CITATION REPORT List of articles citing

Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Adsorption and Resulting Microfractures

DOI: 10.1021/ef4002814

Energy & amp; Fuels, 2013, 27, 3039-3049.

Source: https://exaly.com/paper-pdf/55881491/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
352	Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.		
351	Scaling Equations for Oil/Gas Recovery from Fractured Porous Media by Counter-Current Spontaneous Imbibition: From Development to Application. <i>Energy & Development Spontaneous Media by Counter-Current Spontaneous Imbibition: From Development Spontaneous Media by Counter-Current Spontaneous Imbibition: From Development to Application. Energy & Development Spontaneous Media by Counter-Current Spontaneous Imbibition: From Development to Application. Energy & Development Media Development Spontaneous Media Development Media Development Spontaneous Media Development Media Development Media Development D</i>	4.1	47
350	Flowback Volumetric and Chemical Analysis for Evaluating Load Recovery and Its Impact on Early-Time Production. 2013 ,		43
349	Understanding Flowback as a Transient 2-Phase Displacement Process: An Extension of the Linear Dual-Porosity Model. 2013 ,		19
348	A fractal approach to low velocity non-Darcy flow in a low permeability porous medium. 2014 , 23, 0447	'01	51
347	Water Loss Versus Soaking Time: Spontaneous Imbibition in Tight Rocks. 2014 , 2, 1033-1039		44
346	Scaling of Recovery by Cocurrent Spontaneous Imbibition in Fractured Petroleum Reservoirs. 2014 , 2, 166-175		27
345	A Flowback-Guided Approach for Production Data Analysis in Tight Reservoirs. 2014,		5
344	Wettability of the Montney Tight Gas Formation. 2014,		11
343	Immediate Gas Production from Shale Gas Wells: A Two-Phase Flowback Model. 2014,		17
342	Displacement of water by gas in propped fractures: Combined effects of gravity, surface tension, and wettability. 2014 , 5, 10-21		36
341	Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. 2014 , 30, 5142-51		371
340	Experimental Investigation of Interactions between Water and a Lower Silurian Chinese Shale. <i>Energy & Damp; Fuels</i> , 2014 , 28, 4925-4933	4.1	60
339	Advances in Understanding Wettability of Gas Shales. Energy & Shales. Energy & Energ	4.1	156
338	Liquid uptake of gas shales: A workflow to estimate water loss during shut-in periods after fracturing operations. 2014 , 7, 22-32		190
337	Modelling flowback as a transient two-phase depletion process. <i>Journal of Natural Gas Science and Engineering</i> , 2014 , 19, 258-278	4.6	41
336	A comparative study of flowback rate and pressure transient behavior in multifractured horizontal wells completed in tight gas and oil reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2014 , 17. 82-93	4.6	94

335	A Workflow for Flowback Data Analysis ©reating Value out of Chaos. 2014 ,	8
334	Water Loss versus Soaking Time: Spontaneous Imbibition in Tight Rocks. 2014 ,	17
333	Estimating Effective Fracture Volume from Early-time Production Data: A Material Balance Approach. 2014 ,	4
332	The Time-Dependent Permeability Damage Caused by Fracture Fluid. 2014,	17
331	Advances in Understanding Liquid Flow in Gas Shales. 2014,	5
330	Imbibition of hydraulic fracturing fluids into partially saturated shale. 2015 , 51, 6787-6796	55
329	Advances in Flowback Chemical Analysis of Gas Shales. 2015 ,	4
328	Chemical Analysis of Flowback Water and Downhole Gas Shale Samples. 2015,	4
327	Experimental Research on the Shale Imbibition Characteristics and Its Relationship with Microstructure and Rock Mineralogy. 2015 ,	3
326	Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids. <i>Petroleum Science</i> , 2015 , 12, 636-650	67
325	A Comparative Study of Pore Size Distribution in Gas Shales. 2015 ,	8
324	Modeling Two-Phase Flowback Data Using an Open Tank Model. 2015 ,	6
323	Effect of Electrostatic Interactions on Water Uptake of Gas Shales: The Interplay of Solution Ionic Strength, Electrostatic Double Layer, and Shale Zeta Potential. 2015 ,	3
322	Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. 2015 , 51, 7159-7188	88
321	Advances in Understanding Wettability of Tight Oil Formations. 2015,	8
320	Monitor the process of shale spontaneous imbibition in co-current and counter-current displacing gas by using low field nuclear magnetic resonance method. <i>Journal of Natural Gas Science and</i> 4.6 <i>Engineering</i> , 2015 , 27, 336-345	71
319	Investigation on the variation of shale permeability with spontaneous imbibition time: Sandstones and volcanic rocks as comparative study. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 27, 1546-1534	44
318	A complementary approach for uncertainty reduction in post-flowback production data analysis. Journal of Natural Gas Science and Engineering, 2015 , 27, 1074-1091	15

317	Impact of rock fabric on water imbibition and salt diffusion in gas shales. <i>International Journal of Coal Geology</i> , 2015 , 138, 55-67	5.5	154
316	Mechanisms of water adsorption into partially saturated fractured shales: An experimental study. 2015 , 159, 628-637		99
315	An Investigation of Fluid Leak-off Due to Osmotic and Capillary Effects and Its Impact on Micro-Fracture Generation during Hydraulic Fracturing Stimulation of Gas Shale. 2015 ,		7
314	Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. <i>International Journal of Coal Geology</i> , 2015 , 147-148, 9-24	5.5	134
313	Imbibition inducing tensile fractures and its influence on in-situ stress analyses: A case study of shale gas drilling. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 26, 927-939	4.6	37
312	Volumetric Analysis of Two-Phase Flowback Data for Fracture Characterization. 2015,		4
311	Microfracture and Surfactant Impact on Linear Cocurrent Brine Imbibition in Gas-Saturated Shale. <i>Energy & Energy & Ener</i>	4.1	46
310	Biodegradable polyethylene glycol-based ionic liquids for effective inhibition of shale hydration. 2015 , 5, 32064-32071		36
309	A comparative investigation of shale wettability: The significance of pore connectivity. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 27, 1174-1188	4.6	89
308	Estimating fracture volume using flowback data from the Horn River Basin: A material balance approach. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 25, 253-270	4.6	49
307	Experimental Investigation on Imbibition-Front Progression in Shale Based on Nuclear Magnetic Resonance. <i>Energy & Documents</i> , 2016, 30, 9097-9105	4.1	30
306	Some key technical issues in modelling of gas transport process in shales: a review. 2016 , 2, 231-243		27
305	The Impact of Water Salinity/Surfactant on Spontaneous Imbibition through Capillarity and Osmosis for Unconventional IOR. 2016 ,		14
304	Source Rock Wettability: A Duvernay Case Study. 2016 ,		3
303	Complementary Surveillance Microseismic and Flowback Data Analysis: An Approach to Evaluate Complex Fracture Networks. 2016 ,		4
302	Water Sorption and Distribution Characteristics inside Shale Nano-capillaries and Nano-channels: Effect of Surface Force Interactions. 2016 ,		
301	Experimental study on the wettability and adsorption characteristics of Longmaxi Formation shale in the Sichuan Basin, China. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 33, 1107-1118	4.6	58
300	Laboratory and field analysis of flowback water from gas shales. 2016 , 14, 113-127		57

299	Quantification of Organic Porosity and Water Accessibility in Marcellus Shale Using Neutron Scattering. <i>Energy & Double Scattering</i> .	4.1	76
298	On wettability of shale rocks. 2016 , 475, 104-111		99
297	Interfacial Engineering for Oil and Gas Applications: Role of Modeling and Simulation. 2016 , 257-283		2
296	Water Sorption and Distribution Characteristics in Clay and Shale: Effect of Surface Force. <i>Energy & Energy Energy Energy Energy</i>	4.1	99
295	Experimental Investigation of Spontaneous Imbibition in a Tight Reservoir with Nuclear Magnetic Resonance Testing. <i>Energy & Energy & Source Communication (Communication)</i> 8932-8940	4.1	62
294	Analytical modelling of hysteretic constitutive relations governing spontaneous imbibition of fracturing fluid in shale. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 34, 925-933	4.6	18
293	Accurate early-time and late-time modeling of countercurrent spontaneous imbibition. 2016 , 52, 6263-	6276	29
292	A critical review of water uptake by shales. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 34, 75 ²	1 <i>-</i> 4 . 6 6	172
291	Initial water saturation and imbibition fluid affect spontaneous imbibition into Barnett shale samples. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 34, 541-551	4.6	46
290	Investigation of the kinetics of water uptake into partially saturated shales. 2016 , 52, 2420-2438		43
289	Effect of Surfactant Adsorption on the Wettability Alteration of Gas-Bearing Shales. 2016 , 33, 766-777		31
288	A Theory for Relative Permeability of Unconventional Rocks With Dual-Wettability Pore Network. 2016 , 21, 1970-1980		52
287	Experimental investigation on aqueous phase migration in unconventional gas reservoir rock samples by nuclear magnetic resonance. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 36, 837-8	15 ⁴ 1 ^{.6}	18
286	Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 36, 893-905	4.6	30
285	Fracture Characterization Using Flowback Salt-Concentration Transient. 2016 , 21, 233-244		54
284	Investigation of Water Leakoff Considering the Component Variation and Gas Entrapment in Shale During Hydraulic-Fracturing Stimulation. 2016 , 19, 511-519		16
283	Which is the most efficient candidate for the recovery of confined methane: Water, carbon dioxide or nitrogen?. 2016 , 9, 127-138		32
282	A flowing material balance equation for two-phase flowback analysis. <i>Journal of Petroleum Science and Engineering</i> , 2016 , 142, 170-185	4.4	35

281	The effect of microstructure and rock mineralogy on water imbibition characteristics in tight reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 34, 1461-1471	4.6	99
280	Effect of Electrostatic Interactions on Water Uptake of Gas Shales: The Interplay of Solution Ionic Strength and Electrostatic Double Layer. <i>Energy & Double Strength and Electrostatic Double Layer</i> . <i>Energy & Double Strength and Electrostatic Double Layer</i> .	4.1	16
279	The fate of fracturing water: A field and simulation study. 2016 , 163, 282-294		150
278	Surface Wettability of Basal Surfaces of Clay Minerals: Insights from Molecular Dynamics Simulation. <i>Energy & Dynamics</i> 2016, 30, 149-160	4.1	70
277	Unconventional Spontaneous Imbibition into Shale Matrix: Theory and a Methodology to Determine Relevant Parameters. 2016 , 111, 41-57		30
276	Experimental and numerical study on the relationship between water imbibition and salt ion diffusion in fractured shale reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 38, 283-297	4.6	32
275	Impact of chemical osmosis on water leakoff and flowback behavior from hydraulically fractured gas shale. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 151, 264-274	4.4	13
274	Experimental Investigation for Microscale Stimulation of Shales By Water Imbibition During the Shut-in Periods. 2017 ,		14
273	Change in composition and pore structure of Longmaxi black shale during oxidative dissolution. <i>International Journal of Coal Geology</i> , 2017 , 172, 95-111	5.5	52
272	Mechanism of polymer adsorption on shale surfaces: Effect of polymer type and presence of monovalent and divalent salts. <i>Petroleum</i> , 2017 , 3, 384-390	4.1	12
271	Tight rock wettability and its relationship to other petrophysical properties: A Montney case study. 2017 , 28, 381-390		31
270	Pore connectivity and tracer migration of typical shales in south China. 2017 , 203, 32-46		62
269	Water sorption behaviour of gas shales: I. Role of clays. <i>International Journal of Coal Geology</i> , 2017 , 179, 130-138	5.5	82
268	Water sorption behaviour of gas shales: II. Pore size distribution. <i>International Journal of Coal Geology</i> , 2017 , 179, 187-195	5.5	78
267	Spontaneous Imbibition of Three Leading Shale Formations in the Middle Yangtze Platform, South China. <i>Energy & Double Supply Su</i>	4.1	26
266	Water Blocks in Tight Formations: The Role of Matrix/Fracture Interaction in Hydrocarbon-Permeability Reduction and Its Implications in the Use of Enhanced Oil Recovery Techniques. 2017 , 22, 1393-1401		41
265	Study of the propagation of hydration-induced fractures in mancos shale using computerized tomography. 2017 , 95, 1-7		11
264	Investigation of the physico-chemical and mechanical properties of hard brittle shales from the Shahejie Formation in the Nanpu Sag, northern China. 2017 , 14, 445-455		6

263	Modeling Water Leak-off Behavior in Hydraulically Fractured Gas Shale under Multi-mechanism Dominated Conditions. 2017 , 118, 177-200		12
262	Effect of Water Imbibition on Shale Permeability and Its Influence on Gas Production. <i>Energy & Enels</i> , 2017 , 31, 4973-4980	4.1	71
261	Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid. 2017 , 51, 13779-13787		23
260	Numerical investigation of the well shut-in and fracture uncertainty on fluid-loss and production performance in gas-shale reservoirs. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 46, 421-435	4.6	51
259	Effectiveness and time variation of induced fracture volume: Lessons from water flowback analysis. 2017 , 210, 844-858		17
258	A Systematic Study on the Impact of Surfactant Chain Length on Dynamic Interfacial Properties in Porous Media: Implications for Enhanced Oil Recovery. 2017 , 56, 13677-13695		23
257	Water vapor sorption on Marcellus shale: measurement, modeling and thermodynamic analysis. 2017 , 209, 606-614		42
256	Evaluation of wettability alteration and IFT reduction on mitigating water blocking for low-permeability oil-wet rocks after hydraulic fracturing. 2017 , 209, 650-660		58
255	Swelling of Shales: A Multiscale Experimental Investigation. <i>Energy & Description</i> 2017, 31, 10442-10451	4.1	45
254	Critical review of field EOR projects in shale and tight reservoirs. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 159, 654-665	4.4	120
253	Effects of Salinity and Confining Pressure on Hydration-Induced Fracture Propagation and Permeability of Mancos Shale. <i>Rock Mechanics and Rock Engineering</i> , 2017 , 50, 2955-2972	5.7	9
252	Effect of hydration on fractures and permeabilities in Mancos, Eagleford, Barnette and Marcellus shale cores under compressive stress conditions. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 156, 917-926	4.4	22
251	Effect of water imbibition on hydration induced fracture and permeability of shale cores. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 45, 726-737	4.6	25
250	Shale Pore Characterization Using NMR Cryoporometry with Octamethylcyclotetrasiloxane as the Probe Liquid. <i>Energy & Documents</i> 2017, 31, 6951-6959	4.1	18
249	Organic shale wettability and its relationship to other petrophysical properties: A Duvernay case study. <i>International Journal of Coal Geology</i> , 2017 , 169, 74-91	5.5	84
248	Coupled Thermo-Hydro-Mechanical-Chemical Modeling of Water Leak-Off Process during Hydraulic Fracturing in Shale Gas Reservoirs. 2017 , 10, 1960		7
247	Impact of Salinity and Mineralogy on Slick Water Spontaneous Imbibition and Formation Strength in Shale. <i>Energy & Double Strength</i> 32, 5725-5735	4.1	29
246	Application of Nano-Polymer Emulsion for Inhibiting Shale Self-Imbibition in Water-Based Drilling Fluids. 2018 , 21, 155-164		14

245	Influence of salt solutions on the permeability, membrane efficiency and wettability of the Lower Silurian Longmaxi shale in Xiushan, Southwest China. 2018 , 158, 83-93		23
244	Shale Gas Well, Hydraulic Fracturing, and Formation Data to Support Modeling of Gas and Water Flow in Shale Formations. 2018 , 54, 3196-3206		50
243	Visualization of fracturing fluid dynamics in a nanofluidic chip. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 165, 181-186	4.4	22
242	Water adsorption and its impact on the pore structure characteristics of shale clay. 2018 , 155, 126-138		109
241	Experimental Study on Spontaneous Imbibition under Confining Pressure in Tight Sandstone Cores Based on Low-Field Nuclear Magnetic Resonance Measurements. <i>Energy & Description (Confidence of Confidence of Confid</i>	62 1	32
240	Imbibition oil recovery from tight rocks with dual-wettability behavior. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 167, 180-191	4.4	18
239	A laboratory study of geomechanical characteristics of black shales after sub-critical/super-critical CO2 + brine saturation. 2018 , 4, 141-156		24
238	Effect of Anionic Surfactant on Wettability of Shale and Its Implication on Gas Adsorption/Desorption Behavior. <i>Energy & Energy </i>	4.1	27
237	Newly Developed, Highly Automated Apparatus for Rapid Evaluation of Stimulation Fluid Additives. 2018 ,		
236	Experimental investigation on the mechanical and acoustic emission characteristics of shale softened by water absorption. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 50, 301-308	4.6	30
235	Coupled thermo-hydro-chemical modeling of fracturing-fluid leakoff in hydraulically fractured shale gas reservoirs. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 161, 17-28	4.4	4
234	A modified model for spontaneous imbibition of wetting phase into fractal porous media. 2018 , 543, 64-75		32
233	Simulation of coupled hydro-mechanical-chemical phenomena in hydraulically fractured gas shale during fracturing-fluid flowback. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 163, 16-26	4.4	6
232	Effect of Water Imbibition on Fracture Generation in Mancos Shale under Isotropic and Anisotropic Stress Conditions. 2018 , 144, 04017113		11
231	The successful development of gas and oil resources from shales in North America. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 163, 399-420	4.4	86
230	Advances in understanding imbibition characteristics of shale using an NMR technique: a comparative study of marine and continental shale. 2018 , 15, 1363-1375		18
229	Wettability and Capillary Imbibition in Shales; Analytical and Data-Driven Analysis. 2018,		4
228	Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids. 2018 , 233, 124-138		82

227	The impact of the volumetric swelling behavior on the water uptake of gas shale. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 49, 132-144	4.6	17
226	The role of water in methane adsorption and diffusion within nanoporous silica investigated by hyperpolarized 129Xe and 1H PFG NMR spectroscopy. 2018 , 11, 360-369		13
225	Retention of Hydraulic Fracturing Water in Shale: The Influence of Anionic Surfactant. 2018, 11, 3342		13
224	Effects of hydration on the microstructure and physical properties of shale. 2018, 45, 1146-1153		22
223	Effect of Slick Water on Permeability of Shale Gas Reservoirs. 2018 , 140,		11
222	Pore-Scale Modeling of Spontaneous Imbibition Behavior in a Complex Shale Porous Structure by Pseudopotential Lattice Boltzmann Method. 2018 , 123, 9586-9600		23
221	Impacts of Geochemical Properties on Wettability of Kerogen and Organic-rich Mudrocks. 2018,		3
220	Nuclear Magnetic Resonance Measurement of Oil and Water Distributions in Spontaneous Imbibition Process in Tight Oil Reservoirs. 2018 , 11, 3114		6
219	Imbibition of Oxidative Fluid into Organic-Rich Shale: Implication for Oxidizing Stimulation. <i>Energy & Emp; Fuels</i> , 2018 , 32, 10457-10468	4.1	26
218	An Experimental Study on Interactions Between Imbibed Fracturing Fluid and Organic-Rich Tight Carbonate Source Rocks. 2018 , 23, 2133-2146		2
217	Multiscale Experimental Studies on Interactions Between Aqueous-Based Fracturing Fluids and Tight Organic-Rich Carbonate Source Rocks. 2018 ,		О
216	Investigating the spontaneous imbibition characteristics of continental Jurassic Ziliujing Formation shale from the northeastern Sichuan Basin and correlations to pore structure and composition. 2018 , 98, 697-705		26
215	Discussion of shale rock wettability and the methods to determine it. 2018 , 13, e2263		15
214	Influence of WaterDil Saturation on the Fracture Process Zone: A Modified DugdaleBarenblatt Model. 2018 , 11, 2882		4
213	Water Content and Equilibrium Saturation and Their Influencing Factors of the Lower Paleozoic Overmature Organic-Rich Shales in the Upper Yangtze Region of Southern China. <i>Energy & Equip</i> ; Fuels, 2018 , 32, 11452-11466	4.1	16
212	Imaging Pyrite Oxidation and Barite Precipitation in Gas and Oil Shales. 2018,		12
211	A discrete model for apparent gas permeability in nanoporous shale coupling initial water distribution. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 59, 80-96	4.6	14
21 0	Field data provide estimates of effective permeability, fracture spacing, well drainage area and incremental production in gas shales. <i>Journal of Natural Gas Science and Engineering</i> , 2018 , 56, 141-151	4.6	26

The Role of Adsorbed Water on Pore Structure Characteristics and Methane Adsorption of Shale Clay. **2018**,

208	Review of plausible chemical migration pathways in Australian coal seam gas basins. <i>International Journal of Coal Geology</i> , 2018 , 195, 280-303	5.5	12
207	Fluid saturation evolution with imbibition in unconventional natural gas reservoirs. 2018 , 6, T849-T859		2
206	Drivers of Wettability Alteration for Oil/Brine/Kaolinite System: Implications for Hydraulic Fracturing Fluids Uptake in Shale Rocks. 2018 , 11, 1666		15
205	Characteristics and Influencing Factors for Forced Imbibition in Tight Sandstone Based on Low-Field Nuclear Magnetic Resonance Measurements. <i>Energy & Energy & Energ</i>	4.1	18
204	Experimental Investigation of Countercurrent Spontaneous Imbibition in Tight Sandstone Using Nuclear Magnetic Resonance. <i>Energy & Double Supplements</i> 2018, 32, 6507-6517	4.1	37
203	Enhanced Oil Recovery (EOR) in Shale Oil Reservoirs. 2018 , 269-290		0
202	Three stages of methane adsorption capacity affected by moisture content. 2018 , 231, 352-360		34
201	Gas Shale Water Imbibition Tests with Controlled Suction Technique. 2019 , 250-257		
2 00	Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure. <i>Energy & Energy & </i>	4.1	14
199	Influence of the Clay Content and Type of Algerian Sandstone Rock Samples on Water Dil Relative Permeabilities. <i>Energy & Dil Relative</i> 2019, 33, 9330-9341	4.1	1
198	Soil erosion affects variations of soil organic carbon and soil respiration along a slope in Northeast China. 2019 , 8,		13
197	The effects of ion diffusion on imbibition oil recovery in salt-rich shale oil reservoirs. 2019 , 16, 525-540		9
196	In Situ Sequestration of a Hydraulic Fracturing Fluid in Longmaxi Shale Gas Formation in the Sichuan Basin. <i>Energy & Energy</i> 33, 6983-6994	4.1	11
195	Evolution of water content in organic-rich shales with increasing maturity and its controlling factors: Implications from a pyrolysis experiment on a water-saturated shale core sample. 2019 , 109, 291-303		8
194	The effects of mineral composition, TOC content and pore structure on spontaneous imbibition in Lower Jurassic Dongyuemiao shale reservoirs. 2019 , 109, 268-278		25
193	Thicknesses of Chemically Altered Zones in Shale Matrices Resulting from Interactions with Hydraulic Fracturing Fluid. <i>Energy & Description</i> 23, 6878-6889	4.1	25
192	Effect of Shale Anisotropy on Hydration and Its Implications for Water Uptake. 2019 , 12, 4225		1

191	Calibration of the Water Flowback in Unconventional Reservoirs with Complex Fractures using Embedded Discrete Fracture Model EDFM. 2019 ,		1
190	A New Mixed Wettability Evaluation Method for Longmaxi Formation Shale in the South of the Sichuan Basin, China (Russian). 2019 ,		O
189	Wettability alteration induced water uptake in shale oil reservoirs: A geochemical interpretation for oil-brine-OM interaction during hydraulic fracturing. <i>International Journal of Coal Geology</i> , 2019 , 213, 103277	5.5	21
188	Methane (CH4) Wettability of Clay-Coated Quartz at Reservoir Conditions. <i>Energy & amp; Fuels</i> , 2019 , 33, 788-795	4.1	35
187	Multiscale Experimental Studies on Interactions Between Aqueous-Based Fracturing Fluids and Tight Organic-Rich Carbonate Source Rocks. 2019 , 22, 402-417		1
186	How significant are strain and stress induced by water imbibition in dry gas shales?. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 176, 428-443	4.4	10
185	Spontaneous imbibition in coal: Experimental and model analysis. <i>Journal of Natural Gas Science and Engineering</i> , 2019 , 67, 108-121	4.6	27
184	A review of shale wettability characterization using spontaneous imbibition experiments. 2019 , 109, 330-338		39
183	SPONTANEOUS IMBIBITION OF A WETTING FLUID INTO A FRACTURE WITH OPPOSING FRACTAL SURFACES: THEORY AND EXPERIMENTAL VALIDATION. 2019 , 27, 1940001		8
182	A Multiscale Study on Shale Wettability: Spontaneous Imbibition Versus Contact Angle. 2019 , 55, 5012		36
181	How Hydraulic Properties of Organic Matter Control Effective Liquid Permeability of Mudrocks. 2019 , 129, 761-777		6
180	Imbibition Oil Recovery from the Montney Core Plugs: The Interplay of Wettability, Osmotic Potential and Microemulsion Effects. 2019 ,		6
179	Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores. 2019 , 9, 198		8
178	New insights into spontaneous imbibition in tight oil sandstones with NMR. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 179, 455-464	4.4	43
177	A fully coupled simulation model for water spontaneous imbibition into brittle shale. <i>Journal of Natural Gas Science and Engineering</i> , 2019 , 66, 293-305	4.6	4
176	Rock Fracture Sorptivity as Related to Aperture Width and Surface Roughness. 2019 , 18, 1-10		5
175	Imbibition of Mixed-Charge Surfactant Fluids in Shale Fractures. <i>Energy & Description</i> 2019, 33, 2839-2847	4.1	13
174	Experimental Investigation of Boundary Conditions Effects on Spontaneous Imbibition in Oil-Water and Gas-Water Systems for Tight Sandstones. 2019 ,		2

173	Analytical modelling of wettability alteration-induced micro-fractures during hydraulic fracturing in tight oil reservoirs. 2019 , 249, 434-440		23
172	Tight Rock Wettability and Its Relationship With Petrophysical Properties. 2019, 155-171		
171	Effect of desiccation on shut-in benefits in removing water blockage in tight water-wet cores. 2019 , 244, 314-323		27
170	Effects of hydration on fractures and shale permeability under different confining pressures: An experimental study. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 176, 745-753	4.4	13
169	A New Mixed Wettability Evaluation Method for Longmaxi Formation Shale in the South of the Sichuan Basin, China. 2019 ,		
168	A New Experimental Methodology to Investigate Water Adsorption Into Shale Under Stress Anisotropy Conditions. 2019 ,		O
167	Water/Oil Displacement by Spontaneous Imbibition Through Multiscale Imaging and Implication on Wettability in Wolfcamp Shale. 2019 ,		5
166	Wetting Behavior of Shale Rocks and Its Relationship to Oil Composition. <i>Energy & Composition amp; Fuels</i> , 2019 , 33, 12270-12277	4.1	7
165	The Characteristics of Oil Migration due to Water Imbibition in Tight Oil Reservoirs. 2019 , 12, 4199		5
164	Quantifying the Impacts of Competitive Water Adsorption of Kerogen and Clay Minerals on Wettability of Organic-Rich Mudrocks. 2019 ,		1
163	Impact of Thermal Maturity on Water Production in Organic-Rich Mudrocks. 2019,		1
162	Experimental study of the effect of stress anisotropy on fracture propagation in Eagle Ford shale under water imbibition. 2019 , 249, 13-22		22
161	Modelling shale spontaneous water intake using semi-analytical and numerical approaches. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 1627-1642	2.3	3
160	Experimental NMR Analysis of Oil and Water Imbibition during Fracturing in Longmaxi Shale, SE Sichuan Basin. 2019 , 62, 1-10		6
159	Micro-continuum Framework for Pore-Scale Multiphase Fluid Transport in Shale Formations. 2019 , 127, 85-112		26
158	Modelling imbibition data for determining size distribution of organic and inorganic pores in unconventional rocks. <i>International Journal of Coal Geology</i> , 2019 , 201, 26-43	5.5	19
157	Shut-In Effect in Removing Water Blockage in Shale-Oil Reservoirs With Stress-Dependent Permeability Considered. 2020 , 23, 081-094		13
156	Evaluating the potential for oil recovery by imbibition and time-delay effect in tight reservoirs during shut-in. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106557	4.4	10

155 Bibliography and additional resources. **2020**, 299-322

154	References. 2020 , 475-511		
153	Comparative study of well soaking timing (pre vs. post flowback) for water blockage removal from matrix-fracture interface. <i>Petroleum</i> , 2020 , 6, 286-292	4.1	14
152	Experimental Investigation of the Effect of Salt Precipitation on the Physical and Mechanical Properties of a Tight Sandstone. <i>Rock Mechanics and Rock Engineering</i> , 2020 , 53, 4367-4380	5.7	7
151	Impact of Geochemical Properties on Wettability of Kerogen and Organic-Rich Mudrocks. 2020 , 23, 758	-771	7
150	Experimental study on the damage of organic-rich shale during water-shale interaction. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 74, 103103	4.6	17
149	Fractal characterization of pore structure and its influence on salt ion diffusion behavior in marine shale reservoirs. 2020 , 45, 28520-28530		9
148	Connectivity of pores in shale reservoirs and its implications for the development of shale gas: A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin. 2020 , 7, 348-357		6
147	A Laboratory Protocol for Evaluating Microemulsions for Enhanced Oil Recovery while Fracturing. 2020 ,		
146	A laboratory study of microcracks variations in shale induced by temperature change. 2020 , 280, 11863	6	4
145	Reservoir-scale study of oil shale hydration swelling and thermal expansion after hydraulic fracturing. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 195, 107619	4.4	5
144	A novel method for monitoring the imbibition behavior of clay-rich shale. 2020 , 6, 1811-1818		12
143	Experimental Investigation of Spontaneous Water Imbibition into Methane-Saturated Shales under Different Methane Pressures. <i>Energy & Different Methane Pressures</i> . <i>Energy & Different Methane Pressures</i> . <i>Energy & Different Methane Pressures</i> .	4.1	3
142	A simulation study of the effect of clay swelling on fracture generation and porosity change in shales under stress anisotropy. 2020 , 278, 105829		5
141	A novel experimental system for measurement of coupled multi-physics-induced surface alteration processes in geomaterials. 2020 , 166, 108211		4
140	Synchrotron X-ray Imaging of Element Transport Resulting from Unconventional Stimulation. 2020 ,		2
139	On Factors Controlling Shale Resistivity Anomalies. 2020,		
138	Spontaneous imbibition in igneous rocks: effect of KCl concentration, confining pressure, and imbibition direction. 2020 , 10, 3227-3234		1

137	An Integrated Field and Simulation Study to Understand the Role of Shut-in on a Montney Well Performance. 2020 ,		1
136	Experimental Study on the Wettability of Longmaxi Formation Shale in the Sichuan Basin, China. 2020 ,		O
135	Experimental investigation of the pore shape factor in fluid imbibition modeltaking the Longmaxi shale in Sichuan Basin as examples. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 193, 107327	4.4	7
134	CO2 Huff-n-Puff after Surfactant-Assisted Imbibition to Enhance Oil Recovery for Tight Oil Reservoirs. <i>Energy & Discours</i> , 2020, 34, 7058-7066	4.1	4
133	Wettability alteration and mitigating aqueous phase trapping damage in tight gas sandstone reservoirs using mixed cationic surfactant/nonionic fluoro-surfactant solution. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 195, 107490	4.4	6
132	Direct Evidence of Salinity and pH Effects on the Interfacial Interactions of Asphaltene-Brine-Silica Systems. 2020 , 25,		4
131	Experimental Investigation of Spontaneous Imbibition of Water into Hydrate Sediments Using Nuclear Magnetic Resonance Method. 2020 , 13, 445		6
130	A Review on the Influence of CO2/Shale Interaction on Shale Properties: Implications of CCS in Shales. 2020 , 13, 3200		17
129	Experimental investigations of fracturing fluid flowback and retention under forced imbibition in fossil hydrogen energy development of tight oil based on nuclear magnetic resonance. 2020 , 45, 13256	5-1327	1 ¹⁴
128	Insights from mixing calculations and geochemical modeling of Montney Formation post hydraulic fracturing flowback water chemistry. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 195, 107589	4.4	8
127	Effect of the FluidBhale Interaction on Salinity: Implications for High-Salinity Flowback Water during Hydraulic Fracturing in Shales. <i>Energy & Day 2020</i> , 34, 3031-3040	4.1	14
126	Role of brine composition on rock surface energy and its implications for subcritical crack growth in calcite. <i>Journal of Molecular Liquids</i> , 2020 , 303, 112638	6	5
125	Changes in retained fracturing fluid properties and their effect on shale mechanical properties. Journal of Natural Gas Science and Engineering, 2020 , 75, 103163	4.6	20
124	Studies of the storage and transport of water and oil in organic-rich shale using vacuum imbibition method. 2020 , 266, 117096		19
123	Optimum surfactant criteria for controlling invasion-induced water blockage in tight water-wet cores. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 188, 106931	4.4	11
122	A Comparison of Gas and Water Permeability in Clay-Bearing Fault and Reservoir Rocks: Experimental Results and Evolution Mechanisms. 2020 , 125, e2019JB018278		6
121	Simplified Green-Ampt Model, Imbibition-Based Estimates of Permeability, and Implications for Leak-off in Hydraulic Fracturing. 2020 , 56, e2019WR026919		7
120	Reactive Transport Modeling of Shale f luid Interactions after Imbibition of Fracturing Fluids. <i>Energy & Energy & Energ</i>	4.1	8

(2021-2020)

119	Insights into the Effect of Spontaneous Fluid Imbibition on the Formation Mechanism of Fracture Networks in Brittle Shale: An Experimental Investigation. 2020 , 5, 8847-8857		8	
118	Experimental investigation of water vapor adsorption isotherm on gas-producing Longmaxi shale: Mathematical modeling and implication for water distribution in shale reservoirs. 2021 , 406, 125982		18	
117	Effects of pore structure and salinity on the imbibition of shale samples using physical simulation and NMR technique: A case from Chang 7 shale, Ordos basin. 2021 , 97, 167-173		1	
116	Pore Geometry Characteristics and Fluid R ock Interaction in the Haynesville Shale, East Texas, United States. <i>Energy & Documents</i> 2021, 35, 237-250	4.1	8	
115	Effects of swelling-clay and surface roughness on the wettability of transitional shale. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 196, 108007	4.4	8	
114	Redistribution of fracturing fluid in shales and its impact on gas transport capacity. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 86, 103747	4.6	8	
113	Effect of adsorbed moisture on the pore size distribution of marine-continental transitional shales: Insights from lithofacies differences and clay swelling. 2021 , 201, 105926		15	
112	The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation. 2021 , 219, 119579		21	
111	Geochemical element mobilisation by interaction of Bowland shale with acidic fluids. 2021 , 289, 11991	4	2	
110	Impact of water film on methane surface diffusion in gas shale organic nanopores. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 196, 108045	4.4	7	
109	Complexities Driving Wettability Evaluation of Shales toward Unconventional Approaches: A Comprehensive Review. <i>Energy & Double States</i> , 2021, 35, 1011-1023	4.1	7	
108	Influence of Boundary Layer on Oil Migration into Tight Reservoirs. 2021 , 137, 87-107		1	
107	Effects of composition and temperature on water sorption in overmature Wufeng-Longmaxi shales. <i>International Journal of Coal Geology</i> , 2021 , 234, 103673	5.5	10	
106	A Critical Review of Enhanced Oil Recovery by Imbibition: Theory and Practice. <i>Energy & amp; Fuels</i> , 2021 , 35, 5643-5670	4.1	12	
105	Thermal Diffusion Characteristics in Permafrost during the Exploitation of Gas Hydrate. <i>Geofluids</i> , 2021 , 2021, 1-10	1.5	1	
104	Effects of Osmosis on Darcy Flow in Shales. Energy & Ener	4.1	2	
103	Zero Flowback Rate of Hydraulic Fracturing Fluid in Shale Gas Reservoirs: Concept, Feasibility, and Significance. <i>Energy & Damp; Fuels</i> , 2021 , 35, 5671-5682	4.1	3	

101	Acidic and oxidation reactions of marcellus shale with Na2S2O8. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 200, 108382	4.4	2
100	Oxidative dissolution kinetics of organic-rich shale by hydrogen peroxide (H2O2) and its positive effects on improving fracture conductivity. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 89, 10	03 8 75	6
99	Reducing Residual Oil Saturation: Underlying Mechanism of Imbibition in Oil Recovery Enhancement of Tight Reservoir. 2021 , 1-12		4
98	Methods for Petrological and Petrophysical Characterization of Gas Shales. <i>Energy & Description</i> 2021, 35, 11061-11088	4.1	2
97	Surfactants are Ineffective for Reducing Imbibition of Water-Based Fracturing Fluids in Deep Gas Reservoirs. <i>Energy & Deep Gas</i> 11239-11245	4.1	O
96	Experimental investigation on hydration mechanism of Sichuan shale (China). <i>Journal of Petroleum Science and Engineering</i> , 2021 , 201, 108421	4.4	5
95	Geochemical, petrographic and reservoir characteristics of the transgressive systems tract of lower Silurian black shale in Jiaoshiba area, southwest China. 2021 , 129, 105014		1
94	Spontaneous imbibition characteristics of slickwater and its components in Longmaxi shale. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 202, 108599	4.4	4
93	Three-dimensional physical simulation of water huff-n-puff in a tight oil reservoir with stimulated reservoir volume. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 109212	4.4	5
92	Water Uptake Behavior and Influence Factors of Longmaxi Shale: Implications from Water Physisorption and Imbibition Measurements. <i>Energy & Description (Note: The Research of Communication of Communication (Note: The Physisorption and Imbibition </i>	4.1	2
91	Review of Geochemical and Geo-Mechanical Impact of Clay-Fluid Interactions Relevant to Hydraulic Fracturing.		O
90	Understanding water accessibility and pore information of overmature marine shales using water vapor sorption. 2021 , 130, 105120		2
89	Modeling Water Imbibition and Penetration in Shales: New Insights into the Retention of Fracturing Fluids. <i>Energy & Energy & Ene</i>	4.1	1
88	Evaluation of Coal Pore Connectivity Using N2 Sorption Isotherm and Spontaneous Imbibition Tests. <i>Geofluids</i> , 2021 , 2021, 1-10	1.5	
87	Dependence of clay wettability on gas density.		
86	Experimental study on the influence of water on the failure properties of sandstone. 2021 , 80, 7747		2
85	NMR Investigation of Brine Imbibition Dynamics in Pores of Tight Sandstones under Different Boundary Conditions. <i>Energy & Dynamics</i> ,	4.1	2
84	Relating Acoustic Anisotropy to Kerogen Content in Unconventional Formations - A Case Study in A Kerogen-Rich Unconventional Carbonate. 2021 ,		

83	Dynamic displacement of adsorbed methane by fracturing fluid during soaking in a shale gas reservoir based on low-field nuclear magnetic resonance. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 109582	4.4	2
82	Microfracture-pore structure characterization and water-rock interaction in three lithofacies of the Lower Eagle Ford Formation. 2021 , 292, 106276		4
81	Shale pore connectivity and influencing factors based on spontaneous imbibition combined with a nuclear magnetic resonance experiment. 2021 , 132, 105239		9
80	Conventional methods for wettability determination of shales: A comprehensive review of challenges, lessons learned, and way forward. 2021 , 133, 105288		2
79	A systematic experimental and modeling study of water adsorption/desorption behavior in organic-rich shale with different particle sizes. 2021 , 426, 130596		5
78	Influence of rock fabric on salt ion diffusion behavior in upper cretaceous lacustrine shale from Songliao Basin. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109355	4.4	1
77	Spontaneous imbibition in coal with in-situ dynamic micro-CT imaging. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109296	4.4	8
76	Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs. 2017 , 53, 9757-9770		29
75	Wettability of Gas Shale Reservoirs. 341-359		8
74	Experimental Investigation of the Pressure Decay Characteristics of Oil Reservoirs after Fracturing Operations. 2020 , 5, 26441-26453		1
73	Impacts of Competitive Water Adsorption of Kerogen and Clay Minerals on Wettability of Organic-Rich Mudrocks. 2020 , 23, 1180-1189		4
72	Wettability and Its Controlling Factors of Mixed Shale Oil Reservoirs: A Case Study of Permian Lucaogou Formation in Jimusar Sag. 2021 , 2021,		2
71	Differences in the Nanopore Structure of Organic-Rich Shales with Distinct Sedimentary Environments and Mineral Compositions. <i>Energy & Environments and Mineral Compositions</i> . <i>Energy & Environments and Mineral Compositions</i> .	4.1	2
70	Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling. 2021 , 11, 20049		1
69	Measurement of Shale Wettability Using Calorimetry: Experimental Results and Model. <i>Energy & Experimental Results</i> and <i>Experimental Results</i>	4.1	1
68	Comparative analysis of conventional methods for the evaluation of wettability in shales. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109729	4.4	1
67	Significance of Advanced Spontaneous Imbibition, and Wettability Alteration on Enhanced Oil Recovery (EOR) in Tight Oil Reservoirs. 2020 , 3763-3780		1
66	Flow mechanism of production decline during natural depletion after hydraulic fracturing of horizontal wells in tight oil reservoirs. 1-18		

65	Novel Analytical Model of Shale Spontaneous Imbibition Considering the Hydration Effect. <i>Energy & Energy Fuels</i> ,	4.1	1
64	A New Mixed Wettability Evaluation Method for Organic-Rich Shales. 2020,		О
63	Mechanism of Water Imbibition in Organic Shale: An Experimental Study. 2020,		1
62	Pore-fracture network alteration during forced and spontaneous imbibition processes in shale formation. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 209, 109846	4.4	
61	Using Digital Image Correlation for Evaluating the Impact of Brine on Swelling of Heterogeneous Shales. <i>Rock Mechanics and Rock Engineering</i> , 1	5.7	1
60	Numerical Simulation of Gas-Water Two-Phase Flow in Deep Shale Gas Reservoir Development Based on Mixed Fracture Modeling. 2021 , 2021,		
59	A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: Analyses of key influencing factors. <i>Petroleum Science</i> , 2021 ,	4.4	6
58	The investigation into oxidative method to realize zero flowback rate of hydraulic fracturing fluid in shale gas reservoir. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 209, 109918	4.4	O
57	Experimental Investigation on the Crack Evolution of Marine Shale with Different Soaking Fluids. <i>Frontiers in Earth Science</i> , 2021 , 9,	3.5	
56	Water sorption and transport in Silurian shales. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 210, 109980	4.4	1
55	An improved liquid-liquid extraction technique to determine shale wettability. 2022 , 138, 105538		O
54	Effects of shale swelling and water-blocking on shale permeability. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 212, 110276	4.4	1
53	Experimental Study on Characteristics and Mechanisms of Matrix Pressure Transmission Near the Fracture Surface During Post-Fracturing Shut-In in Tight Oil Reservoirs. SSRN Electronic Journal,	1	
52	The Effects of Kerogen Maturity on Pore Connectivity and Wettability of Organic-Rich Calcareous Shales. SSRN Electronic Journal,	1	
51	Advances in formation evaluation of shale systems. 2022 , 155-183		
50	Influencing Factors and Application of Spontaneous Imbibition of Fracturing Fluids in Lacustrine and Marine Shale Gas Reservoir. <i>Energy & Energy</i> 36, 3606-3618	4.1	1
49	Investigation on microscopic invasion characteristics and retention mechanism of fracturing fluid in fractured porous media. <i>Petroleum Science</i> , 2022 ,	4.4	1
48	Investigation of low water recovery based on gas-water two-phase low-velocity Non-Darcy flow model for hydraulically fractured horizontal wells in shale. <i>Petroleum</i> , 2022 ,	4.1	

47	The Influence of Water Content on the Time-Dependent Mechanical Behavior of Argillaceous Siltstone. <i>Rock Mechanics and Rock Engineering</i> ,	5.7	3	
46	Pore accessibility by wettable fluids in overmature marine shales of China: Investigations from contrast-matching small-angle neutron scattering (CM-SANS). <i>International Journal of Coal Geology</i> , 2022 , 255, 103987	5.5	Ο	
45	Experimental study of the effect of water-shale interaction on fracture generation and permeability change in shales under stress anisotropy. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 100, 104474	4.6	O	
44	Experimental investigation on the dynamic volume changes of varied-size pores during shale hydration. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 101, 104506	4.6	O	
43	A new dynamic imbibition model for penny-shaped blind pores in shale gas well. <i>Journal of Natural Gas Science and Engineering</i> , 2022 , 101, 104553	4.6	О	
42	Numerical Simulation Research on Influencing Factors of Post-Fracturing Flowback of Shale Gas Wells in the Sichuan Basin. <i>Frontiers in Earth Science</i> , 2021 , 9,	3.5	1	
41	Water Occurrence Characteristics of Gas Shale Based on 2D NMR Technology. <i>Energy & amp; Fuels</i> , 2022 , 36, 910-921	4.1	2	
40	Experimental study of water imbibition characteristics of the lacustrine shale in Sichuan Basin. <i>Petroleum</i> , 2022 ,	4.1		
39	A Comparison of Shale Gas Fracturing Based on Deep and Shallow Shale Reservoirs in the United States and China. <i>CMES - Computer Modeling in Engineering and Sciences</i> , 2022 , 1-37	1.7		
38	Storing characteristics and main controlling factors of connate water in lower Paleozoic shales in southeast Chongqing, China. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 110543	4.4	1	
37	A comprehensive review on the flow behaviour in shale gas reservoirs: Multi-scale, multi-phase, and multi-physics. <i>Canadian Journal of Chemical Engineering</i> ,	2.3	2	
36	The Effects of Kerogen Maturity on Pore Structure and Wettability of Organic-rich Calcareous Shales. <i>Journal of Molecular Liquids</i> , 2022 , 119577	6	O	
35	Performance and mechanism of the pyrite-kerogen complexes oxidation with H2O2 at low temperature during shale stimulation: An experimental and modeling study. <i>Applied Geochemistry</i> , 2022 , 105382	3.5		
34	Review of the Generation of Fractures and Change of Permeability due to Water-Shale Interaction in Shales. <i>Geofluids</i> , 2022 , 2022, 1-20	1.5		
33	Effects of Microscopic Pore Structures on the Spontaneous Imbibition of Longmaxi Shale. <i>Energy & Energy & Ener</i>	4.1	1	
32	Experimental study of hydraulic fracture initiation and propagation in deep shale with different injection methods. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 216, 110834	4.4	2	
31	Multi-mode chemical exchange in seafloor alteration revealed by lithium and potassium isotopes. <i>Chemical Geology</i> , 2022 , 606, 121004	4.2	О	
30	Effect of Water Saturation on Gas-Accessible Effective Pore Space in Gas Shales. 2022 , 2022,		1	

29	Integrated core flooding-NMR-imbibition experiments for oil recovery studies from lacustrine shales. 2022 ,	
28	Geochemical processes during hydraulic fracturing in a tight sandstone reservoir revealed by field and laboratory experiments. 2022 , 612, 128292	О
27	A laboratory workflow to screen nanodroplet additives for enhanced oil recovery from tight rocks. 2022 , 53, 102392	1
26	Low-temperature in situ CO2 enhanced oil recovery. 2022 , 329, 125425	О
25	Shale Wettability: Untangling the Elusive Property with an Integrated Imbibition and Imaging Technique and a New Hypothetical Theory. 2022 , 1-11	0
24	Experimental Study on Hydraulic Fracture Initiation and Propagation in Hydrated Shale. 2022 , 15, 7110	Ο
23	Numerical Investigation on Injected-Fluid Recovery and Production Performance following Hydraulic Fracturing in Shale Oil Wells. 2022 , 10, 1749	0
22	A capillary bundle model for the forced imbibition in the shale matrix with dual-wettability.	O
21	Study on the initiation time of imbibition tensile cracks and influencing factors based on nuclear magnetic resonance. 2022 ,	Ο
20	Wettability and Pore Connectivity and Their Potential Influence on Shale Gas Recovery: A Comparative Study of Three Leading Shale Formations in Southern China.	О
19	Experimental study on characteristics and mechanisms of matrix pressure transmission near the fracture surface during post-fracturing shut-in in tight oil reservoirs. 2022 , 111133	2
18	Study on Imbibition Characteristics of Glutenite with Different Boundary Conditions Based on NMR Experiments.	1
17	Experimental study on triaxial unloading mechanical properties and acoustic emission response of shale with different water contents.	Ο
16	Investigation of Oxidative Dissolution and Mineral Swelling Effects on Seepage Channels and Permeability of Calcareous Shale Reservoirs: An Experimental Study. 2022 , 36, 14943-14953	Ο
15	Oil distribution and dynamic characteristics of tight oil sandstone cores during spontaneous imbibition-plus-waterflooding and waterflooding-only using nuclear magnetic resonance. 1-20	0
14	THE FRACTAL MATHEMATICAL MODELS FOR SPONTANEOUS AND FORCED IMBIBITION WITH DIFFERENT CROSS-SECTION SHAPES IN SHALE OIL RESERVOIR.	O
13	Investigation of shale imbibition capability and the influencing factors based on a convenient method. 2023 , 16,	О
12	Shale Wettability Characteristics via Air/Brines and Air/Oil Contact Angles and Influence of Controlling Factors: A Case Study of Lower Indus Basin, Pakistan. 2023 , 8, 688-701	O

CITATION REPORT

11	Field development of tight unconventional reservoirs. 2023 , 211-250	O
10	A novel method for evaluation of the spontaneous imbibition process in tight reservoir rocks: Mathematical model and experimental verification. 2023 , 211554	Ο
9	Mixed imbibition controls the advance of wetting fluid in multiscale geological media. 2023, 175, 104429	0
8	Effect of thermal oxidant stimulation on the alteration of shale seepage channel: Implication from the change of macromorphology and microstructure. 2023 , 152, 105660	O
7	Hydration characteristics and mechanism study of artificial fracture surface in illite rich shale gas reservoir: A case study of Longmaxi formation shale in Yongchuan District. 2023 , 9, 4174-4186	O
6	Experimental investigation on different effects of fracturing fluids on mechanical properties and failure mechanism of continental shale. 2023 , 164, 105362	O
5	A Scientometric Review on Imbibition in Unconventional Reservoir: A Decade of Review from 2010 to 2021. 2023 , 11, 845	0
4	The Effects of Pore Wettability on the Adsorption and Flow Capacity of Shale Gas: New Insights from Molecular Dynamic Modeling.	O
3	Nuclear Magnetic Resonance Investigation of Forced Imbibitions in Longmaxi Shales: Consideration of Different Boundary Conditions. 2023 , 37, 5853-5866	O
2	Influence of Water on the Methane Adsorption Capacity of Organic-Rich Shales and Its Controlling Factors: A Review. 2023 , 16, 3305	O
1	Insights into Salt Ion Diffusion Behavior in Imbibed Fluids and the Source of Salt Ions in Clay-Rich Shale from Upper Cretaceous Qingshankou Formation, Songliao Basin.	О