A practical guide to MaxEnt for modeling species' distri inputs and settings matter

Ecography 36, 1058-1069 DOI: 10.1111/j.1600-0587.2013.07872.x

Citation Report

#	Article	IF	CITATIONS
1	Confronting expert-based and modelled distributions for species with uncertain conservation status: A case study from the corncrake (Crex crex). Biological Conservation, 2013, 167, 161-171.	1.9	48
2	Assessing the effects of variables and background selection on the capture of the tick climate niche. International Journal of Health Geographics, 2013, 12, 43.	1.2	28
3	Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132495.	1.2	60
4	Eucalypts face increasing climate stress. Ecology and Evolution, 2013, 3, 5011-5022.	0.8	56
5	Ensemble modeling to predict habitat suitability for a largeâ€scale disturbance specialist. Ecology and Evolution, 2013, 3, 4348-4364.	0.8	28
6	Response of a cryptic apex predator to a complete urban to forest gradient. Wildlife Research, 2013, 40, 427.	0.7	23
7	Next-Generation Invaders? Hotspots for Naturalised Sleeper Weeds in Australia under Future Climates. PLoS ONE, 2013, 8, e84222.	1.1	29
8	An Iterative and Targeted Sampling Design Informed by Habitat Suitability Models for Detecting Focal Plant Species over Extensive Areas. PLoS ONE, 2014, 9, e101196.	1.1	7
9	Diversity and Distribution of Deep-Sea Shrimps in the Ross Sea Region of Antarctica. PLoS ONE, 2014, 9, e103195.	1.1	32
10	DNA Barcodes and Species Distribution Models Evaluate Threats of Global Climate Changes to Genetic Diversity: A Case Study from Nanorana parkeri (Anura: Dicroglossidae). PLoS ONE, 2014, 9, e103899.	1.1	14
11	Mapping the Global Potential Geographical Distribution of Black Locust (Robinia Pseudoacacia L.) Using Herbarium Data and a Maximum Entropy Model. Forests, 2014, 5, 2773-2792.	0.9	58
12	Conservation of Portuguese red-listed bryophytes species in Portugal: Promoting a shift in perspective on climate changes. Plant Biosystems, 2014, 148, 837-850.	0.8	9
13	Unveiling the factors shaping the distribution of widely distributed alpine vertebrates, using multi-scale ecological niche modelling of the bat Plecotus macrobullaris. Frontiers in Zoology, 2014, 11, 77.	0.9	14
14	Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe. Parasites and Vectors, 2014, 7, 536.	1.0	40
15	Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16790-16795.	3.3	88
16	A comparison of <scp>M</scp> axlike and <scp>M</scp> axent for modelling species distributions. Methods in Ecology and Evolution, 2014, 5, 215-225.	2.2	91
17	Combining environmental suitability and habitat connectivity to map rare or Data Deficient species in the Tropics. Journal for Nature Conservation, 2014, 22, 384-390.	0.8	15
18	<scp>SDM</scp> toolbox: a pythonâ€based <scp>GIS</scp> toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 2014, 5, 694-700.	2.2	864

#	Article	IF	CITATIONS
19	Modelling distribution of habitats required for different uses by the same species: Implications for conservation at the regional scale. Biological Conservation, 2014, 174, 39-46.	1.9	35
20	What do we gain from simplicity versus complexity in species distribution models?. Ecography, 2014, 37, 1267-1281.	2.1	438
21	Fine-scale selection of nesting habitat in Little Crake Porzana parva and Water Rail Rallus aquaticus in small ponds. Bird Study, 2014, 61, 171-181.	0.4	22
22	Maxent is not a presence–absence method: a comment on Thibaud <i>etÂal</i> Methods in Ecology and Evolution, 2014, 5, 1192-1197.	2.2	113
23	Urban to forest gradients: Suitability for hollow bearing trees and implications for obligate hollow nesters. Austral Ecology, 2014, 39, 963-972.	0.7	10
24	Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera) Tj ETQq1 Part I: Oceanographic Research Papers, 2014, 91, 101-114.	1 1 0.7843 0.6	314 rgBT / <mark>O</mark> \ 59
25	Using species distribution models to inform IUCN Red List assessments. Biological Conservation, 2014, 177, 174-184.	1.9	116
26	Modelling the potential distribution of the Bridled Skink,Trachylepis vittata(Olivier, 1804), in the Middle East. Zoology in the Middle East, 2014, 60, 208-216.	0.2	16
27	Distribution pattern of the Snake-eyed Lizard, <i>Ophisops elegans</i> Ménétriés, 1832 (Squamata:) Tj ETQ	9q0,0 0 rgt	BT /Overlock
28	Combining genetic analyses of archived specimens with distribution modelling to explain the anomalous distribution of the rare lichen <i>Staurolemma omphalarioides</i> : longâ€distance dispersal or vicariance?. Journal of Biogeography, 2014, 41, 2020-2031.	1.4	25
29	A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasites and Vectors, 2014, 7, 302.	1.0	36

30	Landscape scale species distribution modeling across the Guiana Shield to inform conservation decision making in Guyana. Biodiversity and Conservation, 2014, 23, 1931-1948.	1.2	9
31	Predicting the Spatial Distribution of a Seabird Community to Identify Priority Conservation Areas in the Timor Sea. Conservation Biology, 2014, 28, 1699-1709.	2.4	22
32	On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. South African Journal of Botany, 2014, 95, 152-158.	1.2	30
33	Identifying important micro-habitat characteristics of muskellunge spawning locations in the upper Niagara River. Journal of Great Lakes Research, 2014, 40, 325-335.	0.8	9
34	Does urbanization have the potential to create an ecological trap for powerful owls (Ninox) Tj ETQq1 1 0.784314	ŧ rgβŢ /Ov	erlock 10 T 22
35	Quantitative mapping of fish habitat: A useful tool to design spatialised management measures and marine protected area withÂfishery objectives. Ocean and Coastal Management, 2014, 87, 8-19.	2.0	58

35	marine protected area withÂfishery objectives. Ocean and Coastal Management, 2014, 87, 8-19.	2.0	58	
36	Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere, 2014, 5, 1-23.	1.0	73	

#	Article	IF	CITATIONS
37	<scp>ENM</scp> eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for <scp>Maxent</scp> ecological niche models. Methods in Ecology and Evolution, 2014, 5, 1198-1205.	2.2	1,277
38	Site Selection and Nest Survival of the Bar-Headed Goose (Anser indicus) on the Mongolian Plateau. Waterbirds, 2014, 37, 381-393.	0.2	9
39	A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecology and Evolution, 2014, 4, 4798-4811.	0.8	38
40	Land ownership patterns associated with declining forest birds: targeting the right policy and management for the right birds. Environmental Conservation, 2015, 42, 216-226.	0.7	9
41	Modelling species distributions with simulated virtual species. Journal of Biogeography, 2015, 42, 1365-1366.	1.4	18
42	Drifting baited stereoâ€videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere, 2015, 6, 1-29.	1.0	35
43	Extinctions in near time: new radiocarbon dates point to a very recent disappearance of the South American fox <i>Dusicyon avus</i> (Carnivora: Canidae). Biological Journal of the Linnean Society, 2015, 116, 704-720.	0.7	38
44	Environmental and anthropogenic factors affecting the probability of occurrence of Oncomegas wageneri (Cestoda: Trypanorhyncha) in the southern Gulf of Mexico. Parasites and Vectors, 2015, 8, 609.	1.0	10
45	Shallow environmental gradients put inland species at risk: Insights and implications from predicting future distributions of <i>Eucalyptus</i> species in South Western Australia. Austral Ecology, 2015, 40, 923-932.	0.7	11
46	Multilocus phylogeography of a widespread savanna–woodlandâ€adapted rodent reveals the influence of Pleistocene geomorphology and climate change inÂAfrica's Zambezi region. Molecular Ecology, 2015, 24, 5248-5266.	2.0	31
47	In and out of refugia: historical patterns of diversity and demography in the North American Caesar's mushroom species complex. Molecular Ecology, 2015, 24, 5938-5956.	2.0	19
48	Unravelling the evolutionary history and future prospects of endemic species restricted to former glacial refugia. Molecular Ecology, 2015, 24, 5267-5283.	2.0	20
49	Climate change, genetic markers and species distribution modelling. Journal of Biogeography, 2015, 42, 1577-1585.	1.4	86
50	Conservation status assessment of <i>Paraphlebia</i> damselflies in Mexico. Insect Conservation and Diversity, 2015, 8, 517-524.	1.4	8
51	Evidence for habitat and climatic specializations driving the longâ€ŧerm distribution trends of <scp>UK</scp> and <scp>I</scp> rish bumblebees. Diversity and Distributions, 2015, 21, 864-875.	1.9	25
52	Predicting the distribution of forest tree species using topographic variables and vegetation index in eastern Acre, Brazil. Acta Amazonica, 2015, 45, 167-174.	0.3	12
53	Broad Niche Overlap between Invasive Nile Tilapia Oreochromis niloticus and Indigenous Congenerics in Southern Africa: Should We be Concerned?. Entropy, 2015, 17, 4959-4973.	1.1	29
54	Impacts of Species Misidentification on Species Distribution Modeling with Presence-Only Data. ISPRS International Journal of Geo-Information, 2015, 4, 2496-2518.	1.4	45

#	Article	IF	CITATIONS
55	Why Do Cryptic Species Tend Not to Co-Occur? A Case Study on Two Cryptic Pairs of Butterflies. PLoS ONE, 2015, 10, e0117802.	1.1	63
56	Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park. PLoS ONE, 2015, 10, e0117893.	1.1	39
57	Geographic Distribution of Isolated Indigenous Societies in Amazonia and the Efficacy of Indigenous Territories. PLoS ONE, 2015, 10, e0125113.	1.1	16
58	The Importance of the Human Footprint in Shaping the Global Distribution of Terrestrial, Freshwater and Marine Invaders. PLoS ONE, 2015, 10, e0125801.	1.1	126
59	Predicting Species Distributions Using Record Centre Data: Multi-Scale Modelling of Habitat Suitability for Bat Roosts. PLoS ONE, 2015, 10, e0128440.	1.1	31
60	Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios. PLoS ONE, 2015, 10, e0128875.	1.1	25
61	Regional Extinctions and Quaternary Shifts in the Geographic Range of Lestodelphys halli, the Southernmost Living Marsupial: Clues for Its Conservation. PLoS ONE, 2015, 10, e0132130.	1.1	21
62	Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures. PLoS ONE, 2015, 10, e0144089.	1.1	14
63	Combining Niche Modelling, Land-Use Change, and Genetic Information to Assess the Conservation Status of <i>Pouteria splendens</i> Populations in Central Chile. International Journal of Ecology, 2015, 2015, 1-12.	0.3	9
64	Modeling the Potential Distribution of Picea chihuahuana MartÃnez, an Endangered Species at the Sierra Madre Occidental, Mexico. Forests, 2015, 6, 692-707.	0.9	16
65	Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Applied Geography, 2015, 60, 10-19.	1.7	58
66	Beyond species distribution modeling: A landscape genetics approach to investigating range shifts under future climate change. Ecological Informatics, 2015, 30, 250-256.	2.3	29
67	Muskellunge Spawning Site Selection in Northern Wisconsin Lakes and a GIS-Based Predictive Habitat Model. North American Journal of Fisheries Management, 2015, 35, 141-157.	0.5	13
68	Novel Approaches to Modeling and Mapping Terrestrial Vertebrate Occurrence in the Northwest and Alaska: An Evaluation. Northwest Science, 2015, 89, 355.	0.1	12
69	Evidence of niche shift and global invasion potential of the Tawny Crazy ant, <i><scp>N</scp>ylanderia fulva</i> . Ecology and Evolution, 2015, 5, 4628-4641.	0.8	57
70	Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. Journal of Claciology, 2015, 61, 646-662.	1.1	215
71	Predicting harvest vulnerability for a recovering population of American black bears in western Maryland. Ursus, 2015, 26, 97-106.	0.3	5
72	Methodological caveats in the environmental modelling and projections of climate niche for ticks, with examples for lxodes ricinus (Ixodidae). Veterinary Parasitology, 2015, 208, 14-25.	0.7	32

#	Article	IF	CITATIONS
73	Impact of habitat loss on distributions of terrestrial vertebrates in a high-biodiversity region in Mexico. Biological Conservation, 2015, 184, 59-65.	1.9	20
74	Prioritizing West African medicinal plants for conservation and sustainable extraction studies based on market surveys and species distribution models. Biological Conservation, 2015, 181, 173-181.	1.9	52
75	Scientists and software – surveying the species distribution modelling community. Diversity and Distributions, 2015, 21, 258-267.	1.9	58
76	Modeling of the putative distribution of the arbovirus vector Ochlerotatus japonicus japonicus (Diptera: Culicidae) in Germany. Parasitology Research, 2015, 114, 1051-1061.	0.6	29
77	Evaluating habitat suitability models for nesting whiteâ€headed woodpeckers in unburned forest. Journal of Wildlife Management, 2015, 79, 263-273.	0.7	22
78	Uncertainties in the projection of species distributions related to general circulation models. Ecology and Evolution, 2015, 5, 1100-1116.	0.8	107
79	Climate-induced range shifts of the American jackknife clam Ensis directus in Europe. Biological Invasions, 2015, 17, 725-741.	1.2	26
80	Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 2015, 24, 276-292.	2.7	661
81	Ecological niche modeling of Stenella dolphins (Cetartiodactyla: Delphinidae) in the southwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology, 2015, 472, 166-179.	0.7	37
82	A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149, 202-211.	0.9	87
83	Living on the edge in species distribution models: The unexpected presence of three species of butterflies in a protected area in southern Spain. Ecological Modelling, 2015, 312, 335-346.	1.2	7
84	Characteristics of the top-cited papers in species distribution predictive models. Ecological Modelling, 2015, 313, 77-83.	1.2	52
85	Threats of future climate change and land use to vulnerable tree species native to Southern California. Environmental Conservation, 2015, 42, 127-138.	0.7	10
86	MIAT: Modular R-wrappers for flexible implementation of MaxEnt distribution modelling. Ecological Informatics, 2015, 30, 215-221.	2.3	12
87	Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecological Modelling, 2015, 312, 308-317.	1.2	131
88	Mapping seasonal European bison habitat in the Caucasus Mountains to identify potential reintroduction sites. Biological Conservation, 2015, 191, 83-92.	1.9	31
89	A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 2015, 129, 89-101.	1.7	346
90	Management planning for endangered plant species in priority protected areas. Biodiversity and Conservation, 2015, 24, 2383-2397.	1.2	23

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
91	Ecological niches of open ocean phytoplankton taxa. Limnology and Oceanography, 2015, 60, 1020-1	.038. 1.6	104
92	Climate as a driver of tropical insular diversity: comparative phylogeography of two ecologically distinctive frogs in Puerto Rico. Ecography, 2015, 38, 769-781.	2.1	10
93	The importance of residual habitats and crop management for the conservation of birds breeding in intensive orchards. Ecological Research, 2015, 30, 597-604.	0.7	17
94	Spatial conservation priorities are highly sensitive to choice of biodiversity surrogates and species distribution model type. Ecography, 2015, 38, 1101-1111.	2.1	37
95	Modeling the potential North American distribution of Russian olive, an invader of riparian ecosystems. Plant Ecology, 2015, 216, 1371-1383.	0.7	12
96	Niche and movement models identify corridors of introduced feral cats infringing ecologically sensitive areas in New Zealand. Biological Conservation, 2015, 192, 48-56.	1.9	16
97	Survey data matter: predicted niche of adult vs breeding Odonata. Freshwater Science, 2015, 34, 1114-1122.	0.9	22
98	Temperate forest termites: ecology, biogeography, and ecosystem impacts. Ecological Entomology, 2015, 40, 199-210.	1.1	36
99	Testing the relevance of using spatial modeling to predict foraging habitat suitability around bat maternity: A case study in Mediterranean landscape. Biological Conservation, 2015, 192, 120-129.	1.9	20
100	Arctic biodiversity: increasing richness accompanies shrinking refugia for a coldâ€associated tundra fauna. Ecosphere, 2015, 6, 1-67.	1.0	34
101	Decomposition of the maximum entropy niche function – A step beyond modelling species distribut Environmental Modelling and Software, 2015, 72, 250-260.	ion. 1.9	20
102	Modeling vulnerability of protected areas to invasion by chromolaena odorata under current and future climates. Ecosystem Health and Sustainability, 2015, 1, 1-12.	1.5	39
103	Predicted Regional and National Distribution of <i>Bactrocera dorsalis</i> (syn. <i>B. invadens</i>) (Diptera: Tephritidae) in Southern Africa and Implications for Its Management. African Entomology, 2015, 23, 427-437.	0.6	13
104	Biogeographically distinct controls on <scp>C</scp> ₃ and <scp>C</scp> ₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 2015, 24, 304-313.	2.7	33
105	Potential geographic distribution of two invasive cassava green mites. Experimental and Applied Acarology, 2015, 65, 195-204.	0.7	8
106	Can we derive macroecological patterns from primary <scp>Global Biodiversity Information Facility</scp> data?. Global Ecology and Biogeography, 2015, 24, 335-347.	2.7	100
107	Phylogeography of a Holarctic rodent (<i>Myodes rutilus</i>): testing highâ€latitude biogeographical hypotheses and the dynamics of range shifts. Journal of Biogeography, 2015, 42, 377-389.	1.4	35
108	Spatial extent of biotic interactions affects species distribution and abundance in river networks: the freshwater pearl mussel and its hosts. Journal of Biogeography, 2015, 42, 229-240.	1.4	19

#	Article	IF	CITATIONS
109	Opportunities for improved distribution modelling practice via a strict maximum likelihood interpretation of MaxEnt. Ecography, 2015, 38, 172-183.	2.1	53
110	Spatial Analysis of Greater Sage-grouse Habitat Use in Relation to Landscape Level Habitat Structure. Journal of Ecosystem & Ecography, 2016, 6, .	0.2	3
111	Modeling the Potential Distribution and Richness of Cetaceans in the Azores from Fisheries Observer Program Data. Frontiers in Marine Science, 2016, 3, .	1.2	60
112	Landsat ETM+ and SRTM Data Provide Near Real-Time Monitoring of Chimpanzee (Pan troglodytes) Habitats in Africa. Remote Sensing, 2016, 8, 427.	1.8	28
113	Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil. PLoS ONE, 2016, 11, e0166142.	1.1	22
114	Life History Traits and Niche Instability Impact Accuracy and Temporal Transferability for Historically Calibrated Distribution Models of North American Birds. PLoS ONE, 2016, 11, e0151024.	1.1	29
115	Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata. PLoS ONE, 2016, 11, e0159450.	1.1	37
116	Exploring the Distribution of the Spreading Lethal Salamander Chytrid Fungus in Its Invasive Range in Europe – A Macroecological Approach. PLoS ONE, 2016, 11, e0165682.	1.1	37
117	10 Years of Environmental Change on the Slopes of Mount Kilimanjaro and Its Associated Shift in Malaria Vector Distributions. Frontiers in Public Health, 2016, 4, 281.	1.3	24
118	Species distribution models predict rare species occurrences despite significant effects of landscape context. Journal of Applied Ecology, 2016, 53, 1871-1879.	1.9	122
119	Distribution dynamics of South American savanna birds in response to Quaternary climate change. Austral Ecology, 2016, 41, 768-777.	0.7	14
120	Complex niche divergence underlies lineage diversification in <i>Oophaga</i> poison frogs. Journal of Biogeography, 2016, 43, 2002-2015.	1.4	17
121	Ecological divergence of two closely related <i>Roscoea</i> species associated with late Quaternary climate change. Journal of Biogeography, 2016, 43, 1990-2001.	1.4	48
122	Biogeography of polymorphic phenotypes: Mapping and ecological modelling of coat colour variants in an elusive Neotropical cat, the jaguarundi (<i>Puma yagouaroundi</i>). Journal of Zoology, 2016, 299, 295-303.	0.8	34
123	Addressing potential local adaptation in species distribution models: implications for conservation under climate change. Ecological Applications, 2016, 26, 1154-1169.	1.8	129
124	Potential distribution, absolute density, and population size of Gray-backed Hawks (<i>Pseudastur) Tj ETQq1 1</i>	0.784314 0.3	rgBŢ /Overloo
125	Population status and distribution modelling of the critically endangered riverine rabbit (<i>Bunolagus monticularis</i>). African Journal of Ecology, 2016, 54, 195-206.	0.4	8
126	A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecology Letters, 2016, 19, 710-722.	3.0	184

#	Article	IF	CITATIONS
127	Wind conditions facilitate the seasonal waterâ€crossing behaviour of Oriental Honeyâ€buzzards <i>Pernis ptilorhynchus</i> over the East China Sea. Ibis, 2016, 158, 506-518.	1.0	36
128	Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Global Change Biology, 2016, 22, 2425-2439.	4.2	91
129	Quantifying the similarity between genes and geography across Alaska's alpine small mammals. Journal of Biogeography, 2016, 43, 1464-1476.	1.4	33
130	Distribution modelling of vegetation types in the boreal–alpine ecotone. Applied Vegetation Science, 2016, 19, 528-540.	0.9	13
131	Predicting potential distribution of poorly known species with small database: the case of fourâ€horned antelope <i>Tetracerus quadricornis</i> on the Indian subcontinent. Ecology and Evolution, 2016, 6, 2297-2307.	0.8	9
132	Habitat selection in a reintroduced population: social effects differ between natal and postâ€release dispersal. Animal Conservation, 2016, 19, 413-421.	1.5	16
133	Using maximum entropy to predict the potential distribution of an invasive freshwater snail. Freshwater Biology, 2016, 61, 457-471.	1.2	18
134	Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information. Clobal Ecology and Biogeography, 2016, 25, 1022-1036.	2.7	53
135	Species Distribution Modelling of <i>Aedes aegypti</i> in two dengueâ€endemic regions of Pakistan. Tropical Medicine and International Health, 2016, 21, 427-436.	1.0	38
136	Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rgE Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757.</i>	T /Overloc 0.6	k 10 Tf 50 3 7
136 137	Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rgE Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396.</i>	T /Overloc 0.6	k 10 Tf 50 3 7 19
136 137 138	Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rgE Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396. The potential distribution of the woody weed Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) in Australia. Rangeland Journal, 2016, 38, 35.</i>	T /Overloc 0.6 1.0 0.4	19 12
136 137 138 139	 Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rgE</i> Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396. The potential distribution of the woody weed Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) in Australia. Rangeland Journal, 2016, 38, 35. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955. 	0.4 0.4 1.0	k 10 Tf 50 3 7 19 12 29
136 137 138 139 140	 Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rgE</i> Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396. The potential distribution of the woody weed Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) in Australia. Rangeland Journal, 2016, 38, 35. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling. Journal of Medical Entomology, 2016, 54, tjw199. 	0.4 0.9 0.9	k 10 Tf 50 3 19 12 29 8
136 137 138 139 140	 Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rgE Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757.</i> Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396. The potential distribution of the woody weed Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) in Australia. Rangeland Journal, 2016, 38, 35. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling. Journal of Medical Entomology, 2016, 54, tjw199. Declining Prevalence of Disease Vectors Under Climate Change. Scientific Reports, 2016, 6, 39150. 	T /Overloo 0.6 1.0 0.4 1.0 0.9 1.6	k 10 Tf 50 3 19 12 29 8 46
136 137 138 139 140 141	 Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<i>Leontopithecus) Tj ETQq1 1 0.784314 rg8</i> Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396. The potential distribution of the woody weed Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) in Australia. Rangeland Journal, 2016, 38, 35. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling. Journal of Medical Entomology, 2016, 54, tjw199. Declining Prevalence of Disease Vectors Under Climate Change. Scientific Reports, 2016, 6, 39150. Distribution and spatial modelling of a soft coral habitat in the Port Stephens–Great Lakes Marine Park: implications for management. Marine and Freshwater Research, 2016, 67, 256. 	T /Overloo 0.6 1.0 0.4 1.0 0.9 1.6 0.7	k 10 Tf 50 3 19 12 29 8 46 26
 136 137 138 139 140 141 142 143 	Evaluating Landscape Suitability for Golden-Headed Lion Tamarins (<1>Leontopithecus) Tj ETQq1 1 0.784314 rg8 Atlantic Forest. Tropical Conservation Science, 2016, 9, 735-757. Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 2016, 7, e01396. The potential distribution of the woody weed Calotropis procera (Aiton) W.T. Aiton (Asclepiadaceae) in Australia. Rangeland Journal, 2016, 38, 35. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955. Distribution of the Habitat Suitability of the Main Malaria Vector in French Guiana Using Maximum Entropy Modeling. Journal of Medical Entomology, 2016, 54, tjw199. Declining Prevalence of Disease Vectors Under Climate Change. Scientific Reports, 2016, 6, 39150. Distribution and spatial modelling of a soft coral habitat in the Port StephensâC"Great Lakes Marine Park: implications for management. Marine and Freshwater Research, 2016, 67, 256. Relative importance of hydrological variables in predicting the habitat suitability ofEuryale feroxSalisbJournal of Plant Ecology, 2016, rtw106.	T /Overloo 0.6 1.0 0.4 1.0 0.9 1.6 0.7 1.2	k 10 Tf 50 3 19 12 29 8 46 26 1

#	Article	IF	CITATIONS
145	Do community-weighted mean functional traits reflect optimal strategies?. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152434.	1.2	150
146	Phylogenetic analysis of niche divergence reveals distinct evolutionary histories and climate change implications for tropical carnivorous pitcher plants. Diversity and Distributions, 2016, 22, 97-110.	1.9	19
147	Climate change may alter genetic diversity of Duchesnea indica, a clonal plant species. Biochemical Systematics and Ecology, 2016, 66, 114-122.	0.6	9
148	Habitat Suitability Model for the Distribution of <i>lxodes scapularis</i> (Acari: lxodidae) in Minnesota. Journal of Medical Entomology, 2016, 53, 598-606.	0.9	42
149	Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecology and Evolution, 2016, 6, 2084-2097.	0.8	59
150	Predicting the potential environmental suitability for Theileria orientalis transmission in New Zealand cattle using maximum entropy niche modelling. Veterinary Parasitology, 2016, 224, 82-91.	0.7	8
151	Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Preventive Veterinary Medicine, 2016, 128, 101-111.	0.7	31
152	Landscape history improves detection of marginal habitats on semi-natural grasslands. Science of the Total Environment, 2016, 539, 359-369.	3.9	8
153	Summer-Habitat Suitability Modeling ofMyotis sodalis(Indiana Bat) in the Eastern Mountains of West Virginia. Northeastern Naturalist, 2016, 23, 100-117.	0.1	4
154	Are we overestimating the niche? Removing marginal localities helps ecological niche models detect environmental barriers. Ecology and Evolution, 2016, 6, 1267-1279.	0.8	21
155	Assessing the need and potential of assisted migration using species distribution models. Biological Conservation, 2016, 196, 60-68.	1.9	41
156	Species distribution modelling leads to the discovery of new populations of one of the least known European snakes, ViperaÂursinii graeca, in Albania. Amphibia - Reptilia, 2016, 37, 55-68.	0.1	22
157	Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099. Estuarine, Coastal and Shelf Science, 2016, 175, 157-168.	0.9	44
158	Phytogeography of New Guinean orchids: patterns of species richness and turnover. Journal of Biogeography, 2016, 43, 204-214.	1.4	21
159	Crop wild relatives of the brinjal eggplant (<i>Solanum melongena</i>): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 2016, 103, 635-651.	0.8	78
160	Conservation status and protection of three Antillean endemic damselflies. Journal of Insect Conservation, 2016, 20, 277-284.	0.8	7
161	Revision of widespread red squirrels (genus: Tamiasciurus) highlights the complexity of speciation within North American forests. Molecular Phylogenetics and Evolution, 2016, 100, 170-182.	1.2	59
162	Coupling Satellite Data with Species Distribution and Connectivity Models as a Tool for Environmental Management and Planning in Matrix-Sensitive Species. Environmental Management, 2016, 58, 130-143.	1.2	15

#	Article	IF	CITATIONS
163	Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability. Ecological Modelling, 2016, 342, 1-18.	1.2	24
164	Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling, 2016, 341, 5-13.	1.2	134
165	Impacts of the spatial scale of climate data on the modeled distribution probabilities of invasive tree species throughout the world. Ecological Informatics, 2016, 36, 42-49.	2.3	10
166	Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean and Coastal Management, 2016, 130, 317-327.	2.0	23
167	Identifying appropriate protected areas for endangered fern species under climate change. SpringerPlus, 2016, 5, 904.	1.2	10
168	Species Distribution Modeling of Deep Pelagic Eels. Integrative and Comparative Biology, 2016, 56, 524-530.	0.9	3
169	Investigation of a novel approach for aquaculture site selection. Journal of Environmental Management, 2016, 181, 791-804.	3.8	33
170	Presence-only approach to assess landslide triggering-thickness susceptibility: a test for the Mili catchment (north-eastern Sicily, Italy). Natural Hazards, 2016, 84, 565-588.	1.6	44
171	Mapping Global Potential Risk of Establishment of <i>Rhagoletis pomonella</i> (Diptera: Tephritidae) Using MaxEnt and CLIMEX Niche Models. Journal of Economic Entomology, 2016, 109, 2043-2053.	0.8	45
172	Spatial distribution modelling reveals climatically suitable areas for bumblebees in undersampled parts of the Iberian Peninsula. Insect Conservation and Diversity, 2016, 9, 391-401.	1.4	26
173	Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (northâ€eastern Sicily, Italy). Earth Surface Processes and Landforms, 2016, 41, 1776-1789.	1.2	52
174	Minimum required number of specimen records to develop accurate species distribution models. Ecography, 2016, 39, 542-552.	2.1	498
175	Phylogeography of the bobwhite (<i>Colinus</i>) quails. Wildlife Monographs, 2016, 193, 1-49.	2.0	15
176	Taxonomy and biogeography of <i>Bunopus spatalurus</i> (Reptilia; Gekkonidae) from the Arabian Peninsula. Journal of Zoological Systematics and Evolutionary Research, 2016, 54, 67-81.	0.6	24
177	<i>In situ</i> and <i>ex situ</i> diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions, 2016, 22, 1112-1126.	1.9	57
178	Dissecting maize diversity in lowland South America: genetic structure and geographic distribution models. BMC Plant Biology, 2016, 16, 186.	1.6	14
179	Cityscape genetics: structural vs. functional connectivity of an urban lizard population. Molecular Ecology, 2016, 25, 4984-5000.	2.0	48
180	Climate-associated distribution of summer maize in China from 1961 to 2010. Agriculture, Ecosystems and Environment, 2016, 232, 326-335.	2.5	43

# 181	ARTICLE Monitoring and distribution modelling of invasive species along riverine habitats at very high resolution. Biological Invasions, 2016, 18, 3665-3679.	IF 1.2	CITATIONS 24
182	Comparing range evolution in two western <i>Plethodon</i> salamanders: glacial refugia, competition, ecological niches, and spatial sorting. Journal of Biogeography, 2016, 43, 2237-2249.	1.4	16
183	Divergence maintained by climatic selection despite recurrent gene flow: a case study of <i>Castanopsis carlesii</i> (Fagaceae). Molecular Ecology, 2016, 25, 4580-4592.	2.0	28
184	Realized climate niche breadth varies with population trend and distribution in North American birds. Global Ecology and Biogeography, 2016, 25, 1173-1180.	2.7	18
185	Lack of human-assisted dispersal means Pueraria montana var. lobata (kudzu vine) could still be eradicated from South Africa. Biological Invasions, 2016, 18, 3119-3126.	1.2	20
186	Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytologist, 2016, 212, 708-718.	3.5	138
187	Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biological Conservation, 2016, 203, 306-312.	1.9	82
188	Modelling cetacean distribution and mapping overlap with fisheries in the northeast Atlantic. Ocean and Coastal Management, 2016, 134, 140-149.	2.0	35
189	Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 2016, 97, 593-609.	1.6	73
190	Field validation of an invasive species Maxent model. Ecological Informatics, 2016, 36, 126-134.	2.3	196
191	Where are threatened ferns found? Global conservation priorities for pteridophytes. Journal of Systematics and Evolution, 2016, 54, 604-616.	1.6	23
192	Niche partitioning among sexual and unisexual <i>Ambystoma</i> salamanders. Ecosphere, 2016, 7, e01579.	1.0	15
193	Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecology and Evolution, 2016, 6, 4065-4075.	0.8	100
194	Plants' native distributions do not reflect climatic tolerance. Diversity and Distributions, 2016, 22, 615-624.	1.9	44
195	Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecology, 2016, 31, 1863-1882.	1.9	47
196	A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions. Biomass and Bioenergy, 2016, 91, 186-195.	2.9	29
197	Assessing the invasiveness of Berberis aristata and B. julianae (Berberidaceae) in South Africa: Management options and legal recommendations. South African Journal of Botany, 2016, 105, 288-298.	1.2	7
198	Hyper-oceanic liverwort species of conservation concern: evidence for dispersal limitation and identification of suitable uncolonised regions. Biodiversity and Conservation, 2016, 25, 1053-1071.	1.2	8

#	Article	IF	CITATIONS
199	The influence of life history characteristics on flea (Siphonaptera) species distribution models. Parasites and Vectors, 2016, 9, 178.	1.0	12
200	Distribution Modeling of three screwworm species in the ecologically diverse landscape of North West Pakistan. Acta Tropica, 2016, 162, 56-65.	0.9	12
201	Habitat Use by Adult Red Wolves,Canis rufus, in an Agricultural Landscape, North Carolina, USA. Mammal Study, 2016, 41, 87-95.	0.2	5
202	Risk hotspots for terrestrial plant invaders under climate change at the global scale. Environmental Earth Sciences, 2016, 75, 1.	1.3	14
203	Elimination of informational redundancy in the weight of evidence method: an application to landslide susceptibility assessment. Stochastic Environmental Research and Risk Assessment, 2016, 30, 635-651.	1.9	21
204	Range contraction and loss of genetic variation of the Pyrenean endemic newt Calotriton asper due to climate change. Regional Environmental Change, 2016, 16, 995-1009.	1.4	14
205	Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes. American Journal of Botany, 2016, 103, 153-163.	0.8	43
206	Understanding unexpected reintroduction outcomes: Why aren't European bison colonizing suitable habitat in the Carpathians?. Biological Conservation, 2016, 195, 106-117.	1.9	46
207	Potential distribution of Ursus americanus in Mexico and its persistence: Implications for conservation. Journal for Nature Conservation, 2016, 29, 62-68.	0.8	11
208	How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?. Ecological Modelling, 2016, 328, 108-118.	1.2	67
209	Modeling the risk of spread and establishment for Asian longhorned beetle (<i>Anoplophora) Tj ETQq0 0 0 rgBT /</i>	Overlock I	10 ₁₃ f 50 342
210	Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2964-2969.	3.3	204
211	Scale dependence of felid predation risk: identifying predictors of livestock kills by tiger and leopard in Bhutan. Landscape Ecology, 2016, 31, 1277-1298.	1.9	33
212	Protected areas may not effectively support conservation of endangered forest plants under climate change. Environmental Earth Sciences, 2016, 75, 1.	1.3	3
213	Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation, 2016, 25, 555-568.	1.2	80
214	Conserving Egypt's reptiles under climate change. Journal of Arid Environments, 2016, 127, 211-221.	1.2	21
215	Quality of presence data determines species distribution model performance: a novel index to evaluate data quality. Landscape Ecology, 2016, 31, 31-42.	1.9	30
216	Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology, 2016, 144, 655-670.	0.8	96

#	Article	IF	CITATIONS
217	A high-resolution model of bat diversity and endemism for continental Africa. Ecological Modelling, 2016, 320, 9-28.	1.2	72
218	Predicting a range shift and range limits in an introduced tropical marine invertebrate using species distribution models. Hydrobiologia, 2016, 763, 193-205.	1.0	7
219	The potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forest. Scandinavian Journal of Forest Research, 2016, 31, 29-39.	0.5	29
220	Evaluating citizen vs. professional data for modelling distributions of a rare squirrel. Journal of Applied Ecology, 2017, 54, 628-637.	1.9	33
221	Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 137, 436-453.	0.6	40
222	Climatic Similarity of Extant and Extinct Dasypus Armadillos. Journal of Mammalian Evolution, 2017, 24, 193-206.	1.0	6
223	Potential distribution of the viral haemorrhagic septicaemia virus in the Great Lakes region. Journal of Fish Diseases, 2017, 40, 11-28.	0.9	18
224	Combining citizen science species distribution models and stable isotopes reveals migratory connectivity in the secretive <scp>V</scp> irginia rail. Journal of Applied Ecology, 2017, 54, 618-627.	1.9	34
225	Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 2017, 152, 144-162.	2.2	180
226	Expansion potential of invasive tree plants in ecoregions under climate change scenarios: an assessment of 54 species at a global scale. Scandinavian Journal of Forest Research, 2017, 32, 663-670.	0.5	11
227	Habitat preference of the Yangtze finless porpoise in a minimally disturbed environment. Ecological Modelling, 2017, 353, 47-53.	1.2	18
228	Comparison of habitat models for scarcely detected species. Ecological Modelling, 2017, 346, 88-98.	1.2	34
229	Using species distribution models to define nesting habitat of the eastern metapopulation of doubleâ€crested cormorants. Ecology and Evolution, 2017, 7, 409-418.	0.8	13
230	Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landscape Ecology, 2017, 32, 163-179.	1.9	43
231	Estimating density of a territorial species in a dynamic landscape. Landscape Ecology, 2017, 32, 563-579.	1.9	14
232	Changes in the realized niche of the invasive succulent <scp>CAM</scp> plant <i>Furcraea foetida</i> . Austral Ecology, 2017, 42, 643-654.	0.7	7
233	An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. International Journal of Wildland Fire, 2017, 26, 587.	1.0	93
234	The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. Forest Ecology and Management, 2017, 390, 173-186.	1.4	60

#	Article	IF	Citations
235	Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and predicted impacts of climate change. Journal of Avian Biology, 2017, 48, 1595-1607.	0.6	13
236	The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and Evolution, 2017, 7, 2238-2248.	0.8	78
237	Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography, 2017, 44, 696-707.	1.4	23
238	Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecology and Evolution, 2017, 7, 1541-1552.	0.8	47
239	Environmental and managerial factors associated with pack stock distribution in high elevation meadows: Case study from Yosemite National Park. Journal of Environmental Management, 2017, 193, 52-63.	3.8	26
240	Identification of candidate pelagic marine protected areas through a seabird seasonalâ€, multispecific― and extinction riskâ€based approach. Animal Conservation, 2017, 20, 409-424.	1.5	21
241	Comparing mechanistic and empirical approaches to modeling the thermal niche of almond. International Journal of Biometeorology, 2017, 61, 1593-1606.	1.3	10
242	Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Scientific Reports, 2017, 7, 46221.	1.6	66
243	Fire regimes and environmental gradients shape vertebrate and plant distributions in temperate eucalypt forests. Ecosphere, 2017, 8, e01781.	1.0	36
244	Predicting habitat suitability for the wart-biter bush cricket (Decticus verrucivorus) in Europe. Journal of Insect Conservation, 2017, 21, 287-295.	0.8	2
245	Endemic grasshopper species distribution in an agro-natural landscape of the Cape Floristic Region, South Africa. Ecological Engineering, 2017, 105, 133-140.	1.6	10
246	Richness pattern and phytogeography of the Cerrado herb–shrub flora and implications for conservation. Journal of Vegetation Science, 2017, 28, 848-858.	1.1	45
247	Assessing real-time Zika risk in the United States. BMC Infectious Diseases, 2017, 17, 284.	1.3	41
248	The Impact of Climate Change on Habitat Suitability for <i>Artemisia sieberi</i> and <i>Artemisia aucheri</i> (Asteraceae) — a Modeling Approach. Polish Journal of Ecology, 2017, 65, 97-109.	0.2	10
249	Phylogeography of a widespread small carnivore, the western spotted skunk (<i>Spilogale) Tj ETQq0 0 0 rgBT /Ov Ecology and Evolution, 2017, 7, 4229-4240.</i>	verlock 10 0.8	Tf 50 187 Tc 13
250	Potential distribution of native freshwater fish in Tabasco, Mexico. Revista Mexicana De Biodiversidad, 2017, 88, 415-424.	0.4	5
251	Forecasting climate-driven changes in the geographical range of the European anchovy (Engraulis) Tj ETQq0 0 0 r	gBT /Overl 1.2	lock 10 Tf 50
252	Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species. Biological Invasions, 2017, 19, 577-596.	1.2	6

ARTICLE

A Late Pleistocene Guloninae (Carnivora, Mustelidae) from South America (Argentina, Entre RÃos) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

254	Invasive Syzygium jambos trees in Puerto Rico: no refuge from guava rust. Journal of Tropical Ecology, 2017, 33, 205-212.	0.5	7
255	Factors restricting the range expansion of the invasive green anole <i>Anolis carolinensis</i> on Okinawa Island, Japan. Ecology and Evolution, 2017, 7, 4357-4366.	0.8	16
256	Planning for conservation and restoration under climate and land use change in the Brazilian Atlantic Forest. Diversity and Distributions, 2017, 23, 955-966.	1.9	79
257	Lazarus ecology: Recovering the distribution and migratory patterns of the extinct Carolina parakeet. Ecology and Evolution, 2017, 7, 5467-5475.	0.8	20
258	Species climatic niche explains droughtâ€induced dieâ€off in a Mediterranean woody community. Ecosphere, 2017, 8, e01833.	1.0	22
259	Accounting for uncertainty in predictions of a marine species: Integrating population genetics to verify past distributions. Ecological Modelling, 2017, 359, 229-239.	1.2	19
260	Biodiversity hotspots and conservation gaps in Iran. Journal for Nature Conservation, 2017, 39, 37-57.	0.8	47
261	The relationship between climate change and the endangered rainforest shrub Triunia robusta (Proteaceae) endemic to southeast Queensland, Australia. Scientific Reports, 2017, 7, 46399.	1.6	11
262	Remote sensingâ€based landscape indicators for the evaluation of threatenedâ€bird habitats in a tropical forest. Ecology and Evolution, 2017, 7, 4552-4567.	0.8	13
263	Crop wild relatives range shifts and conservation in Europe under climate change. Diversity and Distributions, 2017, 23, 739-750.	1.9	60
264	Implications and alternatives of assigning climate data to geographical centroids. Journal of Biogeography, 2017, 44, 2188-2198.	1.4	46
265	Habitat and spatial thinning improve the Maxent models performed with incomplete data. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1359-1370.	1.3	19
266	Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa. Diversity and Distributions, 2017, 23, 875-887.	1.9	24
267	Climate Analyses to Assess Risks from Invasive Forest Insects: Simple Matching to Advanced Models. Current Forestry Reports, 2017, 3, 255-268.	3.4	34
268	Riparian erosion vulnerability model based on environmental features. Journal of Environmental Management, 2017, 203, 592-602.	3.8	15
269	Are keystone species effective umbrellas for habitat conservation? A spatially explicit approach. Journal for Nature Conservation, 2017, 37, 47-55.	0.8	39
270	Potential effects of climate change on geographic distribution of the Tertiary relict tree species Davidia involucrata in China. Scientific Reports, 2017, 7, 43822.	1.6	64

#	Article	IF	CITATIONS
271	Stability or breakdown under climate change? A key group of woody bamboos will find suitable areas in its richness center. Biodiversity and Conservation, 2017, 26, 1845-1861.	1.2	7
272	Mapping priorities for conservation in Southeast Asia. Biological Conservation, 2017, 209, 395-405.	1.9	68
273	Opening the black box: an openâ€source release of Maxent. Ecography, 2017, 40, 887-893.	2.1	1,547
274	Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography, 2017, 32, 74-89.	3.0	14
275	Do 120,000Âyears of plant–pollinator interactions predict floral phenotype divergence in Calceolaria polyrhiza? A reconstruction using species distribution models. Arthropod-Plant Interactions, 2017, 11, 351-361.	0.5	8
276	Mountains too high and valleys too deep drive population structuring and demographics in a Qinghai–Tibetan Plateau frog <i>Nanorana pleskei</i> (Dicroglossidae). Ecology and Evolution, 2017, 7, 240-252.	0.8	18
277	Assigning conservation value and identifying hotspots of endemic rattan diversity in the Western Ghats, India. Plant Diversity, 2017, 39, 263-272.	1.8	14
278	Detecting, mapping and classifying wetland fragments at a landscape scale. Remote Sensing Applications: Society and Environment, 2017, 8, 212-223.	0.8	23
279	Wind effects on habitat distributions of wind-dispersed invasive plants across different biomes on a global scale: Assessment using six species. Ecological Informatics, 2017, 42, 38-45.	2.3	11
280	Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Scientific Reports, 2017, 7, 13025.	1.6	54
281	Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Climatic Change, 2017, 144, 303-316.	1.7	25
282	Spatial modelling provides a novel tool for estimating the landscape level distribution of greenhouse gas balances. Ecological Indicators, 2017, 83, 380-389.	2.6	3
283	Species distribution models for a migratory bird based on citizen science and satellite tracking data. Global Ecology and Conservation, 2017, 11, 298-311.	1.0	70
284	Ecology of phlebotomine sandflies and putative reservoir hosts of leishmaniasis in a border area in Northeastern Mexico: implications for the risk of transmission of <i>Leishmania mexicana</i> in Mexico and the USA. Parasite, 2017, 24, 33.	0.8	11
285	Future breeding and foraging sites of a southern edge population of the locally endangered Black Guillemot Cepphus grylle. Bird Study, 2017, 64, 306-316.	0.4	4
286	Amblyomma ticks and future climate: Range contraction due to climate warming. Acta Tropica, 2017, 176, 340-348.	0.9	31
287	The role of bioclimatic features, landscape configuration and historical land use in the invasion of an Asian tree in subtropical Argentina. Landscape Ecology, 2017, 32, 2167-2185.	1.9	25
288	Rapid poleward distributional shifts in the European caveâ€dwelling <i>Meta</i> spiders under the influence of competition dynamics. Journal of Biogeography, 2017, 44, 2789-2797.	1.4	28

#	Article	IF	CITATIONS
289	Is evolution of apomicts driven by the phylogeography of the sexual ancestor? Insights from European and Caucasian brambles (<i>Rubus</i> , Rosaceae). Journal of Biogeography, 2017, 44, 2717-2728.	1.4	10
290	Utilization of photographs taken by citizens for estimating bumblebee distributions. Scientific Reports, 2017, 7, 11215.	1.6	50
291	Testing the effects of a century of fires: Requirements for postâ \in fire succession predict the distribution of threatened bird species. Diversity and Distributions, 2017, 23, 1078-1089.	1.9	25
292	Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 2017, 3, e1602422.	4.7	194
293	Full-coverage spatial distribution of epibenthic communities in the south-eastern North Sea in relation to habitat characteristics and fishing effort. Marine Environmental Research, 2017, 130, 1-11.	1.1	21
294	A temporally explicit species distribution model for a long distance avian migrant, the common cuckoo. Journal of Avian Biology, 2017, 48, 1624-1636.	0.6	27
295	Benthic Crustacea and Mollusca distribution in Arctic fjord – case study of patterns in Hornsund, Svalbard. Oceanologia, 2017, 59, 565-575.	1.1	16
296	Clobal alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Scientific Reports, 2017, 7, 5910.	1.6	120
297	The present and likely past climatic distribution of the termite Microhodotermes viator in relation to the distribution of heuweltjies. Journal of Arid Environments, 2017, 146, 35-43.	1.2	12
298	Using <i>n</i> â€dimensional hypervolumes for species distribution modelling: A response to Qiao et al. (). Global Ecology and Biogeography, 2017, 26, 1071-1075.	2.7	14
299	Using citizen science monitoring data in species distribution models to inform isotopic assignment of migratory connectivity in wetland birds. Journal of Avian Biology, 2017, 48, 1556-1562.	0.6	13
300	Genetics and species distribution modelling of Solanum johnsonianum (Solanaceae) reveal impacts of brigalow land clearing on this endemic species. Conservation Genetics, 2017, 18, 1331-1346.	0.8	5
301	Evaluating the approaches of habitat suitability modelling for whitespotted conger (Conger) Tj ETQq0 0 0 rgBT $/$	Overlock 1	.0 Tf 50 262
302	Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes. Acta Oecologica, 2017, 85, 141-149.	0.5	9
303	Common garden test of range limits as predicted by a species distribution model in the annual plant <i>Mimulus bicolor</i> . American Journal of Botany, 2017, 104, 817-827.	0.8	13
304	Integrative species delimitation of the widespread North American jumping mice (Zapodinae). Molecular Phylogenetics and Evolution, 2017, 114, 137-152.	1.2	18
305	Species distribution models derived from citizen science data predict the fine scale movements of owls in an urbanizing landscape. Biological Conservation, 2017, 213, 27-35.	1.9	33
306	A spatial framework for targeting urban planning for pollinators and people with local stakeholders: A route to healthy, blossoming communities?. Environmental Research, 2017, 158, 255-268.	3.7	37

#	Article	IF	CITATIONS
307	Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgoland Marine Research, 2017, 70, .	1.3	30
308	The establishment threat of the obligate brood-parasitic Pin-tailed Whydah (<i>Vidua macroura</i>) in North America and the Antilles. Condor, 2017, 119, 449-458.	0.7	8
309	Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical tree endemic to the Ethiopian highlands and eastern African mountains. Tree Genetics and Genomes, 2017, 13, 1.	0.6	8
310	Niche overlap and shared distributional patterns between two South American small carnivorans: Galictis cuja and Lyncodon patagonicus (Carnivora: Mustelidae). Mammalia, 2017, 81, .	0.3	2
311	Integrating species distribution modelling into decision-making to inform conservation actions. Biodiversity and Conservation, 2017, 26, 251-271.	1.2	77
312	Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: Combination of modelled plant diversity hot spots and threat patterns. Journal for Nature Conservation, 2017, 35, 24-39.	0.8	44
313	In aid of (re)discovered species: maximizing conservation insights from minimal data. Animal Conservation, 2017, 20, 205-212.	1.5	5
314	Habitat preferences of baleen whales in a mid-latitude habitat. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 141, 155-167.	0.6	31
315	Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids?. Journal of Mammalian Evolution, 2017, 24, 427-438.	1.0	15
316	Performance tradeoffs in targetâ€group bias correction for species distribution models. Ecography, 2017, 40, 1076-1087.	2.1	65
317	The Persian squirrel of Kurdistan Province, western Iran: what determines its geographic distribution?. Mammalia, 2017, 81, 309-314.	0.3	4
318	Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biological Invasions, 2017, 19, 239-254.	1.2	59
319	Priority areas for the conservation of perennial plants in China. Biological Conservation, 2017, 210, 56-63.	1.9	95
320	A singleâ€algorithm ensemble approach to estimating suitability and uncertainty: crossâ€ŧime projections for four Malagasy tenrecs. Diversity and Distributions, 2017, 23, 196-208.	1.9	21
321	Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography, 2017, 26, 243-258.	2.7	71
322	Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecological Informatics, 2017, 37, 66-76.	2.3	36
323	Leapfrogging into new territory: How Mascarene ridged frogs diversified across Africa and Madagascar to maintain their ecological niche. Molecular Phylogenetics and Evolution, 2017, 106, 254-269.	1.2	44
324	Phylogeography and ecological niche modelling uncover the evolutionary history of Tibouchina hatschbachii (Melastomataceae), a taxon restricted to the subtropical grasslands of South America. Botanical Journal of the Linnean Society, 2017, 183, 616-632.	0.8	7

#	Article	IF	CITATIONS
325	High-Resolution MaxEnt Modelling of Habitat Suitability for Maternity Colonies of the Barbastelle Bat Barbastella barbastellus (Schreber, 1774) in Rhineland-Palatinate, Germany. Acta Chiropterologica, 2017, 19, 389-398.	0.2	11
326	Restricted cross-scale habitat selection by American beavers. Environmental Epigenetics, 2017, 63, 703-710.	0.9	11
327	A fuzzy system for quality assurance of crowdsourced wildlife observation geodata. , 2017, , .		1
328	Ecology and Evolution of Melanism in Big Cats: Case Study with Black Leopards and Jaguars. , 0, , .		6
329	Multi-scale habitat associations of the black-footed rock-wallaby in north-western South Australia. Wildlife Research, 2017, 44, 207.	0.7	1
330	Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change. Frontiers in Plant Science, 2017, 8, 730.	1.7	15
331	Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions. Frontiers in Plant Science, 2017, 8, 770.	1.7	27
332	Novel Methods in Disease Biogeography: A Case Study with Heterosporosis. Frontiers in Veterinary Science, 2017, 4, 105.	0.9	5
333	Inferring the Ecological Niche of Toxoplasma gondii and Bartonella spp. in Wild Felids. Frontiers in Veterinary Science, 2017, 4, 172.	0.9	3
334	A Remote Sensing Data Based Artificial Neural Network Approach for Predicting Climate-Sensitive Infectious Disease Outbreaks: A Case Study of Human Brucellosis. Remote Sensing, 2017, 9, 1018.	1.8	15
335	The Effects of Climate Change on the Development of Tree Plantations for Biodiesel Production in China. Forests, 2017, 8, 207.	0.9	8
336	Ecological Niche Modeling Identifies Fine-Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China. International Journal of Environmental Research and Public Health, 2017, 14, 619.	1.2	23
337	Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models. ISPRS International Journal of Geo-Information, 2017, 6, 66.	1.4	36
338	The Role of Spatial Statistics in the Control and Elimination of Neglected Tropical Diseases in Sub-Saharan Africa. Advances in Parasitology, 2017, 97, 187-241.	1.4	5
339	Mapping black panthers: Macroecological modeling of melanism in leopards (Panthera pardus). PLoS ONE, 2017, 12, e0170378.	1.1	35
340	Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models. PLoS ONE, 2017, 12, e0175978.	1.1	20
341	Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. PLoS ONE, 2017, 12, e0184316.	1.1	18
342	Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs. PLoS ONE, 2017, 12, e0185086.	1.1	22

#	ARTICLE	IF	CITATIONS
343	The fate of endemic insects of the Andean region under the effect of global warming. PLoS ONE, 2017, 12, e0186655.	1.1	11
344	The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation. PLoS ONE, 2017, 12, e0187906.	1.1	33
345	Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLoS ONE, 2017, 12, e0190092.	1.1	25
346	Forecasting distributions of an aquatic invasive species (Nitellopsis obtusa) under future climate scenarios. PLoS ONE, 2017, 12, e0180930.	1.1	31
347	Ecological niche modeling and distribution of Ornithodoros hermsi associated with tick-borne relapsing fever in western North America. PLoS Neglected Tropical Diseases, 2017, 11, e0006047.	1.3	34
348	Unraveling climate influences on the distribution of the parapatric newts Lissotriton vulgaris meridionalis and L. italicus. Frontiers in Zoology, 2017, 14, 55.	0.9	35
349	The importance of human population characteristics in modeling Aedes aegypti distributions and assessing risk of mosquito-borne infectious diseases. Tropical Medicine and Health, 2017, 45, 38.	1.0	25
351	One-Class Classification of Airborne LiDAR Data in Urban Areas Using a Presence and Background Learning Algorithm. Remote Sensing, 2017, 9, 1001.	1.8	22
352	Spatially Correlated Time Series and Ecological Niche Analysis of Cutaneous Leishmaniasis in Afghanistan. International Journal of Environmental Research and Public Health, 2017, 14, 309.	1.2	24
353	An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA. PeerJ, 2017, 5, e3612.	0.9	9
354	MaxEnt's parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 2017, 5, e3093.	0.9	270
355	Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Progress in Oceanography, 2018, 169, 151-168.	1.5	47
356	Identifying potential areas for an expanding wolf population in Sweden. Biological Conservation, 2018, 220, 170-181.	1.9	19
357	Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 2018, 11, 185-189.	5.4	302
358	Driving forces behind evolutionary radiations: Saxifraga section Ciliatae (Saxifragaceae) in the region of the Qinghai–Tibet Plateau. Botanical Journal of the Linnean Society, 2018, 186, 304-320.	0.8	24
359	Comparison of model selection technique performance in predicting the spread of newly invasive species: a case study with Batrachochytrium salamandrivorans. Biological Invasions, 2018, 20, 2107-2119.	1.2	27
360	Assessing the relative influences of abiotic and biotic factors on American eel <i>Anguilla rostrata</i> distribution using hydrologic, physical habitat, and functional trait data. Ecography, 2018, 41, 2067-2079.	2.1	6
361	Persian leopard and wild sheep distribution modeling using the Maxent model in the Tang-e-Sayad protected area, Iran. Mammalia, 2018, 83, 84-96.	0.3	10

#	Article	IF	CITATIONS
362	Areas of high conservation value at risk by plant invaders in Georgia under climate change. Ecology and Evolution, 2018, 8, 4431-4442.	0.8	12
363	Habitat selection of Tragulus napu and Tragulus javanicus using MaxEnt analysis. AIP Conference Proceedings, 2018, , .	0.3	3
364	Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Diversity and Distributions, 2018, 24, 1047-1060.	1.9	9
365	Habitat protection actions for the Indoâ€Pacific humpback dolphin: Baseline gaps, scopes, and resolutions for the Taiwanese subspecies. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 733-743.	0.9	18
366	Potential global distribution of <i>Diabrotica</i> species and the risks for agricultural production. Pest Management Science, 2018, 74, 2100-2109.	1.7	32
367	Habitat suitability modeling in different sperm whale social groups. Journal of Wildlife Management, 2018, 82, 1062-1073.	0.7	23
368	Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 61-72.	1.4	17
369	Simulating the potential distribution of Elaeagnus angustifolia L. based on climatic constraints in China. Ecological Engineering, 2018, 113, 27-34.	1.6	44
370	Projecting environmental suitable areas for malaria transmission in China under climate change scenarios. Environmental Research, 2018, 162, 203-210.	3.7	29
371	Cold-blooded in the Ice Age: "refugia within refugiaâ€, inter-and intraspecific biogeographic diversification of European whipsnakes (Squamata, Colubridae, Hierophis). Zoology, 2018, 127, 84-94.	0.6	17
372	Invasion process and potential spread of <i>Amaranthus retroflexus</i> in China. Weed Research, 2018, 58, 57-67.	0.8	9
373	Identifying in situ climate refugia for plant species. Ecography, 2018, 41, 1850-1863.	2.1	35
374	Gene flow from multiple sources maintains high genetic diversity and stable population history of Common Moorhen <i>Gallinula chloropus</i> in China. Ibis, 2018, 160, 855-869.	1.0	8
375	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	1.6	113
376	Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. Journal for Nature Conservation, 2018, 41, 106-115.	0.8	21
377	Effects of grain size and niche breadth on species distribution modeling. Ecography, 2018, 41, 1270-1282.	2.1	86
378	Mapping potential habitats for the management of exportable insects in South Korea. Journal of Asia-Pacific Biodiversity, 2018, 11, 11-20.	0.2	3
379	Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Global Ecology and Biogeography, 2018, 27, 298-309.	2.7	72

#	Article	IF	CITATIONS
380	How conspecific primates use their habitats: Surviving in an anthropogenically-disturbed forest in Central Kalimantan, Indonesia. Ecological Indicators, 2018, 87, 167-177.	2.6	20
381	Historical and eventâ€based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Global Change Biology, 2018, 24, 1952-1964.	4.2	48
382	River otter distribution in Nebraska. Wildlife Society Bulletin, 2018, 42, 136-143.	1.6	3
383	Longâ€distance dispersal or postglacial contraction? Insights into disjunction between Himalaya–Hengduan Mountains and Taiwan in a coldâ€adapted herbaceous genus, <i>Triplostegia</i> . Ecology and Evolution, 2018, 8, 1131-1146.	0.8	23
384	Characterization of forest carbon stocks at the landscape scale in the Argentine Dry Chaco. Forest Ecology and Management, 2018, 424, 21-27.	1.4	12
385	Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biological Conservation, 2018, 223, 58-67.	1.9	24
386	Chasing the phantom: biogeography and conservation of Vipera latastei-monticola in the Maghreb (North Africa). Amphibia - Reptilia, 2018, 39, 145-161.	0.1	9
387	Predicting the effects of future climate change on the distribution of an endemic damselfly (Odonata,) Tj ETQq1 303-319.	1 0.78431 0.8	4 rgBT /Over 9
388	Contrasting climate niches among coâ€occurring subdominant forbs of the sagebrush steppe. Diversity and Distributions, 2018, 24, 1291-1307.	1.9	18
389	Expansion risk of invasive plants in regions of high plant diversity: A global assessment using 36 species. Ecological Informatics, 2018, 46, 8-18.	2.3	25
390	Potential geography and productivity of "Hass―avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae, 2018, 237, 287-295.	1.7	46
391	Turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor "structor†Molecular Phylogenetics and Evolution, 2018, 127, 387-404.	1.2	25
392	The Distribution and Management of Two Invasive Pests of <i>Eucalyptus</i> : The Red Gum Lerp Psyllid, <i>Glycaspis brimblecombei</i> (Hemiptera: Psylloidae), and the Blue Gum Chalcid Wasp, <i>Leptocybe invasa</i> (Hymenoptera: Eulophidae), in Zimbabwe. African Entomology, 2018, 26, 104-115.	0.6	9
393	Pliocene–Pleistocene ecological niche evolution shapes the phylogeography of a Mediterranean plant group. Molecular Ecology, 2018, 27, 1696-1713.	2.0	25
394	Spiny mice of the Zambezian bioregion – phylogeny, biogeography and ecological differentiation within the Acomys spinosissimus complex. Mammalian Biology, 2018, 91, 79-90.	0.8	13
395	High-Resolution Ecological Niche Modeling of <i>Ixodes scapularis</i> Ticks Based on Passive Surveillance Data at the Northern Frontier of Lyme Disease Emergence in North America. Vector-Borne and Zoonotic Diseases, 2018, 18, 235-242.	0.6	49
396	Survival, gene and metabolite responses of Litoria verreauxii alpina frogs to fungal disease chytridiomycosis. Scientific Data, 2018, 5, 180033.	2.4	9
397	Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Scientific Reports, 2018, 8, 4921.	1.6	50

#	Article	IF	CITATIONS
398	Species distribution modeling based on the automated identification of citizen observations. Applications in Plant Sciences, 2018, 6, e1029.	0.8	25
399	Mitochondrial DNA analyses and ecological niche modeling reveal post‣GM expansion of the Assam macaque (<i>Macaca assamensis</i>) in the foothills of Nepal Himalaya. American Journal of Primatology, 2018, 80, e22748.	0.8	13
400	Population estimate of Trindade Petrel <i>Pterodroma arminjoniana</i> by the use of Predictive Nest Habitat Modelling. Bird Conservation International, 2018, 28, 197-207.	0.7	6
401	ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 2018, 41, 291-307.	2.1	393
402	Climate change may drive cave spiders to extinction. Ecography, 2018, 41, 233-243.	2.1	80
403	Projected distributions of Southern Ocean albatrosses, petrels and fisheries as a consequence of climatic change. Ecography, 2018, 41, 195-208.	2.1	44
404	Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 371-386.	1.0	22
405	The challenge of modeling niches and distributions for dataâ€poor species: a comprehensive approach to model complexity. Ecography, 2018, 41, 726-736.	2.1	106
406	On the use of climate covariates in aquatic species distribution models: are we at risk of throwing out the baby with the bath water?. Ecography, 2018, 41, 695-712.	2.1	31
407	Quantifying apart what belongs together: A multiâ€state species distribution modelling framework for species using distinct habitats. Methods in Ecology and Evolution, 2018, 9, 98-108.	2.2	26
408	Niche dynamics of two cryptic Prosopis invading South American drylands. Biological Invasions, 2018, 20, 181-194.	1.2	13
409	Modelling the area of occupancy of habitat types with remote sensing. Methods in Ecology and Evolution, 2018, 9, 580-593.	2.2	41
410	Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecological Indicators, 2018, 85, 21-36.	2.6	44
411	Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role of geographic barriers and paleoclimate in the Zambezian bioregion. Mammalia, 2018, 82, 373-387.	0.3	20
412	Local conditions affecting current and potential distribution of the invasive round goby – Species distribution modelling with spatial constraints. Estuarine, Coastal and Shelf Science, 2018, 207, 359-367.	0.9	4
413	Models of habitat suitability, size, and age-class structure for the deep-sea black coral Leiopathes glaberrima in the Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 150, 218-228.	0.6	21
414	Applying species distribution models to caves and other subterranean habitats. Ecography, 2018, 41, 1194-1208.	2.1	52
415	Landscape epidemiology in urban environments: The example of rodent-borne Trypanosoma in Niamey, Niger. Infection, Genetics and Evolution, 2018, 63, 307-315.	1.0	7

ARTICLE IF CITATIONS Comparison of four modeling tools for the prediction of potential distribution for non-indigenous 1.2 16 416 weeds in the United States. Biological Invasions, 2018, 20, 679-694. The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) 2.2 241 database. Methods in Ecology and Evolution, 2018, 9, 373-379. Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the 418 1.2 66 Canadian Arctic. Biological Invasions, 2018, 20, 501-517. The role of climatic cycles and trans-Saharan migration corridors in species diversification: Biogeography of Psammophis schokari group in North Africa. Molecular Phylogenetics and Evolution, 1.2 34 2018, 118, 64-74. Forest cover and level of protection influence the island-wide distribution of an apex carnivore and umbrella species, the Sri Lankan leopard (Panthera pardus kotiya). Biodiversity and Conservation, 2018, 420 1.2 34 27, 235-263. Incorporating climate change into recovery planning for threatened vertebrate species in southwestern Australia. Biodiversity and Conservation, 2018, 27, 147-165. 1.2 Do climate-driven altitudinal range shifts explain the intraspecific diversification of a narrow 422 0.6 11 ranging montane mammal, Taurus ground squirrels?. Mammal Research, 2018, 63, 197-211. Current and potential future distribution of the American dog tick (Dermacentor variabilis, Say) in 1.1 59 North America. Ticks and Tick-borne Diseases, 2018, 9, 354-362. Effects of climate change on the distribution of hoverfly species (Diptera: Syrphidae) in Southeast 424 1.2 15 Europe. Biodiversity and Conservation, 2018, 27, 1173-1187. Trust as a proxy indicator for intrinsic quality of Volunteered Geographic Information in biodiversity 2.4 14 monitoring programs. GIScience and Remote Sensing, 2018, 55, 502-538. Why georeferencing matters: Introducing a practical protocol to prepare species occurrence records 426 0.8 46 for spatial analysis. Ecology and Evolution, 2018, 8, 765-777. <scp>Wallace</scp>: A flexible platform for reproducible modeling of species niches and 2.2 distributions built for community expansion. Methods in Ecology and Evolution, 2018, 9, 1151-1156. Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python) Tj ETQq0 0 0 rgBT /Qverlock 10, Tf 50 262 428 Digital footprints: Incorporating crowdsourced geographic information for protected area 429 1.7 management. Applied Geography, 2018, 90, 44-54. Vulnerability of forest vegetation to anthropogenic climate change in China. Science of the Total 430 3.9 59 Environment, 2018, 621, 1633-1641. Using fossil records to inform reintroduction of the kakapo as a refugee species. Biological 1.9 33 Conservation, 2018, 217, 157-165. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. 432 0.7 36 Marine Biology, 2018, 165, 7. Toward ecologically realistic predictions of species distributions: A crossâ€time example from tropical 4.2 montane cloud forests. Global Change Biology, 2018, 24, 1511-1522.

#	Article	IF	CITATIONS
434	Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 2018, 27, 245-256.	2.7	336
435	In search of relevant predictors for marine species distribution modelling using the MarineSPEED benchmark dataset. Diversity and Distributions, 2018, 24, 144-157.	1.9	51
436	Beyond climate control on species range: The importance of soil data to predict distribution of Amazonian plant species. Journal of Biogeography, 2018, 45, 190-200.	1.4	81
437	Niche divergence of two closely related <i>Carbula</i> species (Insecta: Hemiptera: Pentatomidae) despite the presence of a hybrid zone. Ecological Entomology, 2018, 43, 204-214.	1.1	3
438	Modelling the niche space of desert annuals needs to include positive interactions. Oikos, 2018, 127, 264-273.	1.2	20
439	Species Distributions. , 2018, , 213-269.		1
440	Climatic Niche Model for Overwintering Monarch Butterflies in a Topographically Complex Region of California. Insects, 2018, 9, 167.	1.0	19
441	Species Distribution Modeling: A Biosocial Approach. Papers in Applied Geography, 2018, 4, 343-357.	0.8	0
442	Distributional pattern of Sardinian orchids under a climate change scenario. Community Ecology, 2018, 19, 223-232.	0.5	17
443	Modelos potenciales de distribución geográfica y climática del complejo Amblyomma cajennense (Acari: Ixodidae), potencial vector de Rickettsia rickettsii en Colombia. Biomedica, 2018, 38, 534-544.	0.3	12
444	Coupling GIS spatial analysis and Ensemble Niche Modelling to investigate climate change-related threats to the Sicilian pond turtle <i>Emys trinacris</i> , an endangered species from the Mediterranean. PeerJ, 2018, 6, e4969.	0.9	25
445	Sympatric and allopatric niche shift of endemic Gypsophila (Caryophyllaceae) taxa in the Iberian Peninsula. PLoS ONE, 2018, 13, e0206043.	1.1	4
446	Identifying potential distributions of 10 invasive alien trees: implications for conservation management of protected areas. Environmental Monitoring and Assessment, 2018, 190, 739.	1.3	9
447	Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Global Ecology and Conservation, 2018, 16, e00471.	1.0	31
448	North Sea demersal fisheries prefer specific benthic habitats. PLoS ONE, 2018, 13, e0208338.	1.1	25
449	Range overlap between the sword-billed hummingbird and its guild of long-flowered species: An approach to the study of a coevolutionary mosaic. PLoS ONE, 2018, 13, e0209742.	1.1	12
450	A Statistical Comparison between Less and Common Applied Models to Estimate Geographical Distribution of Endangered Species (Felis margarita) in Central Iran. Contemporary Problems of Ecology, 2018, 11, 687-696.	0.3	5
451	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61

#	Article	IF	CITATIONS
452	Spatiotemporal shifts in distribution of a recolonizing black bear population. Ecosphere, 2018, 9, e02375.	1.0	6
453	Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach. Forests, 2018, 9, 600.	0.9	12
454	The population and landscape genetics of the European badger (<i>Meles meles</i>) in Ireland. Ecology and Evolution, 2018, 8, 10233-10246.	0.8	15
455	Invasive species risk assessments need more consistent spatial abundance data. Ecosphere, 2018, 9, e02302.	1.0	27
456	Determining the species assemblage and habitat use of cetaceans in the Svalbard Archipelago, based on observations from 2002 to 2014. Polar Research, 2018, 37, 1463065.	1.6	55
457	Improved speciesâ€occurrence predictions in dataâ€poor regions: using largeâ€scale data and bias correction with downâ€weighted Poisson regression and Maxent. Ecography, 2018, 41, 1161-1172.	2.1	53
458	Genomic data reject the hypothesis of sympatric ecological speciation in a clade of <i>Desmognathus</i> salamanders. Evolution; International Journal of Organic Evolution, 2018, 72, 2378-2393.	1.1	20
459	Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: a case study in Corsica. Scientific Reports, 2018, 8, 15628.	1.6	69
460	Prediction of Large Whale Distributions: A Comparison of Presence–Absence and Presence-Only Modeling Techniques. Frontiers in Marine Science, 2018, 5, .	1.2	37
461	The compounding consequences of wildfire and climateÂchange for a highâ€elevation wildflower (<i>SaxifragaÂaustromontana</i>). Journal of Biogeography, 2018, 45, 2755-2765.	1.4	7
462	Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecology and Evolution, 2018, 8, 10542-10554.	0.8	92
463	Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment. International Journal of Wildland Fire, 2018, 27, 756.	1.0	60
464	Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 2018, 8, 14464.	1.6	61
465	The effects of climate warming and urbanised areas on the future distribution of <i>Cortaderia selloana</i> , pampas grass, in France. Weed Research, 2018, 58, 413-423.	0.8	10
466	Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China. Science China Earth Sciences, 2018, 61, 1669-1684.	2.3	19
467	Mapping the Potential Global Codling Moth (Cydia pomonella L.) Distribution Based on a Machine Learning Method. Scientific Reports, 2018, 8, 13093.	1.6	16
468	The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus. Ecological Modelling, 2018, 386, 83-88.	1.2	22
469	Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE, 2018, 13, e0203697.	1.1	59

#	Article	IF	CITATIONS
470	Modeling the potential habitats of dusky, commons and bottlenose dolphins in the Humboldt Current System off Peru: The influence of non-El Niño vs. El Niño 1997-98 conditions and potential prey availability. Progress in Oceanography, 2018, 168, 169-181.	1.5	10
471	Usutu virus induced mass mortalities of songbirds in Central Europe: Are habitat models suitable to predict dead birds in unsampled regions?. Preventive Veterinary Medicine, 2018, 159, 162-170.	0.7	8
472	Inferring space from time: On the relationship between demography and environmental suitability in the desert plant O. rastrera. PLoS ONE, 2018, 13, e0201543.	1.1	4
473	Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS ONE, 2018, 13, e0202421.	1.1	17
474	Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS ONE, 2018, 13, e0198925.	1.1	50
475	Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. Journal for Nature Conservation, 2018, 46, 38-47.	0.8	81
476	Phylogeography of two closely related species of <i>Allium</i> endemic to East Asia: Population evolution in response to climate oscillations. Ecology and Evolution, 2018, 8, 7986-7999.	0.8	2
477	Estimating the population size of lemurs based on their mutualistic food trees. Journal of Biogeography, 2018, 45, 2546-2563.	1.4	10
478	Advocating better habitat use and selection models in bird ecology. Revista Brasileira De Ornitologia, 2018, 26, 90-104.	0.2	2
479	Random subset feature selection for ecological niche models of wildfire activity in Western North America. Ecological Modelling, 2018, 383, 52-68.	1.2	18
480	Assessing the role of aridity-induced vicariance and ecological divergence in species diversification in North-West Africa using Agama lizards. Biological Journal of the Linnean Society, 2018, 124, 363-380.	0.7	17
481	Integrating a comprehensive <scp>DNA</scp> barcode reference library with a global map of yews (<i>Taxus</i> L.) for forensic identification. Molecular Ecology Resources, 2018, 18, 1115-1131.	2.2	38
482	Testing the role of climate in speciation: New methods and applications to squamate reptiles (lizards) Tj ETQq0 0	0.rgBT /O	verlock 10 T
483	A novel method for targeting survey effort to identify new bat roosts using habitat suitability modelling. European Journal of Wildlife Research, 2018, 64, 1.	0.7	5
484	Niche conservatism and phylogenetic clustering in a tribe of aridâ€adapted marsupial mice, the Sminthopsini. Journal of Evolutionary Biology, 2018, 31, 1204-1215.	0.8	9
485	Fuel and topographic influences on wildland firefighter burnover fatalities in Southern California. International Journal of Wildland Fire, 2018, 27, 141.	1.0	11

486 Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus) Tj ETQq0 0 0 rgBT [Overlock 10 Tf 50 10 16 40 Tf 50 16 40 Tf 50

487Inter-basin water transfers and the expansion of aquatic invasive species. Water Research, 2018, 143, 282-291.5.362	2
---	---

#	Article	IF	CITATIONS
488	Applying species distribution modelling to improving conservation based decisions: a gap analysis of Trinidad and Tobago's endemic vascular plants. Biodiversity and Conservation, 2018, 27, 2931-2949.	1.2	49
489	Predicting spatial factors associated with cattle depredations by the Mexican wolf (Canis lupus) Tj ETQq1 1 0.78 327-335.	4314 rgBT 1.9	- /Overlock 1 13
490	Assessment of the effect of climate changes in the Late Pleistocene and Holocene on niche conservatism of an arvicolid specialist. Scientific Reports, 2018, 8, 9780.	1.6	8
491	Spatial Distribution and Population Ecology of Drucina championi (Lepidoptera: Nymphalidae), a Threatened Butterfly From Mountain Landscapes of Southern Mexico. Annals of the Entomological Society of America, 2018, 111, 285-294.	1.3	5
492	Introduced bullfrog facilitates pathogen invasion in the western United States. PLoS ONE, 2018, 13, e0188384.	1.1	38
493	Effect of climate change in lizards of the genus <i>Xenosaurus</i> (Xenosauridae) based on projected changes in climatic suitability and climatic niche conservatism. Ecology and Evolution, 2018, 8, 6860-6871.	0.8	18
494	Predicting environmental suitability for key benthic species in an ecologically and economically important deep-sea environment. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 157-158, 121-133.	0.6	9
495	Global Forest Maps in Support of Conservation Monitoring. , 0, , 82-118.		1
496	Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modelling, 2018, 385, 124-132.	1.2	163
497	Relative importance of environmental variables for the distribution of the invasive marsh species Spartina alterniflora across different spatial scales. Marine and Freshwater Research, 2018, 69, 790.	0.7	8
498	Distributional ecology of Andes hantavirus: a macroecological approach. International Journal of Health Geographics, 2018, 17, 22.	1.2	17
499	Mapping and modeling the breeding habitat of the Western Atlantic Red Knot (<i>Calidris canutus) Tj ETQq1 1 C</i>	0.784314 r 0.7	gBT /Overlo
500	Integrated spatially-explicit models predict pervasive risks to recolonizing wolves in Scandinavia from human-driven mortality. Biological Conservation, 2018, 226, 111-119.	1.9	17
501	Land Cover and Climate Change May Limit Invasiveness of Rhododendron ponticum in Wales. Frontiers in Plant Science, 2018, 9, 664.	1.7	22
502	Invasion of a Legume Ecosystem Engineer in a Cold Biome Alters Plant Biodiversity. Frontiers in Plant Science, 2018, 9, 715.	1.7	17
503	Systematics of the broad-nosed bats, <i>Platyrrhinus umbratus</i> (Lyon, 1902) and <i>P. nigellus</i> (Gardner and Carter, 1972) (Chiroptera: Phyllostomidae), based on genetic, morphometric, and ecological niche analyses. Neotropical Biodiversity, 2018, 4, 119-133.	0.2	6
504	No deaths in the desert: predicted responses of an aridâ€adapted bee and its two nesting trees suggest resilience in the face of warming climates. Insect Conservation and Diversity, 2018, 11, 449-463.	1.4	12
505	Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecological Modelling, 2018, 385, 35-44.	1.2	41

ARTICLE IF CITATIONS # Patterns of morphological and ecological similarities of small-eared shrews (Soricidae, <i>Cryptotis </i>) in tropical montane cloud forests from Mesoamerica. Systematics and 506 0.5 14 Biodiversity, 2018, 16, 551-564. Predicting environmentally suitable areas for Anopheles superpictus Grassi (s.l.), Anopheles maculipennis Meigen (s.l.) and Anopheles sacharovi Favre (Diptera: Culicidae) in Iran. Parasites and 1.0 Vectors, 2018, 11, 382. Kelps' Long-Distance Dispersal: Role of Ecological/Oceanographic Processes and Implications to 508 0.7 34 Marine Forest Conservation. Diversity, 2018, 10, 11. Predicting Shifts in the Suitable Climatic Distribution of Walnut (Juglans regia L.) in China: Maximum 509 0.9 Entropy Model Paves the Way to Forest Management. Forests, 2018, 9, 103. Coupling Traditional Monitoring and Citizen Science to Disentangle the Invasion of Halyomorpha 510 1.4 26 halys. ISPRS International Journal of Geo-Information, 2018, 7, 171. Mapping Disease Transmission Risk of Nipah Virus in South and Southeast Asia. Tropical Medicine and Infectious Disease, 2018, 3, 57. Population Genetics and Speciation of Yellow-Bellied, Red-Naped, and Red-Breasted Sapsuckers 512 1.0 9 (Sphyrapicus varius, S. nuchalis, and S. ruber). Journal of Heredity, 2018, 109, 663-674. Socioecological system and potential deforestation in Western Amazon forest landscapes. Science of 3.9 21 the Total Environment, 2018, 644, 1044-1055. Interacting grassland species under threat of multiple global change drivers. Journal of 514 12 1.4 Biogeography, 2018, 45, 2133-2145. Record of Blue tilapia<i>Oreochromis aureus</i>(Steindachner, 1864) in the Eerste River catchment, Western Cape province, South Africa. African Journal of Aquatic Science, 2018, 43, 187-193. Distribution and Abundance of Big-Leaf Mahogany (<i>Swietenia macrophylla</i>) on the Yucatan 516 9 0.6 Peninsula, Mexico. Tropical Conservation Science, 2018, 11, 194008291876687. Ecological niche modeling of Aedes mosquito vectors of chikungunya virus in southeastern Senegal. 1.0 Parasites and Vectors, 2018, 11, 255. Differences between the floras of the North and South Moluccas (Indonesia). Journal of Systematics 518 1.6 6 and Evolution, 2018, 56, 652-662. Abundance and habitat-suitability relationship deteriorate in fragmented forest landscapes: a case of Adinandra griffithii Dyer, a threatened endemic tree from Meghalaya in northeast India. Ecological Processes, 2018, 7, . 1.6 Distribution of a giant panda population influenced by land cover. Journal of Wildlife Management, 520 9 0.7 2018, 82, 1199-1209. Multi-criteria spatial identification of carnivore conservation areas under data scarcity and conflict: a jaguar case study in Sierra Nevada de Santa Marta, Colombia. Biodiversity and Conservation, 2018, 27, 1.2 3373-3392. A Multi-Gene Analysis and Potential Spatial Distribution of Species of the Strodei Subgroup of the 522 0.9 4 Genus Nyssorhynchus (Diptera: Culicidae). Journal of Medical Entomology, 2018, 55, 1486-1495. Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straightâ€billed reedhaunter <i>Limnoctites rectirostris</i>
</i>
</i>

#	Article	IF	CITATIONS
524	Scrub typhus in Jiangsu Province, China: epidemiologic features and spatial risk analysis. BMC Infectious Diseases, 2018, 18, 372.	1.3	23
525	Inferring diversity patterns along an elevation gradient from stacked SDMs: A case study on Mesoamerican ferns. Global Ecology and Conservation, 2018, 16, e00433.	1.0	14
526	Revisiting niche fundamentals with Tukey depth. Methods in Ecology and Evolution, 2018, 9, 2349-2361.	2.2	8
527	Seaâ€level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes. Ecology and Evolution, 2018, 8, 8115-8125.	0.8	10
528	Predicting the risk of aquatic plant invasions in Europe: How climatic factors and anthropogenic activity influence potential species distributions. Journal for Nature Conservation, 2018, 45, 58-71.	0.8	27
529	Uncertainty of future projections of species distributions in mountainous regions. PLoS ONE, 2018, 13, e0189496.	1.1	22
530	Comparison of genetic variation between northern and southern populations of Lilium cernuum (Liliaceae): Implications for Pleistocene refugia. PLoS ONE, 2018, 13, e0190520.	1.1	14
531	Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors. PLoS ONE, 2018, 13, e0190536.	1.1	9
532	How many sightings to model rare marine species distributions. PLoS ONE, 2018, 13, e0193231.	1.1	13
533	Matching global and regional distribution models of the recluse spider <scp><i>Loxosceles rufescens</i></scp> : to what extent do these reflect niche conservatism?. Medical and Veterinary Entomology, 2018, 32, 490-496.	0.7	8
534	The conservation status of a poorly known range-restricted mammal, the Nimba otter-shrew Micropotamogale lamottei. Mammalia, 2018, 83, 1-10.	0.3	5
535	Modeling marine pelagic fish species spatiotemporal distributions utilizing a maximum entropy approach. Fisheries Oceanography, 2018, 27, 571-586.	0.9	35
536	Major challenges for correlational ecological niche model projections to future climate conditions. Annals of the New York Academy of Sciences, 2018, 1429, 66-77.	1.8	96
537	Ecogeography of teosinte. PLoS ONE, 2018, 13, e0192676.	1.1	67
538	Species Distribution Modeling. , 2019, , 189-198.		6
539	Refuge as major habitat driver for wolf presence in humanâ€modified landscapes. Animal Conservation, 2019, 22, 59-71.	1.5	25
540	Contrasting climate risks predicted by dynamic vegetation and ecological niche-based models applied to tree species in the Brazilian Atlantic Forest. Regional Environmental Change, 2019, 19, 219-232.	1.4	10
541	An evaluation of transferability of ecological niche models. Ecography, 2019, 42, 521-534.	2.1	97

ARTICLE IF CITATIONS # Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of 542 3.9 69 Polyporus umbellatus in China. Science of the Total Environment, 2019, 648, 1-11. Why less complexity produces better forecasts: an independent data evaluation of kelp habitat models. 543 2.1 34 Ecography, 2019, 42, 428-443. Identifying corridors for landscape connectivity using species distribution modeling of Hydnocarpus 544 kurzii (King) Warb., a threatened species of the Indo-Burma Biodiversity Hotspot. Landscape and 0.7 5 Ecological Éngineering, 2019, 15, 13-23. Vulnerability of global forest ecoregions to future climate change. Global Ecology and 545 Conservation, 2019, 20, e00760. Habitat specialists as conservation umbrellas: Do areas managed for greater sageâ€grouse also protect 546 1.0 20 pygmy rabbits?. Ecosphere, 2019, 10, e02827. Islands in the desert: environmental distribution modelling of endemic flora reveals the extent of 1.4 Pleistocene tropical relict vegetation in southern Arabia. Ännals of Botany, 2019, 124, 411-422. 548 Species limits and biogeography of Rhynchospiza sparrows. Journal of Ornithology, 2019, 160, 973-991. 0.5 1 Improving Species Distribution Modelling of freshwater invasive species for management applications. PLoS ONE, 2019, 14, e0217896. 1.1 kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 2019, 7, 550 0.9 473 e6281. Using invaded-range species distribution modeling to estimate the potential distribution of Linaria species and their hybrids in the U.S. northern Rockies. Invasive Plant Science and Management, 2019, 12, Species distribution models can be highly sensitive to algorithm configuration. Ecological Modelling, 552 1.2 51 2019, 408, 108719. Incorporating future climate uncertainty into the identification of climate change refugia for threatened species. Biological Conservation, 2019, 237, 230-237. Phylogeography of ants from the Brazilian Atlantic Forest. Organisms Diversity and Evolution, 2019, 554 0.7 7 19, 435-445. Information-theoretic portfolio decision model for optimal flood management. Environmental 38 Modelling and Software, 2019, 119, 258-274. A patch-based algorithm for global and daily burned area mapping. Remote Sensing of Environment, 556 19 4.6 2019, 232, 111288. Invasive Plants Distribution Modeling: A Tool for Tropical Biodiversity Conservation With Special Reference to Sri Lanka. Tropical Conservation Science, 2019, 12, 194008291986426. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the 559 2.1 53 Anthropocene. Ecography, 2019, 42, 1789-1801. Seasonal and interspecific landscape use of sympatric greater prairieâ€chickens and plains sharpâ€tailed grouse. Wildlife Society Bulletin, 2019, 43, 244-255.

#	Article	IF	CITATIONS
561	Predicted changes in the potential distribution of seerfish (Scomberomorus sierra) under multiple climate change scenarios in the Colombian Pacific Ocean. Ecological Informatics, 2019, 53, 100985.	2.3	8
562	Exploring the Interplay Between Local and Regional Drivers of Distribution of a Subterranean Organism. Diversity, 2019, 11, 119.	0.7	9
563	Ethanol Production from the Mexican Sugar Industry: Perspectives and Challenges. , 2019, , 203-235.		1
564	Rethinking restoration targets for American chestnut using species distribution modeling. Biodiversity and Conservation, 2019, 28, 3199-3220.	1.2	21
565	Mapping parasite transmission risk from white-tailed deer to a declining moose population. European Journal of Wildlife Research, 2019, 65, 1.	0.7	13
566	Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi. Parasites and Vectors, 2019, 12, 478.	1.0	32
567	NOO3D: A procedure to perform 3D species distribution models. Ecological Informatics, 2019, 54, 101008.	2.3	5
568	Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Global Ecology and Conservation, 2019, 20, e00800.	1.0	19
569	Habitat selection and morphology of Saga pedo (Pallas, 1771) in Alps (Susa Valley, Piedmont, NW Italy) (Insecta: Orthoptera, Tettigoniidae, Saginae). Fragmenta Entomologica, 2019, 51, 63-74.	0.4	5
570	Future distribution of wild boar in a highly anthropogenic landscape: Models combining hunting bag and citizen science data. Ecological Modelling, 2019, 411, 108804.	1.2	22
571	Suitable habitat prediction of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) and its implications for conservation in Baihe Nature Reserve, Sichuan, China. Environmental Science and Pollution Research, 2019, 26, 32374-32384.	2.7	18
572	Interactive spatial scale effects on species distribution modeling: The case of the giant panda. Scientific Reports, 2019, 9, 14563.	1.6	25
573	Spatio-Temporal Distribution of Monarch Butterflies Along Their Migratory Route. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	7
574	The MIAmaxent R package: Variable transformation and model selection for species distribution models. Ecology and Evolution, 2019, 9, 12051-12068.	0.8	31
575	Habitat suitability model with maximum entropy approach for European roe deer (Capreolus) Tj ETQq0 0 0 rgBT /	Overlock I	10 ₂₄ 50 182
576	Evaluating the boundaries of marine biogeographic regions of the Southwestern Atlantic using halacarid mites (Halacaridae), meiobenthic organisms with a low dispersal potential. Ecology and Evolution, 2019, 9, 13359-13374.	0.8	4
577	Influences of ecology and climate on the distribution of restricted, rupicolous reptiles in a biodiverse hotspot. African Journal of Herpetology, 2019, 68, 118-133.	0.3	4
578	Biodiversity hotspots for modeled habitat patches and corridors of species richness and threatened species of reptiles in central Iran. European Journal of Wildlife Research, 2019, 65, 1.	0.7	13

#	Article	IF	CITATIONS
579	Modelling Lichen Abundance for Woodland Caribou in a Fire-Driven Boreal Landscape. Forests, 2019, 10, 962.	0.9	17
580	Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 2019, 9, 10365-10376.	0.8	204
581	Ecological niche modelling and genetic diversity of Anomochloa marantoidea (Poaceae): filling the gaps for conservation in the earliest-diverging grass subfamily. Botanical Journal of the Linnean Society, 0, , .	0.8	3
582	Climatic constraints and the distribution of Patagonian mice. Journal of Mammalogy, 0, , .	0.6	4
583	Predicting the risk of illegal activity and evaluating law enforcement interventions in the western Serengeti. Conservation Science and Practice, 2019, 1, e81.	0.9	5
584	Vegetation and Soil Fire Damage Analysis Based on Species Distribution Modeling Trained with Multispectral Satellite Data. Remote Sensing, 2019, 11, 1832.	1.8	20
585	Tracking seasonal activity of the western blacklegged tick across California. Journal of Applied Ecology, 2019, 56, 2562-2573.	1.9	13
586	Species' range model metadata standards: RMMS. Global Ecology and Biogeography, 2019, 28, 1912-1924.	2.7	18
587	Mapping Tasmania's cultural landscapes: Using habitat suitability modelling of archaeological sites as a landscape history tool. Journal of Biogeography, 2019, 46, 2570-2582.	1.4	16
588	The impact of climate change and variability on coffee production: a systematic review. Climatic Change, 2019, 156, 609-630.	1.7	120
589	Zoning for edaphoclimatic aptitude of Bambusa vulgaris and Dendrocalamus giganteus in Brazil. Pesquisa Agropecuaria Tropical, 2019, 49, .	1.0	0
590	Modeling the Potential Clobal Distribution of Phenacoccus madeirensis Green under Various Climate Change Scenarios. Forests, 2019, 10, 773.	0.9	21
591	Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nature Communications, 2019, 10, 4000.	5.8	45
592	Fluctuating fortunes: genomes and habitat reconstructions reveal global climate-mediated changes in bats' genetic diversity. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190304.	1.2	20
593	Winescape perception and big data analysis: An assessment through social media photographs in the Chianti Classico region. Wine Economics and Policy, 2019, 8, 127-140.	1.3	16
594	Ecological modeling of Cistanche deserticola Y.C. Ma in Alxa, China. Scientific Reports, 2019, 9, 13134.	1.6	9
595	Expansion of the agricultural frontier in the largest South American Dry Forest: Identifying priority conservation areas for snakes before everything is lost. PLoS ONE, 2019, 14, e0221901.	1.1	18
596	Species distribution modelling to support forest management. A literature review. Ecological Modelling, 2019, 411, 108817.	1.2	116

#	Article	IF	CITATIONS
597	Where will it cross next? Optimal management of road collision risk for otters in Italy. Journal of Environmental Management, 2019, 251, 109609.	3.8	15
598	Predicting suitable habitat of an invasive weed Parthenium hysterophorus under future climate scenarios in Chitwan Annapurna Landscape, Nepal. Journal of Mountain Science, 2019, 16, 2243-2256.	0.8	8
599	Arctic Sensitivity? Suitable Habitat for Benthic Taxa Is Surprisingly Robust to Climate Change. Frontiers in Marine Science, 2019, 6, .	1.2	43
600	Recommendation domains to scale out climate change adaptation in cocoa production in Ghana. Climate Services, 2019, 16, 100123.	1.0	29
601	Alternatives to genetic affinity as a context for within-species response to climate. Nature Climate Change, 2019, 9, 787-794.	8.1	37
602	A checklist for maximizing reproducibility of ecological niche models. Nature Ecology and Evolution, 2019, 3, 1382-1395.	3.4	134
603	Ecological Niche Modeling of Three Species of Stenella Dolphins in the Caribbean Basin, With Application to the Seaflower Biosphere Reserve. Frontiers in Marine Science, 2019, 6, .	1.2	28
604	Mapping wader biodiversity along the East Asian—Australasian flyway. PLoS ONE, 2019, 14, e0210552.	1.1	16
605	Exploring potential establishment of marine rafting species after transoceanic longâ€distance dispersal. Global Ecology and Biogeography, 2019, 28, 588-600.	2.7	10
606	Modelling potential habitat for snow leopards (Panthera uncia) in Ladakh, India. PLoS ONE, 2019, 14, e0211509.	1.1	29
607	Complementing the Pleistocene biogeography of European amphibians: Testimony from a southern Atlantic species. Journal of Biogeography, 2019, 46, 568-583.	1.4	17
608	Where Did You Come From? Where Did You Go? Investigating the Origin of Invasive Leptocybe Species Using Distribution Modelling. Forests, 2019, 10, 115.	0.9	13
609	Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. Applied Geography, 2019, 103, 70-89.	1.7	19
610	Iterative Models for Early Detection of Invasive Species across Spread Pathways. Forests, 2019, 10, 108.	0.9	17
611	Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 2019, 9, 6643-6654.	0.8	88
612	Phylogeography, classification and conservation of pink zieria (Zieria veronicea; Rutaceae): influence of changes in climate, geology and sea level in south-eastern Australia. Plant Systematics and Evolution, 2019, 305, 503-520.	0.3	9
613	Human activity and climate change as determinants of spatial prioritization for the conservation of globally threatened birds in the southern Neotropic (Santa Fe, Argentina). Biodiversity and Conservation, 2019, 28, 2531-2553.	1.2	6
614	Mapping changes in the spatiotemporal distribution of lumpy skin disease virus. Transboundary and Emerging Diseases, 2019, 66, 2045-2057.	1.3	27

#	Article	IF	CITATIONS
615	Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions. Australasian Journal of Environmental Management, 2019, 26, 112-123.	0.6	13
616	Potential distribution of dominant malaria vector species in tropical region under climate change scenarios. PLoS ONE, 2019, 14, e0218523.	1.1	25
617	Host Plants and Climate Structure Habitat Associations of the Western Monarch Butterfly. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	27
618	Bunching up the background betters bias in species distribution models. Ecography, 2019, 42, 1717-1727.	2.1	55
619	Four climate change scenarios for Gypsophila bermejoi G. López (Caryophyllaceae) to address whether bioclimatic and soil suitability will overlap in the future. PLoS ONE, 2019, 14, e0218160.	1.1	7
620	Amazonian tree species threatened by deforestation and climate change. Nature Climate Change, 2019, 9, 547-553.	8.1	105
621	Species distribution modelling supports "nectar corridor―hypothesis for migratory nectarivorous bats and conservation of tropical dry forest. Diversity and Distributions, 2019, 25, 1399-1415.	1.9	30
622	Habitat suitability and connectivity for the brown bear (Ursus arctos) along the Iran-Iraq border. European Journal of Wildlife Research, 2019, 65, 1.	0.7	34
623	Allopatric divergence and secondary contact with gene flow: a recurring theme in rattlesnake speciation. Biological Journal of the Linnean Society, 2019, 128, 149-169.	0.7	25
624	Determining key monitoring areas for the 10 most important weed species under a changing climate. Science of the Total Environment, 2019, 683, 568-577.	3.9	9
625	Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Change, 2019, 155, 145-156.	1.7	52
626	Assessing the Causes Behind the Late Quaternary Extinction of Horses in South America Using Species Distribution Models. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	12
627	An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1302-1323.	0.9	37
628	Substantial declines in urban tree habitat predicted under climate change. Science of the Total Environment, 2019, 685, 451-462.	3.9	49
629	Using the MaxEnt model for assessing the impact of climate change on the Aurasian Aleppo pine distribution in Algeria. African Journal of Ecology, 2019, 57, 500-511.	0.4	11
630	Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya. PLoS ONE, 2019, 14, e0216923.	1.1	18
631	A simple method to estimate the probable distribution of species. Ecography, 2019, 42, 1613-1622.	2.1	20
632	Metazoan parasite infracommunities of the dusky flounder (Syacium papillosum) as bioindicators of environmental conditions in the continental shelf of the Yucatan Peninsula, Mexico. Parasites and Vectors, 2019, 12, 277.	1.0	35
#	Article	IF	CITATIONS
-----	--	-------------------	------------
633	Distribution, degree of damage and risk of spread of <i>Trioza erytreae</i> (Hemiptera: Triozidae) in Kenya. Journal of Applied Entomology, 2019, 143, 822-833.	0.8	13
634	The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 2019, 275, 243-254.	1.9	65
635	Spatiotemporal dynamics in habitat suitability of a large Arctic herbivore: Environmental heterogeneity is key to a sedentary lifestyle. Global Ecology and Conservation, 2019, 18, e00647.	1.0	22
636	Implications of forest management practices for sex-specific habitat use by Nycticeius humeralis. Journal of Mammalogy, 2019, 100, 1263-1273.	0.6	3
637	Using water and energy variation to explain the botanical richness pattern of Theaceae species in southern China. Acta Ecologica Sinica, 2019, 39, 467-472.	0.9	6
638	Multispecies conservation of freshwater fish assemblages in response to climate change in the southeastern United States. Diversity and Distributions, 2019, 25, 1388-1398.	1.9	18
639	The importance of biological plausibility for data poor models in the face of an immediate threat by an emerging infectious disease: a reply to Katz and Zellmer (2018). Biological Invasions, 2019, 21, 2789-2793.	1.2	4
640	Invasive Plant Species Establishment and Range Dynamics in Sri Lanka under Climate Change. Entropy, 2019, 21, 571.	1.1	41
641	Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 2019, 53, 100973.	2.3	5
642	Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodiversity and Conservation, 2019, 28, 2319-2344.	1.2	63
643	Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Diversity and Distributions, 2019, 25, 1259-1272.	1.9	40
644	Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10418-10423.	3.3	308
645	Maximizing habitat connectivity in the mitigation hierarchy. A case study on three terrestrial mammals in an urban environment. Journal of Environmental Management, 2019, 243, 340-349.	3.8	31
646	Modeling the potential range expansion of larger grain borer, Prostephanus truncatus (Coleoptera:) Tj ETQq1 1 C).784314 r 1.6	gBT/Overlo
647	Using biased sampling data to model the distribution of invasive shot-hole borers in California. Biological Invasions, 2019, 21, 2693-2712.	1.2	5
648	A new null model approach to quantify performance and significance for ecological niche models of species distributions. Journal of Biogeography, 2019, 46, 1101-1111.	1.4	50
649	Pure, shared, and coupling effects of climate change and sea level rise on the future distribution of <i>Spartina alterniflora</i> along the Chinese coast. Ecology and Evolution, 2019, 9, 5380-5391.	0.8	5
650	Predicting the impacts of climate change on <i>Papio</i> baboon biogeography: Are widespread, generalist primates â€~safe'?. Journal of Biogeography, 2019, 46, 1380-1405.	1.4	14

#	Article	IF	CITATIONS
651	The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach. Renewable Energy, 2019, 143, 390-403.	4.3	15
652	Machine learning of largeâ€scale spatial distributions of wild turkeys with highâ€dimensional environmental data. Ecology and Evolution, 2019, 9, 5938-5949.	0.8	44
653	Broad-scale species distribution models applied to data-poor areas. Progress in Oceanography, 2019, 175, 198-207.	1.5	19
654	Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agricultural Systems, 2019, 173, 524-535.	3.2	49
655	Diet-dependent habitat shifts at different life stages of two sympatric primate species. Journal of Biosciences, 2019, 44, 1.	0.5	6
656	Techniques for Classifying Seabed Morphology and Composition on a Subtropical-Temperate Continental Shelf. Geosciences (Switzerland), 2019, 9, 141.	1.0	24
657	Climate change-induced range shift of the endemic epiphytic lichen <i>Lobaria pindarensis</i> in the Hindu Kush Himalayan region. Lichenologist, 2019, 51, 157-173.	0.5	10
658	Fire and life history affect the distribution of plant species in a biodiversity hotspot. Diversity and Distributions, 2019, 25, 1012-1023.	1.9	16
659	Modeling of crop wild relative species identifies areas globally for in situ conservation. Communications Biology, 2019, 2, 136.	2.0	96
660	Long-distance influence of the Rhône River plume on the marine benthic ecosystem: Integrating descriptive ecology and predictive modelling. Science of the Total Environment, 2019, 673, 790-809.	3.9	4
661	Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae). BMC Evolutionary Biology, 2019, 19, 93.	3.2	32
662	Effects of soil properties on the spatial distribution of forest vegetation across China. Global Ecology and Conservation, 2019, 18, e00635.	1.0	11
663	Modeling Current and Future Potential Distributions of Milkweeds and the Monarch Butterfly in Idaho. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	15
664	Can opportunistic citizen sightings assist in the monitoring of an elusive, crepuscular mammal in an urban environment?. Urban Ecosystems, 2019, 22, 483-492.	1.1	2
665	Evaluating the Utility of Species Distribution Models in Informing Climate Change-Resilient Grassland Restoration Strategy. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	11
666	Climate change favors rice production at higher elevations in Colombia. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1401-1430.	1.0	20
667	Effects of ecoregional vulnerability on habitat suitability of invasive alien plants: an assessment using 13 species on a global scale. Environmental Earth Sciences, 2019, 78, 1.	1.3	7
668	Geographic distribution patterns of melanistic Arabian Wolves, Canis lupus arabs (Pocock), in Saudi Arabia (Mammalia: Carnivora). Zoology in the Middle East, 2019, 65, 95-103.	0.2	3

#	Article	IF	CITATIONS
669	How to survive a glaciation: the challenge of estimating biologically realistic potential distributions under freezing conditions. Ecography, 2019, 42, 1237-1245.	2.1	5
670	Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: The hitchhiker's guide to world domination. International Journal for Parasitology, 2019, 49, 321-336.	1.3	51
671	Cats under cover: Habitat models indicate a high dependency on woodlands by Atlantic Forest felids. Biotropica, 2019, 51, 266-278.	0.8	21
672	Endangered species management and climate change: When habitat conservation becomes a moving target. Wildlife Society Bulletin, 2019, 43, 11-20.	1.6	29
673	How canopy shadow affects invasive plant species classification in high spatial resolution remote sensing. Remote Sensing in Ecology and Conservation, 2019, 5, 302-317.	2.2	52
674	Using the past to contextualize anthropogenic impacts on the present and future distribution of an endemic Caribbean mammal. Conservation Biology, 2019, 33, 500-510.	2.4	13
675	On population abundance and niche structure. Ecography, 2019, 42, 1415-1425.	2.1	73
676	Climatic Change Can Influence Species Diversity Patterns and Potential Habitats of Salicaceae Plants in China. Forests, 2019, 10, 220.	0.9	9
677	Spatiotemporal patterns of pre-Columbian people in Amazonia. Quaternary Research, 2019, 92, 53-69.	1.0	34
678	Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia (Poland), 2019, 74, 757-766.	0.8	22
679	Genetic diversity in frogs linked to past and future climate changes on the roof of the world. Journal of Animal Ecology, 2019, 88, 953-963.	1.3	19
680	Describing vegetation characteristics used by two rare forest-dwelling species: Will established reserves provide for coastal marten in Oregon?. PLoS ONE, 2019, 14, e0210865.	1.1	7
681	Habitat configuration for an obligate shallowâ€water delphinid: The Indoâ€Pacific humpback dolphin, <scp><i>Sousa chinensis</i></scp> , in the Beibu Gulf (Gulf of Tonkin). Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 472-485.	0.9	21
682	Impacts of Anthropogenic Land Use/Land Cover on the Distribution of Invasive Aquatic Macrophytes in Tropical Floodplains: a Case Study from the Barak River Basin in Northeast India. Human Ecology, 2019, 47, 245-262.	0.7	4
683	Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling. Journal of Environmental Management, 2019, 241, 439-449.	3.8	48
684	Incorporating evolutionary history into conservation assessments of a highly threatened group of species, South African Dioscorea (Dioscoreaceae). South African Journal of Botany, 2019, 123, 296-307.	1.2	7
685	Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawaiian arthropods using ecological niche modelling. Biological Journal of the Linnean Society, 2019, 127, 479-492.	0.7	15
686	Assessing effects of genetic, environmental, and biotic gradients in species distribution modelling. ICES Journal of Marine Science, 2019, 76, 1762-1775.	1.2	16

		CITATION RE	PORT	
#	Article		IF	CITATIONS
687	Phylogeography and niche modelling: reciprocal enlightenment. Mammalia, 2019, 84,	10-25.	0.3	17
688	New records of invasive mammals from the sub-Antarctic Cape Horn Archipelago. Pola 42, 1093-1105.	r Biology, 2019,	0.5	14
689	Identifying areas of aquatic plant richness in a Mediterranean hotspot to improve the of freshwater ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 20	conservation of 19, 29, 589-602.	0.9	7
690	Seasonal spatial ecology of the wild boar in a peri-urban area. Mammal Research, 2019	, 64, 387-396.	0.6	18
691	Ecological specialization of lichen congeners with a strong link to Mediterranean-type study of the genus <i>Solenopsora</i> in the Apennine Peninsula. Lichenologist, 2019,	climate: a case 51, 75-88.	0.5	12
692	Shifts in Climatic Niche Occupation in Astrophytum Coahuilense (H. Möller) Kayser a Distribution in Mexico. Sustainability, 2019, 11, 1138.	nd Its Potential	1.6	4
693	Predicting hotspots for threatened plant species in boreal peatlands. Biodiversity and 0 2019, 28, 1173-1204.	Conservation,	1.2	23
694	Effects of changing development patterns and ignition locations within Central Texas. 14, e0211454.	PLoS ONE, 2019,	1.1	3
695	An evaluation of the current extent and potential spread of Black Bass invasions in Sou Biological Invasions, 2019, 21, 1721-1736.	ıth Africa.	1.2	20
696	Retrospective and Predictive Investigation of Fish Kill Events. Journal of Aquatic Animal 31, 61-70.	Health, 2019,	0.6	8
697	Akaike information criterion should not be a "test―of geographical prediction acc niche modelling. Ecological Informatics, 2019, 51, 25-32.	uracy in ecological	2.3	66
698	Modelling Betula utilis distribution in response to climate-warming scenarios in Hindu- using random forest. Biodiversity and Conservation, 2019, 28, 2295-2317.	Kush Himalaya	1.2	22
699	Habitat Suitability Mapping of Artemisia aucheri Boiss Based on the GLM Model in R. ,	2019, , 213-227.		8
700	Assessing the impact of climate change on the worldwide distribution of <i>Dalbulus r (DeLong) using MaxEnt. Pest Management Science, 2019, 75, 2706-2715.</i>	naidis	1.7	60
701	Environmental factors associated with the distribution of Loa loa vectors Chrysops spp and West Africa: seeing the forest for the trees. Parasites and Vectors, 2019, 12, 72.). in Central	1.0	3
702	On the problem of modeling a fundamental niche from occurrence data. Ecological Mo 397, 74-83.	odelling, 2019,	1.2	45
703	Predicting spatial and temporal effects of climate change on the South American lizard (Squamata: Teiidae). Amphibia - Reptilia, 2019, 40, 313-326.	l genus Teius	0.1	4
704	A Parallel Implementation of the Species Distribution Modeling Algorithm. , 2019, , .			0

#	Article	IF	CITATIONS
705	Distribution Modelling of Porites (Poritidae) in Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 363, 012025.	0.2	0
706	Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions. PLoS ONE, 2019, 14, e0221934.	1.1	11
707	An assessment of human impacts on endangered red pandas (<i>Ailurus fulgens</i>) living in the Himalaya. Ecology and Evolution, 2019, 9, 13413-13425.	0.8	19
708	Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nature Communications, 2019, 10, 5240.	5.8	49
709	Climatic Niche Shift during Azolla filiculoides Invasion and Its Potential Distribution under Future Scenarios. Plants, 2019, 8, 424.	1.6	10
710	Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecology, 2019, 19, 45.	3.0	18
711	Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons. Chinese Geographical Science, 2019, 29, 1011-1023.	1.2	9
712	Modelling Climate Suitability for Rainfed Maize Cultivation in Kenya Using a Maximum Entropy (MaxENT) Approach. Agronomy, 2019, 9, 727.	1.3	46
713	Improving conservation strategies of raptors through landscape ecology analysis: The case of the endemic Cuban Black Hawk. Ecology and Evolution, 2019, 9, 13808-13823.	0.8	3
714	Tree Species Classification by Integrating Satellite Imagery and Topographic Variables Using Maximum Entropy Method in a Mongolian Forest. Forests, 2019, 10, 961.	0.9	14
715	Disentangling the genetic effects of refugial isolation and range expansion in a trans-continentally distributed species. Heredity, 2019, 122, 441-457.	1.2	12
716	Upgrading Comparative and Competitive Advantages for Ethanol Fuel Production From Agroindustrial Crops in Developing Countries: Mexico as a Case Study. , 2019, , 401-415.		4
717	Population dynamics and geographical distribution of the gypsy moth, Lymantria dispar, in Japan. Forest Ecology and Management, 2019, 434, 154-164.	1.4	19
718	Predicting Yellow Fever Through Species Distribution Modeling of Virus, Vector, and Monkeys. EcoHealth, 2019, 16, 95-108.	0.9	45
719	Integrating phylogenomics, phylogenetics, morphometrics, relative genome size and ecological niche modelling disentangles the diversification of Eurasian Euphorbia seguieriana s. l. (Euphorbiaceae). Molecular Phylogenetics and Evolution, 2019, 134, 238-252.	1.2	29
720	Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Climatic Change, 2019, 152, 195-207.	1.7	31
721	Identifying potential areas of expansion for the endangered brown bear (Ursus arctos) population in the Cantabrian Mountains (NW Spain). PLoS ONE, 2019, 14, e0209972.	1.1	71
722	Modeling the Asian Longhorned Tick (Acari: Ixodidae) Suitable Habitat in North America. Journal of Medical Entomology, 2019, 56, 384-391.	0.9	49

#	Article	IF	CITATIONS
723	Distinct phylogeographic structure of the halophyte Suaeda malacosperma (Chenopodiaceae/Amaranthaceae), endemic to Korea–Japan region, influenced by historical range shift dynamics. Plant Systematics and Evolution, 2019, 305, 193-203.	0.3	15
724	Distribution of Wildlife and Illegal Human Activities in the Lampi Marine National Park (Myanmar). Environmental Conservation, 2019, 46, 163-170.	0.7	6
725	Bioclimatic modeling in the Last Glacial Maximum, Mid-Holocene and facing future climatic changes in the strawberry tree (Arbutus unedo L.). PLoS ONE, 2019, 14, e0210062.	1.1	27
726	Representing species distributions in spatially-explicit ecosystem models from presence-only data. Fisheries Research, 2019, 210, 89-105.	0.9	20
727	Quaternary range-shifts of arboreal rodents of the genus Habromys (Cricetidae, Neotominae) in Mesoamerica and their evolutionary consequences. Mammalian Biology, 2019, 94, 4-10.	0.8	3
728	Informing snake roadkill mitigation strategies in Taiwan using citizen science. Journal of Wildlife Management, 2019, 83, 80-88.	0.7	24
729	Incorporating local-scale variables into distribution models enhances predictability for rare plant species with biological dependencies. Biodiversity and Conservation, 2019, 28, 171-182.	1.2	14
730	Evolution of the Grey-bellied pygmy mouse group: Highly structured molecular diversity with predictable geographic ranges but morphological crypsis. Molecular Phylogenetics and Evolution, 2019, 130, 143-155.	1.2	17
731	Species distribution models of the Spotted Wing <i>Drosophila</i> (<i>Drosophila suzukii</i> ,) Tj ETQq0 0 0 rgBT Applied Ecology, 2019, 56, 423-435.	Overloc	k 10 Tf 50 42 65
732	Rising Tides: Assessing Habitat Vulnerability for an Endangered Salt Marsh-Dependent Species with Sea-Level Rise. Wetlands, 2019, 39, 1203-1218.	0.7	5
733	Mapping the spatial distribution of Lippia javanica (Burm. f.) Spreng using Sentinel-2 and SRTM-derived topographic data in malaria endemic environment. Ecological Modelling, 2019, 392, 147-158.	1.2	9
734	Niche modelling of the potential distribution of the Egyptian Vulture Neophron percnopterus during summer and winter in Iran, to identify gaps in protected area coverage. Bird Conservation International, 2019, 29, 423-436.	0.7	5
735	Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: The biogeographic history of Salamandra algira. Molecular Phylogenetics and Evolution, 2019, 130, 81-91.	1.2	25
736	Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Diversity and Distributions, 2019, 25, 176-190.	1.9	64
737	Contributions of Hydrology to Vesicular Stomatitis Virus Emergence in the Western USA. Ecosystems, 2019, 22, 416-433.	1.6	13
738	Combined Effects of Global Climate Suitability and Regional Environmental Variables on the Distribution of an Invasive Marsh Species Spartina alterniflora. Estuaries and Coasts, 2019, 42, 99-111.	1.0	15
739	Mapping pedomemory of spodic morphology using a species distribution model. Geoderma, 2019, 352, 330-341.	2.3	1

#	Article	IF	CITATIONS
741	Inconsistent interspecific and intraspecific differentiation of climate envelopes in a subtropical tree. Journal of Plant Ecology, 2019, 12, 176-185.	1.2	3
742	Climate change impacts on potential distribution of multipurpose agro-forestry species: Argania spinosa (L.) Skeels as case study. Agroforestry Systems, 2019, 93, 1209-1219.	0.9	32
743	Climatic niche of the Saker Falcon Falco cherrug : predicted new areas to direct population surveys in Central Asia. Ibis, 2020, 162, 27-41.	1.0	18
744	The importance of soils in predicting the future of plant habitat suitability in a tropical forest. Plant and Soil, 2020, 450, 151-170.	1.8	41
745	What is the shape of the fundamental Grinnellian niche?. Theoretical Ecology, 2020, 13, 105-115.	0.4	26
746	An assessment of the impact of climate change on the distribution of the grey-shanked douc Pygathrix cinerea using an ecological niche model. Primates, 2020, 61, 267-275.	0.7	6
747	Combining multicriteria decision analysis and GIS to assess vulnerability within a protected area: An objective methodology for managing complex and fragile systems. Ecological Indicators, 2020, 108, 105738.	2.6	15
748	MaxEnt modeling to predict current and future distributions of <i>Batocera lineolata</i> (Coleoptera: Cerambycidae) under climate change in China. Ecoscience, 2020, 27, 23-31.	0.6	23
749	Connectivity or isolation? Identifying reintroduction sites for multiple conservation objectives for wisents in Poland. Animal Conservation, 2020, 23, 212-221.	1.5	19
750	Speciation and subsequent secondary contact in two edaphic endemic primroses driven by Pleistocene climatic oscillation. Heredity, 2020, 124, 93-107.	1.2	4
751	Habitat metrics based on multiâ€ŧemporal Landsat imagery for mapping large mammal habitat. Remote Sensing in Ecology and Conservation, 2020, 6, 52-69.	2.2	41
752	Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region. Journal of Forestry Research, 2020, 31, 2255-2272.	1.7	7
753	Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis. Ecography, 2020, 43, 270-282.	2.1	12
754	Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wideâ€spread plant species. Ecography, 2020, 43, 60-74.	2.1	58
755	Reconstructing distribution of the Eastern Rock Nuthatch during the Last Glacial Maximum and Last Interglacial. Avian Biology Research, 2020, 13, 3-9.	0.4	11
756	Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agricultural and Forest Meteorology, 2020, 280, 107803.	1.9	37
757	Predicting the potential distribution of an invasive species, Erigeron canadensis L., in China with a maximum entropy model. Global Ecology and Conservation, 2020, 21, e00822.	1.0	35
758	Efficient Modelling of Presence-Only Species Data via Local Background Sampling. Journal of Agricultural, Biological, and Environmental Statistics, 2020, 25, 90-111.	0.7	2

ARTICLE IF CITATIONS # The effects of the human footprint and soil properties on the habitat suitability of large old trees in 759 2.3 9 alpine urban and periurban areas. Urban Forestry and Urban Greening, 2020, 47, 126520. Using a species distribution model to guide <scp>NSW</scp> surveys of the longâ€footed potoroo (<i>Potorous longipes</i>). Austral Ecology, 2020, 45, 15-26. Testing Application of Geographical Information Systems, Forensic Geomorphology and Electrical 761 Resistivity Tomography to Investigate Clandestine Grave Sites in Colombia, South America. Journal of 0.9 16 Forensic Sciences, 2020, 65, 266-273. Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. Journal of Biogeography, 2020, 47, 143-154. Integrating univariate niche dynamics in species distribution models: A step forward for marine 763 1.4 17 research on biological invasions. Journal of Biogeography, 2020, 47, 686-697. Projecting the suitability of global and local habitats for myrtle rust (<i>Austropuccinia psidii</i>) using model consensus. Plant Pathology, 2020, 69, 17-27. 764 1.2 Planning the peninsula-wide recovery of the Iberian lynx: identification of favourable habitat areas. 765 0.3 8 Mammalia, 2020, 84, 413-420. Predicting indirect effects of transportation network expansion on Asian elephants: Implications for 0.8 766 16 environmental impact assessments. Biotropica, 2020, 52, 196-202. Ecological niche models and species distribution models in marine environments: A literature review 767 1.2 242 and spatial analysis of evidence. Ecological Modelling, 2020, 415, 108837. Leptoglossus occidentalis (Hemiptera: Coreidae) occurrence, potential habitats, and COI diversity in 768 0.2 South Korea. Journal of Asia-Pacific Biodiversity, 2020, 13, 35-45. Mapping suitability for rice production in inland valley landscapes in Benin and Togo using 769 41 3.9 environmental niche modeling. Science of the Total Énvironment, 2020, 709, 136165. Environmental factors affecting ecological niche of Coccidioides species and spatial dynamics of valley fever in the United States. Spatial and Spatio-temporal Epidemiology, 2020, 32, 100317. Modelling European small pelagic fish distribution: Methodological insights. Ecological Modelling, 771 1.2 28 2020, 416, 108902. Biotic predictors with phenological information improve range estimates for migrating monarch 2.1 butterflies in Mexico. Écography, 2020, 43, 341-352. Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species. 773 4.6 24 Remote Sensing of Environment, 2020, 236, 111499. Molossid unlimited: extraordinary extension of range and unusual vocalization patterns of the bat, 774 Promops centralis. Journal of Mammalogy, 2020, 101, 417-432. Employing inferences across scales: Integrating spatial data with different resolutions to enhance 775 1.2 10 Maxent models. Ecological Modelling, 2020, 415, 108857. Neglected and Underutilized Fruit Species in Sri Lanka: Prioritisation and Understanding the Potential 776 1.3 Distribution under Climate Change. Agronomy, 2020, 10, 34.

ARTICLE IF CITATIONS Integrating multiple data sources and multi-scale land-cover data to model the distribution of a 1.9 10 777 declining amphibian. Biological Conservation, 2020, 241, 108374. Evolutionary history and ecoâ€climatic diversification in southern African dung beetle <i>Sisyphus</i>. 778 1.4 Journal of Biogeography, 2020, 47, 2698-2713. Species Distribution Modeling Predicts Significant Declines in Coralline Algae Populations Under 779 Projected Climate Change With Implications for Conservation Policy. Frontiers in Marine Science, 1.2 11 2020, 7, . Machine Learning for Conservation Planning in a Changing Climate. Sustainability, 2020, 12, 7657. 780 Distribution Models of Timber Species for Forest Conservation and Restoration in the 781 12 1.6 Andean-Amazonian Landscape, North of Peru. Sustainability, 2020, 12, 7945. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics, 2020, 60, 101150. 2.3 Comment on "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection 783 1.2 4 rateâ€, author Coro. Ecological Modelling, 2020, 436, 109288. Assessing geographic and climatic variables to predict the potential distribution of the visceral leishmaniasis vector Lutzomyia longipalpis in the state of EspĀrito Santo, Brazil. PLoS ONE, 2020, 15, 784 1.1 e0238198. Study on Taiwania cryptomerioides under climate change: MaxEnt modeling for predicting the 785 23 1.0 potential geographical distribution. Global Ecology and Conservation, 2020, 24, e01313. Biotic interactions govern the distribution of coexisting ungulates in the Arctic Archipelago – A case 1.0 for conservation planning. Global Ecology and Conservation, 2020, 24, e01239. Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically 787 1.9 20 realistic projections. Diversity and Distributions, 2020, 26, 1767-1779. Nested Species Distribution Models of <i>Chlamydiales</i> in Ixodes ricinus (Tick) Hosts in 788 1.4 Switzerland. Applied and Environmental Microbiology, 2020, 87, . Identifying Potentially Climatic Suitability Areas for Arma custos (Hemiptera: Pentatomidae) in China 789 1.0 18 under Climate Change. Insects, 2020, 11, 674. Shifts in bird ranges and conservation priorities in China under climate change. PLoS ONE, 2020, 15, 790 1.1 e0240225. A Disjunctive Marginal Edge of Evergreen Broad-Leaved Oak (Quercus gilva) in East Asia: The High Genetic Distinctiveness and Unusual Diversity of Jeju Island Populations and Insight into a Massive, 791 1.0 13 Independent Postglacial Colonization. Genes, 2020, 11, 1114. <i>SDMtune</i>: An R package to tune and evaluate species distribution models. Ecology and 792 Evolution, 2020, 10, 11488-11506. Habitat suitability model of endangered Latidens salimalii and the probable consequences of global 793 0.6 13 warming. Tropical Ecology, 2020, 61, 570-582. Fulfilling Nature Needs Half through terrestrial-focused protected areas and their adequacy for 794 freshwater ecosystems and biodiversity protection: A case from Bhutan. Journal for Nature Conservation, 2020, 58, 125894.

#	Article	IF	CITATIONS
795	Modelling the spatial–temporal distributions and associated determining factors of a keystone pelagic fish. ICES Journal of Marine Science, 2020, 77, 2776-2789.	1.2	4
796	Big data–model integration and AI for vectorâ€borne disease prediction. Ecosphere, 2020, 11, e03157.	1.0	22
797	Zooplankters in an oligotrophic ocean: contrasts in the niches of <i>Globigerinoides ruber</i> and <i>Trilobatus sacculifer</i> (Foraminifera: Globigerinida) in the South Pacific. Ecoscience, 2020, 27, 269-278.	0.6	0
798	Landscape Genetics of Plants: Challenges and Opportunities. Plant Communications, 2020, 1, 100100.	3.6	30
799	Combining species distribution models and value of information analysis for spatial allocation of conservation resources. Journal of Applied Ecology, 2020, 57, 819-830.	1.9	6
800	A Probabilistic Assessment of Soil Erosion Susceptibility in a Head Catchment of the Jemma Basin, Ethiopian Highlands. Geosciences (Switzerland), 2020, 10, 248.	1.0	26
801	Selecting environmental descriptors is critical for modelling the distribution of Antarctic benthic species. Polar Biology, 2020, 43, 1363-1381.	0.5	5
802	Projected climate and land use change alter western blacklegged tick phenology, seasonal hostâ€seeking suitability and human encounter risk in California. Global Change Biology, 2020, 26, 5459-5474.	4.2	27
803	The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Science of the Total Environment, 2020, 744, 140786.	3.9	62
804	Long-term isolation of European steppe outposts boosts the biome's conservation value. Nature Communications, 2020, 11, 1968.	5.8	34
805	Biogeography and ecology of geographically distant populations of sibling <i>Cryptocephalus</i> leaf beetles. , 2020, 87, 223-234.		3
806	Evolutionary legacy of a forest plantation tree species (<i>Pinus armandii</i>): Implications for widespread afforestation. Evolutionary Applications, 2020, 13, 2646-2662.	1.5	15
807	Common Bottlenose Dolphin Protection and Sustainable Boating: Species Distribution Modeling for Effective Coastal Planning. Frontiers in Marine Science, 2020, 7, .	1.2	16
808	Bioclimatic Modelling Identifies Suitable Habitat for the Establishment of the Invasive European Paper Wasp (Hymenoptera: Vespidae) across the Southern Hemisphere. Insects, 2020, 11, 784.	1.0	10
809	Phylogenetic conservatism of abiotic niche in sympatric Southwestern Atlantic skates. Marine Biology Research, 2020, 16, 458-473.	0.3	6
810	Pleistocene persistence and expansion in tarantulas on the Colorado Plateau and the effects of missing data on phylogeographical inferences from RADseq. Molecular Ecology, 2020, 29, 3684-3701.	2.0	12
811	Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations. Ecological Modelling, 2020, 433, 109231.	1.2	9
812	Ecological Niche Modeling to Calculate Ideal Sites to Introduce a Natural Enemy: The Case of Apanteles opuntiarum (Hymenoptera: Braconidae) to Control Cactoblastis cactorum (Lepidoptera:) Ti ETOq 1-1	0.784314	robt /Overloc

#		IF	CITATIONS
813	Pre-colonial Amerindian legacies in forest composition of southern Brazil. PLoS ONE, 2020, 15, e0235819.	1.1	15
814	Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees. Ecological Modelling, 2020, 432, 109202.	1.2	47
815	Climate change shifts the distribution of vegetation types in South Brazilian hotspots. Regional Environmental Change, 2020, 20, 1.	1.4	15
816	Nairobi Sheep Disease Virus: A Historical and Epidemiological Perspective. Frontiers in Veterinary Science, 2020, 7, 419.	0.9	28
817	Impact of mating system on range size and niche breadth in <i>Epipactis</i> (Orchidaceae). Annals of Botany, 2020, 126, 1203-1214.	1.4	8
818	Identifying spatial conservation priorities using Traditional and Local Ecological Knowledge of iconic marine species and ecosystem threats. Biological Conservation, 2020, 249, 108709.	1.9	15
819	Metaâ€replication, sampling bias, and multiâ€scale model selection: A case study on snow leopard (<i>Panthera uncia</i>) in western China. Ecology and Evolution, 2020, 10, 7686-7712.	0.8	32
820	Using stacked SDMs with accuracy and rarity weighting to optimize surveys for rare plant species. Biodiversity and Conservation, 2020, 29, 3209-3225.	1.2	12
821	Straddling the line: high potential impact on vulnerable marine ecosystems by bottom-set longline fishing in unregulated areas beyond national jurisdiction. ICES Journal of Marine Science, 2021, 78, 2132-2145.	1.2	7
822	Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review, 2020, 50, 440-452.	2.2	9
823	Predicting distribution of Zanthoxylum bungeanum Maxim. in China. BMC Ecology, 2020, 20, 46.	3.0	21
824	The impact of anthropogenic land use change on the protected areas of the Kilombero catchment, Tanzania. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 41-55.	4.9	31
825	Predictive ability of a processâ€based versus a correlative species distribution model. Ecology and Evolution, 2020, 10, 11043-11054.	0.8	23
826	Tree cover is crucial but riparian areas provide a strategic focus for preserving an urban avoider in a fragmented urban ecosystem. Emu, 2020, 120, 304-312.	0.2	4
827	Assessment of endemic northern swamp deer (Rucervus duvaucelii duvaucelii) distribution and identification of priority conservation areas through modeling and field surveys across north India. Global Ecology and Conservation, 2020, 24, e01263.	1.0	13
828	Spatial Assessment of the Climatic Niche of Daurian Pika. Contemporary Problems of Ecology, 2020, 13, 469-483.	0.3	0
829	Predictive Modelling of Current and Future Potential Distribution of the Spectacled Bear (Tremarctos ornatus) in Amazonas, Northeast Peru. Animals, 2020, 10, 1816.	1.0	17
830	Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Frontiers in Veterinary Science, 2020, 7, 519059.	0.9	33

#	Article	IF	CITATIONS
831	Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal, Bangladesh. Global Ecology and Conservation, 2020, 24, e01250.	1.0	8
832	Environmental variables determining the distribution of an avian parasite: the case of the Philornis torquans complex in South America. Medical and Veterinary Entomology, 2020, 35, 284-292.	0.7	5
833	The Quaternary range dynamics of <i>Noccaea iberidea</i> (Brassicaceae), a typical representative of subalpine/alpine steppe communities of Anatolian mountains. Biological Journal of the Linnean Society, 2020, 131, 986-1001.	0.7	7
834	Closely related species show species-specific environmental responses and different spatial conservation needs: Prionailurus cats in the Indian subcontinent. Scientific Reports, 2020, 10, 18705.	1.6	11
835	Assessing the susceptibility of schools to flood events in Iran. Scientific Reports, 2020, 10, 18114.	1.6	17
836	Are species lists derived from modeled species range maps appropriate for macroecological studies? A case study on data from BIEN. Basic and Applied Ecology, 2020, 48, 146-156.	1.2	2
837	Modelling the impact of climate change on Tanzanian forests. Diversity and Distributions, 2020, 26, 1663-1686.	1.9	18
838	Modelling the distribution of Mustela nivalis and M. putorius in the Azores archipelago based on native and introduced ranges. PLoS ONE, 2020, 15, e0237216.	1.1	6
839	Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. Forest Ecology and Management, 2020, 478, 118517.	1.4	37
840	Climate change winners and losers: The effects of climate change on five palm species in the Southeastern United States. Ecology and Evolution, 2020, 10, 10408-10425.	0.8	9
841	Rearâ€edge, lowâ€diversity, and haplotypic uniformity in coldâ€adapted <i>Bupleurum euphorbioides</i> interglacial refugia populations. Ecology and Evolution, 2020, 10, 10449-10462.	0.8	5
842	Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity, 2020, 12, 305.	0.7	20
843	Predicting the Invasion Potential of the Lily Leaf Beetle, Lilioceris lilii Scopoli (Coleoptera:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T 1.0	f 50 262 Td
844	A Model to Predict the Expansion of Trioza erytreae throughout the Iberian Peninsula Using a Pest Risk Analysis Approach. Insects, 2020, 11, 576.	1.0	17
845	Hotspots of species loss do not vary across future climate scenarios in a droughtâ€prone river basin. Ecology and Evolution, 2020, 10, 9200-9213.	0.8	6
846	Leaving the area under the receiving operating characteristic curve behind: An evaluation method for species distribution modelling applications based on presenceâ€only data. Methods in Ecology and Evolution, 2020, 11, 1571-1586.	2.2	25
847	Disparate dispersal limitation inGeomalacusslugs unveiled by the shape and slope of the genetic–spatial distance relationship. Ecography, 2020, 43, 1229-1240.	2.1	5

Habitat suitability mapping of stone pine (Pinus pinea L.) under the effects of climate change. Biologia 0.8 15 (Poland), 2020, 75, 2175-2187.

CITATION	DEDODT
CHAITON	NLFOR

#	Article	IF	CITATIONS
849	Eddy retention and seafloor terrain facilitate crossâ€shelf transport and delivery of fish larvae to suitable nursery habitats. Limnology and Oceanography, 2020, 65, 2800-2818.	1.6	9
850	Shifting aspect or elevation? The climate change response of ectotherms in a complex mountain topography. Diversity and Distributions, 2020, 26, 1483-1495.	1.9	28
851	Impact of Climate Change on the Distribution of Four Closely Related Orchis (Orchidaceae) Species. Diversity, 2020, 12, 312.	0.7	15
852	Species distribution models for the eastern blacklegged tick, Ixodes scapularis, and the Lyme disease pathogen, Borrelia burgdorferi, in Ontario, Canada. PLoS ONE, 2020, 15, e0238126.	1.1	26
853	Distribution of Haemaphysalis longicornis and associated pathogens: analysis of pooled data from a China field survey and global published data. Lancet Planetary Health, The, 2020, 4, e320-e329.	5.1	78
854	Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE, 2020, 15, e0237527.	1.1	15
855	Quantifying range decline and remaining populations of the large marsupial carnivore of Australia's tropical rainforest. Journal of Mammalogy, 2020, 101, 1021-1034.	0.6	6
856	Evaluating the capacity of species distribution modeling to predict the geographic distribution of the mangrove community in Mexico. PLoS ONE, 2020, 15, e0237701.	1.1	14
857	Patterns of niche contraction identify vital refuge areas for declining mammals. Diversity and Distributions, 2020, 26, 1467-1482.	1.9	23
858	Diversity and Distribution of the Dominant Ant Genus Anonychomyrma (Hymenoptera: Formicidae) in the Australian Wet Tropics. Diversity, 2020, 12, 474.	0.7	8
859	Assessing the climate suitability and potential economic impacts of Oak wilt in Canada. Scientific Reports, 2020, 10, 19391.	1.6	11
860	Estimating possible bumblebee range shifts in response to climate and land cover changes. Scientific Reports, 2020, 10, 19622.	1.6	9
861	Predicting valuable forest habitats using an indicator species for biodiversity. Biological Conservation, 2020, 249, 108682.	1.9	14
862	Predicting fine-scale forage distribution to inform ungulate nutrition. Ecological Informatics, 2020, 60, 101170.	2.3	1
863	Assessment of habitat suitability of a high-mountain Galliform species, buff-throated partridge (Tetraophasis szechenyii). Global Ecology and Conservation, 2020, 24, e01230.	1.0	6
864	Identifying priority areas for restoring mountain ungulates in the Caucasus ecoregion. Conservation Science and Practice, 2020, 2, e276.	0.9	5
865	Citizen science and habitat modelling facilitates conservation planning for crabeater seals in the Weddell Sea. Diversity and Distributions, 2020, 26, 1291-1304.	1.9	17
866	Environmental niche and global potential distribution of the giant resin bee Megachile sculpturalis, a rapidly spreading invasive pollinator. Global Ecology and Conservation, 2020, 24, e01365.	1.0	12

#	Article	IF	CITATIONS
867	In or Out of the Checklist? DNA Barcoding and Distribution Modelling Unveil a New Species of Crocidura Shrew for Italy. Diversity, 2020, 12, 380.	0.7	3
868	Association of Recent Incidence of Foliar Disease in Pine Species in the Southeastern United States with Tree and Climate Variables. Forests, 2020, 11, 1155.	0.9	5
869	Assessing the future conservation potential of the Amazon and Andes Protected Areas: Using the woolly monkey (Lagothrix lagothricha) as an umbrella species. Journal for Nature Conservation, 2020, 58, 125926.	0.8	11
870	Modelling the habitat of the endangered Carpentarian Grasswren (Amytornis dorotheae): The importance of spatio-temporal habitat availability in a fire prone landscape. Global Ecology and Conservation, 2020, 24, e01341.	1.0	4
871	Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature's Contribution to People in Kenya. Climate, 2020, 8, 109.	1.2	8
872	How Do Urban Parks Provide Bird Habitats and Birdwatching Service? Evidence from Beijing, China. Remote Sensing, 2020, 12, 3166.	1.8	10
873	MaxEnt Modeling of Dermacentor marginatus (Acari: Ixodidae) Distribution in Xinjiang, China. Journal of Medical Entomology, 2020, 57, 1659-1667.	0.9	10
874	Protrusive influence of climate change on the ecological niche of endemic brown mongoose (Herpestes fuscus fuscus): a MaxEnt approach from Western Ghats, India. Modeling Earth Systems and Environment, 2020, 6, 1795-1806.	1.9	24
875	Brown bear den characteristics and selection in eastern Transylvania, Romania. Journal of Mammalogy, 2020, 101, 1177-1188.	0.6	2
876	Development and evaluation of habitat suitability models for nesting white-headed woodpecker (Dryobates albolarvatus) in burned forest. PLoS ONE, 2020, 15, e0233043.	1.1	9
877	Using species distribution models to locate the potential cradles of the allopolyploid Gypsophila bermejoi G. López (Caryophyllaceae). PLoS ONE, 2020, 15, e0232736.	1.1	2
878	Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming. BMC Ecology, 2020, 20, 28.	3.0	23
879	Projected impacts of climate change on the range and phenology of three culturally-important shrub species. PLoS ONE, 2020, 15, e0232537.	1.1	19
880	Do traits of plant species predict the efficacy of species distribution models for finding new occurrences?. Ecology and Evolution, 2020, 10, 5001-5014.	0.8	8
881	Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Climatic Change, 2020, 161, 555-566.	1.7	34
882	Niche conservatism promotes speciation in cycads: the case of <i>Dioon merolae</i> (Zamiaceae) in Mexico. New Phytologist, 2020, 227, 1872-1884.	3.5	24
883	Concentrated conservation and utilization: Four medicinal crops for diabetes treatment showed similar habitat distribution patterns in China. Industrial Crops and Products, 2020, 152, 112478.	2.5	11
884	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	2.1	397

#	Article	IF	CITATIONS
885	Testing satellite telemetry within narrow ecosystems: nocturnal movements and habitat use of bottlenose dolphins within a convoluted estuarine system. Animal Biotelemetry, 2020, 8, .	0.8	6
886	Potential Distribution of Nysius simulans (Hemiptera: Lygaeidae) in Soybean Crops in South America Under Current and Future Climate. Journal of Economic Entomology, 2020, 113, 1702-1710.	0.8	3
887	Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production. Insects, 2020, 11, 298.	1.0	16
888	Modelling the impact of tidal range energy on species communities. Ocean and Coastal Management, 2020, 193, 105221.	2.0	21
889	What and where? Predicting invasion hotspots in the Arctic marine realm. Global Change Biology, 2020, 26, 4752-4771.	4.2	38
890	Genomic data reveal two distinct species from the widespread alpine ginger <i>Roscoea tibetica</i> Batalin (Zingiberaceae). Journal of Systematics and Evolution, 2021, 59, 1232-1243.	1.6	13
891	Predicting the distribution of Syagrus coronata palm: Challenges for the conservation of an important resource in northeastern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 269, 151607.	0.6	7
892	A leopard's favourite spots: Habitat preference and population density of leopards in a semi-arid biodiversity hotspot. Journal of Arid Environments, 2020, 181, 104218.	1.2	11
893	Could climate trends disrupt the contact rates between lxodes ricinus (Acari, Ixodidae) and the reservoirs of Borrelia burgdorferi s.l.?. PLoS ONE, 2020, 15, e0233771.	1.1	12
894	Suitable habitat of wild Asian elephant in Western Terai of Nepal. Ecology and Evolution, 2020, 10, 6112-6119.	0.8	24
895	Climate modelling suggests a review of the legal status of Brazilian pepper Schinus terebinthifolia in South Africa is required. South African Journal of Botany, 2020, 132, 95-102.	1.2	10
896	Using temporally explicit habitat suitability models to infer the migratory pattern of a large mobile shark. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1529-1539.	0.7	12
897	Modeling Invasive Plant Species in Kenya's Northern Rangelands. Frontiers in Environmental Science, 2020, 8, .	1.5	9
898	Integration of landscape metric surfaces derived from vector data improves species distribution models. Ecological Modelling, 2020, 431, 109160.	1.2	6
899	Vulnerability of African Rosewood (Pterocarpus erinaceus, Fabaceae) natural stands to climate change and implications for silviculture in West Africa. Heliyon, 2020, 6, e04031.	1.4	15
900	Identifying landscape predictors of ocelot road mortality. Landscape Ecology, 2020, 35, 1651-1666.	1.9	17
901	Altitudinal, latitudinal and longitudinal responses of cloud forest species to Quaternary glaciations in the northern Neotropics. Biological Journal of the Linnean Society, 2020, 130, 615-625.	0.7	14
902	Risk of the introduction of Lobesia botrana in suitable areas for Vitis vinifera. Journal of Pest Science, 2020, 93, 1167-1179.	1.9	22

#	Article	IF	CITATIONS
903	Predicting the Potential Global Geographical Distribution of Two Icerya Species under Climate Change. Forests, 2020, 11, 684.	0.9	29
904	An enigmatic carnivorous plant: ancient divergence of Drosophyllaceae but recent differentiation of Drosophyllum lusitanicum across the Strait of Gibraltar. Systematics and Biodiversity, 2020, 18, 525-537.	0.5	6
905	Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Protection, 2020, 137, 105268.	1.0	29
906	Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): comparing MaxEnt and occupancy models. Journal of Mammalogy, 2020, 101, 1035-1048.	0.6	17
907	Impact of Climate Change on the Distribution of Euscaphis japonica (Staphyleaceae) Trees. Forests, 2020, 11, 525.	0.9	24
908	Dinámica de la distribución y hospederos de <i>Molothrus bonariensis</i> (Passeriformes: Icteridae) en Ecuador. Caldasia, 2020, 42, 38-49.	0.1	3
909	Present and future potential distribution of the endangered Anairetes alpinus (Passeriformes:) Tj ETQq0 0 0 rgBT	/Overlock 0.5	10 Tf 50 502 14
910	Genomic Signature of Shifts in Selection in a Subalpine Ant and Its Physiological Adaptations. Molecular Biology and Evolution, 2020, 37, 2211-2227.	3.5	14
911	Re-introduction of vivax malaria in a temperate area (Moscow region, Russia): a geographic investigation. Malaria Journal, 2020, 19, 116.	0.8	14
912	Tree species of tropical and temperate lineages in a tropical Asian montane forest show different range dynamics in response to climate change. Global Ecology and Conservation, 2020, 22, e00973.	1.0	8

912	range dynamics in response to climate change. Global Ecology and Conservation, 2020, 22, e00973.	1.0	8
913	Potential distributions of Bacillus anthracis and Bacillus cereus biovar anthracis causing anthrax in Africa. PLoS Neglected Tropical Diseases, 2020, 14, e0008131.	1.3	30
914	Modelling Distributions of Rove Beetles in Mountainous Areas Using Remote Sensing Data. Remote Sensing, 2020, 12, 80.	1.8	6
915	Potential impact of climate change on the distribution of the Eurasian Lynx (<i>Lynx lynx</i>) in Iran (Mammalia: Felidae). Zoology in the Middle East, 2020, 66, 107-117.	0.2	5
916	Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change. Global Change Biology, 2020, 26, 2867-2877.	4.2	21
917	Modelling the distribution of Amazonian tree species in response to longâ€ŧerm climate change during the Mid‣ate Holocene. Journal of Biogeography, 2020, 47, 1530-1540.	1.4	10
918	A sequential multi-level framework to improve habitat suitability modelling. Landscape Ecology, 2020, 35, 1001-1020.	1.9	21
919	Predicting distributional shifts of commercially important seaweed species in the Subantarctic tip of South America under future environmental changes. Journal of Applied Phycology, 2020, 32, 2105-2114.	1.5	8
920	Modelling terrestrial reptile species richness, distributions and habitat suitability in Saudi Arabia. Journal of Arid Environments, 2020, 178, 104153.	1.2	19

#	Article	IF	CITATIONS
921	Realized distribution patterns of crowned lemurs (Eulemur coronatus) within a humanâ€dominated forest fragment in northern Madagascar. American Journal of Primatology, 2020, 82, e23125.	0.8	6
922	Modelling species distributions in dynamic landscapes: The importance of the temporal dimension. Journal of Biogeography, 2020, 47, 1510-1529.	1.4	17
923	Characterization and risk assessment of the invasive papaya mealybug, <i>Paracoccus marginatus</i> , in Kenya under changing climate. Journal of Applied Entomology, 2020, 144, 442-458.	0.8	9
924	Shifts in potential geographical distribution of <i>Pterocarya stenoptera</i> under climate change scenarios in China. Ecology and Evolution, 2020, 10, 4828-4837.	0.8	28
925	embarcadero: Species distribution modelling with Bayesian additive regression trees in <scp>r</scp> . Methods in Ecology and Evolution, 2020, 11, 850-858.	2.2	52
926	Distribution of Bactrocera oleae (Rossi, 1790) throughout the Iberian Peninsula based on a maximum entropy modelling approach. Annals of Applied Biology, 2020, 177, 112-120.	1.3	4
927	Spatiotemporal Distribution of Human–Elephant Conflict in Eastern Thailand: A Model-Based Assessment Using News Reports and Remotely Sensed Data. Remote Sensing, 2020, 12, 90.	1.8	18
928	Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution?. Biodiversity and Conservation, 2020, 29, 1767-1781.	1.2	23
929	Invasive fountain grass (Pennisetum setaceum (Forssk.) Chiov.) increases its potential area of distribution in Tenerife island under future climatic scenarios. Plant Ecology, 2020, 221, 867-882.	0.7	7
930	Assessing the habitat suitability of 10 serious weed species in global croplands. Global Ecology and Conservation, 2020, 23, e01142.	1.0	8
931	Effects of Temperature Rise on Multi-Taxa Distributions in Mountain Ecosystems. Diversity, 2020, 12, 210.	0.7	11
932	Coastal Pine-Oak Glacial Refugia in the Mediterranean Basin: A Biogeographic Approach Based on Charcoal Analysis and Spatial Modelling. Forests, 2020, 11, 673.	0.9	52
933	Simulation of Human Activity Intensity and Its Influence on Mammal Diversity in Sanjiangyuan National Park, China. Sustainability, 2020, 12, 4601.	1.6	3
934	An Introductory Framework for Choosing Spatiotemporal Analytical Tools in Population-Level Eco-Epidemiological Research. Frontiers in Veterinary Science, 2020, 7, 339.	0.9	14
935	A comparative study on machine learning modeling for mass movement susceptibility mapping (a case) Tj ETQqQ	0.0 rgBT 1.6	/Oyerlock 10
936	Environmental factors affecting the distributions of the native Eurasian beaver and the invasive North American beaver in Finland. Biological Conservation, 2020, 248, 108680.	1.9	8
937	Modeling the Putative Ancient Distribution of Aedes togoi (Diptera: Culicidae). Journal of Insect Science, 2020, 20, .	0.6	3
938	Paleoclimatic evolution as the main driver of current genomic diversity in the widespread and polymorphic Neotropical songbird <i>Arremon taciturnus</i> . Molecular Ecology, 2020, 29, 2922-2939.	2.0	6

#	Article	IF	CITATIONS
939	Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology, 2020, 65, 971-980.	1.2	43
940	Land Suitability for Sustainable Aquaculture of Rainbow Trout (Oncorhynchus mykiss) in Molinopampa (Peru) Based on RS, GIS, and AHP. ISPRS International Journal of Geo-Information, 2020, 9, 28.	1.4	24
941	Climate change promotes species loss and uneven modification of richness patterns in the avifauna associated to Neotropical seasonally dry forests. Perspectives in Ecology and Conservation, 2020, 18, 19-30.	1.0	22
942	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	2.1	94
943	Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems. Ecological Applications, 2020, 30, e02109.	1.8	13
944	Mapping of the Steneotarsonemus spinki invasion risk in suitable areas for rice (Oryza sativa) cultivation using MaxEnt. Experimental and Applied Acarology, 2020, 80, 445-461.	0.7	10
945	An empirical, cross-taxon evaluation of landscape-scale connectivity. Biodiversity and Conservation, 2020, 29, 1339-1359.	1.2	10
946	Minimizing Risk and Maximizing Spatial Transferability: Challenges in Constructing a Useful Model of Potential Suitability for an Invasive Insect. Annals of the Entomological Society of America, 2020, 113, 100-113.	1.3	9
947	Evaluating the distribution of freshwater fish diversity using a multispecies habitat suitability model to assess impacts of proposed dam development in Gabon, Africa. Conservation Science and Practice, 2020, 2, e151.	0.9	3
948	Predictive modeling of suitable habitat for deep-sea corals offshore the Northeast United States. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 158, 103229.	0.6	19
949	Influence of Anthropogenic Noise for Predicting Cinereous Vulture Nest Distribution. Sustainability, 2020, 12, 503.	1.6	12
950	Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agriculture, Ecosystems and Environment, 2020, 294, 106858.	2.5	115
951	Analysis of potentially suitable habitat within migration connections of an intra-African migrant-the Blue Swallow (Hirundo atrocaerulea). Ecological Informatics, 2020, 57, 101082.	2.3	15
952	Extinction threat to neglected <i>Plinia edulis</i> exacerbated by climate change, yet likely mitigated by conservation through sustainable use. Austral Ecology, 2020, 45, 376-383.	0.7	5
953	A Maximum Entropy Model Predicts the Potential Geographic Distribution of Sirex noctilio. Forests, 2020, 11, 175.	0.9	11
954	Environmental Drivers and Distribution Patterns of Carnivoran Assemblages (Mammalia: Carnivora) in the Americas: Past to Present. Journal of Mammalian Evolution, 2020, 27, 759-774.	1.0	6
955	An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landscape and Urban Planning, 2020, 198, 103770.	3.4	12
956	Incorporating Local Adaptation Into Species Distribution Modeling of Paeonia mairei, an Endemic Plant to China. Frontiers in Plant Science, 2019, 10, 1717.	1.7	32

		CITATION REPORT		
#	Article		IF	Citations
957	Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE, 2020), 15, e0213820.	1.1	22
958	Rallying citizen knowledge to assess wildlife occurrence and habitat suitability in anthro landscapes. Biological Conservation, 2020, 242, 108407.	ppogenic	1.9	8
959	The role of spatial units in modelling freshwater fish distributions: Comparing a subcate river network approach using MaxEnt. Ecological Modelling, 2020, 418, 108937.	hment and	1.2	25
960	Species geographical coâ€occurrence and the effect of Grinnellian and Eltonian niche p case of a Neotropical felid assemblage. Ecological Research, 2020, 35, 382-393.	artitioning: The	0.7	6
961	Under predicted climate change: Distribution and ecological niche modelling of six nati in Gilgit-Baltistan, Pakistan. Ecological Indicators, 2020, 111, 106049.	ve tree species	2.6	56
962	Impact of past climate warming on genomic diversity and demographic history of collar across the Eurasian Arctic. Proceedings of the National Academy of Sciences of the Uni America, 2020, 117, 3026-3033.	ed lemmings ted States of	3.3	19
963	Testing whether ensemble modelling is advantageous for maximising predictive perforr species distribution models. Ecography, 2020, 43, 549-558.	nance of	2.1	186
964	Fragmentation and low density as major conservation challenges for the southernmost of the European wildcat. PLoS ONE, 2020, 15, e0227708.	populations	1.1	23
965	Phylogeographic analyses point to long-term survival on the spot in micro-endemic Lyci salamanders. PLoS ONE, 2020, 15, e0226326.	an	1.1	6
966	Spatial sampling bias and model complexity in streamâ€based species distribution mod Paddlefish (<i>Polyodon spathula</i>) in the Arkansas River basin, USA. Ecology and Ev 10, 705-717.	els: A case study of olution, 2020,	0.8	9
967	Using species distribution models to guide seagrass management. Estuarine, Coastal a 2020, 240, 106790.	nd Shelf Science,	0.9	18
968	Distribution and Suitable Habitat of the Cold-Water Corals Lophelia pertusa, Paragorgia Primnoa resedaeformis on the Norwegian Continental Shelf. Frontiers in Marine Science	arborea, and e, 2020, 7, .	1.2	30
969	Variation in behavioral traits of two frugivorous mammals may lead to differential respo human disturbance. Ecology and Evolution, 2020, 10, 3798-3813.	onses to	0.8	3
970	Evaluating the impact of future climate and forest cover change on the ability of South protected areas to provide coverage to the habitats of threatened avian species. Ecolog Indicators, 2020, 114, 106307.	east (SE) Asia's gical	2.6	11
971	Climatic Change and Habitat Availability for Three Sotol Species in México: A Vision t Sustainable Use. Sustainability, 2020, 12, 3455.	owards Their	1.6	4
972	Past, present and future distributions of bumblebees in South America: Identifying prio areas for conservation. Journal of Applied Ecology, 2020, 57, 1829-1839.	rity species and	1.9	21
973	Land-Cover Classification Using MaxEnt: Can We Trust in Model Quality Metrics for Est Classification Accuracy?. Entropy, 2020, 22, 342.	imating	1.1	8
974	Predicting range shifts of the Chinese monal (Lophophorus Ihuysii) under climate chang Implications for long-term conservation. Global Ecology and Conservation, 2020, 22, e	ge: 01018.	1.0	6

#	Article	IF	CITATIONS
975	The benefits of using topographic features to predict climate-resilient habitat for migratory forest landbirds: An example for the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler. Condor, 2020, 122, .	0.7	6
976	A revision of Neusticomys peruviensis (Rodentia: Cricetidae) with the description of a new subspecies. Journal of Mammalogy, 2020, 101, 858-871.	0.6	4
977	Predicting the Distribution of Indicator Taxa of Vulnerable Marine Ecosystems in the Arctic and Sub-arctic Waters of the Nordic Seas. Frontiers in Marine Science, 2020, 7, .	1.2	38
978	General Theory and Good Practices in Ecological Niche Modeling: A Basic Guide. Biodiversity Informatics, 2020, 15, 67-68.	3.0	36
979	Environmental factors driving the distribution of the tropical coral <i>Pavona varians</i> : Predictions under a climate change scenario. Marine Ecology, 2020, 41, 1-12.	0.4	13
980	Predicted effects of Chinese national park policy on wildlife habitat provisioning: Experience from a plateau wetland ecosystem. Ecological Indicators, 2020, 115, 106346.	2.6	18
981	Assessing the suitable cultivation areas for Scutellaria baicalensis in China using the Maxent model and multiple linear regression. Biochemical Systematics and Ecology, 2020, 90, 104052.	0.6	29
982	Decomposing Habitat Suitability Across the Forager to Farmer Transition. Environmental Archaeology, 2020, , 1-14.	0.6	8
983	Climate change can affect the spatial association between stingless bees and Mimosa scabrella in the Brazilian Atlantic Forest. Apidologie, 2020, 51, 689-700.	0.9	2
984	Climate suitability as a predictor of conservation translocation failure. Conservation Biology, 2020, 34, 1473-1481.	2.4	24
985	Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography, 2020, 43, 954-966.	2.1	46
986	Multiple invasions of a generalist herbivore—Secondary contact between two divergent lineages ofNezara viridulaLinnaeus in Australia. Evolutionary Applications, 2020, 13, 2113-2129.	1.5	5
987	Including indigenous knowledge in species distribution modeling for increased ecological insights. Conservation Biology, 2021, 35, 587-597.	2.4	26
988	Oh the places they'll go: improving species distribution modelling for invasive forest pests in an uncertain world. Biological Invasions, 2021, 23, 297-349.	1.2	34
989	Estimations of Fine-Scale Species Distributions of <i>Aedes aegypti</i> and <i>Aedes albopictus</i> (Diptera: Culicidae) in Eastern Florida. Journal of Medical Entomology, 2021, 58, 699-707.	0.9	13
990	High thematic resolution land use change models refine biodiversity scenarios: A case study with Belgian bumblebees. Journal of Biogeography, 2021, 48, 345-358.	1.4	14
991	Quantifying the impact of vegetationâ€based metrics on species persistence when choosing offsets for habitat destruction. Conservation Biology, 2021, 35, 567-577.	2.4	15
992	Maximum entropy model: Estimating the relative suitability of cetacean habitat in the northern Savu Sea, Indonesia. Marine Mammal Science, 2021, 37, 6-28.	0.9	11

#	Article	IF	CITATIONS
993	Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. Journal of Arid Environments, 2021, 184, 104328.	1.2	43
994	Is there always space at the top? Ensemble modeling reveals climate-driven high-altitude squeeze for the vulnerable snow trout Schizothorax richardsonii in Himalaya. Ecological Indicators, 2021, 120, 106900.	2.6	31
995	Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation. Science of the Total Environment, 2021, 755, 142548.	3.9	63
996	Species distribution models predict the geographic expansion of an enzootic amphibian pathogen. Biotropica, 2021, 53, 221-231.	0.8	7
997	Support for a relationship between demography and modeled habitat suitability is scale dependent for the purple martin Progne subis. Journal of Animal Ecology, 2021, 90, 356-366.	1.3	9
998	Drivers of distributions and niches of North American coldâ€adapted amphibians: evaluating both climate and land use. Ecological Applications, 2021, 31, e2236.	1.8	14
999	Exploiting the full potential of Bayesian networks in predictive ecology. Methods in Ecology and Evolution, 2021, 12, 135-149.	2.2	16
1000	Epidemic character and environmental factors in epidemic areas of severe fever with thrombocytopenia syndrome in Shandong Province. Ticks and Tick-borne Diseases, 2021, 12, 101593.	1.1	6
1001	Fine-scale roadkill risk models: understanding the intersection of wildlife and roads. Biodiversity and Conservation, 2021, 30, 139-164.	1.2	12
1002	The more you search, the more you find: Cryptic diversity and admixture within the Anatolian rock lizards (Squamata, <i>Darevskia</i>). Zoologica Scripta, 2021, 50, 193-209.	0.7	7
1003	How decisions about fitting species distribution models affect conservation outcomes. Conservation Biology, 2021, 35, 1309-1320.	2.4	30
1004	Explainable artificial intelligence enhances the ecological interpretability of blackâ€box species distribution models. Ecography, 2021, 44, 199-205.	2.1	64
1005	Cumulative habitat loss increases conservation threats on endemic species of terrestrial vertebrates in Mexico. Biological Conservation, 2021, 253, 108864.	1.9	17
1006	Comparison of landscape graph modelling methods for analysing pond network connectivity. Landscape Ecology, 2021, 36, 735-748.	1.9	19
1007	Vicariance and ecological adaptation drive genetic and morphological diversification of a widely distributed bug, Carbula crassiventris (Insecta: Hemiptera: Pentatomidae), in South China. Ecological Entomology, 2021, 46, 368-382.	1.1	2
1008	The application of species distribution modeling in wetland restoration: A case study in the Songnen Plain, Northeast China. Ecological Indicators, 2021, 121, 107137.	2.6	21
1009	Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply. Ecological Indicators, 2021, 121, 107131.	2.6	36
1010	Environmental correlates of distribution across spatial scales in the intertidal gastropods Littoraria and Echinolittorina of the Indian coastline. Journal of Molluscan Studies, 2021, 87, .	0.4	1

#	Article	IF	CITATIONS
1011	Geographical pattern of genetic diversity in <i>Capsella bursaâ€pastoris</i> (Brassicaceae)—A global perspective. Ecology and Evolution, 2021, 11, 199-213.	0.8	16
1012	Landscape-scale biogeographic distribution analysis of the whitefly, Bemisia tabaci (Gennadius, 1889) in Kenya. International Journal of Tropical Insect Science, 2021, 41, 1585-1599.	0.4	15
1013	Population genetic structure and species delimitation in the <i>Cryptanthus zonatus</i> complex (Bromeliaceae). Botanical Journal of the Linnean Society, 2021, 196, 123-140.	0.8	3
1014	Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling. Ecological Modelling, 2021, 440, 109377.	1.2	5
1015	Tell me where you live and I'll tell you who you are: Spatial segregation of southern species of Eligmodontia Cuvier in Patagonia, Argentina. Journal of Arid Environments, 2021, 186, 104411.	1.2	1
1016	Whiteâ€faced darter distribution is associated with coniferous forests in Great Britain. Insect Conservation and Diversity, 2021, 14, 15-25.	1.4	1
1017	Exceeding its own limits: range expansion in Argentina of the globally invasive apple snail Pomacea canaliculata. Hydrobiologia, 2021, 848, 385-401.	1.0	13
1018	Submarine landslides: mapping the susceptibility in European seas. Quarterly Journal of Engineering Geology and Hydrogeology, 2021, 54, .	0.8	9
1019	Non-native populations and global invasion potential of the Indian bullfrog Hoplobatrachus tigerinus: a synthesis for risk-analysis. Biological Invasions, 2021, 23, 69-81.	1.2	4
1020	Rangewide habitat suitability analysis for the Mexican wolf (<i>Canis lupus baileyi</i>) to identify recovery areas in its historical distribution. Diversity and Distributions, 2021, 27, 642-654.	1.9	10
1021	Modeling Future Potential Distribution of Buff-Bellied Hummingbird (Amazilia yucatanensis) Under Climate Change: Species vs. Subspecies. Tropical Conservation Science, 2021, 25, 194008292110308.	0.6	3
1023	Quantitative Methods for Primate Biogeography and Macroecology. , 2021, , 383-402.		1
1024	Predicting the distribution of threatened orbicellid corals in shallow and mesophotic reef ecosystems. Marine Ecology - Progress Series, 2021, 667, 61-81.	0.9	3
1025	Towards New Horizons: Climate Trends in Europe Increase the Environmental Suitability for Permanent Populations of Hyalomma marginatum (Ixodidae). Pathogens, 2021, 10, 95.	1.2	22
1026	The fossil record of the ocelot <i>Leopardus pardalis</i> (Carnivora, Felidae): a new record from the southern range of its distribution and its paleoenvironmental context. Journal of Vertebrate Paleontology, 2021, 41, .	0.4	4
1027	Software Application for Modeling the Fractionation Process Based on the Principle of Maximum Entropy. Studies in Systems, Decision and Control, 2021, , 63-70.	0.8	0
1028	Species Distribution Model of Trichinella Species in Cougars (Puma concolor) for the Southwestern Region of Colorado, USA. Journal of Wildlife Diseases, 2021, 57, 211-214.	0.3	0
1029	Disturbance is an important predictor of the distribution of Lantana camara and Chromolaena odorata in Africa. Vegetos, 2021, 34, 42-49.	0.8	3

		CITATION REPO	ORT	
#	Article	I	IF	CITATIONS
1030	Modelling Beach Litter Accumulation on Mediterranean Coastal Landscapes: An Integrative Framework Using Species Distribution Models. Land, 2021, 10, 54.	:	1.2	5
1031	Brazilian stingless bees are threatened by habitat conversion and climate change. Regional Environmental Change, 2021, 21, 1.		1.4	10
1032	Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae. Scientific Reports, 2021, 11, 851.	:	1.6	6
1033	Geographic potential of the world's largest hornet, <i>Vespa mandarinia</i> Smith (Hymenop	:era:) Tj ETQq1 1 C),784314 0.9	rgBT /Over
1034	Seasonal productivity drives aggregations of killer whales and other cetaceans over submarine canyons of the Bremer Sub-Basin, south-western Australia. Australian Mammalogy, 2021, 43, 168	ł.	0.7	7
1035	Predicted Future Benefits for an Endemic Rodent in the Irano-Turanian Region. Climate, 2021, 9, 2	16.	1.2	2
1036	Predicting the Potential Geographic Distribution of Sirex nitobei in China under Climate Change L Maximum Entropy Model. Forests, 2021, 12, 151.	lsing	0.9	26
1038	Species versus within-species niches: a multi-modelling approach to assess range size of a spring-dwelling amphibian. Scientific Reports, 2021, 11, 597.		1.6	7
1039	Ecological niche differentiation in Chiroxiphia and Antilophia manakins (Aves: Pipridae). PLoS ONI 2021, 16, e0243760.	-,	1.1	4
1040	Assessing the Present and Future Habitat Suitability of Caligus rogercresseyi (Boxshall and Bravo,) Tj ETQq1 1 0.784	4314 rg₿ [⊤] 0.9	[]/Overlock
1042	Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-E Phytoplasma Disease Using MaxEnt. Plants, 2021, 10, 460.))	1.6	6
1043	Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions, 2021, 23, 1765-1779.		1.2	11
1044	Assessing the reliability of species distribution projections in climate change research. Diversity a Distributions, 2021, 27, 1035-1050.	nd	1.9	110
1045	Investigating niches and distribution of a rare species in a hierarchical framework: Virginia's V (Leiothlypis virginiae) at its northeastern range limit. Landscape Ecology, 2021, 36, 1039-1054.	Varbler	1.9	8
1046	Using species distribution models to gauge the completeness of the bat checklist of Eswatini. European Journal of Wildlife Research, 2021, 67, 1.	ſ	0.7	4
1048	Niche partitioning among three snailâ€eating snakes revealed by dentition asymmetry and prey specialisation. Journal of Animal Ecology, 2021, 90, 967-977.		1.3	3
1049	Flock Size Predicts Niche Breadth and Focal Wintering Regions for a Rapidly Declining Boreal-Breeding Passerine, the Rusty Blackbird. Diversity, 2021, 13, 62.		0.7	1
1050	Scoping review of distribution models for selected <i>Amblyomma</i> ticks and rickettsial group pathogens. PeerJ, 2021, 9, e10596.		0.9	10

ARTICLE IF CITATIONS Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its 1051 1.0 11 Natural Wolbachia Infections in México. Insects, 2021, 12, 143. Feasibility of reintroducing grassland megaherbivores, the greater one-horned rhinoceros, and 1.6 swamp buffalo within their historic global range. Scientific Reports, 2021, 11, 4469. A kingdom in decline: Holocene range contraction of the lion (<i>Panthera leo</i>) modelled with 1053 0.9 3 global environmental stratification. Peerl, 2021, 9, e10504. Climate and habitat configuration limit range expansion and patterns of dispersal in a nonâ€native 1054 0.8 lizard. Ecology and Evolution, 2021, 11, 3332-3346. Comparative Phylogeography of Veronica spicata and V. longifolia (Plantaginaceae) Across Europe: Integrating Hybridization and Polyploidy in Phylogeography. Frontiers in Plant Science, 2020, 11, 1055 1.7 7 588354. Continentalâ€scale 1 km hummingbird diversity derived from fusing point records with lateral and 2.1 elevational expert information. Ecography, 2021, 44, 640-652. Can habitat suitability estimated from MaxEnt predict colonizations and extinctions?. Diversity and 1057 1.9 32 Distributions, 2021, 27, 873-886. Is the protected area coverage still relevant in protecting the Southern Ground-hornbill (<i>Bucorvus leadbeateri</i>) biological niche in Zimbabwe? Perspectives from ecological predictions. 1058 9 2.4 GIScience and Remote Sensing, 2021, 58, 405-424. Conservation status assessment of banana crop wild relatives using species distribution modelling. 1059 20 1.9 Diversity and Distributions, 2021, 27, 729-746. Integrating Habitat Suitability and the Near-Nature Restoration Priorities into Revegetation Plans Based on Potential Vegetation Distribution. Forests, 2021, 12, 218. Historical migration and taxonomic entity of Korean endemic shrub<i>Lespedeza 1061 2 1.2 maritima </i>/Fabaceae) based on microsatellite loci. AoB PLANTS, 2021, 13, plab009. Rearâ€edge populations are important for understanding climate change risk and adaptation potential of threatened species. Conservation Science and Practice, 2021, 3, e375. Review of congruence between global crop wild relative hotspots and centres of crop 1063 0.8 21 origin/diversity. Genetic Resources and Crop Evolution, 2021, 68, 1283-1297. Environmental Factors Shape the Nonbreeding Distribution of the Harlan's Red-Tailed Hawk: A 1064 0.2 Maximum Entropy Approach. Journal of Raptor Research, 2021, 55, . The Potential Global Distribution of Sirex juvencus (Hymenoptera: Siricidae) under Near Current and 1065 9 1.0 Future Climatic Conditions as Predicted by the Maximum Entropy Model. Insects, 2021, 12, 222. Spatial Risk Analysis of Batrachochytrium dendrobatidis, A Clobal Emerging Fungal Pathogen. 1066 EcoHealth, 2021, 18, 3-12. Characteristic of habitat suitability for the Asian elephant in the fragmented Ulu Jelai Forest Reserve, 1067 0.6 11 Peninsular Malaysia. Tropical Ecology, 2021, 62, 347-358. Prediction of Potential Geographical Distribution Patterns of Actinidia arguta under Different 1.6 Climate Scenarios. Sustainability, 2021, 13, 3526.

#	Article	IF	CITATIONS
1069	Modelling the potential effects of climate change in the distribution of Xylotrechus arvicola in Spain. Zahradnictvi (Prague, Czech Republic: 1992), 2021, 48, 38-46.	0.3	0
1070	The impact of data quality filtering of opportunistic citizen science data on species distribution model performance. Ecological Modelling, 2021, 444, 109453.	1.2	24
1071	Present in the western European Alps but absent in the eastern part: Can habitat availability explain the differences in redâ€billed chough occurrence?. Journal of Avian Biology, 2021, 52, .	0.6	2
1072	The living heart: Climate gradients predict desert mountain endemism. Ecology and Evolution, 2021, 11, 4366-4378.	0.8	10
1073	Ecological Niches and Suitability Areas of Three Host Pine Species of Bark Beetle Dendroctonus mexicanus Hopkins. Forests, 2021, 12, 385.	0.9	6
1074	Combining modern tracking data and historical records improves understanding of the summer habitats of the Eastern Lesser Whiteâ€fronted Goose Anser erythropus. Ecology and Evolution, 2021, 11, 4126-4139.	0.8	7
1075	Species distribution models for conservation planning in fireâ€prone landscapes. Biodiversity and Conservation, 2021, 30, 1119-1136.	1.2	14
1076	Potential Distribution of Aedes (Ochlerotatus) scapularis (Diptera: Culicidae): A Vector Mosquito New to the Florida Peninsula. Insects, 2021, 12, 213.	1.0	9
1077	Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Management Science, 2021, 77, 3165-3178.	1.7	16
1078	Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: a case study ofÂParthenium hysterophorus L Tropical Ecology, 2021, 62, 398-417.	0.6	11
1079	Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 2021, 12, e03422.	1.0	42
1081	Effect of Climate Change on the Distribution of Zoonotic Cutaneous Leishmaniasis in Iraq. Journal of Physics: Conference Series, 2021, 1818, 012052.	0.3	2
1082	Modelling the role of environmental variables in determining the distribution of invasive Burmese Python in Florida. Spatial Information Research, 2021, 29, 749.	1.3	1
1083	Using Holocene fossils to model the future: Distribution of climate suitability for tuatara, the last rhynchocephalian. Journal of Biogeography, 2021, 48, 1489-1502.	1.4	6
1084	Climate change refugia for glaciers in Patagonia. Anthropocene, 2021, 33, 100277.	1.6	2
1085	Central Asian wild tulip conservation requires a regional approach, especially in the face of climate change. Biodiversity and Conservation, 2021, 30, 1705-1730.	1.2	9
1086	A â€~How to' guide for interpreting parameters in habitatâ€selection analyses. Journal of Animal Ecology, 2021, 90, 1027-1043.	1.3	119
1087	Predicting the potential distribution and forest impact of the invasive species <i>Cydalima perspectalis</i> in Europe. Ecology and Evolution, 2021, 11, 5713-5727.	0.8	13

# 1088	ARTICLE Will predicted positive effects of climate change be enough to reverse declines of the regionally Endangered Natteriach toad in Iroland2. Ecology and Evolution, 2021, 11, 5049-5064	IF 0.8	Citations
1089	Toward a Monte Carlo approach to selecting climate variables in MaxEnt. PLoS ONE, 2021, 16, e0237208.	1.1	16
1090	Distribution modelling of the rare stink bug Ceratozygum horridum (Germar, 1839): isolated in small spots across the Neotropics or a continuous population?. Journal of Natural History, 2021, 55, 649-663.	0.2	1
1091	Reduction in the potential distribution of bumble bees (Apidae: <i>Bombus</i>) in Mesoamerica under different climate change scenarios: Conservation implications. Global Change Biology, 2021, 27, 1772-1787.	4.2	28
1092	Climate change risk to southern African wild food plants. Regional Environmental Change, 2021, 21, 1.	1.4	8
1093	Mediterranean seascape suitability for Lophelia pertusa: Living on the edge. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 170, 103496.	0.6	9
1094	Will climate change impact distribution of bats in Nepal Himalayas? A case study of five species. Global Ecology and Conservation, 2021, 26, e01483.	1.0	15
1095	Comparative phylogeographic analysis suggests a shared history among eastern North American boreal forest birds. Auk, 2021, 138, .	0.7	9
1096	Historical diversification and biogeography of the endemic southern African dung beetle genus, <i>Epirinus</i> (Scarabaeidae: Scarabaeinae). Biological Journal of the Linnean Society, 2021, 133, 751-765.	0.7	3
1097	Identifying and evaluating the ecological network of Siberian roe deer (Capreolus pygargus) in Tieli Forestry Bureau, northeast China. Global Ecology and Conservation, 2021, 26, e01477.	1.0	8
1098	Modeling the geographic spread and proliferation of invasive alien plants (IAPs) into new ecosystems using multi-source data and multiple predictive models in the Heuningnes catchment, South Africa. GIScience and Remote Sensing, 2021, 58, 483-500.	2.4	15
1099	PEMODELAN PROBABILITAS SEBARAN HABITAT UNTUK MENETUKAN KAWASAN PRIORITAS KONSERVASI BURUNG RANGKONG GADING (Rhinoplax vigil) DI GEOPARK SILOKEK, KABUPATEN SIJUNJUNG. Konservasi Hayati, 2021, 17, 35-43.	0.1	0
1100	Mapping the Habitat Suitability of West Nile Virus Vectors in Southern Quebec and Eastern Ontario, Canada, with Species Distribution Modeling and Satellite Earth Observation Data. Remote Sensing, 2021, 13, 1637.	1.8	12
1101	Capturing response differences of species distribution to climate and human pressures by incorporating local adaptation: Implications for the conservation of a critically endangered species. Journal of Environmental Management, 2021, 284, 111998.	3.8	5
1103	Assessment of coral reefs damaged due to MV Pazifik ran aground in the Sape Strait using an aerial photography approach and species distribution modeling. IOP Conference Series: Earth and Environmental Science, 2021, 744, 012031.	0.2	0
1104	Potential distribution of aquatic invasive alien plants, Eichhornia crassipes and Salvinia molesta under climate change in Sri Lanka. Wetlands Ecology and Management, 2021, 29, 531-545.	0.7	11
1105	Assessing the Extinction Probability of the Purple-winged Ground Dove, an Enigmatic Bamboo Specialist. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	8
1106	Temperature and Prey Species Richness Drive the Broad-Scale Distribution of a Generalist Predator. Diversity, 2021, 13, 169.	0.7	2

#	Article	IF	CITATIONS
1107	Potential changes in the distribution of Delphinium bolosii and related taxa of the series Fissa from the Iberian Peninsula under future climate change scenarios. Nature Conservation, 0, 43, 147-166.	0.0	1
1108	Extending coverage and thematic resolution of compositional land cover maps in a hierarchical Bayesian framework. Ecological Applications, 2021, 31, e02318.	1.8	1
1109	Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography, 2021, 48, 1875-1888.	1.4	6
1110	Can We Use Machine Learning for Agricultural Land Suitability Assessment?. Agronomy, 2021, 11, 703.	1.3	20
1111	Interdecadal variation of potato climate suitability in China. Agriculture, Ecosystems and Environment, 2021, 310, 107293.	2.5	26
1112	Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa. Journal of Threatened Taxa, 2021, 13, 18164-18176.	0.1	0
1113	Climate change will reduce the potential distribution ranges of Colombia's most valuable pollinators. Perspectives in Ecology and Conservation, 2021, 19, 195-206.	1.0	11
1114	Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.). Forests, 2021, 12, 535.	0.9	10
1115	Tourism informing conservation: The distribution of four dolphin species varies with calf presence and increases their vulnerability to vessel traffic in the fourâ€ i sland region of Maui, Hawaiâ€~i. Ecological Solutions and Evidence, 2021, 2, e12065.	0.8	1
1116	Mapping Vulnerability of Cotton to Climate Change in West Africa: Challenges for Sustainable Development. Climate, 2021, 9, 68.	1.2	1
1118	Extrapolating Satellite-Based Flood Masks by One-Class Classification—A Test Case in Houston. Remote Sensing, 2021, 13, 2042.	1.8	2
1119	Connectivity and conservation of Western Chimpanzee (<i>Pan troglodytes verus</i>) habitat in Liberia. Diversity and Distributions, 2021, 27, 1235-1250.	1.9	2
1120	Species distribution modeling reveals the ecological niche of extinct megafauna from South America. Quaternary Research, 2021, 104, 151-158.	1.0	5
1121	Cetacean habitat modelling to inform conservation management, marine spatial planning, and as a basis for anthropogenic threat mitigation in Indonesia. Ocean and Coastal Management, 2021, 205, 105555.	2.0	16
1122	Assessment of changes in the ichthyofauna in a tropical reservoir in southâ€eastern Brazil: Consequences of global warming?. Ecology of Freshwater Fish, 2022, 31, 45-59.	0.7	6
1123	Historical Biogeography and the Evolution of Hematophagy in Rhodniini (Heteroptera: Reduviidae:) Tj ETQq1 1 0	.784314 r 1.1	gBT_{Overloc
1124	Species-Distribution Modeling: Advantages and Limitations of Its Application. 2. MaxEnt. Biology Bulletin Reviews, 2021, 11, 265-275.	0.3	40
1125	Modeling breeding habitats of humpback whales Megaptera novaeangliae as a function of group composition. Marine Ecology - Progress Series, 2021, 666, 203-215.	0.9	5

#	Article	IF	CITATIONS
1126	Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecology and Evolution, 2021, 11, 8332-8346.	0.8	4
1127	Linking Habitat and Associated Abiotic Conditions to Predict Fish Hotspots Distribution Areas within La Paz Bay: Evaluating Marine Conservation Areas. Diversity, 2021, 13, 212.	0.7	2
1128	One-Class Classification of Natural Vegetation Using Remote Sensing: A Review. Remote Sensing, 2021, 13, 1892.	1.8	9
1129	Inferring the Potential Distribution of an Emerging Rickettsiosis in America: The Case of Rickettsia parkeri. Pathogens, 2021, 10, 592.	1.2	11
1130	Postâ€release dispersal and breeding site suitability of reintroduced populations of the Crested Ibis in Shaanxi Province, China. Restoration Ecology, 2021, 29, e13383.	1.4	6
1131	Modeling the Distribution and Habitat Suitability of Persian Leopard Panthera pardus saxicolor in Southwestern Iran. Biology Bulletin, 2021, 48, 319-330.	0.1	4
1132	Golden mussel (<i>Limnoperna fortunei</i>) survival during winter at the northern invasion front implies a potential highâ€latitude distribution. Diversity and Distributions, 2021, 27, 1422-1434.	1.9	9
1133	Static species distribution models in the marine realm: The case of baleen whales in the Southern Ocean. Diversity and Distributions, 2021, 27, 1536-1552.	1.9	15
1134	Potential Distribution and Environmental Niche of the Black Corals Antipathes galapagensis and Myriopathes panamensis in the Eastern Tropical Pacific1. Pacific Science, 2021, 75, .	0.2	1
1135	Rift Valley Fever and West Nile virus vectors in Morocco: Current situation and future anticipated scenarios. Transboundary and Emerging Diseases, 2022, 69, 1466-1478.	1.3	7
1136	Predicting the past, present and future distributions of an endangered marsupial in a semiâ€arid environment. Animal Conservation, 0, , .	1.5	0
1137	Smallâ€scale species distribution model identifies restricted breeding habitat for an endemic island bird. Animal Conservation, 2021, 24, 959-969.	1.5	15
1139	Species distribution models for two subspecies of Dodonaea viscosa (Sapindaceae) in Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 743, 012027.	0.2	0
1140	Using temporal occupancy to predict avian species distributions. Diversity and Distributions, 2021, 27, 1477-1488.	1.9	5
1141	Overexploitation and anthropogenic disturbances threaten the genetic diversity of an economically important neotropical palm. Biodiversity and Conservation, 2021, 30, 2395-2413.	1.2	7
1142	Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Science of the Total Environment, 2021, 775, 145847.	3.9	18
1143	Citizen science and niche modeling to track and forecast the expansion of the brown marmorated stinkbug Halyomorpha halys (Stål, 1855). Scientific Reports, 2021, 11, 11421.	1.6	17
1144	Modelling the amphibian chytrid fungus spread by connectivity analysis: towards a national monitoring network in Italy. Biodiversity and Conservation, 2021, 30, 2807-2825.	1.2	11

#	Article	IF	CITATIONS
1145	Potential distribution models from two highly endemic species of subterranean rodents of Argentina: which environmental variables have better performance in highly specialized species?. Mammalian Biology, 2021, 101, 503-519.	0.8	8
1146	Modeling nearshore fish habitats using Alaska as a regional case study. Fisheries Research, 2021, 238, 105905.	0.9	15
1147	Predicting summer fin whale distribution in the Pelagos Sanctuary (northâ€western Mediterranean Sea) to identify dynamic whale–vessel collision risk areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2257-2277.	0.9	8
1148	In situ adaptation and ecological release facilitate the occupied niche expansion of a nonâ€native Madagascan day gecko in Florida. Ecology and Evolution, 2021, 11, 9410-9422.	0.8	7
1149	Modelling Habitat Suitability for the Breeding Egyptian Vulture (Neophron percnopterus) in the Kurdistan Region of Iraq. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 1519-1530.	0.7	7
1150	Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Global Ecology and Biogeography, 2021, 30, 1671-1684.	2.7	24
1151	Assessment of landslide susceptibility and risk factors in China. Natural Hazards, 2021, 108, 3045-3059.	1.6	21
1152	Modeling Seasonal Distribution of Irrawaddy Dolphins (Orcaella brevirostris) in a Transnational Important Marine Mammal Area. Frontiers in Marine Science, 2021, 8, .	1.2	2
1153	Rapid shifts in Arctic tundra species' distributions and interâ€specific range overlap under future climate change. Diversity and Distributions, 2021, 27, 1706-1718.	1.9	20
1154	Temporal matching of occurrence localities and forest cover data helps improve range estimates and predict climate change vulnerabilities. Global Ecology and Conservation, 2021, 27, e01569.	1.0	5
1155	Distribución potencial de Culiseta melanura (Coquillett) (Diptera: Culicidae) en América. Entomology Beginners, 0, 2, e012.	0.0	0
1156	Prevention is better than cure: Integrating habitat suitability and invasion threat to assess global biological invasion risk by insect pests under climate change. Pest Management Science, 2021, 77, 4510-4520.	1.7	17
1157	Species Distribution Modeling for Machine Learning Practitioners: A Review. , 2021, , .		17
1158	Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environmental Monitoring and Assessment, 2021, 193, 427.	1.3	17
1160	Species distribution modelling of the Southern Ocean benthos: a review on methods, cautions and solutions. Antarctic Science, 2021, 33, 349-372.	0.5	7
1161	Ecological niche modeling of toxic dinoflagellate Prorocentrum cordatum in the Black Sea. Ecohydrology and Hydrobiology, 2021, 21, 747-759.	1.0	5
1162	Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China. Agricultural and Forest Meteorology, 2021, 303, 108377.	1.9	32
1164	Geospatial Modelling and Univariate Analysis of Commensal Rodent-Borne Cestodoses: The Case of Invasive spp. of Rattus and Indigenous Mastomys coucha From South Africa. Frontiers in Veterinary Science, 2021, 8, 678478.	0.9	4

#	ARTICLE	IF	CITATIONS
1165	Historical biogeography and climatic differentiation of the Fulcaldea-Archidasyphyllum-Arnaldoa clade of Barnadesioideae (Asteraceae) suggest a Miocene, aridity-mediated Andean disjunction associated with climatic niche shifts. Global and Planetary Change, 2021, 201, 103495.	1.6	11
1166	Considerations regarding species distribution models for forest insects. Agricultural and Forest Entomology, 2021, 23, 393-399.	0.7	5
1168	Effects of non-representative sampling design on multi-scale habitat models: flammulated owls in the Rocky Mountains Ecological Modelling, 2021, 450, 109566.	1.2	10
1169	Species distribution and conservation assessment of the black-headed night monkey (Aotus nigriceps): a species of Least Concern that faces widespread anthropogenic threats. Primates, 2021, 62, 817-825.	0.7	7
1170	DNA barcode analyses improve accuracy in fungal species distribution models. Ecology and Evolution, 2021, 11, 8993-9009.	0.8	1
1171	Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy <i>Bulbophyllum</i> (Orchidaceae). New Phytologist, 2021, 231, 1236-1248.	3.5	16
1172	Forecasting the Distribution of a Range-Expanding Bat Reveals Future Response to Climate Change and Habitat. Acta Chiropterologica, 2021, 23, .	0.2	3
1173	Potential distribution of critically endangered hammerhead sharks and overlap with the small-scale fishing fleet in the southern Gulf of Mexico. Regional Studies in Marine Science, 2021, 46, 101900.	0.4	4
1174	Ecological specialization promotes diversity and diversification in the Eastern Mediterranean genus <i>Ricotia</i> (Brassicaceae). Journal of Systematics and Evolution, 2022, 60, 331-343.	1.6	5
1175	Modelling and validation of the spatial distribution of suitable habitats for the recruitment of invasive plants on climate change scenarios: An approach from the regeneration niche. Science of the Total Environment, 2021, 777, 146007.	3.9	13
1176	The role of dispersal limitation and reforestation in shaping the distributional shift of a forest herb under climate change. Diversity and Distributions, 2021, 27, 1775-1791.	1.9	6
1177	Citizen science data for urban planning: Comparing different sampling schemes for modelling urban bird distribution. Landscape and Urban Planning, 2021, 211, 104098.	3.4	7
1178	Ecological niche modelling and first records from Namibia and Zimbabwe validate the amphiâ€equatorial distribution of <i>Byrsinus pseudosyriacus</i> (Hemiptera: Heteroptera: Cydnidae). African Journal of Ecology, 2022, 60, 100-104.	0.4	1
1179	The past, current, and future distribution modeling of four water lilies (Nymphaea) in Africa indicates varying suitable habitats and distribution in climate change. Aquatic Botany, 2021, 173, 103416.	0.8	19
1180	Biological richness of Gunung Slamet, Central Java, and the need for its protection. Oryx, 2022, 56, 429-438.	0.5	3
1181	Genetic structure and temporal environmental niche dynamics of sideoats grama [Bouteloua curtipendula (Michx.) Torr.] populations in Mexico. PLoS ONE, 2021, 16, e0254566.	1.1	2
1182	Potential distribution and habitat suitability of <i>Picea crassifolia</i> with climate change scenarios. Canadian Journal of Forest Research, 2021, 51, 1903-1915.	0.8	3
1183	Modeling Fine-Scale Cetaceans' Distributions in Oceanic Islands: Madeira Archipelago as a Case Study. Frontiers in Marine Science, 2021, 8, .	1.2	15

#	Article	IF	CITATIONS
1185	Global Patterns of the Fungal Pathogen Batrachochytrium dendrobatidis Support Conservation Urgency. Frontiers in Veterinary Science, 2021, 8, 685877.	0.9	34
1186	Phylogenetic analyses and modelling distributions guide conservation of a critically endangered liana species, Eleutharrhena macrocarpa (Menispermaceae). Taxon, 2021, 70, 931.	0.4	5
1187	Resolving the spatial distributions of Dipturus intermedius and Dipturus batis—the two taxa formerly known as the â€~common skate'. Environmental Biology of Fishes, 2021, 104, 923-936.	0.4	6
1188	Habitat prediction modelling for vulture conservation in Gangetic-Thar-Deccan region of India. Environmental Monitoring and Assessment, 2021, 193, 532.	1.3	9

1189 Modelado actual y futuro de la idoneidad de hÃįbitat el ahuehuete (Taxodium mucronatum) Tj ETQq0 0.3 rgBT /Qverlock 10

1190	Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Scientific Reports, 2021, 11, 14135.	1.6	28
1191	Eco-climatic matching to guide foreign exploration and optimal release strategies for biological control agents of Rastrococcus iceryoides in Africa and Asia. Biological Control, 2021, 158, 104603.	1.4	3
1192	Coral Reef Mapping with Remote Sensing and Machine Learning: A Nurture and Nature Analysis in Marine Protected Areas. Remote Sensing, 2021, 13, 2907.	1.8	21
1193	Modeling the distribution of the Near Eastern fire salamander (Salamandra infraimmaculata) and Kurdistan newt (Neurergus derjugini) under current and future climate conditions in Iraq. Ecological Informatics, 2021, 63, 101309.	2.3	13
1194	Priority areas for vulture conservation in the Horn of Africa largely fall outside the protected area network. Bird Conservation International, 2022, 32, 188-205.	0.7	11
1195	Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern Pacific. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211195.	1.2	24
1196	Predicting Suitable Environments and Potential Occurrences for Cinnamomum camphora (Linn.) Presl Forests, 2021, 12, 1126.	0.9	10
1197	Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera:) Tj ETQq0 0 () rgBT /Ov 1∙6	verlock 10 ⁻
1198	Predicting koala (Phascolarctos cinereus) distribution from incidental sighting data in South-East Queensland, Australia. Global Ecology and Conservation, 2021, 28, e01662.	1.0	1
1199	Potential distribution of oak forests in the central Himalayas and implications for future ecosystem services supply to rural communities. Ecosystem Services, 2021, 50, 101310.	2.3	6
1200	Ecological niche modelling for the conservation of endemic threatened squamates (lizards and) Tj ETQq1 1 0.784	314 rgBT	/Qverlock

1201	Limited refugia and high velocity range-shifts predicted for bat communities in drought-risk areas of the Northern Hemisphere. Global Ecology and Conservation, 2021, 28, e01608.	1.0	9
1202	Assessing the effects of climate change on the distribution of Daphne mucronata in Iran. Environmental Monitoring and Assessment, 2021, 193, 562.	1.3	8

ARTICLE IF CITATIONS The critical role of tree species and human disturbance in determining the macrofungal diversity in 1203 2.7 9 Europe. Global Ecology and Biogeography, 2021, 30, 2084-2100. Open Data Practices among Users of Primary Biodiversity Data. BioScience, 2021, 71, 1128-1147. 1204 2.2 Biological control of Parkinsonia aculeata: Using species distribution models to refine agent surveys 1205 7 1.4 and releases. Biological Control, 2021, 159, 104630. Responses of an endemic species (Roscoea humeana) in the Hengduan Mountains to climate change. 1206 1.9 Diversity and Distributions, 2021, 27, 2231. Quantitative estimates of glacial refugia for chimpanzees (<i>Pan troglodytes</i>) since the Last 1207 0.8 10 Interglacial (120,000 BP). American Journal of Primatology, 2021, 83, e23320. Multiâ€decadal land use impacts across the vast range of an iconic threatened species. Diversity and 1208 Distributions, 2021, 27, 2218. Ensemble evaluation of the potential risk areas of yellow-legged hornet distribution. Environmental 1209 1.313 Monitoring and Assessment, 2021, 193, 601. Predicting the potential global distribution of <i>Ageratina adenophora</i> under current and 1210 0.8 29 future climate change scenarios. Ecology and Evolution, 2021, 11, 12092-12113. Exploring the effects of the quaternary glacial–interglacial cycles on the geographic distributions of tropical Andean rodents: species in the genus Aepeomys Thomas, 1898 (Thomasomyini:) Tj ETQq0 0 0 rgBT /Oveolack 10 Tf 50 417 To 1212 Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. 1.0 Perspectives in Écology and Conservation, 2021, 19, 475-486. Upward shift and elevational range contractions of subtropical mountain plants in response to 1214 3.9 60 climate change. Science of the Total Environment, 2021, 783, 146896. Potential distribution of a montane rodent (Cricetidae, Handleyomys chapmani) through time in 0.8 Mexico: the importance of occurrence data. Journal of Mountain Science, 2021, 18, 2024-2033. Diminishing potential for tropical reefs to function as coral diversity strongholds under climate 1216 1.9 12 change conditions. Diversity and Distributions, 2021, 27, 2245-2261. Towards a workflow for operational mapping of Aedes aegypti at urban scale based on remote sensing. Remote Sensing Applications: Society and Environment, 2021, 23, 100554. 0.8 Novel Use of Species Distribution Modeling to Identify High Priority Sites for American Woodcock 1218 2 0.1 Habitat Management. Northeastern Naturalist, 2021, 28, . A rangeâ€wide monitoring programme for a critically endangered nomadic bird. Austral Ecology, 2022, 47, 251-260. Habitat use and population genetics of golden jackals in Iran: Insights from a generalist species in a 1220 highly heterogeneous landscape. Journal of Zoological Systematics and Evolutionary Research, 2021, 0.6 5

CITATION REPORT

1221Impacts of changing climate on the distribution of migratory birds in China: Habitat change and
population centroid shift. Ecological Indicators, 2021, 127, 107729.2.622

59, 1503-1515.

#	Article	IF	CITATIONS
1222	Mineral lick distribution modeling and NW Amazon conservation planning alternatives. Biodiversity and Conservation, 2021, 30, 3409-3432.	1.2	2
1223	An innovative approach to identify environmental variables with conservation priorities in habitat patches. Journal of Environmental Management, 2021, 292, 112788.	3.8	3
1224	Estimating the distribution and habitat suitability for aardvarks (<i>Orycteropus afer</i>) in Kruger National Park, South Africa. African Journal of Ecology, 2021, 59, 854-865.	0.4	3
1225	Mapping environmental suitability for Anthrax reemergence in the Arctic. Environmental Research Letters, 0, , .	2.2	2
1226	Comparison of spatial distribution models to predict subtidal burying habitat of the forage fish <scp><i>Ammodytes personatus</i></scp> in the Strait of Georgia, British Columbia, Canada. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2855-2869.	0.9	6
1227	Setting priority conservation management regions to reverse rapid range decline of a key neotropical forest ungulate. Global Ecology and Conservation, 2021, 31, e01796.	1.0	6
1228	A problem with variable selection in a comparison of correlative and processâ€based species distribution models: Comments on Higgins et al., 2020. Ecology and Evolution, 2021, 11, 13609-13612.	0.8	3
1229	Niche-separation and conservation biogeography of Madagascar's fork-marked lemurs (Cheirogaleidae: Phaner): Evidence of a new cryptic species?. Global Ecology and Conservation, 2021, 29, e01738.	1.0	8
1230	Potential distribution of the extremely endangered species Ostrya rehderiana (Betulaceae) in China under future climate change. Environmental Science and Pollution Research, 2022, 29, 7782-7792.	2.7	10
1232	A high-resolution record of coastal clouds and fog and their role in plant distributions over San Clemente Island, California. Environmental Research Communications, 0, , .	0.9	3
1233	Exploring the ecological and evolutionary relationships between Rickettsia and hard ticks in the Neotropical region Ticks and Tick-borne Diseases, 2021, 12, 101754.	1.1	6
1234	Consequences of climate change in allopatric speciation and endemism: modeling the biogeography of Dravidogecko. Modeling Earth Systems and Environment, 2022, 8, 3059-3072.	1.9	7
1236	Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 2021, 456, 109671.	1.2	123
1237	Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of Northwest Yunnan, China. Ecology and Evolution, 2021, 11, 13052-13067.	0.8	21
1238	Overlap Between Sagebrush Habitat Specialists Differs Among Seasons: Implications for Umbrella Species Conservation. Rangeland Ecology and Management, 2021, 78, 142-154.	1.1	7
1239	Modelling Critically Endangered marine species: Biasâ€corrected citizen science data inform habitat suitability for the angelshark (<scp><i>Squatina squatina</i></scp>). Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 3451-3465.	0.9	15
1240	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	13.7	65
1241	Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 2021, 48, 2865-2876.	1.4	14

#	Article	IF	CITATIONS
1242	Using Ecological Niche Models for Population and Range Estimates of a Threatened Snake Species (Crotalus oreganus) in Canada. Diversity, 2021, 13, 467.	0.7	3
1243	Impact of climate change on the potential geographical suitability of cassava and sweet potato vs. rice and potato in India. Theoretical and Applied Climatology, 2021, 146, 941-960.	1.3	7
1244	Environmental conditions, and phenolic compounds potential in the leaves of Vitis tiliifolia Humb. & Bonpl. ex Schult Genetic Resources and Crop Evolution, 2021, 68, 3435.	0.8	0
1245	Seagrass habitat suitability model for Redang Marine Park using multibeam echosounder data: Testing different spatial resolutions and analysis window sizes. PLoS ONE, 2021, 16, e0257761.	1.1	2
1246	Mapping access to basic hygiene services in low- and middle-income countries: A cross-sectional case study of geospatial disparities. Applied Geography, 2021, 135, 102549.	1.7	9
1247	Driven to the edge: Species distribution modeling of a Clawed Salamander (Hynobiidae:) Tj ETQq1 1 0.784314 rgE response to climate change. Ecology and Evolution, 2021, 11, 14669-14688.	3T /Overlo 0.8	ck 10 Tf 50 12
1248	Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biological Conservation, 2021, 262, 109311.	1.9	8
1249	Transferability of 34 red-listed peatland plant species models across boreal vegetation zone. Ecological Indicators, 2021, 129, 107950.	2.6	5
1250	A multi-scale Maxent approach to model habitat suitability for the giant pandas in the Qionglai mountain, China. Global Ecology and Conservation, 2021, 30, e01766.	1.0	15
1251	Where do nivicolous myxomycetes occur? – Modeling the potential worldwide distribution of Physarum albescens. Fungal Ecology, 2021, 53, 101079.	0.7	4
1252	Effects of agricultural lands on the distribution pattern of genus diversity for neotropical terrestrial vertebrates. Ecological Indicators, 2021, 129, 107900.	2.6	2
1253	Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara Ecological Modelling, 2021, 457, 109686.	1.2	13
1254	Spatial analysis of hillfort locations in the CheÅ,mno Land (Poland) using digital terrain analysis and stochastic data exploration. Journal of Archaeological Science: Reports, 2021, 39, 103170.	0.2	0
1255	Predicting the potential distribution of wintering Asian Great Bustard (Otis tarda dybowskii) in China: Conservation implications. Global Ecology and Conservation, 2021, 31, e01817.	1.0	6
1256	Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China. Ecological Indicators, 2021, 131, 108152.	2.6	20
1257	Current and potential geographic distribution of red palm mite (Raoiella indica Hirst) in Brazil. Ecological Informatics, 2021, 65, 101396.	2.3	4
1258	Forecasting the effects of bioclimatic characteristics and climate change on the potential distribution of Colophospermum mopane in southern Africa using Maximum Entropy (Maxent). Ecological Informatics, 2021, 65, 101419.	2.3	21
1259	Modelling invasive alien plant distribution: A literature review of concepts and bibliometric analysis. Environmental Modelling and Software, 2021, 145, 105203.	1.9	7

#	Article	IF	CITATIONS
1260	Potential distribution of Amblyomma mixtum (Koch, 1844) in climate change scenarios in the Americas. Ticks and Tick-borne Diseases, 2021, 12, 101812.	1.1	12
1261	Maximum entropy modeling to identify physical drivers of shallow snowpack heterogeneity using unpiloted aerial system (UAS) lidar. Journal of Hydrology, 2021, 602, 126722.	2.3	4
1262	Climate change impacts on the ecological dynamics of two coral reef species, the humphead wrasse (Cheilinus undulatus) and crown-of-thorns starfish (Ancanthaster planci). Ecological Informatics, 2021, 65, 101399.	2.3	10
1263	Prediction of the impact of climate change on fast-growing timber trees in China. Forest Ecology and Management, 2021, 501, 119653.	1.4	9
1264	Testing consistency of modelled predictions of the impact of climate change on bats. Climate Change Ecology, 2021, 2, 100011.	0.9	6
1265	Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Science of the Total Environment, 2022, 803, 149864.	3.9	28
1266	Identifying priority areas for landscape connectivity for three large carnivores in northwestern Mexico and southwestern United States. Landscape Ecology, 2021, 36, 877-896.	1.9	13
1267	Predicting the Distribution of the Invasive Species Leptocybe invasa: Combining MaxEnt and Geodetector Models. Insects, 2021, 12, 92.	1.0	27
1268	A Maxent Predictive Model for Hunter-Gatherer Sites in the Southern Pampas, Argentina. Open Quaternary, 2021, 7, .	0.5	3
1269	Occupancy models including local and landscape variables are useful to assess the distribution of a salamander species at risk. Population Ecology, 2021, 63, 165-176.	0.7	4
1270	Lineageâ€level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity and Distributions, 2021, 27, 684-695.	1.9	35
1271	Quantifying Transmission Between Wild and Domestic Populations. Wildlife Research Monographs, 2021, , 369-409.	0.4	1
1272	Climate change and potential distribution of potato (<i>Solanum tuberosum</i>) crop cultivation in Pakistan using Maxent. AIMS Agriculture and Food, 2021, 6, 663-676.	0.8	8
1273	Pleistocene climatic fluctuations promoted alternative evolutionary histories in <i>Phytelephas aequatorialis</i> , an endemic palm from western Ecuador. Journal of Biogeography, 2021, 48, 1023-1037.	1.4	8
1274	Single-locus species delimitation and ecological niche modelling provide insights into the evolution, historical distribution and taxonomy of the Pacific chorus frogs. Biological Journal of the Linnean Society, 2021, 132, 612-633.	0.7	2
1275	Hotspots of invasive plant abundance are geographically distinct from hotspots of establishment. Biological Invasions, 2021, 23, 1249-1261.	1.2	10
1276	The Predictive Power of Ecological Niche Modeling for Global Arbuscular Mycorrhizal Fungal Biogeography. Ecological Studies, 2017, , 143-158.	0.4	18
1277	Potential distribution of endangered Mexican golden trout (Oncorhynchus chrysogaster) in the Rio Sinaloa and Rio Culiacan basins (Sierra Madre Occidental) based on landscape characterization and species distribution models. Environmental Biology of Fishes, 2017, 100, 981-993.	0.4	7

#	Article	IF	CITATIONS
1278	Prediction of habitat suitability of Morina persica L. species using artificial intelligence techniques. Ecological Indicators, 2020, 112, 106096.	2.6	24
1279	Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species. Ecological Modelling, 2020, 429, 109071.	1.2	16
1280	Conservation and relative habitat suitability for an arboreal mammal associated with old forest. Forest Ecology and Management, 2017, 402, 1-11.	1.4	22
1281	Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop and Pasture Science, 2019, 70, 694.	0.7	16
1282	Species distribution models (SDM): applications, benefits and challenges in invasive species management CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-13.	0.6	126
1283	Exploring the Niche of <i>Rickettsia montanensis</i> (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae), Using Multiple Species Distribution Model Approaches. Journal of Medical Entomology, 2021, 58, 1083-1092.	0.9	12
1297	MERRAMax: A machine learning approach to stochastic convergence with a multi-variate dataset. , 2020, , .		2
1298	Predictor complexity and feature selection affect Maxent model transferability: Evidence from global freshwater invasive species. Diversity and Distributions, 2021, 27, 497-511.	1.9	55
1299	Potential distribution ofPythium insidiosumin Rio Grande do Sul, Brazil, and projections to neighbour countries. Transboundary and Emerging Diseases, 2018, 65, 1671-1679.	1.3	11
1300	Estimating distribution changes of ten coastal plant species on the Korean Peninsula. Korean Journal of Plant Taxonomy, 2020, 50, 154-165.	0.3	3
1301	Computational Sustainability. ACM Computing Surveys, 2021, 53, 1-29.	16.1	4
1302	Prediction of potential habitats and distribution of the marine invasive sea squirt, <i>Herdmania momus</i> . Hangug Hwangyeong Saengmul Haghoeji, 2020, 38, 179-188.	0.1	4
1304	Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region, Iraq. Ecological Processes, 2020, 9, .	1.6	28
1306	Modeling the predicted suitable habitat distribution of Javan hawk-eagle Nisaetus bartelsi in the Java Island, Indonesia. Biodiversitas, 2018, 19, 1539-1551.	0.2	7
1307	Habitat suitability of Proboscis monkey (Nasalis larvatus) in Berau Delta, East Kalimantan, Indonesia. Biodiversitas, 2020, 21, .	0.2	6
1308	Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach. PLoS Neglected Tropical Diseases, 2016, 10, e0005002.	1.3	15
1309	Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?. PLoS ONE, 2014, 9, e86021.	1.1	46
1310	Delineating Ecological Boundaries of Hanuman Langur Species Complex in Peninsular India Using MaxEnt Modeling Approach. PLoS ONE, 2014, 9, e87804.	1.1	35
ARTICLE

1311 Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

1312	Combined Use of Systematic Conservation Planning, Species Distribution Modelling, and Connectivity Analysis Reveals Severe Conservation Gaps in a Megadiverse Country (Peru). PLoS ONE, 2014, 9, e114367.	1.1	93
1313	Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf :
1314	A Conservation-Based Approach to Compensation for Livestock Depredation: The Florida Panther Case Study. PLoS ONE, 2015, 10, e0139203.	1.1	6
1315	Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa. PLoS ONE, 2015, 10, e0140162.	1.1	11
1316	Using Species Distribution Models to Predict Potential Landscape Restoration Effects on Puma Conservation. PLoS ONE, 2016, 11, e0145232.	1.1	59
1317	Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models. PLoS ONE, 2016, 11, e0151090.	1.1	14
1318	Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues. PLoS ONE, 2016, 11, e0153974.	1.1	23
1319	Comparing Distribution of Harbour Porpoises (Phocoena phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring. PLoS ONE, 2016, 11, e0158788.	1.1	15
1320	Predicting the Potential Distribution of Polygala tenuifolia Willd. under Climate Change in China. PLoS ONE, 2016, 11, e0163718.	1.1	33
1321	Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate. PLoS ONE, 2016, 11, e0165292.	1.1	15
1322	Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes. PLoS ONE, 2016, 11, e0167128.	1.1	46
1323	Emerging New Crop Pests: Ecological Modelling and Analysis of the South American Potato Psyllid Russelliana solanicola (Hemiptera: Psylloidea) and Its Wild Relatives. PLoS ONE, 2017, 12, e0167764.	1.1	15
1324	Unequal Contribution of Widespread and Narrow-Ranged Species to Botanical Diversity Patterns. PLoS ONE, 2016, 11, e0169200.	1.1	5
1325	Improving the Design of a Conservation Reserve for a Critically Endangered Species. PLoS ONE, 2017, 12, e0169629.	1.1	31
1326	Influenza A H5N1 and H7N9 in China: A spatial risk analysis. PLoS ONE, 2017, 12, e0174980.	1.1	16
1327	The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. PLoS ONE, 2017, 12, e0179152.	1.1	55
1328	Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.). PLoS ONE, 2017, 12, e0185974.	1.1	57

<u> </u>			-			
Спт	ΆΤΙ	ON	l K	FΡ	OR1	Г

#	Article	IF	CITATIONS
1329	The disjunct pattern of the Neotropical harvestman Discocyrtus dilatatus (Gonyleptidae) explained by climate-driven range shifts in the Quaternary: Paleodistributional and molecular evidence. PLoS ONE, 2017, 12, e0187983.	1.1	11
1330	Identifying priority landscapes for conservation of snow leopards in Pakistan. PLoS ONE, 2020, 15, e0228832.	1.1	17
1331	Global risk of invasion by Bactrocera zonata: Implications on horticultural crop production under changing climatic conditions. PLoS ONE, 2020, 15, e0243047.	1.1	28
1332	Ecological Contexts of Index Cases and Spillover Events of Different Ebolaviruses. PLoS Pathogens, 2016, 12, e1005780.	2.1	60
1333	Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir. Journal of Environmental Impact Assessment, 2015, 24, 260-277.	0.3	15
1334	Biologically informed ecological niche models for an example pelagic, highly mobile species. European Journal of Ecology, 2017, 3, 55-75.	0.1	5
1335	Potential Distribution of Podocnemis lewyana (Reptilia:Podocnemididae) and Its Possible Fluctuation Under Different Global Climate Change Scenarios. Acta Biologica Colombiana, 2014, 19, 471.	0.1	11
1336	PREDICTING SUITABLE DISTRIBUTION FOR AN ENDEMIC, RARE AND THREATENED SPECIES (GREY-SHANKED) TJ ET Environmental Research, 2018, 16, 1275-1291.	Qq1 1 0.7 0.2	'84314 rg <mark>8</mark> 1 10
1337	Clearing up the Crystal Ball: Understanding Uncertainty in Future Climate Suitability Projections for Amphibians. Herpetologica, 2020, 76, 108.	0.2	9
1338	Climate Change and Mountaintop-Removal Mining: A MaxEnt Assessment of the Potential Threat to West Virginian Fishes. Northeastern Naturalist, 2019, 26, 499.	0.1	2
1339	Distribución histórica, actual y futura de Cedrela odorata en México. Acta Botanica Mexicana, 2018, , 117-134.	0.1	9
1340	Distribución potencial y abundancia de candelilla (Euphorbia antisyphilitica) en el norte de Zacatecas, México. Madera Bosques, 2019, 25, .	0.1	3
1342	Exploring environmental determinants of Fusarium wilt occurrence on banana in South Central Mindanao, Philippines. Hellenic Plant Protection Journal, 2019, 12, 78-90.	0.4	3
1343	Sampling bias in presence-only data used for species distribution modelling: theory and methods for detecting sample bias and its effects on models. Sommerfeltia, 2018, 38, 1-53.	1.0	18
1344	European badger habitat requirements in the Netherlands – combining ecological niche models with neighbourhood analysis. Wildlife Biology, 2018, 2018, 1-11.	0.6	6
1345	Predicting Potential Conflict Areas of the Malayan Sun Bear (Helarctos malayanus) in Peninsular Malaysia Using Maximum Entropy Model. Mammal Study, 2019, 44, 193.	0.2	9
1346	A new record of Stylophorum diphyllum (Michx.) Nutt. in Canada: A case study of the value and limitations of building species distribution models for very rare plants. Journal of the Torrey Botanical Society, 2019, 146, 119.	0.1	5
1347	Range Expansion of the Eastern Fox Squirrel within the Greater Los Angeles Metropolitan Area (2005) Tj ETQq1 1	0.784314 0.1	rgBT /Over 2

#	Article	IF	CITATIONS
1348	Prediction of Iberian lynx road–mortality in southern Spain: a new approach using the MaxEnt algorithm. Animal Biodiversity and Conservation, 2018, 41, 217-225.	0.3	34
1349	Modeling habitat and bycatch risk for dugongs in Sabah, Malaysia. Endangered Species Research, 2014, 24, 237-247.	1.2	24
1350	Predicted distribution of whales at risk: identifying priority areas to enhance cetacean monitoring in the Northwest Atlantic Ocean. Endangered Species Research, 2017, 32, 437-458.	1.2	17
1351	Characterising essential breeding habitat for whales informs the development of large-scale Marine Protected Areas in the South Pacific. Marine Ecology - Progress Series, 2016, 548, 263-275.	0.9	16
1352	Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s-2009). Marine Ecology - Progress Series, 2016, 551, 13-30.	0.9	24
1353	Effects of spatial resolution on predicting the distribution of aquatic invasive species in nearshore marine environments. Marine Ecology - Progress Series, 2016, 556, 17-30.	0.9	18
1354	Distributional changes in a guild of non-indigenous tunicates in the NW Atlantic under high-resolution climate projections. Marine Ecology - Progress Series, 2017, 570, 173-186.	0.9	13
1355	Predictive distribution modelling of cold-water corals in the Newfoundland and Labrador region. Marine Ecology - Progress Series, 2017, 582, 57-77.	0.9	10
1356	On the distribution of the invasive long-spined echinoid Diadema setosum and its expansion in the Mediterranean Sea. Marine Ecology - Progress Series, 2017, 583, 163-178.	0.9	10
1357	Improving the spatial allocation of marine mammal and sea turtle biomasses in spatially explicit ecosystem models. Marine Ecology - Progress Series, 2018, 602, 255-274.	0.9	10
1358	Overlap between highly suitable habitats and longline gear management areas reveals vulnerable and protected regions for highly migratory sharks. Marine Ecology - Progress Series, 2018, 602, 183-195.	0.9	27
1359	Long-term trends in habitat use and site fidelity by Australian humpback dolphins Sousa sahulensis in a near-urban embayment. Marine Ecology - Progress Series, 2018, 603, 227-242.	0.9	7
1360	Skate egg nursery habitat in the eastern Bering Sea: a predictive model. Marine Ecology - Progress Series, 2019, 609, 163-178.	0.9	16
1361	Predicting large-scale habitat suitability for cetaceans off Namibia using MinxEnt. Marine Ecology - Progress Series, 2019, 619, 149-167.	0.9	12
1362	Climatic Constraints on Laggar Falcon (Falco jugger) Distribution Predicts Multidirectional Range Movements under Future Climate Change Scenarios. Journal of Raptor Research, 2020, 54, 1.	0.2	12
1363	Human Habitat Selection: Using Tools from Wildlife Ecology to Predict Recreation in Natural Landscapes. Natural Areas Journal, 2019, 39, 142.	0.2	12
1364	Some refinements on species distribution models using tree-level National Forest Inventories for supporting forest management and marginal forest population detection. IForest, 2018, 11, 291-299.	0.5	24
1365	Big data and evaluation of cultural ecosystem services: an analysis based on geotagged photographs from social media in Tuscan forest (Italy). IForest, 2019, 12, 98-105.	0.5	24

#	Article	IF	CITATIONS
1366	Potential distribution and habitat connectivity of Crotalus triseriatus in Central Mexico. Herpetozoa, 0, 32, 139-148.	1.0	10
1367	Planning priority conservation areas under climate change for six plant species with extremely small populations in China. Nature Conservation, 0, 25, 89-106.	0.0	13
1368	Aliens in Transylvania: risk maps of invasive alien plant species in Central Romania. NeoBiota, 0, 24, 55-65.	1.0	15
1369	Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota, 0, 42, 19-43.	1.0	13
1370	A classification system for predicting invasiveness using climatic niche traits and global distribution models: application to alien plant species in Chile. NeoBiota, 0, 63, 127-146.	1.0	2
1371	Rattlesnake (Crotalus spp.) distribution and diversity in Zacatecas, Mexico. ZooKeys, 2020, 1005, 103-132.	0.5	2
1372	Deriving Habitat Models for Northern Long-Eared Bats from Historical Detection Data: A Case Study Using the Fernow Experimental Forest. Journal of Fish and Wildlife Management, 2016, 7, 86-98.	0.4	13
1373	Predicting the Potential Distribution of the Sierra Nevada Red Fox in the Oregon Cascades. Journal of Fish and Wildlife Management, 2018, 9, 351-366.	0.4	4
1374	How do Size and Resource Availability Control Aboveground Biomass Allocation of Tree Seedlings?. Journal of Forest Research: Open Access, 2014, 03, .	0.0	3
1375	Risk of Natural Spread of Hymenoscyphus fraxineus with Environmental Niche Modelling and Ensemble Forecasting Technique. Journal of Forest Research: Open Access, 2014, 03, .	0.0	13
1376	Spatial Transferability of Vegetation Types in Distribution Models Based on Sample Surveys from an Alpine Region. Journal of Geographic Information System, 2018, 10, 111-141.	0.3	2
1380	Modelling plant invasion pathways in protected areas under climate change: implication for invasion management. Web Ecology, 2017, 17, 69-77.	0.4	8
1381	Climatic niche comparison between closely related trans-Palearctic species of the genus <i>Orthocephalus</i> (Insecta: Heteroptera: Miridae: Orthotylinae). PeerJ, 2020, 8, e10517.	0.9	7
1382	The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ, 2016, 4, e1713.	0.9	36
1383	Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves. PeerJ, 2016, 4, e2091.	0.9	15
1384	Patchiness of forest landscape can predict species distribution better than abundance: the case of a forest-dwelling passerine, the short-toed treecreeper, in central Italy. PeerJ, 2016, 4, e2398.	0.9	12
1385	Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?. PeerJ, 2017, 5, e3446.	0.9	50
1386	SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 2017, 5, e4095.	0.9	581

#	Article	IF	CITATIONS
1387	First Guatemalan record of natural hybridisation between Neotropical species of the Lady's Slipper orchid (Orchidaceae, Cypripedioideae). PeerJ, 2017, 5, e4162.	0.9	13
1388	Present and future ecological niche modeling of garter snake species from the Trans-Mexican Volcanic Belt. PeerJ, 2018, 6, e4618.	0.9	29
1389	Is the future already here? The impact of climate change on the distribution of the eastern coral snake (<i>Micrurus fulvius</i>). PeerJ, 2018, 6, e4647.	0.9	17
1390	The effect of climate change on the distribution of a tropical zoanthid (<i>Palythoa caribaeorum</i>) and its ecological implications. PeerJ, 2018, 6, e4777.	0.9	15
1391	Change of niche in guanaco (<i>Lama guanicoe</i>): the effects of climate change on habitat suitability and lineage conservatism in Chile. Peerl, 2018, 6, e4907.	0.9	6
1392	Niche modeling for the genus <i>Pogona</i> (Squamata: Agamidae) in Australia: predicting past (late) Tj ETQq1 J	0,784314 9.9	4 ggBT /Ov <mark>e</mark> r
1393	Potential invasive plant expansion in global ecoregions under climate change. PeerJ, 2019, 7, e6479.	0.9	15
1394	One-class land-cover classification using MaxEnt: the effect of modelling parameterization on classification accuracy. PeerJ, 2019, 7, e7016.	0.9	24
1395	Climatic niche comparison across a cryptic species complex. PeerJ, 2019, 7, e7042.	0.9	10
1396	Niches and climate-change refugia in hundreds of species from one of the most arid places on Earth. PeerJ, 2019, 7, e7409.	0.9	3
1397	Exploring snake occurrence records: Spatial biases and marginal gains from accessible social media. PeerJ, 2019, 7, e8059.	0.9	11
1398	Predicting hedgehog mortality risks on British roads using habitat suitability modelling. PeerJ, 2020, 7, e8154.	0.9	32
1399	Potential distribution of crop wild relatives under climate change in Sri Lanka: implications for conservation of agricultural biodiversity. Current Research in Environmental Sustainability, 2021, 3, 100092.	1.7	12
1400	Including Host Availability and Climate Change Impacts on the Global Risk Area of Carpomya pardalina (Diptera: Tephritidae). Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
1401	Bioacoustics for in situ validation of species distribution modelling: An example with bats in Brazil. PLoS ONE, 2021, 16, e0248797.	1.1	4
1402	The potential habitat of desert locusts is contracting: predictions under climate change scenarios. PeerJ, 2021, 9, e12311.	0.9	14
1403	Modelling the biogeographic boundary shift of <i>Calanus finmarchicus</i> reveals drivers of Arctic Atlantification by subarctic zooplankton. Global Change Biology, 2022, 28, 429-440.	4.2	18
1404	Updated distribution maps of predominant Culex mosquitoes across the Americas. Parasites and Vectors, 2021, 14, 547.	1.0	40

#	Article	IF	CITATIONS
1405	Modeling and Prediction of Habitat Suitability for Ferula gummosa Medicinal Plant in a Mountainous Area. Natural Resources Research, 2021, 30, 4861-4884.	2.2	9
1406	Growing Spatial Overlap Between Dam-Related Flooding, Cropland and Domestic Water Points: A Water–Energy–Food Nexus Management Challenge in Malawi and Ghana. Frontiers in Water, 2021, 3, .	1.0	3
1407	Present and Future Climate-Related Distribution of Narrow- versus Wide-Ranged Ostrya Species in China. Forests, 2021, 12, 1366.	0.9	1
1408	Reduced hostâ€plant specialization is associated with the rapid range expansion of a Mediterranean butterfly. Journal of Biogeography, 2021, 48, 3016-3031.	1.4	10
1409	Stable climate corridors promote gene flow in the Cape sand snake species complex (Psammophiidae). Zoologica Scripta, 0, , .	0.7	3
1410	Resource selection functions based on hierarchical generalized additive models provide new insights into individual animal variation and species distributions. Ecography, 2021, 44, 1756-1768.	2.1	14
1411	Ensemble ecological niche modeling of West Nile virus probability in Florida. PLoS ONE, 2021, 16, e0256868.	1.1	17
1412	Predicting aquatic invasions in a megadiverse region: Maximumâ€entropyâ€based modelling of six alien fish species in Malaysia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 157-170.	0.9	5
1413	Peruvian Amazon disappearing: Transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modelling using cloud computing and MaxEnt approach. Journal for Nature Conservation, 2021, 64, 126081.	0.8	8
1414	Short-term forest resilience after drought-induced die-off in Southwestern European forests. Science of the Total Environment, 2022, 806, 150940.	3.9	10
1415	Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios. Scientific Reports, 2021, 11, 19740.	1.6	6
1416	How do African elephants utilize the landscape during wet season? A habitat connectivity analysis for Sioma Ngwezi landscape in Zambia. Ecology and Evolution, 2021, 11, 14916-14931.	0.8	7
1417	Niche evolution and historical biogeography of lady slipper orchids in North America and Eurasia. Journal of Biogeography, 2021, 48, 2727-2741.	1.4	9
1418	Efficient Drone-Based Rare Plant Monitoring Using a Species Distribution Model and Al-Based Object Detection. Drones, 2021, 5, 110.	2.7	10
1419	Identifying resilient restoration targets: Mapping and forecasting habitat suitability for Castanea dentata in Eastern USA under different climate-change scenarios. Climate Change Ecology, 2021, 2, 100037.	0.9	6
1420	Predicting the Habitat Suitability of Melaleuca cajuputi Based on the MaxEnt Species Distribution Model. Forests, 2021, 12, 1449.	0.9	22
1421	The isolated <i>Erebia pandrose</i> Apennine population is genetically unique and endangered by climate change. Insect Conservation and Diversity, 2022, 15, 136-148.	1.4	18
1422	Do fishes enjoy the view? A MaxEnt assessment of fish habitat suitability within scenic rivers. Biological Conservation, 2021, 263, 109357.	1.9	7

#	Article	IF	CITATIONS
1423	Identifying best conservation areas for an endangered and endemic raptor in Cuba through abundance spatial modeling: A niche-centroid distances approach. Global Ecology and Conservation, 2021, 31, e01877.	1.0	0
1424	Reversing a downward trend in threatened peripheral amphibian (Triturus cristatus) populations through interventions combining species, habitat and genetic information. Journal for Nature Conservation, 2021, 64, 126077.	0.8	5
1426	Regional Vulnerability Assessment of Invasive Alien Plants in Seoul and Gyeonggi Province. Journal of the Korea Society of Environmental Restoration Technology, 2015, 18, 1-13.	0.1	2
1431	ÂREA DE VIDA, DISTRIBUCIÓN POTENCIAL Y ESTADO DE CONSERVACIÓN DE Espostoa frutescens Madsen, 1989 (CACTACEAE). EcologÃa Aplicada, 2017, 16, 1.	0.2	2
1432	EXPERIENCE OF USING MAXIMAL ENTROPY METHOD (MAXENT) FOR ZONING OF THE TERRITORY BY HERS RISK USING NIZHNY NOVGOROD REGION AS AN EXAMPLE. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2017, 94, 39-45.	0.3	1
1433	Seven years of NeoBiota – the times, were they a changin'?. NeoBiota, 0, 36, 57-69.	1.0	0
1434	Ecological Niche Modeling of Zebra Species within Laikipia County, Kenya. Journal of Geoscience and Environment Protection, 2018, 06, 264-276.	0.2	2
1437	Numbers and distribution of grassland waders in Polissian part of Sluch and Goryn valleys: analysis by modeling in Maxent. Proceedings of the State Natural History Museum, 2018, , 111-123.	0.2	1
1438	Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas, 2018, 19, 1960-1977.	0.2	1
1440	Education for Community Cohesion. Encyclopedia of the UN Sustainable Development Goals, 2019, , 1-11.	0.0	0
1441	Predicting the Invasion Risk of Miconia calvescens in the Marquesas Islands (South Pacific): A Modeling Approach. Pacific Science, 2019, 73, 17.	0.2	1
1445	Distribución potencial bajo escenarios de cambio climático de corales del género Pocillopora (Anthozoa: Scleractinia) en el PacÃfico oriental tropical. Revista Mexicana De Biodiversidad, 2019, 90, .	0.4	3
1446	Climate change and forest plagues: assessing current and future impacts of diprionid sawflies on the pine forests of north-western Mexico. PeerJ, 2019, 7, e7220.	0.9	7
1450	MODELING SPECIES DISTRIBUTION OF <i>SHOREA GUISO</i> (BLANCO) BLUME AND <i>PARASHOREA MALAANONAN</i> (BLANCO) MERR IN MOUNT MAKILING FOREST RESERVE USING MAXENT. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XIII-4/W19, 441-448	0.2	0
1451	Modelling the Bioclimatic Niche and Distribution of the Steppe Mouse, Mus Spicilegus (Rodentia,) Tj ETQq0 0 0 rg	gBT /Overl 0.7	lock 10 Tf 50
1454	Geographic Information Systems forÂForest Species Distribution andÂHabitat Suitability. Communications in Computer and Information Science, 2020, , 125-135.	0.4	1
1458	Distribution of Malpighia mexicana in Mexico and its implications for Barranca del RÃo Santiago. Journal of Forestry Research, 2021, 32, 1095-1103.	1.7	2
1460	Distribución potencial de puya raimondii harms en futuros escenarios del cambio climático. Journal of High Andean Research, 2020, 22, 170-181.	0.1	2

#	Article	IF	CITATIONS
1463	Distribution modelling of the Pudu deer (Pudu puda) in southern Chile. Nature Conservation, 0, 41, 47-69.	0.0	2
1464	Estimating circumpolar distributions of lanternfish using 2D and 3D ecological niche models. Marine Ecology - Progress Series, 2020, 647, 179-193.	0.9	3
1468	Early warning systems in biosecurity; translating risk into action in predictive systems for invasive alien species. Emerging Topics in Life Sciences, 2020, 4, 453-462.	1.1	6
1469	Scale and Landscape Features Matter for Understanding Waterbird Habitat Selection. Remote Sensing, 2021, 13, 4397.	1.8	7
1470	Species distribution modeling as an approach to studying the processes of landscape domestication in central southern Mexico. Landscape Ecology, 2022, 37, 461-476.	1.9	2
1471	A combined <scp>MaxEnt</scp> and <scp>GIS</scp> â€based methodology to estimate cactus pear biomass distribution: application to an area of southern Italy. Biofuels, Bioproducts and Biorefining, 2022, 16, 54-67.	1.9	10
1472	Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions. Climate, 2021, 9, 159.	1.2	2
1473	Predictive Habitat Model Reveals Specificity in a Broadly Distributed Forest Raptor, The Harpy Eagle. Journal of Raptor Research, 2020, 54, .	0.2	5
1474	Predicting suitable coastal habitat for sei whales, southern right whales and dolphins around the Falkland Islands. PLoS ONE, 2020, 15, e0244068.	1.1	8
1475	Roughing it: terrain is crucial in identifying novel translocation sites for the vulnerable brush-tailed rock-wallaby (Petrogale pencillata). Royal Society Open Science, 2020, 7, 201603.	1.1	1
1476	An Environmental Niche Model to Estimate the Potential Presence of Venezuelan Equine Encephalitis Virus in Costa Rica. International Journal of Environmental Research and Public Health, 2021, 18, 227.	1.2	5
1477	Negros Bleeding-heart Gallicolumba keayi prefers dense understorey vegetation and dense canopy cover, and species distribution modelling shows little remaining suitable habitat. Bird Conservation International, 0, , 1-16.	0.7	0
1478	Mor ‡i§ekli Ormang¼l¼nün (Rhododendron ponticum L.) G¼nümüz ve Gelecekteki İklim KoÅŸu Yayılış Alanlarının Modellenmesi. Artvin ‡oruh Üniversitesi Orman Fakültesi Dergisi, 0, , .	llarına C 0.5	öre 0
1479	Education for Community Cohesion. Encyclopedia of the UN Sustainable Development Goals, 2020, , 227-237.	0.0	0
1481	Current and future suitable habitat areas for Nasuella olivacea (Gray, 1865) in Colombia and Ecuador and analysis of its distribution across different land uses. Biodiversity Data Journal, 2020, 8, e49164.	0.4	5
1483	Change in the Distribution of National Bird (Himalayan Monal) Habitat in Gandaki River Basin, Central Himalayas. Journal of Resources and Ecology, 2020, 11, 223.	0.2	3
1485	The role of littoral cliffs in the niche delimitation on a microendemic plant facing climate change. PLoS ONE, 2021, 16, e0258976.	1.1	5
1486	Risks of giant hogweed (Heracleum mantegazzianum) range increase in North America. Biological Invasions, 2022, 24, 299.	1.2	4

#	Article	IF	CITATIONS
1487	Modelling the occurrence and spatial distribution of screwworm species in Northern Pakistan. Environmental Monitoring and Assessment, 2021, 193, 772.	1.3	1
1488	Effects of climate change on the ecological niche of common hornbeam (Carpinus betulus L.). Ecological Informatics, 2021, 66, 101478.	2.3	10
1490	Potential areas of spread of Trioza erytreae over mainland Portugal and Spain. Journal of Pest Science, 2022, 95, 67-78.	1.9	8
1494	Opuntia ficus-indica (L.) Mill. e as Mudanças Climáticas: Uma Análise a Luz da Modelagem de Distribuição de Espécies no Bioma Caatinga. Revista Brasileira De Meteorologia, 2020, 35, 375-385.	0.2	6
1495	Effects of projected climate change on the distribution of <i>Mantis religiosa</i> suggest expansion followed by contraction. Web Ecology, 2020, 20, 107-115.	0.4	2
1496	Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): a species conservation proposal in Mexico under climatic change scenarios. IForest, 2020, 13, 426-434.	0.5	12
1498	Predicting the Current and Future Distribution of the Invasive Weed Ageratina adenophora in the Chitwan–Annapurna Landscape, Nepal. Mountain Research and Development, 2020, 40, .	0.4	5
1500	Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea. Ecological Modelling, 2022, 463, 109804.	1.2	2
1501	Predicting future distribution patterns of Jatropha gossypiifolia L. in South Africa in response to climate change. South African Journal of Botany, 2022, 146, 417-425.	1.2	6
1502	Modelling Multi-Species Connectivity at the Kafue-Zambezi Interface: Implications for Transboundary Carnivore Conservation. Sustainability, 2021, 13, 12886.	1.6	2
1503	Quality zoning of Epimedium brevicornu Maxim. based on the correlations among environmental factors and influence of path analysis. Bangladesh Journal of Botany, 0, , 763-773.	0.2	1
1504	Wolf–Hunting Dog Interactions in a Biodiversity Hot Spot Area in Northern Greece: Preliminary Assessment and Implications for Conservation in the Dadia-Lefkimi-Soufli Forest National Park and Adjacent Areas. Animals, 2021, 11, 3235.	1.0	2
1505	Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq. Biologia (Poland), 2022, 77, 369-383.	0.8	7
1506	Spatial patterns of phylogenetic diversity and endemism in the Western Ghats, India: A case study using ancient predatory arthropods. Ecology and Evolution, 2021, 11, 16499-16513.	0.8	11
1507	Targetâ€group backgrounds prove effective at correcting sampling bias in Maxent models. Diversity and Distributions, 2022, 28, 128-141.	1.9	41
1508	Temperature Characteristics of Two Fomitiporia Fungi Determine Their Geographical Distributions in Japan. Forests, 2021, 12, 1580.	0.9	1
1509	Range Shifts in the Worldwide Expansion of Oenothera drummondii subsp. drummondii, a Plant Species of Coastal Dunes. Diversity, 2021, 13, 603.	0.7	0
1510	Distribution, Habitat Associations and Conservation Status of the Sri Lanka Frogmouth Batrachostomus moniliger. Ardeola, 2021, 69, .	0.4	1

#	Article	IF	CITATIONS
1511	A prediction of suitable habitat mapping of Pinus roxburghii sarg. using maxent modeling. Environment Conservation Journal, 0, , 149-153.	0.1	0
1513	Mapping of Winter Wheat Using Sentinel-2 NDVI Data. A Case of Mashonaland Central Province in Zimbabwe. Frontiers in Climate, 2021, 3, .	1.3	4
1515	Reliability in Distribution Modeling—A Synthesis and Step-by-Step Guidelines for Improved Practice. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
1516	Sex-specific connectivity modelling for brown bear conservation in the Carpathian Mountains. Landscape Ecology, 2022, 37, 1311-1329.	1.9	7
1517	Genome-Scale Data Reveal Deep Lineage Divergence and a Complex Demographic History in the Texas Horned Lizard (<i>Phrynosoma cornutum</i>) throughout the Southwestern and Central United States. Genome Biology and Evolution, 2022, 14, .	1.1	15
1518	Predicting Possible Distribution of Tea (Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China. Agriculture (Switzerland), 2021, 11, 1122.	1.4	17
1519	Coat Polymorphism in Eurasian Lynx: Adaptation to Environment or Phylogeographic Legacy?. Journal of Mammalian Evolution, 2022, 29, 51-62.	1.0	6
1520	Global potential distribution of three underappreciated arboviruses vectors (<i>Aedes japonicus</i> ,) Tj E Transboundary and Emerging Diseases, 2022, 69, .	TQq1 1 0.784314 1.3	rgBT /Over 8
1521	Reconsideration of the native range of the Chinese Swamp Cypress (Glyptostrobus pensilis) based on new insights from historic, remnant and planted populations. Global Ecology and Conservation, 2021, 32, e01927.	1.0	1
1522	Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation. Environmental Science and Pollution Research, 2022, 29, 25881-25891.	2.7	7
1523	Northernmost occurrence and geographic distribution of Scyllarides astori Holthuis, 1960 (Scyllaridae) in the Eastern Tropical Pacific. Nauplius, 0, 29, .	0.3	0
1524	Predicting Future Shifts in the Distribution of Tropicalization Indicator Fish that Affect Coastal Ecosystem Services of Japan. Frontiers in Built Environment, 2022, 7, .	1.2	3
1525	Climate Change Increases the Expansion Risk of Helicoverpa zea in China According to Potential Geographical Distribution Estimation. Insects, 2022, 13, 79.	1.0	13
1526	Distribution mapping of Bauhinia vahlii Wight & Arn. in India using ecological niche modelling. Tropical Ecology, 2022, 63, 286-299.	0.6	4
1527	Comparing contemporaneous hunter-gatherer and early agrarian settlement systems with spatial point process models: Case study of the Estonian Stone Age. Journal of Archaeological Science: Reports, 2022, 41, 103330.	0.2	1
1528	Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecological Informatics, 2022, 68, 101550.	2.3	12
1529	Predicting potential impacts of climate change on the geographical distribution of mountainous selaginellas in Java, Indonesia. Biodiversitas, 2020, 21, .	0.2	3
1530	Idoneidad de hábitat para Swietenia macrophylla en escenarios de cambio climático en México. Mader Bosques, 2020, 26, e2631954.	a 0.1	1

0			-	
(CI	τάτι	ON	REDO	5L

#		Article	IF	CITATIONS
15	531	Climatic Suitability for Haplodrassus rufipes in a Mediterranean Area: Linking a Predaceous Species to the Olive Grove. , 2020, 4, .		0
15	533	Urbanization, habitat extension and spatial pattern, threaten a Costa Rican endemic bird. Revista De Biologia Tropical, 2021, 69, .	0.1	4
15	534	A Maximum Entropy Approach for Mapping Falcata Plantations in Sentinel-2 Imagery. , 2020, , .		0
15	535	The Population Genomics of Anopheles gambiae Species Complex: Progress and Prospects. Population Genomics, 2021, , 1.	0.2	0
15	536	Monitoring of diversity, abundance, activity period and habitat use of wildlife species around the wildlife corridor that connects the natural world heritage site of Thailand. Biodiversitas, 2021, 22, .	0.2	1
15	537	Comparison of Catasetum bicolor and C. ochraceum (Catasetinae: Orchidaceae) habitat preferences: implications for their conservation. Acta Agronomica, 2021, 70, .	0.0	0
15	538	Identifying the seasonal characteristics of likely habitats for the Yangtze finless porpoise in Poyang Lake. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	0.9	3
15	539	Reduced range size and Important Bird and Biodiversity Area coverage for the Harpy Eagle (<i>Harpia) Tj ETQq1 1</i>	0,784314 1.0	rgBT /Overl
15	540	Accounting for geographic variation in speciesâ€habitat associations during habitat suitability modeling. Ecological Applications, 2022, 32, e2504.	1.8	3
15	541	Spatial patterns of West Nile virus distribution in the Volgograd region of Russia, a territory with long-existing foci. PLoS Neglected Tropical Diseases, 2022, 16, e0010145.	1.3	9
15	542	Predicting the potential distribution of the fall armyworm Spodoptera frugiperda (J.E. Smith) under climate change in China. Global Ecology and Conservation, 2022, 33, e01994.	1.0	8
15	543	Effects of climate change in the seas of China: Predicted changes in the distribution of fish species and diversity. Ecological Indicators, 2022, 134, 108489.	2.6	28
15	544	Modeling Habitat Suitability for Stewartia ovata Across the Southeastern United States. Castanea, 2022, 86, .	0.2	1
15	545	Ecological niche modelling for predicting the habitat suitability of endangered tree species Taxus contorta Griff. in Himachal Pradesh (Western Himalayas, India). Tropical Ecology, 2022, 63, 300-313.	0.6	4
15	546	Fragmented habitats and Pleistocene climate shaped diversification of the hoary bamboo rat () Tj ETQqO O O rgBT 0, , .	/Overlock 2 1.6	10 Tf 50 18 0
15	547	Modeling potential habitats and predicting habitat connectivity for Leucanthemum vulgare Lam. in northwestern rangelands of Iran. Environmental Monitoring and Assessment, 2022, 194, 109.	1.3	3
15	548	In Pursuit of New Spaces for Threatened Mammals: Assessing Habitat Suitability for Kashmir Markhor (Capra falconeri cashmeriensis) in the Hindukush Range. Sustainability, 2022, 14, 1544.	1.6	9
15	549	Developing fineâ€grained nationwide predictions of valuable forests using biodiversity indicator bird species. Ecological Applications, 2022, 32, e2505.	1.8	15

#	Article	IF	CITATIONS
1550	Predicted distribution of plains spotted skunk in Arkansas and Missouri. Journal of Wildlife Management, 2022, 86, .	0.7	1
1551	Maxent Modeling for Identifying the Nature Reserve of Cistanche deserticola Ma under Effects of the Host (Haloxylon Bunge) Forest and Climate Changes in Xinjiang, China. Forests, 2022, 13, 189.	0.9	10
1552	Species Distribution Based-Modelling Under Climate Change: The Case of Two Native Wild Olea europaea Subspecies in Morocco, O. e. subsp. europaea var. sylvestris and O. e. subsp. maroccana. Climate Change Management, 2022, , 21-43.	0.6	6
1553	Congruence between global crop wild relative hotspots and biodiversity hotspots. Biological Conservation, 2022, 265, 109432.	1.9	12
1554	Combined effects of climate and fireâ€driven vegetation change constrain the distributions of forest vertebrates during the 21st century. Diversity and Distributions, 2022, 28, 727-744.	1.9	1
1555	Predicting Dynamics of the Potential Breeding Habitat of Larus saundersi by MaxEnt Model under Changing Land-Use Conditions in Wetland Nature Reserve of Liaohe Estuary, China. Remote Sensing, 2022, 14, 552.	1.8	7
1556	Upper Palaeolithic site probability in Lower Austria – a geoarchaeological multi-factor approach. Journal of Maps, 2022, 18, 610-618.	1.0	3
1557	Prediction scenarios of past, present, and future environmental suitability for the Mediterranean species Arbutus unedo L Scientific Reports, 2022, 12, 84.	1.6	10
1558	Predicting habitat suitability for wild deer in relation to threatened ecological communities in south-eastern New South Wales, Australia. Pacific Conservation Biology, 2023, 29, 74-85.	0.5	1
1559	Marula (<i>Sclerocarya birrea</i> subsp. <i>caffra</i> , Anacardiaceae) thrives under climate change in subâ€aharan Africa. African Journal of Ecology, 2022, 60, 736-749.	0.4	3
1560	Sampling and modelling rare species: Conceptual guidelines for the neglected majority. Global Change Biology, 2022, 28, 3754-3777.	4.2	27
1561	Integrating species metrics into biodiversity offsetting calculations to improve longâ€ŧerm persistence. Journal of Applied Ecology, 2022, 59, 1060-1071.	1.9	5
1562	Using species distribution models and decision tools to direct surveys and identify potential translocation sites for a critically endangered species. Diversity and Distributions, 2022, 28, 700-711.	1.9	18
1563	The Potential Global Climate Suitability of Kiwifruit Bacterial Canker Disease (Pseudomonas syringae) Tj ETQq1 1 Climate, 2022, 10, 14.	0.784314 1.2	rgBT /Overld 7
1564	Predicting the potential habitat distribution of parthenium weed (Parthenium hysterophorus) globally and in Oman under projected climate change. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 469-478.	1.0	6
1565	Habitat suitability modeling for the endangered Bengal slow loris (Nycticebus bengalensis) in the Indo-Chinese subregion of India: a case study from southern Assam (India). Primates, 2022, 63, 173.	0.7	2
1566	Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	5
1567	Groundwater Potential Mapping Using Maximum Entropy. Advances in Geographical and Environmental Sciences, 2022, , 239-256.	0.4	4

#	Article	IF	CITATIONS
1568	Variable vulnerability to climate change in New Zealand lizards. Journal of Biogeography, 2022, 49, 431-442.	1.4	5
1569	Finding rare species and estimating the probability that all occupied sites have been found. Ecological Applications, 2022, 32, e2502.	1.8	0
1570	Reduced Tropical Cyclone Genesis in the Future as Predicted by a Machine Learning Model. Earth's Future, 2022, 10, .	2.4	4
1571	How long do we think humans have been planting forests? A case study with Cedrus libani A. Rich. New Forests, 2023, 54, 49-65.	0.7	3
1572	Predicting habitat suitability of Caiman yacare and assessing the role of protected areas under current and future climate and deforestation models. Climate Risk Management, 2022, 35, 100407.	1.6	1
1573	Predicting potential suitable habitat for Ensete glaucum (Roxb.) Cheesman using MaxEnt modelling. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 287, 152007.	0.6	3
1574	Distinct ecological habits and habitat responses to future climate change in three east and southeast Asian Sapindus species. Forest Ecology and Management, 2022, 507, 119982.	1.4	11
1575	Changes in climate suitability for oil-tea (C. oleifera Abel) production in China under historical and future climate conditions. Agricultural and Forest Meteorology, 2022, 316, 108843.	1.9	7
1576	Modeling the potential distribution of cacti under climate change scenarios in the largest tropical dry forest region in South America. Journal of Arid Environments, 2022, 200, 104725.	1.2	2
1578	EU-Trees4F, a dataset on the future distribution of European tree species. Scientific Data, 2022, 9, 37.	2.4	23
1579	Identifying Potential Planting Sites for Three Non-Native Plants to Be Used for Soil Rehabilitation in the Tula Watershed. Forests, 2022, 13, 270.	0.9	5
1580	Evaluation of Marginal Land Potential and Analysis of Environmental Variables of Jerusalem Artichoke in Shaanxi Province, China. Frontiers in Environmental Science, 2022, 10, .	1.5	0
1581	A methodological framework integrating habitat suitability and landscape connectivity to identify optimal regions for insecticide application: A case study in Tongzhou, China. Journal of King Saud University - Science, 2022, 34, 101905.	1.6	1
1582	Climate change threatens native potential agroforestry plant species in Brazil. Scientific Reports, 2022, 12, 2267.	1.6	18
1583	Prediction of Suitable Distribution of a Critically Endangered Plant Glyptostrobus pensilis. Forests, 2022, 13, 257.	0.9	11
1584	Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling. Journal of Forestry Research, 2022, 33, 1739-1750.	1.7	12
1585	Humans rather than Eurasian lynx (<i>Lynx lynx</i>) shape ungulate browsing patterns in a temperate forest. Ecosphere, 2022, 13, .	1.0	16
1586	Climate-inferred distribution estimates of mid-to-late Pliocene hominins. Global and Planetary Change, 2022, 210, 103756.	1.6	4

#	Article	IF	CITATIONS
1587	Impacts of climatic changes on the worldwide potential geographical dispersal range of the leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae). Global Ecology and Conservation, 2022, 34, e02050.	1.0	6
1589	Modeled Distribution Shifts of North American Birds Over Four Decades Based on Suitable Climate Do Not Predict Observed Shifts. SSRN Electronic Journal, 0, , .	0.4	0
1591	Biological Interaction as a Possible Ultimate Driver in the Local Extinction of Cedrus atlantica in the Iberian Peninsula. Diversity, 2022, 14, 136.	0.7	2
1592	The shadow model: how and why small choices in spatially explicit species distribution models affect predictions. PeerJ, 2022, 10, e12783.	0.9	10
1593	Spatial Distribution of Bat Species on Hispaniola Island, the Greater Antilles. Acta Chiropterologica, 2022, 23, .	0.2	0
1594	Modeling the risk of illegal forest activity and its distribution in the southeastern region of the Sierra Madre Mountain Range, Philippines. IForest, 2022, 15, 63-70.	0.5	2
1595	Conservation biogeography of highâ€altitude longhorn beetles under climate change. Insect Conservation and Diversity, 2022, 15, 429-444.	1.4	5
1596	Dolphin Distribution and Habitat Suitability in North Western Australia: Applications and Implications of a Broad-Scale, Non-targeted Dataset. Frontiers in Marine Science, 2022, 8, .	1.2	8
1597	Delineating Functional Corridors Linking Leopard Habitat in the Eastern and Western Cape, South Africa. Conservation, 2022, 2, 99-122.	0.8	5
1598	Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts. Freshwater Biology, 2022, 67, 842-856.	1.2	9
1599	Species distribution models and a 60â€yearâ€old transplant experiment reveal inhibited forest plant range shifts under climate change. Journal of Biogeography, 2022, 49, 537-550.	1.4	10
1600	Prediction of Potentially Suitable Distribution Areas for Prunus tomentosa in China Based on an Optimized MaxEnt Model. Forests, 2022, 13, 381.	0.9	7
1601	Distribution modelling of Tor putitora (Hamilton, 1822), an endangered cyprinid in the Himalayan river system using MaxEnt. Acta Ecologica Sinica, 2023, 43, 343-351.	0.9	1
1602	Using species distribution modelling to identify â€~coldspots' for conservation of freshwater fishes under a changing climate. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 576-590.	0.9	6
1603	Largeâ€scale and fineâ€grained mapping of heathland habitats using openâ€source remote sensing data. Remote Sensing in Ecology and Conservation, 0, , .	2.2	1
1604	Migration patterns of <i>Gentiana crassicaulis</i> , an alpine gentian endemic to the Himalaya–Hengduan Mountains. Ecology and Evolution, 2022, 12, e8703.	0.8	4
1605	Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios. PLoS ONE, 2022, 17, e0262540.	1.1	10
1606	Native range estimates for red-listed vascular plants. Scientific Data, 2022, 9, 117.	2.4	8

ARTICLE IF CITATIONS Climate Change Influences on the Potential Distribution of the Sand Fly Phlebotomus sergenti, Vector 1607 0.4 5 of Leishmania tropica in Morocco. Acta Parasitologica, 2022, 67, 858-866. Predicting the Impact of Climate Change on Vulnerable Species in Gandaki River Basin, Central 0.2 Himalayas. Journal of Resources and Ecology, 2022, 13, . Bottlenose Dolphins and Seabirds Distribution Analysis for the Identification of a Marine Biodiversity 1609 1.2 1 Hotspot in Agrigento Waters. Journal of Marine Science and Engineering, 2022, 10, 345. Suitability and Sensitivity of the Potential Distribution of CyclobalanopsisÂglauca Forests under 1.0 Climate Change Conditions in Guizhou Province, Southwestern China. Atmosphere, 2022, 13, 456. Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under 1611 13 1.6 Climate Change Scenarios Using the MaxEnt Model. Plants, 2022, 11, 731. Stable isotopes reveal seasonal dietary responses to agroforestry in a venomous mammal, the Hispaniolan solenodon (<i>Solenodon paradoxus</i>). Ecology and Evolution, 2022, 12, e8761. 0.8 Modelado Espacial Actual y Futuro de la Idoneidad de HÃibitat de Triatoma nitida Usinger1 en 1613 0.1 1 Latinoamérica. Southwestern Entomologist, 2022, 47, . Assessing the conservation of eastern Ecuadorian cloud forests in climate change scenarios. 1.0 Perspectives in Ecology and Conservation, 2022, 20, 159-167. Ecological niche modelling and climate change in two species groups of huntsman spider genus 1616 1.6 4 Eusparassus in the Western Palearctic. Scientific Reports, 2022, 12, 4138. Climate change effects on the global distribution and range shifts of citrus longhorned beetle 0.8 <i>Anoplophora chinensis</i>. Journal of Applied Entomology, 2022, 146, 473-485. What happens to species at the rearâ€edge of their distribution in arid regions? The case of <i>Juniperus 1618 1.8 1 Nationalâ€scale predictions of plant assemblages via community distribution models: Leveraging 1619 published data to guide future surveys. Journal of Applied Ecology, 2022, 59, 1559-1571. Climateâ€induced range shifts of invasive species (<scp><i>Diaphorina citri</i></scp> Kuwayama). Pest 1620 1.7 32 Management Science, 2022, 78, 2534-2549. In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme 1.0 Temperatures Than to Rural Development. Animals, 2022, 12, 641. DistribuciÃ³n potencial de Ã_irboles de ribera en la subcuenca Bajo RÃo Grijalva. Botanical Sciences, 2021, 1624 0.31 1, . Coupling genetic structure analysis and ecological-niche modeling in Kersting's groundnut in West Africa. Scientific Reports, 2022, 12, 5590. Distribution Drivers of the Alien Butterfly Geranium Bronze (Cacyreus marshalli) in an Alpine 1627 1.30 Protected Area and Indications for an Effective Management. Biology, 2022, 11, 563. Predicting the potential distribution of Culex (Melanoconion) cedecei in Florida and the Caribbean using ecological niche models. Journal of Vector Ecology, 2022, 47, .

#	Article	IF	CITATIONS
1629	Spatial distribution models of seroreactive sheep to <i>Leptospira</i> spp. in Veracruz, Mexico. Transboundary and Emerging Diseases, 2022, 69, .	1.3	1
1630	Fireâ€driven vegetation type conversion in Southern California. Ecological Applications, 2022, 32, e2626.	1.8	10
1631	Lek habitat suitability for the sharp-tailed grouse (Tympanuchus phasianellus jamesi) on the Northern Great Plains. PLoS ONE, 2022, 17, e0265316.	1.1	0
1632	Prioritizing conservation areas and vulnerability analyses of the genus Pinus L. (Pinaceae) in Mexico. Journal for Nature Conservation, 2022, 67, 126171.	0.8	2
1633	Climatic suitability and compatibility of the invasive Iris pseudacorus L. (Iridaceae) in the Southern Hemisphere: Considerations for biocontrol. Biological Control, 2022, 169, 104886.	1.4	8
1634	Future simulated landscape predicts habitat loss for the Golden Langur (Trachypithecus geei): A range level analysis for an endangered primate. Science of the Total Environment, 2022, 826, 154081.	3.9	2
1635	Modeling potential invasion of stored-product pest Cryptamorpha desjardinsii (Guérin-Méneville,) Tj ETQq0 (Entomology, 2022, 25, 101891.	0 rgBT /C 0.4	Verlock 10 T 1
1636	Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Science of the Total Environment, 2022, 825, 154053.	3.9	26
1637	Living high and at risk: predicting Andean bear occurrence and conflicts with humans in southeastern Peru. Global Ecology and Conservation, 2022, 36, e02112.	1.0	5
1638	Modelling Distribution of Asia Minor Spiny Mouse (Acomys Cilicicus) Using Maximum Entropy. International Journal of Environment and Geoinformatics, 2022, 9, 118-125.	0.5	2
1639	Estimates of breeding season location for 4 mesic prairie bird species wintering along the Gulf Coast. Wilson Journal of Ornithology, 2021, 133, .	0.1	1
1640	A comprehensive phylogeography of the widespread pond snail genus <i>Radix</i> revealed restricted colonization due to niche conservatism. Ecology and Evolution, 2021, 11, 18446-18459.	0.8	6
1641	A conservation landscape for the dry Chaco based on habitat suitability. Ethnobiology and Conservation, 0, , .	0.0	0
1642	Dynamic Species Distribution Models in the Marine Realm: Predicting Year-Round Habitat Suitability of Baleen Whales in the Southern Ocean. Frontiers in Marine Science, 2021, 8, .	1.2	9
1643	Mapping the Potential Distribution of Ticks in the Western Kanto Region, Japan: Predictions Based on Land-Use, Climate, and Wildlife. Insects, 2021, 12, 1095.	1.0	3
1644	Urban Environments Aid Invasion of Brown Widows (Theridiidae: Latrodectus geometricus) in North America, Constraining Regions of Overlap and Mitigating Potential Impact on Native Widows. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
1645	Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods. GIScience and Remote Sensing, 2022, 59, 71-95.	2.4	23
1646	Habitat preferences of wild orchids in Bantimurung Bulusaraung National Park to model their suitable habitat in South Sulawesi, Indonesia. Biodiversitas, 2021, 23, .	0.2	0

#	Article	IF	CITATIONS
1647	Assessment of drivers of spatial genetic variation of a groundâ€dwelling bird species and its implications for conservation. Ecology and Evolution, 2022, 12, e8460.	0.8	3
1648	Estimating the Potential Impacts of Climate Change on the Spatial Distribution of Garuga forrestii, an Endemic Species in China. Forests, 2021, 12, 1708.	0.9	4
1649	The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests. Global Ecology and Biogeography, 2022, 31, 425-439.	2.7	16
1650	Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams. Remote Sensing, 2022, 14, 63.	1.8	6
1651	Integrating multiâ€method surveys and recovery trajectories into occupancy models. Ecosphere, 2021, 12, .	1.0	8
1652	Identifying regional environmental factors driving differences in climatic niche overlap in <i>Peromyscus</i> mice. Journal of Mammalogy, 2022, 103, 45-56.	0.6	1
1653	Temperature and soils predict the distribution of plant species along the Himalayan elevational gradient. Journal of Tropical Ecology, 2022, 38, 58-70.	0.5	10
1654	Predation and Climate Limit Establishment Success of the Kyushu Strain of the Biological Control Agent <i>Aphalara itadori</i> (Hemiptera: Aphalaridae) in the Northeastern United States. Environmental Entomology, 2022, 51, 545-556.	0.7	4
1655	The legacy of over a century of introductions: Spread debt of rainbow trout (<scp><i>Oncorhynchus) Tj ETQq0 C 1413-1423.</i></scp>	0 rgBT /O 0.7	verlock 10 Tf 2
1656	Modeling Potential Impacts of Climate Change on the Distribution of Wooly Wolf (Canis lupus) Tj ETQq1 1 0.784	1314 rgBT 1.1	/Overlock 10
1657	Biodiversity and conservation of "solarâ€powered―sea slugs from the Western Atlantic under climate change scenarios. Marine Ecology, 2022, 43, .	0.4	2
1658	Range Size and Niche Breadth as Predictors of Climate-Induced Habitat Change in Epipactis (Orchidaceae). Frontiers in Ecology and Evolution, 2022, 10, .	1.1	8
1659	Ecological niche models reveal the potential zones of invasion of the cobia (Rachycentron canadum) in the Eastern Pacific Ocean. Hydrobiologia, 2022, 849, 2413-2433.	1.0	1
1660	Identifying climate refugia for highâ€elevation Alpine birds under current climate warming predictions. Global Change Biology, 2022, 28, 4276-4291.	4.2	24
1661	Engineering Application of Landslide Susceptibility Mapping in Linear Engineering Optimization. Frontiers in Earth Science, 2022, 10, .	0.8	1
1662	Elevated extinction risk of cacti under climate change. Nature Plants, 2022, 8, 366-372.	4.7	28
1663	Modelâ€based prediction of the potential geographical distribution of the invasive coconut mite, <scp><i>Aceria guerreronis</i></scp> Keifer (Acari: Eriophyidae) based on <scp>MaxEnt</scp> . Agricultural and Forest Entomology, 2022, 24, 390-404.	0.7	14
1664	<scp>Postâ€Pleistocene</scp> dispersal explains the Rapoport effect in North American salamanders. Journal of Biogeography, 0, , .	1.4	0

#	Article	IF	CITATIONS
1665	Spatial and temporal predictions of whooping crane (<i>Grus americana</i>) habitat along the US Gulf Coast. Conservation Science and Practice, 0, , .	0.9	0
1666	Lost to the Sea: Predicted Climate Change Threats to Saltwater Crocodile Nesting Habitat. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3
1667	The Colombian Caribbean Sea: a tropical habitat for the Vulnerable sperm whale <i>Physeter macrocephalus</i> ?. Oryx, 2022, 56, 814-824.	0.5	2
1668	Changing patterns of conflict between humans, carnivores and crop-raiding prey as large carnivores recolonize human-dominated landscapes. Biological Conservation, 2022, 269, 109553.	1.9	11
1699	Recreation and Black Grouse in the Giant Mountains - with love for nature to the extinction of the iconic species. , 2022, , .		0
1700	Citizen science reveals current distribution, predicted habitat suitability and resource requirements of the introduced African Carder Bee Pseudoanthidium (Immanthidium) repetitum in Australia. Biological Invasions, 2022, 24, 1827-1838.	1.2	3
1701	Identifying the potential geographic distribution for Castanopsis argentea and C. tungurrut (Fagaceae) in the Sumatra Conservation Area Network, Indonesia. Biodiversitas, 2022, 23, .	0.2	2
1702	Distribution Patterns of Invasive Buffelgrass (Cenchrus ciliaris) in Mexico Estimated with Climate Niche Models under the Current and Future Climate. Plants, 2022, 11, 1160.	1.6	5
1703	Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant's Range. Sustainability, 2022, 14, 4933.	1.6	4
1704	Sustainable human population density in Western Europe between 560.000 and 360.000Âyears ago. Scientific Reports, 2022, 12, 6907.	1.6	7
1705	Need for split: integrative taxonomy reveals unnoticed diversity in the subaquatic species of <i>Pseudohygrohypnum</i> (Pylaisiaceae, Bryophyta). PeerJ, 2022, 10, e13260.	0.9	6
1706	Identifying high-risk areas for introduction of new alien species: the case of the invasive round goby, a door-knocker for Norway. Hydrobiologia, 2022, 849, 2377-2394.	1.0	4
1707	Effects of future climate change on the forests of Madagascar. Ecosphere, 2022, 13, .	1.0	11
1708	A joint distribution framework to improve presenceâ€only species distribution models by exploiting opportunistic surveys. Journal of Biogeography, 2022, 49, 1176-1192.	1.4	3
1709	Calibration and Application of Branched GDGTs to Tibetan Lake Sediments: The Influence of Temperature on the Fall of the Guge Kingdom in Western Tibet, China. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	7
1710	Spatial assessment of potential areas at risk from blueberry gall midge distribution in South Korea. Journal of Applied Entomology, 0, , .	0.8	0
1711	An invasive population of Roseau Cane Scale in the Mississippi River Delta, USA originated from northeastern China. Biological Invasions, 2022, 24, 2735-2755.	1.2	5
1712	MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests, 2022, 13, 715.	0.9	61

#	Article	IF	CITATIONS
1713	Ecological characterization of a cutaneous leishmaniasis outbreak through remotely sensed land cover changes. Geospatial Health, 2022, 17, .	0.3	2
1714	Who will be where: Climate driven redistribution of fish habitat in southern Germany. , 2022, 1, e0000006.		3
1715	Range-wide habitat use of the Harpy Eagle indicates four major tropical forest gaps in the Key Biodiversity Area network. Condor, 2022, 124, .	0.7	2
1716	Feature tuning improves MAXENT predictions of the potential distribution of <i>Pedicularis longiflora</i> Rudolph and its variant. PeerJ, 2022, 10, e13337.	0.9	13
1717	Competition mediates understorey species range shifts under climate change. Journal of Ecology, 2022, 110, 1813-1825.	1.9	6
1718	Prediction of the global potential geographical distribution of Hylurgus ligniperda using a maximum entropy model. Forest Ecosystems, 2022, 9, 100042.	1.3	2
1719	Extinction risk assessment of the endemic terrestrial vertebrates in Mexico. Biological Conservation, 2022, 270, 109562.	1.9	3
1720	A maximum entropy and GIS approach to predict potential habitat for northern bobwhites in the Black Belt prairie physiographic region of Alabama. Ecological Informatics, 2022, 69, 101662.	2.3	2
1721	Distribution of Melaleuca rugulosa (Schlechtendal ex Link) Craven (Myrtaceae) in South Africa: Assessment of invasiveness and feasibility of eradication. South African Journal of Botany, 2022, 148, 228-237.	1.2	3
1722	The potential distribution of adult Antarctic krill in the Amundsen Sea. Journal of Oceanology and Limnology, 2022, 40, 1566-1577.	0.6	1
1723	Large mountains make small barriers: Species composition and spatial dynamics history of the <i>Odorrana schmackeri</i> complex in the karst area of Guizhou, China. Diversity and Distributions, 0, , .	1.9	4
1724	Habitat distribution change of commercial species in the Adriatic Sea during the COVID-19 pandemic. Ecological Informatics, 2022, 69, 101675.	2.3	7
1725	The utility of a maximum entropy species distribution model for Ixodes scapularis in predicting the public health risk of Lyme disease in Ontario, Canada. Ticks and Tick-borne Diseases, 2022, 13, 101969.	1.1	4
1726	Hawksbill presence and habitat suitability of a marine reserve in Honduras. Ocean and Coastal Management, 2022, 225, 106204.	2.0	1
1727	Dealing with non-equilibrium bias and survey effort in presence-only invasive Species Distribution Models (iSDM); predicting the range of muntjac deer in Britain and Ireland. Ecological Informatics, 2022, 69, 101683.	2.3	5
1728	Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 2022, 49, 1481-1493.	1.4	8
1729	The future impact of climate and land-use changes on Anatolian ground squirrels under different scenarios. Ecological Informatics, 2022, 70, 101693.	2.3	4
1730	Assessment of the Morphological Pattern of the Lebanon Cedar under Changing Climate: The Mediterranean Case. Land, 2022, 11, 802.	1.2	0

#	Article	IF	CITATIONS
1731	Two Sides of the Same Desert: Floristic Connectivity and Isolation Along the Hyperarid Coast and Precordillera in Peru and Chile. Frontiers in Ecology and Evolution, 0, 10, .	1.1	4
1732	Identification, Microhabitat, and Ecological Niche Prediction of Two Promising Native Parasitoids of Tuta absoluta in Kenya. Insects, 2022, 13, 496.	1.0	7
1733	Molecular Phylogeography and Intraspecific Divergences in Siberian Wildrye (Elymus sibiricus L.) Wild Populations in China, Inferred From Chloroplast DNA Sequence and cpSSR Markers. Frontiers in Plant Science, 2022, 13, .	1.7	9
1734	Predicting habitat suitability and range shifts under projected climate change for two octocorals in the north-east Atlantic. PeerJ, 0, 10, e13509.	0.9	5
1735	Intertidal beach habitat suitability model for Pacific sand lance (<i>Ammodytes personatus</i>) in the Salish Sea, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79, 1681-1696.	0.7	3
1736	Fin whale (<i>Balaenoptera physalus</i>) distribution modeling on their Nordic and Barents Seas feeding grounds. Marine Mammal Science, 2022, 38, 1583-1608.	0.9	3
1737	Notes on the life history of <i>Centurio senex</i> (Chiroptera: Phyllostomidae) from northern Central America. Mammalia, 2022, .	0.3	0
1738	Parthenogenesis without costs in a grasshopper with hybrid origins. Science, 2022, 376, 1110-1114.	6.0	10
1739	Ticks on the move—climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitology Research, 2022, 121, 2241-2252.	0.6	19
1740	Assessment of appropriate species-specific time intervals to integrate GPS telemetry data in ecological niche models. Ecological Informatics, 2022, 70, 101701.	2.3	3
1741	Climate Change Reveals Contractions and Expansions in the Distribution of Suitable Habitats for the Neglected Crop Wild Relatives of the Genus Vigna (Savi) in Benin. Frontiers in Conservation Science, 2022, 3, .	0.9	1
1742	Predicted Pleistocene–Holocene range and connectivity declines of the vulnerable fishing cat and insights for current conservation. Journal of Biogeography, 2022, 49, 1494-1507.	1.4	2
1743	Integrating physiology into correlative models can alter projections of habitat suitability under climate change for a threatened amphibian. Ecography, 2022, 2022, .	2.1	7
1744	A MaxEnt modelling approach to understand the climate change effects on the distributional range of White-bellied Sholakili Sholicola albiventris (Blanford, 1868) in the Western Ghats, India. Ecological Informatics, 2022, 70, 101702.	2.3	8
1745	Predicting the habitat suitability of the invasive white mango scale, <i>Aulacaspis tubercularis</i> ; Newstead, 1906 (Hemiptera: Diaspididae) using bioclimatic variables. Pest Management Science, 2022, 78, 4114-4126.	1.7	5
1747	Seasonal and Year-Round Distributions of Bactrocera dorsalis (Hendel) and Its Risk to Temperate Fruits under Climate Change. Insects, 2022, 13, 550.	1.0	5
1748	Habitat suitability models of five keynote Bulgarian Black Sea fish species relative to specific abiotic and biotic factors. Oceanologia, 2022, 64, 665-674.	1.1	2
1749	Climate Niche Modelling for Mapping Potential Distributions of Four Framework Tree Species: Implications for Planning Forest Restoration in Tropical and Subtropical Asia. Forests, 2022, 13, 993.	0.9	2

ARTICLE

IF CITATIONS

Predicting the breeding hotspots of the southern right whale, Eubalaena australis (Cetartiodactyla:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 0.3

1751	Ecotype Division and Chemical Diversity of Cynomorium songaricum from Different Geographical Regions. Molecules, 2022, 27, 3967.	1.7	2
1752	Uncertainty matters: ascertaining where specimens in natural history collections come from and its implications for predicting species distributions. Ecography, 2022, 2022, .	2.1	20
1753	Connecting protected areas in the North Mesopotamian steppes: can this ensure the survival of the Arabian Sand Gazelle (<i>Gazella marica</i>)?. Zoology in the Middle East, 0, , 1-14.	0.2	0
1754	A Large-Scale MaxEnt Model for the Distribution of the Endangered Pygmy Madtom. Journal of Fish and Wildlife Management, 0, , .	0.4	0
1755	Modeling forest-shrubland fire susceptibility based on machine learning and geospatial approaches in mountains of Kurdistan Region, Iraq. Arabian Journal of Geosciences, 2022, 15, .	0.6	3
1756	A Scoping Review of Species Distribution Modeling Methods for Tick Vectors. Frontiers in Ecology and Evolution, 0, 10, .	1.1	12
1757	To a charismatic rescue: Designing a blueprint to steer Fishing Cat conservation for safeguarding Indian wetlands. Journal for Nature Conservation, 2022, 68, 126225.	0.8	2
1758	Modelling ectotherms' populations considering physiological age structure and spatial motion: A novel approach. Ecological Informatics, 2022, 70, 101703.	2.3	8
1759	Local abundance of neotropical orchid bees in Amazon forests not related to largeâ€scale climate suitability. Insect Conservation and Diversity, 2022, 15, 693-703.	1.4	1
1760	Biodiversity mediates ecosystem sensitivity to climate variability. Communications Biology, 2022, 5, .	2.0	8
1761	Identification of high-risk contact areas between feral pigs and outdoor-raised pig operations in California: Implications for disease transmission in the wildlife-livestock interface. PLoS ONE, 2022, 17, e0270500.	1.1	2
1762	Mapping the global distribution of Strongyloides stercoralis and hookworms by ecological niche modeling. Parasites and Vectors, 2022, 15, .	1.0	11
1763	Phylogeographic and Bioclimatic Determinants of the Dorsal Pattern Polymorphism in the Italian Wall Lizard, Podarcis siculus. Diversity, 2022, 14, 519.	0.7	4
1764	Short recce transects or camera trap surveys—Short recce surveys highlighted as a useful supplement for rapid biodiversity assessments in the Republic of the Congo. African Journal of Ecology, 0, , .	0.4	0
1765	High Wind Speed Prevents the Establishment of the Disease Vector Mosquito Aedes albopictus in Its Climatic Niche in Europe. Frontiers in Environmental Science, 0, 10, .	1.5	2
1766	Predicting Current and Future Potential Distributions of Parthenium hysterophorus in Bangladesh Using Maximum Entropy Ecological Niche Modelling. Agronomy, 2022, 12, 1592.	1.3	2
1767	Constructing ecological indices for urban environments using species distribution models. Urban Ecosystems, 0, , .	1.1	0

#	Article	lF	CITATIONS
1768	An ecological niche model to predict the geographic distribution of Haemagogus janthinomys, Dyar, 1921 a yellow fever and Mayaro virus vector, in South America. PLoS Neglected Tropical Diseases, 2022, 16, e0010564.	1.3	6
1769	Predicted impacts of climate change on wild and commercial berry habitats will have food security, conservation and agricultural implications. Science of the Total Environment, 2022, 845, 157341.	3.9	7
1770	Phylogenomics of arboreal alligator lizards shed light on the geographical diversification of cloud forestâ€adapted biotas. Journal of Biogeography, 2022, 49, 1862-1876.	1.4	3
1771	Changes in Climate Extremes and Their Effect on Maize (Zea mays L.) Suitability Over Southern Africa. Frontiers in Climate, 0, 4, .	1.3	6
1773	Forecasting shifts in habitat suitability of three marine predators suggests a rapid decline in interâ€specific overlap under future climate change. Ecology and Evolution, 2022, 12, .	0.8	1
1774	Diversity of Nearctic Dragonflies and Damselflies (Odonata). Diversity, 2022, 14, 575.	0.7	11
1775	A novel multivariate ecological approach to modeling freshwater mussel habitats verified by ground truthing. Hydrobiologia, 0, , .	1.0	2
1776	Potential Current and Future Distribution of the Long-Whiskered Owlet (Xenoglaux loweryi) in Amazonas and San Martin, NW Peru. Animals, 2022, 12, 1794.	1.0	5
1777	Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. Ecological Monographs, 0, , .	2.4	4
1778	Modelling the current and future potential distribution of the bean bug <i>Riptortus pedestris</i> with increasingly serious damage to soybean. Pest Management Science, 2022, 78, 4340-4352.	1.7	14
1779	Predicted threats to a native squirrel from two invading species based on citizen science data. Biological Invasions, 2022, 24, 3539-3553.	1.2	4
1780	Predicting Climate Change Impacts on the Rare and Endangered Horsfieldia tetratepala in China. Forests, 2022, 13, 1051.	0.9	6
1781	Filling Gaps in Trawl Surveys at Sea through Spatiotemporal and Environmental Modelling. Frontiers in Marine Science, 0, 9, .	1.2	4
1782	Modelling the potential distribution of subalpine birches (Betula spp.) in the Caucasus. Community Ecology, 0, , .	0.5	1
1783	Predicted Batrachochytrium dendrobatidis infection sites in Guyana, Suriname, and French Guiana using the species distribution model maxent. PLoS ONE, 2022, 17, e0270134.	1.1	2
1784	Habitat Suitability Assessment of Black-Necked Crane (Grus nigricollis) in the Zoige Grassland Wetland Ecological Function Zone on the Eastern Tibetan Plateau. Diversity, 2022, 14, 579.	0.7	10
1785	Distribution Prediction of Hyalomma asiaticum (Acari: Ixodidae) in a Localized Region in Northwestern China. Journal of Parasitology, 2022, 108, .	0.3	1
1786	Use of the MaxEnt model to predict changes in sloth bear (Melursus ursinus) habitats in the Gandaki River Basin, Nepal. Journal of Mountain Science, 2022, 19, 1988-1997.	0.8	2

#	Article	IF	CITATIONS
1787	Microsite Habitat, Species Associations, and Habitat Suitability Model of a Globally Imperiled Shrub. Natural Areas Journal, 2022, 42, .	0.2	0
1788	Can pikas hold the umbrella? Understanding the current and future umbrella potential of keystone species Pika (Ochotona spp.). Global Ecology and Conservation, 2022, 38, e02247.	1.0	3
1789	Stay home, stay safe? High habitat suitability and environmental connectivity increases road mortality in a colonizing mesocarnivore. Landscape Ecology, 2022, 37, 2343-2361.	1.9	4
1790	Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation. Sustainability, 2022, 14, 8888.	1.6	3
1791	Environmental Drivers of Gulf Coast Tick (Acari: Ixodidae) Range Expansion in the United States. Journal of Medical Entomology, 2022, 59, 1625-1635.	0.9	7
1792	Phylogeography of the desert scorpion illuminates a route out of Central Asia. Environmental Epigenetics, 2023, 69, 442-455.	0.9	1
1794	Assessing the suitable regions and the key factors for three Cd-accumulating plants (Sedum alfredii,) Tj ETQq0 0 C Total Environment, 2022, 852, 158202.) rgBT /Ov 3.9	erlock 10 Tf 9
1796	Predicting the effects of climate change on prospective Banj oak (Quercus leucotrichophora) dispersal in Kumaun region of Uttarakhand using machine learning algorithms. Modeling Earth Systems and Environment, 2023, 9, 145-156.	1.9	4
1797	Implications of climate change for environmental niche overlap between five <i>Cuscuta</i> pest species and their two main Leguminosae host crop species. Weed Science, 2022, 70, 543-552.	0.8	7
1798	Consideration of climate change impacts will improve the efficiency of protected areas on the Qinghai-Tibet Plateau. Ecosystem Health and Sustainability, 2022, 8, .	1.5	1
1799	Long term (1985–2018) changes of the habitat suitability of European souslik assessed by Maxent modelling based on Landsat satellite imagery – a case study from a mountain landscape of Central Bulgaria. Acta Zoologica Academiae Scientiarum Hungaricae, 2022, 68, 277-292.	0.1	0
1800	A method for making Red List assessments with herbarium data and distribution models for speciesâ€rich plant taxa: Lessons from the Neotropical genus <i>Guatteria</i> (Annonaceae). Plants People Planet, 2023, 5, 536-546.	1.6	6
1801	Trees planted under a global restoration pledge have mixed futures under climate change. Restoration Ecology, 2023, 31, .	1.4	4
1802	Predicting the current and future suitable habitats for endemic and endangered Ethiopian wolf using MaxEnt model. Heliyon, 2022, 8, e10223.	1.4	6
1803	Ecological niche modelling for delineating livestock ecotypes and exploring environmental genomic adaptation: The example of Ethiopian village chicken. Frontiers in Ecology and Evolution, 0, 10, .	1.1	6
1804	Climate Change, Agriculture, and Biodiversity: How Does Shifting Agriculture Affect Habitat Availability?. Land, 2022, 11, 1257.	1.2	3
1805	Evaluating invasion risk and population dynamics of the brown marmorated stink bug across the contiguous <scp>United States</scp> . Pest Management Science, 2022, 78, 4929-4938.	1.7	6
1806	Predicting the potential distribution of four endangered holoparasites and their primary hosts in China under climate change. Frontiers in Plant Science, 0, 13, .	1.7	5

#	Article	IF	CITATIONS
1807	Distribution and habitat partitioning of cetaceans (Mammalia: Cetartiodactyla) in the Bohol Sea, Philippines Journal of Asia-Pacific Biodiversity, 2022, , .	0.2	0
1808	Optimising the benefit–cost ratio of fishing grounds for a multiâ€species fishery in the waters of northern Taiwan. Fisheries Management and Ecology, 2022, 29, 858-879.	1.0	0
1809	Staying close to home: Marine habitat selection by foraging yellow-eyed penguins using spatial distribution models. Frontiers in Marine Science, 0, 9, .	1.2	1
1810	Brown Bear Food-Probability Models in West-European Russia: On the Way to the Real Resource Selection Function. Forests, 2022, 13, 1247.	0.9	0
1811	Assessing multitemporal calibration for species distribution models. Ecological Informatics, 2022, 71, 101787.	2.3	2
1812	MaxEnt-based prediction of the potential invasion of Lantana camara L. under climate change scenarios in Arunachal Pradesh, India. Acta Ecologica Sinica, 2023, 43, 674-683.	0.9	5
1813	Species conservation profiles of the endemic spiders Troglohyphantes (Araneae, Linyphiidae) from the Alps and the north-western Dinarides. Biodiversity Data Journal, 0, 10, .	0.4	1
1814	Biogeographic Patterns and Richness of the Meconopsis Species and Their Influence Factors across the Pan-Himalaya and Adjacent Regions. Diversity, 2022, 14, 661.	0.7	2
1815	Spatiotemporal evolution of urban-agricultural-ecological space in China and its driving mechanism. Journal of Cleaner Production, 2022, 371, 133684.	4.6	12
1816	Novelty predictors for shrub (and climbers) ecological niche modeling, based on their successional stage. Ecological Informatics, 2022, 71, 101771.	2.3	1
1817	Broad scale functional connectivity for Asian elephants in the Nepal-India transboundary region. Journal of Environmental Management, 2022, 321, 115921.	3.8	5
1818	Analysis of the impact of climate change on the distribution and active compound content of the plateau medicinal plant Nardostachys jatamansi (D. Don) DC. Industrial Crops and Products, 2022, 187, 115438.	2.5	3
1819	Climate change threatens the distribution of major woody species and ecosystem services provision in southern Africa. Science of the Total Environment, 2022, 850, 158006.	3.9	6
1820	Reconstructing the distribution of Chacoan biota from current and past evidence: the case of the southern three-banded armadillo Tolypeutes matacus (Desmarest, 1804). Journal of Mammalian Evolution, 2022, 29, 783-795.	1.0	1
1821	Predicting diversity changes in subalpine moorland ecosystems based on geometry of species distributions and realistic area loss. Journal of Vegetation Science, 0, , .	1.1	1
1822	Gully erosion susceptibility considering spatiotemporal environmental variables: Midwest U.S. region. Journal of Hydrology: Regional Studies, 2022, 43, 101196.	1.0	3
1823	Population and habitat connectivity of Grevy's zebra Equus grevyi, a threatened large herbivore in degraded rangelands. Biological Conservation, 2022, 274, 109711.	1.9	0
1824	Species distribution models: Administrative boundary centroid occurrences require careful interpretation. Ecological Modelling, 2022, 472, 110107.	1.2	5

#	Article	IF	CITATIONS
1825	Response of the invasive plant Ailanthus altissima (Mill.) Swingle and its two important natural enemies (Eucryptorrhynchus scrobiculatus (Motschulsky) and E. brandti (Harold)) to climate change. Ecological Indicators, 2022, 143, 109408.	2.6	3
1826	Contrasting occupancy models with presence-only models: Does accounting for detection lead to better predictions?. Ecological Modelling, 2022, 472, 110105.	1.2	8
1827	Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect. Ecological Modelling, 2022, 473, 110139.	1.2	5
1828	Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models?. Global Ecology and Conservation, 2022, 39, e02286.	1.0	0
1829	Mapping the changing distribution of two important pollinating giant honeybees across 21000 years. Global Ecology and Conservation, 2022, 39, e02282.	1.0	3
1830	Seasonal Differences in the Spatial Patterns of Wildfire Susceptibility and Drivers in Southwest Mountains, China. SSRN Electronic Journal, 0, , .	0.4	0
1831	Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. , 2022, 10, .		4
1832	Simulation and Prediction of the Potential Geographical Distribution of Acer cordatum Pax in Different Climate Scenarios. Forests, 2022, 13, 1380.	0.9	7
1833	Potential Ecological Distributions of Urban Adapters and Urban Exploiters for the Sustainability of the Urban Bird Network. ISPRS International Journal of Geo-Information, 2022, 11, 474.	1.4	1
1834	EFFECTS OF LANDSCAPE HISTORY ON CURRENT GEOGRAPHIC DISTRIBUTIONS OF FOUR SPECIES OF REPTILES AND AMPHIBIANS IN KANSAS. Southwestern Naturalist, 2022, 66, .	0.1	1
1835	Future changes in the seasonal habitat suitability for anchovy (Engraulis japonicus) in Korean waters projected by a maximum entropy model. Frontiers in Marine Science, 0, 9, .	1.2	6
1836	Habitat heterogeneity and topographic variation as the drivers of insect pest distributions in alpine landscapes. Acta Ecologica Sinica, 2023, 43, 596-603.	0.9	4
1837	Distribution of Breeding Population and Predicting Future Habitat under Climate Change of Black-Necked Crane (Grus nigricollis Przevalski, 1876) in Shaluli Mountains. Animals, 2022, 12, 2594.	1.0	4
1838	Analysis on the hotspot characteristics of bird diversity distribution along the continental coastline of China. Frontiers in Marine Science, 0, 9, .	1.2	6
1840	Evaluation of the Likelihood of Establishing False Codling Moth (Thaumatotibia leucotreta) in Australia via the International Cut Flower Market. Insects, 2022, 13, 883.	1.0	5
1841	Scaleâ€dependent environmental effects on phenotypic distributions in <i>Heliconius</i> butterflies. Ecology and Evolution, 2022, 12, .	0.8	2
1842	Alien parakeets as a potential threat to the common noctule Nyctalus noctula. Biodiversity and Conservation, 2022, 31, 3075-3092.	1.2	4
1846	Prediction of Potential Habitats of Zanthoxylum armatum DC. and Their Changes under Climate Change. Sustainability, 2022, 14, 12422.	1.6	3

\sim			~	
	ΙΤΔΤΙ	ON	RED	UDL
<u> </u>	$\Pi \cap \Pi$		IVEL 1	

#	Article	IF	CITATIONS
1847	Conservation prioritization through combined approach of umbrella species selection, occupancy estimation, habitat suitability and connectivity analysis of kingfisher: A study from an internationally important wetland complex (Ramsar site) in India. Ecological Informatics, 2022, 72, 101833.	2.3	2
1848	Predicting the Potential Distribution of Endangered Parrotia subaequalis in China. Forests, 2022, 13, 1595.	0.9	3
1849	Forecasting future range shifts of <i>Xylella fastidiosa</i> under climate change. Plant Pathology, 2022, 71, 1839-1848.	1.2	9
1850	Ecological niche modelling as a tool to identify candidate indigenous chicken ecotypes of Tigray (Ethiopia). Frontiers in Genetics, 0, 13, .	1.1	2
1851	Factors associated with hemorrhagic fever with renal syndrome based maximum entropy model in Zhejiang Province, China. Frontiers in Medicine, 0, 9, .	1.2	0
1852	Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus <i>Boletus edulis</i> . New Phytologist, 2023, 237, 295-309.	3.5	3
1853	Using Bayesian networks to map winter habitat for mountain goats in coastal British Columbia, Canada. Frontiers in Environmental Science, 0, 10, .	1.5	0
1854	Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography, 2022, 2022, .	2.1	2
1855	Understanding the conservation challenges and needs of culturally significant plant species through Indigenous Knowledge and species distribution models. Journal for Nature Conservation, 2022, 70, 126285.	0.8	2
1856	Prediction of potential distribution of soybean in the frigid region in China with MaxEnt modeling. Ecological Informatics, 2022, 72, 101834.	2.3	10
1857	Vegetation cover and configuration drive reptile species distributions in a fragmented landscape. Wildlife Research, 2023, 50, 792-806.	0.7	4
1858	Habitat suitability assessment for the Near Threatened Hume's Pheasant (Syrmaticus humiae) in a new distribution location in southwestern China. Wilson Journal of Ornithology, 2022, 134, .	0.1	1
1859	Sequential hybridization may have facilitated ecological transitions in the Southwestern pinyon pine syngameon. New Phytologist, 2023, 237, 2435-2449.	3.5	8
1860	Sumatra-wide assessment of spatiotemporal niche partitioning among small carnivore species. Mammalian Biology, 0, , .	0.8	0
1861	Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model. Agriculture (Switzerland), 2022, 12, 1759.	1.4	7
1862	Habitat Suitability of Fig (Ficus carica L.) in Mexico under Current and Future Climates. Agriculture (Switzerland), 2022, 12, 1816.	1.4	0
1863	Predicting suitable habitat for the endangered plant <i>Cephalotaxus oliveri</i> Mast. in China. Environmental Conservation, 0, , 1-8.	0.7	1
1864	Application of MaxEnt Modeling and HRM Analysis to Support the Conservation and Domestication of Gevuina avellana Mol. in Central Chile. Plants, 2022, 11, 2803.	1.6	1

ARTICLE IF CITATIONS Complex ecological and socioeconomic impacts on medicinal plant diversity. Frontiers in 1865 2 1.6 Pharmacology, 0, 13, . A review of the genus <i>Clyphomitrium </i>Brid. (Rhabdoweisiaceae, Bryophyta) in the Russian Far East. 1866 0.4 Journal of Bryology, 2022, 44, 226-246. Understanding the Effects of Climate Change on the Distributional Range of Plateau Fish: A Case Study 1867 2 0.7 of Species Endemic to the Hexi River System in the Qinghai–Tibetan Plateau. Diversity, 2022, 14, 877. Mapping the Distribution and Dispersal Risks of the Alien Invasive Plant Ageratina adenophora in 1868 China. Diversity, 2022, 14, 915. Species distribution modeling of Aedes aegypti in Maricopa County, Arizona from 2014 to 2020. 1869 1.53 Frontiers in Environmental Science, 0, 10, . Linking Lyme disease ecology and epidemiology: reservoir host identity, not richness, determines tick infection and human disease in California. Environmental Research Letters, 2022, 17, 114041. 2.2 Current and Future Distribution Modeling of Socotra Cormorants Using MaxEnt. Diversity, 2022, 14, 1872 0.7 0 840. Assessment of Climate Change and Land Use Effects on Water Lily (Nymphaea L.) Habitat Suitability in South America. Diversity, 2022, 14, 830. Environmental Niche and Demographic Modeling of American Chestnut near its Southwestern Range 1874 0.2 1 Limit. American Midland Naturalist, 2022, 188, . Ground Validation Reveals Limited Applicability of Species Distribution Models for Dakota Skipper (<i>Hesperia dacotae</i>, Lepidoptera: Hesperiidae) Recovery Efforts in Canada. Environmental Entomology, 2022, 51, 1249-1261. The possibilities of explicit Striga (Striga asiatica) risk monitoring using phenometric, edaphic, and climatic variables, demonstrated for Malawi and Zambia. Environmental Monitoring and Assessment, 1876 0 1.3 2022, 194, . Testing the assumption of environmental equilibrium in an invasive plant species over a 130 year 1877 2.1 history. Ecography, 2022, 2022, . Predicting the Potential Suitable Area of the Invasive Ant Linepithema humile in China under Future 1878 0.7 2 Climatic Šcenarios Based on Optimized MaxEnt. Diversity, 2022, 14, 921. Global range dynamics of the Bearded Vulture (<i>Gypaetus barbatus</i>) from the Last Glacial Maximum to climate change scenarios. Ibis, 2023, 165, 403-419. 1879 1.0 Multi-Directional Rather Than Unidirectional Northward-Dominant Range Shifts Predicted under 1880 2 0.9 Climate Change for 99 Chinese Tree Species. Forests, 2022, 13, 1619. Potential distribution and conservation implications of key marsupials for the Patagonian temperate forest. Mammalian Biology, 0, , . Out of the <scp>Qinghaiâ€Tibet</scp> plateau: Genomic biogeography of the alpine monospecific genus 1882 2.0 1 <i>Megadenia</i> (Biscutelleae, Brassicaceae). Molecular Ecology, 2023, 32, 492-503. 1883 Climate Change Influences the Spread of African Swine Fever Virus. Veterinary Sciences, 2022, 9, 606.

#	Article	IF	CITATIONS
1884	Integrating Different Scales into Species Distribution Models: A Case for Evaluating the Risk of Plant Invasion in Chinese Protected Areas under Climate Change. Applied Sciences (Switzerland), 2022, 12, 11108.	1.3	1
1885	Risk of infection of white-nose syndrome in North American vespertilionid bats in Mexico. Ecological Informatics, 2022, 72, 101869.	2.3	0
1886	Mapping the spatial distribution of underutilised crop species under climate change using the MaxEnt model: A case of KwaZulu-Natal, South Africa. Climate Services, 2022, 28, 100330.	1.0	2
1887	Optimal cropping patterns can be conducive to sustainable irrigation: Evidence from the drylands of Northwest China. Agricultural Water Management, 2022, 274, 107977.	2.4	7
1888	Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Science of the Total Environment, 2023, 857, 159603.	3.9	4
1889	A size-adaptive strategy to characterize spatially heterogeneous neighborhood effects in cellular automata simulation of urban growth. Landscape and Urban Planning, 2023, 229, 104604.	3.4	14
1890	Fire propensity in Amazon savannas and rainforest and effects under future climate change. International Journal of Wildland Fire, 2022, , .	1.0	1
1891	Assessment of carbon balance attribution and carbon storage potential in China's terrestrial ecosystem. Resources, Conservation and Recycling, 2023, 189, 106748.	5.3	21
1892	Surprising leopard restoration in fragmented ecosystems reveals connections as the secret to conservation success. Science of the Total Environment, 2023, 858, 159790.	3.9	2
1893	Modelo de distribución y estado de conservación de la lagartija de Lorenz Müller <i>Liolaemus lorenzmuelleri</i> en relación a las concesiones mineras de Chile. Caldasia, 2022, 44, 603-611.	0.1	0
1894	Simulation of citrus production space based on MaxEnt. Frontiers in Environmental Science, 0, 10, .	1.5	2
1896	Islands in the mud: The South Texas banks provide crucial mesophotic habitat for coral communities. Frontiers in Marine Science, 0, 9, .	1.2	0
1898	Climate change may cause the extinction of the butterfly Lasiommata petropolitana in the Apennines. Journal of Insect Conservation, 2022, 26, 959-972.	0.8	3
1900	Multi-decadal changes in the at-sea distribution and abundance of black-browed and light-mantled sooty albatrosses in the southwest Pacific Ocean. ICES Journal of Marine Science, 2022, 79, 2630-2642.	1.2	3
1901	Potential climatic and elevational range shifts in the Italian narrow endemic Bellevalia webbiana (Asparagaceae) under climate change scenarios. Nature Conservation, 0, 50, 145-157.	0.0	1
1902	Ecogeographic and Morphometric Variation in the Mexican Pine Snake, Pituophis deppei (Squamata:) Tj ETQq1 1	0.784314 0.3	rgBT /Over
1903	Diversity of Palaearctic Dragonflies and Damselflies (Odonata). Diversity, 2022, 14, 966.	0.7	6
1905	Distribution and Conservation of Plants in the Northeastern Qinghai–Tibet Plateau under Climate Change. Diversity, 2022, 14, 956.	0.7	0

#	Article	IF	CITATIONS
1906	Risk analysis of the spread of the quarantine pest mite Schizotetranychus hindustanicus in Brazil. Experimental and Applied Acarology, 0, , .	0.7	0
1907	Landscape -scale predictors of persistence of an urban stock dove Columba oenas population. Urban Ecosystems, 0, , .	1.1	0
1909	Geographic distribution, conservation status and lectotypification of Pedersenia weberbaueri (Suess.) Holub (Amaranthaceae), an endemic and highly threatened shrub from the Marañón valley of Peru. Revista Peruana De Biologia, 2022, 29, e23214.	0.1	1
1910	Vulnerability assessment of road networks to landslide hazards in a dry-mountainous region. Environmental Earth Sciences, 2022, 81, .	1.3	5
1911	An Integrated Approach to Map the Impact of Climate Change on the Distributions of Crataegus azarolus and Crataegus monogyna in Kurdistan Region, Iraq. Sustainability, 2022, 14, 14621.	1.6	12
1912	Prediction of wild pistachio ecological niche using machine learning models. Ecological Informatics, 2022, 72, 101907.	2.3	6
1913	Assessing habitat suitability and selecting optimal habitats for relict tree Cathaya argyrophylla in Hunan, China: Integrating pollen size, environmental factors, and niche modeling for conservation. Ecological Indicators, 2022, 145, 109669.	2.6	3
1914	Predicting habitat suitability for Castor fiber reintroduction: MaxEnt vs SWOT-Spatial multicriteria approach. Ecological Informatics, 2022, 72, 101895.	2.3	3
1915	Identifying the Past, Present, and Future Distribution Patterns of the Balkan Wall Lizard (Sauria:) Tj ETQq0 0 0 rgf 146-159.	3T /Overlo 0.1	ck 10 Tf 50 4 0
1916	Inferring probable distributional gaps and climate change impacts on the medically important viper Echis leucogaster in the western Sahara-Sahel: An ecological niche modeling approach. Biodiversitas, 2022, 23, .	0.2	0
1917	Predicting non-native seaweeds global distributions: The importance of tuning individual algorithms in ensembles to obtain biologically meaningful results. Frontiers in Marine Science, 0, 9, .	1.2	1
1918	Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia. Scientific Reports, 2022, 12, .	1.6	3
1919	Mapping the potential northern limits and promotion extent of ratoon rice in China. Applied Geography, 2023, 150, 102822.	1.7	7
1920	Identifying priority areas of Four Major Chinese carps' species in the Pearl River basin based on the MaxEnt model. Watershed Ecology and the Environment, 2023, 5, 18-23.	0.6	5
1921	Impacts of spatial scale and resolution on species distribution models of American chestnut (Castanea) Tj ETQq0	0 0 rgBT / 1.4	Oyerlock 10
1922	Analysis of omissions of protected fish species during environmental impact assessments inferred with distribution models in southeastern coastal zone of BahÃa de La Paz, Mexico. Environmental Impact Assessment Review, 2023, 99, 106988.	4.4	0
1923	Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. Ecological Informatics, 2023, 73, 101930.	2.3	21

¹⁹²⁴ Impact of climate change on potential distribution of Quercus suber in the conditions of North 0.2 7 Africa. Biosystems Diversity, 2022, 30, 289-294.

#	Article	IF	CITATIONS
1925	Implications of zero-deforestation palm oil for tropical grassy and dry forest biodiversity. Nature Ecology and Evolution, 0, , .	3.4	2
1926	How Can Climate Change Limit the Distribution of Cooperative Pseudoscorpions in Brazil?. Neotropical Entomology, 0, , .	0.5	0
1927	Cordyceps cicadae and Cordyceps gunnii have closer species correlation with Cordyceps sinensis: from the perspective of metabonomic and MaxEnt models. Scientific Reports, 2022, 12, .	1.6	2
1928	Suitability of Natura 2000 sites for threatened freshwater species under projected climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 1872-1887.	0.9	1
1929	Environmental Niche Modelling Predicts a Contraction in the Potential Distribution of Two Boreal Owl Species under Different Climate Scenarios. Animals, 2022, 12, 3226.	1.0	2
1930	Estimating the Distribution of Japanese Encephalitis Vectors in Australia Using Ecological Niche Modelling. Tropical Medicine and Infectious Disease, 2022, 7, 393.	0.9	9
1932	Global habitat suitability modeling reveals insufficient habitat protection for mangrove crabs. Scientific Reports, 2022, 12, .	1.6	3
1933	Predicting potential transmission risk of Everglades virus in Florida using mosquito blood meal identifications. , 0, 2, .		2
1934	Invasions by the palm borer moth Paysandisia archon in Italy and assessment of its trophic spectrum. Biological Invasions, 2023, 25, 1373-1386.	1.2	3
1935	Disentangling the Drivers of the Sampling Bias of Freshwater Fish across Europe. Fishes, 2022, 7, 383.	0.7	1
1936	Environmental assessment of proposed areas for offshore wind farms areas off southern Brazil based on ecological niche modeling and a species richness index for albatrosses and petrels. Global Ecology and Conservation, 2022, , e02360.	1.0	1
1937	Effects of Climate Change and Environmental Factors on Bamboo (Ferrocalamus strictus), a PSESP Unique to China. Forests, 2022, 13, 2108.	0.9	1
1938	Surveillance and invasive risk of the red imported fire ant, <i>Solenopsis invicta</i> Buren in China. Pest Management Science, 2023, 79, 1342-1351.	1.7	7
1939	Modeling Cultural Keystone Species for the Conservation of Biocultural Diversity in the Afroalpine. Environments - MDPI, 2022, 9, 156.	1.5	2
1940	Potential Geographical Distribution of Medicinal Plant Ephedra sinica Stapf under Climate Change. Forests, 2022, 13, 2149.	0.9	10
1941	Modeling of historical and current distributions of lone star tick, Amblyomma americanum (Acari:) Tj ETQq1 1 0.7 85-103.	84314 rgE 0.7	BT /Overlock 6
1942	Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera) Tj ETQq0 0 0 rgB	/Oyerlock	2 10 Tf 50 10

1943Climate change affects Galliformes taxonomic, phylogenetic and functional diversity indexes, shifting
conservation priority areas in China. Diversity and Distributions, 2023, 29, 409-422.1.92

#	Article	IF	CITATIONS
1944	Habitat suitability and area of occupancy defined for rare New World sea snake. Conservation Science and Practice, 0, , .	0.9	0
1945	Jack of all trades: Genome assembly of Wild Jack and comparative genomics of Artocarpus. Frontiers in Plant Science, 0, 13, .	1.7	1
1946	Importance of data selection and filtering in species distribution models: A case study on the Cantabrian brown bear. Ecosphere, 2022, 13, .	1.0	8
1947	Analysis of desertification combating needs based on potential vegetation NDVI—A case in the Hotan Oasis. Frontiers in Plant Science, 0, 13, .	1.7	3
1948	Observed and Predicted Geographic Distribution of Acer monspessulanum L. Using the MaxEnt Model in the Context of Climate Change. Forests, 2022, 13, 2049.	0.9	3
1949	Modeling the distribution of Acadian vascular rare plant species under future climate scenarios. Plant Ecology, 2023, 224, 47-57.	0.7	1
1950	Climate Change Impact on Potential Distribution of an Endemic Species <i>Abies marocana</i> Trabut. Ekologia, 2022, 41, 329-339.	0.2	4
1951	Genetic and demographic signatures accompanying the evolution of the selfing syndrome in <i>Daphne kiusiana</i> , an evergreen shrub. Annals of Botany, 2023, 131, 751-767.	1.4	5
1952	Modeling the potential distribution of two immortality flora in the Philippines: Applying MaxEnt and GARP algorithms under different climate change scenarios. Modeling Earth Systems and Environment, 2023, 9, 2857-2876.	1.9	4
1953	Predicting the suitability area of heath alliances over France using open-source data. Plant Biosystems, 2023, 157, 379-391.	0.8	0
1954	Predictive Modeling of Kudzu (Pueraria montana) Habitat in the Great Lakes Basin of the United States. Plants, 2023, 12, 216.	1.6	2
1955	Predicting global potential distribution of Peromyscopsylla hesperomys and Orchopeas sexdentatus and risk assessment for invading China under climate change. Frontiers in Public Health, 0, 10, .	1.3	1
1956	Forest fire pattern and vulnerability mapping using deep learning in Nepal. Fire Ecology, 2023, 19, .	1.1	7
1957	Historical and current climates affect the spatial distribution of herbivorous tree insects in China. Journal of Forestry Research, 0, , .	1.7	0
1959	Using Species Distribution Models (SDMs) to Estimate the Suitability of European Mediterranean Non-Native Area for the Establishment of Toumeyella Parvicornis (Hemiptera: Coccidae). Insects, 2023, 14, 46.	1.0	3
1960	Modeling of the potential geographical distribution of naked oat under climate change. Frontiers in Plant Science, 0, 13, .	1.7	3
1961	Environmental and anthropogenic variables influence the distribution of a habitat specialist (<scp><i>Sylvilagus aquaticus</i></scp>) in a large urban forest. Conservation Science and Practice, 2023, 5, .	0.9	1
1962	Predicting habitat suitability of Litsea glutinosa: a declining tree species, under the current and future climate change scenarios in India. Landscape and Ecological Engineering, 0, , .	0.7	2

ARTICLE IF CITATIONS Widespread and ongoing invasion by the ant <i>Technomyrmex brunneus</i> Forel in eastern Asia as 1963 0.7 2 elucidated by molecular data. Ecological Research, 2023, 38, 455-464. Microclimate species distribution models estimate lower levels of climate-related habitat loss for 1964 0.8 salamanders. Journal for Nature Conservation, 2023, 72, 126333. Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique: 1965 Agroforestry as an alternative management system to strengthen crop sustainability. Agriculture, 2.56 Ecosystems and Environment, 2023, 346, 108341. Identification of roadkill hotspots and the factors affecting wombat vehicle collisions using the citizen science tool, WomSAT. Australian Mammalogy, 2023, 45, 53-61. Vulnerability of the Small-Scale Fishery to Climate Changes in the Northern-Central Adriatic Sea 1967 0.7 6 (Mediterranean Sea). Fishes, 2023, 8, 9. Climate influences the genetic structure and niche differentiation among populations of the olive 1968 1.6 field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Scientific Reports, 2022, 12, . Assessing the Potential Distribution of a Vulnerable Tree under Climate Change: Perkinsiodendron 1969 1.6 1 macgregorii (Chun) P.W.Fritsch (Styracaceae). Sustainability, 2023, 15, 666. Climate vulnerability of coffee-cocoa agrosystems in the sub-humid mountain ecosystems in 1.5 south-west Togo (West Africa). Environmental Systems Research, 2022, 11, . Construction of an ecological model of Sambucus javanica blume in China under different climate 1971 0.7 5 scenarios based on maxent model. Plant Ecology, 2023, 224, 221-237. New insights into the geographic patterns of functional role and taxonomic richness of ants from 0.8 Mexico. Journal of Insect Conservation, 2023, 27, 49-57. Diversity and spatial distribution of native bees in Mt. Banahaw de Lucban, Philippines. Folia 1973 0 0.4 Oecologica, 2023, 50, 44-54. Ecological-niche modeling reveals current opportunities for Agave dryland farming in Sonora, 1974 1.1 Mexico and Arizona, USA. PLoS ONE, 2023, 18, e0279877. The Use of Spectral Indices to Recognize Waterlogged Agricultural Land in South Moravia, Czech 1975 1.4 2 Republic. Agriculture (Switzerland), 2023, 13, 287. Modeling climate change impact on distribution and abundance of Balanites aegyptiaca in drylands of 1.9 Ethiopia. Modeling Earth Systems and Environment, 2023, 9, 3415-3427. Historical biogeography and local adaptation explain population genetic structure in a widespread 1977 1.4 3 terrestrial orchid. Annals of Botany, 2023, 131, 623-634. Revealing largeâ€scale parasite ranges: An integrated spatiotemporal database and multisource analysisÃof the winter tick. Ecosphere, 2023, 14, . The biogeography of colonial volvocine algae in the Yangtze River basin. Frontiers in Microbiology, 0, 1979 1.50 14,. 1980 Optimal foraging of lions at the human wildlands interface. African Journal of Ecology, 0, , .

#	Article	IF	CITATIONS
1981	Machine learning ensemble species distribution modeling of an endangered arid land tree Tecomella undulata: a global appraisal. Arabian Journal of Geosciences, 2023, 16, .	0.6	5
1982	Maximum entropy modeling of giant pangolin Smutsia gigantea (Illiger, 1815) habitat suitability in a protected forest-savannah transition area of central Cameroon. Global Ecology and Conservation, 2023, 43, e02395.	1.0	0
1983	Modelling Mediterranean oak palaeolandscapes using the MaxEnt model algorithm: The case of the NE Iberia under the Middle Holocene climatic scenario. Ecological Informatics, 2023, 74, 101984.	2.3	1
1984	Identifying opportunities for living shorelines using a multi-criteria suitability analysis. Regional Studies in Marine Science, 2023, 61, 102857.	0.4	0
1985	Environmental factors shaping habitat suitability of Gyps vultures: climate change impact modelling for conservation in India. Ornithology Research, 2023, 31, 119-140.	0.6	2
1986	Continent-wide recent emergence of a global pathogen in African amphibians. Frontiers in Conservation Science, 0, 4, .	0.9	3
1987	Mapping Impacts of Climate Change on the Distributions of Two Endemic Tree Species under Socioeconomic Pathway Scenarios (SSP). Sustainability, 2023, 15, 5469.	1.6	6
1988	Prediction of Potential Distribution Area of Two Parapatric Species in Triosteum under Climate Change. Sustainability, 2023, 15, 5604.	1.6	3
1989	Niche shifts and range expansions after invasions of two major pests: the Asian longhorned beetle and the citrus longhorned beetle. Pest Management Science, 2023, 79, 3149-3158.	1.7	1
1990	Recent decline in suitable large mammal habitats within the Dzanga Sangha Protected Areas, Central African Republic. Global Ecology and Conservation, 2023, 42, e02404.	1.0	0
1991	Spatiotemporal dynamics and potential restoration of mangroves in Circum-Xinying-Bay region, Hainan Province, China. Journal of Sea Research, 2023, 193, 102368.	0.6	0
1992	Factors influencing the habitat suitability of wild Asian elephants and their implications for human–elephant conflict in Myanmar. Global Ecology and Conservation, 2023, 43, e02468.	1.0	3
1993	Species distribution models predicting climate suitability for the psyllid Trioza erytreae, vector of citrus greening disease. Crop Protection, 2023, 168, 106228.	1.0	2
1994	Environmental drivers inducing habitat expansion and shift of introduced alien trout in the Himalayan ecosystem and management concerns. Journal for Nature Conservation, 2023, 73, 126392.	0.8	0
1995	Anthropogenically driven spatial niche partitioning in a large herbivore assemblage. Oecologia, 2023, 201, 797-812.	0.9	0
1996	A review of the Late Ordovician (Katian) Richmondian Invasion of eastern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 618, 111520.	1.0	4
1997	Expansion risk of the toxic dinoflagellate Gymnodinium catenatum blooms in Chinese waters under climate change. Ecological Informatics, 2023, 75, 102042.	2.3	1
1998	Climatic factors and human disturbance influence ungulate species distribution on the Qinghai-Tibet Plateau. Science of the Total Environment, 2023, 869, 161681.	3.9	11

#	Article	IF	CITATIONS
1999	Microhabitat modeling of the invasive Asian longhorned tick (Haemaphysalis longicornis) in New Jersey, USA. Ticks and Tick-borne Diseases, 2023, 14, 102126.	1.1	5
2000	Seasonal differences in the spatial patterns of wildfire drivers and susceptibility in the southwest mountains of China. Science of the Total Environment, 2023, 869, 161782.	3.9	15
2001	Combining environmental niche models, multiâ€grain analyses, and species traits identifies pervasive effects of land use on butterfly biodiversity across Italy. Global Change Biology, 2023, 29, 1715-1728.	4.2	6
2002	Uporaba metode maksimalne entropije pri prouÄevanju potencialnega vpliva podnebnih sprememb na slovenske gozdove. Dela, 2022, , 57-88.	0.2	1
2003	New geographic record in eastern Amazon Forest and potential distribution of <i>Amphidecta calliomma</i> (Lepidoptera: Nymphalidae). Ecology and Evolution, 2023, 13, .	0.8	0
2004	First assessment of Iranian pomegranate germplasm using targeted metabolites and morphological traits to develop the core collection and modeling of the current and future spatial distribution under climate change conditions. PLoS ONE, 2023, 18, e0265977.	1.1	2
2005	Habitat and ecological niche characteristics of the elusive Hairyâ€eared Dwarf Lemur (<i>Allocebus) Tj ETQq0 0 0 2023, 85, .</i>	rgBT /Ove 0.8	rlock 10 Tf 5 3
2006	Population biology, ecological niche modelling of endangered and endemic Pittosporum eriocarpum Royle in Western Himalaya, India. Journal for Nature Conservation, 2023, 72, 126356.	0.8	1
2007	Suitable habitats of two coastal cetaceans along the northern Arabian Sea: Important marine mammal areas susceptible to conservation gaps. Aquatic Conservation: Marine and Freshwater Ecosystems, 2023, 33, 276-285.	0.9	1
2008	Effect of Climate Change on the Potentially Suitable Distribution Pattern of Castanopsis hystrix Miq. in China. Plants, 2023, 12, 717.	1.6	1
2009	Decoupling of species and plant communities of the U.S. Southwest: A <scp>CCSM4</scp> climate scenario example. Ecosphere, 2023, 14, .	1.0	2
2010	Prey resources are equally important as climatic conditions for predicting the distribution of a broadâ€ranged apex predator. Diversity and Distributions, 2023, 29, 613-628.	1.9	2
2011	Transitional areas of vegetation as biodiversity hotspots evidenced by multifaceted biodiversity analysis of a dominant group in Chinese evergreen broad-leaved forests. Ecological Indicators, 2023, 147, 110001.	2.6	6
2012	How to Statistically Disentangle the Effects of Environmental Factors and Human Disturbances: A Review. Water (Switzerland), 2023, 15, 734.	1.2	6
2013	Predicting residential septic system malfunctions for targeted drone inspections. Remote Sensing Applications: Society and Environment, 2023, 30, 100936.	0.8	0
2014	Scale-sensitivity in the measurement and interpretation of environmental niches. Trends in Ecology and Evolution, 2023, 38, 554-567.	4.2	11
2015	Predicting Plasmodium knowlesi transmission risk across Peninsular Malaysia using machine learning-based ecological niche modeling approaches. Frontiers in Microbiology, 0, 14, .	1.5	2
2016	Timber harvest and wildfires drive long-term habitat dynamics for an arboreal rodent. Biological Conservation, 2023, 279, 109779.	1.9	2

#	Article	IF	CITATIONS
2017	Effects of Different Types of Agricultural Land Use on the Occurrence of Common Aquatic Bugs (Nepomorpha, Heteroptera) in Habitats with Slow Flowing Water in Bulgaria, Southeast Europe. Diversity, 2023, 15, 292.	0.7	0
2018	The socio-environmental impacts of tropical crop expansion on a global scale: A case study in cashew. Biological Conservation, 2023, 280, 109961.	1.9	1
2019	Habitat suitability modelling of Melursus ursinus (Shaw, 1791) (Mammalia: Carnivora) in the Chitwan National Park, Nepal. Journal of Animal Diversity, 2022, 4, 31-43.	0.2	0
2020	Changes in suitable habitat for the critically endangered Northern white-cheeked gibbon (Nomascus) Tj ETQq1 Conservation, 0, 51, 167-188.	1 0.78431 0.0	4 rgBT /Ove 0
2021	Habitat Suitability Evaluation of Different Forest Species in Lvliang Mountain by Combining Prior Knowledge and MaxEnt Model. Forests, 2023, 14, 438.	0.9	2
2022	Landslide susceptibility mapping using maximum entropy (MaxEnt) and geographically weighted logistic regression (GWLR) models in the RÃo Aguas catchment (AlmerÃa, SE Spain). Natural Hazards, 2023, 117, 207-235.	1.6	6
2023	Current and future distribution of a parasite with complex life cycle under global change scenarios: <i>Echinococcus multilocularis</i> in Europe. Global Change Biology, 2023, 29, 2436-2449.	4.2	9
2024	Prediction of Potential Suitable Distribution Areas of Quasipaa spinosa in China Based on MaxEnt Optimization Model. Biology, 2023, 12, 366.	1.3	4
2025	You're stressing me out! Effect of interspecific competition from red deer on roe deer physiological stress response. Journal of Zoology, 2023, 320, 63-74.	0.8	3
2026	Habitat suitability mapping for a high-value non-timber forest product: A case study of <i>Rauvolfia serpentina</i> . Tropics, 2023, 31, 111-133.	0.2	0
2027	A Maximum Entropy Species Distribution Model to Estimate the Distribution of Bushpigs on Madagascar and Its Implications for African Swine Fever. Transboundary and Emerging Diseases, 2023, 2023, 1-10.	1.3	0
2028	Habitat probability prediction of umbrella species in urban ecosystems including habitat suitability of prey species. Landscape and Ecological Engineering, 0, , .	0.7	0
2029	Climatic niche shift and distribution of <i>Melanagromyza sojae</i> under current and future climate scenarios: does this species pose a risk to soybean production?. Entomologia Experimentalis Et Applicata, 2023, 171, 461-474.	0.7	2
2030	High and dry: integrative taxonomy of the Andean spider genus <i>Nerudia</i> (Araneae: Pholcidae). Zoological Journal of the Linnean Society, 2023, 198, 534-591.	1.0	4
2031	Current and Potential Future Global Distribution of the Raisin Moth Cadra figulilella (Lepidoptera:) Tj ETQq0 0 0 rg	$^{BT}_{1.3}$ Overlc	ock 10 Tf 50
2032	Meta-analysis of the impact of future climate change on the area of woody plant habitats in China. Frontiers in Plant Science, 0, 14, .	1.7	0
2033	Projection of Potential Habitat Change and Fragmentation of the Endangered Species Aconitum coreanum under Climate Change. Journal of Climate Change Research, 2023, 14, 67-81.	0.1	1
2035	Potential Distribution and Priority Conservation Areas of Pseudotsuga sinensis Forests under Climate Change in Guizhou Province, Southwesten China. Atmosphere, 2023, 14, 581.	1.0	0

#	Article	IF	CITATIONS
2036	Quantifying the Potential Vegetation Distribution under Climate Change: The Case of Cryptomeria fortunei in Dongting Lake Watershed, China. Forests, 2023, 14, 614.	0.9	1
2037	Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore. Climatic Change, 2023, 176, .	1.7	0
2038	Not only climate: The importance of biotic interactions in shaping species distributions at macro scales. Ecology and Evolution, 2023, 13, .	0.8	2
2039	Can social media be used to inform the distribution of the marbled polecat, Vormela peregusna?. Mammal Research, 2023, 68, 295-304.	0.6	2
2040	A Modeling Framework to Frame a Biological Invasion: Impatiens glandulifera in North America. Plants, 2023, 12, 1433.	1.6	1
2041	Prediction of global potential suitable habitats of Nicotiana alata Link et Otto based on MaxEnt model. Scientific Reports, 2023, 13, .	1.6	4
2042	Biological control of weeds in Australia: the last 120 years. Austral Entomology, 2023, 62, 133-148.	0.8	2
2043	Habitat connectivity supports the local abundance of fire salamanders (Salamandra salamandra) but also the spread of Batrachochytrium salamandrivorans. Landscape Ecology, 2023, 38, 1537-1554.	1.9	1
2044	Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases. Tropical Medicine and Infectious Disease, 2023, 8, 187.	0.9	3
2045	Desert Locust (Schistocerca gregaria) Invasion Risk and Vegetation Damage in a Key Upsurge Area. Earth, 2023, 4, 187-208.	0.9	1
2046	The Distribution Pattern and Species Richness of Scorpionflies (Mecoptera: Panorpidae). Insects, 2023, 14, 332.	1.0	1
2047	Evaluating the Urban-Rural Differences in the Environmental Factors Affecting Amphibian Roadkill. Sustainability, 2023, 15, 6051.	1.6	1
2048	Potential Coffee Distribution in a Central-Western Region of Mexico. Ecologies, 2023, 4, 269-287.	0.7	1
2051	Spatial Distribution Characteristics of Suitable Planting Areas for Pyrus Species under Climate Change in China. Plants, 2023, 12, 1559.	1.6	3
2052	Spatial weed distribution models under climate change: a short review. PeerJ, 0, 11, e15220.	0.9	2
2053	Species distribution modelling supports the study of past, present and future biogeographies. Journal of Biogeography, 2023, 50, 1533-1545.	1.4	16
2054	Priorities for conserving the world's terrestrial mammals based on over-the-horizon extinction risk. Current Biology, 2023, 33, 1381-1388.e6.	1.8	4
2055	Cryptosporidiosis threat under climate change in China: prediction and validation of habitat suitability and outbreak risk for human-derived Cryptosporidium based on ecological niche models. Infectious Diseases of Poverty, 2023, 12, .	1.5	0
#	Article	IF	Citations
------	---	-----	-----------
2056	Comparing multiscale, presence-only habitat suitability models created with structured survey data and community science data for a rare warbler species at the southern range margin. PLoS ONE, 2023, 18, e0275556.	1.1	0
2057	Disentangling the impacts of climate and land cover changes on habitat suitability of common pheasant Phasianus colchicus along elevational gradients in Iran. Environmental Science and Pollution Research, 2023, 30, 60958-60966.	2.7	2
2058	A multispecies corridor in a fragmented landscape: Evaluating effectiveness and identifying high-priority target areas. PLoS ONE, 2023, 18, e0283258.	1.1	0
2059	Conservation Status of the Northern Yellow-Cheeked Crested Gibbon (<i>Nomascus annamensis</i>) in Vietnam. , 2023, , 24-39.		0
2060	Mapping Brazilian Expansion Risk Levels of Mango Weevil (Sternochetus mangiferae Fabricius) Based on MaxEnt. Neotropical Entomology, 0, , .	0.5	0
2061	The habitat-suitability models of the European mole cricket (Gryllotalpa gryllotalpa) as information tool for conservation and pest management. Heliyon, 2023, 9, e14826.	1.4	1
2062	Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling. Computers and Geosciences, 2023, 176, 105364.	2.0	21
2063	Climate Change and Human Activities, the Significant Dynamic Drivers of Himalayan Goral Distribution (Naemorhedus goral). Biology, 2023, 12, 610.	1.3	3
2064	Do attributes of happy seeder technology influence its adoption speed? An investigation using duration analysis in Northern India. International Journal of Agricultural Sustainability, 2023, 21, .	1.3	3
2065	elapid: Species distribution modeling tools for Python. Journal of Open Source Software, 2023, 8, 4930.	2.0	3
2066	Remote sensing and citizen science to characterize the ecological niche of an endemic and endangered Costa Rican poison frog. Amphibia - Reptilia, 2023, 44, 227-242.	0.1	1
2067	Does climate change impact the potential habitat suitability and conservation status of the national bird of Peru (Rupicola peruvianus) ?. Biodiversity and Conservation, 2023, 32, 2323-2344.	1.2	1
2068	Monitoring the online ant trade reveals high biological invasion risk. Biological Conservation, 2023, 282, 110038.	1.9	1
2069	The ecological response of commercial fishes and shrimps to climate change: predicting global distributional shifts under future scenarios. Regional Environmental Change, 2023, 23, .	1.4	2
2070	Distribution and conservation status of the endemic Nilgiri marten (<i>Martes gwatkinsii</i>). Mammalia, 2023, 87, 360-366.	0.3	2
2071	Effects of Climate Change on the Habitat Suitability and Distribution of Endemic Freshwater Fish Species in Semi-Arid Central Anatolian Ecoregion in Türkiye. Water (Switzerland), 2023, 15, 1619.	1.2	0
2084	Modelling the Distribution of a Medicinal Plant Oroxylum indicum (L.) Kurz for Its Conservation in Arunachal Pradesh. , 2023, , 213-226.		0
2085	Habitat Suitability Modeling of Tor tor (Hamilton, 1822) in the Indian Drainage Systems Using MaxEnt. , 2023, , 323-337.		0

CITATION REPORT

#	Article	IF	CITATIONS
2086	Machine Learning-Based Predictive Modelling Approaches for Effective UnderstandingÂof Evolutionary History, Distribution, and Niche Occupancy: Western GhatsÂas a Model. , 2023, , 41-57.		1
2087	Global Sensitivity and Uncertainty Analysis of MaxEnt Model: Implications in Species Habitat Projections. , 2023, , 121-138.		1
2251	Designing and validating an MD5 Hash Algorithm using the UVM Verification Framework and Checkers. , 2023, , .		0
2262	Design and Analysis of Deep Learning based Water Potability Prediction. , 2023, , .		0
2264	Advanced Power Management for Electric Vehicle Charging Station. , 2023, , .		0
2304	Smart Auto Image Captioning Using LSTM and Densenet Network. , 2023, , .		0
2316	Defining and Modeling the Dimensions of Settlement Choice: An Empirical Approach. Interdisciplinary Contributions To Archaeology, 2023, , 41-70.	0.1	0

CITATION REPORT