OH in the HD 163296 protoplanetary disk. Astronomy and Astrophysics, 2019, 623, A124.	2.1	33
161	Growth and Settling of Dust Particles in Protoplanetary Nebulae: Implications for Opacity, Thermal Profile, and Gravitational Instability. Astrophysical Journal, 2019, 874, 26.	1.6	12
162	Observational Signatures of Planets in Protoplanetary Disks: Planet-induced Line Broadening in Gaps. Astrophysical Journal, 2019, 870, 72.	1.6	22
163	Super-Earths in the TWÂHya disc. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L130-L135.	1.2	16

#	Article	IF	CITATIONS
164	Scattered light shadows in warped protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4951-4962.	1.6	33
165	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
166	Tracing the physical conditions of planet formation with molecular excitation. Proceedings of the International Astronomical Union, 2019, 15, 181-186.	0.0	0
167	The dry and carbon-poor inner disk of TW Hydrae: evidence for a massive icy dust trap. Astronomy and Astrophysics, 2019, 632, L10.	2.1	16
168	Carbon depletion observed inside T Tauri inner rims. Astronomy and Astrophysics, 2019, 632, A32.	2.1	26
169	The ALMA Lupus protoplanetary disk survey: evidence for compact gas disks and molecular rings from CN. Astronomy and Astrophysics, 2019, 623, A150.	2.1	31
170	Stringent limits on the magnetic field strength in the disc of TW Hya. Astronomy and Astrophysics, 2019, 624, L7.	2.1	41
171	InfraRed Astronomy Satellite Swarm Interferometry (IRASSI): Overview and study results. Advances in Space Research, 2020, 65, 831-849.	1.2	11
172	Volatile depletion in planet-forming disks. Chinese Journal of Chemical Physics, 2020, 33, 85-90.	0.6	0
173	Observations of Protoplanetary Disk Structures. Annual Review of Astronomy and Astrophysics, 2020, 58, 483-528.	8.1	220
174	Dust clearing by radial drift in evolving protoplanetary discs. Astronomy and Astrophysics, 2020, 638, A156.	2.1	21
175	Gas and star formation from HD and dust emission in a strongly lensed galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4109-4118.	1.6	7
176	Constraining protoplanetary discs with exoplanetary dynamics: Kepler-419 as an example. Monthly Notices of the Royal Astronomical Society, 2020, 499, 106-115.	1.6	2
177	TW Hya: an old protoplanetary disc revived by its planet. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	11
178	Mass constraints for 15 protoplanetary discs from HD 1–0. Astronomy and Astrophysics, 2020, 634, A88.	2.1	37
179	Snow lines can be thermally unstable. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3160-3174.	1.6	19
180	Protoplanetary Disks in the Orion Nebula Cluster: Gas-disk Morphologies and Kinematics as Seen with ALMA. Astrophysical Journal, 2020, 894, 74.	1.6	25
181	Measuring elemental abundance ratios in protoplanetary disks at millimeter wavelengths. Astronomy and Astrophysics, 2020, 638, A110.	2.1	15

ARTICLE IF CITATIONS # Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2020, 637, 182 2.1 20 A5. Warm dust surface chemistry. Astronomy and Astrophysics, 2020, 634, A42. 2.1 Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 184 6.0 64 367,. Detectability of embedded protoplanets from hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3440-3458. An ALMA/NOEMA study of gas dissipation and dust evolution in the 5 Myr-old HD 141569A hybrid disc. 186 2.1 17 Astronomy and Astrophysics, 2020, 635, A94. magritte, a modern software library for 3D radiative transfer: I. Non-LTE atomic and molecular line 1.6 modelling. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1812-1826. 188 Astrochemistry and compositions of planetary systems. Physics Reports, 2021, 893, 1-48. 10.3 128 The TW Hya Rosetta Stone Project. II. Spatially Resolved Emission of Formaldehyde Hints at 1.6 19 Low-temperature Gas-phase Formation. Astrophysical Journal, 2021, 906, 111. The TW Hya Rosetta Stone Project. III. Resolving the Gaseous Thermal Profile of the Disk. Astrophysical 190 1.6 35 Journal, 2021, 908, 8. Modeling Nitrogen Fractionation in the Protoplanetary Disk around TW Hya: Model Constraints on Grain Population and Carbon-to-oxygen Elemental Abundance Ratio. Astrophysical Journal, 2021, 908, 1.6 82. Observing Carbon and Oxygen Carriers in Protoplanetary Disks at Mid-infrared Wavelengths. 192 19 1.6 Astrophysical Journal, 2021, 909, 55. Destruction of Refractory Carbon Grains Drives the Final Stage of Protoplanetary Disk Chemistry. 1.6 Astrophysical Journal, 2021, 910, 3. Exploring HNC and HCN line emission as probes of the protoplanetary disk temperature. Astronomy 194 2.1 10 and Astrophysics, 2021, 647, A118. The TW Hya Rosetta Stone Project IV: A Hydrocarbon-rich Disk Atmosphere. Astrophysical Journal, 2021, 911, 29. 1.6 A CO-to-H₂ Ratio of â‰^10^{â^35} toward the Herbig Ae Star HK Ori. Astronomical 196 1.9 1 Journal, 2021, 161, 217. Characterizing the dust content of disk substructures in TW Hydrae. Astronomy and Astrophysics, 53 2021, 648, A33. Bringing high spatial resolution to the far-infrared. Experimental Astronomy, 2021, 51, 661-697. 198 1.6 9 Observational Signature of Tightly Wound Spirals Driven by Buoyancy Resonances in Protoplanetary 199 1.6 Disks. Astrophysical Journal, 2021, 912, 56.

	CHATION R	EPORI	
#	Article	IF	Citations
200	CO isotopolog line fluxes of viscously evolving disks. Astronomy and Astrophysics, 2021, 649, A95.	2.1	9
201	A Dynamical Measurement of the Disk Mass in Elias 2–27. Astrophysical Journal Letters, 2021, 914, L27.	3.0	29
202	High Spatial Resolution Observations of Molecular Lines toward the Protoplanetary Disk around TW Hya with ALMA. Astrophysical Journal, 2021, 914, 113.	1.6	14
203	Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization. Physics-Uspekhi, 2021, 64, 386-419.	0.8	24
204	Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans. , 2021, , .		8
205	An unbiased NOEMA 2.6 to 4 mm survey of the GG Tau ring: First detection of CCS in a protoplanetary disk. Astronomy and Astrophysics, 2021, 653, L5.	2.1	4
206	If you like C/O variations, you should have put a ring on it. Astronomy and Astrophysics, 2021, 653, L9.	2.1	15
207	Heterodyne Receiver for Origins. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7, .	1.0	6
208	UV astronomy and the investigation of the origin of life. , 2021, , 15-73.		2
209	Circumstellar Discs: What Will Be Next?. , 2017, , 1-32.		2
210	The Determination of Protoplanetary Disk Masses. Astrophysics and Space Science Library, 2017, , 1-37.	1.0	25
211	On the structure of the transition disk around TW Hydrae. Astronomy and Astrophysics, 2014, 564, A93.	2.1	89
212	Chemistry in disks. Astronomy and Astrophysics, 2015, 574, A137.	2.1	46
213	Chemistry in protoplanetary disks: the gas-phase CO/H ₂ ratio and the carbon reservoir. Astronomy and Astrophysics, 2015, 579, A82.	2.1	61
214	Modeling protoplanetary disk SEDs with artificial neural networks. Astronomy and Astrophysics, 2020, 642, A171.	2.1	25
215	Measuring the atomic composition of planetary building blocks. Astronomy and Astrophysics, 2020, 642, L15.	2.1	14
216	The impact of pre-main sequence stellar evolution on mid-plane snowline locations and C/O in planet forming discs. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4658-4670.	1.6	10
218	ALMA OBSERVATIONS OF HD 141569's CIRCUMSTELLAR DISK. Astrophysical Journal, 2016, 829, 6.	1.6	32

#	Article	IF	CITATIONS
219	The TW Hya Rosetta Stone Project. I. Radial and Vertical Distributions of DCN and DCO ⁺ . Astronomical Journal, 2021, 161, 38.	1.9	16
220	An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I. Astrophysical Journal, 2017, 844, 99.	1.6	97
221	Measuring Turbulent Motion in Planet-forming Disks with ALMA: A Detection around DM Tau and Nondetections around MWC 480 and V4046 Sgr. Astrophysical Journal, 2020, 895, 109.	1.6	103
222	An Evolutionary Study of Volatile Chemistry in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 97.	1.6	34
223	CO Depletion in Protoplanetary Disks: A Unified Picture Combining Physical Sequestration and Chemical Processing. Astrophysical Journal, 2020, 899, 134.	1.6	87
224	Predicting the Kinematic Evidence of Gravitational Instability. Astrophysical Journal, 2020, 904, 148.	1.6	25
225	Mass determination of protoplanetary disks from dust evolution. Astronomy and Astrophysics, 2022, 657, A74.	2.1	7
226	Protoplanetary Disk, Chemistry. , 2014, , 1-17.		Ο
227	Protoplanetary Disk. , 2014, , 1-13.		0
228	Protoplanetary Disk, Chemistry. , 2015, , 2058-2073.		0
229	Protoplanetary Disk. , 2015, , 2045-2056.		0
230	SOFIA – A Brief Overview of ISM Science Highlights to Date. EAS Publications Series, 2015, 75-76, 433-440.	0.3	0
231	The Gas Disk: Evolution and Chemistry. Space Sciences Series of ISSI, 2016, , 43-80.	0.0	0
232	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Sciences Series of ISSI, 2016, , 255-272.	0.0	Ο
233	Disk Evolution and the Fate of Water. Space Sciences Series of ISSI, 2017, , 233-254.	0.0	0
234	Chemistry of Protoplanetary Disks. Astronomy and Astrophysics Library, 2017, , 205-225.	0.2	0
236	The far-infrared space interferometer study IRASSI: motivation, principle design, and technical aspects. , 2018, , .		0
237	Physical Conditions of Gas Components in Debris Disks of 49 Ceti and HD 21997. Astrophysical Journal, 2020, 905, 122.	1.6	4

		CITATION REPORT		
#	Article	IF	C	ITATIONS
238	ALMA Observation of the Protoplanetary Disk Around HD 163296. Springer Theses, 2020, , 113	-128. 0.0) 0	
239	Full-Dimensional Potential Energy Surface for Ro-vibrationally Inelastic Scattering between H ₂ Molecules. Journal of Chemical Theory and Computation, 2021, 17, 6747-6756	. 2.3	11	Ĺ
240	Molecules with ALMA at Planet-forming Scales (MAPS). XVII. Determining the 2D Thermal Struct the HD 163296 Disk. Astrophysical Journal, Supplement Series, 2021, 257, 17.	ture of 3.0) 19)
241	Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights. Astrophysical Journal, Supplement Series, 2021, 257, 1.	3.0) 11	17
242	Molecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions. Astrophysical Ja Supplement Series, 2021, 257, 5.	ournal, 3.0) 87	7
243	Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. Astro Journal, Supplement Series, 2021, 257, 20.	physical 3.0) 26	6
244	The Water-ice Feature in Near-infrared Disk-scattered Light around HD 142527: Micron-sized Icy Lifted up to the Disk Surface?. Astrophysical Journal, 2021, 921, 173.	y Grains 1.6	12	2
245	The formation of planetary systems with SPICA. Publications of the Astronomical Society of Aus 2021, 38, .	tralia, 1.3	3	
246	C ¹⁸ O Emission as an Effective Measure of Gas Masses of Protoplanetary Disks. Astrophysical Journal, 2022, 925, 49.	1.6	7	
247	Tracing pebble drift and trapping using radial carbon depletion profiles in protoplanetary disks. Astronomy and Astrophysics, 2022, 660, A126.	2.1	16	6
248	A Novel Way of Measuring the Gas Disk Mass of Protoplanetary Disks Using N ₂ H ⁺ and C ¹⁸ O. Astrophysical Journal Letters, 2022, 92	26, L2. 3.0) 12	2
249	Effect of MHD Wind-driven Disk Evolution on the Observed Sizes of Protoplanetary Disks. Astrophysical Journal, 2022, 926, 61.	1.6	12	2
250	Detection of HC ¹⁸ O ⁺ in a Protoplanetary Disk: Exploring Oxygen Iso Fractionation of CO. Astrophysical Journal, 2022, 926, 148.	tope 1.6	5	
251	2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophysical Journal, Supplement Series, 2022, 259, 30.	3.0) 16	63
252	New Constraints on Protoplanetary Disk Gas Masses in Lupus. Astrophysical Journal, 2022, 927	, 229. 1.6	12	2
253	Mapping the Universe in hydrogen deuteride. Physical Review D, 2022, 105, .	1.6	4	
254	Closing gaps to our origins. Experimental Astronomy, 0, , 1.	1.6	0	
255	Gas and Dust Shadows in the TW Hydrae Disk. Astrophysical Journal, 2022, 930, 144.	1.6	3	

#	Article	IF	CITATIONS
256	Inferring the Gas-to-Dust Ratio in the Main Planet-forming Region of Disks. Research Notes of the AAS, 2022, 6, 131.	0.3	0
257	Depletion of gaseous CO in protoplanetary disks by surface-energy-regulated ice formation. Nature Astronomy, 2022, 6, 1147-1155.	4.2	10
258	Inside-out planet formation – VII. Astrochemical models of protoplanetary discs and implications for planetary compositions. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2285-2308.	1.6	6
259	Discovery of Line Pressure Broadening and Direct Constraint on Gas Surface Density in a Protoplanetary Disk. Astrophysical Journal Letters, 2022, 937, L14.	3.0	3
260	The formation of CO ₂ through consumption of gas-phase CO on vacuum-UV irradiated water ice. Astronomy and Astrophysics, 2022, 666, A35.	2.1	1
261	Different Degrees of Nitrogen and Carbon Depletion in the Warm Molecular Layers of Protoplanetary Disks. Astrophysical Journal, 2022, 938, 29.	1.6	4
262	Underestimation of the dust mass in protoplanetary disks: Effects of disk structure and dust properties. Astronomy and Astrophysics, 2022, 668, A175.	2.1	9
263	Dynamical mass measurements of two protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4481-4493.	1.6	9
264	Disentangling the protoplanetary disk gas mass and carbon depletion through combined atomic and molecular tracers. Astronomy and Astrophysics, 2023, 670, A12.	2.1	4
266	Herbig Stars. Space Science Reviews, 2023, 219, .	3.7	8
267	Protoplanetary Disk Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory. Space Science Reviews, 2023, 219, .	3.7	0
268	The ALMA view of MP Mus (PDS 66): A protoplanetary disk with no visible gaps down to 4 au scales. Astronomy and Astrophysics, 2023, 673, A77.	2.1	4
269	Testing protoplanetary disc evolution with CO fluxes. Astronomy and Astrophysics, 2023, 672, L15.	2.1	3
270	Chemical Modeling of Orion Nebula Cluster Disks: Evidence for Massive, Compact Gas Disks with Interstellar Gas-to-dust Ratios. Astrophysical Journal, 2023, 947, 7.	1.6	5
274	Protoplanetary Disk, Chemistry. , 2023, , 2506-2521.		0
277	The science case for a far-infrared interferometer in the era of JWST and ALMA. , 2023, , .		0