CH₃NH₃PbI₃Per Planarâ€Heterojunction Hybrid Solar Cells

Advanced Materials 25, 3727-3732 DOI: 10.1002/adma.201301327

Citation Report

#	Article	IF	CITATIONS
1	Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 2013, 49, 11089.	2.2	553
2	A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Materials, 2013, 5, e68-e68.	3.8	143
3	Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5, 5784.	5.8	2,531
4	Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Materials, 2014, 2, .	2.2	118
5	CH ₃ NH ₃ PbI ₃ -Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Applied Materials & Interfaces, 2014, 6, 22862-22870.	4.0	214
6	Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014, 105, .	1.5	667
7	Reproducible One-Step Fabrication of Compact MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films Derived from Mixed-Lead-Halide Precursors. Chemistry of Materials, 2014, 26, 7145-7150.	3.2	81
8	Comparative Studies on Rigid Ï€ Linkerâ€Based Organic Dyes: Structure–Property Relationships and Photovoltaic Performance. ChemSusChem, 2014, 7, 3396-3406.	3.6	7
9	Efficient perovskite solar cells based on low-temperature solution-processed (CH3NH3)PbI3 perovskite/CuInS2 planar heterojunctions. Nanoscale Research Letters, 2014, 9, 457.	3.1	22
10	Nickel Oxide Electrode Interlayer in CH ₃ NH ₃ PbI ₃ Perovskite/PCBM Planarâ€Heterojunction Hybrid Solar Cells. Advanced Materials, 2014, 26, 4107-4113.	11.1	646
11	Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale, 2014, 6, 6679.	2.8	275
12	The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO ₂ -Based Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1096-1102.	2.1	221
13	Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today, 2014, 17, 16-23.	8.3	349
14	Perovskiteâ€Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Advanced Materials, 2014, 26, 2041-2046.	11.1	637
15	A Simple 3,4â€Ethylenedioxythiophene Based Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 4085-4088.	7.2	379
16	Study on the stability of CH ₃ NH ₃ PbI ₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 705-710.	5.2	963
17	Additive Enhanced Crystallization of Solutionâ€Processed Perovskite for Highly Efficient Planarâ€Heterojunction Solar Cells. Advanced Materials, 2014, 26, 3748-3754.	11.1	1,344
18	Solidâ€State Perovskiteâ€Sensitized pâ€Type Mesoporous Nickel Oxide Solar Cells. ChemSusChem, 2014, 7, 2150-2153.	3.6	69

CITATION R	FPORT

#	Article	IF	CITATIONS
19	Organohalide lead perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 2448-2463.	15.6	1,220
20	Synthesis of PbI ₂ Singleâ€Layered Inorganic Nanotubes Encapsulated Within Carbon Nanotubes. Advanced Materials, 2014, 26, 2016-2021.	11.1	52
21	Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130.	23.0	669
22	Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters, 2014, 14, 2591-2596.	4.5	397
23	Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy and Environmental Science, 2014, 7, 2619-2623.	15.6	1,154
24	Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80-85.	8.2	459
25	Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy and Environmental Science, 2014, 7, 2359-2365.	15.6	754
26	Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy and Environmental Science, 2014, 7, 2518-2534.	15.6	694
27	Solution Deposition onversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. Advanced Energy Materials, 2014, 4, 1400355.	10.2	325
28	Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 2014, 8, 128-132.	15.6	1,320
29	Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014, 136, 622-625.	6.6	2,091
30	Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters, 2014, 14, 127-133.	4.5	282
31	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407.	15.6	965
32	Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7, 994.	15.6	409
33	Solid-State Mesostructured Perovskite CH ₃ NH ₃ PbI ₃ Solar Cells: Charge Transport, Recombination, and Diffusion Length. Journal of Physical Chemistry Letters, 2014, 5, 490-494.	2.1	275
34	NH ₂ CHâ•NH ₂ Pbl ₃ : An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 2014, 26, 1485-1491.	3.2	516
35	Organolead Halide Perovskite: New Horizons in Solar Cell Research. Journal of Physical Chemistry C, 2014, 118, 5615-5625.	1.5	616
36	Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 680-685.	2.1	583

#	Article	IF	CITATIONS
37	High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid perovskite absorber with a low-cost flexible substrate. Physical Chemistry Chemical Physics, 2014, 16, 6033-6040.	1.3	86
38	Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014, 8, 1674-1680.	7.3	1,320
39	Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy and Environmental Science, 2014, 7, 1142-1147.	15.6	560
40	Organometal halide perovskites as useful materials in sensitized solar cells. Dalton Transactions, 2014, 43, 5247.	1.6	65
41	Effect of CH ₃ NH ₃ PbI ₃ thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19873-19881.	5.2	314
42	Morphology and Carrier Extraction Study of Organic–Inorganic Metal Halide Perovskite by One- and Two-Photon Fluorescence Microscopy. Journal of Physical Chemistry Letters, 2014, 5, 3849-3853.	2.1	84
43	Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency. Journal of the American Chemical Society, 2014, 136, 17116-17122.	6.6	407
44	A highly efficient (>6%) Cd _{1â^'x} Mn _x Se quantum dot sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 19653-19659.	5.2	126
45	Understanding the solvent-assisted crystallization mechanism inherent in efficient organic–inorganic halide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20454-20461.	5.2	147
46	Improved charge transport of Nb-doped TiO ₂ nanorods in methylammonium lead iodide bromide perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 19616-19622.	5.2	127
47	Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al2O3and NiO Nanoparticles. Angewandte Chemie, 2014, 126, 9493-9496.	1.6	31
48	Enhancing the efficiency of TiO ₂ -perovskite heterojunction solar cell via evaporating Cs ₂ CO ₃ on TiO ₂ . Physica Status Solidi - Rapid Research Letters, 2014, 8, 912-916.	1.2	12
49	Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4175-4186.	2.1	227
50	Improved External Quantum Efficiency from Solution-Processed (CH ₃ NH ₃)Pbl ₃ Perovskite/PC ₇₁ BM Planar Heterojunction for High Efficiency Hybrid Solar Cells. Journal of Physical Chemistry C, 2014, 118, 25899-25905.	1.5	40
51	Optimized Organometal Halide Perovskite Planar Hybrid Solar Cells via Control of Solvent Evaporation Rate. Journal of Physical Chemistry C, 2014, 118, 26513-26520.	1.5	58
52	Perovskite photovoltaics featuring solution-processable TiO2as an interfacial electron-transporting layer display to improve performance and stability. Nanoscale, 2014, 6, 11403-11410.	2.8	24
53	Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials, 2014, 26, 6160-6164.	3.2	502
54	Solvent Annealing of Perovskiteâ€Induced Crystal Growth for Photovoltaicâ€Device Efficiency Enhancement. Advanced Materials, 2014, 26, 6503-6509.	11.1	1,527

ARTICLE IF CITATIONS High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via 55 1.7 55 electrochemical polymerization. RSC Advances, 2014, 4, 33039. Femtosecond Excitonic Relaxation Dynamics of Perovskite on Mesoporous Films of Al₂O₃ and NiO Nanoparticles. Angewandte Chemie - International Edition, 7.2 2014, 53, 9339-9342. Sequential Deposition of CH₃NH₃Pbl₃ on Planar NiO Film for 58 3.2 245 Efficient Planar Perovskite Solar Cells. ACS Photonics, 2014, 1, 547-553. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite 59 thin films by thermal annealing. Journal of Materials Chemistry A, 2014, 2, 18508-18514. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546. 60 5,936 6.0 Efficient and Uniform Planarâ€Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials, 2014, 26, 6647-6652. 11.1 High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier 63 5.8 205 diffusion lengths and interfacial engineering. Nano Research, 2014, 7, 1749-1758. Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH₃NH₃Pbl₃Perovskite Heterojunction Solar 64 319 Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 11851-11858. Binaryâ€Metal Perovskites Toward Highâ€Performance Planarâ€Heterojunction Hybrid Solar Cells. 65 11.1 295 Advanced Materials, 2014, 26, 6454-6460. Planar heterojunction perovskite/PC₇₁BM solar cells with enhanced open-circuit voltage 5.2 via a (2/1)-step spin-coating process. Journal of Materials Chemistry A, 2014, 2, 15897-15903. Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Selfâ€Organized Polymeric 67 11.1 321 Hole Extraction Layers with High Work Function. Advanced Materials, 2014, 26, 6461-6466. Lead Methylammonium Triiodide Perovskiteâ€Based Solar Cells: An Interfacial Chargeâ€Transfer 68 3.6 Investigation. ChemSusChem, 2014, 7, 3088-3094. Recent Research Developments of Perovskite Solar Cells. Chinese Journal of Chemistry, 2014, 32, 69 2.6 37 957-963. Enhanced Photoluminescence and Solar Cell Performance <i>via</i> Lewis Base Passivation of 1,439 Organic–Inorganic Lead Halide Perovskites. ACS Nano, 2014, 8, 9815-9821. Inkjet Printing and Instant Chemical Transformation of a CH₃NH₃PbI₃/Nanocarbon Electrode and Interface for Planar 71 7.2 370 Perovskite Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 13239-13243. Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single 504 crystalline grains for high efficiency planar solar cells. Nano Energy, 2014, 10, 10-18. An Aboveâ€Roomâ€Temperature Ferroelectric Organo–Metal Halide Perovskite: 73 7.2 160 (3â€Pyrrolinium)(CdCl₃). Angewandte Chemie - International Edition, 2014, 53, 11242-11247. Zn₂SnO₄Based Photoelectrodes for Organolead Halide Perovskite Solar 74 1.5 Cells. Journal of Physical Chemistry C, 2014, 118, 22991-22994.

#	Article	IF	CITATIONS
75	Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale, 2014, 6, 12287-12297.	2.8	120
76	Performance enhancement of solution processed perovskite solar cells incorporating functionalized silica nanoparticles. Journal of Materials Chemistry A, 2014, 2, 17077-17084.	5.2	32
77	Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer. Journal of Materials Chemistry A, 2014, 2, 19598-19603.	5.2	186
78	Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale, 2014, 6, 10505-10510.	2.8	352
79	An 80.11% FF record achieved for perovskite solar cells by using the NH ₄ Cl additive. Nanoscale, 2014, 6, 9935-9938.	2.8	368
80	Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13, 897-903.	13.3	5,796
81	Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters, 2014, 14, 4158-4163.	4.5	1,343
82	Highâ€Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. Advanced Functional Materials, 2014, 24, 7373-7380.	7.8	791
83	Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discussions, 2014, 176, 301-312.	1.6	115
84	Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials, 2014, 26, 5190-5193.	3.2	178
85	Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale, 2014, 6, 10281-10288.	2.8	105
86	Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Applied Physics Letters, 2014, 104, .	1.5	232
87	Holeâ€Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells. ChemSusChem, 2014, 7, 3420-3425.	3.6	139
88	Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. Journal of Physical Chemistry C, 2014, 118, 17171-17177.	1.5	225
89	Vapour-based processing of hole-conductor-free CH ₃ NH ₃ PbI ₃ perovskite/C ₆₀ fullerene planar solar cells. RSC Advances, 2014, 4, 28964-28967.	1.7	127
90	A highly efficient mesoscopic solar cell based on CH ₃ NH ₃ Pbl _{3â^x} Cl _x fabricated via sequential solution deposition. Chemical Communications, 2014, 50, 12458-12461.	2.2	87
91	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	10.2	164
92	Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano, 2014, 8, 4730-4739.	7.3	269

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
93	Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. Journal of Physical Chemistry Letters, 2014, 5, 2189-2194.	2.1	465
94	Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy and Environmental Science, 2014, 7, 2642-2646.	15.6	622
95	Highly compact TiO ₂ layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express, 2014, 7, 052301.	1.1	199
96	Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. Journal of Physical Chemistry Letters, 2014, 5, 1035-1039.	2.1	2,153
97	Fabrication of Lead Halide Perovskite Film by Controlling Reactivity at Room Temperature in Mixed Solvents. Chemistry Letters, 2014, 43, 1722-1724.	0.7	16
99	Vapor-assisted solution process for perovskite materials and solar cells. MRS Bulletin, 2015, 40, 667-673.	1.7	39
101	Improving the Stability of a Liquid-type Perovskite Solar Cell by Capping Spiro-OMeTAD Layer onto CH3NH3PbI3/TiO2 Film. Chemistry Letters, 2015, 44, 1446-1448.	0.7	1
102	Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific Reports, 2015, 5, 13211.	1.6	155
103	Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells. Scientific Reports, 2015, 5, 13657.	1.6	37
105	High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Scientific Reports, 2015, 5, 16563.	1.6	270
106	Enhanced Photovoltaic Performance of Perovskite Solar Cells via Modification of Surface Characteristics Using a Fullerene Interlayer. Chemistry Letters, 2015, 44, 1735-1737.	0.7	28
107	Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Applied Physics Letters, 2015, 107, .	1.5	40
108	Organic Charge Carriers for Perovskite Solar Cells. ChemSusChem, 2015, 8, 3012-3028.	3.6	109
109	Highâ€Quality Mixedâ€Organicâ€Cation Perovskites from a Phaseâ€Pure Nonâ€stoichiometric Intermediate (FAI) _{1â^'} <i>_x</i> â€PbI ₂ for Solar Cells. Advanced Materials, 2015, 27, 4918-4923.	11.1	140
110	Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals. Advanced Materials, 2015, 27, 7229-7235.	11.1	134
111	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	7.8	321
112	Solar Rechargeable Batteries Based on Lead–Organohalide Electrolyte. Advanced Energy Materials, 2015, 5, 1501418.	10.2	35
113	Highâ€Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1500486.	10.2	221

#	Article	IF	CITATIONS
114	Perovskite Photovoltaics for Dim‣ight Applications. Advanced Functional Materials, 2015, 25, 7064-7070.	7.8	153
115	A Lowâ€Temperature, Solutionâ€Processable, Cuâ€Doped Nickel Oxide Holeâ€Transporting Layer via the Combustion Method for Highâ€Performance Thinâ€Film Perovskite Solar Cells. Advanced Materials, 2015, 27, 7874-7880.	11.1	405
116	A Strategy to Design a Donor–ï€â€"Acceptor Polymeric Hole Conductor for an Efficient Perovskite Solar Cell. Advanced Energy Materials, 2015, 5, 1500471.	10.2	55
117	Highâ€Performance Planar Solar Cells Based On CH ₃ NH ₃ PbI _{3â€<i>x</i>Cl<i>_Xx</i>} Perovskites with Determined Chlorine Mole Fraction. Advanced Functional Materials, 2015, 25, 4867-4873.	7.8	95
118	Microengineered CH ₃ NH ₃ PbI ₃ Nanowire/Graphene Phototransistor for Lowâ€Intensity Light Detection at Room Temperature. Small, 2015, 11, 4824-4828.	5.2	151
119	Transient Response of Organo-Metal-Halide Solar Cells Analyzed by Time-Resolved Current-Voltage Measurements. Photonics, 2015, 2, 1101-1115.	0.9	14
120	Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	19
121	Perovskite Solar Cells: Potentials, Challenges, and Opportunities. International Journal of Photoenergy, 2015, 2015, 1-13.	1.4	65
122	A panchromatic hybrid crystal of iodoplumbate nanowires and J-aggregated naphthalene diimides with long-lived charge-separated states. Dalton Transactions, 2015, 44, 5957-5960.	1.6	76
123	Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2015, 17, 16405-16411.	1.3	215
124	Solution-Processed Planar Perovskite Solar Cell Without a Hole Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 12015-12021.	4.0	42
125	Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7, 10595-10599.	2.8	294
126	Solvent engineering of the electron transport layer using 1,8-diiodooctane for improving the performance of perovskite solar cells. Organic Electronics, 2015, 24, 101-105.	1.4	45
127	Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 13659-13665.	4.0	132
128	Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293, 533-538.	4.0	114
129	Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis. Journal of Materials Chemistry A, 2015, 3, 14121-14125.	5.2	76
130	Improving efficiency of planar hybrid CH 3 NH 3 PbI 3â^' x Cl x perovskite solar cells by isopropanol solvent treatment. Organic Electronics, 2015, 24, 205-211.	1.4	41
131	Efficient and non-hysteresis CH3NH3PbI3/PCBM planar heterojunction solar cells. Organic Electronics, 2015, 24, 106-112.	1.4	94

#	Article	IF	CITATIONS
132	Organic–Inorganic Hybrid Ternary Bulk Heterojunction of Nanostructured Perovskite–Low Bandgap Polymer–PCBM for Improved Efficiency of Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28459-28465.	4.0	9
133	Substitution induced band structure shape tuning in hybrid perovskites (CH ₃ NH ₃ Pb _{1â^*x} Sn _x I ₃) for efficient solar cell applications. RSC Advances, 2015, 5, 107497-107502.	1.7	44
134	Annealing effects on high-performance CH3NH3PbI3 perovskite solar cells prepared by solution-process. Solar Energy, 2015, 122, 1047-1051.	2.9	70
135	Two-step sequential substrate vibration-assisted spray coating (SVASC) as a path to high performance perovskite solar cells. , 2015, , .		0
136	Spray PEDOT:PSS coated perovskite with a transparent conducting electrode for low cost scalable photovoltaic devices. Materials Research Innovations, 2015, 19, 482-487.	1.0	9
137	Using an Airbrush Pen for Layer-by-Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 2359-2366.	4.0	82
138	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
139	Vacuum-Assisted Thermal Annealing of CH ₃ NH ₃ PbI ₃ for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano, 2015, 9, 639-646.	7.3	318
140	Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions. Advanced Functional Materials, 2015, 25, 1213-1218.	7.8	86
141	Nanocarbons for mesoscopic perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 9020-9031.	5.2	104
142	Phosphonium Halides as Both Processing Additives and Interfacial Modifiers for High Performance Planarâ€Heterojunction Perovskite Solar Cells. Small, 2015, 11, 3344-3350.	5.2	91
143	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
144	Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell. ACS Applied Materials & Interfaces, 2015, 7, 4955-4961.	4.0	295
145	Interfaces in Perovskite Solar Cells. Small, 2015, 11, 2472-2486.	5.2	344
146	High efficiency sequentially vapor grown n-i-p CH ₃ NH ₃ PbI ₃ perovskite solar cells with undoped P3HT as p-type heterojunction layer. APL Materials, 2015, 3, 016105.	2.2	87
147	Enhanced Photovoltaic Performance of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. Journal of the American Chemical Society, 2015, 137, 2674-2679.	6.6	590
148	Organic–inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics. Inorganic Chemistry Frontiers, 2015, 2, 315-335.	3.0	70
149	The effect of external electric field on the performance of perovskite solar cells. Organic Electronics, 2015, 18, 107-112.	1.4	32

#	Article	IF	CITATIONS
150	Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy and Environmental Science, 2015, 8, 1245-1255.	15.6	252
151	A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells. Current Applied Physics, 2015, 15, 574-579.	1.1	34
152	Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 2015, 137, 6-14.	3.0	117
153	Inverted Planar Heterojunction Perovskite Solar Cells Employing Polymer as the Electron Conductor. ACS Applied Materials & Interfaces, 2015, 7, 3994-3999.	4.0	100
154	Fabrication of metal-oxide-free CH ₃ NH ₃ PbI ₃ perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 2015, 3, 3271-3275.	5.2	162
155	Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated Pbl ₂ /CH ₃ NH ₃ I multilayers. Journal of Materials Chemistry A, 2015, 3, 9223-9231.	5.2	82
156	Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells. Applied Physics Letters, 2015, 106, .	1.5	123
157	Distinct Exciton Dissociation Behavior of Organolead Trihalide Perovskite and Excitonic Semiconductors Studied in the Same System. Small, 2015, 11, 2164-2169.	5.2	78
158	Morphology control of the perovskite films for efficient solar cells. Dalton Transactions, 2015, 44, 10582-10593.	1.6	154
159	Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3â ^{°°} xClx layer. Organic Electronics, 2015, 21, 19-26.	1.4	56
160	Roles of Fullereneâ€Based Interlayers in Enhancing the Performance of Organometal Perovskite Thinâ€Film Solar Cells. Advanced Energy Materials, 2015, 5, 1402321.	10.2	289
161	Perovskite solar cells: film formation and properties. Journal of Materials Chemistry A, 2015, 3, 9032-9050.	5.2	392
162	Triple Cathode Buffer Layers Composed of PCBM, C ₆₀ , and LiF for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 6230-6237.	4.0	136
163	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34
164	Bulk intermixing-type perovskite CH ₃ NH ₃ PbI ₃ /TiO ₂ nanorod hybrid solar cells. Nanoscale, 2015, 7, 14532-14537.	2.8	15
165	Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control. Chemistry of Materials, 2015, 27, 5570-5576.	3.2	82
166	High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy, 2015, 16, 428-437.	8.2	124
167	Formation of high-quality perovskite thin film for planar heterojunction solar cells. RSC Advances, 2015, 5, 69502-69508.	1.7	15

#	Article	IF	CITATIONS
168	Efficient planar perovskite solar cells with large fill factor and excellent stability. Journal of Power Sources, 2015, 297, 53-58.	4.0	59
169	Effect of surface composition on electronic properties of methylammonium lead iodide perovskite. Journal of Materiomics, 2015, 1, 213-220.	2.8	49
170	High efficiency stable inverted perovskite solar cells without current hysteresis. Energy and Environmental Science, 2015, 8, 2725-2733.	15.6	533
171	Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Organic Electronics, 2015, 26, 265-272.	1.4	83
172	Interface engineering for high-performance perovskite hybrid solar cells. Journal of Materials Chemistry A, 2015, 3, 19205-19217.	5.2	145
173	Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 2015, 26, 342001.	1.3	75
174	Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15024-15029.	5.2	107
175	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78
176	A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale, 2015, 7, 13363-13368.	2.8	64
177	Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15897-15904.	5.2	85
178	High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Organic Electronics, 2015, 26, 30-35.	1.4	92
179	Hole transporting material-free and annealing-free thermal evaporated planar perovskite solar cells with an ultra-thin CH3NH3PbI3â~ Cl layer. Organic Electronics, 2015, 26, 104-108.	1.4	15
180	Morphological control of organic–inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. Journal of Materials Chemistry A, 2015, 3, 17780-17787.	5.2	29
181	Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Scientific Reports, 2015, 5, 11424.	1.6	112
182	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
183	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	5.8	281
184	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
185	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	4.0	201

#	Article	IF	CITATIONS
186	Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells. Nano Energy, 2015, 16, 47-53.	8.2	36
187	Enhanced efficiency of planar-heterojunction perovskite solar cells through a thermal gradient annealing process. RSC Advances, 2015, 5, 58041-58045.	1.7	11
188	Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Nanoscale, 2015, 7, 9771-9778.	2.8	102
189	Efficient and stable planar heterojunction perovskite solar cells with an MoO ₃ /PEDOT:PSS hole transporting layer. Nanoscale, 2015, 7, 9427-9432.	2.8	211
190	Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Research, 2015, 8, 2474-2480.	5.8	91
191	High-performance and high-durability perovskite photovoltaic devices prepared using ethylammonium iodide as an additive. Journal of Materials Chemistry A, 2015, 3, 9271-9277.	5.2	87
192	Nucleation and Crystal Growth of Organic–Inorganic Lead Halide Perovskites under Different Relative Humidity. ACS Applied Materials & Interfaces, 2015, 7, 9110-9117.	4.0	137
193	Recent Progress on Holeâ€Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500213.	10.2	418
194	One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive. Journal of Photonics for Energy, 2015, 5, 057405.	0.8	45
195	Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539.	5.2	116
196	Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chemical Communications, 2015, 51, 10038-10041.	2.2	49
197	Enhanced efficiency of organic and perovskite photovoltaics from shape-dependent broadband plasmonic effects of silver nanoplates. Solar Energy Materials and Solar Cells, 2015, 140, 224-231.	3.0	77
198	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	2.8	21
199	Perovskite solar cells prepared by flash evaporation. Chemical Communications, 2015, 51, 7376-7378.	2.2	99
200	Study on the correlations between the structure and photoelectric properties of CH3NH3PbI3 perovskite light-harvesting material. Journal of Power Sources, 2015, 285, 349-353.	4.0	27
201	High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, 2015, 3, 9128-9132.	5.2	52
202	Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. Journal of Materials Chemistry A, 2015, 3, 11631-11640.	5.2	188
203	Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15372-15385.	5.2	120

#	Article	IF	CITATIONS
204	Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. Journal of Materials Chemistry A, 2015, 3, 12133-12138.	5.2	86
205	Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. Journal of Materials Chemistry A, 2015, 3, 12081-12088.	5.2	123
206	Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. Journal of Materials Chemistry A, 2015, 3, 9401-9405.	5.2	146
207	Hysteresis-less inverted CH ₃ NH ₃ PbI ₃ planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy and Environmental Science, 2015, 8, 1602-1608.	15.6	1,079
208	Controlled Oriented Attachment of Bipyramidalâ€Shaped Anatase TiO ₂ and Their Enhanced Performance in Dyeâ€Sensitized Solar Cells. ChemPlusChem, 2015, 80, 805-809.	1.3	7
209	Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. Journal of Materials Chemistry A, 2015, 3, 9406-9410.	5.2	77
210	Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chemical Communications, 2015, 51, 8986-8989.	2.2	28
211	Low-temperature SnO ₂ -based electron selective contact for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 10837-10844.	5.2	324
212	Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer. IEEE Transactions on Electron Devices, 2015, 62, 1590-1595.	1.6	28
213	New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21807-21818.	4.0	80
214	Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode. Optics Express, 2015, 23, A83.	1.7	53
215	Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer. Chemical Communications, 2015, 51, 17413-17416.	2.2	76
216	Functional p-Type, Polymerized Organic Electrode Interlayer in CH ₃ NH ₃ PbI ₃ Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 24973-24981.	4.0	36
217	Band alignments at interface of ZnO/FAPbI3 heterojunction by X-ray photoelectron spectroscopy. Applied Surface Science, 2015, 357, 1743-1746.	3.1	8
218	Two different mechanisms of CH3NH3PbI3film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 23964-23972.	5.2	72
219	Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Applied Materials & Interfaces, 2015, 7, 25247-25258.	4.0	40
220	Layered V ₂ O ₅ /PEDOT Nanowires and Ultrathin Nanobelts Fabricated with a Silk Reelinglike Process. Chemistry of Materials, 2015, 27, 5813-5819.	3.2	74
221	Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells. Journal of Renewable and Sustainable Energy, 2015, 7, 043105.	0.8	31

	Сітаті	ION REPORT	
#	Article	IF	Citations
222	Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A, 2015, 3, 24254-24260.	5.2	133
223	Microstructural and electrical properties of CuAlO2 ceramic prepared by a novel solvent-free ester elimination process. Journal of Alloys and Compounds, 2015, 653, 219-227.	2.8	18
224	In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 736-743.	7.1	23
225	High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy and Environmental Science, 2015, 8, 3550-3556.	15.6	384
226	Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19353-19359.	5.2	239
227	Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters, 2015, 15, 6665-6671.	4.5	179
228	Smooth CH ₃ NH ₃ PbI ₃ from controlled solid–gas reaction for photovoltaic applications. RSC Advances, 2015, 5, 73760-73766.	1.7	17
229	Efficient Perovskite Hybrid Solar Cells via Controllable Crystallization Film Morphology. IEEE Journal of Photovoltaics, 2015, 5, 1402-1407.	1.5	4
230	Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 20810-20816.	1.5	88
231	Ionic Charge Transfer Complex Induced Visible Light Harvesting and Photocharge Generation in Perovskite. ACS Applied Materials & Interfaces, 2015, 7, 20280-20284.	4.0	19
232	Influence of halide precursor type and its composition on the electronic properties of vacuum deposited perovskite films. Physical Chemistry Chemical Physics, 2015, 17, 24342-24348.	1.3	41
233	Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin–orbital-coupling. Nanoscale, 2015, 7, 15168-15174	4. ^{2.8}	80
234	High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, 2015, 3, 19294-19298.	5.2	35
235	A crosslinked fullerene matrix doped with an ionic fullerene as a cathodic buffer layer toward high-performance and thermally stable polymer and organic metallohalide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20382-20388.	5.2	35
236	In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient interfacial materials for both polymer and planar heterojunction perovskite solar cells. Organic Electronics, 2015, 27, 46-52.	1.4	23
237	Ionic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells. RSC Advances, 2015, 5, 77495-77500.	1.7	60
238	Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX ₂ (X = I, Cl) precursors. Journal of Materials Chemistry A, 2015, 3, 19842-19849.	5.2	44
239	Improving the efficiency of CH3NH3PbI3 based photovoltaics by tuning the work function of the PEDOT:PSS hole transport layer. Solar Energy, 2015, 122, 892-899.	2.9	43

#	Article	IF	CITATIONS
240	High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A, 2015, 3, 9098-9102.	5.2	192
241	Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 2015, 12, 96-104.	8.2	328
242	Perovskite-based solar cells: impact of morphology and device architecture on device performance. Journal of Materials Chemistry A, 2015, 3, 8943-8969.	5.2	522
243	Highâ€Efficiency Solutionâ€Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials, 2015, 5, 1401855.	10.2	337
244	Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25.	5.2	1,210
245	Highâ€Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solutionâ€Processed Copperâ€Doped Nickel Oxide Holeâ€Transporting Layer. Advanced Materials, 2015, 27, 695-701.	11.1	751
246	Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy and Environmental Science, 2015, 8, 629-640.	15.6	285
247	Multicolored Organic/Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 1248-1254.	11.1	1,077
248	Metallohalide perovskite–polymer composite film for hybrid planar heterojunction solar cells. RSC Advances, 2015, 5, 775-783.	1.7	76
249	p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Scientific Reports, 2014, 4, 4756.	1.6	371
250	Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Bladeâ€Coating. Advanced Energy Materials, 2015, 5, 1401229.	10.2	303
251	Electronic structures at the interface between Au and CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2015, 17, 896-902.	1.3	82
252	Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells. Scientific Reports, 2014, 4, 6752.	1.6	100
253	CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport Material. Electrochimica Acta, 2015, 151, 21-26.	2.6	53
254	Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. Nanoscale, 2015, 7, 896-900.	2.8	127
255	Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015, 3, 8992-9010.	5.2	164
256	Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 2014, 4, 6953.	1.6	208
257	Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells. Journal of Materials Chemistry A, 2015, 3, 9152-9159.	5.2	240

#	Article	IF	CITATIONS
258	Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties. Journal of Materials Chemistry A, 2015, 3, 9081-9085.	5.2	110
259	The roles of alkyl halide additives in enhancing perovskite solar cell performance. Journal of Materials Chemistry A, 2015, 3, 9058-9062.	5.2	147
260	Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4, 6071.	1.6	283
261	Highâ€Performance Planarâ€Heterojunction Solar Cells Based on Ternary Halide Largeâ€Bandâ€Gap Perovskites. Advanced Energy Materials, 2015, 5, 1400960.	10.2	117
262	Charge Carrier Dynamics in Organometal Halide Perovskite Probed by Time-Resolved Electrical Measurements. , 2016, , .		0
263	Thermal treatment of solution-processed nano-sized thin films of molybdenum oxide. Journal of Physics: Conference Series, 2016, 764, 012011.	0.3	4
264	Ambient Air and Hole Transport Layer Free Synthesis: Towards Low Cost CH ₃ NH ₃ PbI ₃ Solar Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	3
265	Annealing Effect on (FAPbI3)1a^'x(MAPbBr3)x Perovskite Films in Inverted-Type Perovskite Solar Cells. Materials, 2016, 9, 747.	1.3	35
266	Ï€-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells. Metals, 2016, 6, 21.	1.0	39
267	Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing. Molecules, 2016, 21, 542.	1.7	18
268	Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells. Molecules, 2016, 21, 837.	1.7	28
269	A Study of Inverted-Type Perovskite Solar Cells with Various Composition Ratios of (FAPbI3)1â^'x(MAPbBr3)x. Nanomaterials, 2016, 6, 183.	1.9	22
270	Planar Perovskite Solar Cells using CH ₃ NH ₃ PbI ₃ Films: A Simple Process Suitable for Large‣cale Production. Energy Technology, 2016, 4, 473-478.	1.8	32
271	Interfacial electron accumulation for efficient homo-junction perovskite solar cells. Nano Energy, 2016, 28, 269-276.	8.2	63
272	Pyriteâ€Based Biâ€Functional Layer for Longâ€Term Stability and Highâ€Performance of Organoâ€Lead Halide Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 5400-5407.	7.8	46
273	CH ₃ NH ₃ PbBr ₃ –CH ₃ NH ₃ PbI ₃ Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage. Advanced Materials, 2016, 28, 5121-5125.	11.1	195
274	Mesoporous PbI ₂ Scaffold for Highâ€Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501890.	10.2	124
275	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387

#	Article	IF	CITATIONS
276	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 9145-9149.	1.6	19
277	Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes. Advanced Materials, 2016, 28, 917-922.	11.1	288
278	Understanding Interface Engineering for Highâ€Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606.	10.2	180
279	Humidity controlled crystallization of thin CH ₃ NH ₃ PbI ₃ films for high performance perovskite solar cell. Physica Status Solidi - Rapid Research Letters, 2016, 10, 381-387.	1.2	39
280	Electricâ€Fieldâ€Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures. Advanced Energy Materials, 2016, 6, 1501803.	10.2	287
281	Hexaazatrinaphthylene Derivatives: Efficient Electronâ€Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 8999-9003.	7.2	118
282	Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501534.	10.2	278
283	Holeâ€Transporting Materials for Perovskiteâ€Sensitized Solar Cells. Energy Technology, 2016, 4, 891-938.	1.8	50
284	Versatile Molybdenum Isopropoxide for Efficient Mesoporous Perovskite Solar Cells: Simultaneously Optimized Morphology and Interfacial Engineering. Journal of Physical Chemistry C, 2016, 120, 15089-15095.	1.5	8
285	Vapour-assisted multi-functional perovskite thin films for solar cells and photodetectors. Journal of Materials Chemistry C, 2016, 4, 7415-7419.	2.7	25
286	Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells. Advanced Materials, 2016, 28, 3966-3972.	11.1	152
287	Transparent Conductive Oxideâ€Free Grapheneâ€Based Perovskite Solar Cells with over 17% Efficiency. Advanced Energy Materials, 2016, 6, 1501873.	10.2	206
288	Improving Film Formation and Photovoltage of Highly Efficient Invertedâ€īype Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers. Advanced Energy Materials, 2016, 6, 1502021.	10.2	152
289	Semitransparent Solar Cells with Ultrasmooth and Low-Scattering Perovskite Thin Films. Journal of Physical Chemistry C, 2016, 120, 28933-28938.	1.5	32
290	Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Materials Today Energy, 2016, 1-2, 1-10.	2.5	30
291	Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 34612-34619.	4.0	24
292	Research Update: Behind the high efficiency of hybrid perovskite solar cells. APL Materials, 2016, 4, .	2.2	47
293	Seed-mediated superior organometal halide films by GeO ₂ nano-particles for high performance perovskite solar cells. Applied Physics Letters, 2016, 108, 053301.	1.5	58

#	Article	IF	CITATIONS
294	Fabrication and characteristics of CH ₃ NH ₃ PbI ₃ perovskite solar cells with molybdenum-selenide hole-transport layer. Applied Physics Express, 2016, 9, 122301.	1.1	13
295	Perovskite/polymer solar cells prepared using solution process. Journal of Physics: Conference Series, 2016, 776, 012010.	0.3	0
296	Low resistivity ZnO-GO electron transport layer based CH3NH3PbI3 solar cells. AIP Advances, 2016, 6, .	0.6	26
297	Iodine and Chlorine Element Evolution in CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Thin Films for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2742-2749.	3.2	48
298	A self-powered photodetector based on a CH ₃ NH ₃ PbI ₃ single crystal with asymmetric electrodes. CrystEngComm, 2016, 18, 4405-4411.	1.3	95
299	Effects of UV-ozone irradiation on copper doped nickel acetate and its applicability to perovskite solar cells. Nanoscale, 2016, 8, 9284-9292.	2.8	38
300	Perovskites as new radical photoinitiators for radical and cationic polymerizations. Tetrahedron, 2016, 72, 7686-7690.	1.0	18
301	Solution-processed flexible planar perovskite solar cells: A strategy to enhance efficiency by controlling the ZnO electron transfer layer, PbI 2 phase, and CH 3 NH 3 PbI 3 morphologies. Journal of Power Sources, 2016, 324, 142-149.	4.0	17
302	Improving performance and reducing hysteresis in perovskite solar cells by using F8BT as electron transporting layer. Solar Energy Materials and Solar Cells, 2016, 157, 79-84.	3.0	27
304	Nanostructured Materials for High Efficiency Perovskite Solar Cells. Nanoscience and Technology, 2016, , 1-39.	1.5	3
305	Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)–molybdenum oxide composite films as hole conductors for efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 9958-9966.	5.2	44
306	Morphology fixing agent for [6,6]-phenyl C ₆₁ -butyric acid methyl ester (PC ₆₀ BM) in planar-type perovskite solar cells for enhanced stability. RSC Advances, 2016, 6, 51513-51519.	1.7	10
307	Improved performance of perovskite solar cells with a TiO2/MoO3 core/shell nanoparticles doped PEDOT:PSS hole-transporter. Organic Electronics, 2016, 33, 221-226.	1.4	26
308	Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. Journal of Materials Chemistry A, 2016, 4, 6295-6303.	5.2	61
309	The benefits of graphene for hybrid perovskite solar cells. Synthetic Metals, 2016, 222, 3-16.	2.1	52
310	p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8, 10528-10540.	2.8	125
311	Refractive index modulating Raman spectroscopy based on perovskite PMN-PT ceramics. Applied Optics, 2016, 55, 2748.	2.1	2
312	Grain growth study of perovskite thin films prepared by flash evaporation and its effect on solar cell performance. RSC Advances, 2016, 6, 48851-48857.	1.7	29

#	Article	IF	CITATIONS
313	Morphology control of planar heterojunction perovskite solar cells with fluorinated PDI films as organic electron transport layer. Solar Energy, 2016, 133, 331-338.	2.9	46
314	Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. ACS Nano, 2016, 10, 5479-5489.	7.3	125
315	Absorption enhancement in CH ₃ NH ₃ PbI ₃ solar cell using a TiO ₂ /MoS ₂ nanocomposite electron selective contact. Materials Research Express, 2016, 3, 045022.	0.8	20
316	High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO _x hole transport layer. Nanoscale, 2016, 8, 10806-10813.	2.8	206
317	Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating. RSC Advances, 2016, 6, 43299-43303.	1.7	52
318	Blending of n-type Semiconducting Polymer and PC ₆₁ BM for an Efficient Electron-Selective Material to Boost the Performance of the Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 12822-12829.	4.0	30
319	Efficient, high yield perovskite/fullerene planar-heterojunction solar cells via one-step spin-coating processing. RSC Advances, 2016, 6, 48449-48454.	1.7	10
320	Efficient planar heterojunction perovskite solar cells fabricated via roller-coating. Solar Energy Materials and Solar Cells, 2016, 155, 14-19.	3.0	15
321	Hydrophobic hole-transporting layer induced porous PbI2 film for stable and efficient perovskite solar cells in 50% humidity. Solar Energy Materials and Solar Cells, 2016, 157, 989-995.	3.0	17
322	Efficiency improvement in silicon nanowire/conductive polymer hybrid solar cells based on formic acid treatment. RSC Advances, 2016, 6, 86836-86842.	1.7	7
323	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	1.7	69
324	Influence of chirality on the cyclohexene-fused C60 fullerene derivatives as an accepter partner in a photovoltaic cell. Green Energy and Environment, 2016, 1, 149-155.	4.7	12
325	Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy and Environmental Science, 2016, 9, 3424-3428.	15.6	94
326	High-coverage organic-inorganic perovskite film fabricated by double spin coating for improved solar power conversion and amplified spontaneous emission. Chemical Physics Letters, 2016, 661, 131-135.	1.2	11
327	Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC ₇₁ BM in planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18776-18782.	5.2	26
328	Effect of polyelectrolyte interlayer on efficiency and stability of p-i-n perovskite solar cells. Solar Energy, 2016, 139, 190-198.	2.9	25
329	Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. Nanoscale Research Letters, 2016, 11, 402.	3.1	81
330	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552.	5.2	143

#	Article	IF	CITATIONS
331	Fatigue behavior of planar CH3NH3PbI3 perovskite solar cells revealed by light on/off diurnal cycling. Nano Energy, 2016, 27, 509-514.	8.2	76
332	Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale, 2016, 8, 15954-15960.	2.8	170
333	Ambient Engineering for High-Performance Organic–Inorganic Perovskite Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 21505-21511.	4.0	25
334	Preparation of ZnO electron transport layers by spray technology for perovskite solar cells. Journal of Alloys and Compounds, 2016, 689, 192-198.	2.8	13
335	Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 2016, 27, 561-568.	8.2	14
336	Interface studies of the planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 783-790.	3.0	42
337	Enhanced Structural Stability and Photo Responsiveness of CH ₃ NH ₃ SnI ₃ Perovskite via Pressureâ€Induced Amorphization and Recrystallization. Advanced Materials, 2016, 28, 8663-8668.	11.1	176
338	NiO <i>_x</i> Electrode Interlayer and CH ₃ NH ₂ /CH ₃ NH ₃ PbBr ₃ Interface Treatment to Markedly Advance Hybrid Perovskiteâ€Based Lightâ€Emitting Diodes. Advanced Materials, 2016. 28. 8687-8694.	11.1	147
339	Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. Advanced Science, 2016, 3, 1600027.	5.6	86
340	Efficient Perovskite Solar Cells Employing Inorganic Interlayers. ChemNanoMat, 2016, 2, 182-188.	1.5	49
341	Inverted Planar Structure of Perovskite Solar Cells. , 2016, , 307-324.		2
342	Hexadecafluorophthalocyaninatocopper as an electron conductor for high-efficiency fullerene-free planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 510-516.	3.0	7
343	Solution processed inorganic V2O x as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Research, 2016, 9, 2960-2971.	5.8	81
344	Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters, 2016, 1, 712-718.	8.8	24
345	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	11.1	636
346	Improved performance and air stability of planar perovskite solar cells via interfacial engineering using a fullerene amine interlayer. Nano Energy, 2016, 28, 330-337.	8.2	74
347	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600505.	1.9	18
348	Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell. Journal of Physical Chemistry C, 2016, 120, 21248-21253.	1.5	64

#	Article	IF	CITATIONS
349	Cooperative Effect of GO and Glucose on PEDOT:PSS for High <i>V</i> _{OC} and Hysteresisâ€Free Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 6985-6994.	7.8	61
350	Cu2O particles mediated growth of perovskite for high efficient hole-transporting-layer free solar cells in ambient conditions. Solar Energy Materials and Solar Cells, 2016, 157, 937-942.	3.0	40
351	Interface modification for organic and perovskite solar cells. Science China Materials, 2016, 59, 743-756.	3.5	23
352	Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO ₂ as an electron collection bilayer. RSC Advances, 2016, 6, 78585-78594.	1.7	27
353	Potentials and challenges towards application of perovskite solar cells. Science China Materials, 2016, 59, 769-778.	3.5	14
354	High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 22238-22245.	4.0	19
355	Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells. RSC Advances, 2016, 6, 112512-112519.	1.7	15
356	Crystal structure, stability, and optoelectronic properties of the organic-inorganic wide-band-gap perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>CH </mml:mi> <mml:r : Candidate for transparent conductor applications. Physical Review B. 2016. 94</mml:r </mml:msub></mml:mrow></mml:math 	n>3 <td>ıl:mn></td>	ıl:mn>
357	Effect of Hole Transport Layer in Planar Inverted Perovskite Solar Cells. Chemistry Letters, 2016, 45, 89-91.	0.7	12
358	Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy and Environmental Science, 2016, 9, 3456-3463.	15.6	410
359	Single layer PbI2: hydrogenation-driven reconstructions. RSC Advances, 2016, 6, 89708-89714.	1.7	10
360	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
361	An Azaacene Derivative as Promising Electronâ€īransport Layer for Inverted Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2135-2138.	1.7	144
362	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	11.1	378
363	Enhanced Electron Collection in Perovskite Solar Cells Employing Thermoelectric NaCo ₂ O ₄ /TiO ₂ Coaxial Nanofibers. Small, 2016, 12, 5146-5152.	5.2	22
364	Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH ₃ NH ₃) ₃ Bi ₂ I ₉ . Journal of Materials Chemistry A, 2016, 4, 12504-12515.	5.2	151
365	A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1600664.	10.2	56
366	Highly efficient metal halide substituted CH3NH3I(PbI2)1â^'X(CuBr2)X planar perovskite solar cells. Nano Energy, 2016, 27, 330-339.	8.2	106

ARTICLE IF CITATIONS Highly reproducible and photocurrent hysteresis-less planar perovskite solar cells with a modified 367 2.9 16 solvent annealing method. Solar Energy, 2016, 136, 210-216. Modification of Ultrathin NPB Interlayer on the Electronic Structures of the CH₃NH₃PbI₃/NPB/MoO₃ Interface. Journal of Physical 1.5 Chemistry C, 2016, 120, 17863-17871. Highly Efficient, Reproducible, Uniform (CH₃NH₃)PbI₃ Layer by Processing Additive Dripping for Solutionâ€Processed Planar Heterojunction Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2399-2405. 369 1.7 5 Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar 370 cells with improved moisture resistance. Nano Energy, 2016, 30, 341-346. Perovskite solar cells with 18.21% efficiency andÂarea over 1 cm2 fabricated by 371 19.8 555 heterojunctionÂengineering. Nature Energy, 2016, 1, . Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 33899-33906. 4.0 High coverage solution-processed planar perovskite solar cell grown based on the 373 1.7 17 Stranskiâ€"Krastanov mechanism at low temperature and short time. RSC Advances, 2016, 6, 112677-112685. A Lowâ€Temperature, Solutionâ€Processable Organic Electronâ€Transporting Layer Based on Planar Coronene for Highâ€performance Conventional Perovskite Solar Cells. Advanced Materials, 2016, 28, 374 11.1 10786-10793. Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole 375 2.9 96 transporting layers. Solar Energy, 2016, 139, 484-488. Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using 376 Fulleropyrrolidine Layers. ACS Applied Materials & amp; Interfaces, 2016, 8, 31426-31432. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study. 377 1.6 69 Scientific Reports, 2016, 6, 20131. High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar 1.4 heterojunction perovskite solar cells. Organic Electronics, 2016, 39, 304-310. Improved efficiency of solution-processed bulk-heterojunction organic solar cells and planar-heterojunction perovskite solar cells with efficient hole-extracting Si nanocrystals. RSC 379 1.7 0 Advances, 2016, 6, 104962-104968. Ferroelectric thin film on a silicon-based pn junction: Coupling photovoltaic properties. 380 0.3 Ferroelectrics, 2016, 500, 250-258. Perylene Bisimides as efficient electron transport layers in planar heterojunction perovskite solar 381 4.2 9 cells. Science China Chemistry, 2016, 59, 1658-1662. Manipulating multicrystalline grain size in CH3NH3PbI3 thin films for application in photovoltaics. Solar Energy, 2016, 139, 518-523. Holeâ€Transporting Materials in Inverted Planar Perovskite Solar Cells. Advanced Energy Materials, 383 10.2 243 2016, 6, 1600474. Selfâ€Doped Conducting Polymer as a Holeâ€Extraction Layer in Organic–Inorganic Hybrid Perovskite 384 Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500678.

#	Article	IF	CITATIONS
385	Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electronâ€Selective Contact. ChemSusChem, 2016, 9, 1263-1270.	3.6	54
386	Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 15333-15340.	4.0	56
387	Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy and Environmental Science, 2016, 9, 2295-2301.	15.6	173
388	The rising star in photovoltaics-perovskite solar cells: The past, present and future. Science China Technological Sciences, 2016, 59, 989-1006.	2.0	33
389	A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3â^'xClx solar cells by an effective Cl doping method. Nano Energy, 2016, 27, 51-57.	8.2	222
390	Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds. Journal of Power Sources, 2016, 325, 534-540.	4.0	26
391	Room temperature, air crystallized perovskite film for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 10231-10240.	5.2	60
392	High performance planar-heterojunction perovskite solar cells using amino-based fulleropyrrolidine as the electron transporting material. Journal of Materials Chemistry A, 2016, 4, 10130-10134.	5.2	44
393	Cuprous Oxide as a Potential Low ost Holeâ€Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 302-313.	3.6	122
394	Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells. Nano Energy, 2016, 27, 175-184.	8.2	35
395	Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 18410-18417.	4.0	50
396	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	7.8	176
397	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	11.1	102
398	Oxidized Ni/Au Transparent Electrode in Efficient CH ₃ NH ₃ PbI ₃ Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. Advanced Materials, 2016, 28, 3290-3297.	11.1	57
399	Advances in the structure and materials of perovskite solar cells. Research on Chemical Intermediates, 2016, 42, 625-639.	1.3	11
400	Improved morphology and enhanced stability via solvent engineering for planar heterojunction perovskite solar cells. Organic Electronics, 2016, 31, 142-148.	1.4	37
401	Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells. Journal of Materials Chemistry A, 2016, 4, 3667-3672.	5.2	48
402	Solution-induced morphology change of organic-inorganic hybrid perovskite films for high efficiency inverted planar heterojunction solar cells. Electrochimica Acta, 2016, 191, 750-757.	2.6	27

#	Article	IF	CITATIONS
403	Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3970-3990.	5.2	472
404	Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy and Environmental Science, 2016, 9, 867-872.	15.6	62
405	Shape-controlled CH ₃ NH ₃ PbI ₃ nanoparticles for planar heterojunction perovskite solar cells. Japanese Journal of Applied Physics, 2016, 55, 02BF05.	0.8	11
406	A perovskite cell with a record-high-V _{oc} of 1.61 V based on solvent annealed CH ₃ NH ₃ PbBr ₃ /ICBA active layer. Nanoscale, 2016, 8, 4077-4085.	2.8	122
407	Flexible, hole transporting layer-free and stable CH 3 NH 3 PbI 3 /PC 61 BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30, 281-288.	1.4	69
408	Compact Layer Free Perovskite Solar Cells with a High-Mobility Hole-Transporting Layer. ACS Applied Materials & Interfaces, 2016, 8, 2652-2657.	4.0	68
409	N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stability. Journal of Materials Chemistry A, 2016, 4, 2419-2426.	5.2	100
410	A highly photoconductive composite prepared by incorporating polyoxometalate into perovskite for photodetection application. Chemical Communications, 2016, 52, 3304-3307.	2.2	35
411	Effects of Precursor Ratios and Annealing on Electronic Structure and Surface Composition of CH ₃ NH ₃ PbI ₃ Perovskite Films. Journal of Physical Chemistry C, 2016, 120, 215-220.	1.5	108
412	The Challenge to Develop Metrology at the Nanoscale. Nanoscience and Technology, 2016, , 105-130.	1.5	0
413	High-efficiency perovskite solar cells based on anatase TiO2 nanotube arrays. Thin Solid Films, 2016, 598, 1-5.	0.8	9
414	Oxygen Intercalation Induced by Photocatalysis on the Surface of Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 7606-7611.	1.5	52
415	Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Advances, 2016, 6, 30978-30985.	1.7	28
416	Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Organic Electronics, 2016, 33, 194-200.	1.4	48
417	Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC). Nanoscale Research Letters, 2016, 11, 71.	3.1	58
418	Preparation of planar CH3NH3PbI3 thin films with controlled size using 1-ethyl-2-pyrrolidone as solvent. Journal of Alloys and Compounds, 2016, 671, 11-16.	2.8	13
419	Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering Reports, 2016, 101, 1-38.	14.8	117
420	The growth of a CH ₃ NH ₃ PbI ₃ thin film using simplified close space sublimation for efficient and large dimensional perovskite solar cells. Energy and Environmental Science, 2016, 9, 1486-1494.	15.6	104

#	Article	IF	CITATIONS
421	Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells. Journal of Materials Chemistry A, 2016, 4, 3806-3812.	5.2	76
422	Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale, 2016, 8, 12892-12899.	2.8	98
423	sec-Butyl alcohol assisted pinhole-free perovskite film growth for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3438-3445.	5.2	46
424	Ultrasensitive 1D field-effect phototransistors: CH ₃ NH ₃ Pbl ₃ nanowire sensitized individual carbon nanotubes. Nanoscale, 2016, 8, 4888-4893.	2.8	54
425	Interface engineering of hybrid perovskite solar cells with poly(3-thiophene acetic acid) under ambient conditions. Physical Chemistry Chemical Physics, 2016, 18, 10182-10190.	1.3	49
426	Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 2016, 8, 5946-5953.	2.8	83
427	Reduction and oxidation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) induced by methylamine (CH ₃ NH ₂)-containing atmosphere for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4305-4311.	5.2	44
428	Decoupling Charge Transfer and Transport at Polymeric Hole Transport Layer in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 6546-6553.	4.0	33
429	Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7800-7805.	4.0	129
430	Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells. RSC Advances, 2016, 6, 26606-26611.	1.7	36
431	Effects of interfacial chemical states on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4392-4397.	5.2	25
432	Graphene in perovskite solar cells: device design, characterization and implementation. Journal of Materials Chemistry A, 2016, 4, 6185-6235.	5.2	185
433	Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Solar Energy, 2016, 131, 176-182.	2.9	59
434	Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 8511-8519.	4.0	18
435	Interface degradation of perovskite solar cells and its modification using an annealing-free TiO2 NPs layer. Organic Electronics, 2016, 30, 30-35.	1.4	100
436	Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material. Journal of Power Sources, 2016, 306, 171-177.	4.0	61
437	Efficiency enhancement of the MAPbI _{3â^'x} Cl _x -based perovskite solar cell by a two-step annealing procedure. Semiconductor Science and Technology, 2016, 31, 025009.	1.0	16
438	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534

#	Article	IF	CITATIONS
439	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	5.2	137
440	Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 155-165.	7.6	559
441	Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Solar Energy, 2016, 124, 143-152.	2.9	94
442	High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiO _{<i>x</i>} Electron Extraction Layer. ACS Applied Materials & Interfaces, 2016, 8, 1876-1883.	4.0	40
443	Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy and Environmental Science, 2016, 9, 962-970.	15.6	603
444	Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode. Solar Energy Materials and Solar Cells, 2016, 146, 35-43.	3.0	76
445	Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale, 2016, 8, 1513-1522.	2.8	156
446	Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A, 2016, 4, 887-893.	5.2	137
447	Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11, 75-81.	15.6	1,890
448	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy and Environmental Science, 2016, 9, 12-30.	15.6	449
449	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	15.6	1,457
450	Tailoring interface of lead-halide perovskite solar cells. Nano Research, 2017, 10, 1471-1497.	5.8	39
451	Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 3667-3676.	4.0	98
452	Efficiency enhancement in perovskite solar cell utilizing solution-processable phthalocyanine hole transport layer with thermal annealing. Organic Electronics, 2017, 43, 156-161.	1.4	39
453	Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nature Communications, 2017, 8, 13938.	5.8	259
454	Inverted perovskite solar cells based on lithium-functionalized graphene oxide as an electron-transporting layer. Chemical Communications, 2017, 53, 1630-1633.	2.2	40
455	Study on degradation mechanism of perovskite solar cell and their recovering effects by introducing CH3NH3I layers. Organic Electronics, 2017, 43, 229-234.	1.4	38
456	Impact of Excess CH ₃ NH ₃ I on Free Carrier Dynamics in High-Performance Nonstoichiometric Perovskites. Journal of Physical Chemistry C, 2017, 121, 3143-3148.	1.5	49

#	Article	IF	CITATIONS
457	Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction. Physical Chemistry Chemical Physics, 2017, 19, 6057-6063.	1.3	92
458	Toward All Roomâ€Temperature, Solutionâ€Processed, Highâ€Performance Planar Perovskite Solar Cells: A New Scheme of Pyridineâ€Promoted Perovskite Formation. Advanced Materials, 2017, 29, 1604695.	11.1	178
459	Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.	1.9	40
460	Transition metal-substituted lead halide perovskite absorbers. Journal of Materials Chemistry A, 2017, 5, 3578-3588.	5.2	62
461	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	8.2	362
462	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378
463	Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. Nano Letters, 2017, 17, 2554-2560.	4.5	111
464	A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability. Journal of Materials Chemistry A, 2017, 5, 7326-7332.	5.2	50
465	Charge Transfer from Methylammonium Lead Iodide Perovskite to Organic Transport Materials: Efficiencies, Transfer Rates, and Interfacial Recombination. Advanced Energy Materials, 2017, 7, 1602349.	10.2	101
466	Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters, 2017, 2, 822-830.	8.8	305
467	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology, 2017, 28, 174001.	1.3	14
468	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
469	Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Organic Electronics, 2017, 45, 97-103.	1.4	20
470	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	15.6	942
471	Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Advances, 2017, 7, 10985-10991.	1.7	18
472	Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Openâ€Circuit Voltage and Low Recombination. Advanced Energy Materials, 2017, 7, 1602358.	10.2	430
473	The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 782-794.	8.8	217
474	Simplification of device structures for low-cost, high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 4756-4773.	5.2	57

#	Article	IF	CITATIONS
475	CH ₃ NH ₃ PbI _{3–<i>x</i>/sub>Cl_{<i>x</i>} under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. ACS Applied Materials & Interfaces, 2017, 9, 7859-7865.}	4.0	23
476	Metal Acetylacetonate Series in Interface Engineering for Full Lowâ€Temperatureâ€Processed, Highâ€Performance, and Stable Planar Perovskite Solar Cells with Conversion Efficiency over 16% on 1 cm ² Scale. Advanced Materials, 2017, 29, 1603923.	11.1	190
477	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	8.2	345
478	Selfâ€Organized Fullerene Interfacial Layer for Efficient and Lowâ€Temperature Processed Planar Perovskite Solar Cells with High UVâ€Light Stability. Advanced Science, 2017, 4, 1700018.	5.6	47
479	Development of electron and hole selective contact materials for perovskite solar cells. Chinese Chemical Letters, 2017, 28, 1144-1152.	4.8	20
480	Molecular Engineered Holeâ€Extraction Materials to Enable Dopantâ€Free, Efficient pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700012.	10.2	195
481	Optical constants of DC sputtering derived ITO, TiO2 and TiO2:Nb thin films characterized by spectrophotometry and spectroscopic ellipsometry for optoelectronic devices. Journal of Non-Crystalline Solids, 2017, 476, 1-14.	1.5	32
482	Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with Small Molecule as Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1700522.	10.2	173
483	Influence of the surface treatment of PEDOT:PSS layer with high boiling point solvent on the performance of inverted planar perovskite solar cells. Organic Electronics, 2017, 47, 220-227.	1.4	26
484	Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 2017, 5, 12602-12652.	5.2	303
485	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. Journal of Materials Chemistry C, 2017, 5, 5949-5955.	2.7	24
486	Simple mono-halogenated perylene diimides as non-fullerene electron transporting materials in inverted perovskite solar cells with ZnO nanoparticle cathode buffer layers. Journal of Materials Chemistry A, 2017, 5, 12811-12821.	5.2	69
487	Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials Chemistry A, 2017, 5, 10092-10109.	5.2	136
488	Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH 3 NH 3 PbI 3 based photovoltaics. Solar Energy Materials and Solar Cells, 2017, 169, 40-46.	3.0	21
489	Functionalization of transparent conductive oxide electrode for TiO ₂ -free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11882-11893.	5.2	56
490	Efficient planar perovskite solar cells using solution-processed amorphous WO x /fullerene C 60 as electron extraction layers. Organic Electronics, 2017, 46, 253-262.	1.4	51
491	Carbonâ€Based Materials Used for Perovskite Solar Cells. ChemNanoMat, 2017, 3, 75-88.	1.5	24
492	Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. Journal of Materials Chemistry A, 2017, 5, 1434-1441.	5.2	95

#	Article	IF	CITATIONS
493	Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells. Frontiers of Optoelectronics, 2017, 10, 103-110.	1.9	15
494	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 23181-23188.	4.0	120
495	Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance. RSC Advances, 2017, 7, 26202-26210.	1.7	23
496	Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells: The effect of core metal on photovoltaic performance. Solar Energy, 2017, 155, 121-129.	2.9	40
497	Effect of Electronâ€Transport Material on Lightâ€Induced Degradation of Inverted Planar Junction Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700476.	10.2	103
498	Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Organic Electronics, 2017, 48, 147-153.	1.4	30
499	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
500	Reduced Interfaceâ€Mediated Recombination for High Openâ€Circuit Voltages in CH ₃ NH ₃ PbI ₃ Solar Cells. Advanced Materials, 2017, 29, 1700159.	11.1	210
501	Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Materials Science in Semiconductor Processing, 2017, 66, 176-185.	1.9	44
502	Three-Dimensionally Enlarged Photoelectrodes by a Protogenetic Inclusion of Vertically Aligned Carbon Nanotubes into CH ₃ NH ₃ PbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2017, 121, 13549-13556.	1.5	31
503	Two cyclohexanofullerenes used as electron transport materials in perovskite solar cells. Inorganica Chimica Acta, 2017, 468, 146-151.	1.2	11
504	Planar Perovskite Solar Cells: Local Structure and Stability Issues. Solar Rrl, 2017, 1, 1700066.	3.1	10
505	Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. Journal of Power Sources, 2017, 360, 157-165.	4.0	106
506	Inverse-architecture perovskite solar cells with 5,6,11,12-tetraphenylnaphthacene as a hole conductor. RSC Advances, 2017, 7, 29944-29952.	1.7	16
507	Annealing effects on CsPbl ₃ -based planar heterojunction perovskite solar cells formed by vacuum deposition method. Japanese Journal of Applied Physics, 2017, 56, 04CS11.	0.8	35
508	Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry A, 2017, 5, 7339-7344.	5.2	170
509	Improving the stability of the perovskite solar cells by V ₂ O ₅ modified transport layer film. RSC Advances, 2017, 7, 18456-18465.	1.7	30
510	Degradation behavior of planar heterojunction CH 3 NH 3 PbI 3 perovskite solar cells. Synthetic Metals, 2017, 227, 43-51.	2.1	31

#	Article	IF	CITATIONS
511	Selfâ€Encapsulating Thermostable and Airâ€Resilient Semitransparent Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602599.	10.2	129
512	An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. Organic Electronics, 2017, 46, 22-27.	1.4	33
513	Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications. Nano-Micro Letters, 2017, 9, 36.	14.4	73
514	Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. Journal of Materials Chemistry A, 2017, 5, 1548-1557.	5.2	115
515	Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics. Advanced Materials, 2017, 29, 1603940.	11.1	319
516	Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor. Advanced Energy Materials, 2017, 7, 1602333.	10.2	209
517	CH3NH3PbI3/C60 heterojunction photodetectors with low dark current and high detectivity. Organic Electronics, 2017, 42, 203-208.	1.4	20
518	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. Energy Technology, 2017, 5, 373-401.	1.8	26
519	Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.	3.2	35
520	Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Letters, 2017, 17, 269-275.	4.5	307
521	Mixed-Organic-Cation (FA) _{<i>x</i>} (MA) _{1<i>–x</i>} Pbl ₃ Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces, 2017, 9, 2449-2458.	4.0	98
522	A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 1079-1086.	3.2	51
523	Di-isopropyl ether assisted crystallization of organic–inorganic perovskites for efficient and reproducible perovskite solar cells. Nanoscale, 2017, 9, 17893-17901.	2.8	20
524	Comparative density functional theory–density functional tight binding study of fullerene derivatives: effects due to fullerene size, addends, and crystallinity on band structure, charge transport and optical properties. Physical Chemistry Chemical Physics, 2017, 19, 28330-28343.	1.3	23
525	2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. Journal of Power Sources, 2017, 371, 156-161.	4.0	52
526	High-Performance and Hysteresis-Free Planar Solar Cells with PC ₇₁ BM and C ₆₀ Composed Structure Prepared Irrespective of Humidity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9718-9724.	3.2	11
527	Elucidating the role of the hole-extracting electrode on the stability and efficiency of invertedÂCsSnI ₃ /C ₆₀ perovskite photovoltaics. Journal of Materials Chemistry A, 2017, 5, 21836-21845.	5.2	23
528	The maximum predicted content of cation vacancies in inorganic and organic–inorganic perovskites: the role of the tolerance factor. Physical Chemistry Chemical Physics, 2017, 19, 17121-17127.	1.3	22

#	Article	IF	CITATIONS
529	Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO ₂ Electron Transport Layer. ChemistrySelect, 2017, 2, 9433-9437.	0.7	21
530	Enhanced Photovoltaic Performance of the Inverted Planar Perovskite Solar Cells by Using Mixed-Phase Crystalline Perovskite Film with Trace Amounts of PbI ₂ as an Absorption Layer. Journal of Physical Chemistry C, 2017, 121, 22607-22620.	1.5	11
531	Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials, 2017, 27, 1703704.	7.8	149
532	Physicochemical Interface Engineering of CuI/Cu as Advanced Potential Hole-Transporting Materials/Metal Contact Couples in Hysteresis-Free Ultralow-Cost and Large-Area Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21935-21944.	1.5	65
533	High-Performance CH ₃ NH ₃ PbI ₃ -Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide. ACS Applied Materials & Interfaces, 2017, 9, 35871-35879.	4.0	40
534	Component-controllable Synthesis of Stable Planar-structure Perovskite CH ₃ NH ₃ Pb(l _{1â^'} <i>_x</i> Br <i>_x</i>) _{3Thin Films. Chemistry Letters, 2017, 46, 1683-1686.}	bø.7	2
535	Optical detection of charge dynamics in CH ₃ NH ₃ PbI ₃ /carbon nanotube composites. Nanoscale, 2017, 9, 17781-17787.	2.8	7
536	Very high hole drift mobility in neat and doped molecular thin films for normal and inverted perovskite solar cells. Nano Energy, 2017, 41, 681-686.	8.2	14
537	Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New Journal of Chemistry, 2017, 41, 14253-14258.	1.4	58
538	High-Performance Ultraviolet-to-Infrared Broadband Perovskite Photodetectors Achieved via Inter-/Intraband Transitions. ACS Applied Materials & Interfaces, 2017, 9, 37832-37838.	4.0	91
539	Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells. Nanoscale, 2017, 9, 16305-16312.	2.8	34
540	Stable Inverted Planar Perovskite Solar Cells with Lowâ€Temperatureâ€Processed Holeâ€Transport Bilayer. Advanced Energy Materials, 2017, 7, 1700763.	10.2	115
541	An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells. Journal of Power Sources, 2017, 363, 317-326.	4.0	20
542	Organic–Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 31746-31751.	4.0	15
543	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	3.7	74
544	Influence of processing temperature and precursor composition on phase region of solution processed methylammonium lead iodide perovskite. Materials Research Express, 2017, 4, 096201.	0.8	1
545	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 1700086.	3.1	167
546	Fluorinated fused nonacyclic interfacial materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21414-21421.	5.2	59

#	Article	IF	CITATIONS
547	Crystallization Dependent Stability of Perovskite Solar Cells With Different Hole Transporting Layers. Solar Rrl, 2017, 1, 1700141.	3.1	7
548	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	1.4	21
549	Halide anion–fullerene ï€ noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20720-20728.	5.2	49
550	Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer. ACS Applied Materials & Interfaces, 2017, 9, 31357-31361.	4.0	80
551	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with Allâ€Inorganic Charge Contacts. Advanced Functional Materials, 2017, 27, 1703068.	7.8	132
552	Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Advances, 2017, 7, 35819-35826.	1.7	115
553	Improved efficiency and shortâ€ŧerm stability of the planar heterojunction perovskite solar cells with a polyelectrolyte layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700281.	0.8	3
554	Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002.	1.3	129
555	Effects of gas blowing condition on formation of mixed halide perovskite layer on organic scaffolds. Journal of Materials Research, 2017, 32, 2700-2706.	1.2	5
556	Impact of Interfacial Layers in Perovskite Solar Cells. ChemSusChem, 2017, 10, 3687-3704.	3.6	191
557	Investigation of high performance TiO ₂ nanorod array perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15970-15980.	5.2	64
558	Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: Optical and Morphological studies. Materials Today: Proceedings, 2017, 4, 5082-5089.	0.9	31
559	Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells. Nanoscale, 2017, 9, 12677-12683.	2.8	18
560	Fabrication of high-performance and low-hysteresis lead halide perovskite solar cells by utilizing a versatile alcohol-soluble bispyridinium salt as an efficient cathode modifier. Journal of Materials Chemistry A, 2017, 5, 17943-17953.	5.2	26
561	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. Solar Energy Materials and Solar Cells, 2017, 172, 133-139.	3.0	22
562	Polymer assisted growth of high-quality perovskite films by Lewis acid-base adduct for efficient planar-heterojunction solar cells. Materials Research Bulletin, 2017, 95, 216-222.	2.7	9
563	Potassium doped methylammonium lead iodide (MAPbI 3) thin films as a potential absorber for perovskite solar cells; structural, morphological, electronic and optoelectric properties. Physica B: Condensed Matter, 2017, 522, 57-65.	1.3	30
564	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	10.2	276

#	Article	IF	CITATIONS
565	Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of PbI ₂ and CsI. ACS Omega, 2017, 2, 4464-4469.	1.6	49
566	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Science and Applications, 2017, 6, e17023-e17023.	7.7	272
567	Electropolymerization Porous Aromatic Framework Film As a Hole-Transport Layer for Inverted Perovskite Solar Cells with Superior Stability. ACS Applied Materials & Interfaces, 2017, 9, 43688-43695.	4.0	19
568	Investigation of Fe ²⁺ -incorporating organic–inorganic hybrid perovskites from first principles and experiments. RSC Advances, 2017, 7, 54586-54593.	1.7	22
569	High-performance planar perovskite solar cells: Influence of solvent upon performance. Applied Materials Today, 2017, 9, 598-604.	2.3	66
570	Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 2570-2578.	15.6	155
571	Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41887-41897.	4.0	171
572	Organolead trihalide perovskite as light absorber for IGZO phototransistor. , 2017, , .		1
573	Carbon materials for enhancing charge transport in the advancements of perovskite solar cells. Journal of Power Sources, 2017, 361, 259-275.	4.0	66
574	Improved performance of CH3NH3PbI3 based photodetector with a MoO3 interface layer. Organic Electronics, 2017, 49, 355-359.	1.4	21
575	Insights into optoelectronic properties of anti-solvent treated perovskite films. Journal of Materials Science: Materials in Electronics, 2017, 28, 15630-15636.	1.1	8
576	Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25323-25331.	4.0	115
577	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-34800.	1.7	8
578	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	3.8	17
579	Efficient Indiumâ€Doped TiO <i>_x</i> Electron Transport Layers for Highâ€Performance Perovskite Solar Cells and Perovskiteâ€Silicon Tandems. Advanced Energy Materials, 2017, 7, 1601768.	10.2	167
580	Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 2017, 488, 373-389.	5.0	163
581	Fullerenes and derivatives as electron transport materials in perovskite solar cells. Science China Chemistry, 2017, 60, 144-150.	4.2	28
582	Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017, 2, .	19.8	1,633

#	Article	IF	CITATIONS
583	Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 583-589.	3.0	54
584	Solution-Processed ZnO-Based Low-Cost \$\$hbox {CH}_{3} hbox {NH}_{3} hbox {PbI}_{3}\$\$ CH 3 NH 3 PbI 3 Solar Cells by Ambient Air, Hole Transport Layer-Free Synthesis. Arabian Journal for Science and Engineering, 2017, 42, 4317-4325.	1.7	1
585	CH3NH3PbI3 crystal orientation and photovoltaic performance of planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 160, 77-84.	3.0	39
586	Interfacial modification of the electron collecting layer of low-temperature solution-processed organometallic halide photovoltaic cells using an amorphous perylenediimide. Solar Energy Materials and Solar Cells, 2017, 160, 294-300.	3.0	25
587	Catalytic role of H ₂ O in degradation of inorganic-organic perovskite (CH ₃) Tj ETQq0 () 0_rgBT /0	Dverlock 10 Tf
588	Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells. Journal of Power Sources, 2017, 339, 27-32.	4.0	36
589	Dually Ordered Porous TiO ₂ â€rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. Advanced Materials, 2017, 29, 1604795.	11.1	66
590	Fullerene Derivatives for the Applications as Acceptor and Cathode Buffer Layer Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601251.	10.2	152
591	Recent advances of flexible hybrid perovskite solar cells. Journal of the Korean Physical Society, 2017, 71, 593-607.	0.3	16
592	Hybrid UV-Ozone-Treated rGO-PEDOT:PSS as an Efficient Hole Transport Material in Inverted Planar Perovskite Solar Cells. Nanoscale Research Letters, 2017, 12, 619.	3.1	15
593	Effect of Carrier Transport in NiO on the Photovoltaic Properties of Lead Iodide Perovskite Solar Cells. Electrochemistry, 2017, 85, 231-235.	0.6	19
594	Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells. Molecules, 2017, 22, 520.	1.7	20
595	Overcoming the Intrinsic Difference between Hydrophilic CH3NH3PbI3 and Hydrophobic C60 Thin Films to Improve the Photovoltaic Performance. Nanomaterials, 2017, 7, 166.	1.9	7
596	Effect of Annealing Process on CH ₃ NH ₃ PbI _{3-X} Cl _X Film Morphology of Planar Heterojunction Perovskite Solar Cells with Optimal Compact TiO ₂ Layer. International Journal of Photoenergy, 2017, 2017, 1-9.	1.4	5
597	Toward lead halide perovskite-based intermediate band absorbers. , 2017, , .		0
598	Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2635-2651.	2.7	114
599	Improved fill factor in inverted planar perovskite solar cells with zirconium acetate as the hole-and-ion-blocking layer. Physical Chemistry Chemical Physics, 2018, 20, 7395-7400.	1.3	7
600	Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells. Advanced Science, 2018, 5, 1700780.	5.6	144

#	Article	IF	CITATIONS
601	Oxide Hole Transport Materials in Inverted Planar Perovskite Solar Cells. , 2018, , 117-158.		2
602	Efficient and Stable Perovskite Solar Cells via Dual Functionalization of Dopamine Semiquinone Radical with Improved Trap Passivation Capabilities. Advanced Functional Materials, 2018, 28, 1707444.	7.8	94
603	Graphene and its derivatives for solar cells application. Nano Energy, 2018, 47, 51-65.	8.2	284
604	Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth and Design, 2018, 18, 2645-2664.	1.4	75
605	Recent Progress on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Science, 2018, 5, 1700387.	5.6	348
606	MoS ₂ : a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology, 2018, 29, 205201.	1.3	73
607	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
608	Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy, 2018, 47, 243-256.	8.2	67
609	A Simple Perylene Derivative as a Solution-Processable Cathode Interlayer for Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Applied Materials & Interfaces, 2018, 10, 15933-15942.	4.0	22
610	Investigation on Organic Molecule Additive for Moisture Stability and Defect Passivation via Physisorption in CH ₃ NH ₃ Pbl ₃ Based Perovskite. ACS Applied Energy Materials, 2018, 1, 1870-1877.	2.5	37
611	The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasiâ€2D Perovskite Materials in Moist Condition. Advanced Energy Materials, 2018, 8, 1800051.	10.2	205
612	Promoting perovskite crystal growth to achieve highly efficient and stable solar cells by introducing acetamide as an additive. Journal of Materials Chemistry A, 2018, 6, 9930-9937.	5.2	55
613	Slot-Die Coated Perovskite Films Using Mixed Lead Precursors for Highly Reproducible and Large-Area Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16133-16139.	4.0	92
614	Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability. Advanced Materials, 2018, 30, e1706975.	11.1	95
615	A solution-processed pillar[5]arene-based small molecule cathode buffer layer for efficient planar perovskite solar cells. Nanoscale, 2018, 10, 8088-8098.	2.8	20
616	Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells. Journal of Power Sources, 2018, 389, 13-19.	4.0	15
617	Efficient and stable inverted planar perovskite solar cells using dopant-free CuPc as hole transport layer. Electrochimica Acta, 2018, 273, 273-281.	2.6	38
618	Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy, 2018, 49, 163-171.	8.2	91

		15	Circumonia
#	ARTICLE	IF	CITATIONS
619	Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 36-40.	2.0	40
620	Preparation of CH3NH3PbI3 thin films for solar cells via Vapor Transfer Method. Journal of Energy Chemistry, 2018, 27, 1386-1389.	7.1	9
621	Stable and Efficient Organoâ€Metal Halide Hybrid Perovskite Solar Cells via π onjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Advanced Materials, 2018, 30, e1706126.	11.1	241
622	Ligandâ€Free, Highly Dispersed NiO _x Nanocrystal for Efficient, Stable, Lowâ€Temperature Processable Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800004.	3.1	58
623	Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4443-4448.	5.2	66
624	Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode. Applied Physics Letters, 2018, 112, .	1.5	16
625	Highâ€Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCNâ€Nanowire Heterointerface. Advanced Science, 2018, 5, 1700980.	5.6	19
626	All Sequential Dip-Coating Processed Perovskite Layers from an Aqueous Lead Precursor for High Efficiency Perovskite Solar Cells. Scientific Reports, 2018, 8, 2168.	1.6	111
627	High-efficiency bulk heterojunction perovskite solar cell fabricated by one-step solution process using single solvent: synthesis and characterization of material and film formation mechanism. Journal of Materials Chemistry A, 2018, 6, 4179-4188.	5.2	31
628	Co-Solvent Effect in the Processing of the Perovskite:Fullerene Blend Films for Electron Transport Layer-Free Solar Cells. Journal of Physical Chemistry C, 2018, 122, 2512-2520.	1.5	19
629	Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability. Materials Today, 2018, 21, 483-500.	8.3	99
630	Progress in perovskite solar cells based on ZnO nanostructures. Solar Energy, 2018, 163, 289-306.	2.9	104
631	Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells. New Journal of Chemistry, 2018, 42, 2896-2902.	1.4	43
632	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	1.6	144
633	Synergistic Hematiteâ€Fullerene Electronâ€Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells. ChemElectroChem, 2018, 5, 726-731.	1.7	72
634	Influence of a Compact α-Fe ₂ O ₃ Layer on the Photovoltaic Performance of Perovskite-Based Solar Cells. Journal of the Electrochemical Society, 2018, 165, H30-H38.	1.3	20
635	An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Research, 2018, 11, 2648-2657.	5.8	11
636	The stable perovskite solar cell prepared by rapidly annealing perovskite film with water additive in ambient air. Solar Energy Materials and Solar Cells, 2018, 176, 280-287.	3.0	22

#	Article	IF	CITATIONS
637	Giant Twoâ€Photon Absorption in Mixed Halide Perovskite CH ₃ NH ₃ Pb _{0.75} Sn _{0.25} I ₃ Thin Films and Application to Photodetection at Optical Communication Wavelengths. Advanced Optical Materials, 2018, 6, 1700819.	3.6	44
638	Controllable Crystal Film Growth via Appropriate Substrate-Preheating Treatment for Perovskite Solar Cells Using Mixed Lead Sources. IEEE Journal of Photovoltaics, 2018, 8, 162-170.	1.5	6
639	Impact of Ultrathin C ₆₀ on Perovskite Photovoltaic Devices. ACS Nano, 2018, 12, 876-883.	7.3	80
640	Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells. Journal of Power Sources, 2018, 378, 98-104.	4.0	24
641	Electronic and optical properties of bilayer PbI2: a first-principles study. Journal Physics D: Applied Physics, 2018, 51, 035301.	1.3	9
642	Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step. Nanoscale, 2018, 10, 3053-3059.	2.8	80
643	Less is More: Dopantâ€Free Hole Transporting Materials for Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702512.	10.2	236
644	Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure. AIP Advances, 2018, 8, .	0.6	20
645	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
646	A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 2406-2431.	5.2	179
647	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. Nano Energy, 2018, 45, 287-297.	8.2	19
648	Progress in hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 650-672.	7.1	90
649	A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semiconductor Science and Technology, 2018, 33, 035001.	1.0	129
650	Functional graded fullerene derivatives for improving the fill factor and device stability of inverted-type perovskite solar cells. Nanotechnology, 2018, 29, 305701.	1.3	18
651	Enhanced Crystallization by Methanol Additive in Antisolvent for Achieving Highâ€Quality MAPbl ₃ Perovskite Films in Humid Atmosphere. ChemSusChem, 2018, 11, 2348-2357.	3.6	70
652	Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018, 10, 11342-11348.	2.8	76
653	Influence of O ₂ plasma treatment on NiO <i> _x </i> layer in perovskite solar cells. Japanese Journal of Applied Physics, 2018, 57, 04FS07.	0.8	26
654	Nonfullerene Electron Transporting Material Based on Naphthalene Diimide Small Molecule for Highly Stable Perovskite Solar Cells with Efficiency Exceeding 20%. Advanced Functional Materials, 2018, 28, 1800346.	7.8	83

		CITATION RE	EPORT	
# 655	ARTICLE Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 2018, 3, .		IF 23.3	Citations
656	Benefits of fullerene/SnO 2 bilayers as electron transport layer for efficient planar pero cells. Organic Electronics, 2018, 58, 294-300.	vskite solar	1.4	26
657	A Multifunctional Bis-Adduct Fullerene for Efficient Printable Mesoscopic Perovskite Sc Applied Materials & Interfaces, 2018, 10, 10835-10841.	ılar Cells. ACS	4.0	28
658	Fabrication and characterization of a solution-processed electron transport layer for organic-inorganic hybrid halide perovskite photovoltaics. Thin Solid Films, 2018, 660, 7	'89-796.	0.8	2
659	Inorganic based hole transport materials for perovskite solar cells. Journal of Materials Materials in Electronics, 2018, 29, 8847-8853.	Science:	1.1	17
660	Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. Journ Chemistry Letters, 2018, 9, 1682-1688.	al of Physical	2.1	206
661	Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 2 2812-2822.	2018, 81,	8.2	153
662	A non-fullerene small molecule processed with green solvent as an electron transportir for high efficiency p-i-n perovskite solar cells. Organic Electronics, 2018, 52, 200-205.	ıg material	1.4	40
663	Organic hole-transporting materials for efficient perovskite solar cells. Materials Today 7, 208-220.	Energy, 2018,	2.5	100
664	Novel CH ₃ NH ₃ PbI ₃ /polyimide composites with film-forming and electrical conductive properties. High Performance Polymers, 2018, 3		0.8	1
665	Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon, 2018, 126, 208-214.	1	5.4	51
666	Research progress in electron transport layer in perovskite solar cells. Rare Metals, 201	8, 37, 95-106.	3.6	21
667	Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainab Reviews, 2018, 82, 2471-2489.	le Energy	8.2	109
668	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Advanced Energy Materials, 2018, 8, 1702093.	Devices.	10.2	385
669	A Design Based on a Charge-Transfer Bilayer as an Electron Transport Layer for Improvi Performance and Stability in Planar Perovskite Solar Cells. Journal of Physical Chemistry 236-244.	ng the y C, 2018, 122,	1.5	50
670	Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversi of perovskite solar cells to 18.76%. Superlattices and Microstructures, 2018, 113, 761	ion efficiency -768.	1.4	25
671	Fullereneâ€Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresisá Perovskite Solar Cells. Advanced Electronic Materials, 2018, 4, 1700435.	ì€Free, and Stable	2.6	101
672	Inorganic Holeâ€Transporting Materials for Perovskite Solar Cells. Small Methods, 201	8, 2, 1700280.	4.6	141

#	Article	IF	CITATIONS
673	High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer. Journal of Power Sources, 2018, 376, 46-54.	4.0	38
674	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.	5.6	329
675	Interface Engineering for Highly Efficient and Stable Planar pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701883.	10.2	338
676	Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.	3.0	66
677	Reduced interface losses in inverted perovskite solar cells by using a simple dual-functional phenanthroline derivative. Nano Energy, 2018, 43, 72-80.	8.2	43
678	Optical absorption enhancement in NH ₂ CH=NH ₂ PbI ₃ lead halide perovskite solar cells with nanotextures. Semiconductor Science and Technology, 2018, 33, 015011.	1.0	3
679	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67
680	Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 2018, 7, 246-259.	2.5	84
681	Effect of Halide Compositions on the Performance of Perovskite Solar Cells. , 2018, , .		0
682	Understanding charge trapping/detrapping at the zinc oxide (ZnO)/MAPbI ₃ perovskite interface in the dark and under illumination using a ZnO/perovskite/ZnO test platform. Nanoscale, 2018, 10, 20377-20383.	2.8	21
683	Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Materials, 2018, 1, 133-154.	3.2	128
684	In Situ Atmospheric Deposition of Ultrasmooth Nickel Oxide for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 41849-41854.	4.0	47
685	Recent advancements in compact layer development for perovskite solar cells. Heliyon, 2018, 4, e00912.	1.4	20
686	Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42397-42405.	4.0	20
687	Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Applied Physics Reviews, 2018, 5, .	5.5	175
688	Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials, 2018, 11, 2592.	1.3	43
689	A Planar Heterojunction Perovskite Solar Cell Modified by Graphene Oxide. IOP Conference Series: Materials Science and Engineering, 2018, 452, 022135.	0.3	2
691	Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753.	7.8	145

#	Article	IF	CITATIONS
692	Halogen-substituted fullerene derivatives for interface engineering of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 21368-21378.	5.2	40
693	Interfacial Engineering of TiO ₂ by Graphene Nanoplatelets for High-Efficiency Hysteresis-free Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 15391-15401.	3.2	18
694	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
695	High-performance mixed-dimensional perovskite solar cells with enhanced stability against humidity, heat and UV light. Journal of Materials Chemistry A, 2018, 6, 20233-20241.	5.2	21
696	Fully solution-processed indium tin oxide-free textile-based flexible solar cells made of an organic–inorganic perovskite absorber: Toward a wearable power source. Journal of Power Sources, 2018, 402, 327-332.	4.0	34
697	Piezo-phototronic Effect Enhanced Photodetector Based on CH ₃ NH ₃ PbI ₃ Single Crystals. ACS Nano, 2018, 12, 10501-10508.	7.3	67
698	Perovskite solar cells with versatile electropolymerized fullerene as electron extraction layer. Electrochimica Acta, 2018, 292, 697-706.	2.6	9
699	The introduction of a perovskite seed layer for high performance perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 20138-20144.	5.2	12
700	The synergistic effect of dimethyl sulfoxide vapor treatment and C60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells. Journal of Power Sources, 2018, 405, 70-79.	4.0	14
701	Strain and layer modulated electronic and optical properties of low dimensional perovskite methylammonium lead iodide: Implications to solar cells. Solar Energy, 2018, 173, 1315-1322.	2.9	31
702	New Tin(II) Fluoride Derivative as a Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 27284-27291.	1.5	26
703	Management of transition dipoles in organic hole-transporting materials under solar irradiation for perovskite solar cells. Nature Communications, 2018, 9, 4537.	5.8	64
704	Efficient Design of Perovskite Solar Cell Using Parametric Grading of Mixed Halide Perovskite and Copper Iodide. Journal of Electronic Materials, 2018, 47, 6935-6942.	1.0	31
705	Nitrogen substitution improves the mobility and stability of electron transport materials for inverted perovskite solar cells. Nanoscale, 2018, 10, 17873-17883.	2.8	24
707	Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite IGSe Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1801692.	10.2	17
708	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
710	Two Anthracene-Based Copolymers as the Hole-Transporting Materials for High-Performance Inverted (p-i-n) Perovskite Solar Cells. Macromolecules, 2018, 51, 7407-7416.	2.2	10
711	Enhancing the open circuit voltage of PEDOT:PSS-PC61BM based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing PC61BM. Organic Electronics, 2018, 59, 260-265.	1.4	14

#	Article	IF	CITATIONS
712	Toward Longâ€Term Stable and Highly Efficient Perovskite Solar Cells via Effective Charge Transporting Materials. Advanced Energy Materials, 2018, 8, 1800249.	10.2	85
713	Copolymers of poly(3-thiopheneacetic acid) with poly(3-hexylthiophene) as hole-transporting material for interfacially engineered perovskite solar cell by modulating band positions for higher efficiency. Physical Chemistry Chemical Physics, 2018, 20, 15890-15900.	1.3	14
714	Performance Enhancement of Inverted Perovskite Solar Cells Based on Smooth and Compact PC ₆₁ BM:SnO ₂ Electron Transport Layers. ACS Applied Materials & Interfaces, 2018, 10, 20128-20135.	4.0	43
715	Effect of the vapor diffusion and improved light harvesting for Perovskite-Cu2ZnSnS4 hybridized solar cells. Organic Electronics, 2018, 59, 190-195.	1.4	2
716	Effect of the Type and Number of Organic Addends on Fullerene Acceptors for nâ€Type Electronic Devices: Redox Properties and Energy Levels. ChemistrySelect, 2018, 3, 5778-5785.	0.7	4
717	Physicochemical Phenomena and Application in Solar Cells of Perovskite:Fullerene Films. Journal of Physical Chemistry Letters, 2018, 9, 2893-2902.	2.1	37
718	Improved Stability of Interfacial Energy-Level Alignment in Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 18964-18973.	4.0	22
719	An Overview of Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells. , 2018, , 233-254.		19
720	Influence of transparent conductive oxide layer on the inverted perovskite solar cell using PEDOT: PSS for hole transport layer. Materials Research Bulletin, 2018, 106, 433-438.	2.7	20
721	Elucidating the Origins of Subgap Tail States and Openâ€Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1801808.	7.8	78
722	Doped Chargeâ€Transporting Layers in Planar Perovskite Solar Cells. Advanced Optical Materials, 2018, 6, 1800276.	3.6	65
723	Semiconducting Metal Oxides for High Performance Perovskite Solar Cells. , 2018, , 241-265.		4
724	Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408-424.	8.2	145
725	Recent Progress in the Solution-Based Sequential Deposition of Planar Perovskite Solar Cells. Crystal Growth and Design, 2018, 18, 4790-4806.	1.4	12
726	Role of Additives on the Performance of CsPbI ₃ Solar Cells. Journal of Physical Chemistry C, 2018, 122, 15903-15910.	1.5	23
727	Evolution of Perovskite Solar Cells. , 2018, , 43-88.		18
728	Flexible Perovskite Solar Cells. , 2018, , 341-371.		4
729	Fullerenes: the stars of photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2480-2493.	2.5	99

#	Article	IF	Citations
" 730	Halide Perovskites for Selective Ultraviolet-Harvesting Transparent Photovoltaics. Joule, 2018, 2, 1827-1837.	11.7	80
731	ZnO-based inverted hybrid solar cells: Technical adjustment for performance optimization step by step. Optics Communications, 2018, 427, 294-300.	1.0	6
732	Fast chemical vapor-solid reaction for synthesizing organometal halide perovskite array thin films for photodetector applications. Journal of Alloys and Compounds, 2018, 766, 933-940.	2.8	5
733	Empowering the Future With Organic Solar Cell Devices. , 2018, , 325-350.		6
734	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801509.	10.2	184
735	Graphene Oxide-Like Materials in Organic and Perovskite Solar Cells. , 2018, , 357-394.		5
736	Acquiring Highâ€Performance and Stable Mixedâ€Dimensional Perovskite Solar Cells by Using a Transitionâ€Metalâ€Substituted Pb Precursor. ChemSusChem, 2018, 11, 3269-3275.	3.6	27
737	Study of the Crystallization of Metal Halide Perovskites Containing Additives via Differential Scanning Calorimetry. Journal of Electronic Materials, 2018, 47, 6319-6327.	1.0	2
738	Molecular design enabled reduction of interface trap density affords highly efficient and stable perovskite solar cells with over 83% fill factor. Nano Energy, 2018, 52, 300-306.	8.2	112
739	Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties. Solar Energy, 2018, 173, 407-424.	2.9	56
740	Dithiafulvenylâ€Naphthalenediimideâ€based Small Molecules as efficient Nonâ€Fullerene Electronâ€Transport Layer for Inverted Perovskite Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2294-2301.	1.3	21
741	Low-temperature solution-processed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 21746-21754.	1.3	40
742	Optimizing film morphology and crystal orientation of perovskite for efficient planar-heterojunction solar cells by slowing crystallization process. Organic Electronics, 2018, 62, 26-34.	1.4	10
743	Effects of Adding PbI2 on the Performance of Hole-Transport Material-Free Mesoscopic Perovskite Solar Cells with Carbon Electrode. Journal of Electronic Materials, 2018, 47, 6266-6271.	1.0	17
744	Electronâ€Transport Materials in Perovskite Solar Cells. Small Methods, 2018, 2, 1800082.	4.6	136
745	Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800260.	1.9	215
746	The critical role of metal oxide electron transport layer for perovskite solar cell. Applied Nanoscience (Switzerland), 2018, 8, 1515-1522.	1.6	9
747	All that glitters is not gold: Recent progress of alternative counter electrodes for perovskite solar cells. Nano Energy, 2018, 52, 211-238.	8.2	85

#	Article	IF	CITATIONS
748	First-Principles Investigation on the Electronic and Mechanical Properties of Cs-Doped CH3NH3PbI3. Materials, 2018, 11, 1141.	1.3	18
749	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	2.5	58
750	Effects of Iodine Doping on Carrier Behavior at the Interface of Perovskite Crystals: Efficiency and Stability. Crystals, 2018, 8, 185.	1.0	8
751	Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells. Organic Electronics, 2018, 61, 113-118.	1.4	10
752	Zinc as a New Dopant for NiO _{<i>x</i>} -Based Planar Perovskite Solar Cells with Stable Efficiency near 20%. ACS Applied Energy Materials, 2018, 1, 3947-3954.	2.5	87
753	The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials, 2018, 8, 356.	1.9	30
754	Electron extraction layer based on diketopyrrolopyrrole/isoindigo to improve the efficiency of inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 8429-8434.	2.7	27
755	Mutual Composition Transformations Among 2D/3D Organolead Halide Perovskites and Mechanisms Behind. Solar Rrl, 2018, 2, 1800125.	3.1	17
756	Aerosol-assisted chemical vapor deposition of ultra-thin CuO _{<i>x</i>} films as hole transport material for planar perovskite solar cells. Functional Materials Letters, 2018, 11, 1850035.	0.7	17
757	Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability. Solar Energy, 2018, 171, 652-657.	2.9	56
758	Recent Advance in Solutionâ€Processed Organic Interlayers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1800159.	5.6	84
759	Stateâ€ofâ€theâ€Art Electronâ€Selective Contacts in Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800408.	1.9	38
760	Interfacial engineering of ZnO surface modified with poly-vinylpyrrolidone and p-aminobenzoic acid for high-performance perovskite solar cells. Materials Chemistry and Physics, 2018, 219, 90-95.	2.0	11
761	Preparation of perovskite-embedded monodisperse copolymer particles and their application for high purity down-conversion LEDs. Materials Horizons, 2018, 5, 1120-1129.	6.4	12
762	Polymer Assisted Small Molecule Hole Transport Layers Toward Highly Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800173.	3.1	30
763	Towards high performance perovskite solar cells: A review of morphological control and HTM development. Applied Materials Today, 2018, 13, 69-82.	2.3	43
764	Anchoring Fullerene onto Perovskite Film via Grafting Pyridine toward Enhanced Electron Transport in High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 32471-32482.	4.0	73
765	Efficient Perovskite Solar Cells with Titanium Cathode Interlayer. Solar Rrl, 2018, 2, 1800167.	3.1	16

#	Article	IF	CITATIONS
766	A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells. Crystals, 2018, 8, 44.	1.0	13
767	Enhanced Device Efficiency and Long-Term Stability via Boronic Acid-Based Self-Assembled Monolayer Modification of Indium Tin Oxide in a Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 30000-30007.	4.0	47
768	High-Quality Perovskite Film Preparations for Efficient Perovskite Solar Cells. , 0, , .		0
769	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 31384-31393.	4.0	68
770	8â€Hydroquinolatolithium as a Highly Effective Solutionâ€Processable Cathode Interfacial Material in Inverted Perovskite Solar Cells with an Efficiency Over 19%. Solar Rrl, 2018, 2, 1800084.	3.1	6
771	Improved performance and stability of perovskite solar cells by incorporating gamma-aminobutyric acid in CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2018, 6, 12370-12379.	5.2	14
772	Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction. Applied Physics Letters, 2018, 112, .	1.5	84
773	Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6982-6987.	2.7	19
774	Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. Journal of Power Sources, 2018, 396, 49-56.	4.0	23
775	Ultrathin Hole Extraction Layer for Efficient Inverted Perovskite Solar Cells. ACS Omega, 2018, 3, 6339-6345.	1.6	5
776	Passivation against oxygen and light induced degradation by the PCBM electron transport layerÂin planar perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1686-1692.	2.5	27
777	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	1.0	17
778	A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13751-13760.	5.2	26
779	Unveiling the Role of Conjugate Bridge in Triphenylamine Hole-Transporting Materials for Inverted and Direct Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1280-1289.	1.5	6
780	Strengthened Perovskite/Fullerene Interface Enhances Efficiency and Stability of Inverted Planar Perovskite Solar Cells via a Tetrafluoroterephthalic Acid Interlayer. ACS Applied Materials & Interfaces, 2019, 11, 33515-33524.	4.0	27
781	Study of Possible Ways of Improving the Morphology of Layers of the Solar Radiation Absorber in Perovskite-Based Cells. Applied Solar Energy (English Translation of Geliotekhnika), 2019, 55, 8-11.	0.2	1
782	Robust Electron Transport Layers via In Situ Cross-Linking of Perylene Diimide and Fullerene for Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 6616-6623.	2.5	11
783	Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365, 687-691.	6.0	447

#	Article	IF	CITATIONS
784	Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors. Nano Energy, 2019, 65, 103958.	8.2	23
785	The efficient and non-hysteresis inverted non-fullerenes/CH3NH3PbI3 planar solar cells. Solar Energy, 2019, 189, 307-313.	2.9	16
786	Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells. Solar Energy, 2019, 189, 426-434.	2.9	15
787	Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 15627-15635.	1.1	12
788	Organometal Halide Perovskites Thin Film and Their Impact on the Efficiency of Perovskite Solar Cells. , 0, , .		0
789	Influence of Thiazole-Modified Carbon Nitride Nanosheets with Feasible Electronic Properties on Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 12322-12328.	6.6	61
790	Molecular Engineering of the Fullereneâ€Based Electron Transport Layer Materials for Improving Ambient Stability of Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900223.	3.1	20
791	Dopantâ€Free Smallâ€Molecule Holeâ€Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21%. Advanced Materials, 2019, 31, e1902781.	11.1	268
792	Enhanced efficiency and stability of inverted perovskite solar cells by carbon dots cathode interlayer via solution process. Organic Electronics, 2019, 74, 228-236.	1.4	16
793	Heterogeneous electron transporting layer for reproducible, efficient and stable planar perovskite solar cells. Journal of Power Sources, 2019, 437, 226907.	4.0	7
794	Enhanced Electrons Extraction of Lithium-Doped SnO\$_{2}\$ Nanoparticles for Efficient Planar Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1273-1279.	1.5	10
795	Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review. Global Challenges, 2019, 3, 1900050.	1.8	115
796	A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy, 2019, 64, 103946.	8.2	49
797	From Macroscopic to Nanoscopic Current Hysteresis Suppressed by Fullerene in Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900235.	3.1	10
798	Carbon Materials in Perovskite Solar Cells: Prospects and Future Challenges. Energy and Environmental Materials, 2019, 2, 107-118.	7.3	72
799	Μethylammonium Chloride: A Key Additive for Highly Efficient, Stable, and Up calable Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 79-92.	7.3	79
800	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	7.3	45
801	Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast perovskite-based solar cells. Organic Electronics, 2019, 74, 172-178.	1.4	32

#	Article	IF	CITATIONS
802	Oxidation states in perovskite layers formed using various deposition techniques. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	3
803	A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives. Applied Sciences (Switzerland), 2019, 9, 4393.	1.3	24
804	Solvent-free and large area compatible deposition of methylammonium lead bromide perovskite by close space sublimation and its application in PIN diodes. Thin Solid Films, 2019, 692, 137585.	0.8	4
805	Effects of TiCl4 post-treatment on the performance of hole transport material-free, screen printable mesoscopic perovskite solar cells with carbon electrode. Thin Solid Films, 2019, 692, 137627.	0.8	8
806	Electron Versus Hole Extraction: Self Doping Induced Performance Bottleneck in Perovskite Solar Cells. IEEE Electron Device Letters, 2019, 40, 1784-1787.	2.2	5
807	Highâ€Performance Inverted Planar Perovskite Solar Cells Enhanced by Thickness Tuning of New Dopantâ€Free Hole Transporting Layer. Small, 2019, 15, e1904715.	5.2	47
808	Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 13680-13708.	2.7	50
809	Atomic structure and electronic properties of lead and tin based hybrid halide perovskite surface for photovoltaic applications. AIP Advances, 2019, 9, .	0.6	9
810	Differential Response of the Photoluminescence and Photocurrent of Polycrystalline CH ₃ NH ₃ PbI ₃ and CH ₃ NH ₃ PbBr ₃ to the Exposure to Oxygen and Nitrogen. ACS Applied Electronic Materials, 2019, 1, 2007-2017.	2.0	11
811	Efficient inverted perovskite solar cells with truxene-bridged PDI trimers as electron transporting materials. Materials Chemistry Frontiers, 2019, 3, 2137-2142.	3.2	22
812	Control of aggregation and dissolution of small molecule hole transport layers <i>via</i> a doping strategy for highly efficient perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 11932-11942.	2.7	8
813	Energy level-modulated non-fullerene small molecule acceptors for improved <i>V</i> _{OC} and efficiency of inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3336-3343.	5.2	29
814	Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 1824-1834.	5.2	59
815	Organic interfacial materials for perovskite-based optoelectronic devices. Energy and Environmental Science, 2019, 12, 1177-1209.	15.6	185
816	Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency. Nano Energy, 2019, 59, 1-9.	8.2	52
817	Porous and Intercrossed PbI ₂ –CsI Nanorod Scaffold for Inverted Planar FA–Cs Mixed-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 6126-6135.	4.0	32
818	Efficient Photodoping of Graphene in Perovskite–Graphene Heterostructure. Advanced Electronic Materials, 2019, 5, 1800940.	2.6	8
819	Using easily prepared carbon nanodots to improve hole transport capacity of perovskite solar cells. Materials Today Energy, 2019, 12, 161-167.	2.5	25

#	Article	IF	CITATIONS
820	Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synthetic Metals, 2019, 249, 25-30.	2.1	10
821	Structural design considerations of solution-processable graphenes as interfacial materials <i>via</i> a controllable synthesis method for the achievement of highly efficient, stable, and printable planar perovskite solar cells. Nanoscale, 2019, 11, 890-900.	2.8	10
822	Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A, 2019, 7, 1107-1114.	5.2	100
823	Improved conversion efficiency of perovskite solar cells converted from thermally deposited lead iodide with dimethyl sulfoxide-treated poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate). Organic Electronics, 2019, 73, 266-272.	1.4	4
824	Perovskite solar cells. , 2019, , 417-446.		9
825	Graphene and carbon nanotube-based solar cells. , 2019, , 603-660.		2
826	Fullerene-based solar cells. , 2019, , 661-698.		0
827	Enhanced efficiency and thermal stability of perovskite solar cells using poly(9-vinylcarbazole) modified perovskite/PCBM interface. Electrochimica Acta, 2019, 318, 384-391.	2.6	29
828	Effects of Chemical Bath-Deposited TiO2 Compact Layer on the Performance of the Fully Screen-Printable Hole-Transport Material-Free Mesoscopic Perovskite Solar Cells with a Carbon Electrode. Journal of Electronic Materials, 2019, 48, 5857-5864.	1.0	1
829	Benefits of the Hydrophobic Surface for CH3NH3PbI3 Crystalline Growth towards Highly Efficient Inverted Perovskite Solar Cells. Molecules, 2019, 24, 2027.	1.7	16
830	Nonfullerene nâ€Type Organic Semiconductors for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900860.	10.2	63
831	Enhanced performance and stability of p–i–n perovskite solar cells by utilizing an AIE-active cathode interlayer. Journal of Materials Chemistry A, 2019, 7, 15662-15672.	5.2	21
832	Enhanced stability and photovoltage for inverted perovskite solar cells <i>via</i> precursor engineering. Journal of Materials Chemistry A, 2019, 7, 15880-15886.	5.2	22
833	Peculiarities of Magnetron Sputtering of Nickel Oxide Thin Films for Use in Perovskite Solar Cells. Technical Physics, 2019, 64, 422-426.	0.2	1
834	Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small, 2019, 15, e1900854.	5.2	205
835	Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance. Materials Horizons, 2019, 6, 1611-1624.	6.4	86
836	Investigation of sol-gel and nanoparticle-based NiOx hole transporting layer for high-performance planar perovskite solar cells. Journal of Alloys and Compounds, 2019, 797, 1018-1024.	2.8	23
837	The facile modification of PEDOT:PSS buffer layer by polyethyleneglycol and their effects on inverted perovskite solar cell. Solar Energy, 2019, 186, 398-403.	2.9	22

TION

#	Article	IF	CITATIONS
838	An Analytical Approach to CH 3 NH 3 PbI 3 Perovskite Solar Cells Based on Different Hole Transport Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900087.	0.8	5
839	<i>In situ</i> growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 13777-13786.	5.2	58
840	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	1.6	14
841	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	7.2	73
842	Controlling the Morphology of Organic–Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications. ACS Applied Materials & Interfaces, 2019, 11, 17452-17458.	4.0	19
843	High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer. Journal of Materials Chemistry C, 2019, 7, 6956-6963.	2.7	29
844	The impact at polar solvent treatment on p-contact layers (PEDOT:PSS or NiOx) of hybrid perovskite solar cells. Organic Electronics, 2019, 73, 273-278.	1.4	5
845	Materials and structures for the electron transport layer of efficient and stable perovskite solar cells. Science China Chemistry, 2019, 62, 800-809.	4.2	59
846	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
847	Effect of Thermal Cycling on the Structural Evolution of Methylammonium Lead Iodide Monitored around the Phase Transition Temperatures. Solar Rrl, 2019, 3, 1900044.	3.1	7
848	Two Heteromorphic Crystals of Antimony-Based Hybrids Showing Tunable Optical Band Gaps and Distinct Photoelectric Responses. Inorganic Chemistry, 2019, 58, 6544-6549.	1.9	17
849	MAPbBr ₃ perovskite solar cells <i>via</i> a two-step deposition process. RSC Advances, 2019, 9, 12906-12912.	1.7	51
850	Effect of Br content on phase stability and performance of H ₂ N=CHNH ₂ Pb(l _{1â~'<i>x</i>} Br <i> _x </i>) ₃ perovskite thin films. Nanotechnology, 2019, 30, 165402.	1.3	11
851	Direct observation of charge transfer at the interface between PEDOT:PSS and perovskite layers. Applied Physics Express, 2019, 12, 041002.	1.1	12
852	Investigation of Rbx(MA)1â^'xPbI3(x = 0, 0.1, 0.3, 0.5, 0.75, 1) perovskites as a potential source of P- and N-type materials for PN-junction solar cell. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	6
853	Alkyl chain engineering on tetraphenylethylene-diketopyrrolopyrrole-based interfacial materials for efficient inverted perovskite solar cells. Organic Electronics, 2019, 69, 13-19.	1.4	9
854	High-performance inverted planar perovskite solar cells based on solution-processed rubidium-doped nickel oxide hole-transporting layer. Organic Electronics, 2019, 69, 34-41.	1.4	24
855	Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Applied Materials Today, 2019, 15, 389-397.	2.3	41

#	Article	IF	CITATIONS
856	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
857	Theoretical Device Engineering for Highâ€Performance Perovskite Solar Cells Using CuSCN as Hole Transport Material Boost the Efficiency Above 25%. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900102.	0.8	24
858	Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 387-403.	2.4	17
859	Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. New Journal of Chemistry, 2019, 43, 7130-7135.	1.4	31
860	Research activities on perovskite solar cells in China. Science China Chemistry, 2019, 62, 822-828.	4.2	22
861	Low-Cost Culn1â^'xGaxSe2 Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells. Applied Sciences (Switzerland), 2019, 9, 719.	1.3	7
862	In situ deposition of black α-FAPbI3 films by vacuum flash evaporation for solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 8381-8389.	1.1	6
863	Hole transport materials doped to absorber film for improving the performance of the perovskite solar cells. Materials Science in Semiconductor Processing, 2019, 98, 113-120.	1.9	7
864	Design of BCP buffer layer for inverted perovskite solar cells using ideal factor. APL Materials, 2019, 7,	2.2	44
865	Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Organic Electronics, 2019, 70, 63-70.	1.4	40
866	High Efficiency Planar pâ€iâ€n Perovskite Solar Cells Using Low ost Fluoreneâ€Based Hole Transporting Material. Advanced Functional Materials, 2019, 29, 1900484.	7.8	59
867	Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials. Science China Chemistry, 2019, 62, 767-774.	4.2	16
868	High thermoelectric efficiency in monolayer PbI ₂ from 300 K to 900 K. Inorganic Chemistry Frontiers, 2019, 6, 920-928.	3.0	29
869	Cu ₂ ZnSnS ₄ Quantum Dots as Hole Transport Material for Enhanced Charge Extraction and Stability in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800354.	3.1	34
870	High detectivity ITO/organolead halide perovskite Schottky photodiodes. Semiconductor Science and Technology, 2019, 34, 074004.	1.0	13
871	Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nature Communications, 2019, 10, 815.	5.8	528
872	Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells. Nanomaterials, 2019, 9, 286.	1.9	9
873	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835

#	Article	IF	CITATIONS
874	How to use Synchrotron Soft X-Ray for Analysis of Perovskite Solar Cell. , 2019, , .		0
875	Structural and electronic properties of multifunctional carbon composites of organometal halide perovskites. Journal of Materials Chemistry A, 2019, 7, 25020-25031.	5.2	8
876	A zwitterionic polymer as an interfacial layer for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 30317-30324.	1.7	13
877	A Facile Way to Improve the Performance of Perovskite Solar Cells by Toluene and Diethyl Ether Mixed Anti-Solvent Engineering. Coatings, 2019, 9, 766.	1.2	11
878	Synthesis, Structural, Linear, and Nonlinear Optical Studies of Inorganic–Organic Hybrid Semiconductors (R–C6H4CHCH3NH3)2PbI4, (R = CH3, Cl). ACS Omega, 2019, 4, 19565-19572.	1.6	11
879	Tetrahedral amorphous carbon prepared filter cathodic vacuum arc for hole transport layers in perovskite solar cells and quantum dots LEDs. Science and Technology of Advanced Materials, 2019, 20, 1118-1130.	2.8	5
880	Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy and Environmental Science, 2019, 12, 3356-3369.	15.6	519
881	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24
882	Polystyrene enhanced crystallization of perovskites towards high performance solar cells. Nanoscale Advances, 2019, 1, 76-85.	2.2	15
883	Achieving 20% Efficiency for Lowâ€Temperatureâ€Processed Inverted Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807556.	7.8	68
884	Recent Progress in Piezoâ€Phototronic Effect Enhanced Solar Cells. Advanced Functional Materials, 2019, 29, 1808214.	7.8	57
885	Tuning Hole Transport Layer Using Urea for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1806740.	7.8	101
886	Fully Airâ€Processed Carbonâ€Based Efficient Hole Conductor Free Planar Heterojunction Perovskite Solar Cells With High Reproducibility and Stability. Solar Rrl, 2019, 3, 1800297.	3.1	20
887	Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN ₂ H ₄) ₂ Cl ₂ into the CH ₃ NH ₃ Pbl ₃ active layer. Journal of Materials Chemistry A, 2019, 7, 1124-1137.	5.2	36
888	Developing 1D Sbâ€Embedded Carbon Nanorods to Improve Efficiency and Stability of Inverted Planar Perovskite Solar Cells. Small, 2019, 15, e1804692.	5.2	21
889	Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy, 2019, 56, 770-791.	8.2	85
890	Rapid and sheet-to-sheet slot-die coating manufacture of highly efficient perovskite solar cells processed under ambient air. Solar Energy, 2019, 177, 255-261.	2.9	32
891	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 2019, 35, 144-167.	7.1	129

#	Article	IF	Citations
892	High-efficiency perovskite solar cells based on self-assembly n-doped fullerene derivative with excellent thermal stability. Journal of Power Sources, 2019, 413, 459-466.	4.0	24
893	Fluoro- and Amino-Functionalized Conjugated Polymers as Electron Transport Materials for Perovskite Solar Cells with Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2019, 11, 5289-5297.	4.0	37
894	Enhanced Open-Circuit Voltage of Cs-Containing FAPbl ₃ Perovskite Solar Cells by the Formation of a Seed Layer through a Vapor-Assisted Solution Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 3404-3413.	3.2	14
895	Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode. Journal of Colloid and Interface Science, 2019, 540, 315-321.	5.0	22
896	Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Organic Electronics, 2019, 67, 101-108.	1.4	28
897	NDI-based small molecules as electron transporting layers in solution-processed planar perovskite solar cells. Journal of Solid State Chemistry, 2019, 270, 51-57.	1.4	19
898	Efficient Inverted Perovskite Solar Cells by Employing Nâ€Type (D–A ₁ –D–A ₂) Polymers as Electron Transporting Layer. Small, 2019, 15, e1803339.	5.2	50
899	Perovskite Methylammonium Lead Trihalide Heterostructures: Progress and Challenges. IEEE Nanotechnology Magazine, 2019, 18, 1-12.	1.1	64
900	Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy, 2019, 57, 248-255.	8.2	52
901	Improved performance of inverted planar MAPbI3 based perovskite solar cells using bromide post-synthesis treatment. Solar Energy, 2019, 177, 538-544.	2.9	10
902	Stability Challenges for Perovskite Solar Cells. ChemNanoMat, 2019, 5, 253-265.	1.5	39
903	lodoplumbates from 1D chain to 2D layer: Syntheses, crystal structures, and photocatalytic properties of organic hybrid lead iodides with diammonium structural templating. Inorganica Chimica Acta, 2019, 484, 104-110.	1.2	5
904	Evaluation of the photovoltaic performance and the stability of the FTO/b-TiO2/mp-TiO2/CH3NH3[LaxPb1-x]I3/NiO/Au at various La ions content. Optik, 2019, 178, 29-35.	1.4	2
905	Mixed Halide Perovskite Solar Cells: Progress and Challenges. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 85-112.	6.8	51
906	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
907	Cations Functionalized Carbon Nanoâ€Dots Enabling Interfacial Passivation and Crystallization Control for Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900369.	3.1	16
908	To Be Higher and Stronger—Metal Oxide Electron Transport Materials for Perovskite Solar Cells. Small, 2020, 16, e1902579.	5.2	80
909	Progress in Multifunctional Molecules for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900248.	3.1	13

#	Article	IF	CITATIONS
910	Strategies Toward Extending the Nearâ€Infrared Photovoltaic Response of Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900280.	3.1	13
911	Material and Interface Engineering for Highâ€Performance Perovskite Solar Cells: A Personal Journey and Perspective. Chemical Record, 2020, 20, 209-229.	2.9	9
912	Desirable TiO2 compact films for nanostructured hybrid solar cells. Materials Technology, 2020, 35, 31-38.	1.5	6
913	Efficient and stable planar perovskite solar cells with a PEDOT:PSS/SrGO hole interfacial layer. Journal of Alloys and Compounds, 2020, 812, 152091.	2.8	49
914	Perovskite solar cells. , 2020, , 163-228.		8
915	Reducing Photovoltage Loss in Inverted Perovskite Solar Cells by Quantum Dots Alloying Modification at Cathode Contact. Solar Rrl, 2020, 4, 1900468.	3.1	19
916	In situ construction of gradient heterojunction using organic VOx precursor for efficient and stable inverted perovskite solar cells. Nano Energy, 2020, 67, 104244.	8.2	44
917	Wavelength-selective degradation of perovskite-based solar cells. Solid State Sciences, 2020, 99, 106051.	1.5	11
918	Conjugated Polymers as Hole Transporting Materials for Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 449-458.	2.0	9
919	Role of PC60BM in defect passivation and improving degradation behaviour in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 207, 110335.	3.0	23
920	The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901469.	1.9	239
921	The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. JPhys Energy, 2020, 2, 022001.	2.3	76
922	Stable Efficient Methylammonium Lead Iodide Thin Film Photodetectors with Highly Oriented Millimeter-Sized Crystal Grains. ACS Photonics, 2020, 7, 57-67.	3.2	9
923	Ï€-Conjugated small molecules enable efficient perovskite growth and charge-extraction for high-performance photovoltaic devices. Journal of Power Sources, 2020, 448, 227420.	4.0	18
924	Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31, 152001.	1.3	24
925	Origins of the s-shape characteristic in <i>J</i> – <i>V</i> curve of inverted-type perovskite solar cells. Nanotechnology, 2020, 31, 115403.	1.3	33
926	Improving performance of perovskites solar cells using solvent engineering, via Lewis adduct of MAI-DMSO-PbI2 and incorporation of imidazolium cation. Journal of Alloys and Compounds, 2020, 817, 153076.	2.8	9
927	High-efficiency planar p-i-n perovskite solar cells based on dopant-free dibenzo[b,d]furan-centred linear hole transporting material. Journal of Power Sources, 2020, 449, 227488.	4.0	18

#	Article	IF	CITATIONS
928	Thiophene Terminated Fullerene Derivatives for Interfacial Modification toward High Efficiency MAPbI ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9824-9832.	2.5	12
929	Highly thermal-stable perylene-bisimide small molecules as efficient electron-transport materials for perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 14773-14781.	2.7	14
930	Recent Progress of Inverted Perovskite Solar Cells with a Modified PEDOT:PSS Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 49297-49322.	4.0	88
931	Photoelectronic mechanism investigation of the structural transformation of CH ₃ NH ₃ PbI ₃ perovskites from a subnanosheet to a microwire. Materials Advances, 2020, 1, 3208-3214.	2.6	Ο
932	Light-induced improvement of dopant-free PTAA on performance of inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 215, 110606.	3.0	36
933	Approaching optimal hole transport layers by an organic monomolecular strategy for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 16560-16569.	5.2	16
934	Effect of functional groups of self assembled monolayer molecules on the performance of inverted perovskite solar cell. Materials Chemistry and Physics, 2020, 254, 123435.	2.0	16
935	Novel core-modulated naphthalenediimides with CN-TFPA as electron transport layer for inverted perovskite solar cells. Materials Research Bulletin, 2020, 132, 111009.	2.7	4
936	Naphthalene Diimideâ€Based Molecules for Efficient and Stable Perovskite Solar Cells. European Journal of Organic Chemistry, 2020, 2020, 5329-5339.	1.2	10
937	Recent Progress on the Stability of Perovskite Solar Cells in a Humid Environment. Journal of Physical Chemistry C, 2020, 124, 27251-27266.	1.5	43
938	Crystal Size Effect on Carrier Transport of Microscale Perovskite Junctions via Soft Contact. Nano Letters, 2020, 20, 8640-8646.	4.5	18
939	Solution-combustion-based nickel oxide hole transport layers via fuel regulation in inverted planar perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 15225-15232.	1.1	4
940	A density functional theory study of the thermoelectric properties of K3AuO. Computational Condensed Matter, 2020, 24, e00484.	0.9	4
941	A Comparison of the Structure and Properties of Opaque and Semi-Transparent NIP/PIN-Type Scalable Perovskite Solar Cells. Energies, 2020, 13, 3794.	1.6	13
942	Exploring Light Polarization Effects of Photovoltaic Actions in Organic–Inorganic Hybrid Perovskites with Asymmetric and Symmetric Unit Structures. ACS Applied Materials & Interfaces, 2020, 12, 38054-38060.	4.0	2
943	Advancement in Inorganic Hole Transport Materials for Inverted Perovskite Solar Cells. Journal of Electronic Materials, 2020, 49, 5840-5881.	1.0	31
944	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	1.9	25
945	Scalable open-air deposition of compact ETL TiO _x on perovskite for fullerene-free solar cells. Journal of Materials Chemistry A, 2020, 8, 22858-22866.	5.2	6

#	Article	IF	CITATIONS
946	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2004273.	7.8	17
947	Multifunctional Polymerâ€Regulated SnO ₂ Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2003990.	11.1	208
948	Interfacial Dipole in Organic and Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 18281-18292.	6.6	182
949	Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells. Organic Electronics, 2020, 87, 105959.	1.4	12
950	Intermittent sulfurization—a method promoting Macro-Porous Cu-Poor Zn-Rich—kesterite CZTS as HTM for inverted perovskite solar cell application. Journal of Materials Science: Materials in Electronics, 2020, 31, 18427-18444.	1.1	6
951	Grapheneâ€Based Materials in Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000502.	3.1	36
952	Efficiency progress of inverted perovskite solar cells. Energy and Environmental Science, 2020, 13, 3823-3847.	15.6	210
953	Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4â€ethylenedioxythiophene), and Applications in Solutionâ€Processed Photovoltaics. Advanced Functional Materials, 2020, 30, 2006213.	7.8	90
954	Recent advances of non-fullerene organic electron transport materials in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20819-20848.	5.2	29
955	Understanding Hole Extraction of Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 56068-56075.	4.0	16
956	Doping strategies of organic n-type materials in perovskite solar cells: a chemical perspective. Sustainable Energy and Fuels, 2020, 4, 3264-3281.	2.5	10
957	Ï€â€Extended Spiro Coreâ€Based Nonfullerene Electronâ€Transporting Material for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001073.	7.8	12
958	Solution-processed perovskite solar cells. Journal of Central South University, 2020, 27, 1104-1133.	1.2	34
959	Dopantâ€Free Crossconjugated Holeâ€Transporting Polymers for Highly Efficient Perovskite Solar Cells. Advanced Science, 2020, 7, 1903331.	5.6	55
960	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chinese Chemical Letters, 2020, 31, 3055-3064.	4.8	52
961	Functionalization of fullerene materials toward applications in perovskite solar cells. Materials Chemistry Frontiers, 2020, 4, 2256-2282.	3.2	91
962	Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002333.	11.1	48
963	Nanocarbon. , 2020, , 131-155.		0

#	Article	IF	CITATIONS
964	Numerical modeling of planar lead free perovskite solar cell using tungsten disulfide (WS ₂) as an electron transport layer and Cu ₂ O as a hole transport layer. Modern Physics Letters B, 2020, 34, 2050258.	1.0	30
965	Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells. Nanomaterials, 2020, 10, 521.	1.9	13
966	Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15456-15463.	4.0	16
967	The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy and Environmental Science, 2020, 13, 1377-1407.	15.6	149
968	Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Solar Energy, 2020, 201, 555-560.	2.9	113
969	Conversion efficiency enhancement of methylammonium lead triiodide perovskite solar cells converted from thermally deposited lead iodide via thin methylammonium iodide interlayer. Organic Electronics, 2020, 82, 105713.	1.4	2
970	Insulator-metal transition in CaTiO ₃ quantum dots induced by ultrafast laser pulses*. Chinese Physics B, 2020, 29, 058101.	0.7	3
971	<i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite solar cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 2020, 8, 7695-7703.	5.2	29
972	Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p–i–n Structure Perovskite Solar Cells. ACS Omega, 2020, 5, 6082-6089.	1.6	17
973	Improving the performance of ultra-flexible perovskite photodetectors through cation engineering. Journal Physics D: Applied Physics, 2020, 53, 235107.	1.3	9
974	Interfacial engineering for organic and perovskite solar cells using molecular materials. Journal Physics D: Applied Physics, 2020, 53, 263001.	1.3	6
975	Synergistic Reinforcement of Builtâ€In Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 1909755.	7.8	47
976	A Selfâ€Assembled Smallâ€Moleculeâ€Based Holeâ€Transporting Material for Inverted Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 10276-10282.	1.7	19
977	High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Research, 2020, 13, 2546-2555.	5.8	31
978	Imide-functionalized acceptor–acceptor copolymers as efficient electron transport layers for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 13754-13762.	5.2	28
979	Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, 2020, 17, 100449.	2.5	43
980	Inverted devices are catching up. Nature Energy, 2020, 5, 123-124.	19.8	14
981	Incorporating self-assembled silane-crosslinked carbon dots into perovskite solar cells to improve efficiency and stability. Journal of Materials Chemistry A, 2020, 8, 5629-5637.	5.2	23

#	Article	IF	CITATIONS
982	Development in the innovation of lead halide-based perovskite quantum dots from rare earth-doped garnet-based phosphors for light-emitting diodes. , 2020, , 21-56.		3
983	Carbon-based interlayers in perovskite solar cells. Renewable and Sustainable Energy Reviews, 2020, 124, 109774.	8.2	46
984	Structural, optical and excitonic properties of MAxCs1-xPb(IxBr1-x)3 alloy thin films and their application in solar cells. Solar Energy Materials and Solar Cells, 2020, 210, 110478.	3.0	27
985	Enhancing Device Performance in Quasi-2D Perovskite ((BA) ₂ (MA) ₃ Pb ₄ 13) Solar Cells Using PbCl ₂ Additives. ACS Applied Materials & Interfaces, 2020, 12, 11190-11196.	4.0	35
986	Interfacial and structural modifications in perovskite solar cells. Nanoscale, 2020, 12, 5719-5745.	2.8	39
987	Steering the electron transport properties of pyridine-functionalized fullerene derivatives in inverted perovskite solar cells: the nitrogen site matters. Journal of Materials Chemistry A, 2020, 8, 3872-3881.	5.2	25
988	Progress of Highâ€Throughput and Low ost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	3.1	43
989	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	8.2	52
990	Approaching the Most Economic Preparation of Hole Transport Layer by Organic Monomolecular Strategy for Efficient Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000011.	3.1	6
991	Understanding Temperatureâ€Dependent Charge Extraction and Trapping in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2000550.	7.8	31
992	Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells. Organic Electronics, 2020, 82, 105726.	1.4	13
993	Understanding the mechanisms of a conjugated polymer electrolyte for interfacial modification in solution-processed organic-inorganic hybrid perovskite photodetectors. Organic Electronics, 2020, 83, 105729.	1.4	7
994	A facile route for preparing nickel(ii) oxide thin films for high-performance inverted perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 3597-3603.	2.5	6
995	Star-like hexakis[di(ethoxycarbonyl)methano]-C60 with higher electron mobility: An unexpected electron extractor interfaced in photovoltaic perovskites. Nano Energy, 2020, 74, 104859.	8.2	20
996	A New Strategy for Increasing the Efficiency of Inverted Perovskite Solar Cells to More than 21%: Highâ€Humidity Induced Selfâ€Passivation of Perovskite Films. Solar Rrl, 2020, 4, 2000149.	3.1	17
997	Effect of UV exposure of ITO/PEDOT:PSS substrates on the performance of inverted-type perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 7968-7980.	1.1	13
998	Charge-transport layer engineering in perovskite solar cells. Science Bulletin, 2020, 65, 1237-1241.	4.3	115
999	Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 393-411.	7.1	132

#	Article	IF	CITATIONS
1000	Sodium Benzenesulfonate Modified Poly (3,4â€Ethylenedioxythiophene):Polystyrene Sulfonate with Improved Wettability and Work Function for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, .	3.1	51
1001	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie - International Edition, 2021, 60, 313-320.	7.2	26
1002	Lightâ€Controlled Regioselective Synthesis of Fullerene Bisâ€Adducts. Angewandte Chemie, 2021, 133, 317-324.	1.6	2
1003	Efficient and stable inverted perovskite solar cells enabled by inhibition of self-aggregation of fullerene electron-transporting compounds. Science Bulletin, 2021, 66, 339-346.	4.3	23
1004	Hybrid organolead halide perovskite microwire arrays/single CdSe nanobelt for a high-performance photodetector. Chemical Engineering Journal, 2021, 406, 126779.	6.6	18
1005	Novel thieno-imidazole salt-based hole transport material for dopant-free, efficient inverted perovskite solar cell applications. Journal of Power Sources, 2021, 483, 229177.	4.0	9
1006	A Review on Scaling Up Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008621.	7.8	143
1007	Surface Termination of Solutionâ€Processed CH ₃ NH ₃ PbI ₃ Perovskite Film Examined using Electron Spectroscopies. Advanced Materials, 2021, 33, e2004981.	11.1	27
1008	Facile star-shaped tetraphenylethylene-based molecules with fused ring-terminated diarylamine as interfacial hole transporting materials for inverted perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1373-1387.	3.2	11
1009	Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110870.	3.0	12
1010	All-inorganic CsPbBr ₃ perovskite: a promising choice for photovoltaics. Materials Advances, 2021, 2, 646-683.	2.6	100
1011	Design of Low Crystallinity Spiro-Typed Hole Transporting Material for Planar Perovskite Solar Cells to Achieve 21.76% Efficiency. Chemistry of Materials, 2021, 33, 285-297.	3.2	57
1012	Sputtered Indiumâ€Zinc Oxide for Buffer Layer Free Semitransparent Perovskite Photovoltaic Devices in Perovskite/Silicon 4Tâ€Tandem Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001604.	1.9	15
1013	Conjugated copolymers as doping- and annealing-free hole transport materials for highly stable and efficient p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2269-2275.	5.2	15
1014	Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge). Materials Science in Semiconductor Processing, 2021, 122, 105484.	1.9	67
1015	Inkjet printed organic and perovskite photovoltaics—review and perspectives. , 2021, , 305-333.		4
1016	Study of antimony selenide hole-transport material for Mo/Sb2Se3/MAPbI3/C60/GZO/Ag heterojunction planar solar cells. Surface and Coatings Technology, 2021, 405, 126550.	2.2	5
1017	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	4.6	63

#	Article	IF	CITATIONS
1018	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	2.5	11
1019	Toward highly efficient and stable Sn ²⁺ and mixed Pb ²⁺ /Sn ²⁺ based halide perovskite solar cells through device engineering. Energy and Environmental Science, 2021, 14, 3256-3300.	15.6	49
1020	The spin–orbit interaction controls photoinduced interfacial electron transfer in fullerene–perovskite heterojunctions: C ₆₀ <i>versus</i> C ₇₀ . Physical Chemistry Chemical Physics, 2021, 23, 6536-6543.	1.3	11
1021	Functional materials for various organic electronic devices. , 2021, , 119-165.		2
1022	Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental Science, 2021, 14, 5161-5190.	15.6	255
1023	Comparative study of inverted perovskite solar cells with different hole transporting materials by simulation using the software Setfos-5.0. Materials Today: Proceedings, 2021, 46, 3114-3120.	0.9	5
1024	Spin–Orbit Coupling Accelerates the Photoinduced Interfacial Electron Transfer in a Fullerene-Based Perovskite Heterojunction. Journal of Physical Chemistry Letters, 2021, 12, 1131-1137.	2.1	21
1025	Hot carrier photovoltaics in van der Waals heterostructures. Nature Reviews Physics, 2021, 3, 178-192.	11.9	77
1026	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
1027	Photo-energy conversion efficiency of CH3NH3PbI3/C60 heterojunction perovskite solar cells from first-principles. Materials Advances, 2021, 2, 1665-1675.	2.6	2
1028	Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%. Journal of Materials Chemistry A, 2021, 9, 12009-12018.	5.2	29
1029	Inorganic hole transport layers in inverted perovskite solar cells: A review. Nano Select, 2021, 2, 1081-1116.	1.9	65
1030	Fullerenes and their applications. , 2021, , 19-158.		2
1031	Carbon nanodot integrated solar energy devices. , 2021, , 497-535.		1
1032	Inverted planer perovskite solar cells fabricated by all vapor phase process. Japanese Journal of Applied Physics, 2021, 60, SBBF10.	0.8	6
1033	Perovskite materials as superior and powerful platforms for energy conversion and storage applications. Nano Energy, 2021, 80, 105552.	8.2	91
1034	Device Modelling and Performance Analysis of CH3 NH3 PbX3(X: I, Br, Cl) based Perovskite Solar Cells with SnO2 and CuO as Transport Layers. , 2021, , .		0
1035	Synthesis of Hybrid Lead Iodide Perovskite Thin Film by Two-Step Method Modified with a Double Dipping Circle to Control Its Crystallization and Morphology to Improve Solar Cells' Performance. Journal of Nanomaterials, 2021, 2021, 1-7.	1.5	3

	CHATION	LFURI	
#	Article	IF	CITATIONS
1036	Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar Rrl, 2021, 5, 2000713.	3.1	17
1037	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	7.2	107
1038	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie, 2021, 133, 7303-7309.	1.6	18
1039	Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules. ACS Applied Materials & Interfaces, 2021, 13, 13022-13033.	4.0	69
1040	Elucidating the Role of Ion Migration and Band Bending in Perovskite Solar Cell Function at Grain Boundaries via Multimodal Nanoscale Mapping. Advanced Materials Interfaces, 2021, 8, 2001992.	1.9	13
1041	Photovoltaic Recovery of All Printable Mesoporousâ€Carbonâ€based Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100028.	3.1	11
1042	Tin Oxide Electron‧elective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells. Advanced Materials, 2021, 33, e2005504.	11.1	196
1043	Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells. Rare Metals, 2021, 40, 2747-2762.	3.6	6
1044	Ionic Liquids-Enabled Efficient and Stable Perovskite Photovoltaics: Progress and Challenges. ACS Energy Letters, 0, , 1453-1479.	8.8	98
1045	Correlation of simulation and experiment for perovskite solar cells with MoS2 hybrid-HTL structure. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	11
1046	Assessment of Molecular Additives on the Lifetime of Carbon-Based Mesoporous Perovskite Solar Cells. Energies, 2021, 14, 1947.	1.6	4
1047	Largeâ€Area Bladeâ€Coated Solar Cells: Advances and Perspectives. Advanced Energy Materials, 2021, 11, 2100378.	10.2	77
1048	Tuning an Electrode Work Function Using Organometallic Complexes in Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 7759-7768.	6.6	85
1049	Mechanically Robust and Flexible Perovskite Solar Cells via a Printable and Gelatinous Interface. ACS Applied Materials & Interfaces, 2021, 13, 19959-19969.	4.0	39
1050	Structural, optical and flexible properties of CH3NH3PbI3 perovskite films deposited on paper substrates. Optical Materials, 2021, 114, 110926.	1.7	9
1051	Cuprous iodide dose dependent passivation of MAPbI3 perovskite solar cells. Organic Electronics, 2021, 91, 106080.	1.4	2
1052	On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells. Solar Energy, 2021, 218, 142-149.	2.9	23
1053	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117

#	Article	IF	CITATIONS
1054	Device Modeling and Design of Inverted Solar Cell Based on Comparative Experimental Analysis between Effect of Organic and Inorganic Hole Transport Layer on Morphology and Photo-Physical Property of Perovskite Thin Film. Materials, 2021, 14, 2191.	1.3	1
1055	Tetrakis (N-phenothiazine) spirobifluorene-based hole-transporting material towards high photovoltage perovskite photovoltaics for driving electrochromic devices. Dyes and Pigments, 2021, 188, 109164.	2.0	6
1056	Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS Applied Materials & Interfaces, 2021, 13, 17141-17157.	4.0	64
1057	Toward Real Setting Applications of Organic and Perovskite Solar Cells: A Comparative Review. Energy Technology, 2021, 9, 2000901.	1.8	33
1058	Novel D-A-D type small-molecular hole transport materials for stable inverted perovskite solar cells. Organic Electronics, 2021, 92, 106102.	1.4	19
1059	Allâ€Inorganic Halide Perovskite Nanocrystals: Future Prospects and Challenges to Go Lead Free. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100185.	0.8	1
1060	Photonic crystals for perovskiteâ€based optoelectronic applications. Nano Select, 2022, 3, 39-50.	1.9	4
1061	Research Progress on Structure and Property of Hybrid Organic-Inorganic Perovskite. IOP Conference Series: Earth and Environmental Science, 2021, 781, 022069.	0.2	2
1062	Comparative Study on TiO2 and C60 Electron Transport Layers for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5543-5553.	2.5	4
1063	Charge transporting materials for perovskite solar cells. Rare Metals, 2021, 40, 2690-2711.	3.6	23
1064	Review-Emerging Applications of g-C3N4 Films in Perovskite-Based Solar Cells. ECS Journal of Solid State Science and Technology, 0, , .	0.9	10
1065	Device Architecture Engineering: Progress toward Next Generation Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103121.	7.8	41
1066	Charge-transfer complexes and their applications in optoelectronic devices. Materials Today Energy, 2021, 20, 100644.	2.5	19
1067	Efficiency improvement of P3CT-Na based MAPbI ₃ solar cells with a simple wetting process. Nanotechnology, 2021, 32, 345402.	1.3	6
1068	Preparation and Characterization of Thin-Film Solar Cells with Ag/C60/MAPbI3/CZTSe/Mo/FTO Multilayered Structures. Molecules, 2021, 26, 3516.	1.7	2
1069	Impact of carbon-based charge transporting layer on the performance of perovskite solar cells. Solar Energy, 2021, 221, 254-274.	2.9	7
1070	Annealing effects on interdiffusion in layered FA-rich perovskite solar cells. AIP Advances, 2021, 11, .	0.6	12
1071	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	5.8	59

#	Article	IF	CITATIONS
1072	Dopant-free Hole-transporting Materials for CH ₃ NH ₃ PbI ₃ Inverted Perovskite Solar Cells with an Approximate Efficiency of 20%. ACS Applied Energy Materials, 2021, 4, 5756-5766.	2.5	16
1073	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
1074	Inorganic top electron transport layer for high performance inverted perovskite solar cells. EcoMat, 2021, 3, e12127.	6.8	26
1075	8â€Hydroxyquinoline Metal Complexes as Cathode Interfacial Materials in Inverted Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100506.	1.9	2
1076	The effect of reduced graphene oxide sheet on the optical and electrical characteristics of Ni-doped and Ag-doped ZnO ETLs in planar perovskite solar cells. Journal of Alloys and Compounds, 2021, 870, 159658.	2.8	22
1077	Ultra-thin ferroelectrics. Materials Science and Engineering Reports, 2021, 145, 100622.	14.8	41
10-0	Investigation of various commercial PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene) Tj ETQq0 0 0 rgBT		
1078	Journal of Materials Science: Materials in Electronics, 2021, 32, 21450-21461.	1.1	3
1079	Newfangled progressions in the charge transport layers impacting the stability and efficiency of perovskite solar cells. Reviews in Inorganic Chemistry, 2022, 42, 137-159.	1.8	8
1080	Unfused Electronic Acceptor-Based Polymers as Interfacial Materials for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33328-33334.	4.0	5
1081	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	2.0	75
1082	A mini review: Constructing perovskite p-n homojunction solar cells. Chinese Chemical Letters, 2022, 33, 1772-1778.	4.8	13
1083	Improvement of fill factor by the utilization of Zn-doped PEDOT:PSS hole-transport layers for p-i-n planar type of perovskite solar cells. Electrochimica Acta, 2021, 388, 138658.	2.6	11
1084	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 20600-20605.	1.6	11
1085	Dopantâ€Free Ternary Conjugated Polymeric Holeâ€Transporting Materials for Efficient Inverted Planar Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100506.	3.1	8
1086	Perovskite Passivation with a Bifunctional Molecule 1,2â€Benzisothiazolinâ€3â€One for Efficient and Stable Planar Solar Cells. Solar Rrl, 2021, 5, 2100472.	3.1	5
1087	Simulated development and optimized performance of narrow-bandgap CsSnI ₃ -based all-inorganic perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 465104.	1.3	6
1088	Reducing the interfacial energy loss via oxide/perovskite heterojunction engineering for high efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 417, 129184.	6.6	27
1089	2D/3D Halide Perovskites for Optoelectronic Devices. Frontiers in Chemistry, 2021, 9, 715157.	1.8	8

#	Article	IF	CITATIONS
1090	Synergistical Dipole–Dipole Interaction Induced Selfâ€Assembly of Phenoxazineâ€Based Holeâ€Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 20437-20442.	7.2	66
1091	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	1.7	19
1092	Review on engineering two-dimensional nanomaterials for promoting efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 154-175.	7.1	11
1093	Interfacial Linkage and Carbon Encapsulation Enable Full Solutionâ€Printed Perovskite Photovoltaics with Prolonged Lifespan. Angewandte Chemie, 2021, 133, 23928.	1.6	7
1094	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
1095	Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Materials Science, 2021, 3, 276-290.	3.9	35
1096	Two-Dimensional Materials for Advanced Solar Cells. , 0, , .		0
1097	Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry, 2021, 60, 599-634.	7.1	59
1098	Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation. Journal of Physics and Chemistry of Solids, 2021, 156, 110168.	1.9	20
1099	MOFs based on the application and challenges of perovskite solar cells. IScience, 2021, 24, 103069.	1.9	27
1100	Improving the stabilities of organic solar cells via employing a mixed cathode buffer layer. EPJ Applied Physics, 2021, 95, 30201.	0.3	1
1101	Interfacial Linkage and Carbon Encapsulation Enable Full Solutionâ€Printed Perovskite Photovoltaics with Prolonged Lifespan. Angewandte Chemie - International Edition, 2021, 60, 23735-23742.	7.2	56
1102	Sensitive, Highâ€5peed, and Broadband Perovskite Photodetectors with Builtâ€In TiO ₂ Metalenses. Small, 2021, 17, e2102694.	5.2	4
1103	Recent advances in carbon nanomaterial-optimized perovskite solar cells. Materials Today Energy, 2021, 21, 100769.	2.5	14
1104	Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules. ACS Applied Energy Materials, 2021, 4, 9525-9533.	2.5	10
1105	Highly efficient and stable P3CT-Na based MAPbI3 solar cells with a Sn-rich ITO anode. Solar Energy Materials and Solar Cells, 2021, 231, 111305.	3.0	13
1106	Boosting performance and stability of inverted perovskite solar cells by modulating the cathode interface with phenyl phosphine-inlaid semiconducting polymer. Nano Energy, 2021, 89, 106374.	8.2	10
1107	Remarkable performance optimization of inverted p-i-n architecture perovskite solar cell with CZTS as hole transport material. Physica B: Condensed Matter, 2021, 620, 413270.	1.3	6

#	Article	IF	CITATIONS
1108	NaCl-passivated and Na+-doped tin oxide electron transport layers enable highly efficient planar perovskite solar cells. Journal of Physics and Chemistry of Solids, 2021, 158, 110250.	1.9	8
1109	Influence of annealing temperature of nickel oxide as hole transport layer applied for inverted perovskite solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	2
1111	Improved photovoltage of printable perovskite solar cells via Nb ⁵⁺ doped SnO ₂ compact layer. Nanotechnology, 2021, 32, 145403.	1.3	7
1112	Metal Oxides for Perovskite Solar Cells. , 2021, , 197-233.		3
1113	A Highâ€Performance Flexible Broadband Photodetector Based on Graphene–PTAA–Perovskite Heterojunctions. Advanced Electronic Materials, 2021, 7, 2000522.	2.6	24
1114	Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy and Environmental Science, 0, , .	15.6	62
1115	Centimeterâ€Sized Single Crystals of Twoâ€Dimensional Hybrid Iodide Double Perovskite (4,4â€Difluoropiperidinium) ₄ AgBil ₈ for Highâ€Temperature Ferroelectricity and Efficient Xâ€Ray Detection. Advanced Functional Materials, 2021, 31, 2009457.	7.8	121
1116	Exploring the film growth in perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 6029-6049.	5.2	20
1117	Nanocarbons for emerging photovoltaic applications. , 2021, , 49-80.		0
1118	The role of fullerene derivatives in perovskite solar cells: electron transporting or electron electron extraction layers?. Journal of Materials Chemistry C, 2021, 9, 10759-10767.	2.7	20
1119	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
1120	Controlling Crystal Growth via an Autonomously Longitudinal Scaffold for Planar Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000617.	11.1	118
1121	Effect of the Device Architecture on the Performance of FA _{0.85} MA _{0.15} PbBr _{0.45} I _{2.55} Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801667.	1.9	15
1122	Perovskite Photovoltaics: From Laboratory to Industry. Springer Series in Optical Sciences, 2020, , 219-255.	0.5	9
1123	A Review on Contemporary Hole Transport Materials for Perovskite Solar Cells. Green Energy and Technology, 2020, , 145-168.	0.4	7
1124	Chapter 1. High Efficiency Mesoscopic Organometal Halide Perovskite Solar Cells. RSC Energy and Environment Series, 2016, , 1-31.	0.2	3
1125	Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12729-12734.	5.2	103
1126	A Review on Tailoring PEDOT:PSS Layer for Improved Performance of Perovskite Solar Cells. Proceedings of the Nature Research Society, 0, 2, .	0.0	70

#	Article	IF	CITATIONS
1127	Progress and Prospect on Stability of Perovskite Photovoltaics. Journal of Modern Materials, 2017, 4, 16-30.	0.8	9
1128	TiN and In ₂ O ₃ Co-sputtered Amorphous InTiON Electrodes for Perovskite Solar Cells. Applied Science and Convergence Technology, 2018, 27, 156-160.	0.3	1
1129	Progress of research on new hole transporting materials used in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 033301.	0.2	5
1130	Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038401.	0.2	16
1131	Recent progress in research on solid organic-inorganic hybrid solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038405.	0.2	6
1132	progress in electron-transport materials in application of perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038802.	0.2	12
1133	Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 118801.	0.2	3
1134	Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 158801.	0.2	3
1135	Innovative PIN-type perovskite solar cells with 17% efficiency: processing and characterization. Materials Advances, 2021, 2, 7907-7921.	2.6	6
1136	Emerging electronic applications of fullerene derivatives: an era beyond OPV. Journal of Materials Chemistry C, 2021, 9, 16143-16163.	2.7	21
1137	A comprehensive review on defect passivation and gradient energy alignment strategies for highly efficient perovskite solar cells. Journal Physics D: Applied Physics, 2022, 55, 043001.	1.3	9
1138	Chemical and Electronic Investigation of Buried NiO _{1â[^]î^{<}/sub>, PCBM, and PTAA/MAPbI_{3–<i>x</i>}Cl_{<i>x</i>} Interfaces Using Hard X-ray Photoelectron Spectroscopy and Transmission Electron Microscopy. ACS Applied Materials & amp; Interfaces, 2021, 13, 50481-50490.}	4.0	5
1139	Ambient-environment processed perovskite solar cells: A review. Materials Today Physics, 2021, 21, 100557.	2.9	12
1140	Numerical simulation design of all-inorganic hole-transport-layer-free CsSnI ₃ (Sn-rich)/CsSnI ₃ perovskite efficient solar cells. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3754.	0.9	3
1141	Review of solar photovoltaic cooling systems technologies with environmental and economical assessment. Journal of Cleaner Production, 2021, 326, 129421.	4.6	46
1142	Recent advancement in inorganic-organic electron transport layers in perovskite solar cell: current status and future outlook. Materials Today Chemistry, 2021, 22, 100595.	1.7	17
1143	Investigation on Preparation of Perovskite Layer and Electron-Transport Materials for Perovskite Solar Cells. Hans Journal of Nanotechnology, 2015, 05, 16-23.	0.1	0
1145	Effect of solvent on the perovskite thin film morphology and crystallinity. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 038403.	0.2	6

ARTICLE

IF CITATIONS

1146	2.有機金属ãfãf©ã,╋f‰ãfšãfãf−ã,¹ã,«ã,╋f^å¤é™½é>»æ±ã®å®Ÿç""åŒ−ã«åáãá┥. Electrochemistr	y, 2 0. £6, 84	, 4045-448.
1147	Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells. , 2019, , 165-225.		2
1148	Applications of Chalcogenides as Electron Transport Layers and Doping Materials in Perovskite Solar Cells. IFMBE Proceedings, 2020, , 173-176.	0.2	0
1149	Recent Development in Perovskite Solar Cell Based on Planar Structures. Lecture Notes in Electrical Engineering, 2020, , 1039-1046.	0.3	2
1150	Current Perspectives and Advancements of Perovskite Photovoltaic Cells. Advances in Intelligent Systems and Computing, 2020, , 83-92.	0.5	0
1151	Defect Passivation through Cyclohexylethylamine Post-treatment for High-Performance and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12848-12857.	2.5	6
1152	Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 72-80.	2.5	14
1153	Self-stability of un-encapsulated polycrystalline MAPbI3 solar cells via the formation of chemical bonds between C60 molecules and MA cations. Solar Energy Materials and Solar Cells, 2022, 235, 111454.	3.0	10
1154	Planar Perovskite Solar Cells Using Fullerene C70 as Electron Selective Transport Layer. International Journal of Optics and Photonics, 2020, 14, 15-24.	0.2	0
1155	Theoretical study of photovoltaic performance for inverted halide perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 118801.	0.2	1
1157	Phosphine Oxide Additives for Highâ€Brightness Inorganic Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101602.	3.6	12
1158	Recent Advances in Allâ€Inorganic Zeroâ€Dimensional Metal Halides. ChemPlusChem, 2021, 86, 1577-1585.	1.3	14
1159	Current status and trends of carbon-based electrodes for fully solution-processed perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 222-246.	7.1	29
1160	The Influence of Helium Dielectric Barrier Discharge Jet (DBDjet) Plasma Treatment on Bathocuproine (BCP) in p-i-n-Structure Perovskite Solar Cells. Polymers, 2021, 13, 4020.	2.0	1
1161	Triphenylamineâ€Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells. Small, 2022, 18, e2104933.	5.2	6
1162	Electron and hole transport in solution-processed fullerenes. Journal of Materials Chemistry C, 2021, 9, 16068-16077.	2.7	3
1163	Recent progress in perovskite solar cells: challenges from efficiency to stability. Materials Today Chemistry, 2022, 23, 100686.	1.7	26
1164	Numerical simulation of a hybrid aSi:H/CH3NH3PbI3 heterojunction solar cell. , 2021, , .		0

ARTICLE IF CITATIONS # C₆₀ Thin Films in Perovskite Solar Cells: Efficient or Limiting Charge Transport Layer?. 1165 2.5 6 ACS Applied Energy Materials, 2022, 5, 1646-1655. Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. 3.7 Chemical Science, 2022, 13, 2167-2183. Oxide free materials for perovskite solar cells., 2022, , 287-306. 2 1167 Organometal halide perovskite photovoltaics., 2022,, 273-317. 1168 A dopant-free hole transport material boosting the performance of inverted methylamine-free 1169 5.2 8 perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 3159-3168. Towards high-temperature electron-hole condensate phases in monolayer tetrels metal halides: Ultra-long excitonic lifetimes, phase diagram and exciton dynamics. Materials Today Physics, 2022, 22, 100604. Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells. 1171 5.2 27 Journal of Materials Chemistry A, 2022, 10, 1343-1349. Stabilizing XPbI₃ (X = MA, FA and Cs) cubic perovskites by monolayer 1.4 Ag₄Se₂ deposition. New Journal of Chemistry, 2022, 46, 1329-1338. Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233, 421-434. 2.9 1173 74 A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin 1174 1.3 films. Physica B: Condensed Matter, 2022, 630, 413678. Improving water-resistance of inverted flexible perovskite solar cells via tailoring the top 1175 19 3.0electron-selective layers. Solar Energy Materials and Solar Cells, 2022, 238, 111609. Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy 1.8 Technology, 2022, 10, . Fabrication of highly transparent CsPbBr3 quantum-dot thin film via bath coating for light emission 1178 2.3 2 applications. Ceramics International, 2022, 48, 15729-15736. Understanding the PEDOT:PSS, PTAA and P3CT-X Hole-Transport-Layer-Based Inverted Perovskite Solar 1179 16 Cells. Polymers, 2022, 14, 823. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Advanced Science, 1180 40 5.6 2022, 9, e2200308. Tailoring Functional Terminals on Solution-Processable Fullerene Electron Transporting Materials 1.9 for High Performance Perovskite Solar Cells. Nanomaterials, 2022, 12, 1046. Generalized Ab Initio Nonadiabatic Dynamics Simulation Methods from Molecular to Extended 1182 1.1 7 Systems. Journal of Physical Chemistry A, 2022, 126, 1789-1804. Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium 5.8 nanowire complex. Nature Communications, 2022, 13, 1188.

#	Article	IF	CITATIONS
1184	Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells. Nano Research, 2022, 15, 9734-9740.	5.8	8
1185	Reducing Energy Disorder in Perovskite Solar Cells by Chelation. Journal of the American Chemical Society, 2022, 144, 5400-5410.	6.6	72
1186	Sulfides as a new class of stable cost-effective materials compared to organic/inorganic hole transport materials for perovskite solar cells. Ceramics International, 2022, , .	2.3	4
1187	Targeted Molecular Design of Functionalized Fullerenes for Highâ€Performance and Stable Perovskite Solar Cells. Small Structures, 2022, 3, .	6.9	17
1188	Role of additives and surface passivation on the performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 2022, 11, 47-70.	1.5	18
1189	A quick peek at solar cells and a closer insight at perovskite solar cells. Egyptian Journal of Petroleum, 2021, 30, 53-63.	1.2	4
1190	Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells. Journal of Central South University, 2021, 28, 3714-3727.	1.2	3
1192	Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions <i>R</i> , <i>R</i> ,Ophenylamino-phenyl-pyridinium-(CH ₂) _{<i>n</i>} -sulfonates: All-Round Improvement on the Solar Cell Performance. Jacs Au, 2022, 2, 1189-1199.	3.6	8
1193	Flexible broadband photodetector based on laser-induced graphene/CH3NH3PbI3 composite. Optical Materials, 2022, 128, 112364.	1.7	8
1194	Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11046-11053.	5.2	11
1195	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
1196	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÄ-MateriÄ¡ly, 2022, 4, .	8.5	27
1197	Solution-processed metal-oxide based hole transport layers for organic and perovskite solar cell: A review. Materials Today Communications, 2022, 31, 103664.	0.9	13
1198	Enhanced performance and stability of low-bandgap mixed lead–tin halide perovskite photovoltaic solar cells and photodetectors <i>via</i> defect passivation with UiO-66-NH ₂ metal–organic frameworks and interfacial engineering. Molecular Systems Design and Engineering, 2022, 7, 1073-1084.	1.7	9
1199	Bridging the Interfacial Contact for Improved Stability and Efficiency of Inverted Perovskite Solar Cells. Small, 2022, 18, e2201694.	5.2	16
1200	Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices. Energies, 2022, 15, 3661.	1.6	6
1201	A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Frontiers in Chemistry, 2022, 10, 802890.	1.8	14
1203	Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	2

#	Article	IF	CITATIONS
1204	Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Research, 2022, 15, 7139-7153.	5.8	12
1205	Blading of Conformal Electronâ€Transport Layers in p–i–n Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	19
1206	Enhanced Performance of Perovskite Solar Cells Based on Zn2+ Doped Nico2o4 Nws Hole Transport Layers. SSRN Electronic Journal, 0, , .	0.4	0
1207	Configuration of Methylammonium Lead Iodide Perovskite Solar Cell and its Effect on the Device's Performance: A Review. Advanced Materials Interfaces, 2022, 9, .	1.9	10
1210	Conjugated polymers for flexible energy harvesting and storage devices. , 2022, , 283-311.		1
1211	Solutionâ€Processed Perovskite/Metalâ€Oxide Hybrid Xâ€Ray Detector and Array with Decoupled Electronic and Ionic Transport Pathways. Small Methods, 2022, 6, .	4.6	11
1212	Organic Holeâ€Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	107
1213	Preparation of <scp> CuCr _{1â^'} </scp> <i> _{<i>x</i>} </i> <scp>Ga</scp> <i> _{<i>x</i>} </i> <scp>Ga</scp> <i> or inorganic hole conductor of inverted. Bulletin of the Korean Chemical Society, 0, , .</i>	1.0	2
1214	Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2022, 33, 18522-18532.	1.1	2
1215	Nanorod-like nanocrystalline CsSnI3 and CNT composite thin film–based hybrid photodetector. Emergent Materials, 2022, 5, 1925-1943.	3.2	2
1216	Copper Bromide Hole Transport Layer for Stable and Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 8075-8083.	2.5	5
1217	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	1.9	22
1218	Recent Advances in Modeling of Perovskite Solar Cells Using SCAPS-1D: Effect of Absorber and ETM Thickness. East European Journal of Physics, 2021, , 5-17.	0.1	5
1219	Boosting the stability of lead halide perovskite nanocrystals by metal–organic frameworks and their applications. Journal of Materials Chemistry C, 2022, 10, 11532-11554.	2.7	9
1220	Tracking carrier and exciton dynamics in mixed-cation lead mixed-halide perovskite thin films. Communications Physics, 2022, 5, .	2.0	6
1221	Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy, 2022, 244, 516-535.	2.9	76
1222	Influence of the Alkyl Chain Length of (Pentafluorophenylalkyl) Ammonium Salts on Inverted Perovskite Solar Cell Performance. ACS Applied Materials & Interfaces, 0, , .	4.0	3
1223	Bromide Incorporation Enhances Vertical Orientation of Triple Organic Cation Tinâ€Halide Perovskites for Highâ€Performance Leadâ€Free Solar Cells. Solar Rrl, 2022, 6, .	3.1	7

~	
CITATI	REPORT
011711	

#	Article	IF	CITATIONS
1224	Effect of Fullerene Derivatives on the Lifetime Characteristics and the Stability of Inverted Perovskite Solar Cells. Materials Transactions, 2022, 63, 1484-1488.	0.4	0
1225	How varying surface wettability of different PEDOT:PSS formulations and their mixtures affects perovskite crystallization and the efficiency of inverted perovskite solar cells. RSC Advances, 2022, 12, 25593-25604.	1.7	7
1226	Recent advances in the interfacial engineering of organic–inorganic hybrid perovskite solar cells: a materials perspective. Journal of Materials Chemistry C, 2022, 10, 13611-13645.	2.7	12
1227	The Versatility of Polymers in Perovskite Solar Cells. Journal of Materials Chemistry C, 0, , .	2.7	2
1228	Na2S decorated NiOx as effective hole transport layer for inverted planar perovskite solar cells. Materials Science in Semiconductor Processing, 2023, 153, 107107.	1.9	5
1229	Recent Progress on Heterojunction Engineering in Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	23
1230	Improving the photovoltaic performance of inverted perovskite solar cells via manipulating the molecular packing structure of PCBM. Nanotechnology, 2023, 34, 015401.	1.3	2
1231	Lead Halide Perovskite Quantum Dots for Photovoltaics and Photocatalysis: A Review. ACS Applied Nano Materials, 2022, 5, 14092-14132.	2.4	18
1232	Modulating preferred crystal orientation for efficient and stable perovskite solar cells—From progress to perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	18
1233	Improving the stability of inverted perovskite solar cells towards commercialization. Communications Materials, 2022, 3, .	2.9	29
1234	Recent advances of interface engineering in inverted perovskite solar cells. Chinese Physics B, 2022, 31, 107307.	0.7	3
1235	Perovskites: Emergence of highly efficient thirdâ€generation solar cells. International Journal of Energy Research, 2022, 46, 21856-21883.	2.2	13
1236	Oxide and metallic materials for photovoltaic applications: A Review. , 0, , 127-148.		3
1237	Stable and efficient soft perovskite crystalline film based solar cells prepared with a facile encapsulation method. Nanoscale, 2022, 14, 17625-17632.	2.8	8
1238	A Triethyleneglycol <scp>C₆₀</scp> Monoâ€adduct Derivative for Efficient Electron Transport in Inverted Perovskite Solar Cells ^{â€} . Chinese Journal of Chemistry, 2023, 41, 431-442.	2.6	4
1239	Suppressing Interfacial Recombination with a Strongâ€Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	24
1240	Fullereneâ€Based Inverted Perovskite Solar Cell: A Key to Achieve Promising, Stable, and Efficient Photovoltaics. Advanced Materials Interfaces, 2022, 9, .	1.9	12
1241	Passivating Defects at the Bottom Interface of Perovskite by Ethylammonium to Improve the Performance of Perovskite Solar Cells. Small, 2022, 18, .	5.2	12

CITATION REPORT IF CITATIONS Low-Temperature Processed Brookite Interfacial Modification for Perovskite Solar Cells with 1.9 1 Improved Performance. Nanomaterials, 2022, 12, 3653. Recent Advances in Inverted Perovskite Solar Cells: Designing and Fabrication. International Journal 1.8 of Molecular Sciences, 2022, 23, 11792. Recent progress in improving strategies of inorganic electron transport layers for perovskite solar 8.2 26 cells. Nano Energy, 2022, 104, 107918. Morphology enhancement of self-assembled CH3NH3PbI3 nanoparticles through customized solvent evaporation temperatures. Journal of Crystal Growth, 2023, 601, 126970. Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 4.2 53 2022, 65, 2369-2416. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nature 23.3 Reviews Materials, 2023, 8, 89-108. Recent progress of scalable perovskite solar cells and modules., 2022, 1, 100010. 14 Underlying Interface Defect Passivation and Charge Transfer Enhancement via Sulfonated Hole-Transporting Materials for Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & amp; 4.0 Interfaces, 2022, 14, 53331-53339. Impact of diethylene glycol chains on indolo [3,2-b]indole based small molecule as dopant-free hole transporting materials for efficient and stable inverted perovskite solar cells. Organic Electronics, 1.4 1 2023, 113, 106719. Deciphering the Nature of Temperature-Induced Phases of MAPbBr₃ by <i>Ab Initio</i> 3.2 Molecular Dynamics. Chemistry of Materials, 2022, 34, 10459-10469. Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64. 4.2 53 Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor 5.2 heterostructures and their applications. Innovation(China), 2023, 4, 100363. UV–Vis photodetector based on ionic liquid-modified perovskite–ZnO composite. Journal of Applied 1.1 3 Physics, 2022, 132, . Recent progress of inverted organic-inorganic halide perovskite solar cells. Journal of Energy 7.1 Chemistry, 2023, 79, 168-191

1256 Stability of perovskite solar cells: issues and prospects. RSC Advances, 2023, 13, 1787-1810.

1257	Electrical transport properties of TiO ₂ /MAPbI ₃ and SnO ₂ /MAPbI ₃ heterojunction interfaces under high pressure. RSC Advances, 2023, 13, 3333-3340.	1.7	4
1258	Slot-die coating fabrication of perovskite solar cells toward commercialization. Journal of Alloys and Compounds, 2023, 942, 169104.	2.8	7
1259	Interfacial Modification of Multifunctional Organic Ammonium Salt for PEDOT:PSSâ€Based Inverted Perovsbite Solar Cells, Energy Technology, 0	1.8	1

1.7

65

ARTICLE

1242

1243

1244

1245

1246

1248

1249

1250

1252

1100Terrabuly-ammoniation from the functionalized lists biab 3-dsub	#	Article	IF	CITATIONS
1244 materials for perovskite solar cells. Journal of Physics and Chemistry of Solids. 2023, 175, 111337. 15 11 1262 Conformational control of morphology for perylene dlimide dimer as electron transporting material 2.0 0 1263 Development for Highly Efficient Organometal Halide Perovskite Solar Cells and Modules. Vacuum 0.0 0 1264 Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite 3.1 23 1265 Opportunities and challenges of hole transport materials for highs (performance inverted hybrid deperovskite solar cells: Cells and Modules. Vacuum 0.9 9 2 1266 SCAPS Empowered Machine Learning Modeling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 3 1267 Recent advances in ground-breaking conjugated microperous polymers-based materials, their system of Hoctovaltes. Small, 2023, 19, 271. 8.9 37 1268 Institute Stability of Photovaltes. Small, 2023, 19, 271. 8.9 37 1269 Institute Stability of Photovaltes. Small, 2023, 10, 271. 8.9 37 1260 Institute Stability of Photovaltes. Small, 2023, 19, 2023, 64, 1020. 8.9 37 1260 Investing the dielectric mismatch for efficient inverted perovskite solar cells through incorporating organof-inctionalized fuller	1260	Versatile Cathode Buffer Layer for Efficient and Stable Inverted Perovskite Solar Cells. Advanced	7.8	10
1262 at perovskite surface. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114705. 2.0 0 1263 Development for Highly Efficient Organometal Halide Perovskite Solar Cells and Modules. Vacuum 0.0 0 1264 Advantages and challenges of self-assembled monolayer as a hole selective contact for perovskite 3.1 23 1265 Solar cells. Materials Futures, 2023, 2, 012105. 5.4 8 1266 Solar cells. Materials Futures, 2023, 2, 012105. 6.4 8 1266 Solar cells. Materials Futures, 2023, 2, 012105. 6.4 8 1266 ScAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 1266 EACPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 1267 Recent advances in ground breaking conjugated microporous polymers based materials, their 8.3 37 1268 Multifunctional Resonance BridgeäeMediated Dynamic Modulation of Perovskite Films For Enhanced 5.2 3 1269 Lowering the dielectric mismatch for efficient inverted perovskite solar cells through incorporating 5.3 2 1270 Solar cell capacitiance simulation and experimental photovoltaic performance analys	1261	Fine tuning the optoelectronic properties of Dibenzo[b,d]Furan-Centered linear hole transporting materials for perovskite solar cells. Journal of Physics and Chemistry of Solids, 2023, 178, 111337.	1.9	11
1205 and Surface Science, 2023, 66, 103-108. 000 0 1204 Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite 3.1 23 1205 Opportunities and challenges of self-assembled monolayer as a hole-selective contact for perovskite 5.4 8 1206 Opportunities and challenges of hole transport materials for high&Eperformance inverted 5.4 8 1206 SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 1207 Recent advances in ground-breaking conjugated microporous polymers-based materials, their 8.3 37 1208 Intrinse Stability of Photovoltaics. Small, 2023, 10, 271. 8.3 37 1209 synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208. 8.3 37 1209 Iowering the dielectric mismatch for efficient inverted perovskite solar cells through incorporating cyano-functionalized fullerene additive. Science China Materials, 2023, 65, 2146-2158. 9.9 2 1209 Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite 0.9 2 1217 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8	1262		2.0	0
1264 solar cells. Materials Futures, 2023, 2, 012105. 5.1 23 1265 Opportunities and challenges of hole transport materials for highäGperformance inverted 5.4 8 1266 SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 1266 SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 1267 Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208. 8.3 37 1268 Multifunctional Resonance Bridge&Modiated Dynamic Modulation of Perovskite Films For Enhanced 5.2 3 1269 Lowering the dialectric mismatch for efficient inverted perovskite solar cells through incorporating cyano functionalized fullerene additive. Science China Materials, 2023, 66, 2146-2158. 0.9 2 1270 Solar cell based on CsCel3. Materials Today: Proceedings, 2023, 1. 1.4 8 1272 Solar cell based on CsCel3. Materials Today. Proceedings, 2023, 1. 2.1 2.1 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 Anovel perylene dimide-based ionene polymer and its mixed cath	1263		0.0	0
L100 hybridateperovskite solar cells. Exploration, 2023, 3,. 0.4 8 1266 SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active 0.9 2 1267 Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208. 8.8 37 1268 Multifunctional Resonance Bridge&Mediated Dynamic Modulation of Perovskite Films For Enhanced 5.2 3 1269 Lowering the dielectric mismatch for efficient inverted perovskite solar cells through incorporating cyano-functionalized fullerene additive. Science China Materials, 2023, 66, 2146-2158. 3.5 2 1270 Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite solar cell based on CsCel3. Materials Today: Proceedings, 2023, 0.9 2 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 Anovel perylene dimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications., 2023,, 27-60. 0 0 <td>1264</td> <td></td> <td>3.1</td> <td>23</td>	1264		3.1	23
1266 Layer and Hole Transport Materials. Photonics, 2023, 10, 271. 0.9 2 1267 Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208. 8.3 37 1268 Multifunctional Resonance Bridge3eMediated Dynamic Modulation of Perovskite Films For Enhanced 5.2 3 1269 Lowering the dielectric mismatch for efficient inverted perovskite solar cells through incorporating organofunctionalized fullerene additive. Science China Materials, 2023, 66, 2146-2158. 8.5 2 1270 Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite 0.9 2 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 A novel perylene dimide-based ionene polymer and its mixed cathode interlayer strategy for efficient rule released and reals. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60. 0 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting , 2023, , 1-28. 0 0 1275 Fabricate the Compressive Strained Perovski	1265		5.4	8
1200 synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208. 0.53 0.7 1268 Multifunctional Resonance BridgeàcMediated Dynamic Modulation of Perovskite Films For Enhanced 5.2 3 1269 Lowering the dielectric mismatch for efficient inverted perovskite solar cells through incorporating cyano-functionalized fullerene additive. Science China Materials, 2023, 66, 2146-2158. 3.5 2 1270 Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite or solar cell based on CsGel3. Materials Today: Proceedings, 2023, 0.9 2 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 An ovel perylene dimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60. 0 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting , 2023, , 1-28. 0 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 e*me	1266	SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active Layer and Hole Transport Materials. Photonics, 2023, 10, 271.	0.9	2
1208 Intrinsic Stability of Photovoltaics. Small, 2023, 19, . 3.2 3 1209 Lowering the dielectric mismatch for efficient inverted perovskite solar cells through incorporating cyano-functionalized fullerene additive. Science China Materials, 2023, 66, 2146-2158. 3.5 2 1270 Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite solar cell based on CsGel3. Materials Today: Proceedings, 2023, . 0.9 2 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 An ovel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications., 2023, 127-60. 0 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting., 2023, 1-28. 0 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 e ^a me ^a ·s ² v ³ µä±±ä ^a ·s ² µ±±ä ^a	1267	Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208.	8.3	37
1259 cyano-functionalized fullerene additive. Science China Materials, 2023, 66, 2146-2158. 3.5 2 1270 Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite solar cell based on CsGeI3. Materials Today: Proceedings, 2023, , . 0.9 2 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 Anovel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications., 2023, , 27-60. 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting., 2023, , 1-28. 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 e'me'; çŸįää±,äter 3; "µèä}/4è¾" ææ=-™çš,ç"; c@nè¿;å±+. Science China Materials, 2023, 66, 2107-2127. 3.5 1 1283 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPC Asia 2.8 2.8	1268	Multifunctional Resonance Bridgeâ€Mediated Dynamic Modulation of Perovskite Films For Enhanced Intrinsic Stability of Photovoltaics. Small, 2023, 19, .	5.2	3
1270 solar cell based on CsCeI3. Materials Today: Proceedings, 2023, ,. 0.9 2 1271 Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806. 1.4 8 1272 A novel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60. 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting. , 2023, , 1-28. 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. ACS Energy Letters, 2023, 8, 2308-2315. 8.8 11 1283 é'™é's,矿åå±,奀'³ç°µæ±ä,ç°µè-ä¼è?4″ææ=-™çš,ŋç°ç©¶è¿å±+. Science China Materials, 2023, 66, 2107-2127. 3.5 1 1200 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia 2.8 28	1269		3.5	2
1272 A novel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications., 2023, , 27-60. 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting., 2023, , 1-28. 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 é'™é'>çŸįźâê±,å@f³-3电æ±ä,电è-ä¼è¾"ææ=™çš"ç°ç@¶è¿â±+. Science China Materials, 2023, 66, 2107-2127. 3.5 1 12002 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPC Asia 2.9 28	1270	Solar cell capacitance simulation and experimental photovoltaic performance analysis of perovskite solar cell based on CsGel3. Materials Today: Proceedings, 2023, , .	0.9	2
1272 and stable inverted perovskite solar cells. journal of Energy Chemistry, 2023, 82, 334-342. 7.1 2 1273 Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60. 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting. , 2023, , 1-28. 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 é'™é'>矿åå±,å♥ ⁻³ 电æ±ä,电è-ä¼è³¼"ææ–™çš,ç"究进展. Science China Materials, 2023, 66, 2107-2127. 3.5 1 1202 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia 8.8 38	1271	Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806.	1.4	8
1273 electronic materials for clean energy applications. , 2023, , 27-60. 0 1274 Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting. , 2023, , 1-28. 0 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 é'™é',çŸį¿åů±,å¤é~³ç"µæ±ä,电è•ä¼4è¾"ææ–™çš,ç"ç©¶èį›å±•. Science China Materials, 2023, 66, 2107-2127. 3.5 1 1289 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia 2.8 28	1272	A novel perylene diimide-based ionene polymer and its mixed cathode interlayer strategy for efficient and stable inverted perovskite solar cells. Journal of Energy Chemistry, 2023, 82, 334-342.	7.1	2
1275 Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. 8.8 11 1283 é'™é'>çŸżåå±,å♥´³ç"µæ±ä,电è•ä¼è³¼"æœ−™çš,,ç"究进展. Science China Materials, 2023, 66, 2107-2127. 3.5 1 1202 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia 9.8 98	1273	Advances in the large-scale production, fabrication, stability, and lifetime considerations of electronic materials for clean energy applications. , 2023, , 27-60.		0
1273 ACS Energy Letters, 2023, 8, 2308-2315. 0.0 11 1283 é'™é'>矿åå±±,å輕 ^{~3} 电æ±äç,"µè•ä¼è³¼"æœ−™çš"ç"究进展. Science China Materials, 2023, 66, 2107-2127. 3.5 1 1202 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia 28 28	1274	Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting. , 2023, , 1-28.		0
Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia	1275	Fabricate the Compressive-Strained Perovskite Solar Cells through the Lattice-Matching Chelation. ACS Energy Letters, 2023, 8, 2308-2315.	8.8	11
1293 Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia 3.8 38 Materials, 2023, 15, .	1283	钙钛矿åå±,å≇é~³ç"µæ±ä,电è•ä¼è³⁄4"ææ−™çš"ç"ç©¶èչ›å±•. Science China Materials, 2023, 66, 2107-2127.	3.5	1
	1293	Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Materials, 2023, 15, .	3.8	38

		CITATION REPORT		
#	Article		IF	CITATIONS
1296	Advances in the Application of Perovskite Materials. Nano-Micro Letters, 2023, 15, .		14.4	40
1302	Recent advances in electrode interface modifications in perovskite solar cells. Material Frontiers, 0, , .	s Chemistry	3.2	0
1305	Design considerations for the bottom cell in perovskite/silicon tandems: a terawatt sca perspective. Energy and Environmental Science, 2023, 16, 4164-4190.	alability	15.6	1
1316	Effects of ambient humidity on the stability of MAPbI3 perovskite thin films. AIP Confe Proceedings, 2023, , .	rence	0.3	0
1321	Solution fabrication methods and optimization strategies of CsPbBr ₃ per cells. Journal of Materials Chemistry C, 0, , .	ovskite solar	2.7	0
1323	Perovskite Solar Cells. , 2023, , 131-164.			0
1344	Nanomaterials in solar cells. , 2024, , 121-148.			0