Guidance law with impact time and impact angle constr

Chinese Journal of Aeronautics 26, 960-966 DOI: 10.1016/j.cja.2013.04.037

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	On the Active Disturbance Rejection Control based guidance law design with angle constraint. , 2014, , .		1
2	A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228, 1725-1734.	1.3	33
3	Impact time control guidance law with field of view constraint. Aerospace Science and Technology, 2014, 39, 361-369.	4.8	107
4	Guidance law against maneuvering targets with intercept angle constraint. ISA Transactions, 2014, 53, 1332-1342.	5.7	65
5	Optimal guidance of extended trajectory shaping. Chinese Journal of Aeronautics, 2014, 27, 1259-1272.	5.3	23
6	Impact Time Guidance Law Considering Autopilot Dynamics Based on Variable Coefficients Strategy for Maneuvering Target. Mathematical Problems in Engineering, 2015, 2015, 1-10.	1.1	3
7	Unified approach to cooperative guidance laws against stationary and maneuvering targets. Nonlinear Dynamics, 2015, 81, 1635-1647.	5.2	93
8	Finite time convergent wavelet neural network sliding mode control guidance law with impact angle constraint. International Journal of Automation and Computing, 2015, 12, 588-599.	4.5	7
9	A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles. Chinese Journal of Aeronautics, 2015, 28, 1438-1450.	5.3	79
10	Impact Time and Angle Control Guidance. , 2015, , .		32
11	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311.	4.8	85
11	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229, 2119-2131.	4.8 1.3	85 30
11 12 13	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229, 2119-2131. Cooperative simultaneous attack of multi-missiles under unreliable and noisy communication network: A consensus scheme of impact time. Aerospace Science and Technology, 2015, 47, 31-41.	4.8 1.3 4.8	85 30 38
11 12 13 14	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Aerospace Engineering, 2015, 229, 2119-2131. Cooperative simultaneous attack of multi-missiles under unreliable and noisy communication network: A consensus scheme of impact time. Aerospace Science and Technology, 2015, 47, 31-41. Three-dimensional cooperative guidance laws against stationary and maneuvering targets. Chinese Journal of Aeronautics, 2015, 28, 1104-1120.	4.8 1.3 4.8 5.3	85 30 38 87
11 12 13 14 15	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229, 2119-2131. Cooperative simultaneous attack of multi-missiles under unreliable and noisy communication network: A consensus scheme of impact time. Aerospace Science and Technology, 2015, 47, 31-41. Three-dimensional cooperative guidance laws against stationary and maneuvering targets. Chinese Journal of Aeronautics, 2015, 28, 1104-1120. A New Impact Time and Angle Control Guidance Law for Stationary and Nonmaneuvering Targets. International Journal of Aerospace Engineering, 2016, 2016, 1-14.	4.8 1.3 4.8 5.3 0.9	85 30 38 87 12
11 12 13 14 15 16	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229, 2119-2131. Cooperative simultaneous attack of multi-missiles under unreliable and noisy communication network: A consensus scheme of impact time. Aerospace Science and Technology, 2015, 47, 31-41. Three-dimensional cooperative guidance laws against stationary and maneuvering targets. Chinese Journal of Aerospace Engineering, 2016, 2016, 1-14. A New Impact Time and Angle Control Guidance Law for Stationary and Nonmaneuvering Targets. International Journal of Aerospace Engineering, 2016, 2016, 1-14. Impact-Time-Control Guidance Law for Missile with Time-Varying Velocity. Mathematical Problems in Engineering, 2016, 2016, 1-14.	4.8 1.3 4.8 5.3 0.9 1.1	 85 30 38 87 12 12
11 12 13 14 15 16 17	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229, 2119-2131. Cooperative simultaneous attack of multi-missiles under unreliable and noisy communication network: A consensus scheme of impact time. Aerospace Science and Technology, 2015, 47, 31-41. Three-dimensional cooperative guidance laws against stationary and maneuvering targets. Chinese Journal of Aeronautics, 2015, 28, 1104-1120. A New Impact Time and Angle Control Guidance Law for Stationary and Nonmaneuvering Targets. International Journal of Aerospace Engineering, 2016, 2016, 1-14. Impact-Time-Control Guidance Law for Missile with Time-Varying Velocity. Mathematical Problems in Engineering, 2016, 2016, 1-14. A Nonlinear Impact-Time-Control Guidance law for salvo attack. , 2016, ,.	4.8 1.3 4.8 5.3 0.9 1.1	 85 30 38 87 12 12 0

#	Article	IF	CITATIONS
19	Three-Dimensional Impact Angle Guidance Laws Based on Model Predictive Control and Sliding Mode Disturbance Observer. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2016, 138, .	1.6	21
20	A convex optimization-based approach for time-constrained hypersonic gliding. , 2016, , .		0
21	Unified Time-to-Go Algorithms for Proportional Navigation Class of Guidance. Journal of Guidance, Control, and Dynamics, 2016, 39, 1188-1205.	2.8	19
22	Distributed time-constrained guidance using nonlinear model predictive control. Nonlinear Dynamics, 2016, 84, 1399-1416.	5.2	47
23	Distributed three-dimensional cooperative guidance via receding horizon control. Chinese Journal of Aeronautics, 2016, 29, 972-983.	5.3	40
24	Group cooperative guidance for multiple missiles with directed topologies. , 2016, , .		8
25	Distributed cooperative guidance for multiple missiles. , 2016, , .		3
26	Fuzzy sliding mode control guidance law with terminal impact angle and acceleration constraints. Journal of Systems Engineering and Electronics, 2016, 27, 664-679.	2.2	7
27	Trajectory reshaping based guidance with impact time and angle constraints. Chinese Journal of Aeronautics, 2016, 29, 984-994.	5.3	22
28	A survey on guidance law with impact time constraint. , 2016, , .		1
29	Guidance laws based on H â^ž observer considering measurement noises. Journal of Systems Science and Complexity, 2016, 29, 642-656.	2.8	1
30	A novel biased proportional navigation guidance law for close approach phase. Chinese Journal of Aeronautics, 2016, 29, 228-237.	5.3	13
31	Analytical impact time and angle guidance via time-varying sliding mode technique. ISA Transactions, 2016, 62, 164-176.	5.7	35
32	Guidance laws with input saturation and nonlinear robust <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0010.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="script">H</mml:mi </mml:mrow><mml:mrow><mml:mo>â^ž</mml:mo></mml:mrow><td>5.7 >> <td>15 nath>observe</td></td></mml:msub></mml:math 	5 .7 >> <td>15 nath>observe</td>	15 nath>observe
33	ISA Transactions, 2016, 63, 20-91. Obstacle avoidance for multi-missile network via distributed coordination algorithm. Chinese Journal of Aeronautics, 2016, 29, 441-447.	5.3	29
34	Impact time control guidance with field-of-view constraint accounting for uncertain system lag. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230, 515-529.	1.3	30
35	The three dimensional guidance system design of terminal attack phase for exo-atmospheric kill vehicle. Optik, 2017, 130, 1158-1167.	2.9	6
36	Terminal-Lead-Angle-Constrained Generalized Explicit Guidance. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53, 1250-1260.	4.7	6

#	Article	IF	CITATIONS
37	Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence. Aerospace Science and Technology, 2017, 67, 193-205.	4.8	128
38	Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies. Nonlinear Dynamics, 2017, 90, 2507-2523.	5.2	48
39	An optimal one-way cooperative strategy for two defenders against an attacking missile. Chinese Journal of Aeronautics, 2017, 30, 1506-1518.	5.3	11
40	Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies. Chinese Journal of Aeronautics, 2017, 30, 1570-1581.	5.3	69
41	Adaptive Backstepping Impact Angle Guidance Law Accounting for Autopilot Lag. Journal of Aerospace Engineering, 2017, 30, .	1.4	6
42	Distributed group cooperative guidance for multiple missiles with switching directed communication topologies. , 2017, , .		4
43	The time-to-go consensus of multi-missiles with communication delay. , 2017, , .		5
44	Integrated cooperative guidance framework and cooperative guidance law for multi-missile. Chinese Journal of Aeronautics, 2018, 31, 546-555.	5.3	46
45	A joint mid-course and terminal course cooperative guidance law for multi-missile salvo attack. Chinese Journal of Aeronautics, 2018, 31, 1311-1326.	5.3	25
46	Two stage proportional navigation guidance law for impact time control. , 2018, , .		3
47	Optimal Cooperative Guidance Law for Salvo Attack: An MPC-Based Consensus Perspective. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 2397-2410.	4.7	60
48	Curvature Constrained Cubic Spline Impact Angle Guidance for Intercepting Stationary Targets. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 1750-1766.	4.7	2
49	Impact Time Control Based on Time-to-Go Prediction for Sea-Skimming Antiship Missiles. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 2043-2052.	4.7	55
50	Sliding mode guidance for impact time and angle constraints. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232, 2961-2977.	1.3	24
51	Impact angle control over composite guidance law based on feedback linearization and finite time control. Journal of Systems Engineering and Electronics, 2018, 29, 1036.	2.2	6
52	Elliptic Guidance. Journal of Guidance, Control, and Dynamics, 2018, 41, 2435-2444.	2.8	20
53	Lyapunov-based switched-gain impact angle control guidance. Chinese Journal of Aeronautics, 2018, 31, 765-775.	5.3	11
54	Deviated Pure-Pursuit-Based Optimal Guidance Law for Imposing Intercept Time and Angle. Journal of Guidance, Control, and Dynamics, 2018, 41, 1807-1814.	2.8	31

#	ARTICLE Cooperative guidance law considering the randomness of the unreliable communication network.	IF	CITATIONS
55	Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233, 3313-3322.	1.3	5
56	Nonsingular Terminal Sliding-Mode-Based Guidance Law Design with Impact Angle Constraints. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2019, 43, 47-54.	2.3	10
57	Simultaneous Interception Guidance Strategy in Nonlinear Framework. , 2019, , .		1
58	Adaptive Fixed-Time Cooperative Intercept Guidance Law with Line-Of-Sight Angle Constraint. , 2019, , .		4
59	Cooperative guidance of seeker-less missile considering localization error. Chinese Journal of Aeronautics, 2019, 32, 1933-1945.	5.3	10
60	Co-operative 3D salvo attack of multiple missiles under switching topologies subject to time-varying communication delays. Aeronautical Journal, 2019, 123, 464-483.	1.6	6
61	Three-Dimensional Impact Time and Angle Control Guidance Based on MPSP. International Journal of Aerospace Engineering, 2019, 2019, 1-16.	0.9	13
62	Field-of-View Limited Guidance with Constrained Impact via Line-of-Sight Shaping Approach. , 2019, , .		2
63	Impact Time Control Guidance Law for Guided Projectile Considering Time-Varying Velocity. , 2019, , .		3
64	SDRE Optimal Sliding Mode Guidance Law Design with Attack Angle Constraint. , 2019, , .		1
65	Cooperative time-varying formation guidance for leader-following missiles to intercept a maneuvering target with switching topologies. Nonlinear Dynamics, 2019, 95, 129-141.	5.2	35
66	Optimal control based guidance law to control both impact time and impact angle. Aerospace Science and Technology, 2019, 84, 454-463.	4.8	82
67	Sliding-Mode Guidance for Simultaneous Control of Impact Time and Angle. Journal of Guidance, Control, and Dynamics, 2019, 42, 394-401.	2.8	40
68	Field-of-view constrained two-stage guidance law design for three-dimensional salvo attack of multiple missiles via an optimal control approach. Aerospace Science and Technology, 2019, 85, 334-346.	4.8	39
69	Multiple-constraint cooperative guidance based on two-stage sequential convex programming. Chinese Journal of Aeronautics, 2020, 33, 296-307.	5.3	26
70	Nonlinear Simultaneous Interception Guidance Strategies for Stationary Targets. Journal of Guidance, Control, and Dynamics, 2020, 43, 154-161.	2.8	16
71	A computational-geometry-based 3-dimensional guidance law to control impact time and angle. Aerospace Science and Technology, 2020, 98, 105672.	4.8	29
72	Analytical solution of field-of-view limited guidance with constrained impact and capturability analysis. Aerospace Science and Technology, 2020, 97, 105586.	4.8	28

#	Article	IF	CITATIONS
73	Multiple Missiles Cooperative Guidance Based on Proportional Navigation Guidance. , 2020, , .		3
74	A Geometry-Based Guidance Law to Control Impact Time and Angle under Variable Speeds. Mathematics, 2020, 8, 1029.	2.2	3
75	Deviated Pursuit based Nonlinear Impact-Time Guidance with Finite-Time Convergence. IFAC-PapersOnLine, 2020, 53, 93-98.	0.9	4
76	Distributed target-encirclement guidance law for cooperative attack of multiple missiles. International Journal of Advanced Robotic Systems, 2020, 17, 172988142092914.	2.1	8
77	Three-Dimensional Cooperative Mid-Course Guidance Law Against the Maneuvering Target. IEEE Access, 2020, 8, 18841-18851.	4.2	7
78	Cooperative guidance strategy for multiple hypersonic gliding vehicles system. Chinese Journal of Aeronautics, 2020, 33, 990-1005.	5.3	67
79	Optimal Design of Cooperative Penetration Trajectories for Multiaircraft. International Journal of Aerospace Engineering, 2020, 2020, 1-12.	0.9	1
80	Gradient Method for Solving Multisystem Integrated Optimal Control Problem With Undetermined Terminal Time. IEEE Systems Journal, 2021, 15, 1917-1928.	4.6	2
81	Design, implementation, and verification of a lowâ€cost terminal guidance system for small fixedâ€wing UAVs. Journal of Field Robotics, 2021, 38, 801-827.	6.0	2
82	Finite-Time Cooperative Guidance Strategy for Impact Angle and Time Control. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57, 806-819.	4.7	58
83	Cooperative Guidance Law against Highly Maneuvering Target with Dynamic Surrounding Attack. International Journal of Aerospace Engineering, 2021, 2021, 1-16.	0.9	4
84	Cooperative guidance laws against highly maneuvering target with impact time and angle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 1006-1016.	1.3	5
85	A Modified Proportional Navigation Guidance Law for Impact Time Control. , 2021, , .		1
86	Sliding mode–based simultaneous control of impact angle and impact time. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 1269-1281.	1.3	4
87	Impact Time Control Cooperative Guidance Law Design Based on Modified Proportional Navigation. Aerospace, 2021, 8, 231.	2.2	5
88	Cooperative Midcourse Guidance Law with Communication Delay. International Journal of Aerospace Engineering, 2021, 2021, 1-16.	0.9	3
89	Impact Time Control Guidance Law Considering Seeker's Field-of-View Constraint Without Time-to-Go Information. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, 20, 412-417.	0.9	3
90	Target Tracking Enhancement by Three-Dimensional Cooperative Guidance Law Imposing Relative Interception Geometry. Aerospace, 2021, 8, 6.	2.2	7

#	Article	IF	CITATIONS
91	Shrinking Horizon MPC Strategy for Impact Time and Angle Guidance. , 2021, , .		0
92	Distributed leaderless cooperative guidance for multiple missiles with time delay and switching topologies. , 2021, , .		1
93	Fixed-Time Cooperative Guidance for Salvo Attack: A Leader-Followers Approach. , 2021, , .		1
94	Intercepting Higher-Speed Targets Using Generalized Relative Biased Proportional Navigation. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2019, 37, 682-690.	0.5	5
95	New Look-Angle Tracking Guidance Strategy for Impact Time and Angle Control. Journal of Guidance, Control, and Dynamics, 2022, 45, 545-557.	2.8	17
96	Impact time control using biased proportional navigation for missiles with varying velocity. Chinese Journal of Aeronautics, 2020, 33, 956-964.	5.3	22
98	Missile guidance with assisted deep reinforcement learning for head-on interception of maneuvering target. Complex & Intelligent Systems, 2022, 8, 1205-1216.	6.5	9
99	A Novel Dynamic Inversion Decouple Cooperative Guidance law against Highly Maneuvering Target. , 2020, , .		0
100	Finite-time Cooperative Guidance Law for Multiple Hypersonic Vehicles in Dive Phase. , 2020, , .		1
101	Multi-missile Cooperative Control Based on ESO for Simultaneous Arrival. Lecture Notes in Electrical Engineering, 2022, , 2981-2991.	0.4	3
102	Cooperative guidance law for intercepting a hypersonic target with impact angle constraint. Aeronautical Journal, 2022, 126, 1026-1044.	1.6	14
103	Three-dimensional cooperative guidance law to control impact time and angle with fixed-time convergence. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 1647-1666.	1.3	4
104	A Three-Dimensional Guidance Law for Cooperative Attack of Multi-UAVs. Lecture Notes in Electrical Engineering, 2022, , 810-819.	0.4	0
106	Research on Improved Cooperative Terminal Guidance Law of Multi-hypersonic Cruise Missiles. Lecture Notes in Electrical Engineering, 2022, , 541-550.	0.4	Ο
107	Impact-Angle-Constrained Cooperative Guidance for Salvo Attack. Journal of Guidance, Control, and Dynamics, 2022, 45, 684-703.	2.8	23
108	Three-Dimensional Prescribed-Time Pinning Group Cooperative Guidance Law. International Journal of Aerospace Engineering, 2021, 2021, 1-19.	0.9	5
109	Avoiding Obstacles via Missile Real-Time Inference by Reinforcement Learning. Applied Sciences (Switzerland), 2022, 12, 4142.	2.5	5
110	Unified Method for Field-of-View-Limited Homing Guidance. Journal of Guidance, Control, and Dynamics, 2022, 45, 1415-1434.	2.8	13

#	Article	IF	CITATIONS
111	Three-Dimensional Impact Angle and Time Control Guidance Law Based on Two-Stage Strategy. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 5361-5372.	4.7	8
112	Polynomial based Impact Time and Impact Angle Constrained Guidance. IFAC-PapersOnLine, 2022, 55, 486-491.	0.9	Ο
113	A hybrid proportional navigation based two-stage impact time control guidance law. Journal of Systems Engineering and Electronics, 2022, 33, 461-473.	2.2	2
114	A trajectory shaping guidance law with field-of-view angle constraint and terminal limits. Journal of Systems Engineering and Electronics, 2022, 33, 426-437.	2.2	5
115	Three Dimensional Nonlinear Guidance Law for Exact Impact Time Control. IEEE Access, 2022, 10, 67350-67362.	4.2	2
116	A Design Approach for Simultaneous Cooperative Interception Based on Area Coverage Optimization. Drones, 2022, 6, 156.	4.9	6
117	Impact Time and Angle Control Optimal Guidance with Field-of-View Constraint. Journal of Guidance, Control, and Dynamics, 2022, 45, 2369-2378.	2.8	8
118	Two-Stage Cooperative Guidance Strategy with Impact-Angle and Field-of-View Constraints. Journal of Guidance, Control, and Dynamics, 2023, 46, 590-599.	2.8	4
119	Three-dimensional vector guidance law with impact time and angle constraints. Journal of the Franklin Institute, 2023, 360, 693-718.	3.4	7
120	Impact angle constraint guidance law using fully-actuated system approach. Aerospace Science and Technology, 2023, 136, 108220.	4.8	4
121	Design of the Cooperative Guidance Law with Simultaneous Constraints on Impact Time and Angle. Lecture Notes in Electrical Engineering, 2023, , 5250-5260.	0.4	0
122	A Large Scale Impact-Time-Control Guidance Law For Salvo Attack. , 2022, , .		0
123	Cooperative Guidance Law for the Mother-Cabin of the Anti-UAV Cluster Mother-Son Missile. Applied Sciences (Switzerland), 2023, 13, 5397.	2.5	1
124	Design of finite time cooperative mid-course guidance law for unmanned target drone aircrafts. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2023, 41, 97-104.	0.5	Ο
125	Differential geometric guidance law design for varying-speed missile. Aerospace Science and Technology, 2023, 140, 108440.	4.8	0
126	Three-Dimensional Spatial–Temporal Cooperative Guidance Without Active Speed Control. Journal of Guidance, Control, and Dynamics, 2023, 46, 1981-1996.	2.8	2
127	Cubature Kalman Filters Model Predictive Static Programming Guidance Method with Impact Time and Angle Constraints Considering Modeling Errors. Mathematics, 2023, 11, 2990.	2.2	0
128	Optimal spatial-temporal cooperative guidance against a maneuvering target. Journal of the Franklin Institute, 2023, 360, 9886-9903.	3.4	0

#	Article	IF	CITATIONS
129	Impact time control guidance law with time-varying velocity based on deep reinforcement learning. Aerospace Science and Technology, 2023, 142, 108603.	4.8	2
130	Nonlinear Three-Dimensional Guidance for Impact Time and Angle Control With Field-of-View Constraint. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60, 264-279.	4.7	1
131	Multi-Constrained Geometric Guidance Law with a Data-Driven Method. Drones, 2023, 7, 639.	4.9	0
132	Sinusoidal Guidance. Journal of Guidance, Control, and Dynamics, 0, , 1-16.	2.8	0
133	Polynomial Shaping Guidance Law for Impact Time Control. , 2023, , .		0
135	A model predictive solution to cooperative guidance of hypersonic reentry vehicle with impact angle and distance coordination. Aerospace Science and Technology, 2024, 145, 108855.	4.8	0
136	Guidance for Terminal Direction and Final Time Constrained-Approach Towards a Moving Target. , 2023, , .		0
137	Multi-UAV DMPC Cooperative Guidance with Constraints of Terminal Angle and Obstacle Avoidance. International Journal of Aerospace Engineering, 2024, 2024, 1-28.	0.9	0